
Kent Academic Repository
Full text document (pdf)

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all

content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions

for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version.

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the

published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact:

researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down

information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Cheval, Vincent and Comon-Lundh, Hubert and Delaune, Stéphanie (2017) A procedure for
deciding symbolic equivalence between sets of constraint systems. Information and Computation,
255 (part 1). pp. 94-125. ISSN 0890-5401.

DOI

https://doi.org/10.1016/j.ic.2017.05.004

Link to record in KAR

http://kar.kent.ac.uk/46882/

Document Version

Author's Accepted Manuscript

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/30707096?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A procedure for deciding symbolic equivalence

between sets of constraint systemsI

Vincent Chevala, Hubert Comon-Lundhb, Stéphanie Delauneb

aLORIA, CNRS, France
bLSV, ENS Cachan & CNRS, France

Abstract

We consider security properties of cryptographic protocols that can be modeled using
the notion of trace equivalence. The notion of equivalence is crucial when specifying
privacy-type properties, like anonymity, vote-privacy, and unlinkability.

Infinite sets of possible traces are symbolically represented using deducibility con-
straints. We describe an algorithm that decides trace equivalence for protocols that
use standard primitives (e.g., signatures, symmetric and asymmetric encryptions) and
that can be represented using such constraints. More precisely, we consider symbolic
equivalence between sets of constraint systems, and we also consider disequations. Con-
sidering sets and disequations is actually crucial to decide trace equivalence for a general
class of processes that may involve else branches and/or private channels (for a bounded
number of sessions). Our algorithm for deciding symbolic equivalence between sets of
constraint systems is implemented and performs well in practice. Unfortunately, it does
not scale up well for deciding trace equivalence between processes. This is however the
first implemented algorithm deciding trace equivalence on such a large class of processes.

Keywords: formal methods, verification, security protocols, privacy-type properties,
symbolic model.

1. Introduction

The present work is motivated by the decision of security properties of cryptographic
protocols. Such protocols are proliferating, because of the expansion of digital commu-
nications and the increasing concern on security issues. Finding attacks/proving the
security of such protocols is challenging and has a strong societal impact.

In our work, we assume perfect cryptographic primitives: we consider a formal, sym-
bolic, model of execution. Such an assumption may prevent from finding some attacks;
the relevance of symbolic models is studied in other research papers (see e.g., [1, 2]), but
it is beyond the scope of the present work.

IThe research leading to these results has received funding from the European Research Council
under the European Union’s Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement
n
◦ 258865, project ProSecure, as well as the ANR project JCJC VIP no 11 JS02 006 01.

Preprint submitted to Elsevier November 10, 2014

In this context, the protocols are described in some process algebra, using function
symbols to represent the cryptographic primitives and symbolic terms to represent mes-
sages. We use the applied pi-calculus [3] in this paper. Many attacks on several protocols
have been found during the last 20 years. For example, a flaw has been discovered (see [4])
in the Single-Sign-On protocol used e.g., by Google Apps. These attacks on formal mod-
els of protocols can of course be reproduced on the concrete versions of the protocols.
Several techniques and tools have been designed for the formal verification of crypto-
graphic protocols. For instance CSP/FdR [5], ProVerif [6], Scyther [7], Avispa [8]
and others.

Most results and tools only consider security properties that can be expressed as
the (un)reachability of some bad state. For instance, the (weak) secrecy of s is the
non-reachability of a state, in which s is known by the attacker. Authentication is also
expressed as the impossibility to reach a state, in which two honest parties hold different
values for a variable on which they are supposed to agree. In our work, we are interested
in more general properties, typically strong secrecy, anonymity, or more generally any
privacy-type property that cannot be expressed as the (non) reachability of a given
state, but rather requires the indistinguishability of two processes. For instance, the
strong secrecy of s is specified as the indistinguishability of P (s) from P (s′), where s′

is a new name. It expresses that the attacker cannot learn any piece of the secret s.
Formally, these properties, as well as many other interesting security properties, can be
expressed using trace equivalence: roughly, two processes P and Q are trace equivalent
if any sequence of attacker’s actions yields indistinguishable outputs of P and Q.

Some related work. The automated verification of equivalence properties for security
protocols was first considered in [9] (within the spi-calculus). ProVerif also checks some
equivalence properties (so-called diff-equivalence) [10], which is a stronger equivalence,
often too strong, as we will see below with a simple example. A few other procedures
have been published:

• In [11, 12] a decision procedure for the trace equivalence of bounded deterministic
processes is proposed. Their procedure relies on an other procedure for deciding
the equivalence of constraint systems such as the one developed by [13] or [14].
In particular, the processes are restricted to be determinate and do not contain
(non trivial) conditional branching. Furthermore, the procedure seems to be not
well-suited for an implementation. Regarding primitives, these works allow any
primitives that are defined using a subterm convergent rewriting system.

• [15] gives a decision procedure for open-bisimulation for bounded processes in the
spi-calculus. This procedure has been implemented. The scope is however limited:
open-bisimulation is a stronger equivalence notion, and the procedure assumes a
fixed set of primitives (in particular no asymmetric encryption) and no conditional
branching.

• [16] designs a procedure based on Horn clauses for the class of optimally reducing
theories, which encompasses subterm convergent theories. The procedure is sound
and complete but its termination is not guaranteed. It applies to determinate
processes without replication nor else branches. Moreover, when processes are not
determinate, the procedure can be used for both under- and over-approximations
of trace equivalence.

2

Our contribution. Our aim was to design a procedure, which is general enough and
efficient enough, so as to automatically verify the security of some simple protocols,
such as the private authentication protocol (see Example 1) or the e-passport protocol
analysed e.g., in [17]. Both protocols are beyond the scope of any above mentioned
results. Recently, an extension of ProVerif has been developed allowing one to analyse
the private authentication protocol [18]. However, ProVerif is still unable for instance
to deal with the e-passport protocol.

Example 1. We consider the protocol given in [19] designed for transmitting a secret,
while not disclosing the identity of the sender. In this protocol, a is willing to engage
a communication with b. However, a does not want to disclose her identity (nor the
identity of b) to the outside world. Consider for instance the following protocol:

A → B : aenc(〈na, pub(ska)〉, pub(skb))
B → A : aenc(〈na, 〈nb, pub(skb)〉〉, pub(ska))

In words, the agent a (playing the role A) generates a new name na and sends it,
together with her identity (here here public key), encrypted with the public key of b. The
agent b (playing the role B) replies by generating a new name nb, sending it, together
with na and his identity pub(skb), encrypted with the public key of a. More formally,
using pattern-matching, and assuming that each agent a holds a private key ska and a
public key pub(ska), which is publicly available, the protocol could be written as follows:

A(a, b) : ν na. out(aenc(〈na, pub(ska)〉, pub(skb)))
B(b, a) : in(aenc(〈x, pub(ska)〉, pub(skb))). ν nb. out(aenc(〈x, 〈nb, pub(skb)〉〉, pub(ska)))

This is fine, as long as only mutual authentication is concerned. Now, if we want
to ensure in addition privacy, an attacker should not get any information on who is
trying to set up the agreement: B(b, a) and B(b, c) must be indistinguishable. This
is not the case in the above protocol. Indeed, an attacker can forge e.g., the message
aenc(〈pub(ska), pub(ska)〉, pub(skb)) and find out whether c = a or not by observing
whether b replies or not.

The solution proposed in [19] consists in modifying the process B in such a way that a
“decoy” message: aenc(nb, pub(skb)) is sent when the received message is not as expected.
This message should look like B’s other message from the point of view of an outsider.
More formally, this can be modelled using the following process:

A(a, b) : ν na. out(aenc(〈na, pub(ska)〉, pub(skb)))
B′(b, a) : in(x). ν nb. if proj2(adec(x, skb)) = pub(ska)

then out(aenc(〈proj1(adec(x, skb)), 〈nb, pub(skb)〉〉, pub(ska)))
else out(aenc(nb, pub(skb)))

This example shows that the conditional branching in the process B′ is necessary.
However, such a conditional branching is beyond the scope of any method that we men-
tioned so far. Another example is the e-passport protocol, that was analysed in [17],
for which, also, conditional branchings are essential for privacy purposes. Another lim-
itation of the existing works is the determinacy condition: for each attacker’s message,
there is at most one possible move of the protocol. This condition forces each message

3

to contain the recipient’s name, which is a natural restriction, but it also prevents from
using private channels (which occur in some natural formalisations).

The results presented in the current paper yield a decision procedure for bounded
processes, with conditional branching and non-determinism. It has been implemented
and the above examples were automatically analysed.

Some difficulties. One of the main difficulties in the automated analysis of cryptographic
protocols is the unbounded possible actions of an attacker: the transition system defined
by a protocol is infinitely branching (and also infinite in depth when the protocols under
study contain replications - which is not the case here). One of the solutions consists in
symbolically representing this infinite set of possible transitions, using symbolic constraint
systems. More precisely, deducibility constraints [20, 21, 22] allow one to split the possible
attacker’s actions in finitely many sets of actions yielding the same output of the protocol.
Each of these sets is represented by a set of deducibility constraints. In this framework,
attackers inputs are represented by variables, that must be deducible from the messages
available at the time the input is generated and satisfying the conditions that trigger a
new message output.

Example 2. Consider the protocol given in Example 1. Assume a has sent her message.
The message aenc(〈na, 〈nb, pub(skb)〉〉, pub(ska)) is output only if the attacker’s input x
can be computed from the messages available and satisfies the test. Formally, x is a
solution of the constraint system:

{

pub(ska), pub(skb), aenc(〈na, pub(ska)〉, pub(skb)))⊢
? x

proj2(adec(x, skb))=
? pub(ska)

The symbol ⊢? is interpreted as the attacker’s computing capability. In our case
(perfect cryptography), the attacker may only apply function symbols to known messages.
This is followed by a normalisation step, in which, for instance, the second projection of a
pair gives back the second component, according to the rule proj2(〈x, y〉) → y. Similarly,
the message aenc(nb, pub(skb)) is output if x is a solution of the constraint system:

{

pub(ska), pub(skb), aenc(〈na, pub(ska)〉, pub(skb)))⊢
? x

proj2(adec(x, skb)) 6=
? pub(ska)

Hence, though the variable x may take infinitely many values, only two relevant sets
of messages have to be considered, that are respectively the solutions of the first and the
second constraint systems.

Now, let us consider the trace equivalence problem. Given two processes P and Q, we
have to decide whether or not, for every attacker’s sequences of actions, the sequences of
outputs of P and Q respectively are indistinguishable. Again, since there are infinitely
many possible attacker’s actions, we split them into sets that are symbolically represented
using constraint systems, in such a way that the operations that are performed by, say, the
process P are the same for any two solutions of the same constraint system CP . Assume
first that there is a constraint system CQ that represents the same set of attacker’s actions
and for which Q performs the same operations. Then P and Q are trace equivalent if and
only if (at each output step) CP and CQ are equivalent constraint systems : CP and CQ
have the same solutions and, for each solution of CP the output messages of P are

4

indistinguishable from the output messages of Q. This indistinguishability property on
sequences of messages is formalised using static equivalence.

Example 3. Let us come back to the private authentication protocol presented in Exam-
ple 1. As explained in [19], the privacy property can be formally expressed as the (trace)
equivalence of the two processes B(b, a) and B(b, c) that formalise the role B, in which,
respectively, b is willing to talk to a and b is willing to talk to c (assuming a, c, b are
honest and their public keys are known from the attacker).

In the simple version of the protocol the traces of B(b, a) are represented, as explained
in Example 2, by the constraint system CP :

CP =

{

pub(ska), pub(skb), pub(skc), aenc(〈na, pub(ska)〉, pub(skb)))⊢
? x

proj2(adec(x, skb))=
? pub(ska)

For any solution of the constraint, the trace consists in one message

ΦP = aenc(〈proj1(adec(x, skb)), 〈nb, pub(skb)〉〉, pub(ska)).

Otherwise, the trace is empty. The traces of B(b, c) are represented in a similar way by
the constraint CQ:

CQ =

{

pub(ska), pub(skb), pub(skc), aenc(〈na, pub(ska)〉, pub(skb)))⊢
? x

proj2(adec(x, skb))=
? pub(skc)

For any solution of the constraint, the trace consists in one message

ΦQ = aenc(〈proj1(adec(x, skb)), 〈nb, pub(skb)〉〉, pub(skc)).

Otherwise, the trace is empty. In this particular case, B(b, a) and B(b, c) are trace
equivalent if and only if:

1. the sets of solutions of the two constraint systems are identical (otherwise, there is
an attacker input, for which one of the traces is empty and the other is not empty)

2. for any solution of either constraint systems, the two output messages are indistin-
guishable (formally, they are statically equivalent).

This is what is formalized (in a general setting) by the equivalence of constraint systems.
In this very example, x = aenc(〈pub(ska), pub(ska)〉, pub(skb)) is a solution of CP and

not of CQ, thus the sets of solutions do not coincide.

In general, the situation is however more complex since, for two attacker’s actions
that are solutions of CP , the process Q may move in different ways. This depends in
general on additional properties of the attacker’s input: the actions of the attacker are
split into the solutions of C1

Q, C
2
Q.... Now, we need to consider not only the equivalence

of constraint systems, but also the equivalence of sets of constraint systems.

Example 4. Consider again the private authentication protocol, but now the improved
version of the process: the privacy is expressed as the trace equivalence of B′(b, a) and
B′(b, c). The traces of B′(b, a) consist in a single message:

5

1. the message aenc(〈proj1(adec(x, skb)), 〈nb, pub(skb)〉〉, pub(ska)) if x is a solution of
the constraint C1(ska) where:

C1(α)
def
=

{

pub(ska), pub(skb), pub(skc), aenc(〈na, pub(ska)〉, pub(skb)))⊢
? x

proj2(adec(x, skb))=
? pub(α)

2. the message aenc(nb, pub(skb))) if x is a solution of the constraint C2(ska) where:

C2(α)
def
=

{

pub(ska), pub(skb), pub(skc), aenc(〈na, pub(ska)〉, pub(skb)))⊢
? x

proj2(adec(x, skb)) 6=
? pub(α)

Now, B′(b, a) and B′(b, c) are trace equivalent if, for every x,

1. C1(ska) ∨ C2(ska) and C1(skc) ∨ C2(skc) have the same solutions (when there is an
output on one side, there is also an output on the other side).

2. For any solution of either sets of constraint systems, the output messages are stat-
ically equivalent.

In this very example, the equivalence boils down to the static equivalence of the two
following (sequences of) messages:

• aenc(〈proj1(adec(x, skb)), 〈nb, pub(skb)〉〉, pub(ska)) (when x is a solution of C1(ska)),

• aenc(nb, pub(skb))).

This example shows already the use of sets of constraints. Let us also emphasize an-
other important feature of our (sets of) constraint systems. In the context of equivalence
problems, the relevant notion of solutions of constraint systems are not the assignments
to the free variables (as it is the case in [20, 21, 22] for instance), but the recipes used to
get such assignments, as illustrated by the following example.

Example 5. Consider the following two processes:

P = out(〈t1, t2〉).in(x).if x = t1 then out(s1) else if x = t2 then out(s2)
Q = out(〈t2, t1〉).in(x).if x = t1 then out(s1) else if x = t2 then out(s2)

where t1, t2 are any distinct messages that are statically equivalent, e.g., two random
numbers freshly generated.

Let C1
P , C

2
P (resp. C1

Q, C
2
Q) be the constraint systems associated with the two branches

of P (resp. Q). The same assignments to x satisfy respectively C1
P ∨C2

P and C1
Q∨C2

Q. And
for any such assignment, the output messages are identical. Yet, the processes are trace
equivalent only if s1, s2 are statically equivalent. Indeed, the attacker may either forward
(as x) the first or the second projection of the first output message. If he forwards the
first projection, he will get s1 in the first experiment and s2 in the second experiment.
This example shows that the relevant notion of solution of a constraint system is not the
assignment of x, but rather the way x is constructed.

6

In summary, each constraint system comes with a frame, recording the output mes-
sages. Two sets of constraint systems are equivalent if (and only if) for recipes θ, which
yield to a solution of one constraint C in the first set, there is a constraint C′ in the
second set such that θ also yields to a solution of C′ and the corresponding instance of
the frame associated with C is statically equivalent to the corresponding instance of the
frame associated with C′.

