
1

Scheduling commercial advertisements for television1

Abstract. The problem of scheduling the commercial advertisements in the television

industry is investigated. Each advertiser client demands that the multiple airings of the same

brand advertisement should be as spaced as possible over a given time period. Moreover,

audience rating requests have to be taken into account in the scheduling. This is the first time

this hard decision problem is dealt with in the literature. We design two mixed integer linear

programming (MILP) models. Two constructive heuristics, local search procedures and

simulated annealing (SA) approaches are also proposed. Extensive computational experiments,

using several instances of various sizes, are performed. The results show that the proposed

MILP model which represents the problem as a network flow obtains a larger number of

optimal solutions and the best non-exact procedure is the one that uses SA.

Keywords: advertising, scheduling, optimisation, mathematical programming, heuristics

1. Introduction

Commercial advertising is the main source of revenue for television (TV) channels

(Alaei and Ghassemi-Tari, 2011). For instance in 2003, 100 billion dollars were spent

on U.S. TV advertisements alone (Fleming and Pashkevich, 2007). The two main agents

in the advertising campaigns are the TV channels and the advertisers, both are usually

faced with solving several difficult decision problems. First the TV channel needs to

schedule the programmes into the appropriate time slots or spots (advertising breaks)

for the next scheduling horizon (e.g., Reedy et al., 1998). Then the marketing

department of such a TV channel sells the spots based on an associated (forecasted)

audience rating. The selling mechanism can vary depending on the TV channel business

structure and price. For instance, some satellite TV channels in France prepare packages

of spots where each package has a price, a number of spots and an estimated minimum

level of forecasted audiences (Benoist et al., 2007). On the other hand, the advertisers

(or advertising agencies acting as intermediaries) buy the spots in order to obtain the

most efficient media plan (advertising campaign) while being limited to a maximum

budget. The problem of obtaining the optimal media plan for an advertiser involves

basically two subproblems. The first is to decide which TV channel to choose and at

what time and how often to broadcast the advertisements of the brands (Mihiotis and

Tsakiris, 2004; Ghassemi-Tari and Alaei, 2013). The second subproblem is about

forecasting the impact of the media plan (Sissors et al., 2002).

Since the offer of spots is usually less than its demand, an auction is commonly

conducted for the sales of the spots (Alaei and Ghassemi-Tari, 2011; Ghassemi-Tari and

Alaei, 2013) and the TV channel has to decide which bids to accept in order to

maximize its revenue (Kimms and Müller-Bungart, 2007). For instance, Jones (2000)

describes the case in which the advertisers bids are characterised by certain

requirements that the set of spots has to satisfy instead of specifying the spots to buy.

Finally, when the channel has sold the spots, each advertising client sends its order. The

order defines the number of times that the advertisements of the advertiser' brands has

to be aired. Obviously, the total number of airings of the order is the same as the

number of spots that the advertiser has bought. Usually the order does not define the

1 Supported by the Department of Innovation, Universities and Enterprise of Generalitat de Catalunya under grant BE-DGR-2011.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/30707237?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

airdates of its advertisements but some general rules (Kimms and Müller-Bungart,

2007). These rules may include audience rating requirements (e.g., Fleming and

Pashkevich, 2007; Pereira et al., 2007) and regularity in the multiple airings of the

advertisements of the same brand (e.g., Bollapragada et al., 2004). Thus, the problem

that the TV channel faces is to determine for each advertiser, the schedule of

advertisements (i.e., which advertisement will air in each spot) that best satisfies the

order of the advertiser.

In this paper we focus on the latter problem where the satisfaction of the advertisers'

orders is important as it can increase the revenue of the TV channel as well. For

instance, Bollapragrada et al. (2004) describe the case for the U.S. National

Broadcasting Company (NBC), in which the improvement of the orders satisfaction

resulted in an increase of revenues by over 15 million dollars annually.

To the best of our knowledge, the audience rating and the airing regularity requirements

have not been considered simultaneously in the literature. We aim in this study to tackle

this decision problem. The contributions of this paper include:

(i) The study of a new scheduling problem which arises in the TV industry

(ii) The development of two novel mathematical formulations

(iii) The design of constructive heuristics, local searches as well as SA-based meta-

heuristics to solve the problem

(iv) New benchmark solutions for future research including lower and upper bounds

The remainder of the paper is organised as follows. Section 2 describes the problem and

presents an illustrative example. A review of the related literature is provided in Section

3 followed by two mixed integer linear programming (MILP) models which we

developed in Section 4. Section 5 presents two constructive heuristics, local searches

and three simulated annealing (SA) variants. The computational experiments are given

in Section 6 and our conclusions with a brief on future research are covered in Section 7.

2. Definition of the problem

The advertiser usually requests that the multiple airings of each advertisement should be

as regular as possible. In other words, any two consecutive airings of the advertisement

should be as evenly spaced in time as possible during the airing period. On the other

hand, each purchased spot has its audience rating which can be either high, medium or

low. The advertiser requests a minimum number of times each advertisement to be aired

in high and in medium (or higher) audience rating spots.

Thus, the problem is to obtain the schedule of advertisements that best satisfies the

advertisers’ requests and which increases the revenues and productivity associated with

the television network’s sales.

More formally, the problem is defined as follows. An advertiser has C brands to be

advertised and for each brand there is one advertisement. Each advertisement c (c =

1,...,C) has to be aired nc times in at least nhc + nmc spots with medium or high audience

ratings and ensuring that a minimum of nhc airings is performed in high audience spots.

The advertiser purchases N spots such that
1

C

cc
N n


 . For each spot s, it is given its

3

air date, ts, and its (forecasted) audience rating  , ,sr H M L (1,...,s N), where H, M

and L represent high, medium and low audience rating, respectively. Without loss of

generality, we can assume that
1 0t  and 1s st t  (2,...,s N). The horizon of the

airing period is T (
NT t) and the desired or ideal time interval between any two

consecutive airings of advertisement c is
c cq T n .

The aim is to find a feasible broadcast scheduling (that is, an assignment of

advertisements into spots that satisfies the audience rating constraints) that minimises

the irregularity. As it is done in Bollapragada et al. (2004), the objective function

consists in minimising the sum of absolute deviations from the ideal timing between

each pair of consecutive airings of each advertisement; that is:

1 2

cC n

ck cc k
Z T n

 
   , where ck is the time interval between the k

th
 and (1k )

th

airings of advertisement c with 2cn  .

An illustrative example

Consider an example based on the one shown in Bollapragada et al. (2004), which

consists of an advertiser that has bought 17 spots for airing 6 advertisements. Here we

also include, for each advertisement, the minimum number of high and medium

audience rating spots to be aired. Table 1 shows the advertisement names, the number

of airings of each brand advertising and the minimum number of high (#H) and medium

(or higher) (#M) audience rating spots in which they must be aired. For instance, for

advertisement ‘A’ it is requested 3 airings with at least one medium (or higher) rating

spot.

[Insert Table 1 here]

A feasible solution for this example is given in Table 2, which shows the spot number

(#), its corresponding audience rating, the air date, air time and instant (T), in hours, of

the spots, and the chosen advertisement to be aired in that spot (Solution). Here the 3

types of audience rating correspond to the following air time intervals: H (9:00 PM -

11:30 PM), M (6:30 PM - 8:00 PM) and L (3:00 PM - 6:00 PM).Thus, the objective

function value is computed as:

357.5A B C D E FZ Z Z Z Z Z Z       , where:

   191 68 383 3 383 191 383 3 4.67 64.33 69AZ         

     115 49 383 5 167 115 383 5 265 167 383 5BZ          

 381 265 383 5 10.6 24.6 21.4 39.4 96      

 138 0 383 2 53.5CZ    

 314 93.5 383 2 29DZ    

   122.5 24 383 3 284.5 122.5 383 3 29.17 34.33 63.5EZ         

 193 48 383 2 46.5FZ    

[Insert Table 2 here]

4

3. A brief review on related work

Most of the research about scheduling problems in the TV industry has focused on the

schedule of programmes (e.g., Reddy et al., 1998) but very little research has been

explored on the schedule of advertisements from the point of view of the TV channel.

