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Abstract

We present a model of how transcription factors scan DNA
to find their specific binding sites. Following the classical
work of Winter et al. (1981), our model assumes two modes
of transcription factor dynamics. Adjacent moves, where the
proteins make a single step movement to one side, or short
walks where the transcription factors slide along the DNA
several binding sites at a time. The purpose of this article is
twofold. Firstly, we discuss how such a system can be effi-
ciently modelled computationally. Secondly, we analyse how
the mean first binding times of transcription factors to their
specific time depends on key parameters of the system.

Introduction
Regulation of gene activity can be understood as a compu-
tational process, in the sense that the cell reacts to changes
in the environment by changing its internal states. There
are several mechanisms the cell can use to make such inter-
nal changes. One important such mechanisms is the regula-
tion of genes. In bacteria, gene regulation often involves the
binding of regulatory proteins, so calledtranscription fac-
tors (TFs), to particular binding sites on the DNA.

One aspect that has commanded significant attention from
bioscientists, physicists and systems biologists is the time
required for regulatory proteins to find their target binding
site on the genome. The problem is as follows: In order to
turn a gene on (or indeed repress it) the TF needs to locate a
specific binding site. The problem is that TFs are “sticky” to
all parts of the DNA. When binding to the DNA a TF actu-
ally binds to anl-long sequence of nucleotides. The binding
strength depends on the match between the bound sequence
and an optimal pattern which represents the sequence of the
specific binding site. The closer the match, the higher the
affinity. While the binding affinity to specific sites is much
higher than to most non-specific sites, the contribution of the
latter is still significant enough to potentially “distract” a TF
from locating its specific site. Furthermore, there are mil-
lions of non-specific sites and only few of the specific and
active sites for each particular TF. Therefore, even thougha
TF spends very little time being bound to each of the non-
specific sites, it may take a significant time to sample all

of them before the specific site is eventually found. The
process of a TF finding its specific binding site necessarily
limits the speed of a biological computation.

This problem, which has been known about for a long
time, was first addressed by Winter et al. (1981), who pro-
posed a random walk model of facilitated diffusion. The
idea of this model is that the TF performs a mixed 1D and
3D random walk. The 1D random walk explores a small
adjacent neighborhood of DNA, while the 3D random walk
allows the TF to explore far-away, unconnected parts of the
genome. It has been suggested by Wunderlich and Mirny
(2008); Slutsky et al. (2004) and Murugan (2009) that the
most efficient exploration of the genome, in the sense that
it offers the fastest location of the specific binding site, is
achieved when the 3D and 1D components are weighted ap-
proximately equally.

Most of the above work has been analytical. There are
also a number of other results available. In this article we
will describe an approach to building an efficient computer
simulation model of TFs finding their specific binding sites
(Barnes and Chu (2010)). This new approach will allow
realistically sized simulations, thus significantly expanding
the scope of previous models. The essence of the efficiency
of the model is a careful management of memory to make
the problem scalable, regardless of genome occupancy.

The Model

The movement dynamics of TFs involves a search across
a discrete (but very high) number of spatially organised
binding sites. This suggests the potential for an individual
agent-based modelling approach. The environment of the
TF agents is a non-metric space; that is, there is no mea-
sure of distance between the agents. Embedded in this space
is the DNA itself, which is represented as a string of the
symbolsa,c,g,t with periodic boundary condition. For
all simulations reported here we used the genome ofE.coli
K12 (The University of Wisconsin (2009)). At any given
time, every agent is either bound to one of the binding sites
of the genome, or suspended in the non-metric space. We
think of the space as a ‘reservoir’ of currently unbound TFs.
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We define two types of agents, namely focal and non-focal
TFs. We are primarily interested in the former, yet the latter
are important in that their presence on the DNA could inter-
fere with the search dynamics of the focal TFs. The number
of non-focal TFs is kept constant during a specific simula-
tion run (for reasons of computational efficiency), whereas
the focal TFs are created and degraded with user-defined
rates, hence particle numbers within the cell fluctuate over
time.

