
Kent Academic Repository
Full text document (pdf)

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all

content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions

for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version.

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the

published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact:

researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down

information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Salhi, Said and Irawan, Chandra A. (2015) A quadtree-based allocation method for a class of
large discrete Euclidean location problems: large location problems. Computers and Operations
Research, 55 . pp. 23-35. ISSN 0305-0548.

DOI

http://doi.org/10.1016/j.cor.2014.10.002

Link to record in KAR

http://kar.kent.ac.uk/45782/

Document Version

UNSPECIFIED

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/30706358?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 1

A quadtree-based allocation method for a class of large discrete
Euclidean location problems*

1Said Salhi and 2Chandra Ade Irawan
1Centre for Logistics & Heuristic Optimization (CLHO), Kent Business School, University of Kent, Canterbury, Kent CT2 7PE, UK
2Centre for Operational Research and Logistics (CORL), Department of Mathematics, University of Portsmouth, Lion Gate Building, Lion

Terrace, Portsmouth, PO1 3HF, UK

Abstract A special data compression approach using a quadtree-based method is proposed

for allocating very large demand points to their nearest facilities while eliminating

aggregation error. This allocation procedure is shown to be extremely effective when solving

very large facility location problems in the Euclidian space. Our method basically aggregates

demand points where it eliminates aggregation-based allocation error, and disaggregates them

if necessary. The method is assessed first on the allocation problems and then embedded into

the search for solving a class of discrete facility location problems namely the p-median and

the vertex p-centre problems. We use randomly generated and TSP datasets for testing our

method. The results of the experiments show that the quadtree-based approach is very

effective in reducing the computing time for this class of location problems.

Key words: Allocation method, quadtree method, p-median and p-centre problems,

aggregation

1. Introduction

It is a common practice when dealing with large location problems to aggregate demand

points known as Basic Spatial Units (BSUs) into a small number of Aggregated Spatial Units

(ASUs). Such an aggregation usually leads to error due to both distance measurement and

allocation. Many of the aggregation schemes are iterative processes where the allocation must

be performed several times to find the best solutions having the least errors. A two-phase

approach is commonly used where in the first phase an aggregated (smaller) problem is

constructed by solving a clustering problem, and in the second phase the aggregated location-

allocation problem is then solved. It was noted that the design of aggregation schemes that

minimize aggregation error is itself a hard problem which has not yet been solved

* This study was mostly conducted while the second author was at the University of Kent

 2

successfully for a large number of demand points, see Francis and Lowe (1992) and Francis

et al. (2003, 2009).

Hillsman and Rhoda (1978) introduced three sources of error arising from demand point

aggregation, known as source ABC error. Source A error happens when the distance between

an ASU and a facility is applied in the model instead of the true distance between a BSU and

a facility. Source B error appears in the special case when a facility is located at an ASU

whereas source C error occurs when a BSU is assigned to the wrong facility. Several schemes

are introduced to reduce or eliminate these types of aggregation error which are usually

grouped under two categories. These include data manipulation and aggregation design which

are briefly described next. For more details on aggregation methods for location problems,

see Francis et al. (2009).

Data manipulation

Current and Schilling (1987) proposed pre-processing the demand data. Their method

eliminates source A and B errors by assigning the correct total weight BSU–facility distance

to each ASU–facility cell in the weighted distance matrix. The method does not address

source C error. To eliminate source C error, Hodgson and Neuman (1993) utilise continuous

space, a set of Voronoi polygons and a GIS overlay procedure to “aggregate on the fly”.

Their method though is successful in addressing source C error, it fails to eliminate source A

and B errors. Hodgson et al (1997) introduced a new type of error known as source D error.

This occurs if some of the BSU locations happen to be at the potential sites. Bowerman et al

(1999) introduced a demand portioning method that applies the Current and Schilling (1987)

approach to eliminate source A and B errors while producing ASUs on the fly when using a

vertex interchange procedure to eliminate source C error. Hodgson and Hewko (2003)

studied aggregation and surrogation errors for the p-median problem using Edmonton,

Canada data. The authors showed that the surrogation error was more a serious problem than

the aggregation error.

Aggregation Zone Design

Francis and Lowe (1992), Francis et al (1996, 2000, 2003, 2009), and Andersson et al.

(1998) dealt with aggregation error by developing aggregation zones for which error bounds

can be determined. Their methods established rectangular zones which can be long and

narrow, and hence prone to aggregation errors. Erkut and Bozkaya (1998) empirically

 3

evaluated some aggregation methods. A primal-dual VNS metaheuristic for large p-median

clustering problems was proposed by Hansen et al. (2009) where a Reduced VNS is used to

get good initial solutions which are then fed into a VNS with decomposition. Qi and Shen

(2010) investigated the worst-case analysis of demand point aggregation for the Euclidean p-

median problem on the plane. García et al. (2010) developed an alternative covering based

formulation which has a small subset of constraints and variables. This method is shown to be

more efficient especially when p is relatively large. Avella et al. (2012) proposed an

aggregation heuristic based on Lagrangean relaxation for large scale p-median problem that

produced excellent results. Very recently Irawan and Salhi (2013) and Irawan et al. (2014)

developed a multi-phase approach by solving a series of subproblems either optimally or

heuristically where the obtained facility locations are then used as promising potential sites.

Competitive results were generated when compared to the best known solutions. For more

details on aggregation error measurements and papers dealing with aggregation to location

problems, the reader will find the excellent survey paper by Francis et al. (2009) informative

and very valuable. The authors also point out effective as well as ineffective errors measures.

The process of determining an aggregation scheme with a minimum error is an NP-hard

problem, see Francis and Lowe (1992). This difficulty has led us to develop a method where

we do not aggregate demands by designing a general aggregation of demand points but we

conduct aggregation with reference to a specific set of given facilities. In the location-

allocation context, the method would aggregate demand relative to p trial facilities as they

arise during the search as usually applied in heuristics and metaheuristics.

The main contribution of this paper is the development of an effective quadtree method

(QM) used for allocating the demand points to their nearest facility when solving a class of

large Euclidean discrete location problems. This allocation technique could easily be

incorporated in those recent powerful algorithms for large-scale location problems as this

mechanism could enhance their efficiency even further.

The paper is organized as follows. A brief on the quadtree method is given in Section 2

followed by a quadtree-based methodology in Section 3. The computational results,

comparing QM against the classical allocation methods, are presented in the fourth section.

The integration of QM in solving both the discrete p-median and the p-centre problems is

attempted in the fifth section. The last section provides a summary of our findings and

highlights some suggestions for future research.

 4

2. A brief on the quadtree method

This section demonstrates an efficient aggregation scheme that eliminates all types of

allocation aggregation errors. The main idea of the scheme is adopted from the presentation

given at the INFORMS conference in Montreal (1998) by Hodgson and Salhi. The method

utilised a spatial data compression, known as quadtrees (Samet, 1990), to partition the study

area. The demand points could obviously also be partitioned by Voronoi polygons. Figure 1

shows a Voronoi polygons scheme with a number of demand points and three facilities (p =

3). Hodgson and Neuman (1993) used this method to eliminate source C error. Noaves et al.

(2009) also adopted Voronoi polygons for solving continuous location-districting problems.

Figure 1. A Voronoi polygons scheme

Though the Voronoi polygons-based allocation can be an efficient method to allocate

demand points to facilities, one of the limitations is that for each new set of facilities, the new

set of polygons must be generated which can be time consuming. The quadtree data structure,

inspired from a raster Geographic Information System (GIS), is adapted to overcome this

difficulty. The heart of QM is to pre-generate an appropriate set of common polygons with

which we can systematically allocate spatial grouping of demand points to their common

closest facility until all demand points have been allocated. A hierarchical organization of

successively generating smaller spatial groupings is required to eliminate all aggregation

errors.

