
The State Of Play: A Notional Machine for Learning
Programming∗

Michael Berry
School of Computing

University of Kent
Canterbury, Kent, UK
mjrb5@kent.ac.uk

Michael Kölling
School of Computing

University of Kent
Canterbury, Kent, UK
mik@kent.ac.uk

ABSTRACT
Comprehension of programming and programs is known to
be a difficult task for many beginning students, with many
computing courses showing significant drop out and failure
rates. In this paper, we present a new notional machine de-
sign and implementation to help with understanding of pro-
gramming and its dynamics for beginning learners. The no-
tional machine offers an abstraction of the physical machine
designed for comprehension and learning purposes. We in-
troduce the notional machine and a graphical notation for its
representation. We also present Novis, an implementation
of a dynamic real-time visualiser of this notional machine,
integrated into BlueJ.

Categories and Subject Descriptors
H.3.2 [Computers and Education]: Computer and Infor-
mation Science Education; H.5.1 [Information Interfaces
and Presentation]: Multimedia Information Systems—
Animations; I.6.8 [Simulation and Modelling]: Types
of Simulation—Animation, Visual

General Terms
Human Factors

Keywords
Program visualization, novice programming, Novis

1. INTRODUCTION
It is well understood that programming is a fundamental
activity in computer science; it is the process by which con-
ceptual ideas are mapped to instructions that can be un-
derstood and interpreted by a machine. The teaching of
introductory programming within computer science is es-
sential, and mastery of this skill necessary for students to
progress. To be successful in programming, students have

∗This paper expands on a previous short paper, presented
at WiPSCE 2013, Aarhus, Denmark.

ITICSE 2014

to be able to form a valid and consistent mental model of the
machine executing their instructions. Forming such a model
is not easy, and the computing education community has
no agreed, shared abstract model in widespread use. Of-
ten, ad-hoc models are formed by instructors or students,
but these are not guaranteed to be consistent or correct. A
shared, accepted and valid mental model – a notional ma-
chine – would benefit both instructors and students in their
attempts to teach and learn programming.

1.1 Notional Machines
The difficulties of learning to program are well documented;
Kim & Lerch, for example, provide a summary[7]. Many
students fail or drop out of introductory courses, with a fail-
ure rate of 33% reported by Bennedsen and Caspersen not
out of line with many courses around the world[2]. A pop-
ular hypothesis presented by Boulay[3] states that students
find the concepts of programming too hard to grasp, do not
understand the key properties of their program, and do not
know how to control them by writing code. Boulay took this
as a starting point and motivation to formalise the concept
of a notional machine. A notional machine is an abstrac-
tion designed to provide a model to aid in understanding of
a particular language construct or program execution. The
notional machine does not need to accurately reflect the ex-
act properties of the real machine; it presents a higher con-
ceptual level by providing a metaphorical layer above the
real machine (or indeed several such layers) that are hoped
to be easier to comprehend than the real machine.

Some teachers, when presented with the idea of a notional
machine, are initially skeptical, holding the view that stu-
dents need to understand what “really happens” to become
expert programmers. It should be noted that all models held
by almost all programmers are notional, in that they rep-
resent simplifications of the real machine. Even discussions
about assembly language or machine code are almost neces-
sarily abstractions, since hardware optimisations of mod-
ern processors are so complex that they cannot fully be
taken into account when reasoning about program execution
(other than by a small group of highly trained specialists
working on processor design). In addition, details of proces-
sor designs are often trade secrets of the manufacturer – we
cannot actually know what “really happens”.

Therefore a meaningful discussion about notional machines
does not centre around the question whether or not to use
one, but around the most useful level of abstraction to aim

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/30704962?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


for. Whatever the preferred abstraction level, it is important
that the notional machine is complete and consistent: it
must be able to explain all observable behaviour of the real
machine, and reasoning about the notional machine must
allow accurate predictions to be made about behaviour of
the real machine[4].

The design of the notional machine will typically be heavily
influenced by the programming paradigm of the language
used for implementation. In this paper, we discuss a notional
machine for programs written in Java, therefore representing
an object-oriented model.

A notional machine’s metaphorical layer can be presented
in many forms. Visual metaphors are most commonly used
to present state and events that unfold in the actual ma-
chine. Visual representations can be replaced or augmented
by other media, such as sound.

