
APTE:

an Algorithm for Proving Trace Equivalence

Vincent Cheval

School of Computer Science, University of Birmingham

Abstract. This paper presents APTE, a new tool for automatically
proving the security of cryptographic protocols. It focuses on proving
trace equivalence between processes, which is crucial for specifying pri-
vacy type properties such as anonymity and unlinkability.

The tool can handle protocols expressed in a calculus similar to the
applied-pi calculus, which allows us to capture most existing protocols
that rely on classical cryptographic primitives. In particular, APTE han-
dles private channels and else branches in protocols with bounded num-
ber of sessions. Unlike most equivalence verifier tools, APTE is guaran-
teed to terminate.

Moreover, APTE is the only tool that extends the usual notion of trace
equivalence by considering “side-channel” information leaked to the at-
tacker such as the length of messages and the execution times. We illus-
trate APTE on different case studies which allowed us to automatically
(re)-discover attacks on protocols such as the Private Authentication pro-
tocol or the protocols of the electronic passports.

1 Introduction

Cryptographic protocols are small distributed programs specifically designed to
ensure the security of our communications on public channels like Internet. It
is therefore essential to verify and prove the correctness of these cryptographic
protocols. Symbolic models have proved their usefulness for verifying crypto-
graphic protocols. However, the many sources of unboundedness in modelling of
the capabilities of an attacker makes it extremely difficult to verify the security
properties of a cryptographic protocol by hand. Thus, developing automatic veri-
fication tools of security protocols is a necessity. Since the 1980s, many tools have
been developed to automatically verify cryptographic protocols (e.g. Scyther
[10], ProVerif [3], Avispa [13] and others) but they mainly focus on trace prop-
erties such as authentication and secrecy, which typically specify that a protocol
cannot reach a bad state. However, many interesting security properties such as
anonymity, unlinkability, privacy, cannot be expressed as a trace property but
require the notion of equivalence property. Intuitively, these properties specify
the indistinguishability of some instances of the protocols. We focus here on
the notion of trace equivalence which is well-suited for the analysis of security
protocols.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Kent Academic Repository

https://core.ac.uk/display/30706961?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Vincent Cheval

Existing Tools. To our knowledge, there are only three tools that can handle
equivalence properties: ProVerif [3], SPEC [12] and AKiSs [9]. The tool
ProVerif originally was designed to prove trace properties but it can also
check some equivalence properties (so-called diff-equivalence) [4] that are usu-
ally too strong to model a real intruder since they consider that the intruder has
complete knowledge of the internal states of all the honest protocols executed.
Note that this is the only tool that can handle an unbounded number of sessions
of a protocol with a large class of cryptographic primitives in practice. However,
the downside of ProVerif is that it may not terminate and it may also return a
false-negative. More recently, the toolAKiSs [9] was developed in order to decide
the trace equivalence of bounded processes that do not contain non-trivial else
branching. This tool was proved to be sound and complete and accepts a large
class of primitives but the algorithm was only conjectured to terminate. At last,
the tool SPEC [12] is based on a decision procedure for open-bisimulation for
bounded processes. The scope is however limited: open-bisimulation coincides
with trace equivalence only for determinate processes and the procedure also as-
sumes a fixed set of primitives (symmetric encryption and pairing), and a pattern
based message passing, hence, in particular, no non-trivial else branching.

Hence, some interesting protocols cannot be handle by these tools. It is par-
ticularly the case for the Private Authentication protocol [2], or the protocols of
the electronic passport [1] since they rely on a conditional with a non-trivial else
branch to be properly modelled. Moreover, even though recent work [6] led to a
new release of ProVerif that can deal with the Private Authentication protocol,
ProVerif is still not able to handle the protocols of the electronic passport and
yields a false positive due to the too strong equivalence that it proves.

At last none of the existing tools take into account the fact that an attacker
can always observe the length of a message, even though it can leak information
on private data. For example, in most of existing encryption schemes, the length
of ciphertext depends on the length of its plaintext. Thus the ciphertext {m}k
corresponding to the encryption of a message m by the key k can always be
distinguished from the ciphertext {m,m}k corresponding to the encryption of
the message m repeated twice by the key k. This is simply due to the fact that
{m,m}k is longer than {m}k. However, these two messages would be considered
as indistinguishable in all previous mentioned tools.

2 Trace equivalence

Our tool is based on a symbolic model where the messages exchanged over the
network are represented by terms. They are built from a set of variables and
names by applying function symbols modelling the cryptographic primitives.
For example, the symbol function senc (resp. sdec) represents the symmetric
encryption (resp. decryption) primitive and the term senc(m, k) models the en-
cryption of a message m by a key k. The behaviour of each primitive is modelled
by a rewriting system. As such, a term sdec(senc(m, k), k) will be rewritten m

to model the fact that decrypting a ciphertext by the key that was used to en-



APTE: an Algorithm for Proving Trace Equivalence 3

crypt indeed yields the plain text. Moreover, to take into account the length
of messages, we associate to each cryptographic primitive f a length function
ℓf : N

n → N where n is the arity of f. Intuitively, a length function represents
the length of the outcome of a cryptographic primitive depending on the length
of his inputs. For example, the length function for the pairing could be the
function ℓ〈 〉(x, y) = x + y + 1. The length function ℓsenc(x, y) = x for the sym-
metric encryption would imply that the length of a ciphertext is always the size
of its plaintext. Typically, each encryption scheme would have a specific length
function that depends on the characteristics of the encryption scheme.