A map is partitioned by raster GIS into a tessellation of square grid cells called pixels.

Each pixel has its attributes, usually by assigning a number. For example a land use map

might utilise 1 for green area, 2 for water, 0 for no data, and so on. Figure 2 shows an

illustration of a quadtree system where a raster grid is partitioned into a hierarchy (tree) of

quadrants.

Facility

Demand Point

 5

Figure 2. Quadtree partitioning and numbering system

The quadtree system first partitions the map into four quadrants, each quadrant assigned with

a single digit between 0 and 3. Then, each of these quadrants is then partitioned into four

quadrants, each address with a second such digit. This procedure continues until a certain

number of levels where each successive partition is assigned its corresponding digit between

0 and 3. Figure 2 also presents the numbering system and the quadtree partitioning. The

figure shows that the lightly shaded patch of four grid cells is assigned 200 whereas the

darker grid cell is addressed 3100.

In GIS, the quadtrees are usually utilized to capture areas with the same data

characteristic or attribute. Many adjacent pixels may have the same attribute in a rasterized

map. In the location-allocation problem, we develop a method that adapts the quadtree

structure to capture areas with the same spatial attribute (i.e., areas that are entirely closer to

one facility than to any other). The number of allocations is significantly reduced by

quadtrees. Figure 3 shows how the quadtree structure deals with a location-allocation

problem. There are 32 x 32 raster and each pixel is to be allocated to the closest of the three

facilities. There is also the Voronoi polygon to recognize the correct allocation. Let L

represent the quadtree level, with 0 denoting the original undivided study area.

Table 1 shows the result of an example in Figure 3. At level 1, the entire quadrant 0

(16x16 pixels) is closer to one facility than to any other. Its entirety can be allocated to that

facility, it means that 256 pixels are aggregated and allocated accurately at once. Four level 2

quadrants (aggregations) are each allocated to the closest facility; in other word 256 pixels

are accurately allocated. At level 3, sixteen quadrants assign another 256 pixels. Three

quarters of the study area’s 1024 pixels has now been accurately allocated by using 21

quadrants at the top three levels. Thirty two quadrants (128 pixels) are each allocated to the

00 01 02 03 30 31 32 33

0 1 2 3

330 331 332 333 010 011 012 013

 6

closest facility at level 4. Finally, at level five, 72 pixels can be allocated leaving 56 split

only.

Figure 3. Quadtree partitioning of Voronoi allocation areas

Table 1. Allocation of pixels by the quadtree level for the example problem (case of p=3)

Level Pixels per quadrant Entire quadrants Pixels Allocated
Cumulative

allocation (%)
1 256 1 256 25.00
2 64 4 256 50.00
3 16 16 256 75.00
4 4 32 128 87.50
5 1 72 72 94.53
 <1 56 56 100.00
 Total 181 1024

At some level, the limited amount of aggregation error remaining may be accepted by

assigning all contained demand points to a single or several nearby facilities. To eliminate

aggregation error, each demand point in the split quadrants is allocated to their nearest

facilities. In this example, 125 quadrants of varying sizes have been allocated, but only 56 of

the entire grid of the 1024 pixels are left unassigned and which need to be assigned in the

classical manner. It means that we have allocated 94.53 percent (100∙[1024-56]/1024) of the

pixels with only 5.47 percent (100∙56/1024) of the number of allocations left to be allocated

using the classical allocation. Moreover, to allocate 100 percent of the pixels, we need 17.68

percent (100∙181/1024) of the number of allocations. It is therefore interesting to determine

the right balance between the number of levels and the percentage of left over demand points

to allocate in the classical way.

The quadtree structure partitions the study area by ignoring the distribution of the

demand points. By allocating quadrants accurately, the demand points contained in them are

 7

also allocated accurately. For these demand points, source C (allocation) error is totally

eliminated. To eliminate the other errors (source A and B error/distance measurement error),

the total weighted distance from all demand points in a quadrant must be determined, but

only to the single, known closest facility, not to all facilities. This method creates an

allocation process which is more efficient as it reduces the computational effort/time of

allocating demand points to facilities. However, it depends on a quadtree structure with a

well-defined knowledge of which demand points belong to each quadrant at each level.

Therefore, this method clearly needs considerable computational overhead. The

computational success of the quadtree method relies on the relationship between the time

saved due to the allocation and the overhead times/cost. In the following section, algorithm

procedures and reduction tests that aim to reduce the amount of computational overhead

required to perform the allocations are presented.

3. The quadtree-based methodology

The quadtree method (QM) consists of two phases namely (i) the construction of the

quadtree database and (ii) the allocation procedure. For any set of demand points, a database

that defines the quadtree’s hierarchical structure is created and then demand points are

allocated to quadrants at each level of the hierarchy. The quadtree database needs to be

calculated only once for a given set of demand points. For any new set of facilities, full

quadrants of demand points must be allocated to the closest of these facilities.

3.1 The construction of the quadtree database

We propose the following steps to construct the quadtree database. These include the

construction of the area of study, the definition of the corners of the quadrants, the building of

the quadtree structure, and finally the allocation of demand points to the quadtrees.

1) Design of the Demand Point Area

We define a rectangular study area of known dimensions that contains all the demand points

and all the potential facilities. Let n be the number of demand points and (Xi, Yi) be the

coordinates of the ith demand point, where i = 1,...,n. Then let  i
i

a XMinX  and

 8

 i
i

b XMaxX  similarly  i
i

a YMinY  and  i
i

b YMaxY  . These , , and a a b bX Y X Y values

form the key border points of our rectangular demand study area with lower left and upper

right corners are being defined by (,)a aX Y and (,)b bX Y respectively.

2) Building corner objects

To establish the corner objects defining the corners of the quads, the quadtree level L needs

to be set. The number of corners ()LN required for a given quadtree with L levels is

1

2

0

(2 2)
L

i
L

i

N




  (1)

For instance, if L = 2, the number of corners is 25 and these are (cor[0], cor[1], ... , cor[24]).

The horizontal and the vertical distance between consecutive corners can be written as

L
ab XX

x
2


 and

L
ab YY

y
2


 respectively. As the values ofaX , aY , x , and y are

obtained,  kk yx ~,~ , the x and y coordinate of the kth corner object can be determined. At any

level, a quad’s location can be derived using the coordinates of its lower left corner, cor[0] =

(Xa, Ya), and its upper right corner, cor[NL-1] = (Xb, Yb). Given the x and y values representing

 kk yx ~,~ , the value of k can be determined from:

 k a k a
L

x X y Y
k N

x y 
 

  (2)

where
1

0

2 2
L

i
L L

i

N N




   represents the total number of corners in a row.

Similarly kx and ky can be determined as (mod())k a Lx X x k N  and k a
L

k
y Y y

N


 
   

 
.

For illustration, consider Figure 4 with L = 2 and 5
~ LN . Also for simplicity take

1 yx  and (Xa, Ya)=(0,0) and (Xb,Yb)=(4,4). Here (2) reduces to k L kk x N y  . As an

example, consider k = 17 which leads to

)3,2(]17[and3
5

17
10~ ;2)5mod17(10~ 



 coryx kk .

 9

Figure 4. An example of corner objects for L = 2

3) Building the quadtree structure

To build the quadtree structure, we first determine the number of quads at each level

(, 1,...,)lQ l L which can be formulated as 4l
lQ  .

Initially (level 0) we have a rectangle with vertices (Xa,Ya), (Xa,Yb), (Xb,Yb), and (Xb,Ya), then

to obtain the quads at level 1 this rectangle is then divided into four equal size quads. To

determine the location of these quads, we just need to find out the coordinate of the middle

point of this rectangle which is
2

ba
m

XX
X


 and

2
ba

m
YY

Y


 (see Figure 5).