1.2 The status quo
At present, one of the most common techniques for teachers
to explain dynamic elements of object orientation, and the
execution of object-oriented programs, is through the draw-
ing of diagrams of objects and classes, often by hand on a
whiteboard. No consistent, complete and widely accepted
shared notation exists across classrooms, and it is left to
the student to form a mental model based on often ad-hoc
diagrams the teacher may use. UML provides a variety of
standardised notations, but its dynamic diagrams are often
perceived as too complex and therefore are not widely used
in introductory teaching. Students are often confronted with
differing notations to describe the state of a program when
switching between teachers, textbooks or tutorials.

One contribution of this work is to provide a shared model
and notation that can be used by teachers and lecturers, in
textbooks and in discussions. It provides learners with a
consistent, correct and useful representation to support the
formation of a mental model that transfers to a number of
contexts and environments.

The second contribution is Novis, an implementation of this
notional machine in a software system. Novis is integrated
as a new main interface in an experimental version of the
BlueJ environment[8], where it replaces the traditional ob-
ject bench. It uses the notional machine notation to visualise
the execution of a Java program in real time. It can show
the state of a program at selected points in time of the ex-
ecution, or it can animate the execution over a period of
time.

2. RELATED WORK
Several educational software systems are in use in class-
rooms that offer presentations and animations of notional
machines. UUhistle[12] is a software tool that provides an-
imated, live visualisations of the execution of Python pro-
grams. The model employed operates at a fairly low level,
animating single statements to illustrate the functionality of
single constructs, such as assignment or parameter passing.
A related tool, Jeliot[10], operates at a similar conceptual
level to UUhistle using the Java language. Both of these
tools lose their usefulness once the functionality of the ba-
sic programming language constructs is understood by the

learner. The level of abstraction is too low to usefully vi-
sualise larger examples or more complex data structures,
and therefore these tools are often employed for only a few
weeks at the beginning of a learning experience. In contrast,
a goal for our notional machine design is to be able to visu-
alise somewhat larger examples and to be useful to illustrate
or investigate program behaviour even after basic constructs
have been mastered.

Also of interest is JGrasp[5]; an integrated environment pro-
viding several separate visualisations of parts of the system.
Its visualisations operate at a higher level than UUhistle
and Jeliot, with a data structure viewer being of specific in-
terest. This viewer shows objects and their relations in a
layout and representation purpose-built for several known
data structures.

The use and effectiveness of these systems for learning is
still under debate. Although literature regarding algorithm
visualisation effectiveness is readily available, literature on
program visualisation is more scarce. For algorithm visuali-
sations, one meta-study[6] found a high correlation of effec-
tiveness in those studies that actively involved the students.
Similar results have not yet been shown for program visual-
isations. Where literature does exist, it is far from conclu-
sive, with different studies even on the same tool claiming
different results. In one study evaluating Jeliot’s effective-
ness, Moreno and Joy found that on average, the transfer of
knowledge from the tool to the student was not successful[9].
However, a different study (also using Jeliot) claims “a sig-
nificant percentage of students had achieved better results
when they were using a software visualisation tool”[11].

For our own work this means that demonstrating the effec-
tiveness of the tool has yet to be demonstrated in future
work. No convincing prior work exists that allows reliable
conclusions to be drawn about the efficacy of such systems.

3. RESEARCH QUESTIONS
This work supports two distinct and separate use cases: the
comprehension of programming and the comprehension of
programs. The first is most relevant for beginning program-
mers: the goal here is to understand how a computing sys-
tem executes program code, the mechanics and details of a
programming language and the concepts of the underlying
paradigm. Typical questions that the system helps to an-
swer in this case are What does an assignment statement
do? or How does a method call work? For experts who have
mastered the language this aspect is no longer relevant.

The second use case is to understand and investigate a given
program. The goal is to become familiar with a given soft-
ware system, or to debug a program. Typical questions in
this case are Why does my program behave like this? or How
many objects are being created when I invoke this method?
This part of the functionality remains relevant even for sea-
soned programmers.

These use cases lead us to the main aims of the model:

Aim 1 : To provide a shared notation for representing the
execution of an object-oriented program within the
proposed model.



Aim 2 : To provide a valid mental model for learning and
reasoning about object-oriented programming.

Aim 3 : To provide a basis for an implementation in soft-
ware that can be used to provide a visualisation of the
model alongside a running object-oriented program.

These aims further lead us to the two principle research
questions:

Research question 1 : What should the notation for a
high level, consistent model of a notional machine, de-
veloped to aid novices in learning to program look like?

Research question 2 : Can a software tool be created
that dynamically visualises the execution of typical be-
ginners’ programs using this notional machine notation
in a way that is manageable and useful?