Equivalence of sequence of terms. By interacting with a protocol, an attacker
may obtain a sequence of messages, meaning that not only he knows each mes-
sage but also the order in which he obtained them. Properties like anonymity
rely on the notion of indistinguishability between two sequences of messages.
This is called static equivalence and denoted by ∼. For example, consider the
two sequences of messages Φm = [k; senc(m, k)] and Φn = [k; senc(n, k)] where
m,n are two random numbers. The two sequences Φn and Φm are indistinguish-
able. Indeed, even if the attacker can decrypt the second message using the first
message, i.e. k, he obtains in both cases two random numbers and so does not
gain any particular informations. However, the two sequences [k; senc(m, k);m]
and [k; senc(m, k);n] are distinguishable since the attacker can compare the plain
text of the ciphertext with the third message he obtained.

When the attacker can also compare the size of message, the equivalence is
called length static equivalence and denoted ∼ℓ.

Processes. Participants in the protocol are modelled as processes whose grammar
is as follows:

P | Q P +Q new k;P out(u, v);P in(u, x);P

if u = v then P else Q let x = u in P

where P,Q are processes, u, v are terms and x is a variable. The nil process is
denoted 0. The process P +Q represents the non-deterministic choice between P

and Q. The process new k is the creation of a fresh name. The process out(u, v)
represents the emission of the message v into the channel u. Similarly, in(u, x) is
the process that receives a message on the channel u and binds it to x. Typically,
an attacker can interact with the process by emitting or receiving messages from
honest participants through public channels. Hence we represent possible inter-
actions of the attacker with P by the notion of trace, that is a pair (s, Φ) where
s is the sequence of actions that the attacker performs and Φ is the sequence of
messages that the attacker receives from the honest participants. A process is
said to be determinate when the execution of the process is deterministic. For
example, a process containing the choice operator is not determinate.

Definition 1 ((length) trace equivalence). Let P and Q be two processes.
The processes P and Q are trace equivalence if for all traces (s, Φ) of P there
exists a trace (s′, Φ′) of Q such that s = s′ and Φ ∼ Φ′ (and conversely).



4 Vincent Cheval

Moreover, we say that P and Q are in length trace equivalence when the
length static equivalence ∼ℓ is used to compare the sequence of messages Φ and
Φ′, i.e. Φ ∼ℓ Φ

′.

Intuitively, this definition indicates that whatever the actions the attacker
performs on P , the same actions can be performed on Q and the sequences of
messages obtained in both cases are indistinguishable, and conversely.

3 The tool APTE

We present the tool APTE that decides the trace equivalence for bounded
of (possibly non-determinate, possibly with non-trivial else branches) processes
that use standard primitives, namely signature, pairing, symmetric and asym-
metric encryptions and any one-way functions such as hash, mac, etc. Moreover,
by specifying the linear length functions of each cryptographic primitives, a user
can also use APTE to decide the length trace equivalence between processes.
When the trace equivalence or length trace equivalence between two processes
is not satisfied, APTE provides a witness of the non-equivalence, i.e. it displays
the actions that the attacker has to perform for him to distinguish the two pro-
cesses. Note that, even though it is not the main purpose, APTE can also be
used to verify reachability properties on a protocol.

Theoretical foundations. APTE relies on symbolic traces, that is a finite rep-
resentation of infinitely many traces, to decide the equivalence. In particular
from each symbolic trace of the two processes is extracted two sets of constraint
systems. The two processes are then equivalent if and only if all pairs of sets of
constant systems are symbolically equivalent. The algorithm used in APTE to
decide the symbolic equivalence between sets of constraint systems was proved
to be complete, sound and to always terminate in [7,5]. It relies on a set of rules
on constraint systems that simplify the sets of constraint systems given as input
to render the decision trivial. The extension to length trace equivalence between
processes was presented and proved in [8].

Implementation details. The tool is implemented in Ocaml1 and the source code
has about 12Klocs. The source code is highly modular: each mathematical notion
used in the algorithm is implemented in a separate module. To facilitate any new
extension and optimisation of the tool, the data structures are always hidden in
the modules, i.e. we only use abstract types (sometimes called opaque types) in
the interface files. The format of the comments in the interface files is the one
of Ocamldoc that generates a LaTex file with the documented interfaces.

Availability. APTE is an open source software and is distributed under GNU
General Public Licence 3.0. It can be downloaded at http://projects.lsv.

ens-cachan.fr/APTE/ where a mailing list, some relevant examples and also a
list of publications related or using APTE is available.