Figure 5. An illustration of how the quads at level 1 are developed

At level 2, each quad is also divided into four equal size quads totaling 16 quads. This

process continues until level L.

cor[0]

cor[5]

cor[10]

cor[15]

cor[20]

cor[16]

cor[21]

cor[11]

cor[6]

cor[1] cor[2]

cor[7]

cor[17]

cor[22]

cor[12]

cor[3]

cor[18]

cor[23]

cor[8]

cor[13]

cor[4]

cor[19]

cor[24]

cor[9]

cor[14]

x

y

Xm = (Xa+Xb)/2
Ym = (Ya+ Yb)/2

(Xa, Yb) (Xb, Yb)

(Xa, Ya) (Xb, Ya)

(Xm, Ym)

(Xm, Yb)

(Xm, Ya)

(Xb, Ym) (Xa, Ym)

Case of k = 17

 10

In this method, each quad is assigned with a double digit L-O, where L is the level and O

represents the quad number put in order. In this method, the numbering system is slightly

different with the original quadtree system. In level 1, there are 4 quads (1-0, 1-1, 1-2, and 1-

3) whereas in level 2 there are 16 quads (2-0, ..., 2-15). The ith quad at the higher levelHL

consists of the pth until the qth quad at the lower levelLL , where ()4 L HL Lp i and

() () ()4 4 1 4 (1) 1L H L H L HL L L L L Lq i i        .

Figure 6 shows how to arrange the quadtree structure for 2L  where the quads at level 2 are

derived from the quads at level 1.

Figure 6. An example of a quadtree structure for L = 2

For example quads 2-4, 2-5, 2-6, and 2-7 are built from quad 1-1. To develop these quads, the

lower left corner coordinate of quad 1-1 (cor[10]) = (Xa, Ya) and the upper right corner

coordinate (cor[22]) = (Xb, Yb) are used. The midpoint defined by Xm and Ym is then

computed. This construction continues until all of the quad locations, from level 1 until level

L, are determined.

4) The allocation of the demand points to the corresponding quadtrees

In this process, the quadtree is ‘populated’ by assigning demand points to quads at each level.

This process uses a bottom-up procedure. At the lowest level (level L), each demand point is

assigned to the correct quad. At the same time, we create a list of all demand points (put in

order from the 0th quad until the (4L-1)th quad) and a list of the number of demand points for

x

y
cor[0] cor[1] cor[4] cor[2] cor[3]

cor[5] cor[7]

cor[10]

1-0

1-2

2-0

2-1 2-2

2-3

2-4

2-5 2-6

2-7 2-8

2-9 2-10

2-11

2-12

2-13 2-14

2-15

1-3

1-1

cor[11] cor[12] cor[13] cor[14]

cor[15] cor[16] cor[17] cor[18] cor[19]

cor[6] cor[8]

cor[20] cor[21] cor[22] cor[23] cor[24]

cor[9]

 11

each quad (put in order from the 0th quad until the (4L-1)th quad). Let ș and Ȟ be two vectors

denoting the list of all demand points and the list of the number of demand points for each

quad respectively. For instance consider the example of 30 demand points as shown in

Figure 7. Here, we have ș = {1,16,21,3,10,19,5,20,4,6,7,13,17,22,23,8,15,12,14,25,26,9,29,

28,27,30,18,2,11,24} and Ȟ = {3,3,2,4,3,2,0,2,2,2,1,2,1,2,1,0}.

Figure 7. An example of 30 demand points located in a quadtree structure (L = 2)

Quad membership

Determining the lowest-level quad memberships is the most time consuming part in the

procedure. At successively higher levels, the task becomes easier as we need only

assemble/concatenate the list of the number of demands from the one at the lower level. This

procedure continues until the number of demand points for each quad at level 1 has been

determined. It is worth noting that the quadtree structure is independent of the facility

locations and hence the computational burden of this procedure is carried out only once for a

given set of demand points and hence can be seen as requiring the only fixed cost.

3.2 The strength of the allocation procedure

The strength of this procedure relies on the following theorem and the lemma that follows.

2-0

2-1 2-2

2-3

2-4

2-5 2-6

2-7 2-8

2-9 2-10

2-11

2-12

2-13 2-14

2-15
1-0

1-2

1-3

1-1

1

2 3

4

5

6

7

8

9

10 11

12

13

14

15

16

17

18

19
20

21

22

23

24

25
26

27

28 29

30
Demand Point

 12

Theorem

Let nS  be a convex polytope with vertices rivi ,...,1,  , and letq be an arbitrary point

in S . For nyx , , let),(yxd denote the Euclidean distance between x and y . If

),(),(yvdxvd ii  for all i, i = 1,…,r, then),(),(yqdxqd  .

Proof

In general nvuyx  ,,, , we have:

),(),(),(),(22 vudyxdvudyxd  .

 yxyxyxyxd 2),(2222  where yx is the scalar product of x and y .

 If Sq then q can be written as a convex combination of the vertices, that is, there

exist 0i , ri ,...,1 , verifying 1
1




r

i
i , such that 




r

i
ii vq

1
 .

 As  22),(),(yvxvyvdxvd iiii

yvyxvx ii 22 22  . (3)

Multiplying both sides in (3) by rii ,...,1,  , and summing, we obtain:

yvyxvx
r

i
ii

r

i
ii)(2)(2

1

2

1

2 


  (4)

From (4), as 



r

i
ii vq

1
 , it follows that:

yqyxqx 22 22 

Adding 2q to both sides

 222222 22 yqxqyqyqxqxq

),(),(yqdxqdyqxq  . ฀

Based on the above theorem, a lemma, which relates to the allocation of a quad and the

demand points contained in it, as constructed in this study, is proposed.

 13

Lemma

If all 4 corners of a quad are closest to one facility then the quad with all of its

customers are also allocated to that facility.

The proof is based on the theorem where a quad is a convex polytope with 4r 

with its 4 corners corresponding to the vertices; 1,...,4iv i  . ฀

Besides allocating all the demand points of the quad to the facility nearest to the four

corners as claimed by our Lemma, there is no need to explore this quad any further. We term

such a quad as fathomed and all of its demand points allocated to that one facility. The more

populated is the quad the larger the saving in computational time is.

Further Fathoming

We also introduced two other rules that cause a quad to be fathomed:

(i) At any level, if a quad happens to contain no demand points (empty).

(ii) A quad that contains no more than five demand points is treated differently. Its

customers are allocated in the classical manner as it is quicker to do it this way than to

continue partitioning this quad.

The Allocation Procedure

This process uses a top-bottom procedure. All quads at each level are successively

considered, and then descend to the next level where the higher level quads have not been

fathomed. This process continues until all quads have been fathomed, or the bottom of the

tree is reached. Some of the quads at level L (lowest level) may remain unallocated and those

demand points inside these quads are then allocated to the nearest facility in the classical way.

As discussed above, this method allocates quad corners to facilities. Each quad has four

corners that must be allocated. Figure 8 shows that we start at the top level (level 0) and

determine the allocations of all four corners of the largest quad. At level 1, we need to

evaluate the allocation of five corners only instead of all the nine corners as four were already

allocated at the previous level. At level two, only 16 of the 25 corners need to be allocated,

whereas at level three 56 of the 81 corners need to be defined. It is worth noting that each

reduction in evaluating a corner represents a reduction of p distances to be calculated and

compared against. This reduction contributes to the overall saving which can be substantial.

 14

Allocating quads to facilities is an aggregation procedure. Because of the convexity of

the way the quads are constructed and the use of Euclidean distance, the demand points in

each allocated quad are allocated to the correct facility as demonstrated by our lemma. By

individually allocating the demand points inside the quads that are not assigned yet, these are

also allocated to the correct facility using the classical way.

