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Abstract A special data compression approach using a quadtree-based method is proposed 

for allocating very large demand points to their nearest facilities while eliminating 

aggregation error. This allocation procedure is shown to be extremely effective when solving 

very large facility location problems in the Euclidian space. Our method basically aggregates 

demand points where it eliminates aggregation-based allocation error, and disaggregates them 

if necessary. The method is assessed first on the allocation problems and then embedded into 

the search for solving a class of discrete facility location problems namely the p-median and 

the vertex p-centre problems. We use randomly generated and TSP datasets for testing our 

method. The results of the experiments show that the quadtree-based approach is very 

effective in reducing the computing time for this class of location problems. 

Key words:  Allocation method, quadtree method, p-median and p-centre problems, 

aggregation 

 

1. Introduction 

It is a common practice when dealing with large location problems to aggregate demand 

points known as Basic Spatial Units (BSUs) into a small number of Aggregated Spatial Units 

(ASUs). Such an aggregation usually leads to error due to both distance measurement and 

allocation. Many of the aggregation schemes are iterative processes where the allocation must 

be performed several times to find the best solutions having the least errors. A two-phase 

approach is commonly used where in the first phase an aggregated (smaller) problem is 

constructed by solving a clustering problem, and in the second phase the aggregated location-

allocation problem is then solved. It was noted that the design of aggregation schemes that 

minimize aggregation error is itself a hard problem which has not yet been solved 
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successfully for a large number of demand points, see Francis and Lowe (1992) and Francis 

et al. (2003, 2009).  

Hillsman and Rhoda (1978) introduced three sources of error arising from demand point 

aggregation, known as source ABC error. Source A error happens when the distance between 

an ASU and a facility is applied in the model instead of the true distance between a BSU and 

a facility. Source B error appears in the special case when a facility is located at an ASU 

whereas source C error occurs when a BSU is assigned to the wrong facility. Several schemes 

are introduced to reduce or eliminate these types of aggregation error which are usually 

grouped under two categories. These include data manipulation and aggregation design which 

are briefly described next. For more details on aggregation methods for location problems, 

see Francis et al. (2009). 

 

Data manipulation 

Current and Schilling (1987) proposed pre-processing the demand data. Their method 

eliminates source A and B errors by assigning the correct total weight BSU–facility distance 

to each ASU–facility cell in the weighted distance matrix. The method does not address 

source C error. To eliminate source C error, Hodgson and Neuman (1993) utilise continuous 

space, a set of Voronoi polygons and a GIS overlay procedure to “aggregate on the fly”. 

Their method though is successful in addressing source C error, it fails to eliminate source A 

and B errors. Hodgson et al (1997) introduced a new type of error known as source D error.  

This occurs if some of the BSU locations happen to be at the potential sites. Bowerman et al 

(1999) introduced a demand portioning method that applies the Current and Schilling (1987) 

approach to eliminate source A and B errors while producing ASUs on the fly when using a 

vertex interchange procedure to eliminate source C error. Hodgson and Hewko (2003) 

studied aggregation and surrogation errors for the p-median problem using Edmonton, 

Canada data. The authors showed that the surrogation error was more a serious problem than 

the aggregation error. 

 

Aggregation Zone Design 

Francis and Lowe (1992), Francis et al (1996, 2000, 2003, 2009), and Andersson et al. 

(1998) dealt with aggregation error by developing aggregation zones for which error bounds 

can be determined. Their methods established rectangular zones which can be long and 

narrow, and hence prone to aggregation errors. Erkut and Bozkaya (1998) empirically 
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evaluated some aggregation methods. A primal-dual VNS metaheuristic for large p-median 

clustering problems was proposed by Hansen et al. (2009) where a Reduced VNS is used to 

get good initial solutions which are then fed into a VNS with decomposition. Qi and Shen 

(2010) investigated the worst-case analysis of demand point aggregation for the Euclidean p-

median problem on the plane. García et al. (2010) developed an alternative covering based 

formulation which has a small subset of constraints and variables. This method is shown to be 

more efficient especially when p is relatively large. Avella et al. (2012) proposed an 

aggregation heuristic based on Lagrangean relaxation for large scale p-median problem that 

produced excellent results.  Very recently Irawan and Salhi (2013) and Irawan et al. (2014) 

developed a multi-phase approach by solving a series of subproblems either optimally or 

heuristically where the obtained facility locations are then used as promising potential sites. 

Competitive results were generated when compared to the best known solutions.  For more 

details on aggregation error measurements and papers dealing with aggregation to location 

problems, the reader will find the excellent survey paper by Francis et al. (2009) informative 

and very valuable. The authors also point out effective as well as ineffective errors measures.  

The process of determining an aggregation scheme with a minimum error is an NP-hard 

problem, see Francis and Lowe (1992). This difficulty has led us to develop a method where 

we do not aggregate demands by designing a general aggregation of demand points but we 

conduct aggregation with reference to a specific set of given facilities. In the location-

allocation context, the method would aggregate demand relative to p trial facilities as they 

arise during the search as usually applied in heuristics and metaheuristics.  

The main contribution of this paper is the development of an effective quadtree method 

(QM) used for allocating the demand points to their nearest facility when solving a class of 

large Euclidean discrete location problems. This allocation technique could easily be 

incorporated in those recent powerful algorithms for large-scale location problems as this 

mechanism could enhance their efficiency even further.  

The paper is organized as follows. A brief on the quadtree method is given in Section 2 

followed by a quadtree-based methodology in Section 3. The computational results, 

comparing QM against the classical allocation methods, are presented in the fourth section. 

The integration of QM in solving both the discrete p-median and the p-centre problems is 

attempted in the fifth section. The last section provides a summary of our findings and 

highlights some suggestions for future research. 
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2. A brief on the quadtree method 

This section demonstrates an efficient aggregation scheme that eliminates all types of 

allocation aggregation errors. The main idea of the scheme is adopted from the presentation 

given at the INFORMS conference in Montreal (1998) by Hodgson and Salhi. The method 

utilised a spatial data compression, known as quadtrees (Samet, 1990), to partition the study 

area. The demand points could obviously also be partitioned by Voronoi polygons. Figure 1 

shows a Voronoi polygons scheme with a number of demand points and three facilities (p = 

3). Hodgson and Neuman (1993) used this method to eliminate source C error. Noaves et al. 

(2009) also adopted Voronoi polygons for solving continuous location-districting problems.   

 

Figure 1. A Voronoi polygons scheme 

Though the Voronoi polygons-based allocation can be an efficient method to allocate 

demand points to facilities, one of the limitations is that for each new set of facilities, the new 

set of polygons must be generated which can be time consuming. The quadtree data structure, 

inspired from a raster Geographic Information System (GIS), is adapted to overcome this 

difficulty. The heart of QM is to pre-generate an appropriate set of common polygons with 

which we can systematically allocate spatial grouping of demand points to their common 

closest facility until all demand points have been allocated. A hierarchical organization of 

successively generating smaller spatial groupings is required to eliminate all aggregation 

errors.  

A map is partitioned by raster GIS into a tessellation of square grid cells called pixels. 

