
The Trusted Attribute Aggregation Service (TAAS)

Providing an attribute aggregation layer for federated identity management

David W Chadwick

School of Computing

University of Kent

Canterbury, UK

d.w.chadwick@kent.ac.uk

George Inman

School of Computing

University of Kent

Canterbury, UK

gli3@kent.ac.uk

Abstract— We describe a web based federated identity

management system loosely based on the user centric

Windows CardSpace model. Unlike CardSpace that relies on

a fat desktop client (the identity selector) in which the user

can only select a single card per session, our model uses a

standard web browser with a simple plugin that connects to

a trusted attribute aggregation web service (TAAS). TAAS

supports the aggregation of attributes from multiple identity

providers (IdPs) and allows the user to select multiple single

attribute “cards” in a session, which more accurately reflects

real life in which users may present several plastic cards and

self-asserted attributes in a single session. Privacy

protection, user consent, and ease of use are critical success

factors. Consequently TAAS does not know who the user is,

the user consents by selecting the attributes she wants to

release, and she only needs to authenticate to a single IdP

even though attributes may be aggregated from multiple

IdPs. The system does not limit the authentication

mechanisms that can be used, and it protects the user from

phishing attacks by malicious SPs.

Keywords-attribute aggregation, identity management

I. INTRODUCTION

A user’s digital identity can be stated as the set of
attributes used to represent the user within a specific
context. In the standard model for federated identity
management systems (FIMS), such as Shibboleth [2] or
Liberty Alliance [11], the context is the federation or circle
of trust and the attributes are taken from the authentication
and attribute assertions (or claims) released by the user’s
identity provider (IdP) to the service provider (SP). FIMS
were often built under the assumption that a user would
use a single institutional or corporate IdP for accessing
each SP in the federation. As FIMS mature the size and
scope of them become increasingly large e.g. in 2013 the
UK Access Management federation had 940 members [3].
It is increasingly likely that a user will have several
accounts at different IdPs within these federations.
Furthermore, as the authorisation requirements of SPs
become more complex, it is increasingly unlikely that one
IdP can provide the full set of attributes that an SP
requires. Consider purchasing a car parking permit online
from a local council. The user may need to provide the
following authorisation attributes:

- Proof of name and address, i.e. that they live in
the local area

- Proof that they have a car
- Proof that they have a credit card to pay the fee.
These attributes will typically be asserted by different

IdPs. In the UK, these are most likely to be: the

Department of Works and Pensions, the Driver Vehicle
Licensing Authority and a bank respectively.

Although the Information Card/Windows CardSpace
model is no longer supported by Microsoft, nevertheless it
had some excellent features in terms of identity
management, usability and security. A good high level
overview of CardSpace can be found in [1]. It assumed
that a user has accounts at different IdPs, and that each IdP
will issue claims containing different lists of her attributes.
Each information card is a representation of a partial
identity of a person’s online digital identity and the full set
of cards is a representation of the user’s entire digital
identity. Information cards can either be self-asserted or
IdP asserted. From a usability perspective InfoCards
provide a metaphor that is familiar to users and is
reminiscent of the plastic cards that everyone carries
around today in their wallets. From a security perspective,
conventional phishing attacks are thwarted, since the user’s
identity selector redirects the browser to the genuine IdP,
rather than a malicious SP redirecting the browser to a
false IdP. Consequently we have kept these features.

However, CardSpace had some significant flaws. The
WS-Trust exchanges [13] require the user to provide her
authentication credentials to the Identity Selector. This
severely limits the types of authentication method that can
be utilised by the IdPs. CardSpace also made the same two
fundamental mistakes as other FIM models by assuming
that (a) the user need only select a single IdP (or card) in a
session, and (b) this IdP will issue all the user’s attributes
that are needed for this SP. Contrast this to plastic cards,
where users typically have lots of them issued by different
IdPs, and each card typically holds only one (or very few)
user attribute(s), i.e. the attribute the IdP is authoritative
for, along with supporting information such as: the name
of the user, the validity period of the card, a unique card
identifier, a mechanism to authenticate the user (usually a
signature or PIN, but could be a photograph as well), and
details of the card issuer. Other contents such as holograms
and chips are there to ensure the authenticity of the card
and to stop forgeries. They do not provide additional
attributes of the user. It is therefore not uncommon today
for a user to provide several cards in a single transaction,
along with self-asserted information. Thus as FIMS
expand to Internet scale, users will need to aggregate their
attributes or claims from multiple IdPs, as well as provide
some self-asserted attributes. This is what TAAS provides.

