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Abstract 

Scientometrics is the study of the quantitative aspects of the process of science as a communication 

system. It is centrally, but not only, concerned with the analysis of citations in the academic literature. 

In recent years it has come to play a major role in the measurement and evaluation of research 

performance. In this review we consider: the historical development of scientometrics, sources of 

citation data, citation metrics and the “laws" of scientometrics, normalisation, journal impact factors 

and other journal metrics, visualising and mapping science, evaluation and policy, and future 

developments. 
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1. HISTORY AND DEVELOPMENT OF SCIENTOMETRICS 

Scientometrics is one of several related fields: 

Bibliometrics – “The application of mathematics and statistical methods to books and other media of 

communication” (Pritchard, 1969, p. 349). This is the original area of study covering books and 

publications generally. 

Scientometrics – “The quantitative methods of the research on the development of science as an 

informational process” (Nalimov & Mulcjenko, 1971, p. 2). This field concentrates specifically on 

science (and the social sciences and humanities). 
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Informetrics – “The study of the application of mathematical methods to the objects of information 

science” (Nacke, 1979, p. 220). Perhaps the most general field covering all types of information 

regardless of form or origin (Egghe, L. & Rousseau, 1988). 

Webometrics – “The study of the quantitative aspects of the construction and use of information 

resources, structures and technologies on the Web drawing on bibliometric and informetric 

approaches (Björneborn & Ingwersen, 2004, p. 1217; Thelwall & Vaughan, 2004). This field mainly 

concerns the analysis of web pages as if they were documents.  

Altmetrics – “The study and use of scholarly impact measures based on activity in online tools and 

environments” (Priem, 2014, p. 266). Also called scientometrics 2.0, this field replaces journal 

citations with impacts in social networking tools such as views, downloads, “likes”, blogs, Twitter, 

Mendelay, CiteULike. 

In this review we concentrate on scientometrics as that is the field most directly concerned with the 

exploration and evaluation of scientific research, although we also discuss new developments in 

altmetrics. In this section we describe the history and development of scientometrics (de Bellis, 2014; 

Leydesdorff & Milojevic, 2015) and in the next sections explore the main research areas and issues.  

Whilst scientometrics can, and to some extent does, study many other aspects of the dynamics of 

science and technology, in practice it has developed around one core notion – that of the citation. The 

act of citing another person’s research provides the necessary linkages between people, ideas, journals 

and institutions to constitute an empirical field or network that can be analysed quantitatively. This in 

turn stems largely from the work of one person – Eugene Garfield – who identified the importance of 

the citation and then created the Science Citation Index in the 1950’s (and the company the Institute 

for Scientific Information, ISI, to maintain it) as a database for capturing citations (Garfield, E. , 1955; 

Garfield, E., 1979). Its initial purpose was not research evaluation, but rather help for researchers to 

search the literature more effectively – citations could work well as index or search terms, and also 

enabled unfamiliar authors to be discovered. The SCI was soon joined by the Social Science Citation 

Index (SSCI) and the Arts & Humanities Citation Index (A&HCI; since 1980), and eventually taken 

over by Thompson Reuters who converted it into the Web of Science as part of their Web of 

Knowledge platform. In 2013, the SCI covered 8,539 journals, the SSCI 3,080 journals, and the 

A&HCI approximately 1,700 journals. 

The SCI was soon recognized as having great value for the empirical study of the practice of science. 

The historian Derek de Solla Price (1963, 1965) was one of the first to see the importance of networks 

of papers and authors and also began to analyse scientometric processes such as the idea of 

cumulative advantage (Price, 1976), a version of “success to the successful” (Senge, 1990) also 

http://en.wikipedia.org/wiki/Bibliometrics
http://en.wikipedia.org/wiki/Informetrics
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known as the Matthew
1
 effect (Merton, 1968, 1988). Price identified some of the key problems to be 

addressed by scientometricians: mapping the “invisible colleges” (Crane, 1972) informally linking 

highly cited researchers at the research frontiers (cf co-authorship networks and co-citation analysis): 

studying the links between productivity and quality in that the most productive are often the most 

highly cited (cf the h-index); and investigating citation practices in different fields (cf normalization). 

In 1978, Robert K. Merton, a major sociologist, was one of the editors of a volume called Towards a 

Metric of Science: The Advent of Science Indicators (Elkana, Lederberg, Merton, Thackray, & 

Zuckerman, 1978) which explored many of these new approaches. Scientometrics was also 

developing as a discipline with the advent of the journal Scientometrics in 1978, a research unit in the 

Hungarian Academy of Sciences and scientific conferences and associations. 

At the same time as scientometrics research programmes were beginning, the first links to research 

evaluation and the use of citation analysis in policy making also occurred. For example, the ISI data 

was included in the (US) National Science Board’s Science Indicators Reports in 1972 and was used 

by the OECD. Garfield (1972) himself developed a measure for evaluating journals – the impact 

factor (IF) – that has been for many years a standard despite its many flaws. Journals with this 

specific policy focus appeared such as Research Policy, Social Studies of Science and Research 

Evaluation. 

During the 1990s and 2000s several developments have occurred. The availability and coverage of the 

citation databases has increased immensely. The WoS itself includes many more journals and also 

conferences, although its coverage in the social sciences and humanities is still limited. It also does 

not yet cover books adequately although there are moves in that direction. A rival, Scopus, has also 

appeared form the publishers Elsevier. However, the most interesting challenger is Google Scholar 

which works in an entirely different way – searching the web rather than collecting data directly. 

Whilst this extension of coverage is valuable, it also leads to problems of comparison with quite 

different results appearing depending on the databases used.  

Secondly, a whole new range of metrics have appeared superseding, in some ways, the original ones 

such as total number of citations and citations per paper (cpp). The h-index (Costas & Bordons, 2007; 

Glänzel, W., 2006; Hirsch, 2005; Mingers, J., 2008b; Mingers, J., Macri, & Petrovici, 2012) is one 

that has become particularly prominent, now available automatically in the databases. It is transparent 

and robust but there are many criticisms of its biases. In terms of journal evaluation, several new 

metrics have been developed such as SNIP (Moed, 2010b) and SCImago Journal Rank (SJR) 

(González-Pereira, Guerrero-Bote, & Moya-Anegón, 2010; Guerrero-Bote & Moya-Anegón, 2012) 

which aim to take into account the differential citation behaviours of different disciplines, e.g., some 

                                                      
1
 Named after St Matthew (25:29): “For unto everyone that hath shall be given .. from him that hath not shall be 

taken away” 
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areas of science such as biomedicine cite very highly and have many authors; other areas, particularly 

some of the social sciences, mathematics and the humanities do not.   

A third, technical, development has been in the mapping and visualization of bibliometric networks. 

This idea was also initiated by Garfield who developed the concept of “historiographs” (Garfield, E., 

Sher, & Thorpie, 1964), maps of connections between key papers, to reconstruct the intellectual 

forebears of an important discovery. This was followed by co-citation analysis which used 

multivariate techniques such as factor analysis, MDS and cluster analysis to analyse and map the 

networks of highly related papers which pointed the way to identifying research domains and frontiers 

(Marshakova, 1973; Small, 1973). And also co-word analysis that looked at word pairs from titles, 

abstracts or keywords and drew on the actor network theory of Callon and Latour (Callon, Courtial, 

Turner, & Bauin, 1983). New algorithms and mapping techniques such as the Blondel algorithm 

(Blondel, Guillaume, Lambiotte, & Lefebvre, 2008) and the Pajek mapping software have greatly 

enhanced the visualization of high-dimensional datasets (de Nooy, Mrvar, & Batgelj, 2011). 

But perhaps the most significant change, which has taken scientometrics from relative obscurity as a 

statistical branch of information science to playing a major, and often much criticised, role within the 

social and political processes of the academic community, is the drive of governments and official 

bodies to monitor, record and evaluate research performance. This itself is an effect of the neo-liberal 

agenda of “new public management” (NPM) and its requirements of transparency and accountability. 

This occurs at multiple levels – individuals, departments and research groups, institutions and, of 

course, journals – and has significant consequences in terms of jobs and promotion, research grants, 

and league tables. In the past, to the extent that this occurred it did so through a process of peer review 

with the obvious drawbacks of subjectivity, favouritism and conservatism (Irvine, Martin, Peacock, & 

Turner, 1985). But now, partly on cost grounds, scientometrics are being called into play and the 

rather ironic result is that instead of merely reflecting or mapping a pre-given reality, scientometrics 

methods are actually shaping that reality through their performative effects on academics and 

researchers (Wouters, P., 2014).  

At the same time, the discipline of science studies itself has bi- (or tri-) furcated into at least three 

elements – the quantitative study of science indicators and their behaviour, analysis and metrication 

from a positivist perspective. A more qualitative, sociology-of-science, approach that studies the 

social and political processes lying behind the generation and effects of citations, generally from a 

constructivist perspective. And a third stream of research that is interested in policy implications and 

draws on both the other two.  

Finally, in this brief overview, we must mention the advent of the Web and social networking. This 

has brought in the possibility of alternatives to citations as ways of measuring impact (if not quality) 

such as downloads, views, “tweets”, “likes”, and mentions in blogs. Together, these are known as 
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“altmetrics” (Priem, 2014), and whilst they are currently underdeveloped, they may well come to rival 

citations in the future. There are also academic social networking sites such as ResearchGate 

(www.researchgate.net), CiteULike (citeulike.org), academia.edu (www.academia.edu), and 

Mendeley (www.mendeley.com) which in some cases have their own research metrics. Google Scholar 

automatically produces profiles of researchers, including their h-index, and Publish or Perish 

(www.harzing.com) enhances searches of Scholar as well as being a repository for multiple journals 

ranking lists in the field of business and management. 

