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Abstract

In this paper, we present a detailed study of Skyrmion-Skyrmion scattering for two
B = 1 Skyrmions in the attractive channel where we observe two different scatter-
ing regimes. For large separation, the scattering can be approximated as interacting
dipoles. We give a qualitative estimate when this approximation breaks down. For
small separations we observe an additional short-range repulsion which is qualitatively
similar to monopole scattering. We also observe the interesting effect of “rotation
without rotating” whereby two Skyrmions, whose orientations remain constant while
well-separated, change their orientation after scattering. We can explain this effect
by following preimages through the scattering process, thereby measuring which part
of an in-coming Skyrmion forms part of an out-going Skyrmion. This leads to a new
way of visualising Skyrmions. Furthermore, we consider spinning Skyrmions and find
interesting trajectories.

PACS-number: 12.39.Dc

24 pages, 16 figures

∗dave.foster@bristol.ac.uk
†S.Krusch@kent.ac.uk

1

ar
X

iv
:1

41
2.

87
19

v1
  [

he
p-

th
] 

 3
0 

D
ec

 2
01

4



1 Introduction

The Skyrme model is a nonlinear field theory model of atomic nuclei [1]. As a classical
field theory, this model has soliton solutions, known as Skyrmions, which are stabilised by a
conserved topological charge. Skyrmions have been calculated for various charges, see e.g. [2]
for a comprehensive summary, and [3, 4, 5] for more recent results when it became apparent
that massive pions play an important role. When these Skyrmions are quantised, as fermions,
they model protons and neutrons [6, 7]. An important ingredient in the quantisation are
the so-called Finkelstein-Rubinstein constraints [8], which guarantee that Skyrmions can
be consistently quantised as fermions. Using the symmetries of classical Skyrmions, these
constraints also allow the quantum numbers of the ground and excited states to be calculated
[9, 10, 11]. Reference [12] included massive pions and found that the energies of quantum
ground and excited states of Skyrmions had good qualitative and reasonable quantitive
agreement with experimental results, for even topological charges. However, the approach
does not produce good results for odd values of the topological charge greater than three.
This may be related to the fact that Skyrmions deform when they are spinning [13] or
isospinning [14]. More recently, properties of Carbon-12 have been successfully modelled
using the Skyrme model [15]. These calculations helped to understand the structure of
Carbon-12 and the so-called Hoyle state.

In nuclear physics, scattering experiments are very important. However, relatively little
progress has been made with Skyrmion-Skyrmion scattering, and its applications to nuclear
physics. Classical Skyrmion scattering was first discussed using an axially-symmetric ap-
proximation in [16]. The first numerical full field simulation of Skyrmion scattering for two
B = 1 Skyrmions was performed in [17]. Skrymion scattering for different charges with sym-
metric initial conditions was discussed in [18]. The similarity with monopole scattering led
to various important developments [19] including the rational map ansatz [20]. From a more
analytical point of view, Manton discussed low energy Skyrmion scattering using the idea of
an unstable manifold [21, 22] and the geodesic approximation [23]. This unstable manifold
can be mapped out exactly for well-separated Skyrmions [24] and has been calculated nu-
merically in [25]. Schroers discussed the interaction of well-separated moving and spinning
Skyrmions in [26]. Braaten discussed in [27] how to calculate scattering cross sections from
the Skyrme model.

In this paper, we focus on classical scattering of two charge one Skyrmions with variable
impact parameter. The paper is organised as follows. In section 2 we review the Skyrme
model with a particular emphasis on the dipol interaction. In section 3 we present a numer-
ical study of Skyrmion scattering. We then describe Skyrmion-Skyrmion scattering in the
attractive channel using the classical dipol approximation. We also derive the dynamics in
the relativistic case and discuss the modifications for nonzero pion mass. We observe the
interesting effect of “rotation without rotating”. In section 4 we introduce a new way of
visualising Skyrmions which explains this effect. We then discuss scattering of two spinning
Skyrmions. In section 5 we give a brief comparison of monopole and Skyrmion scattering.
We end with a conclusion and discuss open problems.
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2 The Skyrme model

The Skyrme model is a three dimensional non-linear theory of pions where the field U(t,x)
is an SU(2)-valued scalar. It is a low energy effective theory of QCD and is defined by the
Lagrangian [19],

L =

∫ {
−1

2
Tr (RµR

µ) +
1

16
Tr([Rµ, Rν ][R

µ, Rν ])−mπ
2Tr(12 − U)

}
d3x, (1)

where Rµ = ∂µUU
†, 12 is the unit matrix in two dimensions and mπ parametrizes the

pion mass. Here we have expressed the model in so-called Skyrme units, where we have
chosen an energy unit Fπ

4e
and a length unit 2

eFπ
. Fπ is the pion decay constant and e is

a dimensionless parameter. Field configurations can only have finite energy provided that
the field U(x, t) → 12 as |x| → ∞. Hence, finite-energy fields are defined on the one-point
compactification of R3, namely R3 ∪ {∞} ∼= S3. Furthermore, the target space SU(2) is
homeomorphic to S3. Therefore, finite-energy configurations belong to an element of the third
homotopy group π3(S

3) ∼= Z and are indexed by an integer. This integer is the topological
charge, B, and is interpreted as the baryon number. In atomic nuclei, B corresponds to the
sum of the number protons and neutrons. The topological charge can be calculated as an
integral over the baryon density B(x) namely,