The use of multiple IdPs has several advantages to
users and SPs. A single IdP is no longer required to issue
all of a user’s attributes, which is an unrealistic assumption
to make. Legal constraints and liabilities will make it very
difficult for any IdP to make claims about a user’s

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/30704579?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

attributes for which it is not authoritative. For example, a
credit card issuer would never make assertions about a
user’s driving ability, nor would a driver licensing centre
make claims about credit worthiness. Rather each IdP will
assert the attribute(s) for which it is authoritative and
willing to bear the risk. This means that a user will need to
pick from multiple IdPs the subset of their attributes that
they wish to present to a SP, rather than passing their entire
(sub)set in a single card issued by a single IdP. However
this presents severe difficulties to today’s IdPs, since no
single IdP knows all the other IdPs at which a user has
accounts, and users will probably want to keep it this way.

We have already published details about our privacy-
preserving Linking Service for attribute aggregation [4],
which allows users to perform a single login and then
aggregate additional attributes from other linked IdPs
based on a pre-set policy. A summary of the user trials can
be read in [6]. This revealed that users want to dynamically
choose which attributes from a specific IdP should be
asserted and which shouldn’t. This is what TAAS
provides. So the contributions of this paper are: the
description of a conceptual model for a privacy preserving
dynamic trusted attribute aggregation service, and its
implementation, which provides users will full fine grained
control over the release of their attributes, both self-
asserted and IdP asserted, without it knowing the identity
of the user, which allows any authentication method to be
used, prevents phishing attacks, and uses standard
protocols and standard web browsers with a small plugin.

This rest of this paper is structured as follows. Section
2 describes the conceptual model. Section 3 describes our
implementation using standard protocols. Section 4
concludes and says where further work is still needed.

II. CONCEPTUAL MODEL

Today’s federations use a layered communications
approach in which each layer utilises the services of the
lower layer to provide additional value to the application
layer. The bottom layer is the TCP/IP connectivity layer
which provides end to end synchronous connections
between two parties. The client server layer builds on this
to provide user authentication between the user client and
the server (an IdP). The federation layer builds on top of
the client server layer to provide authentication between
two previously unknown parties (the client and the SP).
Our model proposes an additional layer on top of this, the
attribute aggregation layer. This contains an attribute
aggregator that is responsible for aggregating a user’s self-
asserted attributes with assertions from multiple IdPs,
before presenting the combined set of attributes to the SP.

This model assumes that the user is the only person
who knows about all her IdP accounts, and that she does
not wish the other IdPs to know this information. We
assume that some IdPs have pre-existing trust relationships
with other IdPs and SPs but not that universal trust
relationships exist between all entities. We do however
require that an SP trusts all the IdPs that it receives
attribute assertions (claims) from, and that the SP, the user
and the IdPs trust our new attribute aggregation web
service (called the Trusted Attribute Aggregation Service -
TAAS) to confidentially hold the user’s set of aggregated
IdP accounts. The purpose of TAAS then, is to hold, in a
privacy preserving way, the links to, and the attribute types

held by, the user’s different IdPs, as well as the user’s self-
asserted attributes. TAAS acts as the user’s identity
selector eliminating the need for a fat client on the user’s
desktop. As the IdPs link to TAAS they have no
knowledge of any of the user’s other IdP accounts. TAAS
knows that some user has a set of linked IdP accounts, but
it does not have any specific knowledge of who the user is,
or the values of the attributes that are stored in each
individual IdP account, apart from the user’s self-asserted
attributes. When linking an IdP account to TAAS the IdP
releases only the types/names of the attributes and not the
actual attribute values. Only the SP receives the attribute
values, digitally signed and encrypted by their originating
IdPs, as a result of attribute aggregation during the service
provisioning phase.

The attribute aggregation protocol requires an IdP to
release a user’s attributes to the SP when TAAS requests
it, without the user authenticating to the IdP.
Consequently, TAAS needs to assure itself that the
initiator of the current session is the IdP account holder
and not an imposter. We solve this, along with the privacy
requirement that TAAS does not know the identity of the
user, by requiring the user to directly authenticate to each
IdP during the linking phase, and for the IdP to provide a
shared secret to TAAS which can subsequently be used to
identify the user in future attribute aggregation sessions.