In a companion paper [12], we show how the trace equivalence of processes without
replication, but that may contain non trivial conditional branching and non determin-
istic choices, can be effectively reduced to the equivalence of sets of constraint systems.
The focus of this paper is on the decision of the equivalence of such sets of constraint
systems. Though, we will illustrate our techniques using examples coming from process
equivalence problems. In addition, as explained in [23, 24], we will consider constraint
systems that do not contain destructors (no projection nor decryption for instance). For
the cryptographic primitives that we consider, this is not a restriction, since, using a
narrowing technique [25], it is always possible to get rid of them, possibly at the price of
introducing new variables.

Overview of our procedure. The general idea of our decision algorithm for the equivalence
of (sets of) constraint systems is borrowed from earlier work on deducibility constraints:
we simplify the constraints until we get a simple form, on which the equivalence problem
should be easy. Since we are interested in equivalence properties, there are two main
differences. First, we need to consider pairs of (sets of) constraint systems. The simpli-
fication rules should be applied on both (sets of) systems at the same time; when this
corresponds to guessing an attacker action, it should be the same rule, which is applied
on both (sets of) systems. The second main difference concerns the equivalence check-
ing: we have to keep track of an extended frame, recording some of the deductions of
the attacker, and check the static equivalence of all instances, when the constraints are
in solved form.

In comparison to previous constraint solving algorithms, there are many additional
difficulties, which we will point along the paper. One of the problems is that, when
applying the rules in a naive way, the two (sets of) constraint systems do not necessarily
reach a solved form at the same time. So, we may need to apply further rules, even when
one of the systems is in solved form, which causes termination issues.

Finally, along the algorithm, we guess for instance whether or not a key is deducible.
This introduces negative deducibility constraints, which might be hard to solve. We turn
around the difficulty, keeping track of previous choices (e.g., whether a key was deducible
or not). This yields matrices of constraint systems: the different columns correspond to
constraint systems that share the same structure, but may yield different outputs of the
protocol, whereas the different rows correspond to different guesses of deducibility along
the constraint simplification. This complication in the syntax allows some simplifications
in the algorithm, since we may take advantage of the bookkeeping of different rows.

Outline. In this paper, we decide to focus on the algorithm itself, and we only give some
hints about the soundness, completeness and termination of our algorithm. The inter-
ested reader will find detailed proofs of these results in Vincent Cheval’s PhD thesis [24].

In Section 2, we introduce most of the definitions together with a few examples. The
algorithm is explained in Section 3. We start with single constraint systems, before ex-

7

tending the rules to pairs of (sets of) constraint systems, and later matrices of constraint
systems. Section 4 is probably the most technical one; it is devoted to the description
of the strategy that is used to ensure soundness, completeness, and termination of our
transformation rules. We describe our strategy and we illustrate the main difficulties
we encountered using several examples. The procedure has been implemented in a tool
called APTE, and we provide with a short summary of the experiments in Section 5.

This paper can be seen as an extended and enriched version of a part of [23]. In [23],
it was shown that trace equivalence is decidable for a large class of processes. The core
of [23] is the design of an algorithm for equivalence of sets of constraint systems. However,
due to space limitations, the algorithm is only briefly presented. In this paper, a detailed
description is given with many examples for illustration purposes. The strategy described
in this paper is not exactly the same as the one presented in [23, 24]. Actually, we manage
to simplify the last steps of the strategy. For the interested reader, termination of our
algorithm under this new strategy has been established in a note available on the webpage
of the tool:

http://projects.lsv.ens-cachan.fr/APTE/.

2. Messages, constraint systems, and symbolic equivalence

In this section, we introduce most of the definitions together with a few examples. In
particular, we define formally the problem we are interested in, i.e., symbolic equivalence
between sets of constraint systems.

2.1. Messages

To model messages, we consider an infinite set of names N = {a, b, . . . , sk, k, n,m, . . .},
which are used to model atomic data. We consider X 1 = {x, y, . . .} an infinite set of first-
order variables, as well as a signature F , i.e., a set of function symbols. More precisely,
we consider F = Fc ⊎ Fd where:

Fc = {senc/2, aenc/2, pub/1, sign/2, vk/1, 〈 〉/2, h/1}
Fd = {sdec/2, adec/2, check/2, proj1/1, proj2/1}.

These function symbols model signature, pairing, hash function, symmetric and asym-
metric encryptions. Symbols in Fc are constructors and those in Fd are destructors.

Terms are defined as names, variables, and function symbols applied to other terms.
For any F ⊆ F , N ⊆ N and V ⊆ X 1, the set of terms built from N and V by applying
function symbols in F is denoted by T (F,N∪V). We denote by vars1(u) the set of (first-
order) variables occurring in a term u. A term u is ground if vars1(u) = ∅. We denote
by st(u) the set of subterms of u. A constructor term, resp. ground constructor term, is
a term belonging to T (Fc,N ∪ X 1), resp. to T (Fc,N). A ground constructor term is
also called a message.

Example 6. Going back to Example 1, m = aenc(〈na, pub(ska)〉, pub(skb)) is a message
and t = aenc(〈proj1(adec(x, skb)), 〈nb, pub(skb)〉〉, pub(ska)) is a non ground term.

8

In order to take into account the properties of our cryptographic primitives, we con-
sider the following term rewriting system.

sdec(senc(x, y), y) → x
adec(aenc(x, pub(y)), y) → x

proj1(〈x, y〉) → x
proj2(〈x, y〉) → y

check(sign(x, y), vk(y)) → x

The rules are standard, for instance, the first column states that the decryption of a
ciphertext with the appropriate decryption key gives back the plaintext. Symmetric and
asymmetric encryptions are respectively considered in each of the two rules. These rules
define a convergent term rewriting system [26], and t↓ denotes the normal form of t.

Example 7. Continuing Example 6, and considering an honest execution (the one where
the attacker does not interfere) of the protocol described in Example 1, the variable x will
be instantiated with the message m = aenc(〈na, pub(ska)〉, pub(skb)), and t{x 7→ m}↓ =
aenc(〈na, 〈nb, pub(skb)〉〉, pub(ska)), which is a message.

We now consider a set X 2 = {X,Y, . . .} of second-order variables and we write vars2(·)
the function that returns the set of second-order variables occurring in its argument. A
recipe is a term built on Fc,Fd, a set of parameters AX = {ax 1, . . . , axn, ...}, that
can be seen as pointers to the hypotheses (or known messages), and variables in X 2.
As in the applied pi-calculus, all the function symbols are public, i.e., available to the
attacker. Moreover, names are excluded from recipes: names that are known to the
attacker must be given explicitly as hypotheses. We denote by Π the set of recipes,
i.e., Π = T (F ,AX ∪ X 2). A ground recipe ζ is a recipe that does not contain variables
(vars2(ζ) = ∅). We denote by param(ζ) the set of parameters that occur in ζ. Intuitively,
a ground recipe records the attacker’s computation. It is used as a witness of how a
deduction has been performed.

Example 8. As seen in Example 3, to mount an attack against the simplified version of
the private authentication protocol, the attacker can build the message:

aenc(〈pub(ska), pub(ska)〉, pub(skb)).

This is indeed possible using the ground recipe aenc(〈ax 1, ax 1〉, ax 2) (assuming that ax 1

and ax 2 are pointers to pub(ska) and pub(skb)).

2.2. Frames

In [3] (and subsequent papers) a frame is used to record the sequence of messages (or
terms in a symbolic execution) that have been sent by the participants of the protocol.
We extend this notion to record some additional information on attacker’s deductions.
Typically (sdec(X, ζ), i ⊲ u) records that, using a decryption with the recipe ζ, on top
of a recipe X, allows one to get u (at stage i). After recording this information in the
frame, we may rely on this bookkeeping, and no longer consider a decryption on top
of X.

Definition 1 (frame). A frame Φ (resp. a closed frame) is a sequence of the form
{ζ1, i1 ⊲ u1, . . . , ζn, in ⊲ un} where:

• u1, . . . , un are constructor terms (resp. ground constructor terms),

• i1, . . . , in are integers, and

9

• ζ1, . . . , ζn are distinct general recipes (resp. ground recipes).

Moreover, we assume that for all (ζ, i ⊲ u) ∈ Φ, if ζ = ax j then i = j. The domain
of the frame Φ is dom(Φ) = AX ∩ {ζ1, . . . , ζn}. It must be equal to {ax 1, . . . , axm} for
some m, and m is called the size of Φ.

The indices i1, . . . , in represent the stages at which a message is known. An attacker
could indeed distinguish two processes, simply because some message can be computed
earlier in one of the process than in the other: the stage at which messages are available
is a relevant information.

A frame Φ of size m defines a substitution on dom(Φ): if dom(Φ) = {ax 1, . . . , axm}
and, for i = 1, . . . ,m, we have that (ax i, i ⊲ vi) ∈ Φ, then we write again Φ the
substitution {ax 1 7→ v1, . . . , axm 7→ vm}. A closed frame Φ is consistent if, for every
(ζ, i ⊲ u) ∈ Φ, we have that (ζΦ)↓ = u. Lastly, an initial frame is a frame of the form
{ax 1, 1 ⊲ u1, . . . , axm,m ⊲ um} where ax 1, . . . , axm ∈ AX .

Example 9. Consider the following initial frame:

Φ = {ax 1, 1 ⊲ aenc(〈na, pub(ska)〉, pub(skb))), ax 2, 2 ⊲ aenc(nb, pub(skb))}

Let Φ′ = Φ ⊎ {ax 3, 3 ⊲ skb, adec(ax 1, ax 3), 3 ⊲ 〈na, pub(ska)〉}. Φ′ is a closed frame.
The intermediate component adec(ax 1, ax 3), 3 ⊲ 〈na, pub(ska)〉 records the deduction
of 〈na, pub(ska)〉 using the recipe adec(ax 1, ax 3) at stage 3.

Actually, we do not need to consider recipes that make unnecessary detours, or yield
always junk messages. We introduce therefore a restricted set of recipes Πr:

Πr = {ξ ∈ Π | ∀f ∈ Fd, ∀ξ1, . . . , ξn ∈ Π, f(ξ1, . . . , ξn) ∈ st(ξ) ⇒ root(ξ1) 6∈ Fc}.

where root(u) is the root symbol of u.

Example 10. The recipe sdec(senc(ax 1, ax 2), ax 2) is not in normal form, and thus not
in Πr, whereas sdec(senc(ax 1, ax 1), ax 2), though in normal form, is not in Πr. Intuitively,
this recipe, when applied to a frame, will either not yield a message or yield the message
pointed by ax 1. In the latter case, there is a simpler recipe consisting in ax 1 alone.

We define below the static equivalence in a way similar to [3]. We make explicit the
success (or the failure) of decrypting or checking a signature.

Definition 2 (static equivalence). Two closed frames Φ and Φ′ are statically equivalent,
written Φ ∼ Φ′, if they have the same size m and

1. for any ground recipe ζ ∈ Πr such that param(ζ) ⊆ {ax 1, . . . , axm},

ζΦ↓ ∈ T (Fc,N) if, and only if, ζΦ′↓ ∈ T (Fc,N)

2. for any ground recipes ζ, ζ ′ ∈ Πr such that param({ζ, ζ ′}) ⊆ {ax 1, . . . , axm}, and
the terms ζΦ↓, ζ ′Φ↓ are in T (Fc,N),

ζΦ↓ = ζ ′Φ↓ if, and only, if ζΦ′↓ = ζ ′Φ′↓.

Example 11. From Example 1, we consider the two closed frames:

10

• Φ1 = Φ0 ⊎ {ax 3, 3 ⊲ m, ax 4, 4 ⊲ aenc(〈na, 〈nb, pub(skb)〉〉, pub(ska))}, and

• Φ2 = Φ0 ⊎ {ax 3, 3 ⊲ m, ax 4, 4 ⊲ aenc(nb, pub(ska))}

with Φ0 = {ax 1, 1 ⊲ pub(ska), ax 2, 2 ⊲ pub(skb)} and m = aenc(〈na, pub(ska)〉, pub(skb)).
They are statically equivalent. Indeed, for any recipe ζ ∈ Πr, there is no redex in either
ζΦ1 or ζΦ2. Moreover, it is not possible to build any ciphertext present in the frame
from its components (since each ciphertext involves at least one fresh nonce which is not
available to the attacker).

Example 12. Assume b, c are names. Consider the two following frames:

Φ1 = {ax 1, 1 ⊲ a, ax 2, 2 ⊲ senc(b, a)} Φ2 = {ax 1, 1 ⊲ a, ax 2, 2 ⊲ senc(c, a)}

They are statically equivalent. Though the recipe ζ = sdec(ax 1, ax 2) yields a non
trivial reduction when applied to Φ1 (resp. Φ2), the results b and c are indistinguishable.
Actually, only trivial equalities can be derived on both sides. Now, if we disclose explic-
itly b (or c, or both), as in the frames

Φ′
1 = Φ1 ⊎ {ax 3, 3 ⊲ b} Φ′

2 = Φ2 ⊎ {ax 3, 3 ⊲ b}

then the frames are not statically equivalent. Choosing the recipes ζ = sdec(ax 1, ax 2)
and ζ ′ = ax 3, we have that ζΦ′

1↓ = ζ ′Φ′
1↓(= b), while ζΦ′

2↓ 6= ζ ′Φ′
2↓. The attacker may

observe an equality on the first frame, which does not hold on the second frame.

The first condition in the definition of static equivalence is also important: the at-
tacker may observe the success of some operation on one of the frames, while it fails on
the other.

Example 13. Consider the two following frames:

Φ1 = {ax 1, 1 ⊲ sign(a, b), ax 2, 2 ⊲ vk(b)}, and Φ2 = {ax 1, 1 ⊲ sign(a, b), ax 2, 2 ⊲ vk(c)}.

The attacker can only observe trivial equalities on both frames. However, if we let ζ =
check(ax 1, ax 2), then ζΦ1↓ ∈ T (Fc,N) and ζΦ2↓ /∈ T (Fc,N). The attacker observes
the success of checking the signature in one case and its failure in the other case.

2.3. Constraint systems

As explained in the introduction, our decision algorithm will rely on deducibility con-
straints, as a mean to represent symbolically sets of traces of a protocol. The following
definitions are consistent with [21]. In particular, the so-called monotonicity and origina-
tion properties are expressed through item 3. Since we are interested here in equivalence
properties, we need not only to represent sets of traces, but also to record some infor-
mation on the attacker’s actions that led to these traces. That is why we also include
equations between recipes and a set NoUse of obsolete elements in the frame; roughly,
a component of the frame is obsolete when the attacker used another recipe to get the
message, at an earlier stage. Finally, we also consider negative constraints, in order to
enable splitting the set of traces into disjoint sets.

Definition 3. A constraint system is either ⊥ or a tuple (S1;S2; Φ;D;E;EΠ;ND ;NoUse)
where:

1. S1 (resp. S2) is a set of variables in X 1 (resp. X 2);
11

2. Φ is a frame, whose size is some m and NoUse is a subset of Φ;

3. D is a sequence X1, i1 ⊢
? u1; . . . ; Xn, in ⊢

? un where

• X1, . . . , Xn are distinct variables in X 2

• u1, . . . , un are constructor terms

• 0 ≤ i1 ≤ . . . ≤ in ≤ m.

• for every (ξ, i ⊲ u) ∈ Φ, vars1(u) ⊆
⋃

ij<i vars
1(uj);

• for every (ξ, i ⊲ u) ∈ Φ, param(ξ) ⊆ {ax 1, . . . , ax i} and vars2(ξ) ⊆ {Xk | ik ≤ i}.

4. E =
∧

k uk =
? vk∧

∧

i ∀x̃i · [
∨

j ui,j 6=
? vi,j] where uk, vk, ui,j and vi,j are constructor

terms.

5. EΠ =
∧

i ζi =
? ζ ′i ∧

∧

j ξj 6=
? ξ′j ∧

∧

k root(βk) 6=
? fk where ζi, ζ

′
i, ξj , ξ

′
j, βk are recipes

in Πr and fk are constructor symbols.

6. ND =
∧

i ∀x̃i.[ui 6=
? vi∨

∨

j ki,j 6 ⊢
? wi,j] where ui, vi, wi,j are constructor terms and

ki,j ∈ N.

We say that a constraint system is initial if NoUse = ∅, ND = ∅, EΠ = ∅, vars2(D) = S2

and Φ is an initial frame.