Focal TFs have a definite bindingmotif m that is used
to determine their binding energy and, hence, their mean
binding time at every DNA binding site in the model. If
the length of the binding motifm is l then the binding free
energy to a particular sequence is calculated as follows:

Fs =

l∑

i=1

ωiδmi,si (1)

Here,mi is thei-th entry of the motifm, si the correspond-
ing base of the actual binding sequences andωi the empir-
ically determined weighting factor of the binding motif. In
contrast, non-focal TFs do not have specific binding sites;
rather, they share low, position-dependent affinities to all
sites on the DNA. Rather than calculating the binding ener-
gies dynamically, the affinity values for both types of TF are
pre-calculated for every position on the DNA and stored in
arrays of the same length as the DNA, making binding-time
calculation very efficient.

The model update algorithm is event based, with three
main classes of event available at each step:

• Create a focal TF.

• Bind a TF of either type to the DNA.

• Unbind a bound TF from the DNA.

Unbind events can result in complete unbinding into the
reservoir or short, local 1D movements. Essential for the
reliability of the model is to design the update algorithm
so that the behaviour of the model is correct with respect
to the choice of parameters (in the sense that it reproduces
the statistics implied by the various binding and unbinding
rates). To achieve this, we have adapted the Gillespie algo-
rithm (Gillespie (1977)) to schedule events.

On every event, regardless of its class, only a single TF is
updated. Breaking down the event classes in more details:
an update consists of one of the following actions:

• A new focal TF is created and might attempt to bind.

• A TF binds from the reservoir to the DNA.

• A bound TF unbinds from the DNA into the reservoir.

• A bound TF moves to an adjacent binding site on the
DNA.

• A bound TF makes a short move, i.e., binds with a uni-
form probability to an available binding site in the vicinity
of its current site. The range of what counts as “vicinity”
is user determined.

• A bound TF is destroyed.

Scheduling of events

At model initialization all non-focal TFs are created and
seeded onto random locations on the DNA via bind events
at time zero. If there is insufficient space then the excess
ends up in the reservoir. Then the creation times of all fo-
cal TFs are determined according to a user-defined rate, and
creation events scheduled accordingly. Their lifetime is also
determined at creation with a random number drawn from an
exponential distribution with a mean of 1 over the deletion
rate.

When its creation event occurs, a focal TF will immedi-
ately attempt to bind to a site on the genome with a user-
defined probability; any such attempt is successful with a
probabilityp = Nfree/Nrange whereNrange is the total number
of binding sites in range andNfree is the number of unoccu-
pied sites in that range. We specifyNrange because the ini-
tial bind attempt for a focal TF takes place within a limited,
user-defined birth range on the DNA. This models the effect
that (in bacterial cells) transcription and translation are per-
formed in one step and hence proteins are produced close to
their gene.

If the newly-created TF does not bind, then it is placed
in the reservoir and may have the opportunity to attempt a
general bind (i.e., one over the full range of the DNA) at a
later time. The range restriction only applies to the initial
binding attempt of a focal TF.

Binding events

General binding is used both to seed initial occupancy of
the DNA with non-focal TFs, and to support binding of both
types of TF from the reservoir. A random available binding
site is chosen from the full length of the DNA.

At the completion of every event, there is a probability
that an unbound TF might attempt to bind from the reser-
voir. The time to the bind event is drawn from an exponen-
tial distribution with a mean of 1 over a value that depends
upon the number of unbound TFsTu, the number of avail-
able binding sitesNfree along the full range of the DNA, and
a constant factork:

P (bind) = (kNfreeTu) (2)

A new binding event will only be scheduled if it would occur
before the next already scheduled event. This is because
the binding probability depends on the current availability
of binding sites which generally changes over time.



Unbinding events
The duration time of a DNA-protein bond depends on the
affinity of the type of TF for its binding site; specifically, for
focal TFs this affinity is determined from equation 1. It is
drawn from a Poisson distribution with meanµ.

µ = exp(−
Fs

kT
)

Herek is the Boltzmann constant andT the absolute tem-
perature. Binding from the reservoir onto the DNA is deter-
mined stochastically with a given user-determined rate.

At every unbind event, the next state of the TF is deter-
mined stochastically. Assuming that the TF has not reached
the end of its life (in which case it would be destroyed), with
a user-defined probability one of the following options will
apply to it:

• the TF will attempt to make a one place move left or right
(an immediately scheduled bind event);

• the TF will attempt a short move within a user-defined
range either side of the previous binding site (an immedi-
ately scheduled bind event);

• the TF goes into the reservoir.