Each pixel has its attributes, usually by assigning a number. For example a land use map 

might utilise 1 for green area, 2 for water, 0 for no data, and so on. Figure 2 shows an 

illustration of a quadtree system where a raster grid is partitioned into a hierarchy (tree) of 

quadrants.  

Facility 

Demand Point 
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Figure 2. Quadtree partitioning and numbering system 

The quadtree system first partitions the map into four quadrants, each quadrant assigned with 

a single digit between 0 and 3. Then, each of these quadrants is then partitioned into four 

quadrants, each address with a second such digit. This procedure continues until a certain 

number of levels where each successive partition is assigned its corresponding digit between 

0 and 3. Figure 2 also presents the numbering system and the quadtree partitioning. The 

figure shows that the lightly shaded patch of four grid cells is assigned 200 whereas the 

darker grid cell is addressed 3100. 

In GIS, the quadtrees are usually utilized to capture areas with the same data 

characteristic or attribute. Many adjacent pixels may have the same attribute in a rasterized 

map. In the location-allocation problem, we develop a method that adapts the quadtree 

structure to capture areas with the same spatial attribute (i.e., areas that are entirely closer to 

one facility than to any other). The number of allocations is significantly reduced by 

quadtrees. Figure 3 shows how the quadtree structure deals with a location-allocation 

problem. There are 32 x 32 raster and each pixel is to be allocated to the closest of the three 

facilities. There is also the Voronoi polygon to recognize the correct allocation. Let L 

represent the quadtree level, with 0 denoting the original undivided study area.   

Table 1 shows the result of an example in Figure 3. At level 1, the entire quadrant 0 

(16x16 pixels) is closer to one facility than to any other. Its entirety can be allocated to that 

facility, it means that 256 pixels are aggregated and allocated accurately at once. Four level 2 

quadrants (aggregations) are each allocated to the closest facility; in other word 256 pixels 

are accurately allocated. At level 3, sixteen quadrants assign another 256 pixels. Three 

quarters of the study area’s 1024 pixels has now been accurately allocated by using 21 

quadrants at the top three levels. Thirty two quadrants (128 pixels) are each allocated to the 

00 01 02 03 30 31 32 33 

0 1 2 3 

330 331 332 333 010 011 012 013 



 6 

closest facility at level 4. Finally, at level five, 72 pixels can be allocated leaving 56 split 

only. 

  

Figure 3. Quadtree partitioning of Voronoi allocation areas 

Table 1. Allocation of pixels by the quadtree level for the example problem (case of p=3) 

Level Pixels per quadrant Entire quadrants Pixels Allocated 
Cumulative 

allocation (%) 
1 256 1 256 25.00 
2 64 4 256 50.00 
3 16 16 256 75.00 
4 4 32 128 87.50 
5 1 72 72 94.53 
 <1 56 56 100.00 
 Total 181 1024  
 

At some level, the limited amount of aggregation error remaining may be accepted by 

assigning all contained demand points to a single or several nearby facilities. To eliminate 

aggregation error, each demand point in the split quadrants is allocated to their nearest 

facilities. In this example, 125 quadrants of varying sizes have been allocated, but only 56 of 

the entire grid of the 1024 pixels are left unassigned and which need to be assigned in the 

classical manner. It means that we have allocated 94.53 percent (100∙[1024-56]/1024) of the 

pixels with only 5.47 percent (100∙56/1024) of the number of allocations left to be allocated 

using the classical allocation. Moreover, to allocate 100 percent of the pixels, we need 17.68 

percent (100∙181/1024) of the number of allocations. It is therefore interesting to determine 

the right balance between the number of levels and the percentage of left over demand points 

to allocate in the classical way. 

The quadtree structure partitions the study area by ignoring the distribution of the 

demand points. By allocating quadrants accurately, the demand points contained in them are 
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also allocated accurately. For these demand points, source C (allocation) error is totally 

eliminated. To eliminate the other errors (source A and B error/distance measurement error), 

the total weighted distance from all demand points in a quadrant must be determined, but 

only to the single, known closest facility, not to all facilities. This method creates an 

allocation process which is more efficient as it reduces the computational effort/time of 

allocating demand points to facilities. However, it depends on a quadtree structure with a 

well-defined knowledge of which demand points belong to each quadrant at each level. 

Therefore, this method clearly needs considerable computational overhead. The 

computational success of the quadtree method relies on the relationship between the time 

saved due to the allocation and the overhead times/cost. In the following section, algorithm 

procedures and reduction tests that aim to reduce the amount of computational overhead 

required to perform the allocations are presented. 

 

3. The quadtree-based methodology 

The quadtree method (QM) consists of two phases namely (i) the construction of the 

quadtree database and (ii) the allocation procedure. For any set of demand points, a database 

that defines the quadtree’s hierarchical structure is created and then demand points are 

allocated to quadrants at each level of the hierarchy. The quadtree database needs to be 

calculated only once for a given set of demand points. For any new set of facilities, full 

quadrants of demand points must be allocated to the closest of these facilities. 

 

3.1 The construction of the quadtree database  

We propose the following steps to construct the quadtree database. These include the 

construction of the area of study, the definition of the corners of the quadrants, the building of 

the quadtree structure, and finally the allocation of demand points to the quadtrees. 

 

1) Design of the Demand Point Area 

We define a rectangular study area of known dimensions that contains all the demand points 

and all the potential facilities. Let n be the number of demand points and (Xi, Yi) be the 

coordinates of the ith demand point, where i = 1,...,n. Then let  i
i

a XMinX   and 
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 i
i

b XMaxX   similarly  i
i

a YMinY   and  i
i

b YMaxY  . These , ,  and a a b bX Y X Y  values 

form the key border points of our rectangular demand study area with lower left and upper 

right corners are being defined by ( , )a aX Y  and ( , )b bX Y  respectively. 

 

2) Building corner objects 

To establish the corner objects defining the corners of the quads, the quadtree level L  needs 

to be set. The number of corners ( )LN  required for a given quadtree with L  levels is 

 
1

2

0

(2 2 )
L

i
L

i

N




    (1) 

For instance, if L = 2, the number of corners is 25 and these are (cor[0], cor[1], ... , cor[24]). 

The horizontal and the vertical distance between consecutive corners can be written as 

L
ab XX

x
2


  and 

L
ab YY

y
2


  respectively. As the values ofaX ,  aY , x , and y are 

obtained,  kk yx ~,~ , the x and y coordinate of the kth corner object can be determined. At any 

level, a quad’s location can be derived using the coordinates of its lower left corner, cor[0] = 

(Xa, Ya), and its upper right corner, cor[NL-1] = (Xb, Yb). Given the x and y values representing 

 kk yx ~,~ , the value of k can be determined from:  

 k a k a
L

x X y Y
k N

x y 
 

     (2) 

where 
1

0

2 2
L

i
L L

i

N N




    represents the total number of corners in a row. 

Similarly kx  and ky  can be determined as ( mod( ))k a Lx X x k N  and k a
L

k
y Y y

N


 
   

 
. 