Intuitively, S1 is the set of free variables in X 1; we may have to introduce auxiliary
variables, that will be (implicitly) existentially quantified, as well as (explicitly) univer-
sally quantified variables. Similarly, S2 is a set of main recipe variables (in X 2) of the
constraint. For readability, we will sometimes omit some of the components of the con-
straint system, because they are either straightforward from the context or empty. We
also write ΦC the frame part of a constraint system C.

Example 14. The constraints, as displayed in Example 2, follow another (simpler)
syntax. However, as already explained, we need not only to reason about the attacker’s
inputs, but also on how he computed these values. Furthermore, as we explained in the
introduction, the terms are assumed to be narrowed, so as to eliminate the destructors;
in the Example 2, the variable x has been narrowed to aenc(〈x, y〉, pub(skb)).

According to the syntax of the above definition, the first constraint system of that
example should be written:

Φ = {ax 1, 1 ⊲ pub(ska), ax 2, 2 ⊲ pub(skb), ax 3, 3 ⊲ aenc(〈na, pub(ska)〉, pub(skb)))}
D = {X, 3⊢? aenc(〈x, y〉, pub(skb))}
E = {y=? pub(ska)}

Implicitly S1 = {x, y}, S2 = {X}, and the set EΠ, NoUse and ND are empty. This is an
initial constraint system.

More examples will be given later. From now, vars1(C) will denote the set of free
first-order variables of C (while it was, according to the Section 2.1 the set of all variables
occurring in C).

Before defining the semantics of such extended constraint systems, we need first to
consider the components ND , E, and EΠ, and also to introduce the notion of path (see

12

Definition 5). The semantics of ND , E and EΠ is obtained from the interpretation of
atomic formulas, using the usual interpretation of logical connectives. Hence we focus
on the semantics of atomic formulas in the next definition.

Definition 4 (solution of side constraints). Let θ be a substitution mapping vars2(C) to
ground recipes, and σ be a substitution mapping vars1(C) to ground constructor terms.

1. σ � (i 6 ⊢? u) if, and only if, ξ(Φσ)↓ 6= uσ↓ for any ground recipe ξ ∈ Πr with
param(ξ) ⊆ {ax 1, . . . , ax i}.

2. σ � u 6=? v if, and only if, uσ 6= vσ.

3. θ � ξ1 =
? ξ2 (resp. θ � ξ1 6=

? ξ2) if, and only if, ξ1θ = ξ2θ (resp. ξ1θ 6= ξ2θ).

4. θ � root(ξ) 6=? f if, and only if, root(ξθ) 6= f.

Note that, in Items 2 and 3, we only check that the equalities and disequalities hold
syntactically. Actually, some additional information about systems obtained along our
procedure allow us to ensure that resulting terms are in normal form (and thus rewriting
is not needed here).

Example 15. Let Φ = {ax 1, 1 ⊲ senc(a, x), ax 2, 2 ⊲ b} and σ = {x 7→ b}. We have
that σ |= (1 6 ⊢? a) whereas σ 6|= (2 6 ⊢? a) since sdec(ax 1, ax 2)(Φσ)↓ = a.

There are possibly several ways to compute the same message, given a frame. All
possible ways of computing a given message are the observable equalities that are used
in the static equivalence. Checking static equivalence will be part of the procedure for
the decision of symbolic trace equivalence. Therefore, we may consider only one way
(a “canonical” recipe) to get a message from a frame. We choose our recipe according
to its path, which is the sequence of destructors applied on its leftmost argument. This
sequence determines the result, regardless of other arguments. Let us precise this point.

Definition 5 (path). Let ξ ∈ Πr be such that root(ξ) 6∈ Fc. The path of ξ, denoted
path(ξ), is a word in F∗

d · (AX + X 2) that is recursively defined as follows:

path(ξ) = ξ when ξ ∈ AX ∪ X 2, and path(f(ξ1, . . . , ξn)) = f · path(ξ1) otherwise.

Example 16. Let ξ = sdec(sdec(ax 2, ax 1), sdec(ax 1, ax 2)). We have that path(ξ) =
sdec·sdec·ax 2. Assuming that the computation will lead to a message, this path determines
the result of the computation.

NoUse is a subset of the frame whose use is forbidden, because we changed the canon-
ical recipe. This happens only in the course of our algorithm when we discover that a
message can actually be computed at an earlier stage. The following defines the restric-
tions on the recipes that we consider.

Definition 6 (ξ conforms to Φ). Let Φ be a closed frame, NoUse be a subset of Φ, and
ξ be a ground recipe in Πr. We say that ξ conforms to the frame Φ w.r.t. NoUse if :

• ∀ζ ∈ st(ξ), ∀(ζ ′, i ⊲ u) ∈ Φ, path(ζ) = path(ζ ′) ⇒ ζ = ζ ′.

• ∀(ζ, i ⊲ u) ∈ NoUse, ζ 6∈ st(ξ)

13

Example 17. Consider the following frame Φ:

{ax 1, 1 ⊲ 〈a, b〉, ax 2, 2 ⊲ senc(a, b), ax 3, 3 ⊲ b, ax 4, 4 ⊲ a, ax 5, 5 ⊲ senc(c, a)}

At some point (stage 2), we may choose a canonical way of computing a, for instance
decrypting the second message with the second component of the first one. Then we
record this choice in the frame Φ+ = Φ ∪ {sdec(ax 2, proj2(ax 1)), 2 ⊲ a} as well as this
commitment to the recipe used to get a: NoUse = {ax 4, 4 ⊲ a}.

The recipe sdec(ax 2, ax 3), which yield a, does not conform to Φ+ w.r.t. NoUse because
of the first condition in the Definition 6. The recipe sdec(ax 5, ax 4) (that yields c) does
not conform to Φ+ w.r.t. NoUse because of the second condition. However, the recipes
sdec(ax 2, proj2(ax 1)), proj1(ax 1), and sdec(ax 5, sdec(ax 2, proj2(ax 1))) are conform to Φ+

w.r.t. NoUse.

Definition 7 (solution). A solution of C = (S1;S2; Φ;D;E;EΠ;ND ;NoUse) consists
of a substitution σ mapping vars1(C) to ground constructor terms and a substitution θ
mapping vars2(C) to ground recipes in Πr, such that:

1. for every X ∈ vars2(C), Xθ conforms to Φθ w.r.t. NoUseθ;

2. for every X, j ⊢? u in D, Xθ(Φσ)↓ = uσ↓ and param(Xθ) ⊆ {ax 1, . . . , ax j};

3. σ � ND ∧ E and θ � EΠ.

We denote by Sol(C) the set of solutions of C. By convention, Sol(⊥) = ∅.

Example 18. Consider the constraint of Example 14. σ = {x 7→ na, y 7→ pub(ska)},
θ = {X 7→ ax 3} is the obvious solution of the constraint. Another solution is the pair
(σ′, θ′) with σ′ = {x 7→ pub(ska), y 7→ pub(ska)} and θ′ = {X 7→ aenc(〈ax 1, ax 1〉, ax 2)}.

Example 19. Consider the frame Φ+ of Example 17, together with

X, 5⊢? senc(x, a); x 6=? a ∧ x 6=? b ∧ ∀y1, y2.(x 6=
?〈y1, y2〉 ∧ x 6=? senc(y1, y2)).

One possible solution is σ = {x 7→ c} with θ = {X 7→ ax 5}.

2.4. Sets of constraint systems

Before moving to the equivalence of constraint systems, we need to consider sets
of constraint systems, as explained in the introduction. We do not have however to
consider arbitrary sets of constraint systems, but only constraint systems that have the
same structure. Roughly, two systems have the same structure if they correspond to
the same attacker’s actions, but do not necessarily correspond to the same frame nor
the same side constraints. As shown in Example 4, we needed to move from constraint
systems to sets of constraint systems, because of non-deterministic choices and non-trivial
conditional branchings: for the same attacker’s recipes, several outcomes are possible. In
such a case, the different constraint systems share the same structure, as defined below.

Definition 8 (structure). Let C = (S1;S2; Φ;D;E;EΠ;ND ;NoUse) be a constraint sys-
tem. The structure of C is given by the following sets:

S2, EΠ, {(X, i) | X, i⊢? u ∈ D}, {(ξ, i) | ξ, i ⊲ u ∈ Φ} and {(ξ, i) | ξ, i ⊲ u ∈ NoUse}.
14

Two constraint systems C and C′ have the same structure if their underlying structures
are identical. By convention, the constraint system ⊥ has the same structure as any other
constraint system.

Definition 9. Sets of constraint systems are sequences of constraint systems sharing the
same structure.

Example 20. Back to Example 4, the initial set of constraint systems is given by the
pair [C1(ska), C2(ska)]:

C1(α) =







Φ1 = Φ0 ⊎ {ax 4, 4 ⊲ m, ax 5, 5 ⊲ aenc(〈x, 〈nb, pub(skb)〉〉, pub(ska))}
D1 = {X, 4⊢? aenc(〈x, y〉, pub(skb))}
E1 = {y=? pub(α)}

C2(α) =







Φ2 = Φ0 ⊎ {ax 4, 4 ⊲ m, ax 5, 5 ⊲ aenc(nb, pub(skb))}
D2 = {X, 4⊢? aenc(〈x, y〉, pub(skb))}

E2 = {y 6=? pub(α)}

where Φ0 = {ax 1, 1 ⊲ pub(ska), ax 2, 2 ⊲ pub(skb), ax 3, 3 ⊲ pub(skc)}, and m =
aenc(〈na, pub(ska)〉, pub(skb)). Both constraint systems are initial constraint systems
and they have the same structure.

2.5. Symbolic equivalence

We come finally to the symbolic equivalence, the property that we want to decide.

Definition 10 (symbolic equivalence ≈s). Let S and S ′ be two sets of constraint systems.
S ⊆s S ′ if, for every C ∈ S, for every (σ, θ) ∈ Sol(C), there exists C′ ∈ S ′ and a
substitution σ′ such that (σ′, θ) ∈ Sol(C′) and ΦCσ ∼ ΦC′σ′.

If S ⊆s S ′ and S ′ ⊆s S, then we say that S and S ′ are in symbolic equivalence,
which we write S ≈s S

′.

Example 21. Using the notations of Example 20, the two sets of constraint systems
[C1(ska), C2(ska)] and [C1(skc), C2(skc)] are symbolically equivalent (this is a non-trivial
equivalence).

The decision of symbolic equivalence between sets of constraint systems (the problem
that is solved in this paper) is exactly the crucial piece for the decision of privacy-type
security properties:

Theorem 1 ([12, 24]). If symbolic equivalence between sets of constraint systems is
decidable, then trace equivalence between processes with non determinism and conditional
branching (but without replication) is decidable.

3. Our algorithm

As explained in the introduction, our algorithm which decides symbolic equivalence
between sets of constraint systems is based on transformations of such systems until a
solved formed is reached. We start by defining and explaining these rules on a single
constraint system and then explain how it is extended to pair of sets (and actually even
matrices) of constraint systems.

15

3.1. The transformation rules

The transformation rules are split in two parts. They are displayed in Figure 1 and
Figure 2 respectively, and we start by explaining the rules on a single constraint system.
For sake of readability, we only write the components of the constraint system that
are modified by an application of an instance of a rule. Moreover, in all the following
examples, we apply eagerly some simplifications (such simplifications are formalised and
explained in Section 3.2).

Cons(X, f) : S2;X, i⊢? t;E;EΠ
�
�

�
�:

X
X

X
Xz

S′
2; X1, i⊢

? x1; · · · ;Xn, i⊢
? xn;

E ∧ t=? f(x1, . . . , xn);
EΠ ∧X =? f(X1, . . . , Xn)

X, i⊢? t ; E; EΠ ∧ root(X) 6=? f

where: • x1, . . . , xn, X1, . . . Xn are fresh variables, and
• S′

2 = S2 ∪ {X1, . . . , Xn} if X ∈ S2 and S′
2 = S2 otherwise.

Axiom(X, path) : Φ; X, i⊢? u; E; EΠ
�
�
�
�:

X
X
X
Xz

Φ; E ∧ u=? v; EΠ ∧X =? ξ

Φ; X, i⊢? u; E; EΠ ∧X 6=? ξ

If Φ contains ξ, j ⊲ v with i ≥ j, path(ξ) = path and (ξ, j ⊲ v) 6∈ NoUse.

Dest(ξ, l → r, i) : Φ;E;ND �
�
�
�:

X
X
X
Xz

Φ, f(ξ,X2, . . . , Xn), i ⊲ w; E ∧ v=? u1

X2, i⊢
? u2; . . . Xn, i⊢

? un;ND

Φ; E;
ND ∧ ∀x̃ · [v 6= u1 ∨ i 6 ⊢? u2 ∨ . . . ∨ i 6 ⊢? un]

If Φ contains ξ, j ⊲ v with j ≤ i and (ξ, j ⊲ v) 6∈ NoUse. We denote by x̃ the set of
variables that occur in f(u1, . . . , un) → w, a fresh renaming of l → r.

Figure 1: Transformation rules for satisfiability

Transformation rules for satisfiability (Figure 1). A simple idea would be to guess
the top function symbol of a recipe and replace the recipe variable with the corresponding
instance. When the head symbol of a recipe is a constructor and the corresponding term
is not a variable, this is nice, since the constraint system becomes simpler. This is the
purpose of the rule Cons. The Cons(X, f) rule simply guesses whether the top symbol of
the recipe variable X is a constructor f. Either it is, and then we can split the constraint,
or it is not and we add a disequation of the form root(X) 6=? f forbiddingX to start with f.

Example 22. Consider the constraint C1(ska) of Example 20:

X, 4⊢? aenc(〈x, pub(ska)〉, pub(skb))

Cons(X, aenc) can be applied to the constraint, guessing whether or not the attacker com-
puted the term t = aenc(〈x, pub(ska)〉, pub(skb)) by applying an asymmetric encryption

16

on two previously computed messages. This yields the two constraint systems:

C11
def
=







X1, 4⊢
? x1; X2, 4⊢

? x2

t=? aenc(x1, x2) ∧ y=? pub(ska)
X =? aenc(X1, X2)

C12
def
=







X, 4⊢? t
y=? pub(ska)

root(X) 6=? aenc

The first constraint system can be simplified, solving equations and performing replace-
ments, which yields:

X1, 4⊢
?〈x, pub(ska)〉; X2, 4⊢

? pub(skb); y=? pub(ska); X =? aenc(X1, X2)

The rule Axiom also guesses whether a trivial recipe (a left member of the frame,
typically an axiom ax i) can be applied. If so, the constraint can simply be removed.
Otherwise, we also add a disequation between recipes forbidding it.

Example 23. Continuing with the two constraints (respectively named C11 and C12),
obtained in the previous example, C11 yields, by application of Axiom(X2, ax 2),

C111
def
=







X1, 4⊢
?〈x, pub(ska)〉

pub(skb)=? pub(skb)
X =? aenc(X1, X2) ∧X2 =

? ax 2

C112
def
=







X1, 4⊢
?〈x, pub(ska)〉

X2, 4⊢
? pub(skb)

X =? aenc(X1, X2) ∧X2 6=
? ax 2

Again, C111 can be simplified as follows:

X1, 4⊢
?〈x, pub(ska)〉; X =? aenc(X1, ax 2) ∧ X2 =

? ax 2

Trying to apply Axiom to other deducibility constraints of C11 or using other mem-
bers of the frame yields a failure of unification (we get X1 6=

? ax 1, X2 6=
? ax 1, ...). When

applied to the constraint C12, the only case where the two branches are non-trivial is the
application of Axiom(X, ax 4):

C121
def
=

{

aenc(〈x, pub(ska)〉, pub(skb))=? aenc(〈na, pub(ska)〉, pub(skb))

X =? ax 4 ∧ root(X) 6=? aenc

C122
def
=

{

X, 4⊢? aenc(〈x, pub(ska)〉, pub(skb))

X 6=? ax 4 ∧ root(X) 6=? aenc

This can be simplified as follows:

C121 =

{

x=? na ∧ y=? pub(ska)
X =? ax 4

C122 =

{

X, 4⊢? aenc(〈x, pub(ska)〉, pub(skb))

X 6=? ax 4 ∧ root(X) 6=? aenc

An overview of our procedure applied on the constraint system C1(ska) is summarized
below:

17

C1(ska)

C11

C111

C1111

C11111

C1112

C112

C12

C121 C122

Cons(X, aenc)

Axiom(X2, ax 2)

Cons(X1, 〈 〉)

Axiom(X4, ax 1)

Axiom(X, ax 4)

The constraint systems C11 and C12 are those described in Example 22 whereas the
constraint systems C111, C112, C121 and C122 are given in Example 23. The system C121
is actually in solved form (no more rule can be applied) and it admits a solution:

σ = {x 7→ na, y 7→ pub(ska)} with θ = {X 7→ ax 4}.