2. SOURCES OF CITATIONS 

Clearly for the quantitative analysis of citations to be successful, there must be comprehensive and 

accurate sources of citation data. The major source of citations in the past was the Thompson Reuters 

ISI Web of Science (WoS) which is a specialised database covering all the papers in around 12,000 

journals
2
 . It also covers conferences

3
 and is beginning to cover books

4
. Since 2004, a very similar 

rival database is available from Elsevier called Scopus
5
 that covers 20,000 journals and also 

conferences and books. Scopus retrieves back until 1996, while WoS is available for all years since 

1900. These two databases have been the traditional source for most major scientometrics exercises, 

for example by the Centre for Science and Technology Studies (CWTS) which has specialised access 

to them. More recently (2004), an alternative source has been provided by Google Scholar (GS). This 

works in an entirely different way, by searching the Web for references to papers and books rather 

than inputting data from journals. It is best accessed through a software program called Publish or 

Perish
6
.  

Many studies have shown that the coverage of WoS and Scopus differs significantly between different 

fields, particularly between the natural sciences, where coverage is very good, the social sciences 

where it is moderate and variable, and the arts and humanities where it is generally poor (HEFCE, 

2008; Larivière, Archambault, Gingras, & Vignola-Gagné, 2006; Mahdi, D'Este, & Neely, 2008; 

Moed & Visser, 2008). In contrast, the coverage of GS is generally higher, and does not differ so 

much between subject areas, but the reliability and quality of its data can be poor (Amara & Landry, 

2012). 

Van Leeuwen (2006), in a study of Delft University between 1991 and 2001 found that in fields such 

as architecture and technology, policy and management the proportion of publication in WoS and the 

proportion of references to ISI material was under 30% while for applied science it was between 70% 

and 80%. Across the social sciences, the proportions varied between 20% for political science and 

                                                      
2
 http://wokinfo.com/essays/journal-selection-process/ 

3
 http://wokinfo.com/products_tools/multidisciplinary/webofscience/cpci/cpciessay/ 

4
 http://thomsonreuters.com/book-citation-index/ 

5
 http://www.elsevier.com/online-tools/scopus/content-overview 

6
 http://www.harzing.com/pop.htm 

http://www.harzing.com/
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50% for psychology. Mahdi et al. (2008) studied the results of the 2001 RAE in the UK and found 

that while 89% of the outputs in biomedicine were in WoS, the figures for social science and arts and 

humanities were 35% and 13% respectively. CWTS (Moed, Visser, & Buter, 2008) was 

commissioned to analyse the 2001 RAE and found that the proportions of outputs contained in WoS 

and Scopus respectively were: Economics (66%, 72%), Business and Management (38%, 46%), 

Library and Information Science (32%, 34%) and Accounting and Finance (22%, 35%). 

There are several reasons for the differential coverage in these databases (Nederhof, 2006) and we 

should also note that the problem is not just the publications that are not included, but also that the 

publications that are included have lower citations recorded since many of the citing sources are not 

themselves included. The first reason is that in science almost all research publications appear in 

journal papers (which are largely included in the databases), but in the social sciences and even more 

so in humanities books are seen as the major form of research output. Secondly, there is a greater 

prevalence of the “lone scholar” as opposed to the team approach that is necessary in the experimental 

sciences and which results in a greater number of publications (and hence citations) overall. As an 

extreme example, a paper in Physics Letters B (Aad, et al., 2012) in 2012 announcing the discovery of 

the Higgs Boson has 2,932 authors and already has over 4000 citations. These outliers can distort 

bibliometrics analyses as we shall see (Cronin, B.  , 2001). Thirdly, a significant number of social 

science and humanities journals have not chosen to become included in WoS, the accounting and 

finance field being a prime example. Finally, in social science and humanities a greater proportion of 

publications are directed at the general public or specialised constituencies such as practitioners and 

these “trade” publications or reports are not included in the databases. 

There have also been many comparisons of WoS, Scopus and Google Scholar across a range of 

disciplines (Adriaanse & Rensleigh, 2013; Amara & Landry, 2012; Franceschet, 2010; García-Pérez, 

2010; Harzing, A.-W. & van der Wal, 2008; Meho & Rogers, 2008; Meho & Yang, 2007). The 

general conclusions of these studies are: 

 That the coverage of research outputs, including books and reports, is much higher in GS, 

usually around 90%, and that this is reasonably constant across the subjects. This means that 

GS has a comparatively greater advantage in the non-science subjects where Scopus and 

WoS are weak. 

 Partly, but not wholly, because of the coverage, GS generates a significantly greater number 

of citations for any particular work. This can range from two times to five times as many. 

This is because the citations come from a wide range of sources, not being limited to the 

journals that are included in the other databases. 

 However, the data quality in GS is very poor with many entries being duplicated because of 

small differences in spellings or dates and many of the citations coming from a variety of 
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non-research sources. With regard to the last point, it could be argued that the type of citation 

does not necessarily matter – it is still impact. 

Typical of these comparisons is Mingers and Lipitakis (2010) who reviewed all the publications of 

three UK business schools from 1980 to 2008. Of the 4,600 publications in total, 3,023 were found in 

GS, but only 1,004 in WoS. None of the books, book chapters, conference papers or working papers 

were in WoS
7
. In terms of number of citations, the overall mean cites per paper (cpp) in GS was 14.7 

but only 8.4 in WoS. It was also found that these rates varied considerably between fields in business 

and management, a topic to be taken up in the section on normalization. When taken down to the level 

of individual researchers the variation was even more noticeable both in terms of the proportion of 

outputs in WoS and the average number of citations. For example, the most prolific researcher had 

109 publications. 92% were in GS, but only 40% were in WoS. The cpp in GS was 31.5, but in WoS 

it was 12.3. 

With regard to data quality, Garcia-Perez (2010) studied papers of psychologists in WoS, GS, and 

PsycINFO. GS recorded more publications and citations than either of the other sources, but also had 

a large proportion of incorrect citations (16.5%) in comparison with 1% or less in the other sources. 

Adriaanse and Rensleigh (2013) studied environmental scientists in WoS, Scopus and GS and made a 

comprehensive record of the inconsistencies that occurred in all three across all bibliometric record 

fields. There were clear differences with GS having 14.0% inconsistencies, WoS 5.4%, and Scopus 

only 0.4%. Similar problems with GS were also found by Jacso (2008) and Harzing and van der Wal 

(2008). 

To summarise this section, there is general agreement at this point in time that bibliometric data from 

WoS or Scopus is adequate to conduct research evaluations in the natural and formal sciences where 

the coverage of publications is high, but it is not adequate in the social sciences or humanities, 

although, of course, it can be used as an aid to peer review in these areas (Abramo & D’Angelo, 2011; 

Abramo, D’Angelo, & Di Costa, 2011; van Raan, A., 2005b). GS is more comprehensive across all 

areas but suffers from poor data, especially in terms of multiple versions of the same paper, and also 

has limitations on data access – no more than 1000 results per query. This particularly affects the 

calculation of cites per paper (because the number of papers is the divisor) but it does not affect the h-

index which only includes the top h papers.  

These varied sources do pose the problem that the number of papers and citations may vary 

significantly and one needs to be aware of this in interpreting any metrics. To illustrate this with a 

simple example, we have looked up data for one of the authors on WoS and GS. The results are 

shown in Table 1.  

                                                      
7
 Most studies do not include WoS for books, which is still developing (Leydesdorff & Felt, 2012). 
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 Cites from outputs in 

WoS using WoS 

n, c, h, cpp 

Cites from all sources 

using GS 

n, c, h, cpp 

Cites to outputs in WoS 88, 1684, 21, 19.1 87, 4890, 31, 56.2 

Cites to all outputs 349, 3796, 30, 10.8 316, 13,063, 48, 41.3 

Table 1 Comparison of WoS and GS for one of the authors 

N=no. of papers, c=no. of citations, h=h-index, cpp=cites per paper 

 

The first thing to note is that there are two different ways of accessing citation data in WoS. a) One 

can do an author search and find all their papers, and then do a citation analysis of those papers. This 

generates the citations from WoS papers to WoS papers. b) One can do a cited reference search on an 

author. This generates all the citations from papers in WoS to the author’s work whether the cited 

work is in WoS or not. This therefore generates a much larger number of cited publications and a 

larger number of citations for them. The results are shown in the first column of Table 1. Option a) 

finds 88 papers in WoS and 1684 citations for them from WoS papers. The corresponding h-index is 

21. Option b) finds 349 (!) papers with 3796 citations and an h-index of 30. The 349 papers include 

many cases of illegitimate duplicates just as does GS. If we repeat the search in GS, we find a total of 

316 cited items (cf 349) with 13,063 citations giving an h-index of 48. If we include only the papers 

that are in WoS we find 87 of the 88, but with 4890 citations and an h-index of 31. So, one could 

justifiably argue for an h-index ranging from 21 to 48, and a cpp from 10.8 to 56.2. 

3. METRICS AND THE “LAWS” OF SCIENTOMETRICS 

In this section we will consider the main areas of scientometrics analysis – indicators of productivity 

and indicators of citation impact. 

3.1. Indicators of productivity 

Some of the very early work, from the 1920s onwards, concerned productivity in terms of the number 

of papers produced by an author or research unit; the number of papers journals produce on a 

particular subject; and the number of key words that texts produce. They all point to a similar 

phenomenon – the Paretian one that a small proportion of producers are responsible for a high 

proportion of outputs. This also means that the statistical distributions associated with these 

phenomena are generally highly skewed.  

Lotka (1926) studied the frequency distribution of numbers of publications, concluding that “the 

number of authors making n contributions is about 1/n
2
 of those making one” from which can be 

derived de Solla Price’s (1963) “square root law” that “half the scientific papers are contributed by the 
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top square root of the total number of scientific authors”. Lotka’s Law generates the following 

distribution: 

 P(X=k) = (6/π
2
).k

-2
    where  k = 1, 2, … 

Glänzel and Schubert (1985) showed that a special case of the Waring distribution satisfies the square 

root law.  

