
Trace Equivalence Decision: Negative Tests and
Non-determinism∗

Vincent Cheval
LSV, ENS Cachan & CNRS

cheval@lsv.ens-cachan.fr

Hubert Comon-Lundh
LSV, ENS Cachan & CNRS

comon@lsv.ens-
cachan.fr

Stéphanie Delaune
LSV, ENS Cachan & CNRS

delaune@lsv.ens-
cachan.fr

ABSTRACT
We consider security properties of cryptographic protocols that can
be modeled using the notion of trace equivalence. The notion of
equivalence is crucial when specifying privacy-type properties, like
anonymity, vote-privacy, and unlinkability.

In this paper, we give a calculus that is close to the applied pi
calculus and that allows one to capture most existing protocols that
rely on classical cryptographic primitives. First, we propose a sym-
bolic semantics for our calculus relying on constraint systems to
represent infinite sets of possible traces, and we reduce the decid-
ability of trace equivalence to deciding a notion of symbolic equiv-
alence between sets of constraint systems. Second, we develop an
algorithm allowing us to decide whether two sets of constraint sys-
tems are in symbolic equivalence or not. Altogether, this yields the
first decidability result of trace equivalence for a general class of
processes that may involve else branches and/or private channels
(for a bounded number of sessions).

Categories and Subject Descriptors
D.2.4 [Program Verification]: Formal Methods

General Terms
Security, Verification

1. INTRODUCTION
Security protocols are widely used today to secure transaction

that rely on public channels like the Internet. It is therefore essen-
tial to obtain as much confidence as possible in their correctness.
Starting in the 80s, many works have been devoted to the use of
formal methods to analyse the security of these protocols (e.g. [17,
24]). In the case of a bounded number of sessions, secrecy preser-
vation is co-NP-complete [21, 24], and for an unbounded number
of sessions, several decidable classes have been identified (e.g. [17,

∗This work has been partly supported by the ANR projects AVOTÉ
and PROSE, by the grant DIGITEO API from Région Île-de-
France, and by the INRIA project SecSI.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’11, October 17–21, 2011, Chicago, Illinois, USA.
Copyright 2011 ACM 978-1-4503-0948-6/11/10 ...$10.00.

23]). Many tools have also been developed to automatically verify
cryptographic protocols (e.g. AVISPA [6], ProVerif [9]).

Until recently, most efforts and successes only concerned trace
properties, i.e. security properties that can be checked on each in-
dividual sequence of messages corresponding to an execution of
the protocol. Secrecy and authentication are typical examples of
trace properties. There are however several security properties,
which cannot be defined as trace properties and require a notion
of behavioural equivalence. We focus here on the notion of trace
equivalence which is well-suited for the analysis of security pro-
tocols. Intuitively, two processes P and Q are trace equivalent,
denoted P ≈t Q, if any experiment performed by an attacker
on both processes lead to the emission of two sequences of mes-
sages that are indistinguishable, i.e. the attacker can not observe
any difference between these two sequences. The notion of trace
equivalence is weaker than the notion of observational equivalence
that has been the subject recently of several works [10, 15, 25].
Trace equivalence is probably more adequate to the formalization
of privacy-type properties. Originally, observational equivalence is
a bisimulation-based equivalence notion that has been introduced
as a proof technique for trace equivalence [4]. In the present paper,
we are interested in automating the proofs of trace equivalence.

Related work. A line of works consists in designing stronger
notions of equivalences that imply observational equivalence (and
thus trace equivalence). This approach has for instance been used
in [7, 8, 25], relying on constraint solving techniques. ProVerif im-
plements an algorithm, based on Horn clauses and dedicated reso-
lution strategies, which is able to establish the observational equiva-
lence between two processes written in the applied pi calculus [10].
However, all these methods check a stronger equivalence than ob-
servational equivalence and fail on some simple toy examples. Un-
fortunately, this is exactly the kind of situations we encountered
in several case studies, e.g. the private authentication protocol [3],
and e-passport protocols [5]. If we restrict our attention to simple
processes with trivial else branches, then the strong notion of equiv-
alence between two positive constraint systems used in [7] (or [25,
11]), is sufficient to decide trace equivalence. Another procedure
for deciding trace equivalence has also been proposed in [18].

Another line of works [20, 12] is based on an extension of the
small attack property of [24]: they show that, if two processes
are not equivalent, then there must exist a small witness of non-
equivalence. A decision of equivalence can be derived by checking
every possible small witness. Again this result does not apply to
protocols with non-trivial else branches.

In summary, there is no known result that is suitable to protocols
such as the private authentication protocol [3], or the e-passport
protocol described in [5]: these protocols require a conditional

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/30707092?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

(with a non-trivial else branch) to be modeled in accurate way.
Moreover, the notion of equivalence used by ProVerif or the no-
tion of diff-equivalence used in [8] are too strong to conclude on
these case studies. For instance ProVerif yields a false negative in
these examples, because the two (equivalent) processes do not have
the same control structure.

Our contributions. Our main contribution consists in dropping
the requirements on the conditionals and on the determinacy in
previous algorithms that decide trace equivalence: we provide a
new algorithm, that decides the trace equivalence of (possibly non-
determinate, possibly with non-trivial else branches) processes, with-
out replication and that use standard primitives, namely signature,
hash function, pairing, symmetric and asymmetric encryptions.

We show that the trace equivalence of two processes without
replication can be reduced to a notion of symbolic equivalence be-
tween sets of initial constraint systems, which we show next how to
decide. In our class, we can model in particular conditionals (with
non-trivial else branches), private channels, and non-deterministic
choice. The private authentication protocol [3] and the various ver-
sions of the e-passport protocol [5] fall into our class.

This work is built upon a procedure that has been first described
in [11]. However, non trivial conditionals and non-determinism
force two main generalizations: we need to consider sets of con-
straints instead of individual constraints and we need also to con-
sider negative atomic constraints, for instance disequalities. This
yields difficult technical problems, which we will describe, as well
as their solutions.

2. MODEL
This section introduces our process calculus, by giving its syntax

and its semantics. This calculus is close to the original applied pi
calculus [2] but we consider a fixed set of cryptographic primitives,
namely signatures, pairing, hash function, symmetric and asym-
metric encryptions. Participants in a protocol are modeled as pro-
cesses, and the communication between them is modeled by means
of message passing.

2.1 Syntax
To describe processes, one starts with an infinite set of names

N = {a, b, . . . , sk, k, n,m, . . .} (which are used to model atomic
data), an infinite set of (first-order) variables X 1 = {x, y, . . .},
and a set ℱ of function symbols which is split into the set ℱc of
constructors and the set ℱd of destructors. More specifically, we
consider:

ℱc = {senc/2, aenc/2, pub/1, sign/2, vk/1, ⟨ ⟩/2, h/1}
ℱd = {sdec/2, adec/2, check/2, proj1/1, proj2/1}.

This signature contains function symbols to model signature,
pairing, hash function, symmetric and asymmetric encryptions.

Terms are defined as names, variables, and function symbols ap-
plied to other terms. Let F ⊆ ℱ , N ⊆ N and V ⊆ X 1, the set of
terms built from N and V by applying function symbols in F is de-
noted by T (F,N∪V). We write vars1(u) for the set of (first-order)
variables occurring in a term u. The term u is said to be a ground
term if vars1(u) = ∅. We denote by st(u) the set of subterms of u.
The constructor terms, resp. ground constructor terms, are those in
T (ℱc,N ∪X 1), resp. in T (ℱc,N). A ground constructor term is
also called a message.