The dashed arrows indicate that even if some rules can still be applied, they would
lead to constraint systems with no solution (i.e., ⊥). The constraint system C112 is not
yet in solved form but C112 can not be satisfied because the only way to deduce pub(skb)
is to use ax 2 which is forbidden by X 6=? ax 2. Regarding the constraint system C122 the
two possible ways to deduce a term of the form aenc(〈x, pub(ska)〉, pub(skb)) is to build
it using aenc (but this is forbidden by the constraint root(X) 6=? aenc) or to use ax 4 (also
forbidden due to X 6=? ax 4).

Regarding the left branch of the tree, we can apply the rule Cons(X1, 〈 〉) on C111 to
obtain the constraint systems C1111 and C1112 (which has actually no solution):

C1111
def
=







X3, 4⊢
? x; X4, 4⊢

? pub(ska);
X =? aenc(〈X3, X4〉, ax 2)
X2 =

? ax 2 ∧X1 =
?〈X3, X4〉

C1112
def
=







X1, 4⊢
?〈x, pub(ska)〉;

X =? aenc(X1, ax 2)

X2 =
? ax 2 ∧ root(X1) 6=

?〈 〉

Lastly, we may apply the rule Axiom(X4, ax 1) on C1111 and obtain on the left branch
the (solved) constraint system C11111:

X3, 4⊢
? x; X =? aenc(〈X3, ax 1〉, ax 2) ∧X2 =

? ax 2 ∧X1 =
?〈X3, ax 1〉 ∧X4 =

? ax 1

This system has several solutions among which σ = {x 7→ pub(ska), y 7→ pub(ska)} ob-
tained by mapping X3 to ax 1. This means that the recipe X = aenc(〈ax 1, ax 1〉, ax 2)
can be used to build a message that will satisfy all the requirements: the message
aenc(〈pub(ska), pub(ska)〉, pub(skb)) is indeed of the expected form, i.e., of the form
aenc(〈x, pub(ska)〉, pub(skb)).

Now, when the top symbol of a recipe is a destructor, we can not apply the same
transformation since the resulting constraint systems will become more complex, intro-
ducing new terms, which yields non-termination. Thus, our strategy is different. We

18

switch from the top position of the recipe to the redex position using the rule Dest.
If v is term of the frame, that can be unified with a non variable subterm of a left-hand
side of a rewrite rule (for instance v is a ciphertext), we guess whether the rule can be
applied to v. This corresponds to the equation v=? u1 occurring in the Dest rule, that
yields an instance of w, the right member of the rewrite rule, provided that the other left
members are also deducible. Typically, in case of symmetric encryption, if a ciphertext
is in the frame, we will give a direct access to the plaintext by adding a new element in
the frame. For this, we have to ensure that the decryption key is deducible. The index i
corresponds to the stage at which we try to deduce the key. Note that a key that is not
deducible at stage i may become deducible later on, i.e., at stage j > i. Thus, we may
need to apply this rule several times on the same frame element (at different stages).

Example 24. Consider the constraint system, that includes the frame

Φ = {ax 1, 1 ⊲ senc(〈a, b〉, c), ax 2, 2 ⊲ c, ax 3, 3 ⊲ senc(c, a)}

and the constraint X, 3⊢? b. Applying Dest(ax 1, sdec(senc(x, y), y) → x, 2), we get:







Φ, sdec(ax 1, X2), 2 ⊲ x
X2, 2⊢

? y; X, 3⊢? b
senc(x, y)=? senc(〈a, b〉, c)







Φ
X, 3⊢? b
∀x, y.(senc(x, y) 6= senc(〈a, b〉, c) ∨ 2 6 ⊢? y)

Basically, we guess here whether the key c can be deduced at stage 2.
The second constraint is unsatisfiable, while the first one can be simplified to:

Φ, sdec(ax 1, X2), 2 ⊲ 〈a, b〉 X2, 2⊢
? c; X, 3⊢? b

Of course, these transformation rules will not be applied without restriction, other-
wise we would roughly enumerate all possible attackers recipes and, though this would
be complete, this would certainly not terminate. For instance, we will avoid to apply
Cons(X, f) to X, i⊢? t when t is a variable, or Dest(ξ, l → r, i) to ξ, j ⊲ v when v is a
variable. These restrictions will be explained at the beginning of Section 4.

Transformation rules for static equivalence (Figure 2). For equivalence proper-
ties, it is necessary to ensure that the observable identities are the same on both systems.
Let us illustrate this point on an example.

Example 25. Consider the frames:

• Φ1 = {ax 1, 1 ⊲ a, ax 2, 2 ⊲ k1, ax 3, 3 ⊲ senc(x, k), ax 4, 4 ⊲ senc(senc(a, k1), k)}

• Φ2 = {ax 1, 1 ⊲ a, ax 2, 2 ⊲ k1, ax 3, 3 ⊲ senc(x, k), ax 4, 4 ⊲ senc(b, k)}.

If x = senc(a, k1), then the two frames are not statically equivalent since ax 3 = ax 4 is an
equality satisfied on the first frame and not on the second. If x 6= senc(a, k1) on the first
frame, and x 6= b on the second one, then the two frames are statically equivalent. If, for
instance, the deducible constraint associated with both frames is X, 2⊢? x, then the rules
of Figure 1 will not help in finding the witness of non-equivalence.

19

Eq-left-left(ξ1, ξ2) : E �
�
�
�:

X
X
X
Xz

E ∧ u1 =
? u2

E ∧ u1 6=
? u2

where ξ1, i1 ⊲ u1, ξ2, i2 ⊲ u2 ∈ Φ for some ξ1, ξ2, i1, i2

Eq-left-right(ξ1, X2) : E,NoUse �
�
�
�:

X
X
X
Xz

E ∧ u1 =
? u2,NoUse ∪ (ξ1, i1 ⊲ u1)

E ∧ u1 6=
? u2,NoUse

where ξ1, i1 ⊲ u1 ∈ Φ and X2, i2 ⊢
? u2 ∈ D, with i2 < i1 and X2 ∈ S2 for some

ξ1, ξ2, u1, u2

Eq-right-right(X, ξ) : X, i⊢? u; E; EΠ
�
�
�
�:

X
X

X
Xz

E ∧ u=? v; EΠ ∧X =? ξ

X, i⊢? u; E ∧ u 6=? v; EΠ

where ξ ∈ T (Fc, dom(α)), v = ξα with α = {Y 7→ w | (Y, j ⊢? w) ∈ D ∧ j ≤ i ∧ Y ∈ S2}.
Moreover, we assume that:

• if root(ξ) = f then EΠ 6� root(X) 6=? f

• if ξ = Y then for all f ∈ Fc, EΠ � root(X) 6=? f is equivalent to EΠ � root(Y) 6=? f.

Ded-st(ξ, f) : Φ;E;ND �
�
�
�:

X
X
X
Xz

Φ; X1,m⊢? x1; · · · ; Xn,m⊢? xn

E ∧ u=? f(x1, . . . , xn); ND

Φ; E; ND

∀x̃ · [u 6=? f(x1, . . . , xn) ∨m 6 ⊢? x1 ∨ . . . ∨m 6 ⊢? xn]

If Φ contains ξ, i ⊲ u and (ξ, i ⊲ u) 6∈ NoUse. The sequences x̃ = x1, . . . , xn, and
X1, . . . , Xn are sequences of fresh variables and m represents the maximal index that
occurs in C.

Figure 2: Additional transformation rules for static equivalence

Another set of rules, the equality rules described in Figure 2, will be used in such
a situation. The purpose of these equality rules is to guess equalities between right-
hand sides of deducibility constraints and/or members of the frame. These rules do not
correspond to attacker’s actions and they are not necessary if we are only interested in
reachability properties.

Example 26. Let us come back to Example 25. Applying Eq-left-left(ax 3, ax 4) to
the first constraint system, we get:

{

Φ1, X, 2⊢? x
senc(x, k)=? senc(senc(a, k1), k)

{

Φ1, X, 2⊢? x

senc(x, k) 6=? senc(senc(a, k1), k)

20

The case x = senc(a, k1) is now distinguished from the case x 6= senc(a, k1).

Note that, in the example above, we can also choose to put the frame element ax 4 ⊲

senc(senc(a, k1), k) of the first constraint system in the set NoUse (thus forbidding the
use of this element). However, as illustrated by the following example (Example 27), this
is not always possible, and thus this feature is not present in the rule Eq-left-left
contrary to what is done in the rule Eq-left-right.

Example 27. Let Φ = {ax 1, 1 ⊲ 〈k, senc(k, k)〉}. After applying some transformation
rules, assume that we reach the frame:

Φ+ = {ax 1, 1 ⊲ 〈k, senc(k, k)〉, proj1(ax 1), 1 ⊲ k, proj2(ax 1), 1 ⊲ senc(k, k),

sdec(proj2(ax 1), proj1(ax 1)), 1 ⊲ k}.

Applying Eq-left-left(ξ1, ξ2) with ξ1 = proj1(ax 1) and ξ2 = sdec(proj2(ax 1), proj1(ax 1)),
we will be tempted to put proj1(ax 1) ⊲ k in NoUse. If so, in order to deduce k, we now
need to use the recipe ξ2 = sdec(proj2(ax 1), proj1(ax 1)) which is not conform to Φ+ since
proj1(ax 1) ∈ st(ξ2) (see Definition 6). When we put a frame element in the set NoUse,
we have to be sure that it has not been already used to build another frame element.

Example 28. Consider the two constraint systems:

Φ1 = {ax 1, 1 ⊲ a, ax 2, 2 ⊲ b, ax 3, 3 ⊲ x1}, D1 = {X, 1⊢? x1, Y, 2⊢
? x1, Z, 3⊢

? y1}
Φ2 = {ax 1, 1 ⊲ a, ax 2, 2 ⊲ b, ax 3, 3 ⊲ x2}, D2 = {X, 1⊢? x2, Y, 2⊢

? y2, Z, 3⊢
? y2}

There are redundant constraints in each individual system. However, we need x1 = y1
and x2 = y2 in order to get equivalent systems, since the recipes X,Y must yield the
same value, according to the first system (hence x2 = y2) and the recipes Y, Z yield the
same value, according to the second system (hence x1 = y1). The rule Eq-right-right
takes care of such situations: we guess whether different recipe variables yield the same
value and record the result of the guess in the constraint.

Actually, we sometimes need to apply Eq-right-right with a recipe ξ which is not
reduced to a variable. In particular, this is the case when we have to handle disequations
between terms. Consider the two constraint systems:

D3
def
= {Z, 1⊢? z, Y, 2⊢? y, X, 3⊢? x}, with E3

def
= x 6=?〈y, z〉

D4
def
= {Z, 1⊢? z, Y, 2⊢? y, X, 3⊢? x}

The deducibility constraints are identical in both systems but the disequations in E3

should be satisfied by both constraint systems in order to be equivalent. By applying the
rule Eq-right-right with X and ξ = 〈Y, Z〉, we split the solutions of both constraint
systems into two disjoint sets: those that satisfy the equation x=?〈y, z〉, and those that
do not satisfy this equation.

Finally, the last transformation rule of Figure 2 guesses the deducible subterms of the
frame. This is a necessary step to capture static equivalence in presence of non-invertible
primitives such as hash function and asymmetric encryption.

Example 29. Consider the two constraint systems:

• Φ1 = {ax 1, 1 ⊲ pub(ska), ax 2, 2 ⊲ aenc(x, pub(ska))} and D1 = {X, 1⊢? x};

21

• Φ2 = {ax 1, 1 ⊲ pub(ska), ax 2, 2 ⊲ aenc(b, pub(ska))} and D2 = {X, 1⊢? x}.

Intuitively, the transformation rules we have seen so far do not help in simplifying
any of the two constraint systems. The only relevant possibility would be to try decrypt-
ing aenc(x, pub(ska)), but the private key ska is not deducible. Nevertheless, the two
constraint systems are not equivalent since the attacker can construct aenc(x, pub(ska))
(using the recipe aenc(X, ax 1)) and therefore observe the identity aenc(X, ax 1) = ax 2

on Φ1, which is not possible on Φ2. This is the reason of the rule Ded-st, that guesses
the subterms of the frame that can be constructed by the attacker. In the above example,
the first constraint system would become:

Φ1, {X, 1⊢? x; X1, 2⊢
? x; X2, 2⊢

? pub(ska)}

(the other branch is unsatisfiable), while on the second constraint system, we get:

Φ2, {X, 1⊢? x; X1, 2⊢
? b; X2, 2⊢

? pub(ska)}

Eventually, this last constraint will be proven unsatisfiable, witnessing the non-equivalence
of the constraint systems.

Now, before explaining how to apply the rules on pairs of sets of constraint systems,
we formalise what we used implicitly in all our examples, i.e., normalisation of constraint
systems after the application of a transformation rule.

3.2. Normalisation

The normalisation consists mainly in simplifying the equations and disequations and
performing the replacements when relevant. The normalisation rules are displayed in
Figure 3. As usual, substitutions are confused with solved conjunctions of equations. We
also switch sometimes the order of the components of a constraint system in order to
ease the display, and omit irrelevant parts of the constraint system.

The first four rules simplify equations between terms/recipes. The last four rules
simplify the disequations on recipes, removing them when they are trivially satisfied, or
replacing the whole system with ⊥ when they are trivially inconsistent. The remaining
rules simplify disequations between (first-order) terms taking care of variables that are
universally quantified. The soundness of the rules follows from complete axiomatisations
of the free term algebra (see e.g., [27]). If the simplification rules are applied only when
they modify a constraint, then the set of rules is strongly terminating.

We further apply two normalisation rules, that are displayed in Figure 4. Before ex-
plaining these rules, we say that the application of the rule Cons(X, f), Axiom(X, path),
or Dest(ξ, l → r, i) is useless on a constraint system C if such a rule is not applicable or
if a similar instance has already been applied along the same branch. In case of the rule
Cons and Axiom, by similar, we mean that exactly the same instance has already been
applied. In case of the rule Dest, additional instances are actually useless. Indeed, there
is no need to apply e.g., Dest(ξ, l → r, 3) on the branch where a “successful” application
of Dest(ξ, l → r, 2) has been considered. We illustrate this concept through an example.