Bradford (1934) hypothesised that if one ranks journals in terms of number of articles they publish on 

a particular subject, then there will be  a core that publish the most. If you then group the rest into 

zones such that each zone has about the same number of articles, then the number of journals in each 

zone follows this law: 

 Nn = k
n
N0       

where k = Bradford coefficient, N0 = number in core zone, Nn = journals in the n
th
 zone;  

Thus the number of journals needed to publish the same number of articles grows with a power law.  

Zipf (1936) studied the frequency of words in a text and postulated that the rank of the frequency of a 

word and the actual frequency, when multiplied together, are a constant. That is, the number of 

occurrences is inversely related to the rank of the frequency. In a simple case, the most frequent word 

will occur twice as often as the second most frequent, and three times as often as the third.  

rf(r) = C  r is the rank, f(r) is the frequency of that rank, C is a constant 

f(r) = C 1/r  

More generally: 

 f(r) =
1/𝑟𝑠

∑ (
1

𝑛𝑠
)𝑁

1

  N is the number of items, s is a parameter 

The Zipf distribution has been found to apply in many other contexts such as the size of city by 

population. All three of these behaviours ultimately rest on the same cumulative advantage 

mechanisms mentioned above and, indeed, all three can be shown to be mathematically equivalent 

(Egghe, Leo, 2005). 

However, empirical data on the distribution of publications by, for example, a particular author shows 

that the Lotka distribution by itself is too simplistic as it does not take into account productivity 

varying over time (including periods of inactivity) or subject. One approach is to model the process as 

a cumulation of distributions (Sichel, 1985). For example, we could assume that the number of papers 
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per year followed a Poisson distribution with parameter λ, but that the parameter itself varied with a 

particular distribution depending on age, activity, discipline. If we assume that the parameter follows 

a Gamma distribution, then this mixture results in a negative-binomial which has been found to have a 

good empirical fit (Mingers, J. & Burrell, 2006). 

3.2. Indicators of Impact: Citations 

We should begin by noting that the whole idea of the citation being a fundamental indicator of impact, 

let al.one quality, is itself the subject of considerable debate. This concerns: the reasons for citing 

others’ work, Weinstock (1971) lists 15, or not citing it; the meaning or interpretation to be given to 

citations (Cozzens, 1989; Day, 2014; Leydesdorff, 1998); their place within scientific culture 

(Wouters, P., 2014); and the practical problems and biases of citation analysis (Chapman, 1989). This 

wider context will be discussed later, this section will concentrate on the technical aspects of citation 

metrics. 

The basic unit of analysis is a collection of papers (or more generally research outputs including 

books reports etc. but as pointed out in Section 2 the main databases only cover journal papers) and 

the number of citations they have received over a certain period of time. In the case of an individual 

author, we are often interested in all their citations. In the case of evaluations of departments or 

journals, a particular window of three, five or ten years are usually considered. Usually the analysis 

occurs at a particular point in time but it can be done longitudinally or the dynamic behaviour of 

citations can be studied (Mingers, J., 2008a).  

Citation patterns 

If we look at the number of citations received by a paper over time it shows a typical birth-death 

process. Initially there are few citations; then the number increases to a maximum; finally they die 

away as the content becomes obsolete. There are many variants to this basic pattern, for example 

“shooting stars” that are highly cited but die quickly, and “sleeping beauties” that are ahead of their 

time (van Raan, A. J., 2004). There are also significantly different patterns of citation behaviour 

between disciplines that will be discussed in the normalization section. There are several statistical 

models of this process. Glänzel and Schoepflin (1995) use a linear birth process; Egghe (2000) 

assumed citations were exponential. Perhaps the most usual is to conceptualise the process as 

basically random from year to year but with some underlying mean (λ) and use the Poisson 

distribution. There can then be two extensions – the move from a single paper to a collection of papers 

with differing mean rates (Burrell, Q. , 2001), and the incorporation of obsolescence in the rate of 

citations (Burrell, Q., 2002, 2003). 
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If we assume a Gamma distribution for the variability of the parameter λ, then the result is a negative 

binomial of the form:  

r

t

r 1
P(X r) 1

1 t t


       

      
       

,  r = 0, 1, 2, …    

With mean = vt/α  variance = vt(t+ α)/ α
2
 where v and α are parameters to be determined empirically.  

The negative binomial is a highly skewed distribution which, as we have seen, is generally the case 

with bibliometric data. Mingers and Burrell (2006) tested the fit on a sample of 600 papers published 

in 1990 in six MS/OR journals – Management Science, Operations Research, Omega, EJOR, JORS 

and Decision Sciences looking at fourteen years of citations. Histograms are shown in Figure 1 and 

summary statistics in Table 2. As can be seen, the distributions are highly skewed, and they also have 

modes (except ManSci) at zero, i.e, many papers have never been cited in all that time. The proportion 

of zero cites varies from 5% in Management Science to 22% in Omega.  

 

 
  

*JORS Omega EJOR Dec Sci Ops Res Man Sci 

Actual 
mean 

7.3 7.2 11.3 11.1 14.6 38.6 

Actual sd 17.9 15.5 19.0 14.0 28.6 42.4 

% zero cites 18 22 14 12 10 5 

Max cites 176 87 140 66 277 181 

Table 2 Summary statistics for citations in six OR journals 1990-2004, from (Mingers, J. & Burrell, 2006) 
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Figure 1 Histograms for papers published in 1990 in six management science journals, from (Mingers, J. 

& Burrell, 2006) 

The issue of zero cites is of concern. On the one hand, that a paper has never been cited does not 

imply that it is of zero quality, especially when it has been through rigorous reviewing processes in a 

top journal, which is evidence that citations are not synonymous with quality. On the other, as Braun 

(1985). argues, a paper that has never been cited must at the least be disconnected from the field in 

question. The mean cites per paper (over 15 years) vary considerably between journals from 7.2 to 

38.6 showing the major differences between journals (to be covered in a later section), although it is 

difficult to disentangle whether this is because of the intrinsically better quality of the papers or 

simply the reputation of the journal. Bornmann et al. (2013) found that the journal can be considered 

as a significant co-variate in the prediction of citation impact. 

Obsolescence can be incorporated by including a time-based function in the distribution. This would 

generally be an S-shaped curve that would alter the value of λ over time, but there are many 

possibilities (Meade & Islam, 1998) and the empirical results did not identify any particular one 

although the gamma and the Weibull were best. It is also possible to statistically predict how many 

additional citations will be generated if a particular number have been received so far. The main 

results are that, at time t, the future citations are a linear function of the citations received so far, and 

the slope of the increment line decreases over the lifetime of the papers. These results applied to 

collections of papers, but do not seem to apply to the dynamics of individual papers.  

In a further study of the same data set, the citation patterns of the individual were modelled (Mingers, 

J., 2008a). The main conclusions were twofold: i) that individual papers were highly variable and it 
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was almost impossible to predict the final number of citations based on the number in the early years, 

in fact up to about year ten.  This was partly because of sleeping beauty and shooting star effects. ii) 

The time period for papers to mature was quite long – the maximum citations were not reached until 

years eight and nine, and many papers were still being strongly cited at the end of 14 years. This is 

very different from the natural sciences where the pace of citations is very much quicker.  

If we wish to use citations as a basis for comparative evaluation, whether of researchers, journals or 

departments, we must consider influences on citations other than pure impact or quality. The first, and 

most obvious, is simply the number of papers generating a particular total of citations. A journal or 

department publishing 100 papers per year would expect more citations than one publishing 20. For 

this reason the main comparative indicator that has been used traditionally is the mean cites per paper 

(CPP) or raw impact per paper (RIP). This was the basis of the Leiden (CWTS) “crown indicator” 

measure for evaluating research units suitably normalised against other factors. (Waltman, L., van 

Eck, van Leeuwen, Visser, & van Raan, 2010, 2011). We should note that this is the opposite of total 

citations – it pays no attention at all to the number of papers, so a researcher with a CPP of 20 could 

have one paper, or one hundred papers each with 20 citations.  

These other factors include: the general disciplinary area – natural science, social science or 

humanities; particular fields such as biomedicine (high) or mathematics (low); the type of paper 

(reviews are high); the degree of generality of the paper (i.e., of interest to a large or small audience); 

reputational effects such as the journal, the author, or the institution; the language; the region or 

country (generally the US has the highest number of researchers and therefore citations) as well as the 

actual content and quality of the paper. 

Another interesting issue is whether all citations should be worth the same? There are three distinct 

factors here – the number of authors of a paper, the number of source references, and the quality of 

the citing journals. In terms of numbers of authors, the sciences generally have many collaborators 

within an experimental or laboratory setting who all get credited. Comparing this with the situation of 

a single author who has done all the work themselves, should not the citations coming to that paper be 

spread among the authors? The extreme example mentioned above concerning the single paper 

announcing the Higgs Boson actually had a significant effect on the position of several universities in 

the 2014 Times Higher World University Ranking (Holmes, 2014). The paper, with 2896 “authors” 

affiliated to 228 institutions, had received 1631 citations within a year. All of the institutions received 

full credit for this and for some, who only had a relatively small number of papers, it made a huge 

difference. 
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The number of source references is a form of normalisation (fractional counting of citations) 

(Leydesdorff & Bornmann, 2011a) which will be discussed below. Taking into account the quality of 

the citing journal gives rise to new indicators that will be discussed in the section on journals. 

The h-index 

We have seen that the total number of citations, as a metric, is strongly affected by the number of 

papers, but does not provide any information on this. At the opposite extreme, the CPP is totally 

insensitive to productivity. In 2005, a new metric was proposed by a physicist called Hirsch (2005), 

that combined in a single, easy to understand, number both impact (citations) and productivity 

(citations). The h-index has been hugely influential since then, generating an entire literature of its 

own. Currently his paper has well over 4000 citations. In this section we will only be able to 

summarise the main advantages and disadvantages, for more detailed reviews see (Alonso, Cabrerizo, 

Herrera-Viedma, & Herrera, 2009; Bornman & Daniel, 2005; Costas & Bordons, 2007; Glänzel, W., 

2006) and for mathematical properties see Glänzel (2006) and Franceschini & Maisano(2010). 

