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Abstract— This paper gives a Lyapunov based proof of
robustness of a class of finite time controllers applied to the
double integrator system. The literature of continuous finite
time stabilisation contains the proof of finite time stability when
continuous disturbances with a Lipschitz upper bound appear
in the system dynamics. It is also known that continuous finite
time controllers render the trajectories ultimately bounded
for persisting disturbances. However, proving robustness of
continuous finite time controllers to continuous disturbances
with a non-Lipschitz upper bound is challenging. The main
contribution of the paper is that it identifies a C1 Lyapunov
function to prove uniform asymptotic stability as well as
uniform finite time stability in the presence of a class of
disturbances that have non-Lipschitz upper bound.

I. INTRODUCTION

Finite time stabilisation has been an active area of research
in control systems engineering. The finite time convergence
property of the closed-loop system inherently requires the
dynamics to be governed by a non-Lipschitz right hand side
[1]. The main motivation to study finite time controllers and
finite time stability is in its superior robustness properties
[2] while giving better precision in tracking problems. Work
on continuous finite time controllers can be found in [3]
and [4] for the double integrator system. Subsequently, there
have been many results in both the theory and application of
finite time controllers. An output feedback based finite time
controller can be found in [5]. Finite time stability of a class
of time invariant continuous systems can be found in [6].

Amongst various routes to proving asymptotic stability, the
homogeneity of the right hand side of differential equations
has been a mathematically sound and proven technique [7],
[8]. It is also known that homogeneity leads to finite time
stability of the system when the degree of homogeneity
is negative and the system is asymptotically stable [9]. A
similar result can be found in [10] where finite time stability
of discontinuous non-autonomous systems was proved when
the system is uniformly asymptotically stable and the degree
of homogeneity is negative. Uniform finite time stability of
continuous non-autonomous systems has been established in
[11].

There have been many advances in terms of studying
robust finite time controllers. The homogeneous domination
approach developed in [12] studies robustness of homo-
geneous controllers to non-linear time varying disturbance
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functions. Finite time stability using the concept of so-called
homogeneity in the bi-limit was established in [13, Corollary
2.24]. Reference [14] proves finite time stability of a class
of time varying non-linear systems. A recent advance for the
finite time stabilisation of a double integrator system can be
found in [15] where finite time output feedback was studied
without considering robustness to disturbances. Reference
[16] proposes a Lyapunov function for the perturbed double
integrator, however, the robustness claims are presented
without proof. Reference [17] proves that an augmented
continuous sliding mode controller is robust to persisting
disturbances but with the trade-off that the derivative of the
disturbance is required to be bounded.

Since finite time stable continuous autonomous systems
are known to preserve finite time stability even in the pres-
ence of disturbance growing linearly with state [2, Theorem
5.3] and since it is also known that continuous autonomous
finite time stable systems have ultimately bounded trajec-
tories for persisting disturbances [2, Theorem 5.2], it is
reasonable to expect finite time controllers to be able to
reject disturbances which admit non-Lipschitz upper bound
vanishing in the origin. This paper proves that such intuitive
expectation holds true for the class of homogeneous finite
time controllers [3, Section 4] when a class of time varying
continuous disturbances admitting a non-Lipschitz upper
bound affect the double integrator system.

The paper is organized as follows. Section II summarizes
various definitions underpinning the subsequent sections and
presents the problem formulation. The main result of proving
robustness to purely continuous disturbances is presented in
Section III. It should be noted that the main result of Section
III presents a detailed proof of a special case of one of the
claims being reported without proof in the reference [18]
which studies robustness of continuous finite time controllers
in the presence of a broader class of discontinuous time
varying disturbances. Section IV presents conclusion.

II. PRELIMINARIES

This section collects important definitions and results
from the literature which are utilised throughout the paper.
Consider the dynamical system

ẋ = φ(x, t) (1)

where x = (x1,x2, . . . ,xn)
T is the state vector, t ∈ R is the

time variable and function φ(x, t) is a continuous function
of state and time. The paper mainly focusses on uncertain
systems of the type

ẋ = φ(x, t)+ψ(x, t) (2)
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where ψ(x, t) is an uncertain continuous function of state
and time. It is assumed that disturbance ψ(x, t) admits an
upper bound that vanishes in the origin, i.e.

sup
t≥0

lim
x→0
|ψ(x, t)| → 0. (3)

The paper deals with non-Lipschitz continuous right hand
sides. The solutions of the resulting differential equations
are non-unique in general. See [19, Section 10], [2, Section
2] and references therein for conditions of uniqueness of
solutions in forward and reverse time for systems governed
by non-Lipschitz continuous right hand sides. Following
definitions pertaining to various types of stability are revised
from [10] to suit the present case of continuous right hand
side.