Pereira et al. (2007) studies the advertising scheduling problem faced by a Portuguese

TV station in which the total viewing for each advertisement is maximized while

satisfying several audience, operating and legal constraints as well as fulfilling the

audience targets. The authors propose a decision support systems to deal with the

problem.

In particular, the regularity on the advertisement airings has been largely ignored in the

literature, with the exception of Bollapragada et al. (2002, 2004) and Brusco (2008).

Bollapragada et al. (2002) introduce an advertising scheduling problem faced by the

National Broadcasting Company. It is solved in Bollapragada et al. (2004) and later in

Brusco (2008) and Gaur et al. (2009). These studies focus on the regularity aspect of the

schedule only without taken into account the audience rating requirement. Moreover, it

is assumed that the time intervals between two consecutive spots are constant. Thus,

under this assumption, the procedures proposed in Bollapragada et al. (2004) and

Brusco (2008) are designed so the airings of the same advertisement are spread as

evenly as possible in the sequence of the available spots. However, for example, in

Table 2 we can see that the time interval between spots #1 and #2 is 24 hours whereas

between spots #3 and #4 it is only 1 hour. Therefore, this assumption is too simplistic in

practice. In fact, Bollapragada et al. (2004) highlighted the idea that “the commercials

with the same ISCI code [the airings of each advertisement] to be as evenly spaced in

time as possible” (p. 688). Gaur et al. (2009) introduced some of these ideas by using

different weights between pairs of commercials.

Even with these aforementioned simplifications, the problem introduced in

Bollapragada et al. (2002) is NP-complete and hence ours is also NP-complete (proof is

given in the Appendix). Bollapragada et al. (2004) propose two mixed integer linear

programming (MILP) models, one branch and bound (B&B) algorithm and four

heuristics to solve their problem. Brusco (2008) enhances the previous B&B algorithm

and presents a simulated algorithm (SA). Gaur et al. (2009) addressed the problem by

formulating it as a generalisation of the max k-cut problem.

Another problem which is related to ours is the response time variability problem

(RTVP). The RTVP is a sequencing optimisation problem that arises whenever products,

clients, jobs, etc, need to be sequenced with the aim to minimise the variability in the

time between the instants at which they receive the necessary resources. This can be

found in a variety of real-life contexts such as mixed-model assembly lines (e.g.,

Corominas et al., 2010), computer multithreaded systems (e.g., Waldspurger and Weihl,

1994; Kubiak, 2009), periodic machine maintenance (e.g., Anily et al., 1998) and waste

collection (Herrmann, 2011). This problem is defined as follows.

5

Let C be the number of symbols (products, clients, jobs, etc.) and nc the number of

copies of symbol c (c = 1,...,C) to be sequenced in a sequence s = s1s2...sN of length N

(
1

C

c

c

N n


). For all types of symbols with 2cn  , let the variables dck be the distance

between the position of the k
th

 and (1k )
th

 copies of symbol c (i.e., the number of

positions between them, where the distance between two consecutive positions is

considered equal to 1). Let also assume that 1s immediately follows Ns (i.e., it is a

circular sequence). Therefore,
1cd is the distance between the first copy of symbol c in a

cycle and the last copy of the same symbol in the preceding cycle. Note that for all

symbols c in which nc = 1, the variables
1cd N . The objective is to minimise

 
2

1 1

cC n

ck cc k
RTV d N n

 
   .

The above problem has analogies with the schedule of advertisements, where the

symbols would be the advertisements, the copies referring to their number of airings

and the positions representing the spots. However, our problem differs from the RTVP

in the followings:

- the RTVP is cyclic

- the time distances between two consecutive positions are constant

- the differences of the real distances with respect to the ideal distances are

squared penalised

- the RTVP is unconstrained

These differences add extra complexity to the problem including especially the

inclusion of the new constraints. However, the two problems have an important

common characteristic in that both have a fitness function that depends on the relative

distances between the positions of each pair of consecutive copies of the same symbol.

The RTVP is shown to be NP-complete (Corominas et al., 2007). The RTVP has been

solved by means of MILP (Corominas et al., 2007, 2010), and recently by a B&B

algorithm (García-Villoria et al., 2013), adaptive constructive heuristics (Salhi and

García-Villoria, 2012), metaheuristics (Corominas et al., 2013; García-Villoria and

Pastor, 2013) and hyper-heuristics (García-Villoria et al., 2011).

4. MILP formulations

We present two MILP models (M1 and M2). The first one is a straightforward model

whereas the second is based on network flow formulation. The following additional

notation is given throughout:

Eck, Lck Earliest and latest spot in which the k
th

 airing of advertisement c can be

assigned, respectively: ckE k , ck cL N n k   (1,...,c C ; 1,..., ck n).

4.1. Model M1

A first intuitive (non linear) mathematical model, M1, is formulated as follows:

6

Variables

cksy is 1 if the k
th

 airing of advertisement c, 1,...,c C ; 1,..., ck n , is assigned into spot

s, ,...,ck cks E L ; and 0 otherwise.

Model

, 1

, 1

, 1,

1 2

Minimise Z
c kc ck

ck c k

Ln LC

s cks s c k s c

c k s E s E

t y t y q






   

  
        

   
   (1)

 subject to

, 1

, 1

, 1, 1
c kck

ck c k

LL

cks c k s

s E s E

s y s y






 

 
     

 
  1,...,c C ; 2,..., ck n (2)

1
ck

ck

L

cks

s E

y


 1,...,c C ; 1,..., ck n (3)

1 1|

1
c

ck ck

nC

cks

c k
E s L

y
 

 

  1,...,s N (4)

1 s |

c ck

ck

s

n L

cks c

k E
r H

y nh
 



  1,...,c C (5)

1 s | 1 s |

c ck c ck

ck ck

s s

n L n L

cks c cks c

k E k E
r H r M

y nh y nm
   

 

      1,...,c C (6)

 0,1cksy  1,...,c C ; 1,..., ck n ; ,...,ck cks E L (7)

The objective function (1) is to minimise the sum over all advertisements of the

absolute deviations between the actual and ideal lengths of the time interval between

two successive airings of the same advertisement. Constraints (2) ensure the natural

order between airings of the same advertisement. Constraints (3) guarantee that each

airing of each advertisement is assigned to one spot, whereas constraints (4) state that

only one advertisement airing is assigned into each spot. Constraints (5) and (6) ensure

that each advertisement is aired a minimum number into high and medium (or higher)

audience rating spots, respectively. Regarding constraints (6), note that the number of

spots with a high audience rating in which advertisement c is assigned (
1 s |

c ck

ck

s

n L

cks

k E
r H

y
 



 )

minus the number of airings needed in high audience rating spots (nhc) plus the number

of spots with a medium audience rating in which advertisement c is assigned must be at

least nmc. Finally, (7) define the binary variables.