The h index is defined as: “a scientist has index h if h of his or her Np papers have at least h citations 

each and the other (Np – h) papers have <= h citations each”.  

So h represents the top h papers, all of which have at least h citations. This one number thus combines 

both number of citations and number of papers. These h papers are generally called the h-core. The h-

index ignores all the other papers below h, and it also ignores the actual number of citations received 

above h. The advantages are: 

 It combines both productivity and impact in a single measure that is easily understood and very 

intuitive. 

 It is easily calculated just knowing the number of citations either from WoS, Scopus or Google 

Scholar. Indeed, all three now routinely calculate it. 

 It can be applied at different levels – researcher, journal or department. 

 It is objective and a good comparator within a discipline where citation rates are similar. 

 It is robust to poor data since it ignores the lower down papers where the problems usually occur. 

This is particularly important if using GS. 

However, many limitations have been identified including some that affect all citation based measures 

(e.g., the problem of different scientific areas, and ensuring correctness of data), and a range of 

modifications have been suggested (Bornmann, Mutz, & Daniel, 2008).   

 The first is that the metric is insensitive to the actual numbers of citations received by the papers 

in the h-core. Thus two researchers (or journals) with the same h-index could have dramatically 
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different actual numbers of citations. Egghe (2006) has suggested the g-index as a way of 

compensating for this. “A set of papers has a g-index of g if g is the highest rank such that the top 

g papers have, together, at least g
2
 citations” (p. 132). The fundamental idea is that the h-core 

papers must have at least h
2
 citations between them although in practice they may have many 

more. The more they have, the larger g will become and so it will to some extent reflect the total 

number of citations. The disadvantage of this metric is that it is less intuitively obvious than the h-

index. Another alternative is the e-index proposed by Zheng (2009). 

There are several other proposals that measure statistics on the papers in the h-core, for example: 

o The a-index (Jin, 2006; Rousseau, 2006) which is the mean number of citations of the 

papers in the h-core. 

o The m-index (Bornmann, et al., 2008) which is the median of the papers in the h-core 

since the data is always highly skewed. Currently Google Scholar Metrics
8
 implements a 

5-year h-index and 5-year m-index. 

o The r-index (Jin, 2007) which is the square root of the sum of the citations of the h-core 

papers. This is because the a-index actually penalises better researchers as the number of 

citations are divided by h, which will be bigger for better scientists. A further 

development is the ar-index (Jun, Liang, Rousseau, & Egghe, 2007) which is a variant of 

the r-index also taking into account the age of the papers. 

 The h-index is strictly increasing and strongly related to the time the publications have existed. 

This biases it against young researchers. It also continues increasing even after a researcher has 

retired. Data on this is available from Liang(2006)who investigated the actual sequence of h 

values over time for the top scientists included in Hirsch’s sample. A proposed way round this is 

to consider the h-rate (Burrell, Q., 2007), that is the h-index at time t divided by the years since 

the researcher’s first publication. This was also proposed by Hirsch as the m parameter in his 

original paper. Values of 2 or 3 indicate highly productive scientists. 

 The h-index does not discriminate well since it only employs integer values. Given that most 

researchers may well have h-indexes between 10 and 30, many will share the same value. Guns 

and Rousseau (2009) have investigated real and rational variants of both g and h. 

 As with all citation-based indicators, they need to be normalised in some way to citation rates of 

the field. Iglesias and Pecharroman (2007) collected, from WoS, the mean citations per paper in 

each year from 1995-2005 for 21 different scientific fields The totals ranged from under 2.5 for 

computer science and mathematics over 24 for molecular biology. From this data they constructed 

a table of normalisation factors to be applied to the h-index depending on the field and also the 

total number of papers published by the researcher. A similar issue concerns the number of 

authors. The sciences tend to have more authors per paper than the social sciences and humanities 

                                                      
8
 http://scholar.google.co.uk/citations?view_op=top_venues&hl=en 
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and this generates more papers and more citations. Batista et al. (2006) developed the hI-index as 

the h-index divided by the mean number of authors of the h-core papers. They also claim that this 

accounts to some extent for the citation differences between disciplines. Publish or Perish also 

corrects for authors by dividing the citations for each paper by the number of authors before 

calculating the hI,norm-index. This matric has been further normalised to take into account the 

career length of the author (Harzing, Anne-Wil, Alakangas, & Adams, 2014).  

 The h-index is dependent on or limited by the total number of publications and this is a 

disadvantage for researchers who are highly cited but for a small number of publications (Costas 

& Bordons, 2007). For example, Aguillo
9
 has compiled a list of the most highly cited researchers 

in GS according to the h-index (382 with h’s of 100 or more). A notable absentee is Thomas 

Kuhn, one of the most influential researchers of the last 50 years with his concept of a scientific 

paradigm. His book (Kuhn, 1970) alone has (14/11/14) 74,000 citations which, if the table were 

ranked in terms of total citations would put him in the top 100. His actual total citations are 

around 115,000 citations putting him in the top 20. However, his h-index is only 64. This example 

shows how different metrics can lead to quite extreme results – on the h-index he is nowhere; on 

total citations, in the top 20; and on cites per paper probably first! 

There have been many comparisons of the h-index with other indicators. Hirsch himself performed an 

empirical test of the accuracy of indicators in predicting the future success of researchers and 

concluded, perhaps unsurprisingly, that the h-index was most accurate (Hirsch, 2007). This was in 

contrast to other studies such as (Bornmann & Daniel, 2007; Lehmann, Jackson, & Lautrup, 2006; 

van Raan, A., 2005a). Generally, such comparisons show that the h-index is highly correlated with 

other bibliometric indicators, but more so with measures of productivity such as number of papers and 

total number of citations, rather than with citations per paper which is more a measure of pure impact 

(Alonso, et al., 2009; Costas & Bordons, 2007; Todeschini, 2011).  

There have been several studies of the use of the h-index in business and management fields such as 

information systems (Oppenheim, 2007; Truex III, Cuellar, & Takeda, 2009), management science 

(Mingers, J., 2008b; Mingers, J., et al., 2012), consumer research (Saad, 2006), Marketing (Moussa & 

Touzani, 2010) and business (Harzing, A.-W. & Van der Wal, 2009).  

Overall, the h-index may be somewhat crude in compressing information about a researcher into a 

single number, and it should always be used for evaluation purposes in combination with other 

measures or peer judgement but it has clearly become well-established in practice being available in 

all the citation databases. 

Another approach is the use of percentile measures which we will cover in the next section. 

                                                      
9
 http://www.webometrics.info/en/node/58 
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4. Normalisation Methods 

In considering the factors that affect the number of citations that papers receive, there are many to do 

with the individual paper – content, type of paper, quality, author, or institution (Mingers, John & Xu, 

2010) – but underlying those there are clear disciplinary differences that are hugely significant. As 

mentioned above, Iglesias and Pecharroman (2007) found that mean citation rates in molecular 

biology were ten times those in computer science. The problem is not just between disciplines but also 

within disciplines such as business and management which encompass different types of research 

fields. Mingers and Leydesdorff (2014) found that management and strategy papers averaged nearly 

four times as many citations as public administration. This means that comparisons between 

researchers, journals or institutions across fields will not be meaningful without some form of 

normalisation. It is also important to normalise for time period because the number of citations always 

increases over time (Leydesdorff, Bornmann, Opthof, & Mutz, 2011; Waltman, L. & van Eck, 

2013b).  

4.1. Field Classification Normalisation 

The most well established methodology for evaluating research centres was developed by the Centre 

for Science and Technology Studies (CWTS) at Leiden University and is known as the crown 

indicator or Leiden Ranking Methodology (LRM) (van Raan, A., 2005c). Essentially, this method 

compares the number of citations received by the publications of a research unit over a particular time 

period with that which would be expected, on a world-wide basis across the appropriate field and for 

the appropriate publication date. In this way, it normalises the citation rates for the department to rates 

for its whole field. Typically, top departments may have citation rates that are three or four times the 

field average. Leiden also produces a ranking of world universities based on bibliometric methods that 

will be discussed elsewhere (Waltman, Ludo, et al., 2012).  

This is the traditional “crown indicator”, but this approach to normalisation has been criticised 

(Leydesdorff & Opthof, 2011; Lundberg, 2007; Opthof & Leydesdorff, 2010) and an alternative has 

been used in several cases (Cambell, Archambaulte, & Cote, 2008; Rehn & Kronman, 2008; Van 

Veller, Gerritsma, Van der Togt, Leon, & Van Zeist, 2009). This has generated considerable debate in 

the literature (Bornmann, 2010; Bornmann & Mutz, 2011; Moed, 2010a; van Raan, A., van Leeuwen, 

Visser, van Eck, & Waltman, 2011; Waltman, L., et al., 2010, 2011). The criticism concerns the order 

of calculation in the indicator and the use of a mean when citation distributions are highly skewed. It 

is argued that, mathematically, it is wrong to sum the actual and expected numbers of citations and 

then divide them. Rather, the division should be performed first, for each paper and then these ratios 

should be averaged. It might be thought that this is purely a technical issue, but it has been argued that 

it can affect the results significantly. In particular, the older CWTS method tends to weight more 
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highly publications from fields with high citation numbers whereas the new one weights them equally. 

Also, the older method is not consistent in its ranking of institutions when both improve equally in 

terms of publications and citations. Eventually this was accepted by CWTS, and Waltman et al. (2010, 

2011) (from CTWS) have produced both theoretical and empirical comparisons of the two methods 

and concluded that the newer one is theoretically preferably but does not make much difference in 

practice. The new method is called the “mean normalised citation score” (MNCS). Gingras et al. 