B =

∫
R3

B(x)d3x, where B(x) = − εijk
24π2

Tr (RiRjRk) . (2)

It is often more convenient to reparameterise the Skyrme field with three pion fields π =
(π1, π2, π3)

T and a constrained field σ as U = σ12 + iπ · τ , where σ2 +π ·π = 1 and τ is the
triplet of Pauli matrices. We shall be making use of this later. Numerical evidence suggests
that the B = 1 Skyrmion is spherically symmetric. This is best described with the so-called
hedgehog ansatz,

UH = cos f(r) 12 + i sin f(r)x̂ · τ , (3)

where r = |x| and x̂ = x/r. For minimum-energy solutions the shape function f(r) has to
be calculated numerically subject to the boundary conditions f(0) = π and f(∞) = 0.

For massless pions, mπ = 0, the interaction of two well-separated B = 1 Skyrmions can
be approximated by the dipole-dipole interaction [19]

Eint = −2C2

3π
(1− cosψ)

1− 3
(
X̂ · n̂

)2
X3

, (4)

where C is the dipol strength, X is the separation between the two Skyrmions and X = |X|.
For a B = 1 Skyrmion the constant C is given by C = 2.16 (mπ = 0) [19]. The value
of C corresponds to the leading order term in the large r expansion of the shape function
f(r) ∼ C

r2
. This can be shown by linearising the equations of motion for f(r). In this paper

we are only interested in when the interaction energy (4) is minimal, namely when ψ = π
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and X̂ · n̂ = 0. We define this as the attractive channel, and the interaction energy simplifies
to

Eatt
int = −4C2

3π

1

X3
. (5)

As a point of notation we define the Skyrmion locations as the points in R3 where
U(x) = −12, (σ = −1, πa = 0). This is the antipodal point of the vacuum and is hence a
region of large energy density.

3 Skyrmion Scattering

In this article we are investigating Skyrmion scattering. There has been some analytical
progress using the instanton ansatz [28, 29], but so far the most productive method is to use
numerical simulations.

To achieve this we first need an initial configuration to evolve. We create a suitable
configuration by numerically solving the equations of motion for the hedgehog ansatz, for
the value of mπ which we are interested in. This gives us a shapefunction f(r) for the single
Skyrmion. We use this with the hedgehog ansatz and the product ansatz,

U(t, x, y, z) = U1(γ(x− vt), y, z)U2(γ(x+ vt), y, z), (6)

to give a two-Skyrmion initial configuration. Here, U1 is the hedgehog solution U1 = UH(x+
D
2
, y + b

2
, z) and U2 is the hedgehog solution U2 = τ3UH(x − D

2
, y − b

2
, z)τ3, which has been

rotated by π about the z-axis in target space by the SU(2) matrix τ3. This isorotation ensures
that the Skyrmions are in the attractive channel. Here, γ = 1/

√
1− v2 is the usual Lorentz

factor.
Throughout this paper we consistently chose the hedgehog ansatz (3) to be orientated

such that under z 7→ −z, π3 7→ −π3. We then evolved this initial configuration using a finite
difference leap-frog method on a discretised regular lattice. We chose a lattice spacing of
δx = 0.1 with either 100 lattice points or 120 lattice points for large b. Therefore, x, y and z
had the ranges (−5, 5) or (−6, 6), depending on the number of lattice points. To minimise
the effects of radiation, and to replicate the infinite plane, we damped the boundary of the
box by smoothly introducing an extra U̇ term in the equations of motion at the boundary.
This term damped the radiation and reduced the reflection off the boundary. We chose to
use leap-frog as it is a symplectic integrator, and we argue that preserving momentum is
very important during a scattering process.

3.1 Numerical Results

In figures 1 and 2 we display snapshots of the scattering of two B = 1 Skyrmions. Throughout
the text we colour the Skyrmion baryon-density level-set plots to show the angle the pion
fields have from the π̂2-axis on the π̂1, π̂2 plane. It is coloured such that when the field lies
slightly above the π̂2-axis the colour is orange and when it is slightly below the colour is red.
There is a detailed discussion of this colouring scheme and its physical interpretation in [30].
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In figure 1 the top row shows Skyrmion scattering for mπ = 0 and zero impact parameter,
b = 0, with initial speed v = 0.2. The initial configuration is on the left. With the colouring
scheme it is easy to see that the second Skyrmion is rotated by π around the z-axis. The
Skyrmions keep their orientation even as they merge and form the torus. However, when
they reemerge as individual Skyrmions after passing through the torus configuration their
orientation has changed. This is a rather intriguing effect of changing orientation without
actually rotating. We discuss this phenomenon further in section 4.1.

Figure 2 shows the same set of snapshots but for mπ = 1. In the initial configuration the
Skyrmions are more spherical, since the interaction force is weaker, leading to less deforma-
tion. The torus in the intermediate configuration is more compact with a smaller hole as
expected for massive Skyrmions, see [31] for a detailed discussion.

Figure 1: Skyrmion scattering plots for mπ = 0 and v = 0.2. Each row displays the initial,
intermediate and final configuration. In the first row the impact parameter is b = 0, in the
second row b = 0.4.