For illustration, consider Figure 4 with L = 2 and 5
~ LN . Also for simplicity take 

1 yx   and (Xa, Ya)=(0,0) and (Xb,Yb)=(4,4). Here (2) reduces to  k L kk x N y  . As an 

example, consider k = 17 which leads to   

)3,2(]17[ and3
5

17
10~  ;2)5mod17(10~ 



 coryx kk . 
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Figure 4. An example of corner objects for L = 2 

 

3) Building the quadtree structure 

To build the quadtree structure, we first determine the number of quads at each level 

( , 1,..., )lQ l L  which can be formulated as 4l
lQ  .  

Initially (level 0) we have a rectangle with vertices (Xa,Ya), (Xa,Yb), (Xb,Yb), and (Xb,Ya), then 

to obtain the quads at level 1 this rectangle is then divided into four equal size quads. To 

determine the location of these quads, we just need to find out the coordinate of the middle 

point of this rectangle which is 
2

ba
m

XX
X


  and 

2
ba

m
YY

Y


  (see Figure 5).  

 

Figure 5. An illustration of how the quads at level 1 are developed 

At level 2, each quad is also divided into four equal size quads totaling 16 quads. This 

process continues until level L. 

cor[0] 

cor[5] 

cor[10] 

cor[15] 

cor[20] 

cor[16] 

cor[21] 

cor[11] 

cor[6] 

cor[1] cor[2] 

cor[7] 

cor[17] 

cor[22] 

cor[12] 

cor[3] 

cor[18] 

cor[23] 

cor[8] 

cor[13] 

cor[4] 

cor[19] 

cor[24] 

cor[9] 

cor[14] 

x

y

Xm = (Xa+Xb)/2 
Ym = (Ya+ Yb)/2 

(Xa, Yb) (Xb, Yb) 

(Xa, Ya) (Xb, Ya) 

(Xm, Ym) 

(Xm, Yb) 

(Xm, Ya) 

(Xb, Ym) (Xa, Ym) 

Case of k = 17 
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In this method, each quad is assigned with a double digit L-O, where L is the level and O 

represents the quad number put in order. In this method, the numbering system is slightly 

different with the original quadtree system. In level 1, there are 4 quads (1-0, 1-1, 1-2, and 1-

3) whereas in level 2 there are 16 quads (2-0, ..., 2-15). The ith quad at the higher levelHL  

consists of the pth until the qth quad at the lower levelLL , where ( )4 L HL Lp i  and 

( ) ( ) ( )4 4 1 4 (1 ) 1L H L H L HL L L L L Lq i i        .  

Figure 6 shows how to arrange the quadtree structure for 2L  where the quads at level 2 are 

derived from the quads at level 1.  

 

Figure 6. An example of a quadtree structure for L = 2 

For example quads 2-4, 2-5, 2-6, and 2-7 are built from quad 1-1. To develop these quads, the 

lower left corner coordinate of quad 1-1 (cor[10]) = (Xa, Ya) and the upper right corner 

coordinate (cor[22]) = (Xb, Yb) are used. The midpoint defined by Xm and Ym is then 

computed. This construction continues until all of the quad locations, from level 1 until level 

L, are determined. 

 

4) The allocation of the demand points to the corresponding quadtrees 

In this process, the quadtree is ‘populated’ by assigning demand points to quads at each level. 

This process uses a bottom-up procedure. At the lowest level (level L), each demand point is 

assigned to the correct quad. At the same time, we create a list of all demand points (put in 

order from the 0th quad until the (4L-1)th quad) and a list of the number of demand points for 

x

y
cor[0] cor[1] cor[4] cor[2] cor[3] 

cor[5] cor[7] 

cor[10] 

1-0 

1-2 

2-0 

2-1 2-2 

2-3 

2-4 

2-5 2-6 

2-7 2-8 

2-9 2-10 

2-11 

2-12 

2-13 2-14 

2-15 

1-3 

1-1 

cor[11] cor[12] cor[13] cor[14] 

cor[15] cor[16] cor[17] cor[18] cor[19] 

cor[6] cor[8] 

cor[20] cor[21] cor[22] cor[23] cor[24] 

cor[9] 
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each quad (put in order from the 0th quad until the (4L-1)th quad). Let ș and Ȟ be two vectors 

denoting the list of all demand points and the list of the number of demand points for each 

quad respectively.  For instance consider the example of 30 demand points as shown in 

Figure 7. Here, we have ș = {1,16,21,3,10,19,5,20,4,6,7,13,17,22,23,8,15,12,14,25,26,9,29, 

28,27,30,18,2,11,24} and Ȟ = {3,3,2,4,3,2,0,2,2,2,1,2,1,2,1,0}. 

 

Figure 7. An example of 30 demand points located in a quadtree structure (L = 2) 

 

Quad membership 

Determining the lowest-level quad memberships is the most time consuming part in the 

procedure. At successively higher levels, the task becomes easier as we need only 

assemble/concatenate the list of the number of demands from the one at the lower level. This 

procedure continues until the number of demand points for each quad at level 1 has been 

determined. It is worth noting that the quadtree structure is independent of the facility 

locations and hence the computational burden of this procedure is carried out only once for a 

given set of demand points and hence can be seen as requiring the only fixed cost. 

 

3.2 The strength of the allocation procedure 

The strength of this procedure relies on the following theorem and the lemma that follows.  
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Theorem 

Let nS   be a convex polytope with vertices rivi ,...,1,  , and letq be an arbitrary point 

in S . For nyx , , let ),( yxd  denote the Euclidean distance between x  and y . If 

),(),( yvdxvd ii   for all i, i =  1,…,r, then ),(),( yqdxqd  . 

Proof 

In general nvuyx  ,,, , we have: 

 ),(),(),(),( 22 vudyxdvudyxd  . 

 yxyxyxyxd 2),( 2222   where yx is the scalar product of x  and y . 

 If Sq  then q  can be written as a convex combination of the vertices, that is, there 

exist 0i , ri ,...,1 , verifying 1
1




r

i
i , such that 




r

i
ii vq

1
 . 

 As  22),(),( yvxvyvdxvd iiii  

yvyxvx ii 22 22  . (3) 

Multiplying both sides in (3) by rii ,...,1,  , and summing, we obtain: 

yvyxvx
r

i
ii

r

i
ii )(2)(2

1

2

1

2 


   (4) 

From (4), as 



r

i
ii vq

1
 , it follows that: 

yqyxqx 22 22   

Adding 2q  to both sides 

 222222 22 yqxqyqyqxqxq  

),(),( yqdxqdyqxq  . ฀ 

Based on the above theorem, a lemma, which relates to the allocation of a quad and the 

demand points contained in it, as constructed in this study, is proposed. 
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Lemma 

If all 4 corners of a quad are closest to one facility then the quad with all of its 

customers are also allocated to that facility.  

The proof is based on the theorem where a quad is a convex polytope with 4r   

with its 4 corners corresponding to the vertices; 1,...,4iv i  .        ฀ 

Besides allocating all the demand points of the quad to the facility nearest to the four 

corners as claimed by our Lemma, there is no need to explore this quad any further. We term 

such a quad as fathomed and all of its demand points allocated to that one facility. The more 

populated is the quad the larger the saving in computational time is. 

 

Further Fathoming 

We also introduced two other rules that cause a quad to be fathomed:  

(i) At any level, if a quad happens to contain no demand points (empty).  