We model the properties of our cryptographic primitives by means
of a term rewriting system. For instance, the first rule models the
fact that the decryption of a ciphertext will return the associated

plaintext when the right key is used to perform the decryption.

sdec(senc(x, y), y) → x
adec(aenc(x, pub(y)), y) → x
check(sign(x, y), vk(y)) → x

proj1(⟨x, y⟩) → x
proj2(⟨x, y⟩) → y

This term rewriting system is convergent. We denote by t↓ the
normal form of t. Moreover, to represent messages, we will only
consider valid terms. A term u is valid, denoted valid(u), if v↓ is a
constructor term for any v ∈ st(u).

We now consider a set X 2 = {X,Y, . . .} of second-order vari-
ables and we write vars2(⋅) the function that returns the set of
second-order variables occurring in its argument. A recipe is a term
built on ℱc,ℱd, a set of parameters AX = {ax1, . . . , axn, ...},
that can be seen as pointers to the hypotheses (or known messages),
and variables in X 2. As in the applied pi calculus, all the function
symbols are public, i.e. available to the attacker. Moreover, names
are excluded from recipes: names that are known to the attacker
must be given explicitly as hypotheses. We denote by Π the set of
recipes, i.e. Π = T (ℱ ,AX ∪ X 2). A ground recipe � is a recipe
that does not contain variables (vars2(�) = ∅) but only parame-
ters. We denote by param(�) the set of parameters that occur in �.
Intuitively, a ground recipe records the attacker’s computation. It is
used as a witness of how some deduction has been performed.

It is well-known that replication leads to undecidability [19] thus,
we consider processes without replication. The grammar of our
plain processes is as follows:

P,Q,R := 0
P ∣ Q
P +Q
new x.P
ifM1 = M2 then P else Q
in(M,x).P
out(M,N).P

where M1,M2,M,N are terms, and x is a variable. We denote by
fv(P) the free variables of P . This notion is extended as expected
to multiset of processes.

At a particular point in time, while engaging in one or more
sessions of one or more protocols, an attacker may know a se-
quence of messages u1, . . . , un. As in the applied pi calculus,
such a sequence of messages is organized into a (concrete) frame
� = {ax1 ⊳ u1, . . . , axn ⊳ un} where u1, . . . , un are ground
constructor terms. Its domain dom(�) is the set {ax1, . . . , axn}
whereas its size ∣�∣ is the integer n. A frame � defines a substitu-
tion {ax 7→ u ∣ ax ∈ dom(�), ax ⊳ u ∈ �}.

DEFINITION 1. A (concrete) process is a pair (P;�) where:

∙ � is a (concrete) frame; and

∙ P is a multiset of plain processes (defined above) such that
fv(P) = ∅.

Additionally, we require processes to be variable distinct, i.e. any
variable is at most bound once.

EXAMPLE 1. We consider a protocol given in [3] designed for
transmitting a secret without revealing its identity to other partic-
ipants. In this protocol, A is willing to engage in communication
with B and wants to reveal its identity to B. However, A does
not want to compromise its privacy by revealing its identity or the
identity of B more broadly. The protocol works as follows:

A → B : aenc(⟨Na, pub(A)⟩, pub(B))

B → A : aenc(⟨Na, ⟨Nb, pub(B)⟩⟩, pub(A))

({in(u, x).P} ⊎ P;�)
in(�,�)−−−−→ ({P{x → t}} ⊎ P;�) (IN)

if �, � ∈ T (ℱ , dom(�)), ��↓ = t, ��↓ = u↓, valid(t), and valid(u)

({out(u, t).Q} ⊎ P;�)
out(�,ax ∣�∣+1)−−−−−−−−−→ ({Q} ⊎ P;� ∪ {ax∣�∣+1 ⊳ t↓}) (OUT)

if � ∈ T (ℱ , dom(�)), ��↓ = u↓, valid(t), and valid(u)

Figure 1: Semantics

First A sends to B a nonce Na and its public key encrypted with
the public key of B. If the message is of the expected form then
B sends to A the nonce Na, a freshly generated nonce Nb and
its public key, all of this being encrypted with the public key of A.
Otherwise, B sends out a “decoy” message: aenc(Nb, pub(B)).
This message should basically look like B’s other message from the
point of view of an outsider. This is important since the protocol is
supposed to protect the identity of the participants.

A session of role B played by agent b with a can be modeled by
the plain process B(b, a) where N = adec(y, skb). Note that B
is not given the value ska but is directly given the value pub(ska),
that is the public key corresponding to A’s private key.

B(b, a)
def
=

newnb.in(c, y).
if proj2(N) = pub(ska) then
out(c, aenc(⟨proj1(N), ⟨nb, pub(skb)⟩⟩, pub(ska))).0
else out(c, senc(nb, pub(skb))).0

Intuitively, this protocol preserves anonymity if an attacker can-
not distinguish whether b is willing to talk to a (represented by the
process B(b, a)) or willing to talk to a′ (represented by the process
B(b, a′)), provided a, a′ and b are honest participants. For illus-
tration purposes, we also consider the process B′(b, a) obtained
from B(b, a) by replacing else out(c, senc(nb, pub(skb))).0 by
else 0. We will see that the “decoy” message plays a crucial role
to ensure privacy.

A (concrete) process representing a session in which b plays B
with a is (P0;�0) where P0 = B(b, a), and

�0 = {ax1 ⊳ c, ax2 ⊳ a, ax3 ⊳ a
′, ax4 ⊳ b,

ax5 ⊳ pub(ska), ax6 ⊳ pub(ska
′), ax7 ⊳ pub(skb)}

The purpose of �0 is to disclose the names of the agents and their
public keys in order to make them available to the attacker.

2.2 Semantics
The operational semantics of processes is defined by the relation

�−→ for which some rules are described in Figure 1. Of course, we
have also some rules to deal with conditionals, internal communi-
cations, and choice operators. This relation transforms a concrete
process into a concrete process. Note that the output of a term t is
made “by reference” using the next parameter ax ∣�∣+1. Moreover,
we check the validity of the terms that have to be evaluated during
the execution. Note also that, since we authorize arbitrary terms
for channels, we have to check whether the channel is known by
the attacker or not.

EXAMPLE 2. Continuing Example 1, we have that:

(P0;�0)
def
= ({B(b, a)};�0)

�−→ in(ax1,aenc(⟨ax1,ax5⟩,ax7))−−−−−−−−−−−−−−−−−→ ({P1};�0)
out(ax1,ax8)−−−−−−−−→ ({0};�0 ∪ {ax8 ⊳ u})

where u = aenc(⟨c, ⟨nb, pub(skb)⟩⟩, pub(ska)) and for some plain
process P1.

Considering the same sequence of reductions starting from the
process ({B(b, a′)};�0) yields the process:

({0}; �0 ∪ {ax8 ⊳ aenc(nb, pub(skb))}).

Indeed, in such a situation, the equality test will be false and the
“decoy” message will be sent.

Intuitively, two processes are equivalent if they cannot be distin-
guished by any active attacker. Equivalences can be used to formal-
ize many interesting security properties, in particular privacy-type
properties, such as those studied in [16]. However, proofs are dif-
ficult because of the universal quantification over all contexts. For
this reason, we consider here trace equivalence that intuitively cap-
tures the same notion. First, we introduce a notion of intruder’s
knowledge that has been extensively studied (see e.g. [1]).