Definition 1 (Equiuniform stability [10]): The
equilibrium point x = 0 of the uncertain system (2),
(3) is equiuniformly stable iff for each t0 ∈ R,ε > 0 there
exists δ = δ (ε), dependent on ε and independent of t0 and
ψ , such that each solution x(·, t0,x0) of (2), (3) with the
initial data x0 ∈ Bδ ; where Bδ is a ball of radius δ , exists
on the semi-infinite time interval [t0,∞) and satisfies the
inequality

‖(x(t, t0,x0))‖ ≤ ε ∀ t ∈ [t0,∞). (4)
Definition 2 (Equiuniform asymptotic stability [10]):

The equilibrium point x = 0 of the uncertain system (2),
(3) is said to be equiuniformly asymptotically stable if it is
equiuniformly stable and the convergence

lim
t→∞
‖(x(t, t0,x0))‖→ 0 (5)

holds for all the solutions x(·, t0,x0) of the uncertain system
(2), (3) initialized within some Bδ (uniformly in the initial
data t0 and x0). If this convergence remains in force for
each δ > 0, the equilibrium point is said to be globally
equiuniformly asymptotically stable.

Definition 3 (Equiuniform finite time stability [10]): The
equilibrium point x = 0 of the uncertain system (2), (3) is
said to be globally equiuniformly finite time stable if, in
addition to the global equiuniform asymptotical stability,
the limiting relation

x(t, t0,x0) = 0 (6)

holds for all the solutions x(·, t0,x0) and for all t ≥ t0 +
T (t0,x0), where the settling time function

T (t0,x0) = sup
x(·,t0,x0)

inf{T ≥ 0 : x(t, t0,x0) = 0 ∀t ≥ t0 +T}

(7)
is such that

T (Bδ ) = sup
x0∈Bδ ,t0∈R

T (t0,x0)< ∞ ∀δ > 0, (8)

where δ = δ (ε) is independent of t0 and ψ .
Definition 4: (Homogeneity of differential equations [10],

[20], [7]) The differential equation (1) (or the uncertain
system (2), (3)) is called homogeneous of degree q ∈R with
respect to dilation (r1,r2, . . . ,rn), where ri > 0, i = 1,2, . . . ,n,

if there exists a constant c0 > 0, called a lower estimate of
the homogeneity parameter such that any solution x(·) of (1)
(respectively, that of the uncertain system (2), (3)) generates
a parameterized set of solutions xc(·) with components

xc
i (t) = crixi(cqt) (9)

and any parameter c≥ c0.
The following definition is a special case of the definition
of homogeneous piece-wise continuous functions [10, Defi-
nition 2.10].

Definition 5: A continuous function φ : Rn+1 → Rn is
called homogeneous of degree q∈R with respect to dilation
(r1,r2, . . . ,rn), where ri > 0, i = 1,2, . . . ,n, if there exists a
constant c0 > 0 such that

φi(cr1x1,cr2x2, . . . ,crnxn,c−qt) = cq+riφi(x1,x2, . . . ,xn, t)
(10)

for all c≥ c0.

A. Problem Statement

Consider the following perturbed double integrator:

ẋ1 = x2 ẋ2 = u(x1,x2)+ω(x, t) (11)

where x = (x1,x2)
T ∈ R2 is the state vector, u is the control

input, ω(x, t) is a continuous disturbance. Consider the
following homogeneous controller proposed in [3]:

u(x1,x2) =−µ1|x2|α sign(x2)−µ2|x1|
α

2−α sign(x1), (12)

where α ∈ (0,1) is a scalar and µ1,µ2 are controller gains.
Assumption 1: The disturbance ω(x, t) is assumed to ad-

mit a uniform non-Lipschitz upper bound as follows:

sup
t≥0
|ω(x1,x2, t)| ≤M|x2|α (13)

The aim of the paper is to establish equiuniform finite-time
stability of the uncertain system (11), (12) in the presence
of disturbances admitting the upper bound (13).

III. LYAPUNOV ANALYSIS

As mentioned in Section I, this section presents the main
result of the paper by giving a detailed proof of one of the
theorems being reported in [18] without proof. Equiuniform
finite time stability of the closed-loop system (11), (12) is
proved in Theorem 1. The following instrumental lemma is
extracted from [18] for later use:

Lemma 1: Let the function ω(x1,x2, t) be a continuous
function which is uniformly bounded by the upper-bound
(13). Then, the uncertain differential equation (11),(12) with
the uncertainty constraints (13) is homogeneous of degree
q =−1 with respect to the dilation (r1,r2) = ( 2−α

1−α
, 1

1−α
).