(2011) commented that the “alternative” method was not alternative but in fact the correct way to 

normalise, and had been in use for fifteen years.   

4.2. Source Normalisation 

The normalisation method just discussed normalised citations against other citations, but an 

alternative approach was suggested, initially by Zitt and Small (2008) in their “audience factor”, 

which considers the sources of citations, that is the reference lists of citing papers, rather than 

citations themselves. This general approach is gaining popularity and is also known as the “citing-side 

approach” (Zitt, M., 2011), source normalisation (Moed, 2010c) (SNIP), fractional counting of 

citations (Leydesdorff & Opthof, 2010) and a priori normalisation (Glänzel, Wolfgang, Schubert, 

Thijs, & Debackere, 2011). 

The essential difference in this approach is that the reference set of journals is not defined in advance, 

according to WoS or Scopus categories, but rather is defined at the time specifically for the collection 

of papers being evaluated (whether that is papers from a journal, department, or individual). It 

consists of all the papers, in the given time window, that cite papers in the target set. Each collection 

of papers will, therefore, have its own unique reference set and it will be the lists of references from 

those papers that will be used for normalisation. This approach has obvious advantages – it avoids the 

use of WoS categories which are ad hoc and outdated (Leydesdorff & Bornmann, 2014; Mingers, J. & 

Leydesdorff, 2014) and it allows for journals that are interdisciplinary and that would therefore be 

referenced by journals from a range of fields.  

Having determined the reference set of papers, the methods then differ in how they employ the 

number of references in calculating a metric. The audience factor (Zitt, M., 2011; Zitt, Michel & 

Small, 2008) works at the level of a citing journal. It calculates a weight for citations from that journal 

based on the ratio between the average number of active references
10

 in all journals to the average 

number of references in the citing journal. This ratio will be larger for journals that have few 

references compared to the average because they are in less dense citation fields. Citations to the 

                                                      
10

 An “active” reference is one that is to a paper included in the database (e.g., WoS) within the time window. 

Other references are then ignored as “non-source references”. 
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target (cited) papers are then weighted using the calculated weights which should equalise for the 

citation density of the citing journals.  

Fractional counting of citations (Leydesdorff & Bornmann, 2011a; Leydesdorff & Opthof, 2010; 

Leydesdorff, Radicchi, Bornmann, Castellano, & Nooy, 2013) begins at the level of an individual 

citation and the paper which produced it. Instead of counting each citation as one, it counts it as a 

fraction of the number of references in the citing paper. This if a citation comes from a paper with m 

references, the citation will have a value of 1/m. It is then legitimate to add all these fractionated 

citations to give the total citation value for the cited paper. An advantage of this approach is that 

statistical significance tests can be performed on the results. One issue is whether all references are 

included (which Leydesdorff et al. do) or whether only the active references should be counted. The 

third method is essentially that which underlies the SNIP indicator for journals (Moed, 2010b) which 

will be discussed in Section 5. In contrast to fractional counting, it forms a ratio of the mean number 

of citations to the journal to the mean number of references in the citing journals. A later version of 

SNIP (Waltman, L., van Eck, van Leeuwen, & Visser, 2013) used the harmonic mean to calculate the 

average number of references and in this form it is essentially the same as fractional counting except 

for an additional factor to take account of papers with no active citations. 

Some empirical reviews of these approaches have been carried out. Waltman and van Eck (2013a, 

2013b) compared the three source-normalising methods with the new CWTS crown indicator 

(MNCS) and concluded that the source normalisation methods were preferable to the field 

classification approach, and that of them, the audience factor and revised SNIP were best. This was 

especially noticeable for interdisciplinary journals. The fractional counting method did not fully 

eliminate disciplinary differences (Radicchi & Castellano, 2012) and also did not account for citation 

age.   

4.3. Percentile-Based Approaches 

We have already mentioned that there is a general statistical problem with metrics that are based on 

the mean number of citations, which is that citations distributions are always highly skewed (Seglen, 

P. O., 1992) and this invalidates the mean as a measure of central tendency; the median is better. 

There is also the problem of ratios of means discussed above. A non-parametric alternative based on 

percentiles (an extension of the median) has been suggested for research groups (Bornmann & Mutz, 

2011), individual scientists (Leydesdorff, Bornmann, Mutz, & Opthof, 2011) and journals 

(Leydesdorff & Bornmann, 2011b). This is also used by the US National Science board in their 

Science and Engineering Indicators. 

The method works as follows: 
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1. For each paper to be evaluated, a reference set of papers published in the same year, of the 

same type and belonging to the same WoS category is determined.  

2. These are rank ordered and split into percentile rank (PR) classes, for example the top 1% 

(99
th
 percentile), 5%, 10%, 25%, 50% and below 50%. For each PR, the minimum number of 

citations necessary to get into the class is noted
11

. Based on its citations, the paper is then 

assigned to one of the classes. This particular classification is known as 6PR. 

3. The procedure is repeated for all the target papers and the results are then summated, giving 

the overall percentage of papers in each of the PR classes. The resulting distributions can be 

statistically tested against both the field reference values and against other competitor 

journals or departments
12

.    

The particular categories used above are only one possible set (Bornmann, Lutz, Leydesdorff, Loet, & 

Mutz, Rüdiger, 2013) – others in use are [10%, 90%] and [0.01%, 0.1%, 1%, 10%, 20%, 50%] (used 

in ISI Essential Science indicators) and the full 100 percentiles (100PR) (Bornmann, Lutz, 

Leydesdorff, Loet, & Wang, Jian, 2013; Leydesdorff, Bornmann, Mutz, et al., 2011). This approach 

provides a lot of information about the proportions of papers at different levels, but it is still useful to 

be able to summarise performance in a single value. The suggested method is to calculate a mean of 

the ranks weighted by the proportion of papers in each. The minimum is 1, if all papers are in the 

lowest rank; the maximum is 6 if they are all in the top percentile. The field average will be 1.91 - 

(.01, .04, 05, .15, .25, .50) x (6,5,4,3,2,1) - so a value above that is better than the field average. A 

variation of this metric has been developed as an alternative to the journal impact factor (JIF) called I3 

(Leydesdorff, 2012; Leydesdorff & Bornmann, 2011b). Instead of multiplying the percentile ranks by 

the proportion of papers in each class, they are multiplied by the actual numbers of papers in each 

class thus giving a measure that combines productivity with citation impact. In the original, the 100PR 

classification was used but other ones are equally possible.   

The main drawback of this method is that it relies on the field definitions in WoS or another database 

which are unreliable, especially for interdisciplinary journals. It might be possible to combine it with 

some form of source normalisation (Colliander, 2014). 

5.  Indicators of Journal Quality: The Impact Factor and Other Metrics 

So far, we have considered the impact of individual papers or researchers, but of equal importance is 

the impact of journals in terms of library’s decisions about which journals to take (less important in 

the age of e-journals), authors’ decisions about where to submit their papers, and in subsequent 

                                                      
11

 There are several technical problems to be dealt with in operationalising  these classes (Bornmann, 

Leydesdorff, & Mutz, 2013; Bornmann, Lutz, Leydesdorff, Loet, & Wang, Jian, 2013). 
12

 Using Dunn’s test or the Mann-Whitney U test (Leydesdorff, Bornmann, Mutz, et al., 2011). 



21 

 

judgements of the quality of the paper. Indeed journal ranking lists such as the UK Association of 

Business Schools’ (ABS) has a huge effect on research behaviour (Mingers, J. & Willmott, 2013). 

Until recently, the journal impact factor (JIF) has been the pre-eminent measure. This was originally 

created by Garfield and Sher (1963) as a simple way of choosing journals for their SCI but, once it 

was routinely produced in WoS (who have copyright to producing it), it became a standard. Garfield 

recognised its limitations and also recommended a metric called the “cited half-life” which is a 

measure of how long citations last for. Specifically, it is the median age of papers cited in a particular 

year, so a journal that has a cited half-life of five years means that 50% of the citations are to papers 

published in the last five years. 

JIF is simply the mean citations per paper for a journal over a two year period. For example,  the 2014 

JIF is the number of citations in 2014 to papers published in a journal in 2012 and 2013, divided by 

the number of such papers. WoS also published a 5-year JIF because in many disciplines two years is 

too short a time period. It is generally agreed that the JIF has few benefits for evaluating research, but 

many deficiencies (Brumback, 2008; Cameron, 2005; Seglen, P., 1997). Even Garfield (1998) has 

warned about its over-use. 

 JIF depends heavily on the research field. As we have already seen, there are large differences 

in the publishing and citing habits of different disciplines and this is reflected in huge 

differences in JIF values. Looking at the WoS journal citation reports 2013, in the area of cell 

biology the top journal has a JIF of 36.5 and the 20
th
 one of 9.8. Nature has a JIF of 42.4. In 

contrast, in the field of management, the top journal (Academy of Management Review) is 7.8 

and the 20
th
 is only 2.9. Many journals have JIFs of less than 1. Thus, it is not appropriate to 

compare JIFs across fields (even within business and management) without some form of 

normalisation 

 The two-year window. This is a very short time period for many disciplines, especially given 

the lead time between submitting a paper and having it published which may itself be two 

years. In management, many journals have a cited half-life of over 10 years while in cell 

biology it is typically less than 6. The 5-year JIF is better in this respect (Campanario, 2011).  

 There is a lack of transparency in the way the JIF is calculated and this casts doubt on the 

results. Brumback (2008) studied medical journals and could not reproduce the appropriate 

figures. It is highly dependent on which types of papers are included in the denominator. In 

2007, the editors of three prestigious medical journals published a paper questioning the data 

(Rossner, Van Epps, & Hill, 2007). Pislyakov (2009) has also found differences between JIFs 

calculated in WoS and Scopus for economics resulting from different journal coverage. 