DEFINITION 2. Two concrete frames � and �′ are statically
equivalent, written � ∼ �′, when dom(�) = dom(�′) and when:

∙ for any ground recipe � such that param(�) ⊆ dom(�), we
have that valid(��) if, and only if, valid(��′);

∙ for any ground recipes �, �′ such that param({�, �′}) ⊆
dom(�), and valid(��), valid(��′), we have that ��↓ =
�′�↓ if, and only if, ��′↓ = �′�′↓.

EXAMPLE 3. Consider the two concrete frames introduced in
Example 2:

∙ �1 = �0 ∪ {ax8 ⊳ aenc(⟨c, ⟨nb, pub(skb)⟩⟩, pub(ska))};

∙ �′
1 = �0 ∪ {ax8 ⊳ aenc(nb, pub(skb))}.

Actually, they are in static equivalence. This is a non-trivial equiv-
alence. Intuitively, there is no test that allows one to distinguish
these two frames since the decryption key skb is not available and
the message stored in ax8 can not be reconstructed (nb is not avail-
able to the attacker).

Let A be the alphabet of actions for our semantics. For every
w ∈ A∗ the relation w−→ on concrete processes is defined in the
usual way. For s ∈ (A ∖ {�})∗, the relation s⇒ on concrete pro-
cesses is defined by: (PA;�A)

s⇒ (PB ;�B) if, and only if there
exists w ∈ A∗ such that (PA;�A)

w−→ (PB ;�B) and s is obtained
by erasing all occurrences of � .

Let A = (P1;�1) be an intermediate process. We define the
following set:

trace(A) = {(s, �2) ∣ (P1;�1)
s⇒ (P2;�2) for some (P2;�2)}.

DEFINITION 3 (TRACE EQUIVALENCE ≈t). Let A and B be
two concrete processes. The processes A and B are trace equiva-
lent, denoted by A ≈t B, if for every (s, �) ∈ trace(A) there exists
(s′, �′) ∈ trace(B) such that s = s′ and � ∼ �′ (and conversely).

EXAMPLE 4. Continuing Example 1, we have that:

({B(b, a)};�0) ≈t ({B(b, a′)};�0).

Again, this is a non-trivial equivalence that illustrates the anonymity
property. However, as noticed in [14], the “decoy” message plays
an important role. Indeed, considering now the process B′(b, a),
we have that:

({B′(b, a)};�0) ∕≈t ({B′(b, a′)};�0).

This can be easily shown by considering the sequence of actions
s = in(ax1, aenc(⟨ax1, ax5⟩, ax7)) ⋅ out(ax1, ax8). We have
that (s, �1) ∈ trace(({B′(b, a)};�0)) (as in Example 2). How-
ever, this sequence s does not exist for ({B′(b, a′)};�0).

Now, we are able to state our main result:

THEOREM 1. Let A and B be two concrete processes. The
problem whether A and B are trace equivalent is decidable.

3. SYMBOLIC SEMANTICS
In this section, we propose a symbolic semantics for our calculus

following e.g. [8]. By treating inputs symbolically, our symbolic
semantics avoids potentially infinite branching of execution trees
due to inputs from the environment. Correctness is maintained by
associating with each process a set of constraints on terms. We then
define symbolic trace equivalence which is shown to be sound and
complete with respect to concrete trace equivalence.

3.1 Initial constraint systems
An (initial) constraint system represents the possible executions

of a protocol once an interleaving has been fixed.

DEFINITION 4. An initial constraint system is either ⊥ or a tu-
ple (Φ;D;E) where:

1. Φ is a sequence of the form {ax1 ⊳v1, . . . , axm ⊳vm} where
v1, . . . , vm are terms;

2. D is a sequence of deducibility constraints

X1, i1
?

⊢ u1 ∧ . . . ∧ Xn, in
?

⊢ un where

∙ X1, . . . , Xn are distinct second-order variables,
u1, . . . , un are terms, and 0 ≤ i1 ≤ . . . ≤ in ≤ m;

∙ for every 0 ≤ k ≤ m, vars1(vk) ⊆
S

ij<k{uj}.

3. E is a conjunction of equations and disequations between
terms such that vars1(E) ⊆ {u1, . . . , un}.

Note that each variable x occurs first in a deducibility constraint
whose right member is exactly x. We also assume that the variables
that occur in E have been introduced in a deducibility constraint.
This allows us to ensure that once the ground recipes associated
to the second order variables are fixed, then the values of the first-
order variables are uniquely determined.

Note also that all the variables that occur in such a system are
free. The variables Xi represent the recipes that might be used to
deduce the right-hand side of the deducibility constraint. The in-
dices indicate the support of the variable, i.e. which initial segment
of the frame can be used. Note that Φ is not a concrete frame: the
terms v1, . . . , vm are not necessarily ground and may contain some
destructors.

DEFINITION 5. A solution of an initial constraint system C =
(Φ;D;E) consists of a substitution � mapping vars1(C) to ground
constructor terms and a substitution � mapping vars2(C) to ground
recipes such that:

∙ for every ax i ⊳ vi in Φ, we have that valid(vi�);

∙ for every Xi, j
?

⊢ ui in D, param(Xi�) ⊆ {ax1, . . . , ax j},
valid(ui�), and Xi�(Φ�)↓ = ui�↓;

∙ for every equation u
?
= v in E, valid(u�), valid(v�), and

u�↓ = v�↓;

∙ for every disequation u
?

∕= v in E, ¬valid(u�), or
¬valid(v�), or u�↓ ∕= v�↓.

We denote by Solinit(C) the set of solutions of C. By convention, we
have that Solinit(⊥) = ∅.

Let C be an initial constraint system and � be a substitution such
that (�, �) ∈ Solinit(C) for some �. Note that once � is fixed, the
associated substitution � is uniquely defined.

EXAMPLE 5. Let C1 = (Φ1;D1;E1) where:

∙ Φ1 = �0 ∪ {ax8 ⊳ v8} where v8 is equal to
aenc(⟨proj1(adec(y, skb)), ⟨nb, pub(skb)⟩⟩, pub(ska))

∙ D1 = {X, 7
?

⊢ c; Y, 7
?

⊢ y; Z, 7
?

⊢ c}; and

∙ E1 = {proj2(adec(y, skb))
?
= pub(ska)}

C1 is an initial constraint system. We can check that (�, �) ∈
Solinit(C1) where:

∙ � = {X 7→ ax1, Y 7→ aenc(⟨ax1, ax5⟩, ax7), Z 7→ ax1};

∙ � = {y 7→ aenc(⟨c, pub(ska)⟩, pub(skb))}.

The structure of an initial constraint system C = (Φ;D;E) is

given by {(X, i) ∣ X, i
?

⊢ u ∈ D for some u}, and dom(Φ). We
are now able to define our notion of symbolic equivalence between
sets of initial constraint systems. This notion will be useful later on
to define our notion of symbolic trace equivalence (see Section 3.2).
The remaining of this paper is entirely devoted to the problem of
deciding this notion of symbolic equivalence.

DEFINITION 6. Let Σ and Σ′ be two sets of initial constraint
systems having the same structure. We have that Σ ≈init Σ

′ if for
all C ∈ Σ, for all (�, �) ∈ Solinit(C), there exists C′ ∈ Σ′ and a
substitution �′ such that (�′, �) ∈ Solinit(C′) and Φ�↓ ∼ Φ′�′↓
where C = (Φ;D;E), and C′ = (Φ′;D′;E′) (and conversely).