Figure 8. The saving in the allocation of corners to facilities

Though the allocation of demand points to the facilities is completed, in many

applications the distance from these demand points to the nearest facility is required to record

the total distance. This is where source A and B errors are introduced in the conventional

aggregation procedures, where the demand points are aggregated and assumed to have the

same location as the centroid of their aggregated group. In the classical allocation procedure,

the distances from each demand point to all facilities are calculated and the minimum

distance determined. In the quadtree procedure, the distance from each demand point to its

known closest facility is calculated once as there is no need to compute distances to other

facilities. In other words, the demand points are aggregated for the allocation purpose, but

they are disaggregated when it comes to distance calculations. For example, if there are 60

facilities, each demand point is assigned to one facility only; the 59 distances and weighted

distance calculations are obviated for each of the demand points in that fathomed quad. If

there are, say, 10 demand points in a quad, a saving of 590 distance calculations are saved

besides the time required to determine the smallest distance between a demand point to all the

facilities.

3 81

16

Symbol Level Total

Corners

New

Corners

0 4 4

1 9 5

2 25

56

 15

3.3 A time evaluation of the two allocation procedures

We define the ‘conventional allocation method’ as the brute force approach, where the

allocation of the demand points, say n, is carried out for each demand point (i=1,…,n) by

calculating the smallest distance to each of the p facilities. For instance, if T0 refers to the

cost of computing one distance value between a demand point and a facility and 1T T1 is the

cost for computing the minimum distance from the ith demand point to all the p facilities (i.e.,

pjjidMin ,...,1)},,({ ), the computational cost will be)(1010 TpTnnTpnT  . If a

multiple allocation is required (say k iterations) to different sets of p facilities, then the

overall computational cost, say TC0, becomes)(10 TpTkn  .

Using the quadtree allocation, there are two primary sources of cost: (i) the cost to

construct the quadtree database, say F, and (ii) the cost to allocate the quadtrees to the

facilities. In (i), F consists of the cost of determining the quadtree structure and the cost of

populating the quadtree database with the demand points. This fixed cost depends on the

number of hierarchical levels (L) only but it is independent of the number of facilities (p) and

the number of demand points (n). The time to populate the quadtree database is proportional

to n and L, but it is independent of p.

In other words, the conventional allocation does not incur this fixed cost. The efficiency

of the quadtree method will improve as the number of iterations increases. Let TC1 be the

cost of this approach, 21 kTFTC  with 2T representing the cost of assigning the corners to

the facilities. The cost of allocating the quads to facilities depends on the degree to which the

quadtree structure can be exploited. Its cost will be relatively low if many higher level quads

are allocated but the fixed cost will be even higher. The cost of the quadtree method is related

to the number of facilities. As this number increases, the likelihood of a higher order quads

being split also increases as fathoming would not occur earlier which leads to an increase in

computational effort. The number of hierarchical levels affects the computational time. If

there are more facilities, the saving may only be achieved as the tree is penetrated more

deeply. Offering more levels may not unduly increase the allocation time, as the five-demand

points threshold rule will prevent any further penetration beyond this threshold.

The number of iterations required (k̂) for the quadtree method to outperform the

conventional method is derived as follows:

01021)(TCTpTknkTFTC  . This leads to:

 16

 k
TTpTn

F
k ˆ

)(210



 (5)

where 2 (,)LT f p N .

4. Computational experiments

This section comprises two subsections. The first subsection describes three allocation

methods followed by the computational results on the allocation problems. We refer to three

allocation techniques instead of two as there are two variants of the brute force which we also

call the conventional method.

4.1 A brief on the three allocation methods

Three allocation methods are proposed in the case of the Euclidian distance. These

include the conventional method, the modified-conventional method, and the quadtree

method described below. Here, there are n demand points and p facilities where

  niYX ii ,...,1,,  and   pjjj ,...,1,,  are the coordinates of the demand points and

facilities respectively. We would like to allocate each demand point to its closest facility.

A) The Conventional Method (CM)

The conventional method allocates demand points as follows: for each demand point i (i =

1,…,n), its nearest facility is computed as),(
,...,1

jidMinArg
pj 

, where

     pjniYXjid jiji ,...,1;,...,1,),(222   (6)

B) The Modified-Conventional Method (MM)

This method improves the way to calculate the distance between facility and demand point

where the allocation procedure is performed a large number of times. The method is based on

Al -Zoubi and Al-Rawi (2008) where they developed a simple but efficient approach for

computing the silhouette coefficients when evaluating clusters.

The Euclidian distance,),(jid as defined in (6), can also be written as

jijijjii YXYXjid  22),(22222  . The terms 22
iii YX  and 22

jjj  

 17

need to be calculated only once as i is a function of i only (the same for j). Using this

observation, there is obviously a fixed cost to calculate and store the i and the j though

relatively negligible with respect to the large number of iterations used. This scheme can

potentially save a large amount of computational time.

In brief, the idea is to calculate and store i (ni ,...,1) and j (pj ,...,1), and for

each demand point i (ni ,...,1), its closest facility is computed as
1,...,

((,))
j p

Arg Min d i j


, using

(7) instead of (6)

 jijiji YXjid  22),(2  (7)

C) The Quadtree Method (QM)

The Quadtree method is also designed for solving the allocation problem where the allocation

must be performed a large number of times. Here, MM is also used to calculate the distance

between facility and demand point. The followings steps of this method are given below.

1. Calculate and store 22
iii YX  , ni ,...,1 and 22

jjj   , pj ,...,1 .

2. Find the minimum and maximum of X and Y coordinate ((Xa, Ya) and (Xb, Yb)).

3. Build the quadtree database.

3a- Determine the corners  , , 0,..., (1)k k Lx y k N  with the first corner being located

 at (,)a aX Y .

3b- Establish the quadtree structure. We develop the quads from the highest level (level

 1) until the lowest level (level L), see section 3.1 for more details.

3c- Assign all demand points to quads on the lowest level. At successively higher levels,

 Assemble the demand point’s lists from the quads at the lower level, see section 3.1

 for more details.

4. Starting from Level 1 until level L, we allocate each quad, which has not been allocated,

to one facility if all corners of this quad are allocated to this facility with all demand

points inside this quad being systematically assigned to the same facility. See section 3.2

for more details.

 18

5. Allocate all the remaining unallocated demand points to the facilities individually using

the modified conventional allocation scheme (MM) given in subsection 4.1(B).

4.2 Computational Results on the Allocation Problems

Experiments are performed to investigate the relationship among the number of demand

points, the number of facilities, the depth of the quadtree, and the number of iterations. Seven

test problems with n = 5000, 10000, 20000, 30000, 40000, 70000, and 264000 are conducted.

These seven data are generated randomly in a square unit of 1000x1000, 2000x2000,

5000x5000, 5500x5500, 6000x6000, 7500x7500, and 10000x10000 respectively. For

example, in the data instance with n=5000, the coordinate),(ii YX are generated randomly in

the range 2)1000,1(.

In these experiments, the maximum number of levels (L) is set to 8. For each value of p,

the number of runs/iterations (k) of the allocation process is set to 1000 and the facility

locations are randomly generated. Computing times for the fixed cost and the variable cost

for all three methods are also recorded. Based on these costs, we estimate the number of

iterations required for QM to be more efficient than both the CM and MM. The code was

written in C++ .Net 2010 and was executed on a PC with an Intel Core i5 CPU 650@

3.20GHz processor, 4.00 GB of RAM and under Windows 7 (32bit).