Example 30. Continuing with the constraint systems named CDest
1 and CDest

2 , obtained
in Example 24, we have that:

• Dest(ax 1, l → r, 2) and Dest(ax 1, l → r, 3) are useless on CDest
1 since an element

of the form sdec(ax 1,), 2 ⊲ is already present in the frame;
22

Φ;D;EΠ;ND ;NoUse;E ∧
∧n

i=1
ui =

? vi Φσ;Dσ;EΠ;NDσ;NoUseσ;Eσ ∧ σ
if σ = mgu(

∧n

i=1
ui =

? vi)

Φ;D;EΠ;ND ;NoUse;E ∧
∧n

i=1
ui =

? vi ⊥ if mgu(
∧n

i=1
ui =

? vi) = ⊥

Φ;D;E;ND ;NoUse;EΠ ∧
∧n

i=1
ζi =

? ξi Φθ;D;E;ND ;NoUseθ;EΠθ ∧ θ
if θ = mgu(

∧n

i=1
ζi =

? ξi)

Φ;D;E;ND ;NoUse;EΠ ∧
∧n

i=1
ζi =

? ξi ⊥ if mgu(
∧n

i=1
ζi =

? ξi) = ⊥

E ∧ ∀x̃.[
∨n

i=1
ui 6=

? vi] E if mgu(
∧n

i=1
ui =

? vi) = ⊥

E ∧ ∀x̃.[E′ ∨ u 6=? u] E ∧ ∀x̃.E′

E ∧ ∀x̃.[E′ ∨ x 6=? u] E ∧ ∀x̃r {x}.E′σif x ∈ x̃r vars1(u) and σ = {x → u}

E ∧ ∀x̃.∀x.E′ E ∧ ∀x̃.E if x 6∈ vars1(E)

E ∧ ∀x̃.[E′ ∨ f(u1, . . . , un) 6=
? f(v1, . . . vn)] E ∧ ∀x̃.[E′ ∨

∨n

i=1
ui 6=

? vi]

E ∧ u 6=? v ∧ ∀x̃.[E′ ∨ u 6=? v] E ∧ u 6=? v

EΠ ∧ ζ 6=? ξ EΠ if mgu(ζ, ξ) = ⊥

EΠ ∧ ζ 6=? ζ ⊥

EΠ ∧ root(f(ξ1, . . . , ξn)) 6= f ⊥

EΠ ∧ root(f(ξ1, . . . , ξn)) 6= g EΠ if f 6= g

Figure 3: Normalisation rules for side constraints

E ∧ ∀x̃.[E′ ∨ x 6=? a] E
if a ∈ N , (X, i⊢? x) ∈ D, Axiom(X, path) is useless for any path and
Dest(ξ, l → r, i) is useless for any ξ, l → r, and
for all (ζ, j ⊲ v) ∈ Φ, j ≤ i and v ∈ X 1 implies (ζ, j ⊲ v) ∈ NoUse

D ∧X, i⊢? u ⊥
if Cons(X, f) is useless for all f ∈ Fc; and Axiom(X, path) is useless for any path; and
Dest(ξ, l → r, i) is useless for all ξ, l → r; and
for all (ζ, j ⊲ v) ∈ Φ, j ≤ i and v ∈ X 1 implies (ζ, j ⊲ v) ∈ NoUse

Figure 4: Two additional normalisation rules

• Dest(ax 1, l → r, 2) is useless on CDest
2 since the associated non-deducibility con-

straint already occurs in the constraint system;

23

• Dest(ax 3, l → r, 1) and Dest(ax 3, l → r, 2) are useless on both CDest
1 and CDest

2

since they do not contain any frame element of the form ax 3, j ⊲ with j ≤ 2;

where (l, r) = (sdec(senc(x, y), y), x).

Now, we can explain rules displayed in Figure 4. Intuitively, the first rule states
that x cannot be a name, if it has to be deducible and cannot be obtained from the
frame. Indeed, we have assumed that all public names are explicitly disclosed in the
frame. The second rule states that, in order to deduce a message, the attacker has either
to construct it from deducible messages, or retrieve it from the frame and deducible
messages. In other words, any attacker’s ground recipe is built using Fc, Fd and the ax i.

Definition 11 (normalisation). If C is a constraint system, we let C↓ be an irreducible
form of C, w.r.t. the rules of Figures 3 and 4.

In what follows we assume that every constraint system is eagerly normalised.

3.3. From constraint systems to pairs of sets of constraint systems

Given two constraint systems, we cannot only simplify them independently and then
check for their equivalence, because actions and tests must be performed by the attacker
in the same way in both experiments.

Example 31. Consider the two following frames:

Φ1 = {ax 1, 1 ⊲ a, ax 2, 2 ⊲ a, ax 3, 3 ⊲ b}, and Φ2 = {ax 1, 1 ⊲ a, ax 2, 2 ⊲ b, ax 3, 3 ⊲ a}.

For sake of simplicity, assume there are no deducibility constraints. These two frames
are not statically equivalent. Indeed, choosing ζ1 = ax 1 and ζ2 = ax 2, we have that
ζ1Φ1↓ = ζ2Φ1↓, while ζ1Φ2↓ 6= ζ2Φ2↓.

On the other hand, we may only apply the Eq-left-left rule, whose (in each
case) one of the branches yields ⊥ and on the other branch the constraint system is
unchanged. Hence the rules do not help witnessing the non-equivalence, unless we ap-
ply the same instance of Eq-left-left simultaneously on both frames. For instance
Eq-left-left(ax 1, ax 2) applied to Φ1 and Φ2 simultaneously yields Φ1 and ⊥ on one
branch, and ⊥ and Φ2 on the other.

Intuitively, each transformation rule of Figure 1 corresponds to an action of the
attacker and each rule of Figure 2 corresponds to a test of the attacker. Two constraints
systems are therefore symbolically equivalent if, and only if, applying the same rule on
both systems yields (on each branch) symbolically equivalent constraint systems.

In the introduction we motivate the need of considering sets of constraint systems,
and more precisely pairs of sets of constraint systems. We explain now how our transfor-
mation rules will be applied in such a setting. Remember that sets of constraint systems
are sequences of constraint systems sharing the same structure (see Definition 9). The
basic idea is to apply the same transformation rule (with the same parameters) on each
constraint system of each set. Note that, the parameters of a transformation rule only
depend on the structure of the underlying constraint system. Thanks to this, the simul-
taneous application of a transformation rule can be defined in a natural way.

24

Given S = [C1, . . . , Cn] and S ′ = [C′
1, . . . , C

′

n′] two sets of size n (resp. n′) of constraint
systems having the same structure, and Rule(p̃) an instance of a transformation rule.
The application of Rule(p̃) on the pair (S,S ′) yields two pairs of sets of constraint
systems (S1,S

′
1) and (S2,S

′
2) such that:

(S,S ′)

([C1,1, ..., C1,n], [C
′
1,1, ..., C

′

1,n′])
def
= (S1,S

′
1) (S2,S

′
2)

def
= ([C2,1, ..., C2,n], [C

′
2,1, ..., C

′

2,n′])

where:

• for all i ∈ {1 . . . n}, the constraint systems C1,i and C2,i are those obtained by
application of Rule(p̃) on Ci; and

• for all i ∈ {1 . . . n′}, the constraint systems C′
1,i and C′

2,i are those obtained by
application of Rule(p̃) on C′

i.

3.4. Matrices of constraint systems

The non-deducibility constraints introduced by the rules Dest and Ded-st allow
us to properly divide the solutions of a constraint system. However, no transformation
rule solves these non-deducibility constraints. When a non-deducibility constraint is
introduced, the idea is to take advantage of information that are collected while solving
the constraint in the other branch. This requires however gathering together in the same
structure the constraint systems that result from the application of a rule introducing
non-deducibility constraints.

Example 32. Let C be a constraint system with the deducibility constraint X, 2⊢? senc(a, a),
and the frame Φ = {ax 1, 1 ⊲ a, ax 2, 2 ⊲ senc(b, a)}. Dest(ax 2, sdec(senc(x, y), y) → x, 2)
applied on C gives us:

C1 =

{

Φ, sdec(ax 2, Y), 2 ⊲ b
X, 2⊢? senc(a, a); Y, 2⊢? a

C2 =

{

Φ; X, 2⊢? senc(a, a)

∀x1, x2.[senc(x1, x2) 6=
? senc(b, a) ∨ 2 6 ⊢? x2]

To solve the non-deducibility constraint in C2, we will use the information we get from
the transformation rules applied on C1. Applying Axiom(Y, ax 1) on C1, we get:

C3 =







Φ, sdec(ax 2, ax 1), 2 ⊲ b
X, 2⊢? senc(a, a)
Y =? ax 1

C4 =







Φ, sdec(ax 2, Y), 2 ⊲ b
X, 2⊢? senc(a, a); Y, 2⊢? a

Y 6=? ax 1

Using successive applications of Cons(Y, f) and Axiom(Y, path) for any f and path, C4
is eventually reduced to ⊥. Now, the formula ∀x1, x2.[senc(x1, x2) 6=

? senc(b, a)∨2 6 ⊢? x2]
has no free variable and its negation is a consequence of C1 (since the rule splits the set
of solutions). The satisfiability of C3 therefore implies the unsatisfiability of C2.

If we wish to perform such an inference, we need to keep in the same structure the
constraints C2 and C3 (instead of solving them independently)

25

As illustrated in Example 32 above, solving the non-deducibility constraints will rely
on the information obtained from the application of the rules on other constraint sys-
tems. That is why we gather together sets of constraint systems, and organise them into
matrices, each line being a set of constraint systems.

Example 33. Applying Dest(ax 2, sdec(senc(x, y), y) → x, 2) on (the set) [C] given in
Example 32, a priori yields two sets [C1] and [C2] where C1, C2 are the constraint systems
of Example 32. We group however the resulting systems in the following matrix:

[

C1
C2

]

Applying Axiom(Y, ax 1), we get now the following matrix of constraint systems:





C3
C4
C2





In order to check the non-deducibility constraint in C2, we only need the information
provided by the constraint systems in the same column as C2. We will see later on how
to exploit this information (see Section 4 - Phase 1 / Step e).

Note that in Example 33, the constraint systems C1, C2, C3, and C4 have the same
set S1 (resp. S2) of first-order (resp. second-order) variables. Moreover, they have the
same shape according to the following definition.

Definition 12 (shape). Let C = (S1;S2; Φ;D;E;EΠ;ND ;NoUse) be a constraint system.
The shape of C is given by S2, and {(X, i) | X, i⊢? u ∈ D and X ∈ S2}.

Intuitively, the shape of a constraint system only takes into account the free second-
order variables, i.e., those that represent the actions of the attacker. By convention, we
assume that the constraint system ⊥ has the same shape as any other constraint system.

We extend the notion of same structure to matrices of constraint systems as follows:
M (n lines, m columns) and M′ (n′ lines m′ columns) have the same structure if:

• all the constraint systems stored in M and M′ have the same shape;

• n = n′, i.e., M and M′ have the same number of lines; and

• for all i ∈ {1 . . . n}, the constraint systems stored in the ith line of the matrices M
and M′ have the same structure.

In fact, introducing matrices of constraint systems serves a greater purpose than just
solving the non-deducibility constraints. Indeed, deciding the symbolic equivalence of
sets of constraint systems contains two main issues:

• matching an existing solution from one set to the other;

• and deciding whether the two resulting frames are statically equivalence or not.

26

The idea behind matrices with several lines is to keep all the guesses on static equivalence
into a single matrix. Intuitively, when we guess the form of the solutions, we split the
matrix into two matrices. However, when we guess an equality between terms or a
property on static equivalence, we gather the information in the same matrix. We thus
consider two kinds of application: internal and external.

The transformation rules Ded-st, Eq-left-left, Eq-left-right and Dest will
be applied internally whereas Cons(X, f), Axiom(X, path) and Eq-right-right(X, ξ)
will be applied externally when X ∈ S2 and internally otherwise (i.e., X 6∈ S2).

Internal/external application of a transformation rule. Let (M,M′) be a pair
of matrices of constraint systems having the same structure. In particular, M and M′

have the same number of lines, say n. Let M = [S1, . . . ,Sn] and M′ = [S ′
1, . . . ,S

′
n]. Let

Rule(p̃) be an instance of a transformation rule and i be an index representing a line,
i.e., 1 ≤ i ≤ n.

An internal application of Rule(p̃) on the ith line of the pair (M,M′) yields a pair
of matrices (M̃,M̃′) such that:

M̃ = [S1, . . . ,Si−1, T1,i, T2,i,Si+1,Sn] M̃′ = [S ′

1, . . . ,S
′

i−1, T
′

1,i, T
′

2,i,S
′

i+1,S
′

n]

where (T1,i, T
′
1,i) and (T2,i, T

′
2,i) are the pair of row matrices obtained by applyingRule(p̃)

on (Si,S
′
i). Note that, since the two matrices M and M′ have the same structure, the

two sets Si and S ′
i have the same structure too and we have already seen how to apply

a transformation rule in such a situation. We actually obtain two matrices with n + 1
lines. We say that an instance Rule(p̃) of a rule is internally applicable on (M,M′) on
line i if Rule(p̃) is applicable on (Si,S

′
i).

An external application ofRule(p̃) on (M,M′) yields two pairs of matrices (M̃1,M̃
′
1)

and (M̃2,M̃
′
2) such that:

M̃1 = [T1,1, . . . , T1,n] M̃′
1 = [T ′

1,1, . . . , T
′
1,n]

M̃2 = [T2,1, . . . , T2,n] M̃′
2 = [T ′

2,1, . . . , T
′
2,n]

where (T1,i, T
′
1,i) and (T2,i, T

′
2,i) are the pairs of sets obtained by applying Rule(p̃) on

(Si,S
′
i) for each i ∈ {1, . . . , n}. Each resulting pair of matrices has exactly the same

numbers of lines and columns as the original one (M,M′).

Remark. Unfortunately, all the constraint systems in M and M′ do not have necessarily
the same structure, but only the same shape. When the external application involved is
an instance of a ruleCons, it is easy to see that having the same shape will ensure that the
rule can be applied on each set, i.e., on each row of the matrix. Regarding an external
application of the rule Axiom(X, path), we have to be careful. Since the constraint
systems have the same shape and we know that X ∈ S2, we can ensure that X occurs
in each constraint system. However, it could happen that some rows do not contain
the required frame element. By convention, in such a pair (Si,S

′
i) of row matrices, the

resulting pairs of row matrices are (T1,i, T
′
1,i)

def
= (⊥,⊥) and (T2,i, T

′
2,i)

def
= (Si,S

′
i).

Example 34. All the rules applied in Example 33 are internal rules.
27

Since our algorithm manipulates matrices of constraint systems, we extend the notion
of symbolic equivalence accordingly. Given a matrix M having n lines and m columns,
we denote by Mi,j the constraint system stored in the ith line and jth column, and we
denote by Φi,j its associated frame.

Definition 13 (symbolic equivalence ≈s). Let M and M′ be two matrices of constraint
systems having the same structure and of size (n×m) and (n×m′) respectively. We have
that M ⊆s M′ if for all 1 ≤ i ≤ n, for all 1 ≤ j ≤ m, for all (σ, θ) ∈ Sol(Mi,j), there
exists 1 ≤ k ≤ m′ and a substitution σ′ such that (σ′, θ) ∈ Sol(M′

i,k) and Φi,jσ ∼ Φ′

i,kσ
′.

If M ⊆s M
′ and M′ ⊆s M, then we say that M and M′ are in symbolic equivalence,

denoted by M ≈s M
′.

In the following section, we will describe a quite complex strategy S that always
terminates on sets of initial constraint systems. Before describing it, we state some
soundness and completeness results, and we explain the test that is performed on the
leaves to decide symbolic equivalence.

Our transformation rules yield a finite tree labeled with pairs of matrices of constraint
systems. Actually, if we follow the strategy S , we can show that our notion of equivalence
is preserved through application of our transformation rules: for any transformation rule,
we have that symbolic equivalence holds for the father if, and only if, symbolic equivalence
holds for the sons. Formally, we distinguish the case of an application of an internal rule
from the one of an external rule.

Theorem 2 (soundness and completeness for internal rules). Let M1, M
′
1 be two ma-

trices of constraint systems obtained from a pair of sets of initial constraint systems
by following the strategy S . Let Rule(p̃) be an internal transformation rule applicable
on (M1,M

′
1) on the ith. Let (M2,M

′
2) be the resulting pair of matrices of constraint

systems obtained by the application of Rule(p̃). We have that:

M2 ≈s M
′

2 is equivalent to M1 ≈s M
′

1

Theorem 3 (soundness and completeness for external rules). Let M, M′ be two matrices
of constraint systems obtained from a pair of sets of initial constraint systems by following
the strategy S . Let Rule(p̃) be an external transformation rule applicable on (M,M′).
Let (M1,M

′
1) and (M2,M

′
2) be the two resulting pairs of matrices of constraint systems

obtained by the application of Rule(p̃). We have that:

M1 ≈s M
′

1 and M2 ≈s M
′

2 is equivalent to M ≈s M
′

The proof of the soundness and completeness theorems stated above are done by a
case analysis on the transformation rules. Basically, we assume the existence of a solution
for a given constraint system (satisfying some properties due to our strategy S), and we
show how to transform this solution to obtain a solution for a slightly different constraint
system (typically we consider a solution of a given constraint system and we have to show
that, after application of a transformation rule, this solution still exists in one of its sons).
In most cases, the transformation consists of replacing a recipe by another one that allows
one to deduce the same message. The main issue of this replacement is to guarantee that
the new recipe also satisfy all the needed properties (e.g., the recipe has to be in Πr,
conformity of the recipe w.r.t. the frame, ...).

28

Example 35. Consider the following constraint system C.

C =

{

ax 1, 1 ⊲ a, ax 2, 2 ⊲ senc(a, a), ax 3, 3 ⊲ a
X, 1⊢? senc(a, a); Y, 3⊢? a

A solution of such a constraint system is θ = {X 7→ senc(ax 1, ax 1);Y 7→ sdec(ax 2, ax 3)}.
Note that the recipes are in Πr and conform to the frame.