3.2 Symbolic calculus
From a concrete process (P;�) we compute the set of initial

constraint systems capturing its possible executions, starting from
the symbolic process (P;�; ∅; ∅).

DEFINITION 7. A symbolic process is a tuple (P; Φ;D;E):

∙ C = (Φ;D;E) is an initial constraint system; and

∙ P is a multiset of plain processes with fv(P) ⊆ vars1(C).

The semantics of symbolic processes is defined by the relation
�s−−→s for which some rules are described in Figure 2. This relation

transforms a symbolic process into a symbolic process. The aim of
this symbolic semantics is to avoid the infinite branching due to the
inputs of the environment. This is achieved by keeping variables
rather than input terms. The constraint system gives a finite repre-
sentation of the value that these variables are allowed to take. As
in our concrete semantics, we define w−→s and s⇒s.

({in(u, x).P} ⊎ P; Φ;D;E)
in(X,Y)−−−−−→s ({P} ⊎ P; Φ;D′;E) (INs)

where D′ = D ∧ X, ∣Φ∣
?

⊢ u ∧ Y, ∣Φ∣
?

⊢ x and Y,X are fresh variables

({out(u, t).P} ⊎ P; Φ;D;E)
out(X,ax ∣Φ∣+1)−−−−−−−−−→s ({P} ⊎ P; Φ ∪ {ax ∣Φ∣+1 ⊳ t};D′;E) (OUTs)

with D′ = D ∧X, ∣Φ∣
?

⊢ u and X is a fresh variable

Figure 2: Symbolic semantics

DEFINITION 8. Let A = (PA;�A) and B = (PB ;�B) be two
concrete processes. They are in symbolic trace equivalence if for
every sequence trs of symbolic actions, we have:

{(Φ′
A;D

′
A;E

′
A) ∣ (PA;�A; ∅; ∅)

trs⇒s (P ′
A; Φ

′
A;D

′
A;E

′
A)}

≈init

{(Φ′
B ;D

′
B ;E

′
B) ∣ (PB ;�B ; ∅; ∅)

trs⇒s (P ′
B ; Φ

′
B ;D

′
B ;E

′
B)}

We can show that symbolic trace equivalence exactly captures
trace equivalence.

THEOREM 2. Let A = (PA;�A) and B = (PB ;�B) be two
concrete processes. They are in trace equivalence if, and only if,
they are in symbolic trace equivalence.

Now, since the symbolic transition system is finite, we only have
to show that symbolic trace equivalence is decidable. However,
for processes with non-trivial branchings, the sets of constraints in
Definition 8 are not reduced to singletons: we have to consider sets
(disjunctions) of contraints.

EXAMPLE 6. Actually, the system C1 (see Example 5) is one of
the constraint systems obtained by applying our symbolic rules on
(P0;�0; ∅; ∅) and considering trs = in(X,Y) ⋅ out(Z, ax8). The
other one (for the same sequence trs) is C2 = (Φ2;D2;E2) where
D2 = D1,

∙ Φ2 = �0 ∪ {ax8 ⊳ aenc(nb, pub(skb))}, and

∙ E2 = {proj2(adec(y, skb))
?

∕= pub(ska)}.

For the same sequence trs, similar constraint systems, denoted C′
1

and C′
2, can be derived for the process ({B(b, a′)};�0). The oc-

currences of ska will be replaced by ska′.
To establish symbolic trace equivalence between the processes

({B(b, a)};�0) and ({B(b, a′)};�0), we will need in particular
to check that {C1, C2} ≈init {C′

1, C′
2}.

4. FRAMEWORK
Our procedure for deciding symbolic equivalence between sets

of constraint systems requires a slightly different setting from the
one introduced in Section 3. Therefore, we adapt and generalize
several notions and definitions. In particular, our algorithm (see
Section 5) considers constructor terms only. In this section, we
show how to get rid of destructor symbols and of some recipes, and
we prove that our new notion of symbolic equivalence coincides
with the one introduced in Section 3 on sets of initial constraint
systems.

4.1 Frames
The purpose of a frame is to record the sequence of messages (or

terms in a symbolic execution) that have been sent by the partici-
pants of the protocol. We extend this notion to record some addi-
tional information on attacker’s deductions. Typically the element

sdec(X, �), i ⊳ u records that, using a decryption with the recipe �,
on top of a recipe X , allows one to get u (at stage i). After record-
ing this information in the frame, we may forbid the attacker to use
a decryption on top of X , forcing him to use this “direct access”
from the frame.

DEFINITION 9 (FRAME). A (ground) frame Φ is a sequence
Φ = �1, i1 ⊳ u1, . . . , �n, in ⊳ un where:

∙ �1, . . . , �n are (ground) recipes;

∙ i1, . . . , in are integers; and

∙ u1, . . . , un are (ground) constructor terms.

The domain of the frame Φ is dom(Φ) = AX ∩ {�1, . . . , �n}. It
must be equal to {ax1, . . . , axm} for some m that is called the size
of Φ. Such a frame Φ defines a substitution on dom(Φ).

In order to restrict the set of recipes we have to work with, we
define the following set Πr:

Πr =

� ∈ Π

g(�1, . . . , �n) ∈ st(�) for some g ∈ ℱd

⇒ Top(�1) ∕∈ ℱc

ff
where Top(u) denotes the root symbol of u.

For instance, sdec(senc(ax1, ax1), ax2) is not in Πr. When
checking static equivalence (resp. symbolic equivalence) between
frames (constraint systems) that only contain constructor terms, we
can restrict ourselves to consider only recipes that are in Πr. Thus,
in the remainder, we will only consider recipes in Πr.

4.2 Constraint systems
We slightly generalize the constraint systems introduced in Sec-

tion 3. Let us explain how and why. According to Section 3, we
need to decide symbolic equivalence of sets (disjunctions) of con-

straint systems, e.g. {C1, C2}
?
≈ {C′

1, C′
2}. We cannot split these

sets and consider instead sets of pairs, because the solutions of, say,
C1 might be covered by both C′

1 and C′
2 and, conversely, some so-

lutions of C′
1 might correspond to solutions of C2. Now, if we wish

to apply a transformation rule, to one of the component, say C1,
our choice must be consistent with the transformation performed
on the other components C2, C′

1, C′
2. For instance if we guess that a

key is deducible in C1 using a recipe �, we must consistently use �
in the constraints C′

1, C′
2, and in turn in C2. In summary, we need

to make this choice for the whole pair of sets. Now, if the key is
assumed to be non-deducible in C1, this must also be recorded in
the other components. In short, we need to split the solutions into
disjoint sets for every component. This yields negative constraints,
typically a constraint that states that a key is not deducible.

In summary, we extend the constraints, adding some negative
information.

DEFINITION 10 (CONSTRAINT SYSTEM). It is either ⊥ or a
tuple (Φ;D;E;Er;ND) where:

1. Φ is a frame, whose size is some m;

2. D is a sequence X1, i1
?

⊢ u1; . . . ; Xn, in
?

⊢ un where

∙ X1, . . . , Xn are distinct second-order variables,
u1, . . . , un are constructor terms, and we have that
0 ≤ i1 ≤ . . . ≤ in ≤ m.