Proof: Let x(·) = (x1(·),x2(·))T be a solution of
(11),(12) under some continuous function ω(x, t), satisfying
(13). Then it is straightforward to verify that for arbitrary
c ≥ max(1,c0) the function xc(·) with components xc

i (t) =
crixi(cqt), i = 1,2, is a solution of (11),(12) with the contin-
uous function ω(x1,x2, t), ωc(x1,x2, t) which is as follows:

ω
c(x1,x2, t) = cq+r2ω(c−r1x1,c−r2x2,cqt) (14)



where, the right hand side represents a parameterized set of
uncertainties. The following holds true due to the parame-
terisation (14):

|ωc(x1,x2, t)|= |cq+r2ω(c−r1x1,c−r2x2,cqt)|
(15)

⇒ |ωc(x1,x2, t)| ≤ cq+r2M|c−r2x2|α ≤ cq+r2−αr2M|x2|α

Hence, all parameterized disturbance functions represented
by the right hand side of (14) are admissible in the sense of
(13) if the following holds true:

cq+r2−αr2 ≤ 1 (16)

From the definitions r2 =
1

1−α
,q =−1, it is obtained that

q+ r2−αr2 = 0⇒ cq+r2−αr2 ≤ 1 (17)

and that the function ωc(x1,x2, t) is admissible in the sense
of (13). Recalling Definitions 4, 5 and Lemma [10, Lemma
2.11], the solutions xc

1(t) = cr1x1(cqt),xc
2(t) = cr2x2(cqt) are

solutions of the system (11), (12) with the continuous func-
tion ωc(x1,x2, t) given by (14). Thus, any solution of the
differential equation (11), (12) generates a parameterized set
of solutions xc

1(t),x
c
2(t) with the parameter c large enough.

Hence, (11), (12) is homogeneous of degree q =−1 with the
dilation (r1,r2) = ( 2−α

1−α
, 1

1−α
). This proves the statement of

Lemma 1.
The proof presented above is a special case of that being

reported in [18] suited to the present case of continuous
disturbances.

Theorem 1: Given α ∈ ( 2
3 ,1), the closed-loop system

(11), (12) is globally equiuniformly finite time stable, regard-
less of whichever disturbance ω(x, t), satisfying condition
(13) with 0 < M < µ1 < µ2−M, affects the system.

Proof: The proof is given in several steps.
1. Global Asymptotic Stability Let the following candidate

Lyapunov function V be considered [3], [21]:

V (x1,x2) = µ2
2−α

2
|x1|

2
2−α +

1
2

x2
2 (18)

Under the conditions of the theorem, the time derivative
of the function V (x1,x2), computed along the trajectories
of (11), (12) is estimated as follows [21, Th. 1]:

V̇ ≤−(µ1−M)|x2|α+1 (19)

Noting that M < µ1 by a condition of the theorem and
that the equilibrium point x1 = x2 = 0 is the only trajectory
of (11), (12) on the invariance manifold x2 = 0 where
V̇ (x1,x2) = 0, the global asymptotic stability of (11), (12)
is then established by applying the invariance principle [22],
[23].
2. Semiglobal Strong Lyapunov Functions.
This step shows the existence of a parameterized family of
semi-global Lyapunov functions VR̃(x1,x2), with an a priori
but arbitrarily given R̃ > 0, such that each VR̃(x1,x2) is well-
posed on the corresponding compact set

DR̃ = {(x1,x2) ∈ R2 : V (x1,x2)≤ R̃}. (20)

In other words, VR̃(x1,x2) is to be positive definite on DR̃ and
its derivative, computed along the trajectories of the uncertain

system (11), (12) with initial conditions within DR̃, is to be
negative definite in the sense that,

V̇R̃(x1,x2) ≤−WR̃(x1,x2) (21)

for all (x1,x2) ∈ DR̃ and for some WR̃(x1,x2), positive def-
inite on DR̃. A parameterized family of Lyapunov func-
tions VR̃(x1,x2), R̃ > 0, with the properties defined above
are constructed by combining the Lyapunov function V of
(18), whose time derivative along the system motion is only
negative semi-definite, with the indefinite functions

U(x1,x2) =U1(x1,x2)+U2(x1,x2)+U3(x1,x2)