Throughout the numerical simulation we tracked the Skyrmion locations and to increase
accuracy we interpolated field values in-between lattice points. This gives the curves in
figures 3a and 3b which show the trajectories of the location in the scattering plane. These
images show how the pion mass, mπ, affects the scattering process. For example it can be
seen that for large separation the Skyrmion with mπ = 0.5 is deflected less.

3.2 Dipole approximation

As discussed earlier, for mπ = 0, the attractive channel has the interaction energy

Eatt
int = −4C2

3π

1

X3
.
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Figure 2: Skyrmion scattering plots for mπ = 1 and v = 0.2. Each row displays the initial,
intermediate and final configuration. In the first row the impact parameter is b = 0, in the
second row b = 0.4.
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Figure 3: Trajectories of the location of a single Skyrmion throughout a scattering process.

For simplicity, we firstly describe the non-relativistic dynamics. Two B = 1 Skyrmions can
be approximated as point particles of mass M ≈ 1.232, which is the rest mass of a single
B = 1 Skyrmion. We can then separate off the centre of mass motion, and the equations of
motion can be written in terms of the relative coordinate X as

µẌ = −∇Ea
int, (7)
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where µ = M/2 is the reduced mass. Note that in the attractive channel the force between
the Skyrmions is a central force, hence the relative angular momentum

lrel = µX× Ẋ (8)

is conserved, and the dynamics takes place in a plane orthogonal to n. This two dimensional
plane contains the non-trivial dynamics in the attractive channel and is known as the scat-
tering plane. In the following we choose coordinates such that the scattering plane is given
by z = 0.

We can generalise this approach in two ways. Firstly, we can introduce the pion mass
mπ 6= 0. Then the interaction energy can be written as

Eatt
int,mπ = −

2C2
mπ

3π
exp(−mπX)

(
m2
πX

2 + 2mπX + 2
) 1

X3
, (9)

in the attractive channel, [32]. Note that Cmπ is now a function of the pion mass mπ, which
is plotted in figure 4. This figure agrees with the results in [32].

A point worth noting is that we find Cmπ = 2.16 for mπ = 0 as in [19, 32]. We also
calculated Cmπ = 1.93 and Cmπ = 1.79 for mπ = 0.5 and mπ = 1, respectively. These are
the values of mπ which will be important later.

Figure 4: The value of the constant Cmπ as a function of the pion mass mπ.

As a second generalisation we also include relativistic corrections since we are interested
in describing high velocities. The relativistic Lagrangian for point particles interacting via
a radial potential V is given by

Lpoint = −
2∑

k=1

M
√

1− (v(k))2 − V
(
|r(1) − r(2)|

)
, (10)
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where r(k) and v(k) = d
dt
r(k) are position and velocity of the kth particle.1 Note that the

relativistic momentum is given by

p(k) = ∇v(k)Lpoint =
Mv(k)√

1− (v(k))2
. (11)

The Euler-Lagrange equations then result in the usual force law

dp(k)

dt
= F(k), where F(k) = −∇r(k)V

(
|r(1) − r(2)|

)
. (12)

In the following, we work in the center of momentum frame p(1) = −p(2), and we restrict
our consideration to the nontrivial part of the attractive channel, namely, r(1) = −r(2), with
r(1) · n = 0 and p(1) · n = 0.2 Then we can use the identity

∇r(1)V
(
|r(1) − r(2)|

)
= −∇r(2)V

(
|r(1) − r(2)|

)
(13)

to show that if (12) is satisfied for k = 1 it is also satisfied for k = 2. The relativistic particle
equations of motion become

d2r

dt2
=

1

Mγ(v)

(
F− (F · v)v

c2

)
, (14)

where, for simplicity, we have suppressed the superscripts and

F = − r

|r|
dV (R)

dR

∣∣∣∣
R=|2r|

. (15)

The relativistic particle equations of motion (14) can now be solved for the dipol approx-
imation V (X) = Eatt

int (X) in (5), or the interaction potential for massive pions V (X) =
Ea

int,mπ(X) in (9). Since we are interested in scattering processes our initial conditions are
that the Skyrmions are located at ±1

2
(D, b, 0) with initial velocities ∓1

2
(v, 0, 0)T . This gives

the initial conditions for X as X(0) = (D, b, 0)T , and Ẋ = −(v, 0, 0)T . Hence the relative
angular momentum (8) is lrel = µ(0, 0, bv)T . Scattering is defined in the limit D → ∞. For
finite D not all velocities v correspond to scattering solutions. For example for mπ = 0 in
the dipole approximation, starting with b = 0 and v = 0 at infinity (D = ∞) gives rise to
v = 0.08 at D = 10 by energy conservation. If v is chosen lower than 0.08 at D = 10 then
the trajectories cannot escape to infinity.

In figures 5 we show the trajectories in the dipol approximation (mπ = 0) with v =
0.2 and v = 0.4 for various b. Here D is chosen sufficiently large. As can be seen from
figure 5, the Skyrmions attract each other for small impact parameter b and collide at the

1Here we treat the particles relativistically, but we make the approximation that V can be treated as a
function of separation only – ignoring retarded potentials.