∙ for every �, i ⊳ u in Φ, vars1(u) ⊆
S

ij<i vars
1(uj);

3. E =
V

k uk
?
= vk ∧

V
i ∀x̃i ⋅ [

W
j ui,j

?

∕= vi,j] where the
terms uk, vk, ui,j and vi,j are constructor terms.

4. Er =
V

i �i
?
= �′i ∧

V
j �j

?

∕= �′j ∧
V

k Top(�k)
?

∕= fk where
�i, �

′
i, �j , �

′
j , �k are recipes in Πr and fk are constructor

symbols.

5. ND =
V

i ∀x̃i.[ui

?

∕= vi ∨
W

j ki,j ∕
?

⊢ wi,j] where ui, vi, wi,j

are constructor terms and 0 ≤ ki,j ≤ m.

In Section 2, we define vars1(C) as the set of all first order vari-
ables that occur in C. With this extended definition of a constraint
system, the set vars1(C) will denote the free variables that occur
in C, i.e. those that do not occur explicitly under a forall quantifi-
cation.

In order to define the notion of solution for such a constraint sys-
tem, we have first to give the semantics of the formulas ND and E.
The formulas ND and E are logic formulas built upon elemen-
tary formulas using classical connectives. The semantics for the
elementary formulas are given below and is extended as expected
to general formulas. Let � be a substitution mapping vars2(C)
to ground recipes, and � be a substitution mapping vars1(C) to
ground constructor terms. We have that:

∙ � ⊨ (i ∕
?

⊢ u) iff �Φ�↓ ∕= u�↓ for any ground recipe � ∈ Πr

with param(�) ⊆ {ax1, . . . , ax i};

∙ � ⊨ u
?

∕= v, iff u� ∕= v�;

∙ � ⊨ �1
?
= �2 (resp. � ⊨ �1

?

∕= �2) iff �1� = �2� (resp.
�1� ∕= �2�);

∙ � ⊨ Top(�)
?

∕= f iff Top(��) ∕= f.

DEFINITION 11. A solution of C = (Φ;D;E;Er;ND) con-
sists of a substitution � mapping vars1(C) to ground constructor
terms and a substitution � mapping vars2(C) to ground recipes
in Πr, such that:

1. for every Xi, j
?

⊢ ui in D, we have that Xi�(Φ�)↓ = ui�↓
and param(Xi�) ⊆ {ax1, . . . , ax j};

2. � ⊨ ND ∧ E and � ⊨ Er .

We denote by Sol(C) the set of solutions of C. By convention,
Sol(⊥) = ∅.

The structure of a system C = (Φ;D;E;Er;ND) is given by

Er , {(X, i) ∣X, i
?

⊢ u ∈ D}, and {(�, i) ∣ �, i ⊳ u ∈ Φ}. Two con-
straint systems C and C′ have the same structure if their underlying
structure are equal.

For this generalized notion of constraint systems, we can define
the notion of symbolic equivalence accordingly.

DEFINITION 12. Let Σ and Σ′ be two sets of constraint sys-
tems having the same structure. We have that Σ ≈s Σ′ if for all
C ∈ Σ, for all (�, �) ∈ Sol(C), there exists C′ ∈ Σ′ and a sub-
stitution �′ such that (�′, �) ∈ Sol(C′) and Φ�↓ ∼ Φ′�′↓ where
C = (Φ;D;E;Er;ND), and C′ = (Φ′;D′;E′;E′

r;ND ′) (and
conversely).

Note also that given an initial constraint system C0 = (Φ0;D0;E0)
that may contain some destructors, we can transform it into an
“equivalent” constraint system C = (Φ;D;E;Er;ND) (without
destructors) in the sense that:

∙ for every (�0, �) ∈ Solinit(C0) with recipes in Πr, there exists
(�, �) ∈ Sol(C) such that Φ0�0↓ = Φ�↓; and

∙ for every (�, �) ∈ Sol(C), there exists (�0, �) ∈ Solinit(C0)
such that Φ�↓ = Φ0�0↓.

Roughly, the transformation consists in guessing the possible re-
ductions, in the spirit of [13]. We write Tr(C0) to denote the result
of applying the transformation to C0.

EXAMPLE 7. Going back to the initial constraint system C1

(resp. C2) described in Example 5 (resp. Example 6), the constraint
system Tr(C1) is obtained from C1 by applying the substitution
{y 7→ aenc(⟨y′, pub(ska)⟩, pub(skb))} (and normalizing the re-
sult) whereas Tr(C2) is obtained from C2 by replacing its disequa-

tion with ∀y′ ⋅ y
?

∕= aenc(⟨y′, pub(ska)⟩, pub(skb)). Note that in
both cases, we get rid of all the destructors.

PROPOSITION 1. Let Σ = {C1, . . . , Ck}, Σ′ = {C′
1, . . . , C′

ℓ}
be two finite sets of initial constraint systems. We have that:

Σ ≈init Σ
′ ⇔ {Tr(Ci) ∣ Ci ∈ Σ} ≈s {Tr(C′

i) ∣ C′
i ∈ Σ′}

5. ALGORITHM
The main result of this section is a decision procedure for sym-

bolic equivalence between sets of constraint systems obtained by
applying our transformation Tr() on sets of initial constraint sys-
tems.

THEOREM 3. Given two sets Σ, Σ′ of initial constraint systems,
it is decidable whether {Tr(C) ∣ C ∈ Σ} ≈s {Tr(C′) ∣ C′ ∈ Σ′}.

Our decision algorithm works by rewriting pairs of sets of con-
straint systems, until a trivial failure or a trivial success is found.
These rules are branching: they rewrite a pair of sets of constraint
systems into two pairs of sets of constraint systems. Transform-
ing the pairs of constraints therefore builds a binary tree. Termi-
nation requires to follow a particular strategy that is explained in
Section 5.3. The transformation rules are sound: if all leaves are
success leaves, then the original pair of sets of constraint systems
is equivalent. They are finally complete: if the two original sets
of constraint systems are equivalent then all the leaves are success
leaves.

5.1 Transformation rules
The transformation rules are displayed in Figure 3 for a single

constraint system (we only write the components of the constraint
systems that are modified during an application of an instance of a
rule). Since we intend to decide symbolic equivalence between two
sets of constraint systems, we will then explain how to apply these
transformation rules in such a setting (see Section 5.2).

The CONS rule simply guesses whether the top symbol of the
recipe is a constructor f. Either it is, and then we can split the

Transformation rules for satisfiability:

CONS(X, f) : X, i
?

⊢ t;E;Er ����:
XXXXz

X1, i
?

⊢ x1; ⋅ ⋅ ⋅ ;Xn, i
?

⊢ xn;E ∧ t
?
= f(x1, . . . , xn);Er ∧X

?
= f(X1, . . . , Xn)

X, i
?

⊢ t ; E; Er ∧ Top(X) ∕= f

where x1, . . . , xn, X1, . . . Xn are fresh variables.

AXIOM(X, �) : X, i
?

⊢ u; E; Er
����:
XXXXz

E ∧ u
?
= v; Er ∧X

?
= �

X, i
?

⊢ u; E; Er ∧X
?

∕= �

If (�, j ⊳ v) ∈ Φ and i ≥ j.

DEST(�, l → r, i) : E;ND ����:
XXXXz

g(�,X2, . . . , Xn), i ⊳ w;X2, i
?

⊢ u2; . . . ;Xn, i
?