(ii)  A quad that contains no more than five demand points is treated differently. Its 

customers are allocated in the classical manner as it is quicker to do it this way than to 

continue partitioning this quad.  

 

The Allocation Procedure 

This process uses a top-bottom procedure. All quads at each level are successively 

considered, and then descend to the next level where the higher level quads have not been 

fathomed. This process continues until all quads have been fathomed, or the bottom of the 

tree is reached. Some of the quads at level L (lowest level) may remain unallocated and those 

demand points inside these quads are then allocated to the nearest facility in the classical way. 

As discussed above, this method allocates quad corners to facilities. Each quad has four 

corners that must be allocated. Figure 8 shows that we start at the top level (level 0) and 

determine the allocations of all four corners of the largest quad. At level 1, we need to 

evaluate the allocation of five corners only instead of all the nine corners as four were already 

allocated at the previous level. At level two, only 16 of the 25 corners need to be allocated, 

whereas at level three 56 of the 81 corners need to be defined. It is worth noting that each 

reduction in evaluating a corner represents a reduction of p distances to be calculated and 

compared against. This reduction contributes to the overall saving which can be substantial. 
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Allocating quads to facilities is an aggregation procedure. Because of the convexity of 

the way the quads are constructed and the use of Euclidean distance, the demand points in 

each allocated quad are allocated to the correct facility as demonstrated by our lemma. By 

individually allocating the demand points inside the quads that are not assigned yet, these are 

also allocated to the correct facility using the classical way.  

 

Figure 8. The saving in the allocation of corners to facilities 

Though the allocation of demand points to the facilities is completed, in many 

applications the distance from these demand points to the nearest facility is required to record 

the total distance. This is where source A and B errors are introduced in the conventional 

aggregation procedures, where the demand points are aggregated and assumed to have the 

same location as the centroid of their aggregated group. In the classical allocation procedure, 

the distances from each demand point to all facilities are calculated and the minimum 

distance determined. In the quadtree procedure, the distance from each demand point to its 

known closest facility is calculated once as there is no need to compute distances to other 

facilities. In other words, the demand points are aggregated for the allocation purpose, but 

they are disaggregated when it comes to distance calculations. For example, if there are 60 

facilities, each demand point is assigned to one facility only; the 59 distances and weighted 

distance calculations are obviated for each of the demand points in that fathomed quad. If 

there are, say, 10 demand points in a quad, a saving of 590 distance calculations are saved 

besides the time required to determine the smallest distance between a demand point to all the 

facilities. 

 

3 81 

16 

Symbol Level Total 

Corners 

New 

Corners 

0 4 4 

1 9 5 

2 25 

56 
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3.3 A time evaluation of the two allocation procedures 

We define the ‘conventional allocation method’ as the brute force approach, where the 

allocation of the demand points, say n,  is carried out for each demand point (i=1,…,n) by 

calculating the smallest distance to each of the p facilities. For instance, if T0 refers to the 

cost of computing one distance value between a demand point and a facility and 1T  T1 is the 

cost for computing the minimum distance from the ith demand point to all the p facilities (i.e., 

pjjidMin ,...,1)},,({  ), the computational cost will be )( 1010 TpTnnTpnT  . If a 

multiple allocation is required (say k iterations) to different sets of p facilities, then the 

overall computational cost, say TC0, becomes )( 10 TpTkn  . 

Using the quadtree allocation, there are two primary sources of cost: (i) the cost to 

construct the quadtree database, say F, and (ii) the cost to allocate the quadtrees to the 

facilities. In (i), F consists of the cost of determining the quadtree structure and the cost of 

populating the quadtree database with the demand points. This fixed cost depends on the 

number of hierarchical levels (L) only but it is independent of the number of facilities (p) and 

the number of demand points (n). The time to populate the quadtree database is proportional 

to n and L, but it is independent of p. 

In other words, the conventional allocation does not incur this fixed cost. The efficiency 

of the quadtree method will improve as the number of iterations increases. Let TC1 be the 

cost of this approach, 21 kTFTC   with 2T  representing the cost of assigning the corners to 

the facilities. The cost of allocating the quads to facilities depends on the degree to which the 

quadtree structure can be exploited. Its cost will be relatively low if many higher level quads 

are allocated but the fixed cost will be even higher. The cost of the quadtree method is related 

to the number of facilities. As this number increases, the likelihood of a higher order quads 

being split also increases as fathoming would not occur earlier which leads to an increase in 

computational effort. The number of hierarchical levels affects the computational time. If 

there are more facilities, the saving may only be achieved as the tree is penetrated more 

deeply. Offering more levels may not unduly increase the allocation time, as the five-demand 

points threshold rule will prevent any further penetration beyond this threshold.  

The number of iterations required (k̂ ) for the quadtree method to outperform the 

conventional method is derived as follows: 

01021 )( TCTpTknkTFTC   . This leads to: 
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 k
TTpTn

F
k ˆ

)( 210



   (5) 

where 2 ( , )LT f p N . 

 

4. Computational experiments 

This section comprises two subsections. The first subsection describes three allocation 

methods followed by the computational results on the allocation problems. We refer to three 

allocation techniques instead of two as there are two variants of the brute force which we also 

call the conventional method. 

 

4.1 A brief on the three allocation methods 

Three allocation methods are proposed in the case of the Euclidian distance. These 

include the conventional method, the modified-conventional method, and the quadtree 

method described below. Here, there are n demand points and p facilities where 

  niYX ii ,...,1,,   and   pjjj ,...,1,,   are the coordinates of the demand points and 

facilities respectively. We would like to allocate each demand point to its closest facility.  

 

A) The Conventional Method (CM) 

The conventional method allocates demand points as follows: for each demand point i (i = 

1,…,n), its nearest facility is computed as ),(
,...,1

jidMinArg
pj 

, where 

     pjniYXjid jiji ,...,1;,...,1,),( 222    (6) 

 

B) The Modified-Conventional Method (MM) 

This method improves the way to calculate the distance between facility and demand point 

where the allocation procedure is performed a large number of times. The method is based on 

Al -Zoubi and Al-Rawi (2008) where they developed a simple but efficient approach for 

computing the silhouette coefficients when evaluating clusters.  

The Euclidian distance, ),( jid  as defined in (6), can also be written as 

jijijjii YXYXjid  22),( 22222  . The terms 22
iii YX   and 22

jjj    
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need to be calculated only once as i  is a function of i only (the same for j ). Using this 

observation, there is obviously a fixed cost to calculate and store the i  and the j  though 

relatively negligible with respect to the large number of iterations used. This scheme can 

potentially save a large amount of computational time.  

In brief, the idea is to calculate and store i  ( ni ,...,1 ) and j  ( pj ,...,1 ), and for 

each demand point i ( ni ,...,1 ), its closest facility is computed as
1,...,

( ( , ))
j p

Arg Min d i j


, using 

(7) instead of (6) 

 jijiji YXjid  22),(2   (7) 

 

C) The Quadtree Method (QM) 

The Quadtree method is also designed for solving the allocation problem where the allocation 

must be performed a large number of times. Here, MM is also used to calculate the distance 

between facility and demand point. The followings steps of this method are given below. 