Some Observations

Table 2 presents the CPU times of the three allocation methods for n = 30,000 where the

CPU times are in milliseconds. The notation in this table is as follow: FC(RD) : Fixed Costs

(read demand points file); FC(BQ) : Fixed Costs (build the quadtree database); L01 - L08 :

the level of Quadtree (level 1 - 8); VC: Variable Costs (average of allocating time from 1000

iterations); CPU : CPU times required to perform 1000 iterations. In this table, numbers in

bold refer to the lowest CPU values. The fixed cost of QM (reading the demand point file and

setting up the quadtree database) is proportional to the depth of the hierarchy. The fixed cost

of QM is, as one may expect, relatively much higher than that of CM and MM.

 19

Table 2. CPU Times (in millisecond) for the location-allocation using CM, MM, and QM (case of n = 30,000)

 CM MM
QM

L01 L02 L03 L04 L05 L06 L07 L08

FC(RD) 150 137 137 137 137 137 137 137 137 137

FC(BQ) - - 23 59 195 719 2,801 11,000 43,738 174,461

p VC CPU VC CPU VC CPU VC CPU VC CPU VC CPU VC CPU VC CPU VC CPU VC CPU

5 36.66 36,813 24.04 24,176 30.13 30,289 24.44 24,640 17.38 17,707 13.57 14,430 11.88 14,817 12.30 23,437 15.82 59,695 29.69 204,286

10 71.89 72,037 46.28 46,414 53.24 53,399 48.68 48,877 34.68 35,008 23.76 24,613 17.93 20,867 17.17 28,309 21.39 65,262 37.98 212,579

15 105.45 105,604 68.24 68,375 74.27 74,432 72.33 72,528 54.85 55,180 36.70 37,551 25.76 28,696 23.48 34,617 28.50 72,379 47.62 222,215

20 139.65 139,804 91.26 91,400 95.40 95,564 95.41 95,604 76.64 76,968 51.77 52,629 34.96 37,899 31.05 42,188 36.89 80,769 58.73 233,325

25 174.50 174,653 111.84 111,975 116.86 117,020 117.77 117,963 99.21 99,539 68.55 69,407 45.46 48,399 39.39 50,524 46.29 90,168 70.82 245,422

30 208.59 208,740 134.46 134,596 138.21 138,371 139.75 139,950 121.71 122,039 86.35 87,207 56.82 59,759 48.48 59,617 56.63 100,504 83.80 258,402

35 242.31 242,460 156.56 156,694 159.36 159,519 161.46 161,658 144.73 145,059 105.08 105,938 69.00 71,938 58.36 69,492 67.83 111,703 97.81 272,410

40 277.76 277,905 177.45 177,584 180.93 181,094 182.99 183,181 167.17 167,504 124.71 125,567 81.97 84,911 68.98 80,113 79.54 123,414 112.26 286,855

45 312.22 312,365 199.49 199,623 202.37 202,529 200.19 200,389 189.73 190,066 145.02 145,876 95.70 98,633 80.09 91,231 91.86 135,739 127.39 301,992

50 345.19 345,341 223.16 223,297 223.33 223,494 220.54 220,740 211.98 212,308 165.67 166,528 109.95 112,892 91.70 102,836 104.75 148,629 142.93 317,524

55 380.14 380,291 245.93 246,071 244.28 244,436 239.88 240,079 234.00 234,336 187.04 187,895 124.94 127,876 103.95 115,083 118.19 162,067 158.97 333,571

60 418.91 419,059 266.55 266,683 266.46 266,622 261.48 261,674 255.79 256,117 208.73 209,586 140.36 143,302 116.71 127,848 132.18 176,058 175.74 350,340

65 457.77 457,921 286.10 286,241 290.30 290,458 281.41 281,606 277.77 278,098 230.58 231,434 156.24 159,176 129.86 140,996 146.64 190,512 192.73 367,329

70 494.85 495,002 309.41 309,549 308.81 308,966 302.50 302,700 299.26 299,590 252.54 253,391 172.60 175,533 143.56 154,696 161.57 205,441 210.32 384,919

75 525.87 526,021 336.24 336,372 330.71 330,872 323.32 323,520 320.80 321,133 274.94 275,798 189.41 192,348 157.78 168,918 176.76 220,636 228.06 402,661

80 557.43 557,582 355.94 356,075 351.79 351,953 344.04 344,235 342.39 342,718 297.20 298,051 206.56 209,493 171.96 183,094 192.60 236,476 246.14 420,742

Avg 297 296,975 190 189,695 192 191,814 189 188,709 178 178,336 142 142,869 96 99,159 81 92,062 92 136,216 126 300,911

dev(%) 267 223 134 106 137 108 133 105 120 94 75 55 19 8 0 0 14 48 56 227

 20

Table 2 also presents dev(%) which is the percent gap from the best known CPU Time and is

computed as
b

bc

CPU

CPUCPU
dev


100(%) , where CPUc and CPUb correspond to the CPU

time obtained with method ’c’ and the best CPU time respectively.

Table 3 summarises the average of CPU times for n = 5000, 10000, 20000, 40000,

70000, and 264000 over p =5 to 80 with a step of 5. According to the results, MM

outperforms CM as the average allocation time (VC) of MM is shorter than the one of CM in

all cases. The average allocation time of QM is shorter than both CM and MM in most cases,

especially for larger values of p and/or n. It means that the advantages of QM for allocating

demand points are clear. We observe that the trend of the CPU values for the different levels

(except for n = 40,000) is decreasing until a certain level and then the values begin to increase

(the minimum occurs for L04, L05 or L06, depending on the cases). We also observe that the

CPU values for QM-L08 are worse than the values obtained from MM in all cases.

Table 3. The overall summary of the average CPU Times (in millisecond) for the Location-
Allocation problem for n = 5,000 to 264,000 over p = 5 to 80

n = 5,000 n = 10,000 n = 20,000

VC dev(%) CPU dev(%) VC dev(%) CPU dev(%) VC dev(%) CPU dev(%)

CM 51 102 50,936 100 93 131 93,003 125 183 183 183,330 168

MM 39 53 38,600 52 60 50 60,344 46 122 88 121,671 78

L01 31 23 31,015 22 65 61 64,976 57 124 91 123,915 81

L02 31 22 30,910 22 62 55 62,556 51 123 90 123,422 81

L03 30 18 29,766 17 60 49 60,087 45 118 82 118,142 73

L04 25 0 25,434 0 52 30 52,521 27 95 46 95,320 39

L05 26 1 26,043 2 40 0 41,345 0 66 3 68,334 0

L06 27 8 29,214 15 43 6 46,583 13 65 0 71,941 5

L07 36 42 43,144 70 51 28 66,872 62 76 17 103,940 52

L08 65 158 94,239 271 82 103 140,790 241 109 69 224,262 228

n = 40,000 n = 70,000 n = 264,000

VC dev(%) CPU dev(%) VC dev(%) CPU dev(%) VC dev(%) CPU dev(%)

CM 374 271 374,219 223 689 317 689,270 262 2,524 622 2,524,922 336

MM 254 152 254,349 120 422 156 422,250 121 1,603 359 1,604,516 177

L01 247 145 247,254 114 431 161 430,889 126 1,669 378 1,670,282 189

L02 257 155 257,748 123 431 161 431,601 126 1,654 373 1,656,071 186

L03 250 148 250,293 116 411 149 411,990 116 1,585 354 1,587,829 174

L04 198 97 199,384 72 325 97 326,881 71 1,260 261 1,267,307 119

L05 134 33 138,008 19 213 29 220,003 15 792 127 819,002 42

L06 101 0 115,792 0 165 0 190,654 0 483 38 578,453 0

L07 110 10 168,723 46 182 10 290,580 52 349 0 724,095 25

L08 142 40 366,322 216 230 40 658,320 245 385 10 1,875,300 224

 21

Table 4 presents the mean percentage of the number of quads unallocated in the quadtree

method for n = 40,000. The demand points, inside those quads, are to be allocated, in the

conventional way. The two fathoming procedures trade off against each other: when L is

small, more demand points are unallocated because many unsplit quads remain, whereas

when L is large (near 8), most of the quads might consist of a small number of demand points

(≤ 5). Table 4 shows that when n = 40000, p = 5, and L = 3, a mean of 39.81% of quads have

not been allocated. However when p = 80, with many more quads (smaller ones), a mean of

99.10% of quads are not allocated. The demand points of those unallocated quads must be

allocated normally which counter balance the benefit of using this approach except if a large

value of L is used. The number of unallocated quads decreases with the increase in L but

increases with p.