2There are different definition of a relativistic center of mass in the literature. Working in the center of
momentum frame avoids these difficulties.
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Figure 5: Scattering trajectories of two Skyrmions in the dipol approximation with zero pion
mass mπ = 0. The solid blue lines are the position of one Skyrmion for impact parameters
b = 0, 0.5, . . . , 8. The dashed red line is the trajectory for the critical value of the impact
parameter b. The dashed-dotted green lines are the non-relativistic approximation. In the
left figure the initial speed v of one Skyrmion is v = 0.2 with bcrit/2 = 2.35, while in the
right figure v = 0.4 and bcrit/2 = 1.47.

origin when the particle equation of motion is no longer well defined. Once the impact
parameter b is larger than a critical value bcrit we observe scattering behaviour. The collision
at the origin is an artefact of our approximation which does not include any short range
repulsive force. Therefore the trajectories are only physical for b > bcrit. We plot both
relativisitic and non-relativistic dynamics and can see that there is reasonable agreement
for most trajectories. The error becomes particularly noticable for trajectories close to the
critical impact parameter bcrit. Figure 6 shows the critical impact parameter bcrit as a function
of v for mπ = 0. As can be expected bcrit decreases as v increases, and bcrit tends to zero
in the limit v → 1. In figure 7 we show how the scattering changes when the pion mass is
increased to mπ = 0.5. The scattering becomes less pronounced and bcrit is smaller than in
the massless case. Figure 6 also shows the critical impact parameter bcrit as a function of v
for mπ = 0.5 and mπ = 1.

Tracking the Skyrmions location show how the pion mass, mπ, affects the scattering
process. For example in figure 3, it can be seen that, for large separation, the Skyrmion with
mπ = 0.5 is deflected less. Figure 3b also shows the two distinct scattering processes. One
scattering process is for small b where the Skyrmions combine and then repel. This repulsion
is a consequence of the geometry of the Skyrmion moduli space and is analogous to monopole
scattering. Only the scattering regime for large b where the Skyrmions are deflected towards
each other can be approximated by dipole scattering. In fact, for mπ = 0 in figure 3a
all scattering trajectories have b < bcrit and, therefore, cannot be described by the dipole
approximation. For mπ = 0.5, the critical impact parameter is bcrit/2 = 1.47. Therefore,
the outer three trajectories satisfy b > bcrit. The outer two show a qualitatively similar

9



Figure 6: The critical impact parameter bcrit as a function of the initial velocity v. The solid
red line corresponds to mπ = 0, the dashed blue line to mπ = 0.5 and the dashed-dotted
green line to mπ = 1.

Figure 7: Scattering trajectories of two Skyrmions in the dipol approximation with pion
mass mπ = 0.5 The solid blue lines are the position of one Skyrmion for impact parameters
b = 0, 0.5, . . . , 8. The dashed red line is the trajectory for the critical value of the impact
parameter b. The dashed-dotted green lines are the non-relativistic approximation. In the
left figure the initial speed v of one Skyrmion is v = 0.2 with bcrit/2 = 1.99, while in the
right figure v = 0.4 and bcrit/2 = 1.28.
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behaviour to the trajectories in figure 5b while the third trajectories clearly experiences
an additional repulsive force. For intermediate impact parameters, b ∼ 0.6, the geometric
effect and the dipole attraction compete. A point worth noting is that this competitive effect
might effectively cancel for a scattering with impact parameter between 0.6 and 0.8, for both
mπ = 0 and mπ = 0.5. This is the range of trajectories for which the y value at x = 1.5 swaps
from being below the corresponding impact parameter to above it. This cancelation would
not give a flat trajectory, but it would have the same x values at y = 1.5 as at y = −1.5.
Figure 3a shows that the trajectories for b = 1.8 and b = 2 crossover for mπ = 0. It can be
seen from figure 3b that does not happen for the same trajectories when mπ = 0.5. This
is can be understood because both the geometric repulsive and dipole attraction effects are
less for the increasingly localised mπ = 0.5 Skyrmion.

4 Skyrmions visualisation

For a long time Skyrmions have been visualised as level sets of baryon density, and recently
it has become standard practice to colour the level sets in order to show the value of the
pion fields. This is a good method to visualise Skyrmions, especially as it uses an invariant
of the model. It clearly displays the symmetry of Skyrmions and shows how the Skyrmions
can potentially be combined to make larger Skyrmions. It is also a good method to visualise
Skyrmion scattering as shown in the previous images. But level sets of baryon density do not
show how the Skyrmions recombine during a scattering process. For example, as previously
shown, when two Skyrmions are in the attractive channel and collide head-on then they
scatter perpendicularly. From the simulations it seems as though half of each Skyrmion
is exchanged, and the corresponding two halves recombine to make two new Skyrmions
travelling perpendicularly to the original velocities. Our aim is to quantify this exchange
and to visualise it in a new way which could shine light onto Skyrmion dynamics. Our
construction is to track the preimages, U(pi)

−1, of a range of points pi ∈ SU(2) throughout
a collision.