1. Calculate and store 22
iii YX  , ni ,...,1  and 22

jjj    , pj ,...,1 . 

2. Find the minimum and maximum of X and Y coordinate ((Xa, Ya) and (Xb, Yb)). 

3. Build the quadtree database.  

3a- Determine the corners  , , 0,..., ( 1)k k Lx y k N   with the first corner being located  

       at ( , )a aX Y .  

3b- Establish the quadtree structure. We develop the quads from the highest level (level  

       1) until the lowest level (level L), see section 3.1 for more details.  

3c- Assign all demand points to quads on the lowest level. At successively higher levels,  

       Assemble the demand point’s lists from the quads at the lower level, see section 3.1  

       for more details. 

4. Starting from Level 1 until level L, we allocate each quad, which has not been allocated, 

to one facility if all corners of this quad are allocated to this facility with all demand 

points inside this quad being systematically assigned to the same facility. See section 3.2 

for more details. 
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5. Allocate all the remaining unallocated demand points to the facilities individually using 

the modified conventional allocation scheme (MM) given in subsection 4.1(B). 

 

4.2 Computational Results on the Allocation Problems 

Experiments are performed to investigate the relationship among the number of demand 

points, the number of facilities, the depth of the quadtree, and the number of iterations. Seven 

test problems with n = 5000, 10000, 20000, 30000, 40000, 70000, and 264000 are conducted. 

These seven data are generated randomly in a square unit of 1000x1000, 2000x2000, 

5000x5000, 5500x5500, 6000x6000, 7500x7500, and 10000x10000 respectively. For 

example, in the data instance with n=5000, the coordinate ),( ii YX  are generated randomly in 

the range 2)1000,1( .  

In these experiments, the maximum number of levels (L) is set to 8. For each value of p, 

the number of runs/iterations (k) of the allocation process is set to 1000 and the facility 

locations are randomly generated. Computing times for the fixed cost and the variable cost 

for all three methods are also recorded. Based on these costs, we estimate the number of 

iterations required for QM to be more efficient than both the CM and MM. The code was 

written in C++ .Net 2010 and was executed on a PC with an Intel Core i5 CPU 650@ 

3.20GHz processor, 4.00 GB of RAM and under Windows 7 (32bit). 

 

Some Observations 

Table 2 presents the CPU times of the three allocation methods for n = 30,000 where the 

CPU times are in milliseconds. The notation in this table is as follow: FC(RD) : Fixed Costs 

(read demand points file); FC(BQ) : Fixed Costs (build the quadtree database); L01 - L08 : 

the level of Quadtree (level 1 - 8); VC: Variable Costs (average of allocating time from 1000 

iterations); CPU : CPU times required to perform 1000 iterations. In this table, numbers in 

bold refer to the lowest CPU values. The fixed cost of QM (reading the demand point file and 

setting up the quadtree database) is proportional to the depth of the hierarchy. The fixed cost 

of QM is, as one may expect, relatively much higher than that of CM and MM. 
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Table 2. CPU Times (in millisecond) for the location-allocation using CM, MM, and QM (case of n = 30,000) 

 CM MM 
QM 

L01 L02 L03 L04 L05 L06 L07 L08 

FC(RD) 150 137 137 137 137 137 137 137 137 137 

FC(BQ) - - 23 59 195 719 2,801 11,000 43,738 174,461 

p VC CPU VC CPU VC CPU VC CPU VC CPU VC CPU VC CPU VC CPU VC CPU VC CPU 

5 36.66 36,813 24.04 24,176 30.13 30,289 24.44 24,640 17.38 17,707 13.57 14,430 11.88 14,817 12.30 23,437 15.82 59,695 29.69 204,286 

10 71.89 72,037 46.28 46,414 53.24 53,399 48.68 48,877 34.68 35,008 23.76 24,613 17.93 20,867 17.17 28,309 21.39 65,262 37.98 212,579 

15 105.45 105,604 68.24 68,375 74.27 74,432 72.33 72,528 54.85 55,180 36.70 37,551 25.76 28,696 23.48 34,617 28.50 72,379 47.62 222,215 

20 139.65 139,804 91.26 91,400 95.40 95,564 95.41 95,604 76.64 76,968 51.77 52,629 34.96 37,899 31.05 42,188 36.89 80,769 58.73 233,325 

25 174.50 174,653 111.84 111,975 116.86 117,020 117.77 117,963 99.21 99,539 68.55 69,407 45.46 48,399 39.39 50,524 46.29 90,168 70.82 245,422 

30 208.59 208,740 134.46 134,596 138.21 138,371 139.75 139,950 121.71 122,039 86.35 87,207 56.82 59,759 48.48 59,617 56.63 100,504 83.80 258,402 

35 242.31 242,460 156.56 156,694 159.36 159,519 161.46 161,658 144.73 145,059 105.08 105,938 69.00 71,938 58.36 69,492 67.83 111,703 97.81 272,410 

40 277.76 277,905 177.45 177,584 180.93 181,094 182.99 183,181 167.17 167,504 124.71 125,567 81.97 84,911 68.98 80,113 79.54 123,414 112.26 286,855 

45 312.22 312,365 199.49 199,623 202.37 202,529 200.19 200,389 189.73 190,066 145.02 145,876 95.70 98,633 80.09 91,231 91.86 135,739 127.39 301,992 

50 345.19 345,341 223.16 223,297 223.33 223,494 220.54 220,740 211.98 212,308 165.67 166,528 109.95 112,892 91.70 102,836 104.75 148,629 142.93 317,524 

55 380.14 380,291 245.93 246,071 244.28 244,436 239.88 240,079 234.00 234,336 187.04 187,895 124.94 127,876 103.95 115,083 118.19 162,067 158.97 333,571 

60 418.91 419,059 266.55 266,683 266.46 266,622 261.48 261,674 255.79 256,117 208.73 209,586 140.36 143,302 116.71 127,848 132.18 176,058 175.74 350,340 

65 457.77 457,921 286.10 286,241 290.30 290,458 281.41 281,606 277.77 278,098 230.58 231,434 156.24 159,176 129.86 140,996 146.64 190,512 192.73 367,329 

70 494.85 495,002 309.41 309,549 308.81 308,966 302.50 302,700 299.26 299,590 252.54 253,391 172.60 175,533 143.56 154,696 161.57 205,441 210.32 384,919 

75 525.87 526,021 336.24 336,372 330.71 330,872 323.32 323,520 320.80 321,133 274.94 275,798 189.41 192,348 157.78 168,918 176.76 220,636 228.06 402,661 

80 557.43 557,582 355.94 356,075 351.79 351,953 344.04 344,235 342.39 342,718 297.20 298,051 206.56 209,493 171.96 183,094 192.60 236,476 246.14 420,742 

Avg 297 296,975 190 189,695 192 191,814 189 188,709 178 178,336 142 142,869 96 99,159 81 92,062 92 136,216 126 300,911 

dev(%) 267 223 134 106 137 108 133 105 120 94 75 55 19 8 0 0 14 48 56 227 
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Table 2 also presents dev(%) which is the percent gap from the best known CPU Time and is 

computed as 
b

bc

CPU

CPUCPU
dev


100(%) , where CPUc and CPUb correspond to the CPU 

time obtained with method ’c’ and the best CPU time respectively. 