The model presented above is non linear due to the objective function. This can

however be linearized by introducing the new continuous non negative variables ck 

and ck  (1,...,c C ; 2,..., ck n):

7

Model M1 (linearized)

 
1 2

Minimise Z
cnC

ck ck

c k

  

 

  (8)

subject to

 constraints (2), (3), (4), (5), (6) and (7)

, 1

, 1

, 1,

c kck

ck c k

LL

ck ck s cks s c k s c

s E s E

t y t y q 




 



 

  
         

   
  1,...,c C ; 2,..., ck n (9)

0, 0ck ck    1,...,c C ; 2,..., ck n (10)

M1 has 2 2

1

C

c

c

N N n


  binary variables, 2 ()N C  continuous variables and 5 N C 

constraints.

4.2 Model M2

Other scheduling problems in TV have been modelled as network flow problems (e.g.,

Reddy et al., 1998; Bollapragada et al., 2004). Here we propose a new model, M2,

based on representing the assignment of the advertisement airings into spots as a

network flow problem.

Variables

csf  is 1 if advertisement c, 1,...,c C , is shipped from spot s, 1,..., 1s N  , to spot

 , 1,...,s N   ; and 0 otherwise.

csp is 1 if advertisement c, 1,...,c C , is assigned into spot s, 1,...,s N ; and 0

otherwise.

cs is 1 if the first airing of advertisement c, 1,...,c C , is assigned into spot s,

1,..., 1cs N n   ; and 0 otherwise.

cs is 1 if the last airing of advertisement c, 1,...,c C , is assigned into spot s,

,...,cs n N ; and 0 otherwise.

Model
1

1 1 1

Minimise Z
C N N

s c cs

c s s

t t q f 




   

     (11)

subject to

1

N

cs c

s

p n


 1,...,c C (12)

1

1
C

cs

c

p


 1,...,s N (13)

1

1

1
cN n

cs

s


 



 1,...,c C (14)

1

1 1

s N

cs c s cs

s

f f 
 




  

   1,...,c C ;  1,...,min 1, 1c cs N n n    (15a)

8

1

1 1

s N

cs c s cs cs

s

f f 
 

 


  

    1,...,c C ; ,..., 1c cs n N n   (15b)

1

1 1

s N

c s cs

s

f f 
 



  

  1,...,c C ; 2,..., 1c cs N n n    (15c)

1

1 1

s N

c s cs cs

s

f f 
 




  

   1,...,c C ;  max 2, ,...,c cs N n n N   (15d)

1

N

cs cs

s

f p
  

 1,...,c C ; 1,..., 1cs n  (16a)

1

N

cs cs cs

s

f p



 

  1,...,c C ; ,...,cs n N (16b)

1|

s

N

cs c

s
r H

p nh



 1,...,c C (17)

1| 1|

s s

N N

cs c cs c

s s
r H r M

p nh p nm
 
 

    1,...,c C (18)

 0,1csf   1,...,c C ; 1,..., 1s N  ; 1,...,s N   (19)

 0,1csp  1,...,c C ; 1,...,s N (20)

 0,1cs  1,...,c C ; 1,..., 1cs N n   (21)

 0,1cs  1,...,c C ; ,...,cs n N (22)

The objective function (11) is to minimise the sum of the discrepancies between the

ideal and real time intervals for each airing of each advertisement. Constraints (12) state

that the requested number of airings of each advertisement is used, whereas constraints

(13) state that only one airing is assigned to each spot. Constraints (14) ensure that there

is one first airing for each advertisement. Constraints (15a-d) together with constraints

(16a-b) guarantee the flow conservation for each advertisement. Finally, constraints (17)

and (18) ensure that each advertisement is aired a minimum number into high audience

rating spots and a minimum number into medium (or higher) audience rating spots,

respectively. Constraints (19) to (22) refer to the binary variables. Note that (15a-d) can

be unified in constraints 15b for all 1,..., ; 1,...,c C s N  by defining new cs and cs

variables and setting them to zero, but we split them into 4 type of constraints for the

sake of clarity; a similar observation can be done for (16a-d).

M2 has 4 2 2N C C N      binary variables and (2 1) 4N C C     constraints.

The model M2 is less intuitive than M1 but it is more efficient as it produces more

optimal solutions as will be shown in Section 6.3 where optimality can be guaranteed

for instances up to around 150 spots only. These models are used to validate our

heuristic methods that will be presented in the following section, by providing either

optimal solutions when possible, or lower and upper bounds if found within a limited

CPU time.

9

5. Heuristic methods

The proposed MILP models are not appropriate for larger instances as will be shown in

the computational results section. The best way forward is therefore to propose efficient

heuristic methods. We put forward two constructive heuristics, some local search

procedures and SA-based algorithms.

5.1. Constructive heuristics

We present two greedy type heuristics which we refer to as H1 and H2 both having the

following common two steps. In step 1, a trial solution, not necessarily feasible, is

obtained. Here, we do not take into account the constraints about the audience rating for

the advertisements. In step 2, we aim to transform the trial solution if found infeasible in

step 1 into a feasible one by applying a repair mechanism on this trial solution so the

audience constraints are satisfied.

The difference between the two heuristics lies in the first step only. These two steps of

H1 and H2 are described briefly as follows:

H1 first step

This is based on the minimum contribution idea among the advertisements that have

pending airings. For each spot s = 1,...,N, the advertisement that yields the minimum

contribution to the objective function based on the current partial solution is selected to

be aired in spot s (the lexicographical order is used as the tie breaker).

Let us first introduce the following nomenclature:

pseq : The sequence of advertisements obtained at step p; 0, ,p N . Initially seq0

is a void sequence.

ˆ
cpn : The number of times left for advertisement c to be assigned in 1pseq  ;

1, ,c C , 1, ,p N .
1

pC : The set of advertisements that have to be aired only once and have not been

sequenced in 1pseq  ; 1, ,p N . That is,  1 ˆ1, , | 1p c cpC c C n n    .

2

pC : The set of advertisements that have to be aired more than once and have not

been sequenced in 1pseq  ; 1, ,p N . That is,  2 ˆ1, , | 2p c cpC c C n n    .

3

pC : The set of advertisements that have to be aired more than once and have been

sequenced in 1pseq  at least once; 1, ,p N . That is,

    3 ˆ1, , | 2p c cp cC c C n n n     .

cplsp : The last spot in which advertisement c has been sequenced in 1pseq  ;
3

pc C ,

1, ,p N .

10

 

1 2

3

0 , if
(,)

, if
cp

p p

p lsp c p

c C C
c p

t t q c C

   
   

    

; 1,...,c C , 1, ,p N .

The pseudo-code of the H1 first step is shown in Figure 1.

[Insert Figure 1 here]

H2 first step

This step is based on a recently developed heuristic by Salhi and García-Villoria (2012)

for the RTVP. The heuristic is modified and adapted accordingly to solve this new but

related scheduling problem. The idea is to avoid, when selecting the next advertisement

to be aired, accumulating an excessive future increase in the time between the next

airing of an advertisement and its last airing. In other words, this is similar to the regret

cost usually used in the transportation and the allocation literature.

The pseudo-code of the H2 first step is shown in Figure 2. We can distinguish two

phases in the algorithm. Let R be the number of steps used by the algorithm to sequence

at least one airing of all advertisements that have to be aired more than once. That is,

step R is the one in which 2

1RC   and 2

RC  . The first phase is applied during the

first R steps (lines 2 to 4 of the pseudo-code) whereas the second phase consists of the

remaining N R steps (lines 5 and 6). In lines 3 and 6, the criterion to select the

advertisement to be sequenced at position p is the advertisement c with the maximum

(,)c p value; in case of tie, the criterion shown in Figure 3 is used. In line 4 the

criterion is to select the advertisement that has to be aired more times; in case of tie, the

lexicographical order is used.