U1(x1,x2) = κ1|x1|
2α

2−α sign(x1) |x2|2α x2

U2(x1,x2) = κ1 κ2 x3
1 x2 |x2|α , U3(x1,x2) = κ1 κ2 κ3 x5

1 x2
(22)

as follows:

VR̃(x1,x2) =V (x1,x2)+
3

∑
i=1

Ui(x1,x2) (23)

where the positive weight scalars κi, i = 1,2,3 are chosen
small enough so that,

κ2 <
(1+2α)µ2

(1+α)(µ1 +M) ρ3(1−α)
, ρ =

2R̃
µ2(2−α)

,

κ3 <
(1+α)µ2

(µ1 +M) ρ
4−3α

2
(24)

κ1 < min


µ1−M

K1
, µ2(2−α)

κ2ρ5−3α(1+κ3ρ2(2−α))
,

1
ρ2α+(2R̃)

2α−1
+κ2

(
(2R̃)

α
+κ3

)
 ,

K1 =
2α

2−α
ρ

3α−2
2
(
2R̃
) 1+α

2 +(µ1 +M)(1+2α)ρα
(
2R̃
) 2α−1

2

+3κ2ρ
2−α

(
2R̃
) 1

2 +5κ2κ3ρ
2(2−α)

(
2R̃
) 1−α

2 .
(25)

An a priori definition of the scalars κi is always possible.
This is because for known initial conditions x0 ∈R2, a given
bound M and in fixed values of µ1,µ2, there always exists
an arbitrarily large R̃ such that V ≤ R̃ holds true. In the first
step, κ2 and κ3 can be computed using ρ and (24). In the
second step, the constant K1 can be computed using κ2,κ3
of the first step and using definition (25). In the final step, κ1
can be computed using κ2,κ3,K1 of previous steps and (24).
Hence, (24), (25) define all κi, i = 1,2.3 unambiguously.

Remark 1: The functions VR̃ and Ui, i= 1,2,3 are not only
continuous but also C1 smooth for all x ∈R2 for α ∈ ( 2

3 ,1).
Setting α = 0 in the following analysis corresponds to the
discontinuous case for which the finite time stability has been
established following a similar semi-global analysis [10, Th.
4.2]. It is further noted that the expressions 2α−1 > 0,3α−
2 > 0 hold true due to α ∈ ( 2

3 ,1) in the derivations below.
Due to (19), all possible solutions of the uncertain sys-

tem (11), (12), initialized at t0 ∈ R within the compact set
(20), are a priori estimated by

sup
t∈[t0,∞)

V (x1,x2)≤ R̃. (26)



The following inequalities hold true:

|x1|
2

2−α ≤ ρ, |x2| ≤
√

2R̃. (27)

Let the positive definiteness of the Lyapunov function (23) be
verified. The following analysis is in order for the indefinite
functions Ui, i = 1,2,3.

U1(x1,x2) = κ1|x1|
2α

2−α sign(x1) |x2|2α x2

≥ −κ1

2
|x1|

4α
2−α x2

2−
κ1

2
|x2|4α

(28)
≥ −

(
ρ

2α +
(
2R̃
)2α−1

)
κ1

2
x2

2

where, (27) and the trivial inequality 2ab > −(a2 +
b2),∀a,b ∈ R have been utilised. Similarly, U2 and U3 can
also be analysed as follows:

U2(x1,x2) = κ1κ2x3
1x2 |x2|α

≥ −κ1 κ2

2

(
x6

1 + x2
2|x2|2α

)
(29)

≥ −κ1 κ2

2
|x1|

2
2−α ρ

5−3α − κ1 κ2

2
(
2R̃
)α x2

2

U3(x1,x2) = κ1 κ2 κ3 x5
1 x2

≥ −κ1 κ2 κ3

2
x10

1 −κ1 κ2 κ3x2
2

(30)

≥ −κ1 κ2 κ3

2
|x1|

2
2−α ρ

9−5α − κ1 κ2 κ3

2
x2

2

Hence, the Lyapunov function (23) is positive definite on
compacta (20); for all (x1,x2) ∈ DR̃\{0,0} and κi > 0, i =
1,2,3 satisfying (24), as shown below:

VR̃(x1,x2) = µ2
2−α

2
|x1|

2
2−α +

1
2

x2
2 +

3

∑
i=1

Ui(x1,x2)