A. Link Registration

IdP accounts may be linked and configured at TAAS
either before or during the service provisioning phase.
Accounts are linked by the user authenticating to several
IdPs in the same session. A user’s initial TAAS account is
created by navigating to TAAS, which acts as a
conventional SP, and logging in using any IdP that has a
trust relationship with TAAS. TAAS forwards the user to
the IdP’s authentication endpoint, which presents the user
with an authentication dialog, allowing the user to
authenticate with her credentials. After authentication, the
IdP should ask the user which attribute types and values
she wants to make available to TAAS for subsequent
aggregation in service sessions. The IdP is then able to
generate an attribute assertion for TAAS containing the
user's chosen subset of her attribute types/names that the
IdP is able to issue for the user. If the user selects a multi-
valued attribute then the IdP should return both a
type/name and pseudo-values to allow TAAS to refer to
individual values during the selection phase, without
TAAS learning the actual values. If no attribute assertion is
returned it is assumed that the IdP will only be available
for authentication and will not release any attributes for
aggregation. Each attribute (pseudo-value) contained in the
assertion will subsequently be displayed to the user as a
separate card for selection during service provisioning.

The login request from TAAS to the IdP requests an
authentication token containing a randomly generated but
persistent identifier (PId) for the user. This PId will be
stored by TAAS and subsequently used as a pair-wise
secret between TAAS and the IdP in order to identify the
user’s account in all future communications between the
two parties.

When TAAS receives a new (previously unknown) PId
at login time, it creates a new entry for the user in its
internal database. When TAAS receives an existing PId at

login time, it retrieves the user’s existing entry from its
database and updates it to reflect the current set of
attributes. For each linked IdP, TAAS stores: the PId of the
user at this IdP, the set of attribute types/names and pseudo
values that can be released by this IdP, and the level of
assurance (see below). If the user wishes to link additional
IdP accounts to her existing TAAS entry then she
authenticates to another IdP and TAAS requests another
set of information which it adds to the same user entry.

B. Level of Assurance

Different IdPs authenticate users in different ways and
to different strengths. This is termed the Level of
Assurance (LoA) [5]. It can be loosely thought of as how
sure a relying party can be that the user is really who they
say they are. This depends not only on the authentication
method – which we term the Authentication LoA – but
also on the initial vetting and registration process that the
user underwent – which we term the Registration LoA.
NIST [5] classifies a user’s LoA at four levels, with level 4
being the strongest and level 1 being the weakest. A
limitation of the NIST recommendation is that its LoA is a
compound metric dependent on both the authentication
method and the registration process. We believe that they
are more useful if they are separate metrics, since IdPs
may offer different authentication methods and a static
registration procedure, or may alter the registration
procedure that is used with the same authentication
method. Thus we introduce a dynamically calculated
Session LoA into the TAAS protocol. An IdP should set
the Session LoA to the value of the Authentication LoA
for the authentication method used by the user for this
session, but with one proviso. No Session LoA can be
higher than the Registration LoA used by the IdP when the
user last registered with it.

When the user first registers with TAAS, the incoming
Session LoA is stored as the user’s Registration LoA with
TAAS. During the service provision phase TAAS will
only use linked IdPs whose Registration LoA’s are higher
than or equal to the current Session LoA, determined by
the authenticating IdP. This prevents the user from creating
links with low Registration LoAs and using them at higher
Session LoA’s, since this may give an escalation of
privileges. A user can create links at high Registration
LoAs and use them at lower Session LoAs, since this is not
a security risk.

When a linked IdP receives a service request for
attributes from TAAS, it extracts the Session LoA from the
authentication assertion and compares this to its local
Registration LoA. If the Session LoA is less than or equal
to the latter then the IdP will release additional attributes to
the SP (via TAAS), otherwise if the Session LoA is higher
than the Registration LoA then the IdP will not release any
attributes to the SP.

C. Service Provision Phase

We introduce a thin client - the TAAS discovery plugin
- for the user’s browser. This plugin is activated when
TAAS login is requested by a SP. It is used to discover the
user’s TAAS, redirect the user to this TAAS and return the
multiple IdP assertions from TAAS to the SP. When a user
navigates to a TAAS enabled SP’s restricted page it should
explain that user login is required and should describe its
security policy, in terms of which attributes are needed to

Figure 1. TAAS Protocol Flow

access the protected content, and how strong the
authentication should be. This makes the user aware of
what is required, providing greater transparency than with
many of today’s federated IdPs. It allows the user to decide
which TAAS and linked IdPs to use and consent to
providing the necessary attributes.