Either move could fail, due to roadblocks, and lead to the
TF going into the reservoir. It should be clear from the above
description that, on each iteration, the heart of the event loop
is primarily concerned with: placing a TF on the DNA; re-
moving a TF from the DNA; or both. Therefore, identifying
free sections on the DNA is a potential performance bot-
tleneck that could prevent scaling of the method to realistic
sizes of both DNA and numbers of TFs.

The memory model
The key to efficient implementation of binding and move-
ment is the fast identification of available binding sites —
i.e., not just empty bases but runs of bases that are at least
as long as the binding motif (see eq 1) and can thus support
binding of a TF. A naive representation of the DNA might
be an array of Boolean values, one for each possible site,
recording whether a site is currently occupied by a bound
TF or not. In this implementation, an attempt to bind would
involve the generation of a random number within the de-
sired location range and a check as to whether that location
is free or not. If it is not free then options might be: abandon-
ing the attempt immediately; searching from that location in
one or other direction until a free site is found; or identify-
ing a fresh random location and repeating the process until a
free site is found. While simple to implement, the weakness
of this approach is immediately clear as the time to find a
free location is dependent upon the occupancy of the DNA.
Indeed, even when there are plenty of free individual bases,
there are no guarantees that a long enough consecutive run

will exist to allow a TF to bind, and the approach outlined
above must ensure that a search in vain will ultimately ter-
minate.

Using this scheme the time to locate a free binding site
depends on the occupancy of the DNA, and scales poorly
with the size of the genome. In this model we therefore
use a different approach that can find binding sites within
a time independent of the occupancy. Rather than an un-
structured array of Boolean status values we maintain a data
structure that records all the remaining bindable sectionsof
the DNA, as(position, length) pairs. The DNA is modeled
as a 1D wrap-around structure. Note that because binding
and unbinding occur at irregular intervals, sections of bind-
ing sites are occupied and freed according to no particular
regular pattern. The resulting space management problem
is akin to dynamic storage allocationin program runtime
environments (Knuth (1997)), as opposed tostack(last-in,
first-out) memory management, for instance. A significant
difference, however, is that traditional allocation algorithms,
such asfirst fit andbest fit, are inapplicable in this context,
because the memory manager must always allocate a par-
ticular section of free space that has been selected by the
bind event, rather than having a free choice. In common
with dynamic memory allocation, available space quickly
becomes “fragmented”. For instance, consider a run ofl+n
unoccupied sites, wherel is the length of a TF to be bound
andn >= l (Figure 2a). This sequences offersn + 1 po-
tential binding sites before a bind but anywhere between0
andn − l + 1 sites after the bind, depending on where the
bind takes place within the run and the size ofn in compar-
ison to l. If the TF were to bind across the middle of the
section then the two fragments either side may well be too
short to support another TF (Figure 2b). As a result, the data
structure recording bindable sections must be supplemented
by a similar data structure recording unbindable fragments.
For both we use theset associative container from the C++
STL (Meyers (2001)), which provides efficient access via its
key which, in our case, is the binding position. Note that a
fragment resulting from the bind of one TF may become us-
able before that particular TF unbinds — as a result of the
earlier bound TF occupying the adjacent section at the other
end of the fragment becoming unbound (Figure 2c). Indeed,
most of the complexity of the memory management occurs
during the bind-unbind cycle, at the point where a TF un-
binds and the section it occupies becomes available again.
Before being returned to the set of available sections it must
be reunited with any fragments at either end. In addition,
the newly freed section may now be contiguous with another
already available section, in which case the two must be co-
alesced into one.

Methods
All simulations in this article were performed by starting
with an empty wraparound DNA of length4639675 at time
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Figure 1: A histogram of the binding free energies as calcu-
lated from eq. 1. The energies are Gaussian distributed.

Figure 2: DNA section illustrating fragmentation and de-
fragmentation during TF binding and unbinding: a) Two
bound TFs, fragments and an available section; b) A third
TF binds, resulting in two new fragments; c) A TF unbinds,
fragments become available again.