≥
(

µ2
2−α

2
− κ1 κ2

2
ρ

5−3α

(
1+κ3ρ

2(2−α)
))
|x1|

2
2−α

+
(

1−κ1

(
ρ

2α +
(
2R̃
)2α−1

+κ2

((
2R̃
)α

+κ3

))) 1
2

x2
2

≥ LR̃V (x1,x2) (31)

where inequalities (28), (29) and (30) are utilised and

LR̃ < min
{

LR̃1
,LR̃2

}
LR̃1

= 1−κ1(ρ
2α +(2R̃)2α−1)−κ1κ2((2R̃)α)−κ1κ2κ3

LR̃2
=

µ2(2−α)

2
− κ1κ2ρ5−3α

2

(
1+κ3ρ

2(2−α)
)

(32)
It should be noted that LR̃1

> 0,LR̃2
> 0,LR̃ > 0 due to (24)

and hence positive definiteness of VR̃ is ensured from (31)
on DR̃ \{0,0}. Similarly, it can be shown that the following
inequality holds true:

VR̃(x1,x2) = µ2
2−α

2
|x1|

2
2−α +

1
2

x2
2 +

3

∑
i=1

Ui(x1,x2)

≤
(

µ2
2−α

2
+

κ1 κ2

2
ρ

5−3α

(
1+κ3ρ

2(2−α)
))
|x1|

2
2−α

+
(

1+κ1

(
ρ

2α +
(
2R̃
)2α−1

+κ2

((
2R̃
)α

+κ3

))) 1
2

x2
2

≤MR̃V (x1,x2) (33)

where, the trivial inequality 2ab< (a2+b2),∀a,b∈R is used
and

MR̃ > max
{

MR̃1
,MR̃2

}
, where

MR̃1
= µ2

2−α

2
+

κ1 κ2

2
ρ

5−3α

(
1+κ3ρ

2(2−α)
)

MR̃2
= 1+κ1(ρ

2α +(2R̃)2α−1)+κ1κ2((2R̃)α)+κ1κ2κ3,
(34)

is a positive scalar. The time derivative of the indefinite
function U1(x1,x2) along the trajectories of the uncertain
system (11), (12) is as follows:

U̇1(x1,x2) = κ1
2α

2−α
|x1|

3α−2
2−α |x2|2α+2

+κ1(1+2α)|x1|
2α

2−α sign(x1)|x2|2α ẋ2

= κ1
2α

2−α
|x1|

3α−2
2−α |x2|2α+2

−κ1µ1|x1|
2α

2−α sign(x1)|x2|3α sign(x2)

−κ1µ2|x1|
3α

2−α |x2|2α +κ1ω|x1|
2α

2−α sign(x1)|x2|2α

−2ακ1µ1|x1|
2α

2−α sign(x1)|x2|3α sign(x2)

−2ακ1µ2|x1|
3α

2−α |x2|2α

+2ακ1ω|x1|
2α

2−α sign(x1)|x2|2α

≤−κ1µ2(1+2α)|x1|
3α

2−α |x2|2α +κ1
2α

2−α
|x1|

3α−2
2−α |x2|2α+2

+κ1(µ1 +M)(1+2α)|x1|
2α

2−α |x2|3α

(35)
The temporal derivative of U2 along the trajectories of the
closed-loop system (11), (12) is as follows:

U̇2 = 3κ1 κ2x2
1|x2|α+2 +κ1κ2(1+α)x3

1|x2|α ẋ2

= 3κ1 κ2 x2
1 |x2|α+2−κ1κ2µ1x3

1|x2|2α sign(x2)

+κ1 κ2 x3
1 |x2|α ω−κ1κ2µ2x2

1|x1|
2

2−α |x2|α

−ακ1 κ2 µ1 x3
1 |x2|2α sign(x2) (36)

+ακ1 κ2 x3
1 |x2|α ω−ακ1 κ2 µ2 x2

1 |x1|
2

2−α |x2|α

≤ 3κ1 κ2 x2
1 |x2|α+2−κ1κ2(1+α)µ2 x2

1|x1|
2

2−α |x2|α

+κ1κ2(1+α)(µ1 +M)|x1|3|x2|2α

The temporal derivative of U3 along the trajectories of the
closed-loop system (11), (12) can be obtained as follows:

U̇3 = 5 κ1 κ2 κ3 x4
1 x2

2 +κ1 κ2 κ3 x5
1 ẋ2

= 5 κ1 κ2 κ3 x4
1 x2

2−κ1 κ2 κ3 µ1 x5
1 |x2|α sign(x2)

−κ1 κ2 κ3 µ2 x4
1 |x1|

2
2−α +κ1 κ2 κ3 x5

1 ω (37)
≤ 5 κ1 κ2 κ3 x4

1 x2
2 +κ1 κ2 κ3 (µ1 +M) |x1|5 |x2|α

−κ1κ2κ3µ2 x4
1 |x1|

2
2−α

It should be noted that the inequality

|x2|2α = |x2||x2|2α−1 ≤ |x2|
(
2R̃
) 2α−1

2 (38)

holds true due to the condition α ∈ ( 2
3 ,1) of the theorem.