⊢ un;Ep ∧ v
?
= u1;ND

E;ND ∧ ∀x̃ ⋅ [v ∕= u1 ∨ i ∕
?

⊢ u2 ∨ . . . ∨ i ∕
?

⊢ un]
If (�, j ⊳ v) ∈ Φ with j ≤ i. X2, . . . , Xn are fresh variables, and x̃ are the variables that occur in g(u1, . . . , un) → w a fresh renaming of
the rewriting rule l → r.

Additional transformation rules for static equivalence:

EQ-LEFT-LEFT(�1, �2) : E ����:
XXXXz

E ∧ u1
?
= u2

E ∧ u1

?

∕= u2

If (�1, i1 ⊳ u1), (�2 ⊳ u2) ∈ Φ for some u1, u2, i1, i2.

EQ-LEFT-RIGHT(�1, X2) : E ����:
XXXXz

E ∧ u1
?
= u2

E ∧ u1

?

∕= u2

If (�1, i1 ⊳u1) ∈ Φ and (X2, i2
?

⊢ u2) ∈ D for some u1, u2, i1, i2 such
that i2 < i1.

EQ-RIGHT-RIGHT(X, �) : X, i
?

⊢ u; E; Er ����:
XXXXz

E ∧ u
?
= v; Er ∧X

?
= �

X, i
?

⊢ u; E ∧ u
?

∕= v; Er

where � ∈ T (ℱc, dom(�)) and v = �� with � = {Y 7→ u ∣ (Y, j
?

⊢ u) ∈ D ∧ j ≤ i}.

DED-ST(�, f) : E;ND ����:
XXXXz

X1,m
?

⊢ x1; ⋅ ⋅ ⋅ ; Xn,m
?

⊢ xn; E ∧ u
?
= f(x1, . . . , xn); ND

E; ND ∧ ∀x̃ ⋅ [u ∕= f(x1, . . . , xn) ∨m ∕
?

⊢ x1 ∨ . . . ∨m ∕
?

⊢ xn]

If (�, i ⊳ u) ∈ Φ. The sequences x̃ def
= x1, . . . , xn, and X1, . . . , Xn are sequences of fresh variables and m denotes the size of Φ.

All rules assume that the equations have a mgu that is eagerly applied to the resulting constraint, that the disequations have been simplified.

Moreover, if there exists a constraint X, i
?

⊢ u with u ∕∈ X 1 and on which the rule CONS and AXIOM cannot be applied on it, and the rule
DEST can not be applied anymore, then we replace C with ⊥.

Figure 3: Transformation rules

deducibility constraint, or it is not and we add a disequation on
recipes forbidding this. The rule AXIOM also guesses whether a
trivial recipe (a left member of the frame, typically an axiom ax i)
can be applied. If so, the constraint can simply be removed. Oth-
erwise, we also add a disequation on recipes forbidding it. The
DEST rule is more tricky. If v is a term of the frame, that can be
unified with a non variable subterm of a left side of a rewrite rule
(for instance v is a ciphertext), we guess whether the rule can be
applied to v. This corresponds to the equation u1

?
= v, that yields

an instance of w, the right member of the rewrite rule, provided that
the rest of the left member is also deducible: in case of symmetric

encryption, we get a constraint X2, j
?

⊢ u2. The various equality
rules guess equalities between right-hand sides of deducibility con-
straints and/or members of the frame. Finally, the last transforma-
tion rule is the only rule that is needed to get in addition a static
equivalence decision algorithm, as in [1]. Thanks to this rule, if a
subterm of the frame is deducible, then there will be a branch in
which it is deduced.

The idea behind these rules is to transform a system into simpler
ones. Typically, as it is done in [11], we want to consider systems
in which right-hand sides of deducibility constraints are distinct
variables (assuming that the mgu corresponding to the equations
has been applied on the constraints). However, in presence of dis-
equations, putting the systems in such a form does not guarantee
anymore that the two resulting systems will be in symbolic equiva-
lence. Let us illustrate this using a simple example.

EXAMPLE 8. Consider the constraint systems

∙ C = (ax1, 1 ⊳ a; X, 1
?

⊢ x; ∅; ∅; ∅), and

∙ C′ = (ax1, 1 ⊳ a; X, 1
?

⊢ x; x
?

∕= ⟨a, a⟩; ∅; ∅).

Although these two systems have the expected form, they are not in
symbolic equivalence (consider for instance the recipe ⟨ax1, ax1⟩).

Once the system is put in this kind of “pre-solved form”, the
basic idea will be to continue to apply our transformation rules to
“match” the disequations of each constraint system. For this, we
want to transform the disequations in which some names or uni-
versally quantified variable occur until obtaining disequations that
only contain free variables and public function symbols. This will
guarantee that there exists a recipe associated to this term and this
gives us the way to match it in another constraint system. Once
the system is transformed into such a new kind of “solved form”,
we can now easily conclude. Indeed, since we also take care of
static equivalence on the resulting frames, disequations that corre-
spond to public disequality tests are easily transferable from one
constraint system to another without any additional checks.

EXAMPLE 9. Continuing Example 8 and assuming that the pair-
ing operator is the only constructor symbol, we will go on, applying

CONS. Let Φ0 = {ax1, 1 ⊳ a}, D = {X1, 1
?

⊢ x1;X2, 1
?

⊢ x2},

and Er = {X ?
= ⟨X1, X2⟩}. One of the resulting pair will be the

pair (C1, C′
1) where:

∙ C1 = (Φ0;D;x
?
= ⟨x1, x2⟩;Er; ∅);

∙ C′
1 = (Φ0;D;x

?
= ⟨x1, x2⟩ ∧ [x1

?

∕= a ∨ x2

?

∕= a];Er; ∅);

Now, by applying the AXIOM rule twice, one of the resulting pair
will be the pair (C2; C′

2) where:

∙ C2 = (Φ0; ∅;x
?
= ⟨a, a⟩;X = ⟨ax1, ax1⟩; ∅); and

∙ C′
2 = ⊥ since the disequations will be trivially not satisfied.

These two constraint systems are not in symbolic equivalence.

Now, to ensure that we will reach such a solved form in which
all the disequations are matched, the rule EQ-RIGHT-RIGHT plays
an important role.

EXAMPLE 10. Consider the two constraint systems:

∙ C = (Φ0;D0;x
?

∕= h(y) ∧ x
?

∕= y; ∅; ∅);

∙ C′ = (Φ0;D0; ∅; ∅; ∅)

where Φ0 = {ax1, 1 ⊳ a} and D0 = {X, 1
?

⊢ x; Y, 1
?

⊢ y}.
We could apply CONS replacing x with h(x′) to simplify the dis-

equation x
?

∕= h(y) into x′
?

∕= y. However, this operation will

transform the other disequation, namely x
?

∕= y, into h(x′)
?

∕= y.
Consequently, one of the resulting pair would be made up of two
systems on which the CONS rule is again applicable. Instead of

this, since the disequation x
?

∕= h(y) does not contain any name, it
can be matched to the other system, so we apply EQ-RIGHT-RIGHT.
This leads us to the pairs (⊥, C′

1) and (C; C′
2) where:

∙ C′
1 = (Φ0; {Y, 1

?

⊢ y};x ?
= h(y);X

?
= h(Y); ∅); and

∙ C′
2 = (Φ0;D0;x

?

∕= h(y); ∅; ∅).