For the purpose of RQ1, we define consistent to mean that
valid reasoning within that model must correctly predict the
behaviour of the underlying system. Our targeted problem
space covers Java programs of a complexity up to first year
university programming problems. Thus, we can explicitly
exclude some constructs from our model, if we postulate
that they are outside our targeted problem space. This is
discussed in more detail below (section 4).

This paper presents the design of the notional machine and
does not include an evaluation of its effectiveness for learning
or teaching. This will be presented separately in a later
paper.

4. PROBLEM SPACE
Our notional machine is aimed at first year programming
students and therefore focuses on material typically covered
within that year. While the model and software system may
well remain useful for tasks in later years, where a conflict
between scope and simplicity emerges, simplicity will take
precedence for constructs not typically discussed in intro-
ductory programming courses.

For a more systematic definition of the problem space, we
look at programming examples and projects covered in some
popular introductory textbooks. A small number of the
most popular introductory Java textbooks (including Ob-
jects First With Java[1], a book frequently used when teach-
ing with BlueJ) are used to set the scope against which com-
pleteness is defined. The notional machine should be able
to model and visualise all examples from these books.

4.1 Abstractions
Tying the scope of the notional machine to first year pro-
gramming examples places implicit bounds on the abstrac-
tions that should be shown in the notional machine. Many
advanced concepts, such as explicit concurrency and syn-
chronisation, packages, class loading and annotation pro-
cessing can be excluded from the scope – these are rarely
covered in first year programming courses. In addition, we
do not aim to illustrate abstractions at the very low level.
Simple statements, such as assignments or if-statements, are

Figure 1: Representation of an object with two
fields.

not represented in the model – the most atomic “step” in the
model is defined as a single method execution, and the model
focusses on object interaction and method calls. Students
typically do not have long term trouble in understanding
basic syntax and the behaviour of these simple statements,
therefore a visualisation of these would not remain helpful
in the longer term.

The abstractions used for presentation of the notional ma-
chine centre around objects and classes, and their interac-
tions. Objects and classes are represented with their current
state. The state visualised includes both the state of objects
and classes at a given point in time, including primitive fields
and object references, and the state of any execution cur-
rently in progress, visualising the current locus of execution
as well as the path of invocation (traditionally shown as a
stack trace).

5. NOTIONAL MACHINE NOTATION
The notation for the notional machine is designed to be us-
able in various different media and formats, including line
drawings (possibly produced using drawing software), hand
drawings on paper (see Figure 1) or a whiteboard, or gener-
ated automatically with a software tool (discussed in more
detail below).

Some elements of the notation, such as fill colour, are defined
but optional and mostly relevant to automatically generated
versions of the notional machine diagrams. Hand drawn
versions of the diagram are still be readable without the
optional elements.

5.1 Notation details
5.1.1 Objects

Objects are represented by rectangles with rounded corners.
The object is labelled with its type. The type displayed is
the dynamic type, not the type of any declared variable. If
fill colours are used, objects are red (Figure 2). Objects do
not have unique identifiers, as in some other object visuali-
sation systems. Assigning unique identifiers may sometimes
help to talk about the objects, but leads to misconceptions
that should be avoided.

A field of an object is presented as a box with a label to its
left. The box is white (if colours are used), and it contains
the field’s value. An object representation contains a list of
all its fields. If the value of the field is a primitive or a string,
it is displayed in its textual form within the representation of



Figure 2: Representation of object references.

Figure 3: This shows the simplified view – where
fields are not of direct interest, they can be omitted
as in this example.

the field. Only instance fields are shown on the object; static
fields are displayed on the class instead (see section 5.1.4).

5.1.2 References
If the value of a field is a reference to another object then
it is displayed as an arrow originating from the field and
pointing to the object that it references (Figure 2).

Strings are treated as a special case. While strings are ob-
jects in Java, they are displayed using a literal representa-
tion (the characters of the string in double quotes, written
directly into the field). The immutability of string objects
ensures that this representation does not lead to inconsistent
or invalid conclusions, and this representation significantly
simplifies many examples. This exception only applies to
strings; all other objects must be represented in their full
form via an arrow.

5.1.3 Simplified view
Often the relationships between objects, the object graph, is
the sole point of interest. For this case a simplified notation
of an object may be used. In this notation fields are omitted
and references are drawn originating from the centre of the
referring object (Figure 3). Primitive field values are not
shown in the simplified view.