The last inequalities of (35), (36) and (37) are re-written by



utilising (27) and (38) as follows:
3

∑
i=1

U̇i(x1,x2)≤−β1x2
1|x1|

2
2−α |x2|α −β2|x1|

3α
2−α |x2|2α

+κ1K1|x2|α+1

(39)

where,

β1 = κ1κ2

(
(1+α) µ2−κ3(µ1 +M)ρ

4−3α
2

)
(40)

β2 = κ1

(
µ2(1+2α)−κ2 (1+α) (µ1 +M)ρ3(1−α)

)
,

K1 > 0 from (24) and the corresponding upper bound on
|x1| and |x2| from (27) are utilised. It should be noted that
κi, i = 1,2,3 are all positive constants due to (24). Hence, by
combining (19) and (39), the time derivative of (23) can be
obtained as follows:

V̇R̃ ≤−β1x2
1 |x1|

2
2−α |x2|α −β2|x1|

3α
2−α |x2|2α (41)

−(µ1−M−κ1K1) |x2|α+1−κ1 κ2 κ3 µ2 x4
1 |x1|

2
2−α ,

It should be noted that the expressions β1 > 0,β2 > 0 hold
true due to (24). Ignoring the negative semi-definite terms
with β1,β2, (41) can be rewritten as follows:

V̇R̃ ≤−(µ1−M−κ1K1) |x2|α+1−κ1 κ2 κ3 µ2 x4
1 |x1|

2
2−α

(42)

Furthermore, the following inequalities hold true within the
compacta (20):

x2
2 = |x2|2 = |x2|α+1|x2|1−α ≤ |x2|α+1

(√
2R̃
)1−α

(43)
⇒ −|x2|α+1 ≤− x2

2(√
2R̃
)1−α

Hence, (42) can be simplified as follows:

V̇R̃ ≤−cR̃

(
|x1|

10−4α
2−α + x2

2

)
(44)

where,

cR̃ = min

µ1−M−κ1K1(√
2R̃
)1−α

, κ1 κ2 κ3 µ2

> 0. (45)

Case 1: |x1| ≥ 1:
The following inequality holds true for |x1| ≥ 1:

10−4α

2−α
≥ 2

2−α
⇔ |x1|

10−4α
2−α ≥ |x1|

2
2−α (46)

Also, the following can be obtained from (33):

MR̃
2

max{1,µ2(2−α)}(|x1|
2

2−α + x2
2)≥VR̃(x1,x2) (47)

Hence, the following inequality is then obtained for |x1| ≥ 1
by combining (44), (46) and (47):

V̇R̃ ≤−κ̄1VR̃ (48)

where,
κ̄1 =

2cR̃
MR̃ max{1,µ2(2−α)}

> 0. (49)

Case 2: |x1|< 1:
Noting that the following inequalities hold true for |x1|< 1,

|x1|
10−4α
2−α > |x1|

2γ

2−α ⇔ 10−4α

2−α
<

2γ

2−α
⇔ γ > 5−2α, (50)

and for some γ > 5− 2α . Noting that 5− 2α < 11
3 always

holds true due to α ∈ ( 2
3 ,1), γ ≥ 11

3 is a valid choice. In the
following, γ = 4 is chosen. It can be seen that the following
equality holds true:(
|x1|

2
2−α + x2

2

)4
= |x1|

8
2−α +4 |x1|

6
2−α x2

2 +6 |x1|
4

2−α x4
2

+4 |x1|
2

2−α x6
2 + x8

2 (51)
≤ max{ρ2α−1,K2}

(
|x1|

10−4α
2−α + x2

2

)
where the bounds (27) has been utilised resulting in the
following definition of K2:

K2 = max
{

4 ρ
3,6 ρ

2(2R̃),4ρ(2R̃)2,(2R̃)3}> 0 (52)

Note that the following can be obtained from (33):(
MR̃
2

max{1,µ2(2−α)}(|x1|
2

2−α + x2
2)

)4

≥ (VR̃(x1,x2))
4

(53)
Then, the following can be obtained by combining (44), (51)
and (53):