Table 4. The average percentage of quads unallocated (QM) for n = 40,000 with p = 5 to 80

p L01 L02 L03 L04 L05 L06 L07 L08
5 97.63 69.29 39.81 20.99 10.75 4.95 0.11 0.00
10 99.98 89.01 59.80 33.46 17.56 8.19 0.18 0.00
15 100.00 95.39 71.56 42.27 22.60 10.64 0.24 0.00
20 100.00 98.05 79.41 49.11 26.71 12.66 0.29 0.00
25 100.00 99.10 84.72 54.69 30.22 14.43 0.33 0.00
30 100.00 99.59 88.59 59.45 33.36 16.02 0.36 0.00
35 100.00 99.82 91.28 63.50 36.12 17.44 0.40 0.00
40 100.00 99.88 93.50 67.07 38.72 18.80 0.43 0.00
45 100.00 99.98 95.08 70.18 41.05 20.04 0.46 0.00
50 100.00 99.98 96.04 72.91 43.21 21.17 0.49 0.00
55 100.00 99.96 96.96 75.34 45.22 22.26 0.51 0.00
60 100.00 100.00 97.65 77.60 47.14 23.32 0.54 0.00
65 100.00 99.99 98.23 79.56 48.95 24.33 0.56 0.00
70 100.00 100.00 98.56 81.31 50.61 25.24 0.59 0.00
75 100.00 100.00 98.87 82.90 52.18 26.15 0.61 0.00
80 100.00 100.00 99.10 84.38 53.72 27.05 0.63 0.00

Avg 99.85 96.88 86.82 63.42 37.38 18.29 0.42 0.00

Table 5 shows the summary of this average percentage from n = 5,000 to 264,000 for p =

5 to 80. For most situations, it has been observed that demand points can be allocated to

facilities more efficiently with QM. However, this efficiency comes at a considerable fixed

cost. If we wish to make only a few iterations, MM will be much more efficient. However, if

a large number of iterations is required, QM that uses the quadtree level with the lowest

variable time (allocating time), as documented in the tables, will be more appropriate. The

 22

minimum number of iterations required for QM to outperform CM and MM can be calculated

as follows:

QT

TQ
T 







 and

QM

MQ
M 







 (8)

Where:
T ,

M : The number of iterations required for QM to outperform CM and MM

respectively

 Q , T , M : Fixed cost of QM, CM, MM respectively

 Q , T , M : Variable cost of QM, CM, MM respectively

Table 5. The overall summary of the average percentage of quads unallocated from n = 5,000
to 264,000 over p = 5 to 80

n L01 L02 L03 L04 L05 L06 L07 L08
5000 99.84 96.88 86.91 63.57 14.17 0.03 0.00 0.00
10000 99.86 96.93 86.98 63.58 34.96 0.74 0.00 0.00
20000 99.80 96.87 86.79 63.46 37.41 7.38 0.02 0.00
30000 99.84 96.89 86.92 63.57 37.46 14.96 0.14 0.00
40000 99.85 96.88 86.82 63.42 37.38 18.29 0.42 0.00
70000 99.85 96.83 86.86 63.43 37.36 19.95 2.74 0.01
264000 99.83 96.82 86.90 63.39 37.31 19.96 10.25 1.21

Avg 99.84 96.87 86.88 63.49 33.72 11.62 1.94 0.17

Figure 9 presents the chart of the number of iterations required for QM to outperform CM

and MM when n = 5,000 to 264,000 with p = 40. Here, we set L = 5 (L05) based on the

results shown in Table 3. The figure shows that the use of QM on the allocation problem is

more efficient than the one of CM and MM when a certain number of iterations is required.

The values of T are 21, 19, 17, 15, 20, 33, and 132 for n = 5000, 10000, 20000, 30000,

40000, 70000, and 264000 respectively. While the values of M are 39, 48, 32, 30, 40, 66,

and 270 for n = 5000, 10000, 20000, 30000, 40000, 70000, and 264000 respectively. The

highest values occur for the greatest value of n but none of the sequences is found to be

increasing. Also note that MM always outperforms CM as both use the same technique but

the former has a more efficient data structure which avoids recomputing unnecessary

calculations of i and j .

 23

Figure 9. The number of iterations required for QM to outperform CM and MM
(case of p = 40)

5. Integration of QM in solving facility location problems

The effect of using QM as an allocation procedure for solving the discrete p-median and

p-centre problems is explored. The first subsection describes the integration of QM into the

methods used for solving this class of location problems followed by a subsection on the

computational results. In this study we consider all customer sites as potential facility sites

which we denote by (| |)H H n .

5.1 Two simple facility location methods

We incorporate QM into two methods used for solving the p-median and the p-centre

problems namely the multi-start and the Reduced Variable Neighbourhood Search (RVNS)

methods. We then compare the performance of these two methods with and without QM.

 24

A) The Multi-start Method

The multi-start method for both the p-median and the p-centre problems is a simple method

where p facility locations are chosen randomly and then all demand points are allocated to

their nearest facility. This process is repeated s times and the facility configuration that yields

the smallest objective function value is chosen. In our study, s is set to 1,000.

B) The Reduced Variable Neighbourhood Search (RVNS)

VNS combines both local search and neighbourhood search. The first search looks for local

optimality while the latter aims to escape from these local optima by systematically using

another (usually a larger) neighbourhood if the improvement is not found and then reverts

back to the first neighbourhood (usually the smallest one) otherwise. More details about VNS

and its various variants and successful application can be found in Hansen et al. (2010).

RVNS, which is one of the variants of VNS but without a local search procedure, is used in

this study. The implementation of RVNS is adopted mainly to obtain good initial solutions.

Let X denote the facility configuration of the current solution and f(X) its corresponding

objective function value.

For the p-median problem, the kth neighbourhood structure Nk is defined as follows:

()kN X = use of 1()N X k times with max1,...,k k and   XXN)(1 (9)

where   is chosen randomly in H X and X is also selected randomly.

Note that 1()N X can also be rewritten as }1),(:{)(1  XXHXXN p  where

}:{ pZHZH p  and pHZZZZZZ  ,,\),( .

For the p-centre problem, the neighbourhood structure used in the shaking process includes

the construction of the promising area where a chosen facility location may move to. Let im

refer to the customer whose distance to its nearest facility is largest (rm) while U denotes the

list of the potential sites which are located in the promising area as shown in Figure 10.

This is defined as follows: Let (,)C F R be the set of potential facility sites encompassed by

the circle centered at pointF with a radius R .

Then *(,) ((,) \ (,))
2
m

m m m m

r
U C F r C i r C i with *F being the facility site serving mi .

 25

Figure 10. The restricted but guided neighbourhood for the p-centre problem

The kth neighbourhood structure NNk for the p-centre is defined as follows:

()kNN X = use of 1()NN X k times with max1,...,k k

and   XXNN)(1 (10)

where   is chosen randomly in U X and X is a facility with the largest

radius (the one which serves customer im).

The main steps of the RVNS for both the discrete p-median and p-centre problems are

summarised in Figure 11. For simplicity for the initial solution, we choose the location of the

p facilities randomly from the setH . Note that the implementation of the shaking procedure

in RVNS is slightly different between the two location problems as in the p-centre the new

solution needs to be identified at each iteration given the insertion of the added facility

belongs to the subset of sites currently assigned to the facility with the largest circle.