The SP’s page should contain a TAAS icon (or other
button) for the user to select, which has an embedded
MIME object containing the SP’s security policy (see
below). When the browser attempts to process this
embedded object it triggers the TAAS discovery plugin
registered as the MIME handler. The plugin displays the
TAAS discovery screen which allows the user to choose
her preferred TAAS, thus thwarting phishing attacks since
a malicious SP is not able to redirect the user to a TAAS of
its own choosing. The URL(s) of the user’s preferred
TAAS(s) can be added to the plugin in two ways. The user
can bookmark a site as a TAAS by saving its home page
URL in a bespoke bookmark folder accessible by the
plugin. Alternatively the user can dynamically add a new
TAAS when the plugin is invoked by entering its URL
directly into the plugin. This allows users to utilize TAAS
from any device without having to pre-store bookmarks of
their preferred TAAS(s) beforehand. Thus our system can
be used on any public or Internet café computer without
releasing personal information to other users.

When the user has selected her TAAS the plugin
establishes a TLS connection with TAAS to protect all
future communications between the browser and TAAS.
The plugin constructs a HTTP POST message containing
the SP’s security policy for the protected resource and
redirects the user to the TAAS URL. The receipt of the
SP’s security policy is treated as a service provision
request for the required attributes to be aggregated and
delivered to the SP. TAAS parses the security policy and
extracts the set(s) of attributes and their associated issuers.

If the user has already established a prior session with
TAAS from this browser, the browser’s cache may contain
a valid TAAS cookie containing the user’s account
identifier at TAAS, and a valid single sign on (SSO)
cookie that may allow TAAS to authenticate the user
transparently with the IdP. If not, TAAS will not be able
to access the user’s account and will need to discover one
of the user’s IdPs e.g. by using a Where Are You From
(WAYF) service to display the list of all the IdPs that it has
trust relationships with. The user chooses one of these IdPs
and is redirected there for authentication. TAAS asks the

Service

Provider

DWP IdP

DVLA

IdP

Credit Card

IdP

3.

Self

Asserted

Idp

4. 6.

8. 9.

8.

9.

TAAS Discovery

IdP to generate an authentication assertion, containing a
randomly generated transient identifier, which acts as an
SSO token valid at any entity that trusts this IdP, and a
“referral” assertion containing the pre-linked PId which
points to the user’s account at TAAS. The user logs in to
the IdP, and the IDP returns both assertions to TAAS.

TAAS is now able to access the user’s account and
display the set of “cards” that match the SP’s policy. Each
card icon represents one part of the SP’s security policy.
Multiple sets of cards will be displayed if the SP provides
several alternative policies (see later). Cards are marked as
either required or optional, depending upon the SP’s
policy. All required cards must be selected before
aggregation can take place. We envision the optional cards
will represent self-asserted attributes required by the SP for
communication or marketing purposes rather than
authorization. The user clicks on the card icon and this
displays an attribute selection overlay containing all the
user’s previously linked attributes that match this part of
the SP’s policy. Each attribute is shown as a card with its
name, issuer and pseudo-value (as provided to TAAS by
the IdP) and the user chooses the attribute/card she wishes
to send to the SP. For example, if the SP required a credit
card from a bank, when the user clicks on the card icon,
the overlay will display each credit card type from each
bank that the user had previously linked with TAAS,
allowing the user to dynamically choose her preferred
credit card attribute for this transaction.

If no previously linked attributes match the SP’s
security policy, then when the user clicks on the card icon,
TAAS asks the user to dynamically link a new IdP account
to her existing TAAS account. If the user agrees, a new
discovery/WAYF screen is shown that only displays those
IdPs that are trusted by the SP to issue the required
attribute. Once the user has authenticated to one of these
IdPs, the new IdP account details are added to the user’s
existing TAAS entry, before the attribute selection card
overlay is reshown to the user. The user is now able to see
the newly linked attribute and select it, in order to fulfill
this part of the SP’s security policy. This allows users to
dynamically link all their needed attributes during the
service provisioning phase without any prior setup.