V̇R̃(x1,x2)≤−cR̃

(
|x1|

10−4α
2−α + x2

2

)
≤−κ̄2 (VR̃)

4 (54)

where,

κ̄2 =
cR̃(

MR̃
2 max{1,µ2(2−α)}

)4
max{ρ2α−1,K2}

> 0. (55)

Hence, the desired uniform negative definiteness (21) is
obtained by combining (48) and (54) as follows:

WR̃(x1,x2) = min
{

κ̄1VR̃, κ̄2 (VR̃)
4
}

(56)

3. Global Equiuniform Asymptotic Stability Since the in-
equality (21) holds on the solutions of the uncertain system
(11), (12), initialized within the compact set (20), the decay
of the function VR̃(x1,x2) can be found by considering the
majorant solution ν(t) of VR̃ as follows:

ν̇(t) =
{
−κ̄1ν(t), if |x1| ≥ 1;
−κ̄2νγ , if |x1|< 1. (57)

where, γ > 5− 2α is introduced for generality. A more
conservative decay than that in (57) can be computed. There
are two possible sub-cases, namely, ν(t) ≥ 1 and ν(t) < 1
for each of the cases |x1| ≥ 1 and |x2| < 1. The following
expressions hold true for a positive definite function ν(t)
and a scalar γ > 1:

ν(t)γ ≥ ν(t)⇒−ν(t)γ ≤−ν(t) if ν(t)≥ 1;
(58)

ν(t)γ ≤ ν(t)⇒−ν(t)≤−ν(t)γ if ν(t)< 1.

Hence, the decay (57) is modified by utilising (58) inde-
pendent of the magnitude of |x1| and dependent on ν(t) as
follows :

ν̇(t) =
{
−κ̄ν , if ν(t)≥ 1;
−κ̄νγ , if ν(t)< 1. (59)



where

κ̄ = min{κ̄1, κ̄2} > 0. (60)

The solution for the case ν(t)< 1 can be obtained as follows:∫
ν(t)

ν0

dζ (t)
ζ γ

=−κ̄

∫ t

t1
dτ (61)

where ν0 = ν(t1) where t1 is the time instant when the
solution ν(t) satisfies the condition ν(t) = 1. The general
solution of ν(t) of (59) can then be obtained as follows:

ν(t) =


ν(t0) e−κ̄(t−t0), if ν(t)≥ 1;

ν(t1)
(

1
κ̄(t−t1)(γ−1)νγ−1

0 +1

) 1
γ−1

, if ν(t)< 1.

(62)
It is noted that t1 = t0 if ν(t0) ≤ 1. It can be easily seen
that the solution ν(t)→ 0 as t→ ∞ and that the decay rate
depends on the gain parameters µ1,µ2 and bound M on the
disturbance ω(x, t). On the compact set (20), the following
inequality holds (see (31), (33)):

LR̃V (x1,x2)≤VR̃(x1,x2)≤MR̃V (x1,x2) (63)

for all (x1,x2)∈DR̃ and positive constants LR̃,MR̃. The above
inequalities (62) and (63) ensure that the globally radially
unbounded function V (x1,x2) decays exponentially

V (x1(t),x2(t))

≤


L−1

R̃ MR̃R̃e−κ̄(t−t0), if VR̃ ≥ 1;

L−1
R̃ MR̃R̃

(
1

κ̄(t−t1)(γ−1)νγ−1
0 +1

) 1
γ−1

, if VR̃ < 1.
(64)

on the solutions of (11), (12) uniformly in ω and the initial
data, located within an arbitrarily large set (20). This proves
that the uncertain system (11), (12) is globally equiuniformly
asymptotically stable around the origin (x1,x2) = (0,0).
4. Global Equiuniform Finite Time Stability.
The uncertainty ω(x1,x2, t) in the right hand side of the sys-
tem (11), (12) is uniformly bounded by M|x2|α . The feedback
is globally homogeneous with homogeneity degree q = −1
with respect to dilation (r1,r2) = ( 2−α

1−α
, 1

1−α
). In the presence

of continuous disturbances ω(x1,x2, t), Lemma 1 proves that
the closed-loop system (11), (12) is homogeneous of degree
q =−1 with respect to dilations (r1,r2) = ( 2−α

1−α
, 1

1−α
). Thus,

coupling the homogeneity of the perturbed system (11), (12)
within the arbitrarily large compact set (20), with the global
equiuniform asymptotic stability of the system (11), (12), it
is obtained that the closed-loop system (11), (12) is globally
equiuniformly finite time stable according to [10, Theorem
3.1].