Table 3 summarises the average of CPU times for n = 5000, 10000, 20000, 40000, 

70000, and 264000 over p =5 to 80 with a step of 5. According to the results, MM 

outperforms CM as the average allocation time (VC) of MM is shorter than the one of CM in 

all cases. The average allocation time of QM is shorter than both CM and MM in most cases, 

especially for larger values of p and/or n. It means that the advantages of QM for allocating 

demand points are clear. We observe that the trend of the CPU values for the different levels 

(except for n = 40,000) is decreasing until a certain level and then the values begin to increase 

(the minimum occurs for L04, L05 or L06, depending on the cases). We also observe that the 

CPU values for QM-L08 are worse than the values obtained from MM  in all cases. 

Table 3. The overall summary of the average CPU Times (in millisecond) for the Location-
Allocation problem for n = 5,000 to 264,000 over p = 5 to 80 

 
n = 5,000 n = 10,000 n = 20,000 

 
VC dev(%) CPU dev(%) VC dev(%) CPU dev(%) VC dev(%) CPU dev(%) 

CM 51 102 50,936 100 93 131 93,003 125 183 183 183,330 168 

MM 39 53 38,600 52 60 50 60,344 46 122 88 121,671 78 

L01 31 23 31,015 22 65 61 64,976 57 124 91 123,915 81 

L02 31 22 30,910 22 62 55 62,556 51 123 90 123,422 81 

L03 30 18 29,766 17 60 49 60,087 45 118 82 118,142 73 

L04 25 0 25,434 0 52 30 52,521 27 95 46 95,320 39 

L05 26 1 26,043 2 40 0 41,345 0 66 3 68,334 0 

L06 27 8 29,214 15 43 6 46,583 13 65 0 71,941 5 

L07 36 42 43,144 70 51 28 66,872 62 76 17 103,940 52 

L08 65 158 94,239 271 82 103 140,790 241 109 69 224,262 228 

 
n = 40,000 n = 70,000 n = 264,000 

 
VC dev(%) CPU dev(%) VC dev(%) CPU dev(%) VC dev(%) CPU dev(%) 

CM 374 271 374,219 223 689 317 689,270 262 2,524 622 2,524,922 336 

MM 254 152 254,349 120 422 156 422,250 121 1,603 359 1,604,516 177 

L01 247 145 247,254 114 431 161 430,889 126 1,669 378 1,670,282 189 

L02 257 155 257,748 123 431 161 431,601 126 1,654 373 1,656,071 186 

L03 250 148 250,293 116 411 149 411,990 116 1,585 354 1,587,829 174 

L04 198 97 199,384 72 325 97 326,881 71 1,260 261 1,267,307 119 

L05 134 33 138,008 19 213 29 220,003 15 792 127 819,002 42 

L06 101 0 115,792 0 165 0 190,654 0 483 38 578,453 0 

L07 110 10 168,723 46 182 10 290,580 52 349 0 724,095 25 

L08 142 40 366,322 216 230 40 658,320 245 385 10 1,875,300 224 
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Table 4 presents the mean percentage of the number of quads unallocated in the quadtree 

method for n = 40,000. The demand points, inside those quads, are to be allocated, in the 

conventional way. The two fathoming procedures trade off against each other: when L is 

small, more demand points are unallocated because many unsplit quads remain, whereas 

when L is large (near 8), most of the quads might consist of a small number of demand points 

(≤ 5). Table 4 shows that when n = 40000,  p = 5, and L = 3, a mean of 39.81% of quads have 

not been allocated. However when p = 80, with many more quads (smaller ones), a mean of 

99.10% of quads are not allocated. The demand points of those unallocated quads must be 

allocated normally which counter balance the benefit of using this approach except if a large 

value of L is used. The number of unallocated quads decreases with the increase in L but 

increases with p.  

Table 4. The average percentage of quads unallocated (QM) for n = 40,000 with p = 5 to 80 

p L01 L02 L03 L04 L05 L06 L07 L08 
5 97.63 69.29 39.81 20.99 10.75 4.95 0.11 0.00 
10 99.98 89.01 59.80 33.46 17.56 8.19 0.18 0.00 
15 100.00 95.39 71.56 42.27 22.60 10.64 0.24 0.00 
20 100.00 98.05 79.41 49.11 26.71 12.66 0.29 0.00 
25 100.00 99.10 84.72 54.69 30.22 14.43 0.33 0.00 
30 100.00 99.59 88.59 59.45 33.36 16.02 0.36 0.00 
35 100.00 99.82 91.28 63.50 36.12 17.44 0.40 0.00 
40 100.00 99.88 93.50 67.07 38.72 18.80 0.43 0.00 
45 100.00 99.98 95.08 70.18 41.05 20.04 0.46 0.00 
50 100.00 99.98 96.04 72.91 43.21 21.17 0.49 0.00 
55 100.00 99.96 96.96 75.34 45.22 22.26 0.51 0.00 
60 100.00 100.00 97.65 77.60 47.14 23.32 0.54 0.00 
65 100.00 99.99 98.23 79.56 48.95 24.33 0.56 0.00 
70 100.00 100.00 98.56 81.31 50.61 25.24 0.59 0.00 
75 100.00 100.00 98.87 82.90 52.18 26.15 0.61 0.00 
80 100.00 100.00 99.10 84.38 53.72 27.05 0.63 0.00 

Avg 99.85 96.88 86.82 63.42 37.38 18.29 0.42 0.00 

 

Table 5 shows the summary of this average percentage from n = 5,000 to 264,000 for p =  

5 to 80. For most situations, it has been observed that demand points can be allocated to 

facilities more efficiently with QM. However, this efficiency comes at a considerable fixed 

cost. If we wish to make only a few iterations, MM will be much more efficient. However, if 

a large number of iterations is required, QM that uses the quadtree level with the lowest 

variable time (allocating time), as documented in the tables, will be more appropriate. The 
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minimum number of iterations required for QM to outperform CM and MM can be calculated 

as follows: 

 
QT

TQ
T 







  and 

QM

MQ
M 







  (8)     

Where:  
T ,

M  : The number of iterations required for QM to outperform CM and MM 

respectively 

 Q , T , M  :  Fixed cost of QM, CM, MM respectively 

 Q , T , M  :  Variable cost of QM, CM, MM respectively 

Table 5. The overall summary of the average percentage of quads unallocated from n = 5,000 
to 264,000 over p = 5 to 80 

n L01 L02 L03 L04 L05 L06 L07 L08 
5000 99.84 96.88 86.91 63.57 14.17 0.03 0.00 0.00 
10000 99.86 96.93 86.98 63.58 34.96 0.74 0.00 0.00 
20000 99.80 96.87 86.79 63.46 37.41 7.38 0.02 0.00 
30000 99.84 96.89 86.92 63.57 37.46 14.96 0.14 0.00 
40000 99.85 96.88 86.82 63.42 37.38 18.29 0.42 0.00 
70000 99.85 96.83 86.86 63.43 37.36 19.95 2.74 0.01 
264000 99.83 96.82 86.90 63.39 37.31 19.96 10.25 1.21 

Avg 99.84 96.87 86.88 63.49 33.72 11.62 1.94 0.17 
 

Figure 9 presents the chart of the number of iterations required for QM to outperform CM 

and MM when n = 5,000 to 264,000 with p = 40. Here, we set L = 5 (L05) based on the 

results shown in Table 3. The figure shows that the use of QM on the allocation problem is 

more efficient than the one of CM and MM when a certain number of iterations is required. 