[Insert Figure 2 here]

[Insert Figure 3 here]

The repair mechanism for both H1 and H2

The repair mechanism of the trial solution obtained in the first step is based on the

following fact. One advertisement (say c1) may have been assigned to more high

audience rating spots than the minimum required. Using the same token, another

advertisement (say c2) may have been assigned to a fewer than the minimum required.

This observation is also applied to the medium audience rating spots constraints. To

overcome this problem, we implement an interchange between a pair of spots in which

the scheduling of c2 is closer to fulfil the audience rating constraints while c1 remains

feasible. The trial solution is repaired by applying iteratively this kind of interchanges.

A pseudo-code of the repair mechanism is given in Figure 4 where the high audience

rating requirement is first repaired (lines 1 to 5 of the pseudo-code) followed by the

medium audience rating requirement (lines 6 to 10).

[Insert Figure 4 here]

11

We observed empirically that the second step not only repairs the trial solution but

usually improves its fitness. The reason is that the trial solution of the first step is

obtained heuristically (i.e., its optimality is not guaranteed); otherwise, the quality of the

solution will either remain unchanged or get worse.

The solutions of the illustrative example given in Section 2 that are obtained with H1

and H2 are, respectively, A-B-C-D-A-B-A-F-E-B-F-D-E-C-B-B-E (Z = 456.37) and B-

A-E-C-B-D-C-A-B-E-B-F-D-A-B-E-F (Z = 390.7)

5.2. Local search procedures

We propose several local search procedures which are based on generating and

exploring the neighbourhood of the current solution.

(i) Neighbourhood structures

The four following neighbourhoods are considered:

1N : Neighbours obtained by interchanges of each consecutive pair of spots. Only the

interchanges that obtain feasible solutions are considered (i.e., solutions in which

the audience rating constraints are satisfied). The time complexity for this

neighbourhood is  O N .

2N : Neighbours obtained by interchanges of each consecutive and non-consecutive pair

of spots. Only feasible interchanges are considered. This neighbourhood has a

 2O N time complexity.

3N : Neighbours obtained by insertions of each advertisement airing in each position of

the sequence. Only feasible insertions are considered. This neighbourhood run in

 2O N .

23N : 2 3N N . This neighbourhood has the same time complexity as above

namely  2O N .

(ii) Exploration strategies

The two following exploration strategies of the neighbourhood are proposed:

NEE (non exhaustive exploration): The neighbourhood is generated until a neighbour

better than the current solution is found (if it exists), which is selected to be the new

current solution. This is also known as the first improvement in the literature.

EE (exhaustive exploration): The entire neighbourhood is generated and the best

neighbour which improves the current solution the most is selected. This is also known

as the best improvement in the literature.

In total, nine local search procedures are proposed: LS-N1, LS-N2 and LS-N3 use the

NEE strategy together with the neighbourhoods N1, N2 and N3, respectively. LS-N4 and

LS-N5 both use N23 with NEE except that LS-N4 explores first the neighbours of N2 and

then the neighbours of N3 whereas LS-N5 does the opposite. Note that when the EE

strategy is used, the order in which the neighbours are explored is irrelevant as the

12

overall best is selected. Also note that LS-E1, LS-E2, LS-E3 and LS-E4 use the NEE

strategy together with the neighbourhoods N1, N2, N3 and N23, respectively.

5.3. Simulated annealing algorithms

The simulated annealing metaheuristic (SA) was first proposed in Kirkpatrick et al.

(1983) to solve complex combinatorial optimisation problems. SA has been successfully

applied for solving a wide range of combinatorial optimisation problems (Nikolaev and

Jacobson, 2010). In particular, SA-based algorithms gave, on average, the best solutions

when solving the RTVP (García-Villoria and Pastor, 2013).

SA can be seen as a local search where moves to non-improving solutions are allowed

with a certain probability. The objective of accepting non-improving solutions is to

avoid being trapped into a local optimum. The metaheuristic starts from an initial

solution, which is initially the current solution. Then, at each iteration, a new solution

selected at random from the neighbourhood of the current solution is considered. If the

neighbour is not worse than the current solution, then the neighbour becomes the

current solution; in the case that it is worse, the neighbour can become also the current

solution with a probability that depends on: 1) how worse is the neighbour, and 2) the

value of a control parameter called temperature, which is usually a non-increasing

function of the number of iterations.

In practice, standard SA algorithms may be trapped in a local optimum after a certain

amount of computational time. This occurs when the temperature (one of the main

cooling schedules) is too low and then the probability of accepting worse neighbours is

negligible. To reduce the risks of such drawbacks, we propose to reset the temperature

of the SA to the initial temperature when the current temperature is lower than the final

temperature (Dowsland and Adenso-Díaz, 2003).

Based on the aforementioned idea, we propose three SA algorithms. We refer to these as

SA1, SA2 and SA3. All three SA algorithms are based on the common scheme whose

pseudo-code is shown in Figure 5. Iteratively the temperature is reset to the initial

temperature t0 and the SA procedures obtain an initial solution with the function

obtainInitialSolution(), whose definition is different in each SA algorithm (line 2 of

Figure 5) and defined in Sections 5.3.1 to 5.3.3. Then, the solution jumps iteratively to a

neighbour selected at random from the neighbourhood N23 (lines 5 to 8 of Figure 5) and

the temperature is decreased after itt iterations by a cooling factor α, 0 < α < 1 (lines 3

and 4 of Figure 5). When the temperature is lower than the final temperature tf (line 3 of

Figure 5) then the temperature is reset to t0 and the process continues until the

maximum allowed runtime is reached (line 1 of Figure 5).

The neighbourhood used is N23 (line 5 of Figure 5). We have empirically found that this

neighbourhood provides the best performance (see Section 6.3, Table 5). With respect

to the reduction of the temperature (line 3 of Figure 5), the most popular way is the

geometric reduction (Dowsland and Adenso-Díaz, 2003, Henderson et al., 2003). This

scheme was also found to be promising when addressing similar type of problems by

Brusco (2008) and recently by García-Villoria and Pastor (2013)

13

Therefore, the SA procedures have the following four parameters: t0, tf, itt and α. The

setting of their values, for each procedure, is discussed in Section 6.2.

[Insert Figure 5 here]

5.3.1. SA1

The solution that returns obtainInitialSolution(), which obtains the initial solution each

time that the temperature is reset (line 2 of Figure 5), in the SA1 algorithm is always the

same solution found by H2 as this showed to be the best performer (see Section 6.3,

Table 5).

5.3.2. SA2

The solution that returns obtainInitialSolution() in the SA2 algorithm is found by a

greedy randomized version of H2. The latter is based on the greedy randomized

adaptive search procedure (GRASP) as presented by Feo and Resende (1989).

Specifically, the H2 first step (Figure 2) is randomized as follows.

- The selection of the advertising to be sequenced (lines 3, 4 and 6 of Figure 2) is

performed at random from a restricted candidate list (RCL).

- In lines 3 and 6 of Figure 2, the RCL is defined by the L1 advertisings with the

highest (,)c p values (in case of tie, the tie breaker of Figure 3 is used).

- Also in line 4 of Figure 2, the RCL is defined by the L2 advertisings with the

highest nc values. In case of tie, the lexicographical order is used.

Thus, SA2 has two additional parameters, L1 and L2, whose values need to be set and

discussed in Section 6.2.