1 http://caml.inria.fr



APTE: an Algorithm for Proving Trace Equivalence 5

Anonymity on PrA Status Execution time

Original
satisfy trace equivalence

but length attack
0.01 sec

Fix (one session) safe 0.08 sec

Fix (two sessions) safe 2 hours

Fix (three sessions) safe > 2 days

Unlinkability on BAC Status Execution time

French attack 0.09 sec

UK safe ? > 2 days

Unkinkability on PaA Status Execution time

Original length attack 0.08 sec

Fix safe 2.8 sec

Others Status Execution time

Anonymity on PaA safe 3.2 sec

Needham-Shroeder attack 0.01 sec

Needham-Shroeder-Love safe 0.4 sec

These results were obtained by using APTE on a 2.9 Ghz Intel Core i7, 8 GB DDR3.

Fig. 1. Experimental results

Upcoming features. Nowadays, all computers are equipped with a multi-core
processor and sometimes with several processors, thus we are currently working
on a distributed version of APTE that will take advantage of such multi-core
processors and clusters. Moreover, we would like to include new cryptographic
primitives such as XOR, blind signature and re-encryption used in very inter-
esting protocols e.g. Caveat Coercitor [11].

4 Experimental results

We use APTE on several case studies found in the literature. The figure 1
summarises the results. In particular, we focused on the Private Authentication
(PrA) protocol [2] and the protocols of the electronic passport (a description of
the protocols can be found in [5]). The two key results that we obtained using
APTE are a new attack on the anonymity of the Private Authentication proto-
col and a new attack on the unlinkability of the Passive Authentication protocol
(PaA) of the electronic passport. Both attacks rely on the attacker being able
to observe the length of messages. In both cases, we propose possible fixes and
show their security with APTE for few sessions of the protocols. Observe that
execution times for the trace equivalence and length trace equivalence are very
similar. However, depending on how many sessions you consider, the execution
time varies greatly. For example, in the case of the Private Authentication pro-
tocol, one sessions is computed in less than a second whereas two sessions take



6 Vincent Cheval

a couple of hours and three sessions take more than two days. Using APTE,
we also rediscovered an existing attack on the unlinkability of the Basic Access
Control protocol (BAC) used in the French electronic passport. Note that prov-
ing the unlinkability of the BAC protocol for the UK passport took too much
time and so we stopped the execution after two days. We applied APTE to
prove the anonymity of the Passive Authentication protocol. At last, since all
reachability properties can be expressed by an equivalence, APTE is also able to
find the very classical attack on the secrecy of the Needham-Schroeder protocol
and prove the secrecy on the Needham-Schroeder-Love protocol.

References

1. Machine readable travel document. Technical Report 9303, International Civil
Aviation Organization, 2008.

2. M. Abadi and C. Fournet. Private authentication. Theoretical Computer Science,
322(3):427–476, 2004.

3. B. Blanchet. An Efficient Cryptographic Protocol Verifier Based on Prolog Rules.
In 14th Computer Security Foundations Workshop (CSFW’01), 2001.

4. B. Blanchet, M. Abadi, and C. Fournet. Automated verification of selected equiva-
lences for security protocols. Journal of Logic and Algebraic Programming, 75(1):3–
51, 2008.

5. V. Cheval. Automatic verification of cryptographic protocols: privacy-type proper-
ties. Phd thesis, ENS Cachan, France, 2012.

6. V. Cheval and B. Blanchet. Proving more observational equivalences with proverif.
In David Basin and John Mitchell, editors, Proceedings of the 2nd International
Conference on Principles of Security and Trust (POST’13, Lecture Notes in Com-
puter Science, pages 226–246, Roma, Italy, March 2013. Springer.

7. V. Cheval, H. Comon-Lundh, and S. Delaune. Trace equivalence decision: Negative
tests and non-determinism. In 18th ACM Conference on Computer and Commu-
nications Security (CCS’11), 2011.

8. V. Cheval, V. Cortier, and A. Plet. Lengths may break privacy – or how to check
for equivalences with length. In Proceedings of the 25th International Conference
on Computer Aided Verification (CAV’13), pages 708–723. Springer, July 2013.

9. Ş. Ciobâcă. Automated Verification of Security Protocols with Applications to Elec-
tronic Voting. Thèse de doctorat, Laboratoire Spécification et Vérification, ENS
Cachan, France, December 2011.

10. Cas J.F. Cremers. Unbounded verification, falsification, and characterization of
security protocols by pattern refinement. In CCS ’08: Proceedings of the 15th
ACM conference on Computer and communications security, pages 119–128, New
York, NY, USA, 2008. ACM.

11. G. Grewal, M. Ryan, S. Bursuc, and P. Ryan. Caveat coercitor: Coercion-evidence
in electronic voting. In IEEE Symposium on Security and Privacy, pages 367–381,
2013.

12. A. Tiu and J. Dawson. Automating open bisimulation checking for the spi calculus.
In Proc. 23rd IEEE Computer Security Foundations Symposium (CSF’10), pages
307–321. IEEE Computer Society Press, 2010.

13. L. Vigan. Automated security protocol analysis with the avispa tool. In Proceed-
ings of the XXI Mathematical Foundations of Programming Semantics (MFPS’05),
volume 155 of ENTCS, pages 61–86. Elsevier, 2006.