4.1 Preimages

So far we have defined the location of Skyrmions as the points U(−12)
−1 in R3. We shall

now describe how we chose the preimages to track.
Our aim is to visualise a Skyrmion scattering using preimages. Our initial configuration

and initial velocities are symmetric under the combined reflections x
y
z

 7→
 x

y
−z

 and

 π1
π2
π3

 7→
 π1

π2
−π3

 , (16)

where z = 0 corresponds to the scattering plane. The reflection symmetry implies that
π3 = 0 in the scattering plane, namely π3(x, y, 0) = 0. Hence we can define the equatorial
two-sphere as S2

eq = {(σ, πi)|σ2 + π2
1 + π2

2 = 1, π3 = 0} ⊂ S3 ∼= SU(2). Then, for a single
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B = 1 hedgehog (3) all of the points U(pi)
−1 in R3 for pi ∈ S2

eq will lie on the scattering
plane. This gives a two-dimensional way to visualise the three-dimensional Skyrmion using
preimages which lie in the scattering plane, namely, we track the preimages of points in S2

eq

to visualise a scattering process.
As much as we would like to, numerically we cannot track all of the preimages of S2

eq. As
we know, Skyrmions in this model are not discrete objects, but they are actually extended
objects. When visualising a two-Skyrmion solution, with large separation, as a level set of
baryon density we have to arbitrarily choose a value of baryon density which shows two
distinct Skyrmions. As our aim is to use preimages to represent a two-Skyrmion system,
where we can identify single Skyrmions, we choose a cut-off and do not sample points on
S2
eq where σ > 0.5. This is an arbitrary aesthetic choice. A cut-off is needed, so that we

do not track points too near to the vacuum, σ = 1. These points can move very rapidly
due to radiation propagating around the system since perturbations about the vacuum have
very little mass. Therefore, tracking points near the vacuum would give an unrealistic
representation of the collision.

We chose to track the points,

σk =
1

2
− 3k

2kmax

, (17)

π1,n =
√

1− σ2
k cos

(
2πn

nmax − 1

)
,

π2,n =
√

1− σ2
k sin

(
2πn

nmax − 1

)
,

where k and n are integers, 1 ≤ k < kmax and 1 ≤ n < nmax. This range is appropriate
because if k = kmax then there would be nmax points where σ = −1, π1 = π2 = 0. Hence this
value of k is excluded. The preimage of σ = −1 is also the location which we have already
tracked. This defines (nmax − 1)(kmax − 1) points on S2

eq. Figure 8b shows, for a single
B = 1 Skyrmion, the preimages of nmax = kmax = 11 points given by (17), and compares it
with the standard baryon-density level-set image in figure 8a. Note that for a two-Skyrmion
configuration there are 2(nmax − 1)(kmax − 1) points.
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(a) (b)

Figure 8: Comparison of the baryon-density plot, 8a, and the preimage plot, 8b, of a sinlge
Skyrmion.

For each time slice we tracked the movement of each preimage using a search algorithm
to find the point in R3 which has the required field value and is the closest to the same point
of the previous time step. We are only interested in tracking how the preimages in the initial
configuration move. It should be noted that the algorithm interpolated the field values in
between the lattice sites to increase accuracy. This gives us a new insight into scattering.
We can now see how the preimages move during a scattering process. For example, for b = 0
the preimages scatter perpendicularly giving figure 9.
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(b) B = 2 toroidal Skyrmion.
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(c) After collision.

Figure 9: Preimages of perpendicularly scattering Skyrmions

This new way of visualising Skyrmions immediately shows that half of each Skyrmion is
used to form two new Skyrmions, and the new recombined Skyrmions are now rotated. This
is the cause of the rotationless rotation observed previously. This is implied by the baryon-
density plots, and it clearly shown in the preimage plots. What is not obvious from the
baryon-density plots is that this preimage exchange also occurs for large impact parameters.
An example of two Skyrmions scattering with impact parameter b = 2 is displayed in figure
10. Figure 10a shows the preimages of two Skyrmions. In figure 10b the two Skyrmions
exchange four preimages as they pass each other. Figure 10c shows the preimages of the final
scattered Skyrmions. Hence, Skyrmions do exchange preimages. Also, figure 10d shows the
initial preimages (red circles) and the final preimages (green crosses) of a single Skyrmion. In
figure 10d we have also included the trajectory of a preimage. This shows that the Skyrmion
has rotated even for a large impact parameter.
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(d) Initial and final preimages of the scattered
Skyrmion. Also shows the trajectory of one
preimage explicitly showing the rotation.

Figure 10: Trajectories of the location of a single Skyrmion throughout a scattering process
(kmax = 11, nmax = 11,mπ = 0).

In our algorithm we were also able to track preimages for different scattering processes in
order to quantify how many preimages are exchanged as a function of the impact parameter
b. This is shown in figure 11. As the Skyrmions pass each other they exchange preimages,
and the number of exchanged preimages reduces with separation. This reduction in exchange
is intuitive because Skyrmions are localized objects.
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Figure 11: Fraction of points exchanged for mπ = 0 (solid line) and mπ = 1 (dashed line).

By carefully tracking these preimages we can measure the rotation angle of one Skyrmion
during a scattering process. We achieved this by tracking the relative orientation between
the location point and the set of preimages which are constant π1, π2 – this is one ‘arm’ of the
preimage plot in figure 8b. Care must be taken not to choose points which are exchanged.
By tracking the relative average orientation between the location and the set of points of
constant π1, π2, and not just one point, reduces the effect of radiation. The rotation angle
is shown as a function of time in figure 12. The oscillations in the rotation angle at large
times are due to radiation propagating around the numerical lattice. Figure 12 shows that
the Skyrmions maximally rotate for b = 0 when the rotation angle is approximately π

2
. The

rotation angle decreases as b increases. This is can be understood because Skyrmions are
localized objects. Hence as b increases they exchange less preimages as they overlap less,
and therefore the Skyrmions experience less rotation.
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Figure 12: Rotation of a single Skyrmion throughout a scattering, mπ = 0.