 It is possible for journals to deliberately distort the results by, for example, publishing many 

review articles which are more highly cited; publishing short reports or book reviews that get 
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cited but are not included in the count of papers; or pressuring authors to gratuitously 

reference excessive papers from the journal (Wilhite & Fong, 2012). The Journal of the 

American College of Cardiology, for example, publishes each year an overview of highlights 

in its previous year so that the IF of this journal is boosted (DeMaria, et al., 2008). 

 If used for assessing individual researchers or papers the JIF is unrepresentative (Oswald, 

2007). As Figure 1 shows, the distribution of citations within a journal is highly skewed and 

so the mean value will be distorted by a few highly cited papers, and not represent the 

significant number that may never be cited at all. 

In response to criticisms of the JIF, several more sophisticated metrics have been developed, although 

the price for sophistication is complexity of calculation and a lack of intuitiveness in what it means . 

The first metrics we will consider take into account not just the quantity of citations but also their 

quality in terms of the prestige of the citing journal. They are based on iterative algorithms over a 

network, like Googles’s PageRank, that initially assign all journals an equal amount of prestige and 

then iterate the solution based on the number of citations (the links) between the journals (nodes) until 

a steady state is reached. The first such was developed by Pinsky and Narin (1976) but that had 

calculation problems. Since then, Page et al. (Ma, Guan, & Zhao, 2008; Page, Brin, Motwani, & 

Winograd, 1999) have an algorithm based directly on PageRank but adapted to citations, Bergstrom 

(Bergstrom, 2007) has developed the Eigenfactor which is implemented in WoS and Gonzalez-Pereira 

et al. (2010) have developed SCImago Journal Rank (SJR) which is implemented in Scopus.  

The Eigenfactor is based on the notion of a researcher taking a random walk following citations from 

one paper to the next, measuring the relative frequency of occurrence of each journal as a measure of 

prestige. It explicitly excludes journal self-citations unlike most other metrics. Its values tend to be 

very small, for example the largest in the management field is Management Science with a value of 

0.03 while the 20
th
 is 0.008 which is not very meaningful. The Eigenfactor measures the total number 

of citations and so is affected by the total number of papers published by a journal. A related metric is 

the article influence score (AI) which is the Eigenfactor divided by the proportion of papers in the 

database belonging to a particular journal over five years. It can therefore be equated to a 5-yr JIF. A 

value of 1.0 shows that the journal has average influence; values greater than 1.0 show greater 

influence. We can see that in cell biology the largest AI is 22.1 compared with 6.6 in management. 

Fersht (2009) and Davies (2008) argue empirically, that the Eigenfactor gives essentially the same 

information as total citations as it is size-dependent, but West et al. (2010) dispute this. It is certainly 

the case that the rankings of journals with the Eigenfactor are significantly different to those based on 

total citations, the JIF or AI, which are all quite similar (Leydesdorff, 2009). 
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Metric Description Advantages Disadvantages Maximum values 

for: 

a) cell biology 

b) management 

No of 

paper

s 

field prestige 

Impact factor 

(JIF) and cited 

half-life 

(WoS) 

Mean citations 

per paper over a 

2 or 5 year 

window. 

Normalised to 

number of 

papers. Counts 

citations equally 

Well-known, 

easy to 

calculate and 

understand. 

Not normalised to 

discipline; short 

time span; 

concerns about 

data and 

manipulation 

From WoS 

a) 36.5 

b) 7.8 

Y N N 

Eigenfactor 

and article 

influence 

score (AI) 

(WoS) 

Based on 

PageRank, 

measures 

citations in 

terms of the 

prestige of 

citing journal. 

Not normalised 

to discipline or 

number of 

papers. 

Correlated with 

total citations. 

Ignores self-

citations. AI is 

normalised to 

number of 

papers, so is 

like a JIF 

5-yr window 

Very small 

values, 

difficult to 

interpret, not 

normalised 

The AI is 

normalised to 

number of papers. 

A value of 1.0 

shows average 

influence across 

all journals 

From WoS 

Eigenfactor: 

a)0.599 

b)0.03  

 

AI: 

a) 22.2 

b) 6.56 

N 

 

Y 

N 

 

N 

Y 

 

Y 

SJR and SJR2 

(Scopus) 

Based on 

citation prestige 

but also 

includes a size 

normalisation 

factor. 

SJR2 also 

allows for the 

closeness of the 

citing journal. 

3-year window 

 

Complex 

calculations 

and not easy 

to interpret. 

Not field 

normalised 

Normalised 

number of papers 

but not to field so 

comparable to 

JIF. Most 

sophisticated 

indicator 

 Y N Y 

h-index 

(Scimago 

website and 

Google 

Metrics) 

The h papers of 

a journal that 

have at least h 

citations. Can 

have any 

window – 

Google metrics 

uses 5-year 

Easy to 

calculate and 

understand. 

Robust to 

poor data 

Not normalised to 

number of papers 

or field. 

Not pure impact 

but includes 

volums 

From Google 

Metrics 

h5: 

a) 223 

b) 72 

 

h5 median: 

a) 343 

b)122  

 

N N N 

SNIP 

 

Revised SNIP 

(Scopus) 

Citations per 

paper 

normalised to 

the relative 

database 

citation 

potential, that is 

the mean 

number of 

references in the 

papers that cite 

the journal 

Normalises 

both to 

number of 

papers and 

field. 

 

Does not consider 

citation prestige. 

Complex and 

difficult to check. 

Revised version is 

sensitive to 

variability of 

number of 

references 

 Y Y N 
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I3 Combines the 

distribution of 

citation 

percentiles with 

respect to a 

reference set 

with the number 

of papers in 

each percentile 

class 

Normalises 

across fields. 

Does not use 

the mean but 

is based on 

percentiles 

which is 

better for 

skewed data 

Needs reference 

sets based on pre-

defined categories 

such as WoS 

Not known N Y N 

Table 2 Characteristics of Metrics for Measuring Journal Impact 

The SJR works in a similar way to the Eigenfactor but includes within it a size normalisation factor 

and so is more akin to the article influence score. Each journal is a node and each directed connection 

is a normalised value of the number of citations from one journal to another over a three year window. 

It is normalised by the total number of citations in the citing journal for the year in question. It works 

in two phases: 

1. An un-normalised value of journal prestige is calculated iteratively until a steady state is 

reached. The value of prestige actually includes three components: A fixed amount for being 

included in the database (Scopus); an amount dependent on the number of papers the journal 

produces; a citation amount dependent on the number of citations received, and the prestige of 

the sources. However, there are a number of arbitrary weighting constants in the calculation. 

2. The value from 1., which is size-dependent, is then normalised by the number of published 

articles and adjusted to give an “easy-to-use” value.  

Gonzales-Pereira et al. (2010) carried out extensive empirical comparisons with a 3-yr JIF (on Scopus 

data). The main conclusions were that the two were highly correlated, but the SJR showed that some 

journals with high JIFs and lower SJRs were gaining citations from less prestigious sources. This was 

seen most clearly in the computer science field where the top ten journals, based on the two metrics, 

were entirely different except for the number one, which was clearly a massive outlier (Briefings in 

Bioinformatics). Values for the JIF are significantly higher than for SJR. Falagas et al. (Falagas, 

Kouranos, Arencibia-Jorge, & Karageorgopoulos, 2008) also compared the SJR favourably with the 

JIF. 

There are several limitations of these 2
nd

 generation measures: the values for “prestige” are difficult to 

interpret as they are not a mean citation value but only make sense in comparison with others; they are 

still not normalised for subject areas (Lancho-Barrantes, Guerrero-Bote, & Moya-Anegón, 2010); and 

the subject areas themselves are open to disagreement (Mingers, J. & Leydesdorff, 2014). 

A further development of the SJR indicator has been produced (Guerrero-Bote & Moya-Anegón, 

2012) with the refinement that, in weighting the citations according to the prestige of the citing 
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journal, the relatedness of the two journals is also taken into account. An extra term is added based on 

the cosine of the angle between the co-citation vectors of the journals so that the citations from a 

journal in a highly related area count for more. It is claimed that this also goes some way towards 

reducing the disparity of scores between subjects. However, it also makes the indicator even more 

complex, hard to compute, and less understandable. 

The h-index can also be used to measure the impact of journals as it can be applied to any collection 

of cited papers (Braun, Glänzel, & Schubert, 2006; Schubert & Glänzel, 2007; Xu, Liu, & Mingers, 

2015).Studies have been carried out in several disciplines: marketing (Moussa & Touzani, 2010), 

economics (Harzing, A.-W. & Van der Wal, 2009), information systems (Cuellar, Takeda, & Truex, 

2008) and business (Mingers, J., et al., 2012). The advantages and disadvantages of the h-index for 

journals are the same as the h-index generally, but it is particularly the case that it is not normalised 

for different disciplines, and it is also strongly affected by the number of papers published. So a 

journal that publishes a small number of highly cited papers will be disadvantaged in comparison with 

one publishing many papers, even if not so highly cited. Google Metrics (part of Google Scholar) uses 

a 5-year h-index and also shows the median number of citations for those papers in the h core to allow 

for differences between journals with the same h-index. It has been critiqued by Delgado-López-

Cózar and Cabezas-Clavijo (2012). 

Another recently developed metric that is implemented in Scopus but not WoS is SNIP – source 

normalised impact per paper (Moed, 2010b). This normalises for different fields based on the citing-

side form of normalisation discussed above, that is, rather than normalising with respected to the 

citations that a journal receives, it normalises with respect to the number of references in the citing 

journals. The method proceeds in three stages: 

1. First the raw impact per paper (RIP) is calculated for the journal. This is essentially a three 

year JIF – the total citations from year n to papers in the preceding three years is divided by 

the number of citable papers.  

2. Then the database citation potential for the journal (DCP) is calculated. This is done by 

finding all the papers in year n that cite papers the journal over the preceding ten years, and 

then calculating the arithmetic mean of the number of references (to papers in the database – 

Scopus) in these papers. 