5.3.3. SA3

The solution that returns obtainInitialSolution() in the SA3 algorithm is the solution

found by H2 the first time that obtainInitialSolution() is called. In the following calls,

obtainInitialSolution() returns the best solution found so far during the search of SA3.

6. Computational experiments

For our computational testing, we solved the MILP models using IBM ILOG CPLEX

12.2. Regarding the heuristic methods, we implemented them in Java SE 1.6.21. The

experiments were run on a PC 3.16 GHz Pentium Intel Core 2 Duo E8500 with 3.46 GB

RAM. As schedulers need to solve the problem for several hundred advertiser clients

and in an interactive mode, there will be, in practice, a time limit for solving the

problem of each client. As noted by Bollapragada et al. (2004) and Brusco (2008), this

time is set to 600 seconds.

6.1. Generation of the data set

We constructed our data sets based on those 40 instances given by Bollapragada et al.

(2004) and Brusco (2008) where  8,50N ,  2,5C and  1,229cn  . We set the

14

time intervals (1s st t ), the minimum numbers of airings in high and medium audience

rating spots (nhc and nmc, respectively), and the audience rating of each spot (rs) as

follows. For each of the 40 original instances, we considered 3 scenarios namely low,

medium and high diversity of the time intervals between spots. Thus, 120 test instances

in total are obtained. The time interval values were randomly generated using a

continuous uniform distribution:

- Low diversity:    1 1,2s st t U  , s = 2,...,N.

- Medium diversity:    1 1,10s st t U  , s = 2,...,N.

- High diversity:    1 1,50s st t U  , s = 2,...,N.

We also set  max 1, (0.1)c cnh round n  and  max 1, (0.2)c cnm round n  , c = 1,...,C.

The only exception is for the 3 instances generated from the original instance #13, in

which n5 is 1, so nh5 and nm5 were set to 1 and 0, respectively. The number of spots

with high and medium audience rating follows the distribution

 
1.. 1..

,1.1c cc C c C
U nh nh

 
  and  

1.. 1..
,1.1c cc C c C

U nm nm
 

  respectively. In

addition, the type of audience rating of each spot (H, M or L) is set at random.

The complete set of instances is available at https://www.ioc.upc.edu/EOLI/research/.

The parameter setting of the SA-based algorithm is given next followed by the results of

the proposed procedures.

6.2. Parameters setting

Fine-tuning the parameters of an algorithm is almost always a difficult task. Although

the parameter values may have a very strong effect on the performance of the algorithm

for each problem, they are often selected using one of the following methods, which are

not sufficiently thorough (Eiben et al. 1999; Adenso-Díaz and Laguna, 2006). The

setting is chosen “by hand”, based on a small number of experiments that may or may

not be referenced; using the general values recommended for a wide range of problems;

using the values reported to be effective in other similar problems; or with no apparent

explanation.

In this study, we use a tool known as CALIBRA (Adenso-Díaz and Laguna, 2006). This

is a tool specifically designed for fine-tuning the parameters of algorithms and is based

on using conjointly Taguchi’s fractional factorial experimental designs and a local

search procedure. A detailed explanation of CALIBRA can be found in Adenso-Díaz

and Laguna (2006) and the tool can be downloaded at

http://coruxa.epsig.uniovi.es/~adenso/file_d.html.

We applied CALIBRA to a training set of 40 instances. These instances were generated

as the test instances (explained in Section 6.1) but using only the medium diversity

scenario. Table 3 shows the parameter values returned by CALIBRA for this particular

scheduling problem.

15

[Insert Table 3 here]

6.3. Results of the proposed procedures

MILP models

We have obtained several optimal solutions with the MILP models M1 and M2. Table 4

summarises the overall results. Column #Opt shows the number of optimal solutions

found, #Fea refers to the number of feasible solutions found (excluding optimal ones)

and #NoSol denotes the number of instances for which no solution was found within

600 seconds of computational time.

[Insert Table 4 here]

M2 is able to obtain more optimal solutions than M1 besides having relatively fewer

instances without finding a solution. It is also worth noting that all 43 instances that are

optimally solved by M1 were also solved by M2. Regarding the computational times,

M1 needs 35.25 seconds on average to solve the 43 instances whereas M2 needs less

than half of a second only, when tested on the same 43 instances. It is therefore clear

that our proposed model M2 is relatively much more superior than M1 while being

approximately 90 times faster.

Among the 84 instances optimally solved by M2, 25, 29 and 30 instances belong to low,

medium and high time intervals diversity, respectively. We performed the paired t-test

(with a confidence level equal to 95%) to evaluate whether the probability of success

rate of an instance to be solved optimally is the same in each diversity scenario. The

null hypothesis was not rejected for any pair of scenarios. Thus, it can be claimed that

this parameter is not necessarily influential in the hardness of the problem. On the other

hand, the most influential parameter is found to be the number of spots. M2 obtained

optimal solutions for instances with up to 150 spots with the only exception of 2

instances with 300 spots. For instances between around 200 and 400 spots, M2 may fail

to obtain a feasible (non-optimal proven) solution and always failed when the number

exceeds 400.

Additionally, the average value of the 15 upper bounds found by M2 whose optimality

is not demonstrated (see Table 4) is 3,137.41, whereas SA1 and SA3 (which are the best

procedures as explained below) produced, for the same 15 instances, a much smaller

average value of 2,455.86 and 2,443.39, respectively. Moreover, SA1 and SA3 dominate

M2 over the 15 instances as they always found a better solution in each case.

Because of these limitations, the use of heuristic methods can be considered to be the

best way forward for solving medium and specially large instances.

Non exact procedures

Table 5 shows the results of the heuristic and local search procedures. These include the

average value of the solutions (Z); the average (Av) and maximum (Max) deviations of

the value of the solution found by each procedure with respect to the best known

solution value; the average and maximum computational time (in seconds); and #LO the

number of local minima found within the 600 elapsed seconds. It is worth noting that

16

the minimum deviation for all our procedures is found to be 0 and the minimum

computational times is negligible amounting to less than 1 hundredth of a second only.

Constructive heuristics

Both heuristics are very fast requiring less than half a second computational time on

average. On the other hand, the performance of H2 is clearly better since the average Z

value and average and maximum deviations are much smaller (see Table 5).

Additionally, we observed that H2 achieves solutions that are of the same or of a better

quality than the ones found by H1 for 114 instances.

[Insert Table 5 here]

Effect of the local searches

Here, we applied the 9 local search procedures, LS-N1 to LS-N5 and LS-E1 to LS-E4, to

the solutions found by the best constructive heuristic namely H2. Note that the local

search procedures may obviously not find a local minimum within the cpu time limit of

600 seconds.

The average Z value and deviation of the solutions obtained with the NEE exploration

strategy are very similar to those obtained with the EE strategy. The only exception

appears when the neighbourhood N23 is used; then the NEE strategy is found to obtain a

slightly better value on average but a slightly worse average deviation than EE.

However, the paired t-test was performed and the differences between the NEE and EE

strategies are found to be statistical significant at the 5% level. On the other hand, the

order in which the neighbours are explored has an important effect in terms of

computational time. For instance, the time savings of LS-N4 with respect to LS-N5 is

nearly 35% (86.54 s vs. 122.53 s).