Figure 4: An active method call chain with object
parameters.

5.1.4 Classes
Classes are represented as rectangles with hard (not rounded)
corners (Figure 2). The class is labelled with its name and
static members are displayed in the class icon. If colours are
used classes have a light brown sand colour.

The display of static fields in the class is similar to that of in-
stance fields in objects – primitives and strings are displayed
inline, object references are displayed with arrows.

5.1.5 Method calls
In addition to the state of objects and classes the notional
machine diagram can also show the state of a currently ac-
tive execution. While the notation described so far repre-
sents a classic heap diagram, the execution state at any given
point in time is most often depicted as a separate diagram,
showing a call stack. In our notation, the execution state is
overlayed over the same diagram.

An active method call is depicted as an orange (if coloured),
oval-shaped label attached to the bottom right of the object
that it is called on (Figure 4). The label remains visible as
long as the method is active. If this method calls further
methods, those are displayed as well, linked by a call chain
arrow. In colour representations, the call chain arrow is
green. Further method labels may appear attached to the
same object or other objects, depending on the receiver of
the method call.

The call chain arrow (or, in talking about a notional machine
diagram, usually just ”call chain”) depicts the complete cur-
rent sequence of open method calls, their dependencies and
order. When using this notation on a whiteboard, the call
chain is often extended to show nested method calls, and
wiped out again to illustrate the completion of a method
invocation.

Method labels include the list of actual parameters. For
primitives and strings, the parameter value is shown as a



Figure 5: The Novis notional machine visualiser
with a simple example.

literal; for object parameters, a reference to the object is
shown originating from the parameter list (see getNames
method, Figure 4). References from local variables may be
shown originating from the method label, below the method
name (see getFirstName method, Figure 4).

6. SOFTWARE VISUALISATION
Novis, a visualisation creating automatic and animated ver-
sions of notional machine diagrams as described here, has
been created and integrated into BlueJ’s main interface.
This implementation can present static notional machine di-
agrams at selected stages of program execution, or animate
ongoing execution in real time.

6.1 Static display
Novis depicts the static view of classes and their references
between them as described in section 5.1 (Figure 5). Ob-
jects in the diagram are placed automatically when they are
created but can be moved by the user; clicking on the ob-
ject toggles between its simplified and detailed state. The
reference arrows are placed and updated automatically by
the software.

6.2 Object creation and destruction
When an object is created the software searches for an ap-
propriate space in the diagram and “pops” the object into
that space (with a short animation) before executing its con-
structor. The object is initially grey in colour to indicate
that it has not been fully instantiated, and then switches
to its default red colour on the constructor’s completion.
User generated objects (created interactively from the class,
as was always possible in BlueJ) are removed manually by
the user; objects created in code are removed from the di-
agram whenever they become eligible for garbage collection
(not when they are actually collected). In both cases, the
objects disappear with a brief “puff of smoke” animation.

Figure 6: Novis displaying a method call chain.

6.3 Execution
Methods can be interactively invoked on any object in the
traditional BlueJ-style, by right clicking the object and se-
lecting the method from the resulting context menu. A fol-
lowing chain of method calls is then depicted as described
in section 5.1.5. As methods are called, the method call la-
bels appear in the animation, drawing the attention of the
viewer. The call chain arrow is animated – it extends from
its origin to its destination. Parameter values are depicted
in a moving animation, following the call chain arrow from
the caller to the invoked method (Figure 6).

6.4 Speed and stepping granularity
The notional machine viewer includes a slider to control the
speed of the animation. At its maximum setting, no delay
is added and the program executes at the maximum speed
possible with the current choice of animation detail (see sec-
tion 6.5, below). At the slowest, a two-second pause is added
between each step of the program. The interim levels have
pauses that scale linearly between these two values. A“step”
of the program in our context is a method call or a method
return – single statement executions are not visualised.

6.5 Level of detail
A second slider in the interface controls the level of detail
displayed in the diagram. With full detail visible, the ani-
mation performs as described above: objects are shown in
detailed view with their fields visible, object creation and
destruction are animated, and method calls are dynamically
visualised with call chain arrows slowly extending, parame-
ter values passed visually from one method to another, and
return values moving the other way at the end of a method
execution as the call chain arrow retracts.

This level of detail is useful in early stages of learning, when
the focus of the learner is on understanding basics of ob-
ject interaction and method calls, when examples are small
and execution chains short. In later examples, this level of
detail becomes a hindrance, illustrating concepts that have
already been understood and obscuring information about
the program under investigation.