The user selects an attribute by double clicking on its
card and the overlay is removed. The card icon is now
shown with a large green tick on it. Once all the cards have
been ticked the user can choose one of three options:
1. Click the Submit button, in which case the selected
attributes will be aggregated from the IdPs and sent to the
SP (but the selections will not be remembered).
2. Click the Save and Submit button, in which case the
selected attributes will be remembered in TAAS’s database
before aggregation commences. In this case, if the user
attempts to access the same resource at the same SP again,
the last set of selected attributes will be pre-selected and
the card icons displayed with large green ticks.
3. Click the “Don’t Bother Me Again” tickbox and then
click the Save and Submit button. This stores the selected
attributes along with a flag, before aggregation
commences. If the user accesses the same resource at the
same SP again, TAAS will transparently aggregate the
same set of attributes again, without showing the attribute
selection page to the user. This equates to the “one-click”
functionality of Amazon.

After the user clicks one of the submit buttons, TAAS
will query each of the chosen IdPs for the user’s attributes,
as well as its database for any pre-stored self-asserted
attributes. An IdP query comprises: an attribute query
requesting a subset of the SP’s requested attributes (as
chosen by the user), an encrypted referral pointing to the
user’s account at the IdP and the original authentication
assertion. The recipient IdP uses the authentication
assertion to determine whether it trusts the initial act of
authentication by the authenticating IdP. If the
authenticating IdP is not trusted then the recipient IdP
should return an error to TAAS. If the IdP does trust the
authenticating IdP then it generates an attribute assertion
containing the user’s attributes and encrypts this assertion
to the SP (which it must also trust to privacy protect the
user’s attributes). The user is identified in this attribute
assertion with the random transient identifier from the
authentication assertion, so that all the assertions from all
the IdPs will contain the same user identifier. The attribute
assertion is returned to TAAS, which stores it until all the
queried IdPs have replied.

Self-issued attributes are stored in TAAS’s database by
the user selecting the Manage My Personal Details tab at
any time. This allows the user to add any identity attribute
types and values that she wishes, whether fictitious or not.
Since they are self-issued TAAS does not care what the
contents are. When a self-issued attribute is selected by the
user to fulfil an SP’s policy, TAAS creates a new attribute
assertion encrypted to the requesting SP with TAAS as the
issuer. This newly created assertion can then be added to
the set of attribute assertions collected from the IdPs.

Once all the attribute assertions have been collected by
TAAS it generates a POST response to the endpoint
specified in the SP’s security policy, which the browser
uses to redirect it to the SP. This response contains the
authentication assertion, its own encrypted attribute
assertion (for self-asserted attributes) and each of the
encrypted attribute assertions returned from the IdPs.
Consequently the SP receives a set of assertions containing
a single authentication token and multiple attribute
assertions which all contain the same random transient
identifier. Since the SP trusts all the authoritative sources
and TAAS, and can verify that they have all issued the
assertions from their signatures, it can be assured that the
same user possesses all of the returned attributes, and has
been successfully authenticated.

D. Service Provider’s Security Policy

The SP’s security policy is an XML structure stored
within a MIME object. Conceptually this structure offers a
similar request structure to a SAMLv2 Attribute Request
message but it has been expanded to encompass requesting
attributes from multiple IdPs. Conceptually this policy
consists of four pieces of information:
• The identifier of the SP and its associated public key
with which authentication and attribute claims can be
encrypted.
• The endpoint to which claims for the protected
resource should be submitted.
• A list of IdPs which the SP trusts to authenticate the
user and their minimum acceptable Authentication LoAs.
• Its authorisation policy, consisting of one or more
attribute sets each of which describe a collection of

attributes. An attribute comprises the type/name of the
attribute and a list of all the IdPs that the SP trusts to issue
values for it.
Authorisation policies are specified in either conjunctive
normal form (CNF) or disjunctive normal form (DNF):
• In CNF each attribute set consists of one of more
attributes of which exactly one attribute must be chosen.
The chosen attributes are then combined together to form
the complete set required to access the protected resource.
An example of this is the car parking permit policy
described in the Introduction.
• In DNF all the attributes in a single attribute set must
be provided to access the protected resource at the SP, but
multiple alternative sets can be defined. An example of this
is: to download a paper from an online journal, a user may
provide either a credit card attribute from a bank, or a
current journal membership number, or a proof of faculty
membership from a university.