The values of T  are 21, 19, 17, 15, 20, 33, and 132 for n = 5000, 10000, 20000, 30000, 

40000, 70000, and 264000 respectively. While the values of M  are 39, 48, 32, 30, 40, 66, 

and 270 for n = 5000, 10000, 20000, 30000, 40000, 70000, and 264000 respectively.  The 

highest values occur for the greatest value of n but none of the sequences is found to be 

increasing. Also note that MM always outperforms CM as both use the same technique but 

the former has a more efficient data structure which avoids recomputing unnecessary 

calculations of i  and j . 
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Figure 9. The number of iterations required for QM to outperform CM and MM  
(case of p = 40) 

 

5. Integration of QM in solving facility location problems 

The effect of using QM as an allocation procedure for solving the discrete p-median and 

p-centre problems is explored. The first subsection describes the integration of QM into the 

methods used for solving this class of location problems followed by a subsection on the 

computational results. In this study we consider all customer sites as potential facility sites 

which we denote by (| | )H H n  . 

  

 

5.1 Two simple facility location methods 

We incorporate QM into two methods used for solving the p-median and the p-centre 

problems namely the multi-start and the Reduced Variable Neighbourhood Search (RVNS) 

methods. We then compare the performance of these two methods with and without QM.  
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A) The Multi-start Method 

The multi-start method for both the p-median and the p-centre problems is a simple method 

where p facility locations are chosen randomly and then all demand points are allocated to 

their nearest facility. This process is repeated s times and the facility configuration that yields 

the smallest objective function value is chosen. In our study, s is set to 1,000.  

 

B) The Reduced Variable Neighbourhood Search (RVNS) 

VNS combines both local search and neighbourhood search. The first search looks for local 

optimality while the latter aims to escape from these local optima by systematically using 

another (usually a larger) neighbourhood if the improvement is not found and then reverts 

back to the first neighbourhood (usually the smallest one) otherwise. More details about VNS 

and its various variants and successful application can be found in Hansen et al. (2010). 

RVNS, which is one of the variants of VNS but without a local search procedure, is used in 

this study. The implementation of RVNS is adopted mainly to obtain good initial solutions. 

Let X denote the facility configuration of the current solution and f(X) its corresponding 

objective function value.  

For the p-median problem, the kth neighbourhood structure Nk is defined as follows: 

( )kN X  = use of 1( )N X  k times with max1,...,k k and   XXN )(1     (9) 

where    is chosen randomly in H X and X  is also selected randomly. 

 
Note that 1( )N X  can also be rewritten as }1),(:{)(1  XXHXXN p   where 

}:{ pZHZH p   and pHZZZZZZ  ,,\),( . 

For the p-centre problem, the neighbourhood structure used in the shaking process includes 

the construction of the promising area where a chosen facility location may move to. Let im 

refer to the customer whose distance to its nearest facility is largest (rm) while U denotes the 

list of the potential sites which are located in the promising area as shown in Figure 10.  

This is defined as follows: Let ( , )C F R  be the set of potential facility sites encompassed by 

the circle centered at pointF with a radius R .  

Then *( , ) ( ( , ) \ ( , ))
2
m

m m m m

r
U C F r C i r C i  with *F being the facility site serving mi . 
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Figure 10. The restricted but guided neighbourhood for the p-centre problem 

The kth neighbourhood structure NNk for the p-centre is defined as follows:  

( )kNN X = use of 1( )NN X  k times with max1,...,k k  

and   XXNN )(1   (10)  

where    is chosen randomly in  U X and X  is a facility with the largest 

radius (the one which serves customer im).  

The main steps of the RVNS for both the discrete p-median and p-centre problems are 

summarised in Figure 11. For simplicity for the initial solution, we choose the location of the 

p facilities randomly from the setH . Note that the implementation of the shaking procedure 

in RVNS is slightly different between the two location problems as in the p-centre the new 

solution needs to be identified at each iteration given the insertion of the added facility 

belongs to the subset of sites currently assigned to the facility with the largest circle. 

However this restriction is not necessary in the p-median where both the removed facility and 

the added one are both randomly selected.  

rm 

Neighbourhood area (U) 

Customer im (the furthest customer) 

The facility (F*) which serves im 
0.5rm 

rm 

F*
 im 

Promising area (U) 
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Figure 11. The RVNS for the discrete p-median and p-centre problems 

 

5.2 Computational results 

The performance of QM on these two discrete location problems is tested on the TSP 

dataset which comprises of four instances namely Italy Data (n = 16,862), Sweden Data (n = 

24,978), Burma Data (n = 33,708), and China Data (n = 71,009). We vary the value of p from 

5 to 30 with an increment of 5. In QM, we set L = 5 as this level showed to yield better 

performance when compared to the other levels for p < 30 (see the previous section).  

 

A. The Multi-start Method 

Figure 12 shows the CPU time deviation (dev(%)) of CM and MM with respect to QM 

for the case of the multi-start method. The figure also presents the best CPU time for QM 

after 1000 iterations for both the p-median and p-centre problems. Here, the methods use the 

same value for the seed when generating random values so the set of p facility locations 

chosen in the 1000 iterations remain the same for the different allocation procedures.  

Repeat the following steps until the stopping criterion is reached: 

Step 1 Set k = 1, let X be an initial solution and f(X) its corresponding objective function 
value. 

Step 2 Shaking 

For the p-median problem: 

Determine ' ( )kX N X and calculate f(X’) using (9) 

For the p-centre problem: 
(a). Let XX    
(b). Do the following step k times (l =  1,…,k) 

 determine ' ( '')lX NN X  using (10) 

 Calculate f(X’), identify the subset of customers encompassed by the largest 
circle and set XX   

Step 3 Move or Not 

If )()( XfXf   set X = X’ and k = 1 else set k = k+1. 

Step 4 If k  k  then go to Step 2. 
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Figure 12. The CPU time Deviation (dev(%)) of CM and MM with respect to QM case of the 

Multi-start method 

Figure 12 indicates that the use of QM in the allocation process outperforms both CM and 

MM. QM is approximately 150% and 50% faster than CM and MM respectively. In brief, the 

use of QM is found to be very effective in reducing the computing time. This demonstrates 

that QM can be incorporated in other powerful algorithms for large-scale location problems 

such as those given by Hansen et al. (2009), Avella et al. (2012) and Irawan et al. (2014).  

For illustration purposes we also introduced QM into a Reduced VNS for the case of p-

median and p-centre problems. This is given next.  