However this restriction is not necessary in the p-median where both the removed facility and

the added one are both randomly selected.

rm

Neighbourhood area (U)

Customer im (the furthest customer)

The facility (F*) which serves im
0.5rm

rm

F*
 im

Promising area (U)

 26

Figure 11. The RVNS for the discrete p-median and p-centre problems

5.2 Computational results

The performance of QM on these two discrete location problems is tested on the TSP

dataset which comprises of four instances namely Italy Data (n = 16,862), Sweden Data (n =

24,978), Burma Data (n = 33,708), and China Data (n = 71,009). We vary the value of p from

5 to 30 with an increment of 5. In QM, we set L = 5 as this level showed to yield better

performance when compared to the other levels for p < 30 (see the previous section).

A. The Multi-start Method

Figure 12 shows the CPU time deviation (dev(%)) of CM and MM with respect to QM

for the case of the multi-start method. The figure also presents the best CPU time for QM

after 1000 iterations for both the p-median and p-centre problems. Here, the methods use the

same value for the seed when generating random values so the set of p facility locations

chosen in the 1000 iterations remain the same for the different allocation procedures.

Repeat the following steps until the stopping criterion is reached:

Step 1 Set k = 1, let X be an initial solution and f(X) its corresponding objective function
value.

Step 2 Shaking

For the p-median problem:

Determine ' ()kX N X and calculate f(X’) using (9)

For the p-centre problem:
(a). Let XX 
(b). Do the following step k times (l = 1,…,k)

 determine ' ('')lX NN X using (10)

 Calculate f(X’), identify the subset of customers encompassed by the largest
circle and set XX 

Step 3 Move or Not

If)()(XfXf  set X = X’ and k = 1 else set k = k+1.

Step 4 If k  k then go to Step 2.

 27

0

10

20

30

40

50

0

50

100

150

200

5 10 15 20 25 30

B
e

st
 C

P
U

 (
se

co
n

d
s)

d
e

v
(%

)

p

Italy Data (n = 16,862)

CM MM Best CPU

0

20

40

60

80

0

50

100

150

200

5 10 15 20 25 30

B
e

st
 C

P
U

 (
se

co
n

d
s)

d
e

v
(%

)

p

Sweden Data (n = 24,978)

CM MM Best CPU

0

50

100

150

0

50

100

150

200

5 10 15 20 25 30
B

e
st

 C
P

U
 (

se
co

n
d

s)

d
e

v
(%

)

p

Burma Data (n = 33,708)

CM MM Best CPU

0

50

100

150

200

250

0

50

100

150

5 10 15 20 25 30

B
e

st
 C

P
U

 (
se

co
n

d
s)

d
e

v
(%

)

p

China Data (n = 71,009)

CM MM Best CPU

Figure 12. The CPU time Deviation (dev(%)) of CM and MM with respect to QM case of the

Multi-start method

Figure 12 indicates that the use of QM in the allocation process outperforms both CM and

MM. QM is approximately 150% and 50% faster than CM and MM respectively. In brief, the

use of QM is found to be very effective in reducing the computing time. This demonstrates

that QM can be incorporated in other powerful algorithms for large-scale location problems

such as those given by Hansen et al. (2009), Avella et al. (2012) and Irawan et al. (2014).

For illustration purposes we also introduced QM into a Reduced VNS for the case of p-

median and p-centre problems. This is given next.

B. The Reduced Variable Neighbourhood Search (RVNS)

In this study, we set the parameter kmax = 2. Here, we use the CPU time based on the best

CPU time obtained by the multi-start method as the stopping criterion. Figures 13a and 13b

present the comparison of the average Deviation (%) over all values of p between CM, MM,

and QM when used in the RVNS method for the p-median and p-centre problems

respectively. Deviation (%) is the percent gap from the best solution found by these variants

and is computed as
b

bc

Z

ZZ
Deviation


100(%) , where Zc and Zb correspond to the Z value

obtained with method ’c’ and the best Z respectively. The experiments are conducted on the

instances tested by the multi-start method. The detailed results are given in the Appendix

under Tables A1 and A2 for the p-median and the p-centre problems respectively.

 28

0

5

10

15

Italy Sweden Burma China
D

e
v

ia
ti

o
n

 (
%

)

a) Average Deviation(%) over value of p case of the p-median problem

Multi-start

RVNS-CM

RVNS-MM

RVNS-QM

0

20

40

60

80

100

Italy Sweden Burma China

D
e

v
ia

ti
o

n
 (

%
)

b) Average Deviation(%) over value of p case of the p-centre problem

Multi-start

RVNS-CM

RVNS-MM

RVNS-QM

Figure 13. The Deviation (%) between RVNS-CM, RVNS-MM, RVNS-QM, and Multi-start

The case of the p-median problem

Figure 13a reveals that in general the values of the average Deviation (%) obtained by

RVNS for the p-median problem are much smaller than the ones found by the multi-start

method. Figure 13a also shows that incorporating QM in the RVNS method yields the

smallest average Deviation (0.00%) meaning that in all instances, the use of QM in RVNS

outperforms the use of CM and MM in RVNS as well as QM in the multi-start method. This

is because the use of QM in RVNS saves the allocation time so the number of iterations

increases. Similar to the previous case, the use of QM in the RVNS method for the p-median

problem is very effective in reducing the allocation time.

The case of the p-centre problem

Figure 13b shows the comparison in the average Deviation (%) value between the use of

CM, MM, and QM in the RVNS method for the p-centre problem. The RVNS method,

similarly to the case of the p-median problem, generally provides better solutions than the

multi-start method. The figure also shows that the use of QM in the RVNS method produces

the smallest deviation with a value of 0% in all instances except the Sweden Data.

6. Conclusions and suggestions

This paper introduces a special data compression approach based on a quadtree technique

for the allocation of a large number of demand points to their nearest facilities. The main

 29

result is that if a quad has all of its four corners allocated to one facility, all the customers in

that quad are systematically allocated to that facility. This result is supported by an

interesting theorem that is valid for any convex polytope. The experiments show that in most

situations, the quadtree allocation procedure outperforms the conventional and the modified-

conventional allocation, and overcomes its overhead costs beyond a critical number of

iterations. The quadtree method has its greatest value where many different allocations of the

same set of demand points to different set of facilities are required. The saving gets more

significant when a large number of facilities and iterations are needed as the fixed costs incur

only once for any set of demand points.

In our study, we also incorporate the quadtree technique into two methods used for

solving large discrete p-median and p-centre problems. These include the multi-start and the

Reduce Variable Neighbourhood Search (RVNS). The computational results show that the

use of QM in these methods is very effective when solving very large instances.

The use of the quadtree method can also be incorporated into existing and powerful

algorithms used for large-scale location problems. It would be also interesting to explore

adopting QM to other combinatorial problems where the allocation task is an important part

of the search which is required a large number of times.

Acknowledgment

The authors would like to thank both referees for their useful suggestions that improved both the

content as well as the presentation of the paper. We are also grateful to the Indonesian Government

and Jurusan Teknik Industri-ITENAS Bandung, Indonesia for the sponsorship of the second author.

This research has also been partially supported by the Ministry of Economy and Competitiveness of

Spain under the research project ECO2011-24927.

 30

Appendix
The detailed results of Z value between multi-start and RVNS with CM, MM, and QM for the

p-median and the p-centre problems are presented in Tables A1 and A2 respectively.