Regarding the neighbourhood structure, it seems that its influence in the performance is

greater. The worst average Z value and deviation are obtained with the neighbourhood

1N , whereas the best averages are obtained with 23N . Specifically, LS-N1 obtains the

greatest average Z value and deviation (1,251.82 and 22.65%, respectively), whereas the

smallest average Z value and deviation are obtained with LS-N4 (1,212.89) and with LS-

E4 (15.30%), respectively. The paired t-test confirmed that the quality of the solutions

obtained with LS-N4 and LS-E4 with respect to those obtained with LS-N1 are statistical

significant. On the other hand, it should be noted that LS-N1 is much quicker than LS-

N4 and LS-E4.

It is worth noting that the best results are obtained with local searches that use the

neighbourhood structure N23. This could be due to the fact N23 is a larger neighbourhood

which includes both N2 and N3. The use of such a larger neighbourhood can be

considered as special case of very large neighbourhood search which has shown to be a

powerful search strategy, see Ahuja et al. (2002). This approach may have the handicap

of requiring excessive computational effort if not controlled efficiently. In our particular

computational experiments, the maximum allowed computational time of 600 sec was

found to be large enough to allow the search to converge into a local optimum for most

of the instances (from 84.11% to 95.00% of instances depending of the exploration

strategies used) and hence render the above limitation of less significance. Therefore,

one may expect that the local searches LS-N4 and LS-E4 would, on average, be the best

local searches.

17

Our findings also support the above that the best solutions with local searches are

obtained with LS-N4 and LS-E4. There is however no significant difference between

these two procedures except that LS-N4 needs on average 86.54 sec whereas LS-E4

requires nearly 130 sec. Thus, one could claim that LS-N4 is the most appropriate local

search procedure to use.

We also implemented a reduced version of LS-N4 where only the neighbours that satisfy
1

1 1 1

C N N

s c cs
c s s

t t q f T 





   
        are generated. In this experiment we used 0.2  .

The reason is that it is expected that solutions with any large discrepancy, for all

advertisings, between ideal and real time intervals in consecutive airings would yield a

poor quality solution. Although a small cpu time is gained (81.80 s vs 86.54 s), a

significant loss in solution quality is recorded (1,264.02 vs 1,212.89). Obviously, better

solutions may be obtained if larger values of  were tested but the cpu gain would be

even smaller.

Effects of SA

As in our previous experiments, each instance was also solved using a computational

time of 600 seconds with the SA-based algorithms. Table 6 shows the average value of

the solutions (Z); the average (Av) and maximum (Max) deviations of the value of the

solution found by each procedure with respect to the best known solution value; and the

average time in which the best solution obtained by the procedure is found (Tbest),

whereas the average solution values found over time are shown in Figure 6. The

minimum deviation is 0 for all SA algorithms.

[Insert Table 6 here]

On average, all SA algorithms improve the solutions found by the local search

procedures. The smaller average Z value, deviation and time to obtain their best solution

are obtained with SA3, although the results of SA1 are very close. The paired t-test

reveals that at the 5% significant level there are not significant differences between the

results of SA1 and SA3 but both differs from SA2. The average Z values obtained over

time shown in Figure 6 also illustrate that the convergence of SA1 and SA3 are similar

while being both quicker than SA2. In addition, after 500 seconds, SA1 and SA3

experience a moderate average improvement only. As an additional experiment we also

doubled the available computational time to 1,200 seconds to see the effect of these

approaches. It was found that the average values of the solutions obtained with SA1,

SA2 and SA3 are 1,136.75, 1,152.01 and 1,128.12, respectively showing that all SA

algorithms have a good convergence within 600 seconds. Also, it is worth noting that

after 250 seconds, SA3 outperforms on average LS-N4 by gaining around 7%

improvement over LS-N4 which got stuck at a local minimum much earlier.

[Insert Figure 6 here]

Next we analyse the results of the SA procedures splitting them in the 3 scenarios of

low, medium and high diversity of the time intervals between spots. Table 7 shows, for

each scenario, the average Z value and deviation.

18

[Insert Table 7 here]

As we can expect, the higher is the diversity between the airing times of the spots, the

higher is the average Z value (recall that the Z value measures the irregularity of the

interval times between airings of the same advertisement). It is more indicative the

average deviation, which decrease with the diversity. This shows that SA procedures are

more robust when solving the high diversity instances. Additionally, we can see that the

SA1 and SA3 algorithms are clearly better on average than SA2 regardless the diversity

of the time-intervals airings.

6.4. Performance of the best non exact method vs. optimal or lower bound solutions

Optimal solutions

In order to obtain more optimal solutions, we solved the instances with the model M2

setting the maximum computational time to 7,200 s. However, only 4 new more optimal

solutions were founds. That give us a total of 88 known optimal solutions.

On average the best solutions are achieved with SA1 and SA3 as shown in the previous

subsection. In order to assess the performance of these two SA algorithms we use the 88

optimal solutions for comparison. The average Z value of the optimal solutions is

503.57 and that of SA1 and SA3 are 526.57 and 522.86, respectively, producing only an

average deviation of 1.21% and 1.18%. In addition, SA1 and SA3 obtained 77.27% of

the optimal solutions (i.e., 68 of the 88 instances).

Lower Bounds-

Regarding the 32 remaining instances, one may be tempted to use appropriate lower

bounds if possible. Two lower bounds are explored here. The first (LB1) is a crude

analytical one whereas the second (LB2) is the standard LP relaxation.

LB1 can be derived by considering the individual lower bounds of the contribution of

each advertisement c to the objective function, LB1c, and then compute the sum of the

(1cn )
th

 lowest values in the set  : 1.. 1, 1..s ct t q s N s N       . In other words,

this lower bound can be defined as
1..

 cc C
LB1 LB1 .

We computed the average value of LB1 on the 88 instances where optimality is

guaranteed. An average value of 65.26 is recorded which compares rather badly against

the average optimal value of 503.57. This result shows that LB1 seems weak and hence

it is not informative enough to rely upon though it can be used as a basis for possible

future extension in tightening the lower bound.

A better lower bound can be obtained using  max ,LB LB1 LB2 where LB2 is the

best lower bound returned by CPLEX when solving M1 and M2. The results are based

on the 32 instances whose optimal solution is unknown. The average value of LB is

recorded as 2,397.42 whereas the average value of the SA1 and SA3 solutions based on

the same 32 instances are 2,831.46 and 2,809.87 yielding an average deviation equal to

40.49% and 40.15%, respectively. Thus, the information provided by the lower bounds

about the quality of the solutions is very limited. In addition, it was also noted that LB in

19

these particular instances was always dominated by LB2 supporting our earlier

observation on the weakness of LB1.

7. Conclusions and future research

A study to solve a scheduling problem arising in the television industry when deciding

the airings of the advertisings during the broadcast season is investigated. To the best of

our knowledge, this is the first time that this scheduling problem is examined where

both the variability of the time intervals between consecutive airings of the same

advertising and the audience rating requests are both taken into account.

We propose two MILP formulations including a new network flow-based model (M2)

which was found to be more efficient in solving optimally instances up to 150 spots. For

larger problems, we present constructive heuristics, local search procedures and SA-

based algorithms. The best method is the SA algorithm that dynamically updates its

initial solution. This variant also proved to be effective as it compares favourably versus

the optimal method by producing solutions within 3% of optimality on those relatively

small instances.

As the lower bound LB1 seems to be not tight enough, an interesting line of research

would be to develop a tighter lower bound as an important key for developing a B&B

algorithm. This algorithm may improve the exact resolution of the problem. Moreover,

an effective design of a hybridisation of heuristic methods and the B&B algorithm may

also be investigated for larger instances. An overview of heuristic search including

hybridization can be found in Salhi (2006).