Applying the rule Eq-left-right(ax 2, X), the frame element ax 2, 2 ⊲ senc(a, a) is
added to the set NoUse, and thus now we have to replace ax 2 by Xθ (note that both
deduce the same term senc(a, a)).

In such a situation, Y θ will become sdec(senc(ax 1, ax 1), ax 3) which is not a recipe
in Πr anymore. To cope with this problem, we have to replace ax 2 by senc(ax 1, ax 1), but
also Y θ by ax 1. Thus, we get θ′ = {X 7→ senc(ax 1, ax 1); Y 7→ ax 1}.

3.5. Test on leaves

By applying the rules on a pair of sets of initial constraint systems, we obtain a tree
whose nodes (including the leaves) are labeled by a pair of matrices. The idea behind
our transformation rules (given in Figure 1 and Figure 2) is to transform constraint
systems into simpler ones, so that deciding symbolic equivalence will become trivial.
Typically, as it is done in [28], we want to consider systems in which right-hand sides
of deducibility constraints are distinct variables. However, in presence of disequations,
putting the systems in such a form does not guarantee anymore that the two resulting
systems will be in symbolic equivalence. Let us illustrate this using a simple example.

Example 36. Consider the pair (C, C′) of sets of initial constraint systems given below
(each set is reduced to a singleton):

C =
{

Φ = {ax 1, 1 ⊲ a}; X, 1⊢? x C′ =

{

Φ = {ax 1, 1 ⊲ a}; X, 1⊢? x

x 6=?〈a, a〉

Although these two systems have the expected form, they are not in symbolic equiv-
alence. To see this, consider for instance the substitution θ = {X 7→ 〈ax 1, ax 1〉}. We
have that θ ∈ Sol(C) but θ 6∈ Sol(C′) due to the presence of the disequation.

Thus, once the system is put in this kind of “pre-solved form”, the basic idea will
be to continue to apply our transformation rules to “match” disequations of each con-
straint system. For this, we need to transform the disequations in which some names or
universally quantified variables occur until obtaining disequations that only contain free
variables and public function symbols. This will guarantee that there exists a recipe as-
sociated to this term and this gives us the way to match it in another constraint system.
Once the system is transformed into such a new kind of “solved form” (i.e., distinct vari-
ables on the right-hand side of deducibility constraints as well as matched disequations),
we can now easily conclude. Indeed, since we also take care of static equivalence on
the resulting frames, disequations that correspond to public disequality tests are easily
transferable from one constraint system to another without any additional checks.

Example 37. Continuing Example 36 and assuming that the pairing operator is the only
constructor symbol, we will go on, applying Cons(X, 〈 〉). The resulting pair on the left

29

branch will be the pair (C1, C
′
1) where:

C1 =

{

Φ; X = 〈X1, X2〉
X1, 1⊢

? x1; X2, 1⊢
? x2

C′
1 =







Φ; X = 〈X1, X2〉
X1, 1⊢

? x1; X2, 1⊢
? x2

x1 6=
? a ∨ x2 6=

? a
Now, by applying the Axiom rule twice, the resulting pair on the left branch will be

the pair (C11, C
′
11) where:

C11 = {Φ; X = 〈ax 1, ax 1〉 C′
11 =

{

Φ; X = 〈ax 1, ax 1〉; a 6=? a ∨ a 6=? a

The disequations occurring in C′
11 are trivially not satisfied, thus we have that C′

11↓ = ⊥.
These two constraint systems are trivially not in symbolic equivalence.

As illustrated above, our goal is to reach pairs of (sets) of constraint systems in solved
form. Each constraint system is either ⊥ or satisfies the following conditions:

1. for allX, i⊢? u ∈ D, we haveX ∈ S2 and u is a variable distinct from the right-hand
side of any other deducibility constraint;

2. the set E does not contain any variable that is universally quantified, and for all
u 6=? v in E, we have that u, v do not contain any names. Moreover, the disequations
are “the same” on each constraint system occurring in the pair.

The first phase of our strategy consists of applying transformation rules to fulfil the first
condition (without taking care of the disequations) and obtain a system in pre-solved
form, whereas the second phase of our strategy will reduce the constraint systems into
solved form. The next section is dedicated to the description of the strategy S that has
been designed with a lot of care to ensure the termination of our procedure.

Once solved forms are reached, the test performed on each leaf labeled (M,M′)
consists of checking that for each line of the matrices, either both matrices contain a
constraint system different form ⊥, or both matrices contain only ⊥ on the whole line.
More formally, we have that:

Definition 14 (test LeafTest). Let (M,M′) be a pair of matrices of constraint systems
with n lines and m (resp. m′) columns. LeafTest(M,M′) = true if and only if for each
line i ∈ {1 . . . n}, we have that:

∃j ∈ {1, . . . ,m} with Mi,j 6=⊥ if, and only if, ∃j′ ∈ {1, . . . ,m′} with M′

i,j′ 6=⊥ .

Theorem 4. Let (M0,M
′
0) be a pair of sets of initial constraint systems and (M,M′)

be a leaf of the tree whose root is labeled with (M0,M
′
0) and which is obtained following

the strategy S . We have that M ≈s M
′ if, and only if, LeafTest(M,M′) = true.

The proof of this theorem is done relying on the two following properties that are
satisfied by each leaf (M,M′) of the tree.

1. Any constraint system C occurring in M (resp. M′) different from ⊥ admits a
solution, i.e., Sol(C) 6= ∅.

2. For any constraint systems C, C′ that occur in the same line (possibly of the same
matrice) and that are different from ⊥, we have that C ≈s C

′.

Corollary 1 (main result). Let S and S ′ be two sets of initial constraint systems. We
have that S ≈s S ′ if, and only if, LeafTest(M,M′) = true for any leaf of the tree whose
root is labeled with (S,S ′) and which is obtained following the strategy S .

30

4. Strategy

To avoid some simple termination issues, we need to consider some requirements in
addition to those stated in Figures 1 and 2. We say that a rule is strongly applicable
on a constraint system C = (S1;S2; Φ;D;E;EΠ;ND ;NoUse) when the following extra
conditions are fulfilled:

• Rule Cons(X, f): either the term t is not a variable, or there exists an atomic
statement (root(X) 6=? g) in EΠ such that g ∈ Fc and g 6= f;

• Rule Axiom(X, path): the term v is not a variable or there exists f ∈ Fc such that
(root(X) 6=? f) in EΠ;

• Rule Dest: the term v is not a variable;

• Rule Ded-st: the term u is not a variable;

• Rule Eq-left-left: no additional condition;

• Rule Eq-left-right: the terms u1, u2 are the same variable.

• Rule Eq-right-right: ξ ∈ vars2(D), and u and v are the same variable.

However, since we have to apply simultaneously our transformation rules on several
constraint systems, we can not guarantee that each application will be a strong one. As
illustrated by Example 38, this yields some termination issues.

Example 38. Consider the pair (C, C′) of sets of initial constraint systems given below
(each set is actually reduced to a singleton):

C =
{

Φ; X, 1⊢? senc(x1, x2); Y, 2⊢
? x1 C′ =

{

Φ; X, 1⊢? y1; Y, 2⊢
? senc(y1, y2)

We may apply Cons(X, senc) on the system C yielding (on the left branch):

C1 =















Φ; X =? senc(X1, X2)
X1, 1⊢

? x1

X2, 1⊢
? x2

Y, 2⊢? x1

C′
1 =















Φ; X =? senc(X1, X2)
X1, 1⊢

? z1;
X2, 1⊢

? z2
Y, 2⊢? senc(senc(z1, z2), y2)

Then, again using a strong application of Cons(Y, senc) on the system C′
1, we obtain (on

the left branch):

C11 =































Φ; X =? senc(X1, X2)
X1, 1⊢

? senc(x11, x12)
X2, 1⊢

? x2

Y =? senc(Y1, Y2)
Y1, 2⊢

? x11

Y2, 2⊢
? x12

C′
11 =































Φ; X =? senc(X1, X2)
X1, 1⊢

? z1
X2, 1⊢

? z2
Y =? senc(Y1, Y2)
Y1, 2⊢

? senc(z1, z2)
Y2, 2⊢

? y2

Thus, we get back to a subproblem of the original deducibility constraints.

31

4.1. Taking care of deducibility constraints

The first phase of our strategy consists of applying transformation rules to put con-
straint systems in “pre-solved” form. As depicted below, this first phase is a cycle of
several steps.

Step a Step b Step c Step d Step e
s := 1 k := 1

if no rule of Step b

applicable if k = n+ n
′

k := k + 1

s := s+ 1

if s = m

The integer s indicates the support of the rules that are applied during the cycle.
This notion of support of a rule is formally defined as follows:

• the support of Cons(X, f) (resp. Axiom(X, path), Eq-right-right(X, ξ)) is i
where X, i⊢? u ∈ D;

• the support of Dest(ξ, ℓ → r, i) (resp. Ded-st(X, ξ)) is i (resp. m i.e., the
maximal index that occurs in C);

• the support of Eq-left-left(ξ1, ξ2) is max(i1, i2) where ξ1, i1 ⊲ u1 ∈ Φ and
ξ2, i2 ⊲ u2 ∈ Φ;

• the support of Eq-left-right(ξ1, X2) is i1 where ξ1, i1 ⊲ u1 ∈ Φ;

The integer n (resp. n′) is the number of columns in matrix M (resp. M′) and m
is the size of the frames that occur in M and M′. The integer k indicates the column
of the matrix on which we are currently working. By convention, when k > n, i.e., k is
strictly greater than the number of columns in the matrix M, this means that we work
on the (k − n)th column of the matrix M′.

We now explain in more detailed each of these steps.

Step a: frame analysis. We apply the rules Dest and Eq-left-right, with support
equal to s, as long as possible with priority on the rule Eq-left-right. The application
of those rules has to be a strong application for at least one constraint system that
occurred in the line of the matrix on which we apply the rule.

The main idea is to work on the frame to learn the deducible subterms (this is
the purpose of the rule Dest). However, when we encounter a frame element of the
form ξ, i ⊲ x, we can not apply the Dest rule on it. The purpose of using the rule
Eq-left-right is to “discard” this frame element by adding it into the set NoUse. To
ensure that rule Eq-left-right will be applicable each time we are in such a situation,
it is important to work by increasing support. Indeed, by definition of constraint system,
we know that the variable x will appear in a deducibility constraint of support less than i.
Putting deducibility constraints of support less than i in pre-solved form allows us to
ensure that there exists X, j ⊢? x with j < i, and thus Eq-left-right is applicable.

32

In order to satisfy some necessary properties, when Dest(p̃) or Eq-left-right(p̃)
is applied on one line of the matrix, we will apply the same rule with similar parameter
on each line of the matrix. More specifically,

• if Dest(ξ, ℓ → r, s) is applied on a line (S,S ′) of (M,M′) where (ξ, i) (with i ≤ s)
belongs to the structure of the constraint systems in (S,S ′), then for each line
(T , T ′) of (M,M′) where there exists ξ′ such that (ξ′, i) belongs to the struc-
ture of the constraint systems in (T , T ′) and path(ξ′) = path(ξ), we also apply
Dest(ξ′, ℓ → r, s) on (T , T ′).

• if Eq-left-right(ξ,X) is applied on a line (S,S ′) of (M,M′) where (ξ, i) belongs
to the structure of the constraint systems in (S,S ′), then for each line (T , T ′) of
(M,M′) where there exist ξ′ such that (ξ′, i) belongs to the structure of the con-
straint systems in (T , T ′) and path(ξ′) = path(ξ), we apply Eq-left-right(ξ′, X)
on (T , T ′).

At the end of Step a, the frame of any constraint system is fixed for the support s.
The existing frame elements (for support s) could be further instantiated, but no frame
element will be added (for this support).

To avoid the non-terminating behaviour mentioned in Example 38, we break the
symmetry between the different components. The idea is to focus on one column of the
matrix and to reduce the constraint systems until reaching “pre-solved form” (distinct
variables on the right-hand sides of the deducibility constraints), and then move to the
next column of the matrix.

Example 39. Going back to Example 38, and assuming that Φ = {ax 1, 1 ⊲ a; ax 2, 2 ⊲
b}, we can first observe that there is nothing to do regarding Step a. The idea will be to
apply Cons(X, senc) as in Example 38, but then we will be forced to work on the constraint
system C1. We can apply Eq-right-right(Y,X1) yielding (on the left branch) the pair
(C11, C

′
11) where:

C11 =

{

Φ; X1, 1⊢
? x1; X2, 2⊢

? x2

X =? senc(X1, X2) ∧ Y =? X1

and C′
11 = ⊥. Indeed, the equality z1 =

? senc(senc(z1, z2), y2) can not be satisfied.

More formally, we have a cycle of three different steps. The parameter of this cycle is
the index of the column on which we are currently working. Each of this cycle alternates
Step b and Step c, and then ends with Step d.

Steps b and c: dealing with internal deducibility constraints. The purpose of
this cycle (Steps b and c) is to deal with internal deducibility constraints (of support s),
i.e., the constraints of the form X, s⊢? u with X 6∈ S2. During Step b, the idea is to put
internal deducibility constraints in “pre-solved” form, whereas during Step c, the main
goal is to remove them. At the end of Step c, all the internal deducibility constraints
would have disappeared.

Step b. We apply the internal applications of the rules Eq-right-right, Eq-left-left,
Cons, Axiom, and Ded-st with support less than s, as long as possible. To be applied
on e.g., the ith line, the application of the rule has to correspond to a strong application
w.r.t. the constraint system located at the ith line and kth column.

33

Step c. Given a constraint system C = (S1;S2; Φ;D;E;EΠ;ND ;NoUse), we consider the
set XC defined as follows:

XC = {x ∈ X 1 | (Y, j ⊢? x) ∈ D, and Y 6∈ S2}

The purpose of this set is to contain all the first-order variables that occur on the right-
hand side of an internal deducibility constraint. We apply by order of preference:

1. The internal rule Eq-right-right(X,Y) with X 6∈ S2 when the rule is strongly
applicable on one constraint system of the kth column.

2. The external rule Cons(X, f) when a variable in XC occurs in the deducibility
constraint X, i⊢? u. This has again to correspond to a strong application.

3. The external rule Axiom(X, path) on X, i⊢? u if this correspond to a strong appli-
cation and i is minimal.

Intuitively, the purpose of Step c is to discard the internal deducibility constraints
using the rule Eq-right-right. However, when this is not possible (e.g., because the
variable that occurs on the right-hand side of the internal constraint does not appear
as a right member of an external deducibility constraint), we will try break the term
u that contains such a variable using the rule Cons with the hope to be able to ap-
ply Eq-right-right once the variable will appear at the root position. Once this is
done, and if an application of Eq-right-right is still not possible, we will use the rule
Axiom to instantiate some variables. Doing this at the end allows us to ensure that
the variables that will be introduced during the replacement will be “smaller” (i.e., the
deducibility constraints that introduce each of these variables have a support smaller
than the variables that are removed thanks to the Axiom rule).

Step d: dealing with external deducibility constraints. Now, we have to put the
external deducibility constraints in “pre-solved” form. For this, we apply the external
application of the rules Eq-right-right, Cons and Axiom as long as they are strongly
applicable on the constraint system Mi,k (or Mi,k−n when k > n) by increasing order
on the index i of the line. For instance, if Rule1(p̃1) is strongly applicable on Mi1,k,
Rule2(p̃2) is strongly applicable on Mi2,k, and i1 ≤ i2 then we apply the rule Rule1(p̃1)
on (M,M′).

Step e: solving non-deducibility constraints. This last step consists of solving the
non-deducibility constraints that occur in the matrices. This is done by replacing some
constraint systems with ⊥. Intuitively, we only keep the constraint systems that have a
frame which is “maximal” (i.e., a frame which contains a maximal number of elements).

Formally, for each constraint system C in the matrix (with its associated frame Φ),
if there exists a constraint system C′ (with its associated frame Φ′) in the same column
as C, a recipe ξ, such that (ξ, s ⊲ u) ∈ Φ′ for some u, whereas Φ does not have such an
element – i.e., for all (ξ′, s ⊲ v) ∈ Φ, we have that path(ξ) 6= path(ξ′) – then we replace
the constraint system C in the matrix by ⊥.