0. Upon starting, the simulation protein was created with
a rate of0.01. The degradation rate of protein was0.0009.
Each simulation was run for a maximum of109 time units,
but was halted as soon as a TF was bound to the specific
binding site at position4540692 on the DNA. The halting
time was taken as the mean first binding time (MFBT) re-
ferred to below. For each set of parameters the MFBT was
calculated from 10 independent simulations (unless speci-
fied otherwise). In the graphs below, each point indicates the
MFBT where the mean has been taken over the set of sim-
ulations that had been performed. Error-bars and standard
deviation are not indicated in the graphs to preserve legibil-
ity. In nearly all experiments we performed, the standard
deviation is comparable to the mean, indicating that typical
binding times deviate significantly from the mean.

The source code of the program used here is available for
free download.1

1via anonymous FTP fromftp.cs.kent.ac.uk as
pub/djb/exp/exp-distrib.tgz

Results
One of the main variables to consider is the time the TF re-
quires to reach its specific site. For a single random walker
it is expected that MFBT scales with the square root of the
distance. In the case of an ensemble walking this may be
different. We decided to check this. To this end we per-
formed a number of experiments with the following setup:
We chose a synthesis site at which the TFs were produced.
This has the effect that the TFs would attach at random to
the binding site within a specified window. This introduces
a stochastic element into the simulation, in the sense that not
all TFs start from the same site. Some will start closer to the
specific site, some from farther away. This choice has an-
other effect. It limits the number of TFs that can attach to
the DNA per time unit. The reason is that, upon binding to
the DNA, TFs either occupy the binding sites within the ini-
tial binding window or they are released into the cytoplasm
(represented by the “reservoir” in our model). If all sites
within this window are occupied, no further TFs can bind
and newly synthesised TF will always be released into the
cytoplasm. We set the parameters such that no binding from
the cytoplasm to the DNA is possible; hence, for the purpose
of our simulation, once a TF unbinds from the DNA it is, in
effect, lost forever. We found that the initial binding window
is a strong restriction on the number of bound TFs.

We first performed a number of simulations with the ini-
tial binding window equal in size to the DNA. The effect
of this is that newly created TFs will bind anywhere on the
DNA. We allow the TFs to perform short moves of length
up to 50 binding sites at a time; adjacent moves happen with
a probability of 0. In this case we would predict that the
MFBT is independent of the location of the synthesis site,
but we would expect that the MFBT decreases as the TFs
can travel faster, that is a higher short move length should
lead to lower MFBTs. We varied both the probability of
short moves and the site where TFs are synthesized. Fig-
ure 3 summarises the results of these simulations and con-
firms that the synthesis site is irrelevant, as expected. The
graph shows the MFBT when all movements are only adja-
cent neighbor moves (P = 1), they are all short move events
(P = 0) and an in-between case (P = 0.8). For other val-
ues ofP we found that the MFBT always increases with
increasingP . As can be seen from figure 3 the difference
between the MFBTs for extreme cases ofP are at the order
of a magnitude.

In bacteria translation and transcription are closely inter-
linked. This means that protein tends to be made in close
spatial proximity to the gene that codes for the particular
protein. Following gene synthesis there is thus an increased
chance that a TF binds to a particular local region of the
DNA. We investigate the effect of this on the MFBT by
varying the location of the initial binding window. Figure
4 shows a number of simulations with a window size of 40
(20 on each site of an assumed protein synthesis site). Such a
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Figure 3: The mean first binding time to reach a particular
specific site as a function of the short move distance. The
window size equals the size entire genome. The short move
length was set to 50 in these simulations.
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Figure 4: The mean first binding time to reach a particular
specific site as a function of the short move distance. The
short move probability was set to0.9.

small preferred binding window is, admittedly, biologically
unrealistic. However, it was chosen for practical consider-
ations relating to the simulation speed. We found a strong
dependence of the MFBT on the protein synthesis location
as summarised in figure 4.

From these experiments it seems that a higher short move
probability speeds up the search process. However, we
would expect that the importance of this effect depends on
the proximity of the synthesis site to the specific binding
site. If the binding site is very close to the synthesis site,
then one would conjecture that large step sizes will tend to
“overshoot,” that is they will simply miss the specific site
during the movement. With larger initial distances this over-
shoot will happen as well, but TFs will move faster into the
proximity of the specific site, hence counteracting this ef-
fect.
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Figure 5: The mean first binding time to reach a particular
specific site as a function of the short move distance. The
short move probability was set to0.9.