IV. CONCLUSION

The paper studied robustness of existing finite time contin-
uous homogeneous controllers to time varying disturbances.
A detailed proof of the uniform finite time stability of the
perturbed double integrator was established by identifying
a class of C1 smooth semi-global Lyapunov functions. A
possible future direction is to study equiuniform finite time
stability in the general dimension n in the presence of time-
varying disturbances.

REFERENCES

[1] V. Haimo, “Finite time controllers,” SIAM Journal on Control and
Optimization, vol. 24, no. 4, pp. 760–770, 1986.

[2] S. Bhat and D. Bernstein, “Finite-time stability of continuous au-
tonomous systems,” SIAM J. Control Optim., vol. 38, no. 3, pp. 751–
766, 2000.

[3] ——, “Finite-time stability of homogeneous systems,” in Proceedings
of the American Control Conference, 1997.

[4] ——, “Continuous finite-time stabilization of the translational and
rotational double integrators,” Automatic Control, IEEE Transactions
on, vol. 43, no. 5, pp. 678–682, May 1998.

[5] Y. Hong, J. Huang, and Y. Xu, “On an output feedback finite-
time stabilization problem,” IEEE Transactions on Automatic Control,
vol. 46, no. 2, pp. 305 – 309, 2001.

[6] E. Moulay and W. Perruquetti, “Finite time stability and stabilization
of a class of continuous systems,” Journal of Mathematical Analysis
and Applications, vol. 323, no. 2, pp. 1430 – 1443, 2006.

[7] L. Rosier, “Homogeneous lyapunov function for homogeneous con-
tinuous vector field,” Systems & Control Letters, vol. 19, no. 6, pp.
467 – 473, 1992.

[8] M. Kawski, “Stability and nilpotent approximations,” in Proceedings
of the 27th IEEE Conference on Decision and Control, Dec 1988, pp.
1244–1248.

[9] S. Bhat and D. Bernstein, “Geometric homogeneity with applications
to finite-time stability,” Mathematics of Control, Signals, and Systems
(MCSS), vol. 17, pp. 101–127, 2005.

[10] Y. Orlov, “Finite time stability and robust control synthesis of uncer-
tain switched systems,” SIAM Journal on Control and Optimization,
vol. 43, no. 4, pp. 1253–1271, 2005.

[11] W. Haddad, S. Nersesov, and L. Du, “Finite-time stability for time-
varying nonlinear dynamical systems,” in American Control Confer-
ence, june 2008, pp. 4135 –4139.

[12] C. Qian, “A homogeneous domination approach for global output
feedback stabilization of a class of nonlinear systems,” in American
Control Conference, vol. 7, june 2005, pp. 4708 – 4715.

[13] V. Andrieu, L. Praly, and A. Astolfi, “Homogenous approximation,
recursive observer design, and output feedback,” SIAM Journal on
Control and Optimization, vol. 47, no. 4, pp. 1814–1850, 2008.

[14] X. Zhang, G. Feng, and Y. Sun, “Finite-time stabilization by state
feedback control for a class of time-varying nonlinear systems,”
Automatica, vol. 48, no. 3, pp. 499 – 504, 2012.

[15] E. Bernuau, W. Perruquetti, D. Efimov, and E. Moulay, “Finite-time
output stabilization of the double integrator,” in 51st IEEE Annual
Conference on Decision and Control (CDC), Dec 2012, pp. 5906–
5911.

[16] R. Santiesteban, “Time convergence estimation of a perturbed double
integrator: Family of continuous sliding mode based output feedback
synthesis,” in European Control Conference (ECC), July 2013, pp.
3764–3769.

[17] A. Chalanga, S. Kamal, and B. Bandyopadhyay, “Continuous integral
sliding mode control: A chattering free approach,” in IEEE Interna-
tional Symposium on Industrial Electronics (ISIE), 2013, pp. 1–6.

[18] H. B. Oza, Y. V. Orlov, and S. K. Spurgeon, “Continuous uniform
finite time stabilisation of planar controllable systems,” SIAM Journal
of Control and Optimization, Submitted in May 2012.

[19] A.F.Filippov, Differential Equations with Discontinuous Righ thand
Sides, ser. Mathematics and its Applications. Springer, 1988, vol. 18.

[20] M. Kawski, “Families of dilations and asymptotic stability,” in Analy-
sis of controlled dynamical systems (Lyon, 1990), ser. Progr. Systems
Control Theory. Boston, MA: Birkhäuser Boston, 1991, vol. 8, pp.
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