3. The DCP is then relativized (RDCP). The DCP is calculated for all journals in the database 

and the median value is found. Then RDCPj = DCPj/Median DCP. Thus a field that has many 

references will have an RDCP above 1. 

4. Finally, SNIPj = RIPj / RDCPj 
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The result is that journals in fields that have a high citation potential will have their RIP reduced, and 

vice versa for fields with low citation potential. This is an innovative measure both because it 

normalises for both number of publications and field, and because the set of reference journals are 

specific to each journal rather than being defined beforehand somewhat arbitrarily.  Moed presents 

empirical evidence from the sciences that the subject normalisation does work even at the level of 

pairs of journals in the same field. Also, because it only uses references to papers within the database, 

it corrects for coverage differences – a journal with low database coverage will have a lower DCP and 

thus a higher value of SNIP. 

A modified version of SNIP has recently been introduced (Waltman, L., et al., 2013) to overcome 

certain technical limitations, and also in response to criticism from Leydesdorff and Opthof (2010; 

Moed, 2010c) who favour a fractional citation approach. The modified version involves two main 

changes: i) the mean number of references (DCP), but not the RIP, is now calculated using the 

harmonic mean rather than the arithmetic mean. ii) The relativisation of the DCP to the overall 

median DCP is now omitted entirely, now SNIP = RIP/DCP.  

Mingers (2014) has pointed out two problems with the revised SNIP. First, because the value is no 

longer relativized it does not bear any particular relation to either the RIP for a journal, or the average 

number of citations/references in the database which makes it harder to interpret. Second, the 

harmonic mean, unlike the arithmetic, is sensitive to the variability of values. The less even the 

numbers of references, the lower will be the harmonic mean and this can make a significant difference 

to the value of SNIP which seems inappropriate. There is also a more general problem with these 

sophisticated metrics that work across a whole database, and that is that the results cannot be easily 

replicated as most researchers do not have sufficient access to the databases (Leydesdorff, 2013). 

Two other alternatives to the JIF have been suggested (Leydesdorff, 2012) – fractional counting of 

citations, which is similar in principle to SNIP, and the use of non-parametric statistics such as 

percentiles which avoids using means which are inappropriate with highly skewed data. A specific 

metric, based on percentiles, called I3 has been proposed by Leydesdorff (2011b) which combines 

relative citation impact with productivity in terms of the numbers of papers but is normalised through 

the use of percentiles (see Section 4.3 for more explanation). 

6. Visualizing and mapping science 

In addition to its use as an instrument for the evaluation of impact, citations can also be considered as 

an operationalization of a core process in scholarly communication, namely, referencing. Citations 

refer to texts other than the one that contains the cited references, and thus induce a dynamic vision of 

the sciences developing as networks of relations (Price, 1965). The development of co-citation 
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analysis (Marshakova, 1973; Small, 1973) and co-word analysis (Callon, et al., 1983) were 

achievements of the 1970s and 1980s. Aggregated journal-journal citations are available on a yearly 

basis in the Journal Citation Reports of the Science Citation Index since 1975. During the mid-80s 

several research teams began to use this data for visualization purposes using multidimensional 

scaling and other such techniques (Doreian & Fararo, 1985; Leydesdorff, 1986; Tijssen, de Leeuw, & 

van Raan, 1987). The advent of graphical user-interfaces in Windows during the second half of the 

1990s stimulated the further development of network analysis and visualization programs such as 

Pajek (de Nooy, et al., 2011) that enable users to visualize large networks. Using large computer 

facilities, Boyack et al.. (2005) first mapped “the backbone” of all the sciences (De Moya-Anegón, et 

al., 2007).  

Bollen et al.. (2009) developed maps based on clickstream data; Rosvall & Bergstrom (2010) 

proposed to use alluvial maps for showing the dynamics of science. Rafols et al.. (2010) first 

proposed to use these “global” maps as backgrounds for overlays that inform the user about the 

position of specific sets of documents, analogously to overlaying institutional address information on 

geographical maps like Google Maps. More recently, these techniques have further be refined, using 

both journal (Leydesdorff, Rafols, & Chen, 2013) and patent data (Kay, Newman, Youtie, Porter, & 

Rafols, 2014)).   

Nowadays, scientometric tools for the visualization are increasingly available on the internet. Some of 

them enable the user directly to map input downloaded from Web of Science or Scopus. VOSviewer
13

 

(Van Eck & Waltman, 2010) can generate, for example, co-word and co-citation maps from this data. 

6.1.  Visualisation techniques 

The systems view of multidimensional scaling (MDS) is deterministic, whereas the graph-analytic 

approach can also begin with a random or arbitrary choice of a starting point. Using MDS, the 

network is first conceptualized as a multi-dimensional space that is then reduced stepwise to lower 

dimensionality. At each step, the stress increases. Kruskall’s stress function is formulated as follows:  
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In this formula ||xi - xj|| is equal to the distance on the map, while the distance measure dij can be, for 

example, the Euclidean distance in the data under study. One can use MDS to illustrate factor-analytic 

results in tables, but in this case the Pearson correlation is used as the similarity criterion. 
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Spring-embedded or force-based algorithms can be considered as a generalization of MDS, but were 

inspired by developments in graph theory during the 1980s. Kamada and Kawai (1989) were the first 

to reformulate the problem of achieving target distances in a network in terms of energy optimization. 

They formulated the ensuing stress in the graphical representation as follows: 

ij
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sS 


   with  
2

2
)(

1
ijji

ij

ij dxx
d

s   (2) 

Equation 2 differs from Equation 1 by taking the square root in Equation 1, and because of the 

weighing of each term with 1/dij
2
 in the numerator of Equation 2. This weight is crucial for the quality 

of the layout, but defies normalization with ∑ dij
2
 in the denominator of Equation 1; hence the 

difference between the two stress values.  

The ensuing difference at the conceptual level is that spring-embedding is a graph-theoretical concept 

developed for the topology of a network. The weighting is achieved for each individual link. MDS 

operates on the multivariate space as a system, and hence refers to a different topology. In the 

multivariate space, two points can be close to each other without entertaining a relationship. For 

example, they can be close or distanced in terms of the correlation between their patterns of 

relationships.  

In the network topology, Euclidean distances and geodesics (shortest distances) are conceptually more 

meaningful than correlation-based measures. In the vector space, correlation analysis (factor analysis, 

etc.) is appropriate for analysing the main dimensions of a system. The cosines of the angles among 

the vectors, for example, build on the notion of a multi-dimensional space. In bibliometrics, Ahlgren 

et al. (2003) have argued convincingly in favour of the cosine as a non-parametric similarity measure 

because of the skewedness of the citation distributions and the abundant zeros in citation matrices. 

Technically, one can also input a cosine-normalized matrix into a spring-embedded algorithm. The 

value of (1 – cosine) can then be considered as a distance in the vector space (Leydesdorff & Rafols, 

2011).  

Newman & Girvan (2004) developed an algorithm in graph theory that searches for (latent) 

community structures in networks of observable relations. An objective function for the 

decomposition is recursively minimized and thus a relative “modularity” Q can be measured (and 

normalized between zero and one). Blondel et al. (2008) improved community-finding for large 

networks; this routine is implemented in Pajek and Gephi, whereas Newman & Girvan’s original 

routine can be found in the Sci2 Toolset for “the science of science”.
14

  VOSviewer provides its own 

algorithms for the mapping and the decomposition . 

                                                      
14

 https://sci2.cns.iu.edu/user/index.php 

https://sci2.cns.iu.edu/user/index.php


29 

 

6.2. Local and global maps 

To illustrate some of these possibilities, we analysed the 505 documents published in the European 

Journal of Operational Research in 2013
15

. Among the 1,555 non-trivial words in the titles of these 

documents, 58 words occur more than ten times and form a large component. A semantic map of 

these terms is shown in Figure 2.  

 

Figure 2: Cosine-normalized map of the 58 title words which occur ten or more times in the 505 

documents published in EJOR during 2013. (cosine > 0.1; modularity Q = 0.548 using Blondel et al.., (2008); 

Kamada & Kawai (1989) used for the layout; see http://www.leydesdorff.net/software/ti.) 

Figure 3 shows the 613 journals that are most highly cited in the same 505 EJOR papers (12,172 

citations between them) overlaid on to a global map of science (Leydesdorff, L., et al., 2013). The 

cited references can, for example, be considered as an operationalization of the knowledge base on 

which these articles draw. It can be seen that, apart from the main area around OR and management, 

there is significant citation to the environmental sciences, chemical engineering, and biomedicine. 

Rao-Stirling diversity — a measure for the interdisciplinarity of this knowledge base (Rao, 1982) — 

however, is low (0.1187). In other words, citation within the specialty prevails. 
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Figure 3: 613 journals cited in 505 documents published in EJOR during 2013, overlaid on the global 

map of science in terms of journal-journal citation relations. (Rao-Stirling diversity is 0.1187; Leydesdorff 

et al.. (in press); see at http://www.leydesdorff.net/journals12 ). 

Figure 4 shows a map of the field of OR based on the 29 journals most highly cited in papers 

published in Operations Research in 2013. In this map three groupings have emerged – the central 

area of OR, including transportation; the lower left of particularly mathematical journals; and the 

upper region of economics and finance journals which includes Management Science. 

 

 

http://www.leydesdorff.net/journals12
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Figure 4: local map of the 29 journals cited in articles of Operations Research in 2013 (1% level; cosine > 

0.2; Kamada & Kawai, 1989; Blondel et al.., 2008; Q = 0.213). 