Another way of gaining an understanding of this phenomenon is to consider the attractive
channel approximation in [26]. Since the initial configurations are not spinning or isospinning,
the total isospin (M2 in [26]) is zero. Since the total isospin is conserved, this sets the rotation
angular frequency ω2 equal to the isorotation angular frequency Ω2 using the attractive
Lagrangian in [26]. Since both rotation and isorotation angles are zero, initially, they remain
equal during the scattering process. If there was right-angle scattering, then the position of
one Skyrmion would be rotated by π

2
and the phase would also be rotated by π

2
, as observed

in figure 12. However, in this approximation, head-on collision does not lead to right angle
scattering as the approximation breaks down for small separation.

4.2 Spinning Skyrmions

Instead of simply colliding Skyrmions, we also investigated colliding spinning Skyrmions.
We achieved this by numerically evolving an initial condition of two rotating hedgehog
Skyrmions boosted towards each other. We chose the Skyrmions to be orientated in the
attractive channel, and rotate in the same direction and angular frequency. This is similar
to a constant global isorotation, and the Skyrmions remain in the attractive channel. This is
similar to a constant global isorotation. It is known that for mπ = 0 spinning Skyrmions are
not stable as they radiate pions [26, 13]. This is not a problem when we considered mπ = 0
as the scattering takes place well before the Skyrmions stop spinning.

There has been some recent interest in spinning Skyrmions, namely [33] and [34], which
investigate an extension of the collective coordinate quantisation procedure. The related
question of isospin was examined in [14] where the authors considered the deformation in-
troduced by isospinning Skyrmions.
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(a) Before collision. (b) Preimage exchange (c) After collision.

Figure 13: Preimage plots of two scattering Skyrmions initially spinning at 0.05 radians per
unit time.

(a) Before collision. (b) Preimage exchange (c) After collision.

Figure 14: Preimage plots of two scattering Skyrmions initially spinning at 0.5 radians per
unit time.

(a) Before collision. (b) Preimage exchange (c) After collision.

Figure 15: Preimage plots of two scattering Skyrmions initially spinning at 1 radians per
unit time.

Figures 13, 14 and 15 show the strange effect that the spinning Skyrmions exchange
preimages in a spiral pattern. Also, the Skyrmions no longer scatter perpendicularly. This is
obvious by the trajectories of the location, shown in figure 16. As the Skyrmions spin faster
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they deflect more. These spinning scattering results could help gain a better understanding
of the spin-orbit coupling of nuclei [35, 36, 37].
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Figure 16: Trajectories for spinning scattering Skyrmions of different initial rotational speeds

5 Comparison to monopole scattering

In the following, we compare Skyrmion scattering in the attractive channel with monopole
scattering. Two-monopole scattering for low velocities can be calculated from geodesic
motion in the Atiyah-Hitchin manifold M0

2 [38]. This four dimensional manifold can be
parametrized by a radial coordinate ρ ∈ [π,∞), and three angular coordinates θ, φ, and ψ.
The radial coordinate is basically the separation of the two monopoles, and ρ = π corre-
sponds to the torus configuration. The angles θ and φ parametrize how the monopoles are
positioned in R3 whereas the angle ψ gives the orientation of the monopoles along the axis
of separation. The moduli space of monopoles has two important geodesic submanifolds,
namely the “trumpet” which describes head on collision of monopoles with time-dependent
ψ, and the “cone” which describes monopole scattering in the plane (with ψ constant). We
are interested whether there is an analogy of “rotation without rotating” in the monopole
picture. Skyrmion scattering without rotation in the plane corresponds to monopole scatter-
ing along the cone. As we have seen in section 4.1 the effect of “rotation without rotating”
is related to how much the two Skyrmions overlap. On the monopole moduli space there is
a quantity which measures this overlap: the Sen-form [39] which is exponentially localised
at the centre of the monopole moduli space, known as the bolt. The hyperkähler SO(3)
invariant metric on M0

2 can be written as

ds2 = f 2dρ2 + a2σ1
2 + b2σ2

2 + c2σ3
2, (18)
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where σk are left-invariant one-forms and the coefficient functions satisfy the following dif-
ferential equations

2bc

f

da

dρ
= (b− c)2 − a2,

2ca

f

db

dρ
= (c− a)2 − b2,

2ab

f

dc

dρ
= (a− b)2 − c2,

where a(π
2
) = 0, b(π

2
) = π

2
, and c(π

2
) = −π

2
. Here, we follow the conventions in [40] and set

f = −b/ρ. Then, the Sen form is the unique normalisable anti-self dual harmonic two-form
given by

ω = F (ρ)

(
dσ1 −

fa

bc
dρ ∧ σ1

)
, (19)

where

F (ρ) = F0 exp

− ρ∫
π

fa

bc
dρ′

 . (20)

The Sen form is exact as we can write ω = dA where A = F (ρ)σ1. Note that F (π) = F0

at the bolt. Now, consider a geodesic γ in the moduli space M0
2 . Then the path integral∫

γ
A is equivalent to the loop integral

∮
γ
A, where we closed the loop via a circle segment

at infinity. This does not contribute to the integral due to the asymptotics of F (ρ), namely,
F (ρ) is exponentially localised. Using Stokes theorem,∮

γ

A =

∫
D

ω,

where D is the surface bounded by γ. This can be interpreted as a holonomy on M0
2 with

respect to the Sen form. This holonomy is conjectured to show a very similar behaviour to
the “rotation without rotating” angle.