Table A1. The comparison in solution quality between multi-start and RVNS with CM, MM,

and QM: The case of the p-median problem

Description N p Best Z

Deviation (%)

Multi-start
 RVNS

CM MM QM

Italy Data

16,862

5 19,738,367.25 2.69 1.29 0.83 0.00

10 13,161,728.73 12.18 2.20 1.76 0.00

15 10,713,832.06 11.45 2.65 1.76 0.00

20 9,099,306.61 14.39 3.82 2.96 0.00

25 7,962,255.48 18.11 1.58 0.60 0.00

30 7,271,676.07 18.87 1.57 0.73 0.00

Sweden
Data

24,978

5 35,535,818.26 4.90 2.93 1.06 0.00

10 24,053,092.74 11.39 5.15 3.99 0.00

15 19,640,207.74 15.13 1.89 1.56 0.00

20 16,973,915.83 15.79 1.44 0.97 0.00

25 15,092,119.15 13.98 3.96 2.87 0.00

30 14,018,174.94 14.72 0.91 0.87 0.00

Burma
Data

33,708

5 47,320,059.91 6.42 0.00 0.00 0.00

10 31,891,058.04 13.70 5.05 1.54 0.00

15 25,878,057.99 10.41 3.81 1.03 0.00

20 22,486,038.51 11.66 1.92 1.92 0.00

25 20,146,402.36 15.33 0.49 0.45 0.00

30 17,941,167.95 16.87 2.22 0.93 0.00

China Data

71,009

5 352,667,929.12 7.29 0.20 0.13 0.00

10 302,130,384.31 6.64 0.98 0.92 0.00

15 280,553,532.95 7.65 1.77 0.14 0.00

20 266,313,391.35 6.65 2.78 1.61 0.00

25 262,397,582.09 6.70 1.08 0.83 0.00

30 256,990,798.52 6.40 1.17 0.58 0.00

Average 11.22 2.12 1.25 0.00

 31

Table A2. The comparison in solution quality between multi-start and RVNS with CM, MM,

and QM: The case of the p-centre problem

Description n p Best Z

Deviation (%)

Multi-start
 RVNS

CM MM QM

Italy Data 16,862

5 3,564.99 5.72 0.00 0.00 0.00

10 2,073.72 24.24 2.84 0.24 0.00

15 1,923.25 11.56 0.56 0.20 0.00

20 1,460.31 37.50 1.88 0.05 0.00

25 1,595.22 9.82 1.39 1.39 0.00

30 1,168.21 43.94 5.63 1.33 0.00

Sweden
Data

24,978

5 4,178.05 0.30 0.00 0.00 0.00

10 2,973.40 5.49 21.42 0.00 0.00

15 3,136.70 0.00 11.26 6.27 6.27

20 2,639.97 9.66 13.17 13.17 0.00

25 2,055.48 32.14 9.03 7.68 0.00

30 2,716.05 0.00 15.58 15.58 15.58

Burma
Data

33,708

5 2,847.46 42.39 2.22 0.23 0.00

10 2,095.30 34.19 10.52 8.37 0.00

15 1,920.14 32.74 3.51 0.00 0.00

20 2,108.84 9.11 0.00 0.00 0.00

25 1,618.04 36.45 0.00 0.00 0.00

30 1,598.09 26.28 0.17 0.17 0.00

China Data 71,009

5 12,983.84 72.00 0.00 0.00 0.00

10 11,529.30 92.23 2.98 2.98 0.00

15 13,465.98 64.45 0.00 0.00 0.00

20 11,620.38 90.30 0.65 0.00 0.00

25 11,292.48 95.83 1.00 1.00 0.00

30 10,586.92 108.50 1.10 1.10 0.00

Average

36.87 4.37 2.49 0.91

 32

References
1. Al-Zoubi, M.B., Al-Rawi, M. (2008). An efficient approach for computing silhouette

coefficients. Journal of Computer Science, 4, 252-255.

2. Andersson, G., Francis, R.L., Normark, T., Rayco, M.B. (1998). Aggregation method

experimentation for large-scale network location problems. Location Science, 6, 25-39.

3. Avella, P., Boccia, M., Salerno, S., & Vasilyev, I. (2012). An aggregation heuristic for

large scale p-median problem. Computers and Operations Research, 39, 1625-1632.

4. Bowerman, R.L., Calamai, P.H., Brent, H.G. (1999). The demand partitioning method

for reducing aggregation errors in p-median problems. Computers & Operations

Research, 26, 1097-1111.

5. Current, J.R, Schilling, D.A. (1987). Elimination of source A and B errors in p-median

location problems. Geographical Analysis, 19, 95-110.

6. Erkut, E., Bozkaya, B. (1999). Analysis of aggregation errors for the p-median problem.

Computers & Operations Research, 26, 1075-1096.

7. Francis, R.L., Lowe, T.J., Rayco, M.B. (1996). Row-column aggregation for rectilinear

distance p-median problems. Transportation Science, 30, 160-174.

8. Francis, R.L., Lowe, T.J., Rayco, M.B., Tamir, A. (2003). Exploiting self-canceling

demand point aggregation error for some planar rectilinear median location problems.

Naval Research Logistics, 50, 614-637.

9. Francis, R.L., Lowe, T.J., Rayco, M.B., Tamir, A. (2009). Aggregation error for location

models: survey and analysis. Annals of Operations Research, 167, 171-208.

10. Francis, R.L., Lowe, T.J., Tamir, A. (2000). Aggregation error bounds for a class of

location models. Operations Research, 48, 294.

11. Francis, R.L., Lowe, T.J. (1992). On worst-case aggregation analysis for network

location problems. Annals of Operations Research, 40, 229-246.

12. García, S., Labbé, M., & Marín, A. (2010). Solving large p-median problem with a

radius formulation. INFORMS Journal on Computing, 23, 546-556.

13. Hansen, P., Brimberg, J., Urosevic, D., & Mladenovic, N. (2009). Solving large p-

median clustering problems by primal-dual variable neighborhood search. Data Mining

and Knowledge Discovery, 19, 351-375.

14. Hansen, P., Mladenovic, N., & Perez, J. A. M. (2010). Variable neighbourhood search:

methods and applications. Annals of Operations Research, 175, 367-407.

 33

15. Hillsman, E.L., Rhoda, R. (1978). Errors in measuring distances from populations to

service centers. Annals of Regional Science, 12, 74-88.

16. Hodgson, M.J., Salhi, S. (1998). Using a quadtree structure to eliminate aggregation

error in point to point allocation. Presented at INFORS Conference, Montreal.

17. Hodgson, M.J., Hewko, J. (2003). Aggregation and surrogation error in the p-median

model. Annals of Operations Research, 123, 53-66.

18. Hodgson, M.J., Neuman, S. (1993). A GIS approach to eliminating source C aggregation

error in p-median models. Location Science, 1, 155-170.

19. Hodgson, M.J., Shmulevitz, F., Korkel, M. (1997). Aggregation error effects on the

discrete-space p-median model: The case of Edmonton, Canada. Canadian Geographer /

Le Géographe canadien, 41, 415-428.

20. Irawan, C.A., Salhi, S. (2013). Solving large p-median problems by a multistage hybrid

approach using demand points aggregation and variable neighbourhood search. Journal

of Global Optimization. doi :10.1007/s10898-013-0080-z.

21. Irawan, C.A., Salhi, S., Scaparra, M.P. (2014). An adaptive multiphase approach for

large unconditional and conditional p-median problems. European Journal of

Operational Research, 237, 590–605.

22. Noaves, A.G.N., Souza de Cursi, J.E., da Silva, A.C.L, Souza, J.C. (2009). Solving

continuous location-districting problems with Voronoi diagrams. Computers and

Operations Research, 36, 40-59.

23. Qi, L., & Shen, Z. M. (2010). Worst-case analysis of demand point aggregation for the

Euclidean p-median problem. European Journal of Operational Research, 202, 434-443.

24. Samet, H. (1990). The design and analysis of spatial data structures. Addison-Wesley,

Reading, MA.