The problem presented in this work is solved sequentially for each advertiser. However,

in order to include other constrains such as to avoid the proximity of airings of

advertisements of competing products or service (Brown, 1969), all these problems

need to be solved simultaneously. This is an interesting issue that is worth exploring in

the future.

Acknowledgments- We would like to thank the editors and the referees for their

valuable comments and suggestions that improved both the quality as well as the

content of the paper.

Appendix - NP completeness of the problem

Let the problem be called P1. P1 is NP-complete if there is no polynomial time

algorithm for solving P1 unless P NP .

Let P2 be the problem introduced in Bollapragada et al. (2002), which is known to be

NP-complete. P2 is similar to P1 but there is not audience rating constraints and the

time intervals between two consecutive spots are constant. An instance of P2 is defined

20

by 'C and '

cn (1,..., 'c C), where 'C is the number of advertisements and '

cn is the

number of airings of advertisement c . An instance of P1 can be built in a polynomial

time as follows: 'C C , '

c cn n (1,..., 'c C), 0c cnh nm  (1,..., 'c C), 1st s 

and sr L (
'

1
1,...,

C

cc
s n


 ). Since a solution of P1 is also a solution of P2 (with the

same value of the objective function), this shows that P1 is also NP-complete.

REFERENCES

Ahuja, R., Ergun, O., Orlin, J. and Punnen,A. (2002) ‘A survey of very large-scale

neighbourhood search techniques’, Discrete Applied Mathematics, Vol. 123, pp. 75-102.

Alaei, R. and Ghassemi-Tari, F. (2011) ‘Development of a Genetic Algorithm for

Advertising Time Allocation Problems’, Journal of Industrial and Systems Engineering,

Vol. 4, pp. 245-255.

Adenso-Díaz, B. and Laguna, M. (2006) ‘Fine-tuning of algorithms using fractional

experimental designs and local search’, Operations Research, Vol. 54, pp. 99-114.

Anily, S., Glass, C.A. and Hassin, R. (1998) ‘The scheduling of maintenance service’,

Discrete Applied Mathematics, Vol. 82, pp. 27-42.

Benoist, T., Bourreau, E. and Rottermbourg, B. (2007) ‘The TV-Break Packing

Problem’, European Journal of Operational Research, Vol. 176, pp. 1371-1386.

Bollapragada, S., Cheng, H., Philips, M. and Garbiras, M. (2002) ‘NBC's optimzation

systems increase revenues and productivity’, Interfaces, Vol. 32, pp. 47-60.

Bollapragada, S., Bussieck, M.R. and Mallik, S. (2004) ‘Scheduling commercial

videotapes in broadcast television’, Operations Research, Vol. 52, pp. 679-689.

Brown, A.R. (1969) ‘Selling Television Time: An Optimization Problem’, The

Computer Journal, Vol. 12, pp. 201-207.

Brusco, M.J. (2008) ‘Scheduling advertising slots for television’, Journal of the

Operational Research Society, Vol. 59, pp. 1363-1372.

Corominas, A., Kubiak, W. and Moreno, N. (2007) ‘Response time variability’, Journal

of Scheduling, Vol. 10, pp. 97-110.

Corominas, A., Kubiak, W. and Pastor, R. (2010) ‘Mathematical programming

modeling of the Response Time Variability Problem’, European Journal of Operational

Research, Vol. 200, pp. 347-357.

Corominas, A., García-Villoria, A. and Pastor, R. (2013) ‘Metaheuristic algorithms

hybridized with variable neighbourhood search for solving the response time variability

problem’, TOP, Vol. 21, pp. 296-312.

21

Dowsland, K.A. and Adenso-Díaz, B. (2003) ‘Heuristic design and fundamentals of the

Simulated Annealing’, Inteligencia Artificial, Vol. 19, pp. 93-102.

Eiben, A.E., Hinterding, R., and Michalewicz, Z. (1999) ‘Parameter control in

evolutionary algorithms’, IEEE Transactions on Evolutionary Computation, Vol. 3, pp.

124-141.

Feo, T.A. and Resende, M.G.C. (1989) ‘A probabilistic heuristic for a computationally

difficult set covering problem’, Operations Research Letters, Vol. 8, pp. 67-81.

Fleming, P.J. and Pashkevich, M.A. (2007) ‘Optimal Advertising Campaign Generation

for Multiple Brands Using MOGA’, IEEE Transactions on Systems, Man, and

Cybernetics - Part C: Applications and Reviews, Vol. 37, pp. 1190-1201.

García-Villoria, A., Salhi, S., Corominas, A. and Pastor, R. (2011) ‘Hyper-heuristic

approaches for the response time variability problem’, European Journal of Operational

Research, Vol. 211, pp. 160-169.

García-Villoria, A. and Pastor, R. (2013) ‘Simulated annealing for improving the

solution of the response time variability problem (RTVP)’, International Journal of

Production Research, Vol. 51, pp. 4911-4920.

García-Villoria, A., Corominas, A., Delorme, X., Dolgui, A., Kubiak, W. and Pastor, R.

(2013) ‘A branch and bound algorithm for the response time variability problem’,

Journal of Scheduling, Vol. 16, pp. 243-252.

Gaur, D.R., Krishnamurti, R. and Kohli, R. (2009) `Conflict resolution in the scheduling

in the television commercials’, Operations Research, Vol. 57, pp. 1098-1105.

Ghassemi-Tari, F. and Alaei, R. (2013) `Scheduling TV commercials using genetic

algorithms’, International Journal of Production Research, Vol. 51, pp. 4921-4929.

Henderson, D., Jacobson, S.H. and Johnson, A.W. (2003) ‘The Theory and Practice of

Simulated Annealing’, Chapter 10 in Handbook of Metaheuristics, Eds. Glover and

Kochenberger, Kluwer Academic Publishers.

Herrmann, J.W. (2011) ‘Using aggregation to reduce response time variability in cyclic

fair sequences’, Journal of Scheduling, Vol. 14, pp. 39-55.

Jones, J.J. (2000) Incompletely Specified Combinatorial Auction: An Alternative

Allocation Mechanism for Business to Business Negotiations. PhD Dissertation,

University of Florida.

Kimms, A. and Müller-Bungart, M. (2007) ‘Revenue management for broadcasting

commercials: the channel's problem of selecting and scheduling the advertisements to

be aired’, International Journal of Revenue Management, Vol. 1, pp. 28-44.

Kirkpatrick, S., Gelatt, C.D. and Vecchi, M.P. (1983) ‘Optimization by simulated

annealing’, Science, Vol. 220, pp. 671-680.

22

Kubiak, W. (2009). Response Time Variability. Chapter 7 in Proportional optimization

and fairness. Springer.

Mihiotis, A. and Tsakaris, I. (2004) ‘A mathematical programming study of advertising

allocation problem’, Applied Mathematics and Computation, Vol. 148, pp. 373-379.

Nikolaev, A.G. and Jacobson, S.H. (2010) ‘Simulated Annealing’, Chapter 1 in

Handbook of Metaheuristics, Eds. Gendreau and Potvin, Springer, 2nd edition.

Pereira, P.A., Fontes, F.A.C.C. and Fontes, D.B.M.M. (2007) ‘A Decision Support

System for Planning Promotion Time Slots’, Operations Research Proceedings, Vol.

2007, pp. 147-152.

Reddy, S.K., Aronson, J.E. and Stam, A. (1998) ‘SPOT: Scheduling programs optimally

for television’, Management Science, Vol. 35, pp. 192-207

Salhi, S. (2006) ‘Heuristic Search: the Science of Tomorrow’, in Salhi S (Ed), OR48

Key Note Papers, London, ORS, 39-58.