The fact that C does not contain a frame element for path(ξ) means that C contains
some non-deducibility constraints instead. However, since C′ is in pre-solved form, we
know that the deducibility constraints introduced by the Dest rule have been solved, and

34

thus the non-deducibility constraints in C′ can not be satisfied. During Step e, each con-
straint system that is replaced by ⊥ does not have a solution due to the non-deducibility
constraints. The same applies to solve the non-deducibility constraints introduced by
the rule Ded-st. We illustrate this through an example.

Example 40. Consider the constraint system C presented in Example 32 as well as the
constraint system C′ made of the deducibility constraint X, 2⊢? senc(a, a) and the frame
Φ′ = {ax 1, 1 ⊲ a, ax 2, 2 ⊲ b}. We consider the matrices M = [C] and M′ = [C′]. In
Example 32, we have seen that applying the rule Dest(ax 2, sdec(senc(x, y), y) → x, 2)
on C yields C1 and C2. The application of this rule on C′ yields after normalisation the
constraint system ⊥ and the following constraint system C′

2:

C′
2 =

{

Φ′; X, 2⊢? senc(a, a)

∀x1, x2.[senc(x1, x2) 6=
? b ∨ 2 6 ⊢? x2]

Thus the application of the rule Dest(ax 2, sdec(senc(x, y), y) → x, 2) on M and M′

yields the pair of matrices (M1,M
′
1):

M1 =

[

C1
C2

]

M′

1 =

[

⊥
C′
2

]

Then, we may apply the rule Axiom(Y, ax 1) internally (on the first line of the matrix),
and we obtain:

M2 =





C3
C4
C2



 M′
2 =





⊥
⊥
C′
2





On the constraint system C4, the successive applications of Cons(Y, f) and Axiom(Y, path)
for any f and path will yield after normalisation the constraint system ⊥. All these rules
are internal, and thus we obtain the following pair of matrices:

M3 =













C3
⊥
. . .
⊥
C2













M′

3 =













⊥
⊥
. . .
⊥
C′
2













Then, the successive applications of the rules Cons and Axiom on M3 and M′
3 (to

solve the remaining deducibility constraints in C3, C2, and C′
2) will yield in particular a

leaf (M4,M
′
4) where:

M4 =













C5
⊥
. . .
⊥
C6













M′
4 =













⊥
⊥
. . .
⊥
C′
6













where the constraint systems C5, C6 and C′
6 are as follows:

C5 =







Φ, sdec(ax 2, ax 1), 2 ⊲ b
X =? senc(ax 1, ax 1)
Y =? ax 1

C6 =

{

Φ; X =? senc(ax 1, ax 1)

∀x1, x2.[senc(x1, x2) 6=
? senc(b, a) ∨ 2 6 ⊢? x2]

C′
6 =

{

Φ′; X =? senc(ax 1, ax 1)

∀x1, x2.[senc(x1, x2) 6=
? b ∨ 2 6 ⊢? x2]

35

Now, following the transformation explained above, the system C6 will be replaced
by ⊥. Indeed, there exists C5 in the same column as C6 that contains the frame element
sdec(ax 2, ax 1), 2 ⊲ b, and for which there is no counterpart in C6. Instead, in C6, we
have a non-deducibility constraint that is actually unsatisfiable.

Indeed, the existence of a solution for the constraint system C5 implies that the recipe
sdec(ax 2, ax 1) yields a message, thus ax 2 is a ciphertext whose key is deducible at stage 2,
and so the non-deducibility constraint of C6 can not be satisfied.

4.2. Taking care of disequations

After the first phase of our strategy S , the rulesDest, Eq-left-right, Eq-left-left
and Ded-st will never be applicable anymore for any parameter. Thus, the only rules
that can be applied during the second phase are Cons, Axiom and Eq-right-right.
Furthermore these rules will always be applied as external rules. As already explained,
the purpose of this phase is to take care of the disequations. For this, we need to match
them, and ensure that the same disequations occur in each constraint system. As de-
picted below, this second phase is made up of three steps.

Step a Step b Step c

if no rule of Step b
is applicable

Step a: getting rid of universally quantified variables. In order to be able to
match the disequations, we have to get rid of variables that are universally quantified.
For this, we apply the rules Cons(X, f) and Axiom(X, path) as long as, for at least one
constraint system occurring in the matrix, this corresponds to a strong application of
the rule or there exists an atomic statement u 6=? w in E (where u is such that X, i⊢? u –
actually at this stage u will be a variable) for which there exists a variable y ∈ vars1(w)
which is universally quantified. At the end of this Step a, variables that are universally
quantified would have been removed.

Example 41. Let Φ+ = {ax 1, 1 ⊲ a, ax 2, 2 ⊲ 〈b, a〉, proj1(ax 2), 2 ⊲ b, proj2(ax 2) ⊲ a},
and consider the following constraint system:

C =
{

Φ+; Y, 1⊢? y; ∀x. y 6=?〈x, a〉

For sake of simplicity, we will assume that 〈 〉 is the only constructor symbol. In order
to get rid of the variable x, the strategy will tell us to apply Cons(Y, 〈 〉). This gives us:

C1 =







Φ+; Y1, 1⊢
? y1; Y2, 1⊢

? y2
∀x. y 6=?〈x, a〉
y=?〈y1, y2〉; Y =?〈Y1, Y2〉

C2 =







Φ+; Y, 1⊢? y

∀x. y 6=?〈x, a〉

root(Y) 6=?〈 〉

Using our simplification rules, the first system will be simplified as follows:

C1↓ =







Φ+; Y1, 1⊢
? y1; Y2, 1⊢

? y2
y2 6=

? a
y=?〈y1, y2〉; Y =?〈Y1, Y2〉

36

Note that C1↓ does not contain any quantified variable anymore. Considering the con-
straint system C2, in order to get rid of the variable x, we can for instance apply the rule
Axiom(Y, ax 1). We obtain (after some simplifications):

C21 =
{

Φ+; Y = ax 1; y = a C22 =

{

Φ+;Y, 1⊢? y; ∀x. y 6=?〈x, a〉

root(Y) 6=?〈 〉 ∧ Y 6=? ax 1

The system C21 does not contain any quantified variable anymore. We can pursue like
this using Cons(Y, ax 2) on C22. We obtain (after some simplifications) C221 = ⊥ and

C222 =

{

Φ+;Y, 1⊢? y; ∀x. y 6=?〈x, a〉

root(Y) 6=?〈 〉 ∧ Y 6=? ax 1 ∧ Y 6=? ax 2

We can continue with Cons(Y, proj1(ax 2)) and Cons(Y, proj2(ax 2)). The resulting sys-
tems on the left branches will not contain any disequations (they are actually trivially
satisfied) whereas on the right branch the constraint system will be turned to ⊥ following
the simplification rule given in Figure 4. Thus, at the end, all the quantified variables
have been removed.

Steps b and c: matching disequations. To ensure that we will reach a solved form
in which all the disequations are matched, the rule Eq-right-right plays an important
role. The rule Eq-right-right allows one to “externalise” the disjunctions, splitting
disjunctive disequations, each of which will appear in different matrices. However, it
may happen that the rule Eq-right-right can not be applied to get rid of a particular
disequation. In such a situation, we will first use the rules Cons and Axiom to simplify
it, and allow eventually the application of the rule Eq-right-right. The only rules that
can be applied during these two steps (b and c) are Cons, Axiom and Eq-right-right.
However, as illustrated by Example 42, to ensure termination we can not apply them in
any order.

Example 42. We consider a constraint system in “pre-solved” form such that:

E = [x1 6=
? y ∨ x2 6=

? a] ∧ y 6=?〈〈x1, x2〉, b〉.

For sake of simplicity, we do not described Φ and D. We simply assume that the
frame contains the terms a and b. First, we apply Axiom on x2 (with a), on one
branch we will obtain x1 6=

? y ∧ y 6=?〈〈x1, a〉, b〉. Then applying Cons twice, we obtain
x1 6=

?〈〈y1, y2〉, y3〉 ∧ [y1 6=
? x1 ∨ y2 6=

? a∨ y3 6=
? b]. Lastly, applying Axiom on y3 (with b),

we obtain:
x1 6=

?〈〈y1, y2〉, b〉 ∧ [y1 6=
? x1 ∨ y2 6=

? a]

getting back to the original set of disequations.

To avoid such a situation, the main idea is to postpone the use of the Axiom rule.
We apply as long as we can the rules Cons and Eq-right-right, and only after that
we can move to Step c and apply the Axiom rule.

Example 43. Going back to Example 42 and following our strategy, we will first apply
Eq-right-right to deal with the disequation x1 6=

? y. On the left branch, i.e., assuming
the equality x1 = y is satisfied, the disequation y 6=?〈〈x1, x2〉, b〉 becomes y 6=?〈〈y, x2〉, b〉,

37

and disappears since it is trivially satisfied. Hence, we obtain two constraint systems that
respectively contains:

x2 6=
? a x1 6=

? y ∧ y 6=?〈〈x1, x2〉, b〉

Then, on the resulting system on the left branch, we have no choice, we have to apply
an Axiom rule. On the right, we pursue using the Cons rule on y allowing us to simplify
(on the left branch) a bit more the disequations – the name b is now at the root position:

x1 6=
?〈y1, y2〉 ∧ [y1 6=

?〈x1, x2〉 ∨ y2 6=
? b]

Then, we may apply Eq-right-right to deal with y1 6=
?〈x1, x2〉. We get

y2 6=
? b x1 6=

?〈y1, y2〉 ∧ y1 6=
?〈x1, x2〉

Again, on the left, the disequation x1 6=
?〈y1, y2〉 has disappeared since after replacing y1

with 〈x1, x2〉, it is trivially satisfied. On the right, the disequations now contain free
variables and public function symbols and applying Eq-right-right will be useless. On
the left, we now have to apply an instance of the Axiom rule. Thus, this strategy avoids
the non termination issue mentioned in the previous example.

Step b. During this step, we apply as long as we can the rulesCons and Eq-right-right.
However, as illustrated with the following example, due to the fact that we have to apply
simultaneously our transformation rules on several constraint systems, we can get some
termination troubles.

Example 44. Consider the pair (C, C′) of sets of initial constraint systems given below
(each set is actually reduced to a singleton):

C =







ax 1, 1 ⊲ a
X, 1⊢? x; Y, 1⊢? y

x 6=? h(y) ∧ x 6=? y
C′ =

{

ax 1, 1 ⊲ a
X, 1⊢? x; Y, 1⊢? y

We could apply Cons(X, h) replacing x with h(x′) to simplify the disequation x 6=? h(y)
into x′ 6=? y. However, this operation will transform the other disequation, namely x 6=? y
into h(x′) 6=? y. More precisely, this gives (on the left branch):

C0 =















ax 1, 1 ⊲ a
X ′, 1⊢? x′; Y, 1⊢? y

x′ 6=? y ∧ h(x′) 6=? y
X =? h(X ′)

C′
0 =







ax 1, 1 ⊲ a
X ′, 1⊢? x′; Y, 1⊢? y
X =? h(X ′)

This pair (C0, C
′
0) is made up of two systems on which the Cons rule is again applicable,

and we can go on forever with Cons.

The main idea is to favour the application of Eq-right-right. However, given a
particular disequation, necessarily of the form x 6=? u at this stage, it may happen that
Eq-right-right can not be applied for two main reasons:

1. either a name occurred in the disequation, i.e., u contains a name;

2. or a “faulty” variable occurred in the disequation, i.e., u contains a variable whose
support is greater than the support of x.

38

In both cases, the idea is to apply the Cons rule to bring the name or the “faulty”
variable at the root position. Thus, we authorise the application of the rule Cons(X, f)
on X, i0 ⊢

? t during Step b (actually t is a variable at this stage) if there exists a constraint
system C on which the rule Cons(X, f) is not useless, and such that:

1. either Cons(X, f) is strongly applicable on C (at this stage, since t is a variable,
this means that there exists an atomic statement (root(X) 6= g) in EΠ(C) such that
g ∈ Fc and g 6= f);

2. or there is a disequation of the form t 6= u with root(u) = f, and u contains a name
or a “faulty” variable, i.e., i0 < max

{

i | x ∈ vars1(u) and (X, i⊢? x) ∈ D(C)
}

.

Example 45. Going back to Example 44. Applying Cons(X, h) is now forbidden. In-
stead, we may apply Eq-right-right(X, h(Y)). This leads us to the pairs (⊥; C′

1) and
(C; C′

2) where:

C′
1 =







ax 1, 1 ⊲ a
Y, 1⊢? y
x=? h(y); X =? h(Y)

C′
2 =







ax 1, 1 ⊲ a
X, 1⊢? x; Y, 1⊢? y

x 6=? h(y)

From the pair (⊥; C′
1) we will conclude that symbolic equivalence does not hold. Regarding

the pair (C; C′
2), we can go on and reach a solved form by applying Eq-right-right(X,Y)

obtaining again two pairs of constraint systems. The first one will be of the form (⊥; C′
3)

and the second one will contain two systems in which all the disequations are matched.

We have shown that applying the rules Cons (under the additional conditions men-
tioned above) and Eq-right-right in any order will terminate (for Step b). However,
to ensure termination of the cycle made of Step b and Step c, we have to work on a dise-
quation which is maximal, i.e. one that involves variables whose supports are maximal.
The necessity of this extra condition and its formal definition will be discussed later on
(actually after the description of Step c).

Step c. In this last step, we apply the rule Axiom(X, path) as long as possible, i.e.,
as long as there is at least one constraint system C in the pair of matrices on which
Axiom(X, path) is strongly applicable on it. Note that, at this stage, the term t in
the constraint X, i⊢? t is necessarily a variable. Thus a strong application means that
(root(X) 6= f) ∈ EΠ(C) for some f. When no more instance of the Axiom rule can be
applied, we go back to Step b. It is quite easy to see that Step c alone will terminate.
The number of variables decreases on the left branch, and at some point all the possible
instances of the Axiom rule would have been considered.

However, to ensure termination of the cycle made of Step b and Step c, we have
to restrict the order on which the rules Cons and Eq-right-right are applied during
Step b. We prove termination of this cycle under the hypothesis that we always work on
the maximal disequation. The measure associated to a disequation u 6=? v occurring in a
constraint system C is a pair of integers defined by L1

C
(u 6=? v) = (L1

C
(u);L1

C
(v)) where:

L1
C(u) = max

(

{ i | (X, i⊢? x) ∈ D(C) and x ∈ vars(u)} ∪ {0}
)

.

We use a “lexicographic” order to compare those pairs, and to decide on which dise-
quation we will work. We have that (i1, i2) >lex (j1, j2) if

39

• either max(i1, i2) > max(j1, j2);

• or max(i1, i2) = max(j1, j2) and min(i1, i2) > min(j1, j2)

Note that, using this order, we have that L1
C
(u 6=? v) = L1

C
(v 6=? u) for any terms u and v.

Example 46. Let (C, C′) be two constraint systems obtained at the end of Phase 2/
Step a that only differ by the content of their frame. For sake of simplicity, we also
assume that f is a function symbol of arity 2 and the only one that we consider here.
(this symbol could be mimicked in our setting using h and 〈 , 〉). Moreover, regarding
disequations, we assume that they contain:

x 6= f(y, z) x 6= z root(Y) 6= f.