7. Evaluation and Policy 

As we said in the introduction, scientometrics has come to prominence because of its use in the 

evaluation and management of research performance, whether at the level of the researcher, research 

group, institution or journal (Bornmann & Leydesdorff, 2014). Many countries, especially the UK, 

Australia, New Zealand and Italy, carry out regular reviews of university performance affecting both 

the distribution of research funds and the generation of league tables. On a macro scale, world 

university league tables have proliferated (e.g., QS
16

, Times Higher
17

 and Shanghai
18

) including one 

from Leiden
19

 based purely on bibliometrics (Waltman, Ludo, et al., 2012) while on a micro scale 

personal employment and promotion is shaped by journal and citation data. Much of this is based on 

the citation metrics that we have discussed above. 

The traditional method of research evaluation was peer review (Abramo, et al., 2011; Moed, 2007). 

However, this has many drawbacks – it is very time consuming and costly (Abramo & D’Angelo, 

2011), subject to many biases and distortions (Horrobin, 1990; Moxham & Anderson, 1992), 
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generally quite opaque (panel members in the 2008 UK RAE were ordered to destroy all notes for fear 

of litigation) (Reale, Barbara, & Costantini, 2007) and limited in the extent to which it actually 

provides wide-ranging and detailed information (Butler & McAllister, 2009). The UK did investigate 

using bibliometrics in 2008 (HEFCE, 2009), used them to a limited extent in 2014, and are expected 

to employ them more fully in 2020. In contrast, bibliometrics has the potential to provide a cheaper, 

more objective and more informative mode of analysis, although there is general agreement that 

bibliometrics should only be used in combination with some form of transparent peer review Moed 

(2007; van Raan, A., 2005b). Abramo and D’Angelo (2011) compared informed peer review 

(including the UK RAE) with bibliometrics on the natural and formal sciences in Italy and concluded 

that bibliometrics were clearly superior across a range of criteria – accuracy, robustness, validity, 

functionality, time and cost. They recognized that there were problems in the social sciences and 

humanities where citation data is often not available.  

The effective use of bibliometrics has a number of requirements, not all of which are currently in 

place. 

First, we need robust and comprehensive data. As we have already seen, the main databases are 

reliable but their coverage is limited especially in the humanities and social sciences and they need to 

enlarge their scope to cover all forms of research outputs (Leydesdorff, 2008). Google Scholar is more 

comprehensive, but unreliable and non-transparent. At this time, full bibliometric evaluation is 

feasible in science and some areas of social science, but not in the humanities or some areas of 

technology (Archambault, Vignola-Gagné, Côté, Larivière, & Gingras, 2006; Nederhof, 2006; van 

Leeuwen, 2006). Abramo and D’Angelo (2011)suggest that nations should routinely collect data on 

all the publications published within its institutions so that it is scrutinised and available on demand 

rather than having to be collected anew each time a research evaluation occurs.  

Second, we need suitable metrics that measure what is important in as unbiased way as possible. 

These should not be crude ones such as simple counts of citations or papers, the h-index (although this 

has its advantages) or journal impact factors but more sophisticated ones that take into account the 

differences in citation practices across different disciplines as has been discussed in Section 4. This is 

currently an area of much debate with a range of possibilities (Gingras, Y., 2014). The traditional 

crown indicator (now MNCS) is subject to criticisms concerning the use of the mean on highly cited 

data and also on the use of WoS field categories (Ruiz-Castillo & Waltman, 2014). There are source 

normalised alternatives such as SNIP or fractional counting (Aksnes, Schneider, & Gunnarsson, 2012) 

and metrics that include the prestige of the citing journals such as SJR. There are also moves towards 

non-parametric methods based on percentiles. One dilemma is that the more sophisticated the metrics 

become, the less transparent and harder to replicate they are. 
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A third area for consideration is inter- or trans- disciplinary work, and work that is more practical and 

practitioner oriented. How would this be affected by a move towards bibliometrics? There is currently 

little research in this area (Larivière & Gingras, 2010) and we are not aware of any empirical studies 

to test whether interdisciplinary work gains more or less citations. Indeed, bibliometrics is still at the 

stage of establishing reliable and feasible methods for defining and measuring interdisciplinarity 

(Wagner, et al., 2011). Huutoniemi et al. (2010) developed a typology and indicators to be applied to 

research proposals, and potentially research papers as well; Leydesdorff and Rafols (2011) have 

developed citation-based metrics to measure the interdisciplinarity of journals; and Silva et al. (Silva, 

Rodrigues, Oliveira Jr, & da F. Costa, 2013) evaluated the relative interdisciplinarity of science fields 

using entropy measures.  

Fourth, we must recognise, and try to minimise, the fact that the act of measuring inevitably changes 

the behaviour of the people being measured. So, citation-based metrics will lead to practices, 

legitimate and illegitimate, to increase citations; an emphasis on 4* journals leads to a lack of 

innovation and a reinforcement of the status quo. For example, Moed (2008) detected significant 

patterns of response to UK research assessment metrics, with an increase in total publications after 

1992 when numbers of papers were required; a shift to journals with higher citations after 1996 when 

quality was emphasised; and then in increase in the apparent number of research active staff through 

greater collaboration during 1997-2000. Michels and Schmoch (2014) found that German researchers 

changed their behaviour to aim for more US-based high impact journals in order to increase their 

citations. 

Fifth, we must be aware that often problems are caused not by the data or metrics themselves, but by 

their inappropriate use either by academics or by administrators (Bornmann & Leydesdorff, 2014; van 

Raan, A., 2005b). There is often a desire for “quick and dirty” results and so simple measures such as 

the h-index or the JIF are used indiscriminately without due attention being paid to their limitations 

and biases. This also reminds us that there are ethical issues in the use of bibliometrics for research 

evaluation and Furner (2014) has developed a framework for evaluation that includes ethical 

dimensions. 

8. Future Developments 

8.1. Alternative metrics 

Although citations still form the core of scientometrics, the dramatic rise of social media has opened 

up many more channels for recording the impact of academic research (Bornmann, 2014; Konkiel & 

Scherer, 2013; Priem, 2014; Roemer & Borchardt, 2012). These go under the name of “altmetrics” 
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both as a field, and as particular alternative metrics
20

. One of the interesting characteristics of 

altmetrics is that it throws light on the impacts of scholarly work on the general public rather than just 

the academic community. The Public Library of Science (PLoS) (Lin & Fenner, 2013) has produced a 

classification of types of impacts which goes from least significant to most significant: 

 Viewed: institutional repositories, publishers, PLoS, Academia.com, ResearchGate. Perneger 

(2004) found a weak correlation with citations. 

 Downloaded/Saved: as viewed plus CiteUlike, Mendelay.  

 Discussed: Wikipedia, Facebook, Twitter, Natureblogs
21

, ScienceSeeker
22

, general research 

blogs. Eysenbach (2011) suggested a “twimpact factor” based on the number of tweets 

 Recommended: F1000Prime
23

 

 Cited: Wikipedia  CrossRef, WoS, Scopus, Google Scholar,  

Altmetrics is still in its infancy and the majority of papers would have little social networking 

presence. There are also a number of problems: i) altmetrics can be gamed bv “buying” likes or 

tweets; ii) there is little by way of theory about how and why altmetrics are generated (this is also true 

of traditional citations); iii) a high score may not mean that the paper is especially good, just on a 

controversial or fashionable topic; and iv) because social media is relatively new it will under-

represent older papers.  

8.2. The shape of the discipline 

Citations refer to texts other than the one that contains the cited references, and thus induce a dynamic 

vision of the sciences developing as networks of relations (Price, 1965). In the scientometric 

literature, this has led to the call for “a theory of citation” (Cozzens, 1989; Cronin, B., 1998; Garfield, 

E., 1979; Leydesdorff, 1998; Nicolaisen, 2007). Wouters (1998) noted that in science and technology 

studies (STS), citations are studied as references in the context of “citing” practices, whereas the 

citation index inverts the directionality and studies “citedness” as a measure of impact. From the 

perspective of STS, the citation index thus would generate a semiotic artifact (Luukkonen, 1997).  

References can have different functions in texts, such as legitimating research agendas, warranting 

knowledge claims, black-boxing discussions, or be perfunctory. In and among texts, references can 
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also be compared with the co-occurrences and co-absences of words in a network model of science 

(Braam, Moed, & van Raan, 1991a, 1991b) A network theory of science was formulated by Hesse 

(1980, p. 83) as “an account that was first explicit in Duhem and more recently reinforced in Quine. 

Neither in Duhem nor in Quine, however, is it quite clear that the netlike interrelations between more 

observable predicates and their laws are in principle just as subject to modifications from the rest of 

the network as are those that are relatively theoretical.” A network can be visualized, but can also be 

formalized as a matrix. The eigenvectors of the matrix span the latent dimensions of the network. 

There is thus a bifurcation within the discipline of scientometrics. On the one hand, and by far the 

dominant partner, we have the relatively positivistic, quantitative analysis of citations as they have 

happened, after the fact so to speak. And on the other, we have the sociological, and often 

constructivist theorising about the generation of citations – a theory of citing behaviour. Clearly the 

two sides are, and need to be linked. The citing behaviour, as a set of generative mechanisms 

(Bhaskar, 1978), produces the citation events but, at the same time, analyses of the patterns of 

citations as “demi-regularities” (Lawson, 1997) can provide insights into the processes of scientific 

communication which can stimulate or validate theories of behaviour.   

Another interesting approach is to consider the overall process as a social communication system. One 

could use Luhmann’s (1995, 1996) theory of society as being based on autopoietic communication 

(Leydesdorff, 2007; Mingers, J., 2002). Different functional subsystems within society, e.g., science, 

generate their own organizationally closed networks of recursive communications. A communicative 

event consists of a unity of information, utterance and understanding between senders and receivers. 

Within the scientometrics context, the paper, its content and its publication would be the information 

and utterance, and the future references to it in other papers would be the understanding that it 

generates. Such communication systems operate at their own emergent level distinct from the 

individual scientists who underlie them, and generate their own cognitive distinctions that can be 

revealed the visualisation procedures discussed above. 
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