Salhi, S. and García-Villoria, A. (2012) ‘An adaptive Search for the Response Time

Variability Problem’, Journal of the Operational Research Society, Vol. 63, pp. 597-

605.

Sissors, J., Baron, R. and Ephorn, E. (2002) Advertising Media Planning. McGraw-Hill.

Waldspurger, C.A. and Weihl, W.E. (1994) ‘Lottery Scheduling: Flexible Proportional-

Share Resource Management’, First USENIX Symposium on Operating System Design

and Implementation, Monterey, California.

23

Table 1. Advertisings to be aired.

Advertising Airings #H #M

A 3 0 1

B 5 2 1

C 2 1 0

D 2 1 1

E 3 1 1

F 2 1 1

Table 2. Schedule of the advertisings in the purchased spots.

Spot # Rating Air date Air time T (h) Solution

 1 H 5/11/2000 9:00 PM 0 C

 2 H 5/12/2000 9:00 PM 24 E

 3 H 5/13/2000 9:00 PM 48 F

 4 H 5/13/2000 10:00 PM 49 B

 5 L 5/14/2000 5:00 PM 68 A

 6 M 5/15/2000 6:30 PM 93.5 D

 7 L 5/16/2000 4:00 PM 115 B

 8 H 5/16/2000 11:30 PM 122.5 E

 9 L 5/17/2000 3:00 PM 138 C

 10 M 5/18/2000 8:00 PM 167 B

 11 M 5/19/2000 8:00 PM 191 A

 12 H 5/19/2000 10:00 PM 193 F

 13 H 5/22/2000 10:00 PM 265 B

 14 L 5/23/2000 5:30 PM 284.5 E

 15 H 5/24/2000 11:00 PM 314 D

 16 L 5/27/2000 6:00 PM 381 B

 17 M 5/27/2000 8:00 PM 383 A

Table 3. Calibration of the SA-based algorithms

 t0 tf itt α L1 L2

SA1 38.000 0.001 2200 0.990 -- --

SA2 25.000 0.001 1900 0.990 1 2

SA3 38.000 0.001 1900 0.990 -- --

Table 4. Results obtained with the MILP models

 #Opt #Fea #NoSol

M1 43 29 48

M2 84 15 21

24

Table 5. Average results obtained with the heuristic and local search procedures

 Deviation (%) Time (s)

 Z Av Max Av Max #LO

H1 4,003.65 200.52 509.56 0.48 7.62 ---

H2 1,339.85 31.38 170.81 0.41 4.93 ---

LS-N1 1,251.82 22.65 114.31 1.10 12.38 120

LS-N2 1,225.10 16.97 115.73 65.39 600.00 118

LS-N3 1,242.05 20.77 93.30 109.52 600.00 105

LS-N4 1,212.89 15.89 115.73 86.54 600.00 114

LS-N5 1,218.50 15.70 70.41 122.53 600.00 102

LS-E1 1,250.52 22.41 114.31 1.36 15.97 120

LS-E2 1,224.23 16.01 70.41 75.11 600.00 114

LS-E3 1,240.23 19.55 84.74 115.14 600.00 102

LS-E4 1,224.11 15.30 70.41 129.92 600.00 101

Table 6. Average values obtained with the three SA-based algorithms and instants (in s) in which the best

solution is obtained

 SA1 SA2 SA3

Z 1,141.21 1,166.83 1,132.73

Deviation (%)
from the best
known solution

Av 2.50 7.67 2.45

Max 20.99 117.77 20.99

Tbest 149.83 207.08 156.34

Table 7. Average Z value (average dispersion between parenthesis) of the SA-based algorithms.

 SA1 SA2 SA3

Low diversity
118.96

(3.86%)

161.93

(15.99%)

118.81

(4.08%)

Medium diversity
560.90

(2.18%)

630.63

(5.54%)

560.56

(2.13%)

High diversity
2,743.77

(1.46%)

2,707.94

(1.49%)

2,718.81

(1.13%)

25

Figure 1. The pseudo-code of H1 first step

Figure 2. The pseudo-code of H2 first step

Figure 3. The tie breaker

0. Let seq0 be a void sequence

1. For  : 1; ; : 1p p N p p    do:

2.  *

1,...,

: arg min ,p
c C

c c p


  . In case of tie, use the lexicographical order.

3. Construct seqp by sequencing *

pc in seqp-1

4. End for

5. Return Nseq

0. Let seq0 be a void sequence

1. For  : 1; ; : 1p p N p p    do:

2. If 2

pC  then:

3. If 3: | (,) 0pc c C c p    then *

pc is the advertisement 3

pc C with the

highest (,)c p value. In case of tie, use the tie breaker of Figure 3.

4. Otherwise *

pc is the advertisement 2

pc C with the highest cn value. If

there is a tie, use the lexicographical order.

5. Otherwise (2

pC ):

6. *

pc is the advertisement 1 3

p pc C C  with the highest (,)c p value. In

case of a tie, use the tie breaker of Figure 3.

7. Construct seqp by sequencing *

pc in seqp-1

8. End for

9. Return Nseq

 If there is a tie, select the advertisement with the highest ˆ
cpn value.

 If there is again a tie, select the advertisement with the highest cn value.

 Finally, if a tie still occurs, use the lexicographical order.

26

Figure 4. The pseudo-code of the repair mechanism

Figure 5. The pseudo-code of the common scheme of the SA procedures

0. Given a solution Sol of the first step 1, let xhc and xmc indicate the number of

times that advertisement c has been assigned to a spot type H and to a spot type

M, respectively.

1. While
1

C

c c
c

xh nh

  do:

2. Compute  1.. : c cUH c C xh nh   and  1.. : c cOH c C xh nh  

3. Compute the best interchange (i.e., the one that least increases the objective

function) between each pair of spots, s1 and s2, such as:

 i) advertisement c1 assigned to s1 belongs to UH and s1 is of type M or L

 ii) advertisement c2 assigned to s2 belongs to OH and s2 is of type H

4. Apply the interchange to Sol and update
1 1 2
, ,c c cxm xh xm and

2cxh .

5. End while

6. While  
1

C

c c c c
c

xm xh nh nm

    do:

7. Compute   1.. : c c c cUM c C xm xh nh nm     and

   1.. : c c c cOM c C xm xh nh nm    

8. Compute the best interchange between each pair of spots, s1 and s2 such as:

 i) advertisement c1 assigned to s1 belongs to UM and s1 is of type L

 ii) advertisement c2 assigned to s2 belongs to OM and s2 is of type M or

(s2 is of type H and
2 2c cxh nh)

9. Apply the interchange to Sol and update
1 1 2
, ,c c cxm xh xm and

2cxh .

10. End while

11. Return Sol

0. Set the parameters t0 (initial temperature), tf (final temperature), itt (number of

iterations during the temperature remains equal), α (cooling factor)

1. While (current runtime ≤ maximum runtime) do:

2. t := t0 and Sol := obtainInitialSolution()

3. For (t := t0; t ≥ tf; t := t.α) do:

4. For (i :=0; i < itt ; i := i + 1) do:

5. Choose at random a solution Sol’ from the neighbourhood N23 of Sol

6. Δ := Z(Sol’) – Z(Sol)

7. If Δ ≤ 0 then Sol := Sol’

8. If Δ > 0 then Sol := Sol’ with probability exp(-Δ/t)

9. End for

10. End for

11. End while

12. Return the best solution found

27

Figure 6. Average value of the best solutions found by the SA algorithms over time.