We performed a variant of the above experiments to un-
derstand this in more detail. The graph in figure 5 shows
simulations where we kept the initial binding site fixed at an
offset of±3000 binding sites from the specific site. Thex-
axis shows the short move length in the simulation and the
sign of thex-axis indicates the centre of the initial binding
site. So, for example the point marked atx = −100 rep-
resents a simulation with an offset of the initial binding site
of −3000 from the specific binding site, and a short move
length of 100. In these simulations each point represents
the average MFBT over 1000 simulation experiments. The
graph shows values for 3 different adjacent move probabili-
ties, corresponding to all movements are short-moves, 90%
of all events are short-move events and 10% of all move
events are short move events.

The graph is somewhat complex to interpret, but shows
that the MFBT falls faster than exponential with the short
move length. ForP = 0 andP = 0.9 the MFBT decreases
by several orders of magnitude as the short move length in-
creases from 20 to 100. When the short move length is
smaller than 20, then irrespective of the value ofP in the
simulations shown here the MFBT is larger than the maxi-
mum simulation time of109 time units.

A closer look at the simulation results, particularly at fig-
ure 5 reveals that the MFBT is asymmetric around the spe-
cific binding site. When the binding site is to the right of the
specific site (i.e., higher id-numbers in the coordinate sys-
tem used here), then the MFBT tends to be lower than when
the TF is synthesised to the left. This effect is clearly illus-
trated in figure 5. Particularly for high short move length
values there is a clear difference between the two synthesis
sites. For example, when the short move length is 180, then
for the parameters used in the figure the difference between
the MFBTs amounts to nearly a factor of 2.

The underlying cause of the difference appears to be the
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Figure 6: Same as figure 5, but withP = 0 and with an
offset of±100.

presence of 3 further specific binding sites to the right of the
focal site we are interested in. These three additional spe-
cific binding sites are in very close spatial proximity to the
focal site with offsets of 18, 303 and 321 binding sites re-
spectively. One can think of the dynamics as follows: When
a TF binds to one of the 4 binding sites, then it acts as a re-
flecting boundary for random walkers in the area, confining
random walkers within the area of the specific binding sites.
This has the net effect of reducing the MFBT for the random
walkers.

In figure 5 it appears that the longer the sliding distance,
the shorter the MFBT. This is somewhat counter-intuitive.
We would expect that there is an optimum sliding distance,
which allows fast approach of the specific binding site, while
balancing this with the problem of over-shooting the specific
site. Within the short move distances considered in figure 5
such an optimum is not apparent. However, we would ex-
pect that such an optimum short move distance depends on
the distance of the synthesis site from the specific site; the
closer the synthesis site, the shorter the optimal short move
distance. To check this we performed another set of exper-
iments varying the short move distance, but with synthesis
sites located at an offset of±100. Figure 6 shows the results.
It is apparent that there is a clear minumum MFBT for both
offsets, as expected.

Discussion and Conclusion

In this contribution we have presented a model that supports
the efficient simulation of the process of TFs finding their
specific binding sites. One of the problems that we had iden-
tified was that realistic simulations are computationally ex-
tremely demanding. For this reason, modeling of specific
binding site localisation has been restricted to mathemati-
cally tractable but unrealistic models. Here we have made
the first steps towards a computationally feasible implemen-
tation. One of the bottlenecks we have identified is the lo-

calisation of free binding sites on the DNA. By adapting ap-
proaches from dynamic memory allocation we were able to
achieve speedups with respect to a naive algorithm of many
orders of magnitude.

Apart from finding an efficient simulation implementa-
tion, we found that the MFBT depends in a complicated way
on the short move distance, the synthesis site, but also the
local configuration of the binding sites. Our simulations are
a significant extension (although in simulation) to the ana-
lytical results developed by both Murugan and Mirnyet al.
The picture emerging from these simulations is that the situ-
ation is significantly more involved than suggested by these
previous articles. For example: One of the conclusions by
Murugan was that there is an optimal division between ad-
jacent moves and short moves. We could not reproduce this
in our setup. Instead we found that, up to the range we in-
vestigated, short moves are generally faster and more effi-
cient than adjacent moves. We do not mean to imply that
the their conclusions are wrong. However, it is clear that the
conclusions of various models are not robust with respect
to variations of underlying assumptions. This is normally a
worrying sign in modelling.

This suggests that a more thorough investigation of this
system is necessary, in order to come to a clear understand-
ing of how previous mathematical results relate to the simu-
lation results obtained here.
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