6 Conclusion

In this paper we discuss Skyrmion-Skyrmion scattering for non-zero impact parameter. Here
we focus on the attractive channel where the two Skyrmions are orientated in such a way that
the attraction between them is maximal. For large separation, the scattering can be described
in the dipol approximation which ignores the short-range repulsive interaction. We also
discussed the necessary modifications needed to include non-zero pion mass and relativistic
corrections. This approximation clearly breaks down at the critical value bcrit when the
two dipoles no longer escape to infinity but collide with each other. For small velocities,
Skyrmion scattering in the attractive channel is similar to monopole scattering which in turn
can be described as geodesic motion on the Atiyah-Hitchin manifold. We have calculated
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Skyrmion trajectories numerically for different velocities and impact parameters, and find
good qualitative agreement with the dipol approximation for large impact parameters.

When two non-rotating Skyrmions scatter head on, namely with zero impact parameter,
in the attractive channel then they scatter by 90 degrees. Using our colouring scheme we
observed the following. Initially, the Skyrmions have a relative phase of π. During scattering,
the Skyrmions move towards each other but do not rotate. Then they form a torus and
emerge again from the torus but in a different orientation. While both Skrymions still have
a relative phase of π there overall phase has changed by π

2
. What seemed to have happened is

that half of the left Skyrmion has gone up and half of the left Skyrmion has gone down, and
similar for the Skyrmion coming from the right. Hence the Skyrmions have rearranged each
other, and this leads to a “rotation without rotating.” This effect can be explored further
by looking at preimages. In a Skyrmion configurations of degree B = 2 each point in target
space generically has at least two preimages. When there are more than two preimages
there has to be negative baryon density, see [31] for further details. In our simulations, we
did not find significants amounts of negative baryon density. Since for large separations, two
Skyrmions are well approximated as hedgehog, we choose the position of the Skyrmions to be
U = −12. During the scattering process we can generically track the preimages of any point
on the sphere and calculate to which final state it belongs. This gives a way of quantifying
rotation without rotating, also for non-zero impact parameter. By plotting preimages rather
than baryon density we have created a novel way of visualizing Skyrmions.

We also briefly discussed the scattering of spinning Skyrmions. Spinning Skyrmion so-
lutions are not stable for massless pions due to pion radiation. However, we observed pion
radiation before the Skyrmions stopped spinning. Spinning Skyrmions no longer scatter
at right angles during head-on collision. The configuration of closest approach is also no
longer the torus but a configuration which is similar to the stationary solution of isorotation
B = 2 Skyrmions found in [14]. It would be interesting to compare the dynamics of spinning
Skyrmions with the attractive channel approximation in [26].

There are still many open problems in classical Skyrmion-Skyrmion scattering. For ex-
ample, how do Skyrmions behave for more general initial conditions? To what extend can
the attractive channel be used to approximate more general scattering events? Scattering
for higher charges is also an interesting topic. Our preimage technique could provide novel
insights into what happens to an individual Skyrmion during scattering.

While we are currently studying classical scattering, our long-term goal is to understand
scattering of nucleons or even the scattering of nuclei. Braaten has outlined how to calculate
scattering cross sections in the Skyrme model [27]. We intend to combine this approach with
our scattering results to model experimental results.

Acknowledgements

The authors are grateful for fruitful discussions with Nick Manton at various stages of the
project. We would also like to thank Mareike Haberichter for useful discussions. This work
was financially supported by the U.K. Engineering and Physical Science Research Council

21



(Grant No. EP/I034491/1).

References

[1] T. Skyrme, A Nonlinear field theory , Proc.Roy.Soc.Lond. A260: 127–138 (1961),

[2] R. A. Battye and P. M. Sutcliffe, Skyrmions, fullerenes and rational maps, Rev.Math.Phys.
14: 29–86 (2002),

[3] R. Battye and P. Sutcliffe, Skyrmions and the pion mass, Nucl.Phys. B705: 384–400 (2005),

[4] R. Battye and P. Sutcliffe, Skyrmions with massive pions, Phys.Rev. C73: 055205 (2006),

[5] D. Feist, P. Lau and N. Manton, Skyrmions up to Baryon Number 108 , Phys.Rev. D87:
085034 (2013),

[6] G. S. Adkins, C. R. Nappi and E. Witten, Static Properties of Nucleons in the Skyrme Model ,
Nucl.Phys. B228: 552 (1983),

[7] G. S. Adkins and C. R. Nappi, The Skyrme Model with Pion Masses, Nucl.Phys. B233: 109
(1984),

[8] D. Finkelstein and J. Rubinstein, Connection between spin, statistics, and kinks, J.Math.Phys.
9: 1762–1779 (1968),

[9] P. Irwin, Zero mode quantization of multi - Skyrmions, Phys.Rev. D61: 114024 (2000),

[10] S. Krusch, Homotopy of rational maps and the quantization of skyrmions, Annals Phys. 304:
103–127 (2003),