Note that Cons and Eq-right-right can not be applied, but due to the presence
of root(Y) 6= f, the rule Axiom is strongly applicable on Y . Consider the left branch
during such an application, and assume that such an application will instantiate y with
f(f(a, a), w) on C, and y with f(w, f(a, a)) on C′. Let (C1, C

′
1) be the resulting pair. Such

a scenario is possible since even if C and C′ have the same structure, they may differ on
the content of their frame. The constraint systems C1 and C′

1 will now have different sets
of disequations. In particular, we have that

C1 =







. . .

x 6=? f(f(f(a, a), w), z)

x 6=? z

C1 =







. . .

x 6=? f(f(w, f(a, a)), z)

x 6=? z

Here a is a name whereas w is variable, and we necessarily have that W, iw ⊢? w (but
also Y, jy ⊢

? y) occurs in both C and C′, and we have also that iw < iy. Now, on this
branch, we have nothing to do regarding Step c, and we go back to Step b. We have
still nothing to do regarding the second disequation of each constraint system, but we can
apply the Cons rule on the first one. Consider the left branch during such an application
of Cons(X, f), we get (C11, C

′
11) where:

C11 =











. . .

x1 6=
? f(f(a, a), w) ∨ x2 6=

? z

f(x1, x2) 6=
? z

C′

11 =











. . .

x1 6=
? f(w, f(a, a)) ∨ x2 6=

? z

f(x1, x2) 6=
? z

Now, depending on the values of iw and iz, we may have a choice. We can either apply
Cons to simplify x1 6=

? f(f(a, a), w) (and x1 6=
? f(w, f(a, a))) or apply Eq-right-right

on x2 6=
? z. We consider here the first option (to respect maximality, this is only possible

if iw ≥ iz), and we get (on the left branch) the pair (C111, C
′
111) where:

C111 =











. . .

x11 6=
? f(a, a) ∨ x12 6=

? w ∨ x2 6=
? z

f(f(x11, x12), x2) 6=
? z

C′

111 =











. . .

x11 6=
? w ∨ x12 6=

? f(a, a) ∨ x2 6=
? z

f(f(x11, x12), x2) 6=
? z

Now, we may still have some choice, but it is not possible for instance to consider an
application of the Cons rule on x11 6= f(a, a). Indeed, L1

C111
(x11 6=

? f(a, a)) is not maximal

40

since L1
C
(f(a, a)) = 0 in any constraint system C. This remark is important to avoid non

termination. Indeed, applying Cons(X11, f) would allow us to add root(X11) 6= f on the
constraint systems on the right branch, and then applying Eq-right-right on x12 6=

? w,
and then on x2 6=

? z, and considering the pair of constraint systems obtained along the
right branch, we will eventually obtain a pair of constraint systems that will contain:

Cright =























. . .

x12 6=
? w

x2 6=
? z

f(f(x11, x12), x2) 6=
? z

root(X12) 6= f

C′

right =























. . .

x12 6=
? w

x2 6=
? z

f(f(x11, x12), x2) 6=
? z

root(X12) 6= f

Assuming that x, y, and z have the same support, i.e., X, ix ⊢
? x, Y, iy ⊢

? y and
Z, iz ⊢

? z are in C and C′ with ix = iy = iz, the situation is quite similar to the pair
of constraint systems we consider at the very beginning of this example. We may apply
a similar sequence of transformation rules leading to a termination issue. Note how-
ever that this sequence does not respect our maximality condition. The application of
Cons(X1, f) on (C11, C

′
11) does not respect our maximality condition. Indeed, by defini-

tion of a constraint system, we have that iw < iy, and together with the hypothesis that
ix = iy = iz, this would contradicts the fact that iw ≥ iz.

Relying on this strategy, we are now able to prove termination of our algorithm.

Theorem 5 (termination). Applying the transformation rules on a pair of sets of initial
constraint systems and following the strategy S always terminates.

5. Implementation

This decision procedure has been implemented in a tool called APTE. The tool is
implemented in Ocaml (around 12 000 lines). APTE is an open source software and is
distributed under GNU General Public Licence 3.0. The tool is available at:

http://projects.lsv.ens-cachan.fr/APTE/.

As expected, APTE checks trace equivalence for processes that use standard primi-
tives (e.g., pairing, signatures, hash functions, symmetric and asymmetric encryptions).
We can model in particular conditionals (with non-trivial else branches), private channels,
and non-deterministic choices, but we consider processes without replication. In case of
failure when establishing trace equivalence, APTE provides a witness of non-equivalence.

Our implementation closely follows the transformation rules that are described along
the paper. However, for efficiency reasons, some optimisations have been implemented.
In particular, the strategy described in the previous section imposes us to apply the
rule Axiom on each frame element and the rule Cons for each constructor symbol.
Thus, giving the attacker some useless capabilities, e.g., by adding some fresh names in
the frame, or considering some additional hash functions, will considerably increase the
execution time of our algorithm. To cope with these issues, we adapt the strategy: only
the relevant instances of the rule Cons and Axiom are applied. We manage to obtain
a quite efficient algorithm for checking symbolic equivalence between sets of constraint

41

systems when the size of the sets and the size of the constraint systems that occur in
these sets are reasonable. In terms of protocols, APTE has been used to analyse several
protocols among them the private authentication protocol, and some protocols issued
from the e-passeport application [29].

However, the interleaving step, that is required for moving from symbolic equivalence
to trace equivalence, is expensive from the computation point of view. Actually, we are
faced to the usual interleaving explosion problem. For example, using such an approach,
deciding anonymity for one session of the private authentication protocol amounts to
solve 15 symbolic equivalences between pairs of sets of constraint systems (each pair
containing between 2 and 8 constraint systems). Around 200 symbolic equivalence have
to be solved to deal with 2 sessions, and more than 900 when we want to analyse 3
sessions of this protocol. Moreover, it is worth mentioning that the size of the constraint
systems but also the number of constraint systems in each set are increasing, and we
thus rapidly reach the limit of the tool.

To illustrate this exponential blow up, we report on Table 5 and Table 6 some experi-
ments that we have performed to analyse the private authentication protocol for 1 and 2
sessions respectively. We indicate the number of symbolic traces of each length, and
since a given symbolic trace may lead to several constraint systems, we also indicate this
number (in average). For instance, considering symbolic traces of length 6 (i.e., traces
made up of 6 input/output actions), there are 4 different symbolic traces of this length.
In average, one such a trace leads to 6 constraint systems, and we will have to launch
our algorithm 4 times for checking symbolic equivalence between pairs (S,S ′) of sets of
constraint systems (each pair containing 6 constraint systems in average). Checking one
symbolic equivalence will require the applications of 428 transformations rules (most of
the rules are applied internally) and this will be done in less than a few milliseconds.

traces # systems # rules int. - ext. time (s)
(in average per trace) (in average per symbolic equivalence)

1 1 2 6 83% - 17% 0.00
2 1 2 14 86% - 14% 0.00
3 1 2 25 88% - 12% 0.00
4 2 2 41 90% - 10% 0.00
5 2 6 182 93% - 7% 0.00
6 4 6 428 94% - 6% 0.00
7 4 6 1734 95% - 5% 0.01

Figure 5: Results obtained when analysing 1 session of the private authentication protocol.

As indicated in Table 6, analysing two sessions of the private authentication protocol,
we reach the limit of our tool. In particular, checking trace equivalence for traces up to
length 9 requires us to launch our algorithm for checking symbolic equivalence between
pairs of sets of constraint systems more that 90 times. The total time to get an answer
is around 1500 seconds but it still remains around one hundred of symbolic equivalences
to check and the underlying sets of constraint systems become very huge, e.g., for traces
of length 10, each pair contains 360 constraint systems in average.

42

traces # systems # rules int. - ext. time (s)
(in average per trace) (in average per symbolic equivalence)

1 1 2 6 83% - 17% 0.00
2 1 2 14 86% - 14% 0.00
3 1 2 25 88% - 12% 0.00
4 2 4 41 90% - 10% 0.00
5 4 12 129 90% - 10% 0.00
6 6 41 793 93% - 7% 0.03
7 12 87 2468 94% - 6% 0.29
8 18 204 13324 96% - 4% 4.67
9 36 280 39292 96% - 4% 40.19
10 54 360
11 54 373

Figure 6: Results obtained when analysing 2 sessions of the private authentication protocol.

The results summarised in Table 5 and 6 correspond to what we obtain when enu-
merating all the symbolic traces and then applying our procedure for checking symbolic
equivalence on each resulting symbolic trace. Since checking trace equivalence requires
to consider partial symbolic traces, we managed to optimise the tool by exploiting the
result of our algorithm launched on symbolic traces of size n when analysing the symbolic
traces of size n+1. This avoids us to apply some transformations that have already been
applied during the analysis of the traces of size n and push a bit the boundaries of our
tool but an analysis of the private authentication protocol for 3 sessions is still out of
reach.

6. Conclusion

Trace equivalence is a central notion for expressing privacy-type properties. It has
been shown that trace equivalence can be reduced to checking equivalence between sets
of constraint systems (see e.g., [12]). This reduction result is very general and holds
for arbitrary processes (without replication) and for arbitrary equational theories. In
this paper, we present a procedure to automatically check equivalence between sets of
constraint systems. Altogether, this gives us an algorithm for checking trace equivalence
in the applied pi-calculus. The procedure described in this paper has been implemented
and performed well on constraint systems. However, the interleaving step that is required
for moving from symbolic equivalence to trace equivalence, is performed in a rather naive
way and it appears that this step is expensive from the computation point of view.

To cope with the interleaving problem mentioned above, we would like to propose
some optimisations to reduce the number of interleavings that have to be considered, and
so the number of equivalence between sets of constraint systems that have to be checked.
This problem has already been studied in the context of reachability properties [30]
but seems to be more challenging for trace equivalence (see e.g., for some preliminary
results [31]). We would also like to enrich our algorithm to deal with less standard
primitives such as blind signatures or trapdoor commitment functions that are crucial

43

in the context of e-voting protocols but do not fall in any existing decidability results.
Lastly, we would like also to pursue the study of the constraint systems that are generated
by our algorithm. The matrices of constraint systems obtained at the end (i.e., on the
leaves) enjoy some nice properties (e.g., existence of a “constructor” solution, one-to-one
equivalence between constraint systems that occur on the same line, . . .). We think
that these properties can be further exploit to decide some more fine grained notion of
equivalence. Actually, relying on these nice properties, it has already been shown that
the notion of length trace equivalence, a notion of equivalence that takes into account the
length of messages [32], is decidable (relying on the algorithm presented in this paper).

References

[1] V. Cortier, S. Kremer (Eds.), Formal Models and Techniques for Analyzing Security Protocols,
Vol. 5 of Cryptology and Information Security Series, IOS Press, 2011.

[2] V. Cortier, S. Kremer, B. Warinschi, A survey of symbolic methods in computational analysis of
cryptographic systems, Journal of Automated Reasoning 46 (3-4) (2010) 225–259.

[3] M. Abadi, C. Fournet, Mobile values, new names, and secure communication, in: Proc. 28th Sym-
posium on Principles of Programming Languages (POPL’01), ACM Press, 2001, pp. 104–115.

[4] A. Armando, R. Carbone, L. Compagna, J. Cuéllar, M. L. Tobarra, Formal analysis of SAML 2.0
web browser single sign-on: breaking the SAML-based single sign-on for google apps, in: Proc. of
the 6th ACM Workshop on Formal Methods in Security Engineering (FMSE 2008), ACM, 2008,
pp. 1–10.

[5] P. Ryan, S. Schneider, M. Goldsmith, G. Lowe, B. Roscoe, The Modelling and Analysis of Security
Protocols, Addison Wesley, 2000.

[6] B. Blanchet, An Efficient Cryptographic Protocol Verifier Based on Prolog Rules, in: Proc. 14th
Computer Security Foundations Workshop (CSFW’01), IEEE Comp. Soc. Press, 2001, pp. 82–96.

[7] C. Cremers, The Scyther Tool: Verification, falsification, and analysis of security protocols, in:
Proc. 20th International Conference on Computer Aided Verification (CAV’08), Vol. 5123/2008 of
LNCS, Springer, 2008, pp. 414–418.

[8] A. Armando, et al., The AVISPA Tool for the automated validation of internet security protocols and
applications, in: Proc. 17th International Conference on Computer Aided Verification (CAV’05),
Vol. 3576 of LNCS, Springer, 2005, pp. 281–285.

[9] H. Hüttel, Deciding framed bisimulation, in: Proc. 4th International Workshop on Verification of
Infinite State Systems INFINITY’02, 2002, pp. 1–20.

[10] B. Blanchet, M. Abadi, C. Fournet, Automated verification of selected equivalences for security
protocols, Journal of Logic and Algebraic Programming 75 (1) (2008) 3–51.

[11] V. Cortier, S. Delaune, A method for proving observational equivalence, in: Proc. of 22nd Computer
Security Foundations Symposium (CSF’09), IEEE Comp. Soc. Press, 2009, pp. 266–276.

[12] V. Cheval, V. Cortier, S. Delaune, Deciding equivalence-based properties using constraint solving,
Theoretical Computer Science 492 (2013) 1–39.

[13] M. Baudet, Deciding security of protocols against off-line guessing attacks, in: Proc. 12th ACM
Conference on Computer and Communications Security (CCS’05), ACM Press, 2005.

[14] Y. Chevalier, M. Rusinowitch, Decidability of symbolic equivalence of derivations, Journal of Au-
tomated Reasoning.

[15] A. Tiu, J. E. Dawson, Automating open bisimulation checking for the spi calculus, in: Proc. 23rd
IEEE Computer Security Foundations Symposium (CSF’10), IEEE Computer Society Press, 2010,
pp. 307–321.

[16] R. Chadha, Ş. Ciobâcă, S. Kremer, Automated verification of equivalence properties of crypto-
graphic protocols, in: Proc. 21th European Symposium on Programming (ESOP’12), Vol. 7211 of
LNCS, Springer, 2012, pp. 108–127.

[17] M. Arapinis, T. Chothia, E. Ritter, M. Ryan, Analysing unlinkability and anonymity using the
applied pi calculus, in: Proc. 23rd IEEE Computer Security Foundations Symposium (CSF’10),
IEEE Computer Society Press, 2010, pp. 107–121.

[18] V. Cheval, B. Blanchet, Proving more observational equivalences with Proverif, in: Proc. 2nd
International Conference on Principles of Security and Trust (POST’13), LNCS, Springer, 2013,
pp. 226–246.

44

[19] M. Abadi, C. Fournet, Private authentication, Theoretical Computer Science 322 (3) (2004) 427–
476.

[20] J. Millen, V. Shmatikov., Constraint solving for bounded-process cryptographic protocol analysis,
in: Proc. of 8th ACM Conference on Computer and Communications Security, 2001.

[21] H. Comon-Lundh, V. Cortier, E. Zalinescu, Deciding security properties of cryptographic protocols.
application to key cycles., Transaction on Computational Logic 11 (2).

[22] H. Comon-Lundh, S. Delaune, J. Millen, Constraint solving techniques and enriching the model
with equational theories, in: V. Cortier, S. Kremer (Eds.), Formal Models and Techniques for
Analyzing Security Protocols, Vol. 5 of Cryptology and Information Security Series, IOS Press,
2011, pp. 35–61.

[23] V. Cheval, H. Comon-Lundh, S. Delaune, Trace equivalence decision: Negative tests and non-
determinism, in: Proc. 18th ACM Conference on Computer and Communications Security
(CCS’11), ACM Press, 2011, pp. 321–330.

[24] V. Cheval, Automatic verification of cryptographic protocols: privacy-type properties, Thèse de
doctorat, Laboratoire Spécification et Vérification, ENS Cachan, France (Dec. 2012).

[25] H. Comon-Lundh, S. Delaune, The finite variant property: How to get rid of some algebraic proper-
ties, in: Proc. 16th International Conference on Rewriting Techniques and Applications (RTA’05),
Vol. 3467 of LNCS, 2005.

[26] N. Dershowitz, J.-P. Jouannaud, Rewrite systems, in: Handbook of Theoretical Computer Science,
Vol. B, Elsevier, 1990, Ch. 6.

[27] H. Comon, P. Lescanne, Equational problems and disunification, Journal of Symbolic Computation
7 (3/4) (1989) 371–425.

[28] V. Cheval, H. Comon-Lundh, S. Delaune, Automating security analysis: symbolic equivalence of
constraint systems, in: Proc. 5th International Joint Conference on Automated Reasoning (IJ-
CAR’10), Vol. 6173 of LNAI, Springer-Verlag, 2010, pp. 412–426.

[29] V. Cheval, Apte: an algorithm for proving trace equivalence, in: E. Ábrahám, J. Havelund (Eds.),
Proceedings of the 20th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’14), Lecture Notes in Computer Science, Springer, Grenoble, France,
2014, to appear.

[30] D. Basin, S. Mödersheim, L. Viganò, Constraint Differentiation: A New Reduction Technique for
Constraint-Based Analysis of Security Protocols, in: Proc. 10th ACM Conference on Computer and
Communications Security (CCS’03), ACM Press, New York, 2003, pp. 335–344.

[31] D. Baelde, S. Delaune, L. Hirschi, A reduced semantics for deciding trace equivalence using con-
straint systems, in: Proceedings of POST’14, Springer, 2014.

[32] V. Cheval, V. Cortier, A. Plet, Lengths may break privacy – or how to check for equivalences with
length, in: Proc. 25th International Conference on Computer Aided Verification (CAV’13), Vol.
8043 of LNCS, Springer, 2013, pp. 708–723.

45