 

B. The Reduced Variable Neighbourhood Search (RVNS) 

In this study, we set the parameter kmax = 2. Here, we use the CPU time based on the best 

CPU time obtained by the multi-start method as the stopping criterion. Figures 13a and 13b 

present the comparison of the average Deviation (%) over all values of p between CM, MM, 

and QM when used in the RVNS method for the p-median and p-centre problems 

respectively. Deviation (%) is the percent gap from the best solution found by these variants 

and is computed as 
b

bc

Z

ZZ
Deviation


100(%) , where Zc and Zb correspond to the Z value 

obtained with method ’c’ and the best Z respectively. The experiments are conducted on the 

instances tested by the multi-start method. The detailed results are given in the Appendix 

under Tables A1 and A2 for the p-median and the p-centre problems respectively. 
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Figure 13. The Deviation (%) between RVNS-CM, RVNS-MM, RVNS-QM, and Multi-start 

The case of the p-median problem 

Figure 13a reveals that in general the values of the average Deviation (%) obtained by 

RVNS for the p-median problem are much smaller than the ones found by the multi-start 

method.  Figure 13a also shows that incorporating QM in the RVNS method yields the 

smallest average Deviation (0.00%) meaning that in all instances, the use of QM in RVNS 

outperforms the use of CM and MM in RVNS as well as QM in the multi-start method.  This 

is because the use of QM in RVNS saves the allocation time so the number of iterations 

increases. Similar to the previous case, the use of QM in the RVNS method for the p-median 

problem is very effective in reducing the allocation time.  

The case of the p-centre problem 

Figure 13b shows the comparison in the average Deviation (%) value between the use of 

CM, MM, and QM in the RVNS method for the p-centre problem. The RVNS method, 

similarly to the case of the p-median problem, generally provides better solutions than the 

multi-start method. The figure also shows that the use of QM in the RVNS method produces 

the smallest deviation with a value of 0% in all instances except the Sweden Data. 

   

6. Conclusions and suggestions 

This paper introduces a special data compression approach based on a quadtree technique 

for the allocation of a large number of demand points to their nearest facilities. The main 
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result is that if a quad has all of its four corners allocated to one facility, all the customers in 

that quad are systematically allocated to that facility. This result is supported by an 

interesting theorem that is valid for any convex polytope. The experiments show that in most 

situations, the quadtree allocation procedure outperforms the conventional and the modified-

conventional allocation, and overcomes its overhead costs beyond a critical number of 

iterations. The quadtree method has its greatest value where many different allocations of the 

same set of demand points to different set of facilities are required. The saving gets more 

significant when a large number of facilities and iterations are needed as the fixed costs incur 

only once for any set of demand points. 

In our study, we also incorporate the quadtree technique into two methods used for 

solving large discrete p-median and p-centre problems. These include the multi-start and the 

Reduce Variable Neighbourhood Search (RVNS). The computational results show that the 

use of QM in these methods is very effective when solving very large instances. 

The use of the quadtree method can also be incorporated into existing and powerful 

algorithms used for large-scale location problems. It would be also interesting to explore 

adopting QM to other combinatorial problems where the allocation task is an important part 

of the search which is required a large number of times. 
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Appendix  
The detailed results of Z value between multi-start and RVNS with CM, MM, and QM for the 

p-median and the p-centre problems are presented in Tables A1 and A2 respectively. 

Table A1. The comparison in solution quality between multi-start and RVNS with CM, MM, 

and QM: The case of the p-median problem  

Description N p Best Z 

Deviation (%) 

Multi-start 
 RVNS  

CM MM QM 

Italy Data 
   

16,862  

5 19,738,367.25  2.69  1.29  0.83  0.00  

10 13,161,728.73  12.18  2.20  1.76  0.00  

15 10,713,832.06  11.45  2.65  1.76  0.00  

20 9,099,306.61  14.39  3.82  2.96  0.00  

25 7,962,255.48  18.11  1.58  0.60  0.00  

30 7,271,676.07  18.87  1.57  0.73  0.00  

Sweden 
Data 

   
24,978  

5 35,535,818.26  4.90  2.93  1.06  0.00  

10 24,053,092.74  11.39  5.15  3.99  0.00  

15 19,640,207.74  15.13  1.89  1.56  0.00  

20 16,973,915.83  15.79  1.44  0.97  0.00  

25 15,092,119.15  13.98  3.96  2.87  0.00  

30 14,018,174.94  14.72  0.91  0.87  0.00  

Burma 
Data 

   
33,708  

5 47,320,059.91  6.42  0.00  0.00  0.00  

10 31,891,058.04  13.70  5.05  1.54  0.00  

15 25,878,057.99  10.41  3.81  1.03  0.00  

20 22,486,038.51  11.66  1.92  1.92  0.00  

25 20,146,402.36  15.33  0.49  0.45  0.00  

30 17,941,167.95  16.87  2.22  0.93  0.00  

China Data 
   

71,009  

5 352,667,929.12  7.29  0.20  0.13  0.00  

10 302,130,384.31  6.64  0.98  0.92  0.00  

15 280,553,532.95  7.65  1.77  0.14  0.00  

20 266,313,391.35  6.65  2.78  1.61  0.00  

25 262,397,582.09  6.70  1.08  0.83  0.00  

30 256,990,798.52  6.40  1.17  0.58  0.00  

Average 11.22  2.12  1.25  0.00  
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Table A2. The comparison in solution quality between multi-start and RVNS with CM, MM, 

and QM: The case of the p-centre problem  

Description n p Best Z 

Deviation (%) 

Multi-start 
 RVNS  

CM MM QM 

Italy Data 16,862 

5 3,564.99 5.72 0.00 0.00 0.00 

10 2,073.72 24.24 2.84 0.24 0.00 

15 1,923.25 11.56 0.56 0.20 0.00 

20 1,460.31 37.50 1.88 0.05 0.00 

25 1,595.22 9.82 1.39 1.39 0.00 

30 1,168.21 43.94 5.63 1.33 0.00 

Sweden 
Data 

24,978 

5 4,178.05 0.30 0.00 0.00 0.00 

10 2,973.40 5.49 21.42 0.00 0.00 

15 3,136.70 0.00 11.26 6.27 6.27 

20 2,639.97 9.66 13.17 13.17 0.00 

25 2,055.48 32.14 9.03 7.68 0.00 

30 2,716.05 0.00 15.58 15.58 15.58 

Burma 
Data 

33,708 

5 2,847.46 42.39 2.22 0.23 0.00 

10 2,095.30 34.19 10.52 8.37 0.00 

15 1,920.14 32.74 3.51 0.00 0.00 

20 2,108.84 9.11 0.00 0.00 0.00 

25 1,618.04 36.45 0.00 0.00 0.00 

30 1,598.09 26.28 0.17 0.17 0.00 

China Data 71,009 

5 12,983.84 72.00 0.00 0.00 0.00 

10 11,529.30 92.23 2.98 2.98 0.00 

15 13,465.98 64.45 0.00 0.00 0.00 

20 11,620.38 90.30 0.65 0.00 0.00 

25 11,292.48 95.83 1.00 1.00 0.00 

30 10,586.92 108.50 1.10 1.10 0.00 

Average 
   

36.87 4.37 2.49 0.91 
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