Figure 7: Heatmap view illustrating program activ-
ity.

At that stage, the level of detail displayed can be reduced.
The visualisation offers seven levels of detail display, gradu-
ally reducing or omitting various animations and display el-
ements as the setting is decreased. The lower-detail settings
show objects in their simplified view by default, resulting at
the extreme end in a “heatmap” view that focuses on object
creation, desctruction and activity levels (see section 6.6).

The two sliders – speed and detail – can be linked in the
user interface to allow both to be adjusted in a single in-
terface gesture. When linked, they are inversely related:
the higher the speed, the less detail is displayed. The linked
states represent commonly useful settings when viewing typ-
ical examples.

User control over speed and animation detail ensures that
our notional machine visualisation addresses a broad range
of use cases and remains relevant after the first few weeks of
programming instruction. While some settings support the
understanding of basic constructs (such as object references
and method calls), others allow the investigation of specific
data structures and their associated algorithms, the study
of specific programs, or specialised debugging tasks.

6.6 Heatmap
At the lowest level of detail Novis’s display turns into a
heatmap (Figure 7). Objects are shown in a compact no-
tation using just enough space to display their type, and
colour is used to indicate activity. Method calls are not
textually displayed; instead, objects “warm up” as methods
are invoked, first turning a lighter purple, then red, then
yellow with increased activity. All objects cool down grad-
ually when not being active, so that the most recent active
objects are easily recognisable. This notation – depicting
object creation and destruction, as well as hotspots of activ-
ity – provides a quick high level overview of programs with
ongoing activity.

7. STATUS AND FUTURE WORK
A prototype implementation of BlueJ with Novis integrated
to replace the object bench has been completed, and is cur-

rently available for testing and evaluation purposes. The
system has been tested with a small number of users with
promising results, but no formal user studies have yet been
completed.

Work in the near future will concentrate on further testing of
usability and effeciveness with first year students, including
studies to evaluate effects on program comprehension. The
results from these studies will then be used to refine the
interface and functionality of the model and corresponding
implementation.

8. ACKNOWLEDGEMENTS
We wish to thank Michael Caspersen for many discussions
about notional machines and their potential uses in pro-
gramming education. His ideas were instrumental in start-
ing and shaping this project.

9. REFERENCES
[1] David J Barnes and Michael Kölling. Objects first with

Java: a practical introduction using BlueJ. Pearson,
Boston, 2012.

[2] Jens Bennedsen and Michael E. Caspersen. Failure
rates in introductory programming. SIGCSE Bull.,
39(2):32–36, June 2007.

[3] Du Boulay. Some difficulties of learning to program.
Journal of Educational Computing Research, 2:57–73,
1986.

[4] Michael Edelgaard Caspersen. Educating Novices in
The Skills of Programming. DAIMI PhD Dissertation.
Department of Computer Science, 2007.

[5] T. Dean Hendrix and James H. Cross II. jGRASP: an
integrated development environment with
visualizations for teaching java in CS1, CS2, and
beyond. J. Comput. Sci. Coll., 23(2):170–172,
December 2007.

[6] Christopher Hundhausen, Sarah A. Douglas, and
John T Stasko. A meta-study of algorithm
visualization effectiveness. Journal of Visual
Languages & Computing, 13(3):259–290, June 2002.

[7] Jinwoo Kim and F. Javier Lerch. Why is programming
(sometimes) so difficult? programming as scientific
discovery in multiple problem spaces. Information
Systems Research, 8(1):25 –50, March 1997.

[8] Michael Kölling, Bruce Quig, Andrew Patterson, and
John Rosenberg. The BlueJ system and its pedagogy.
Computer Science Education, 13:249–268, December
2003.

[9] Andrés Moreno and Mike S. Joy. Jeliot 3 in a
demanding educational setting. Electronic Notes in
Theoretical Computer Science, 178(0):51–59, July
2007.

[10] Andrés Moreno, Niko Myller, Erkki Sutinen, and
Mordechai Ben-Ari. Visualizing programs with Jeliot
3. page 373. ACM Press, 2004.

[11] Sanja Maravic Cisar, Dragica Radosav, Robert Pinter,
and Petar Cisar. Effectiveness of Program
Visualization in Learning Java: a Case Study with
Jeliot 3. International Journal of Computers
Communications & Control, 6, 2011.

[12] Juha Sorva and Teemu Sirkiä. UUhistle. pages 49–54.
ACM Press, 2010.