[11] S. Krusch, Finkelstein-Rubinstein constraints for the Skyrme model with pion masses,
Proc.Roy.Soc.Lond. A462: 2001–2016 (2006),

[12] R. A. Battye, N. S. Manton, P. M. Sutcliffe and S. W. Wood, Light Nuclei of Even Mass
Number in the Skyrme Model , Phys.Rev. C80: 034323 (2009),

[13] R. A. Battye, S. Krusch and P. M. Sutcliffe, Spinning skyrmions and the skyrme parameters,
Phys.Lett. B626: 120–126 (2005),

[14] R. A. Battye, M. Haberichter and S. Krusch, Classically Isospinning Skyrmion Solutions
(2014),

[15] P. Lau and N. Manton, States of Carbon-12 in the Skyrme Model , Phys.Rev.Lett. 113: 232503
(2014),

[16] J. Verbaarschot, T. Walhout, J. Wambach and H. Wyld, Scattering of skyrmions in an axially
symmetric system, Nucl.Phys. A461: 603 (1987),

[17] A. Allder, S. Koonin, R. Seki and H. Sommermann, Dynamics of skyrmion collisions in (3+1)-
dimensions, Phys.Rev.Lett. 59: 2836 (1987),

22



[18] R. A. Battye and P. M. Sutcliffe, Multi - soliton dynamics in the Skyrme model , Phys.Lett.
B391: 150–156 (1997),

[19] N. Manton and P. Sutcliffe, Topological Solitons, Cambridge Monographs On Mathematical
Physics, Cambridge University Press, New York (2004),

[20] C. J. Houghton, N. S. Manton and P. M. Sutcliffe, Rational maps, monopoles and Skyrmions,
Nucl.Phys. B510: 507–537 (1998),

[21] N. Manton, Unstable Manifolds and Soliton Dynamics, Phys.Rev.Lett. 60: 1916 (1988),

[22] T. Gisiger and M. B. Paranjape, Low-energy Skyrmion-Skyrmion scattering , Phys.Rev. D50:
1010–1015 (1994),

[23] N. Manton, A Remark on the Scattering of BPS Monopoles, Phys.Lett. B110: 54–56 (1982),

[24] P. Irwin and N. Manton, Gradient flow for well-separated Skyrmions, Phys.Lett. B385: 187–
192 (1996),

[25] T. Waindzoch and J. Wambach, Skyrmion dynamics on the unstable manifold and the nucleon-
nucleon interaction (1997),

[26] B. Schroers, Dynamics of moving and spinning Skyrmions, Z.Phys. C61: 479–494 (1994),

[27] E. Braaten, Nucleon-nucleon scattering amplitudes and the classical scattering of skyrmions,
Phys.Rev. D37: 2026 (1988),

[28] M. Atiyah and N. Manton, Skyrmions From Instantons, Phys.Lett. B222: 438–442 (1989),

[29] M. Atiyah and N. Manton, Geometry and kinematics of two skyrmions, Commun.Math.Phys.
153: 391–422 (1993),

[30] N. Manton, Classical Skyrmions: Static Solutions and Dynamics, Mathematical Methods in
the Applied Sciences 35: 11881204 (2012),

[31] D. Foster and S. Krusch, Negative Baryon density and the Folding structure of the B=3
Skyrmion, J.Phys. A46: 265401 (2013),

[32] D. T. Feist, Interactions of B = 4 Skyrmions, JHEP 1202: 100 (2012),

[33] H. Hata and T. Kikuchi, Relativistic Collective Coordinate System of Solitons and Spinning
Skyrmion, Prog.Theor.Phys. 125: 59–101 (2011),

[34] H. Hata and T. Kikuchi, Relativistic collective coordinate system of solitons and spinning
Skyrmion, AIP Conf.Proc. 1388: 192–194 (2011),

[35] G. Kaelbermann and J. Eisenberg, An Attractive nucleon-nucleon spin orbit force from
skyrmions with dilatons, Phys.Lett. B349: 416–420 (1995),

[36] D. Riska and K. Dannbom, The nucleon nucleon spin orbit interaction in the skyrme model ,
Phys.Scripta 37: 7–12 (1988),

23



[37] T. Otofuji, Y. Kondo, S. Saito and R. Seki, Attractive, spin - isospin independent N N potential
in the Skyrme model , Phys.Rev. D45: 2528–2533 (1992),

[38] M. Atiyah and N. Hitchin, The Geometry and Dynamics of Magnetic Monopoles, Porter Lec-
tures, Princeton University Press (1988).

[39] A. Sen, Dyon - monopole bound states, selfdual harmonic forms on the multi - monopole moduli
space, and SL(2,Z) invariance in string theory , Phys.Lett. B329: 217–221 (1994),

[40] G. Gibbons and N. Manton, Classical and Quantum Dynamics of BPS Monopoles, Nucl.Phys.
B274: 183 (1986),

[41] T. Gisiger and M. B. Paranjape, Low-energy nucleon-nucleon scattering with the Skyrme model
in the geodetic approximation, Phys.Rev. D51: 3034–3041 (1995),

24


	1 Introduction
	2 The Skyrme model
	3 Skyrmion Scattering
	3.1 Numerical Results
	3.2 Dipole approximation

	4 Skyrmions visualisation
	4.1 Preimages
	4.2 Spinning Skyrmions

	5 Comparison to monopole scattering
	6 Conclusion