From the pair (⊥, C′
1) we will conclude that symbolic equivalence

does not hold. Regarding the pair (C; C′
2), we can go on and reach

a solved form by applying EQ-RIGHT-RIGHT obtaining again two
pairs of constraint systems. The first one will be of the form (⊥; C′

3)
and the second one will contain two systems in which all the dise-
quations are matched.

5.2 How to apply the rules
We explain here how the transformation rules can be used on a

pair of sets of constraint systems, assuming that all the constraint
systems have the same structure. Actually, the basic idea is to ap-
ply the same transformation rule (with the same parameters) on
each constraint system. Note that, the parameters of a transforma-
tion rule only depend on the structure of the underlying constraint
system. Thanks to this, the simultaneous application of a transfor-
mation rule can be defined in a natural way. It consists of applying
the same instance of the transformation rule on each constraint sys-
tem that occurs in the two sets. So an application of a rule on a
pair (Σ,Σ′) of sets of constraint systems will result in two pairs
(Σ1,Σ

′
1) and (Σ2,Σ

′
2)

Let (Σ,Σ′) be a pair of sets of constraint systems having the
same structure. Let Σ = {C1, . . . , Ck}, Σ′ = {C′

1, . . . , C′
ℓ}, and R

be an instance of a transformation rule. An application of R on the
pair (Σ,Σ′) yields two pairs (Σ1,Σ

′
1) and (Σ2,Σ

′
2) such that:

∙ Σi = {Ci,1, . . . , Ci,k} for i = 1, 2; and

∙ Σ′
i = {C′

i,1, . . . , C′
i,ℓ} for i = 1, 2.

where (C1,j , C2,j) (resp. (C′
1,,j′ , C′

2,j′)) is the pair of constraint
systems obtained by applying R on Cj (resp. C′

j′).
Actually, deciding symbolic equivalence between two sets raises

two main issues:

∙ matching an existing solution from one set to the other;

∙ and deciding whether the two resulting frames are statically
equivalence or not.

When checking static equivalence, we have to check that the same
equalities hold in both resulting frames. So, in order to develop a
simple test on leaves, it is important to gather the two resulting sets
of constraint systems when the rule is used to check static equiv-
alence on the resulting frames. This leads us to consider matrices
of constraint systems and two kinds of applications for our rules:
internal and external. An external application will apply a rule on
the whole matrix while an internal application will apply a rule on
one particular line (the same in both matrices) replacing this line
with two new lines.

EXAMPLE 11. Consider the following example where there is
no deducibility constraint. The idea is to simply check whether
static equivalence holds between sets of frames. Let Φ1 = {ax1, 1⊳
k, ax2, 2 ⊳ a} and Φ2 = {ax1, 1 ⊳ k, ax2 ⊳ senc(a, k)}. We con-
sider the systems Ci = (Φi; ∅; ∅; ∅; ∅) for i = 1, 2. Now, we want
to check whether {C1, C2} ≈s {C2}. Actually, symbolic equiva-
lence does not hold since Φ1 ∕∼ Φ2. However, applying DEST, the
only rule that can be applied, will result in the pairs:

({⊥, C′
2} , {C′

2}) ({C′′
1 , C′′

2 } , { C′′
2 })

where C′′
1 (resp. C′′

2) are obtained from C1 (resp. C2) by adding the
non-deducibility constraints:

∙ ∀x, y ⋅ [a
?

∕= senc(x, y) ∨ ∕
?

⊢ y] in C′′
1 ;

∙ ∀x, y ⋅ [senc(a, k)
?

∕= senc(x, y) ∨ ∕
?

⊢ y] in C′′
2 .

Note that no transformation rule is applicable on this pair. It
is easy to see that symbolic equivalence holds for the first pair.
Actually, symbolic equivalence also holds on the second pair taking
into account the non-deducibility constraints. However, we do not
want to solve these non-deducibility constraints. Instead, we apply
DEST internally, obtaining one leaf of the form:„

⊥ C′
2

C′′
1 C′′

2

«
,

„
C′
2

C′′
2

«
Then, on the leaves, we check that for each column of one matrix,
there exist a column in the other matrix on which the constaint sys-
tems have the same status, i.e. ⊥ or not. Here, this test will trivially
fail on our unique leaf allowing us to conclude that the two original
sets {C1, C2} and {C2} are not in symbolic equivalence.

5.3 Strategy
Applying blindly the transformation rules does not always termi-

nate (see [11] for an example). As in [11], to avoid non-terminating
behaviors, we fix one of the constraint system, reduce it until reach-
ing a “pre-solved form” (distinct variables in the right-hand sides
of the deducibility constraints), and then move to the next system.
Solving the second system does preserve the property on the first
one. In this way we can reach constraint systems in “pre-solved”
form.

This is not however sufficient: because of the disequations, it
might be not so easy to decide the equivalence of such sets (or
matrices) of constraint systems (see Example 8). Therefore, we
further apply some transformation rules, that allow to simplify the
disequalities. For this second phase, we only need the rules CONS,
AXIOM, EQ-RIGHT-RIGHT. CONS is restricted to the situations in

which there is a disequation x ∕= u and either u is not a name and
contains a name, or else u is not a variable and contains a univer-
sally quantified variable. There is still one difficulty, because, as
before, we may get a non terminating behavior.

EXAMPLE 12. We consider a constraint system in “pre-solved”
form such that:

E = [x1

?

∕= y ∨ x2

?

∕= a] ∧ y
?

∕= ⟨⟨x1, x2⟩, b⟩.

For sake of simplicity, we do not described Φ and D. We simply
assume that the frame contains the terms a and b. First, we apply

AXIOM on x2 (with a), on one branch we will obtain x1

?

∕= y ∧

y
?

∕= ⟨⟨x1, a⟩, b⟩. Then, applying CONS twice, we obtain x1

?

∕=

⟨⟨y1, y2⟩, y3⟩ ∧ [y1
?

∕= x1 ∨ y2
?

∕= a ∨ y3
?

∕= b]. Lastly, applying
AXIOM on y3 (with b), we obtain

x1

?

∕= ⟨⟨y1, y2⟩, b⟩ ∧ [y1
?

∕= x1 ∨ y2
?

∕= a]

getting back to the original set of disequations.

We therefore use the following strategy:

((CONS + EQ-RIGHT-RIGHT)!; AXIOM!)!

where the exclamation mark means “as long as possible”. This
allows us in particular to avoid the non-terminating behavior de-
scribed in Example 12. Now, we claim that irreducible constraints
contain only disequations x ∕= u where u does not contain names
or universally quantified variables and that the transformations are
terminating.

The termination argument is as follows: EQ-RIGHT-RIGHT al-
lows to “externalize” the disjunctions, splitting disjunctive con-
straints, each of which will appear in different matrices. Then,
CONS will allow to decrease the heights of names and universally
quantified variables. Finally, these measures may increase with
AXIOM, but then the replacement substitutes a variable with sup-
port i with terms that only contain variables, whose support is
strictly smaller than i. Furthermore, all these rules will keep the
deducibility constraints in pre-solved form.

5.4 Correctness
The transformation rules yield a finite tree labeled with pairs

of matrices of constraint systems. As briefly explained in Exam-
ple 11, our test on the leaves consists of checking that for each
column in one matrix, there exists a column in the other matrix
such that each constraint system has the same status. We say that
LeafTest(M,M ′) = true when this syntaxic test holds on the leaf
(M,M ′). Otherwise, we say that LeafTest(M,M ′) = false.

PROPOSITION 2. Let (Σ0,Σ
′
0) be a pair of sets of constraint

systems obtained by applying our transformation Tr() on sets of
initial constraint systems, and consider a binary tree obtained by
following the strategy described in Section 5.3.

∙ soundness: If all leaves of a tree are labeled with (M,M ′)
such that LeafTest(M,M ′) = true, then Σ0 ≈s Σ′

0.

∙ completeness: If Σ0 ≈s Σ′
0, then all leaves of a tree are

labeled with (M,M ′) with LeafTest(M,M ′) = true.

The idea of the proof is to first analyse the structure of the leaves
and then to show that our notion of equivalence is preserved through
application of our transformation rules: for any transformation rule,
if the two pairs of sets of constraint systems labeling the sons of a
node are respectively in symbolic equivalence, then the same prop-
erty holds for the father.

6. CONCLUSION
An Ocaml implementation of an early version of the procedure

described in this paper has already been completed. This procedure
extends [13] to set of constraints, including disequalities. Actually,
checking symbolic equivalence between sets of constraint systems
is quite efficient. However, the interleaving step, that is required
for moving from symbolic equivalence to trace equivalence, is per-
formed in a naive way and it appears that this step is expensive
from the computation point of view. We tested this implementation
on the private authentication protocol and the two versions of the
e-passport protocol. Our implementation concludes within a few
minutes for the private authentication protocol and the flawed ver-
sion of the e-passport protocol (considering 2 sessions only). We
also tried our implementation on the fixed version of the e-passport
and it took more time (around 2 days).

In order to get an efficient procedure, it is necessary to come
with some optimisations to reduce the search space and the num-
ber of interleavings. This problem is not specific to trace equiva-
lence and has already been studied in the context of trace properties
(e.g. [22]). However, discarding some “symbolic” interleavings ap-
pears to be challenging for equivalence-based properties. Finally,
we would like to extend the method to other cryptographic primi-
tives, typically blind signatures and zero-knowledge proofs.

7. REFERENCES
[1] M. Abadi and V. Cortier. Deciding knowledge in security

protocols under equational theories. Theoretical Computer
Science, 387(1-2):2–32, 2006.

[2] M. Abadi and C. Fournet. Mobile values, new names, and
secure communication. In Proc. 28th Symposium on
Principles of Programming Languages (POPL’01), pages
104–115. ACM Press, 2001.

[3] M. Abadi and C. Fournet. Private authentication. Theoretical
Computer Science, 322(3):427–476, 2004.

[4] M. Abadi and A. Gordon. A calculus for cryptographic
protocols: The spi calculus. In Proc. 4th Conference on
Computer and Communications Security (CCS’97), pages
36–47. ACM Press, 1997.

[5] M. Arapinis, T. Chothia, E. Ritter, and M. Ryan. Analysing
unlinkability and anonymity using the applied pi calculus. In
Proc. of 23rd IEEE Computer Security Foundations
Symposium (CSF’10), pages 107–121. IEEE Computer
Society Press, 2010.

[6] A. Armando et al. The AVISPA Tool for the automated
validation of internet security protocols and applications. In
Proc. 17th Int. Conference on Computer Aided Verification
(CAV’05), volume 3576 of LNCS, pages 281–285. Springer,
2005.

[7] M. Baudet. Deciding security of protocols against off-line
guessing attacks. In Proc. 12th Conference on Computer and
Communications Security (CCS’05), pages 16–25. ACM
Press, 2005.

[8] M. Baudet. Sécurité des protocoles cryptographiques :
aspects logiques et calculatoires. Phd thesis, École Normale
Supérieure de Cachan, France, 2007.

[9] B. Blanchet. An Efficient Cryptographic Protocol Verifier
Based on Prolog Rules. In Proc. 14th Computer Security
Foundations Workshop (CSFW’01), pages 82–96. IEEE
Comp. Soc. Press, 2001.

[10] B. Blanchet, M. Abadi, and C. Fournet. Automated
verification of selected equivalences for security protocols.

Journal of Logic and Algebraic Programming, 75(1):3–51,
2008.

[11] V. Cheval, H. Comon-Lundh, and S. Delaune. Automating
security analysis: symbolic equivalence of constraint
systems. In Proc. 5th International Joint Conference on
Automated Reasoning (IJCAR’10), volume 6173 of LNAI,
pages 412–426. Springer-Verlag, 2010.

[12] Y. Chevalier and M. Rusinowitch. Decidability of symbolic
equivalence of derivations. Journal of Automated Reasoning,
2011. To appear.

[13] H. Comon-Lundh and S. Delaune. The finite variant
property: How to get rid of some algebraic properties. In
Proc. 16th International Conference on Rewriting
Techniques and Applications (RTA’05), LNCS, pages
294–307. Springer, 2005.

[14] V. Cortier and S. Delaune. A method for proving
observational equivalence. In Proc. 22nd Computer Security
Foundations Symposium (CSF’09), pages 266–276. IEEE
Comp. Soc. Press, 2009.

[15] S. Delaune, S. Kremer, and M. D. Ryan. Symbolic
bisimulation for the applied pi-calculus. In Proc. 27th
Conference on Foundations of Software Technology and
Theoretical Computer Science (FSTTCS’07), pages 133–145,
2007.

[16] S. Delaune, S. Kremer, and M. D. Ryan. Verifying
privacy-type properties of electronic voting protocols.
Journal of Computer Security, 17(4):435–487, July 2009.

[17] D. Dolev and A. C. Yao. On the security of public key
protocols. In Proc. 22nd Symposium on Foundations of
Computer Science (FCS’81), pages 350–357. IEEE
Computer Society Press, 1981.

[18] L. Durante, R. Sisto, and A. Valenzano. Automatic testing
equivalence verification of spi calculus specifications. ACM
Transactions on Software Engineering and Methodology,
12(2):222–284, 2003.

[19] N. Durgin, P. Lincoln, J. Mitchell, and A. Scedrov.
Undecidability of bounded security protocols. In Workshop
on Formal Methods and Security Protocols, 1999.

[20] H. Hüttel. Deciding framed bisimulation. In Proc. 4th Int.
Workshop on Verification of Infinite State Systems
(INFINITY’02), pages 1–20, 2002.

[21] J. Millen and V. Shmatikov. Constraint solving for
bounded-process cryptographic protocol analysis. In Proc.
8th ACM Conference on Computer and Communications
Security (CCS’01). ACM Press, 2001.

[22] S. Mödersheim, L. Viganò, and D. A. Basin. Constraint
differentiation: Search-space reduction for the
constraint-based analysis of security protocols. Journal of
Computer Security, 18(4):575–618, 2010.

[23] R. Ramanujam and S. Suresh. Tagging makes secrecy
decidable for unbounded nonces as well. In Proc. 23rd
Conference on Foundations of Software Technology and
Theoretical Computer Science (FSTTCS’03), 2003.

[24] M. Rusinowitch and M. Turuani. Protocol insecurity with
finite number of sessions is NP-complete. In Proc. 14th
Computer Security Foundations Workshop (CSFW’01),
pages 174–190. IEEE Comp. Soc. Press, 2001.

[25] A. Tiu and J. E. Dawson. Automating open bisimulation
checking for the spi calculus. In Proc. 23rd IEEE Computer
Security Foundations Symposium (CSF’10), pages 307–321.
IEEE Computer Society Press, 2010.