CNF policies allow the SP to specify groups of similar
attributes that are equivalent, whereas DNF policies allow
completely different alternative sets of attributes to be
specified. The SP’s policy allows TAAS to transparently
filter out untrusted IdPs from the aggregation process and
ensures that only those attributes that fulfil the SP’s
authorisation requirements will be aggregated.

III. IMPLEMENTATION

Our conceptual model has been implemented using the
Security Assertions Markup Language (SAML) v2
protocol and customised HTTPS POST messages for
interactions between the SP and TAAS. We use the SAML
Identity Assurance profile [7] to pass the Session LoA
between components.

A. Link Registration Protocol

TAAS is assumed to have received the SAML
metadata [12] of the IdPs it trusts prior to user linking. It
uses these to determine the SAMLv2 authentication
endpoints, and to construct standard SAMLv2
<samlp:AuthnRequest> messages to these endpoints. This
message requests that a PId be returned as the Subject of
the <samlp:Response>. It uses the AttributeConsumer
Index attribute to specify that all available attributes should
be returned in the response. To ensure that the IdP always
returns a PId:
• the Format attribute of the <NameIDPolicy> is set to
“urn:oasis:names:tc:SAML:2.0:nameid-format:persistent”,
• the allowCreate attribute of the <NameIDPolicy> is
set to true, which allows the IdP to create a PId if none
already exists.

In response, the IdP constructs a <samlp:Response>
message containing a single authentication assertion
consisting of two statements, an Authentication statement
element and an Attribute statement element. The
Authentication statement describes the actual act of
authentication performed at the IdP and the attribute
statement contains the set of SAML attribute types/names
that can be aggregated from this IdP.

B. Service Provision Protocols

The protocol mappings for attribute aggregation use a
combination of existing SAMLv2 protocols and HTTPS
POST operations. The former is used between TAAS and

the IdPs and the latter between the SP and TAAS via the
browser. The SAML protocols encode referrals as Liberty
Alliance ID-WSF Endpoint References (EPRs) according
to the EPR generation rules defined in Section 4.2 of [8].
The EPR’s <sec:Token> element contains a SAMLv2
bearer assertion with the encrypted PId of the user as the
assertion’s Subject element. This allows the recipient to
determine which subject is being referred to.

C. SP to TAAS interactions

When the user clicks on the TAAS icon, the browser
detects the presence of a specific embedded MIME object
in the HTML page and activates the TAAS discovery
browser plugin. The plugin allows the user to choose her
preferred TAAS and it constructs a new HTTP POST
message to the chosen TAAS page. This POST message
contains the SP’s security policy embedded in the MIME
type as a POST parameter named spPolicy. TAAS parses
the XML security policy and, if the user is not already
logged in, uses it to display a WAYF page that matches the
SP’s authentication requirements.

Once attribute aggregation is complete TAAS has a
single SAML authentication assertion and zero or more
SAML attribute assertions to relay to the SP. These
attribute assertions are all signed by their issuers and
encrypted to the SP. When the user presses a submit
button, TAAS creates a new SAMLv2 Assertion, with a
single attribute statement containing each of the
aggregated assertions as separate attribute values. This
assertion is signed by TAAS and returned to the SP’s
endpoint defined in its security policy, using a TLS
encrypted HTTP POST message that requests the browser
to return control to the SP. The SP can decrypt the
message to access the attributes and authentication details
and authorise the user.

D. User Authenticating to an IdP

When the user needs to authenticate to TAAS, TAAS

constructs a <samlp:AuthnRequest> message requesting

that the IdP returns a signed SAMLv2 Authentication

SSO token and a separate encrypted SAMLv2 bearer

attribute assertion valid at itself. The authentication SSO

token should be unencrypted, contain a transient/random

ID for the user, and be valid at any recipient. The bearer

token must contain the LA ID-WSF EPR as a subject

attribute, with the PId set to allow TAAS to identify the

authenticated user. This is accomplished by setting the

AttributeConsumingServiceIndex attribute to request that

the EPR attribute is returned, which also informs the IdP

that the attribute aggregation profile has been selected.

After the user has authenticated to the IdP, by any method

it supports, it constructs the authentication assertion and

sets the AuthnContext element to contain the session LoA

for the authentication method that was used (subject to it

having a maximum value of the Registration LoA). These

assertions are then placed in a <samlp:Response>

message and returned to TAAS.

TAAS decrypts the referral contained in the

wsse:Security element of the EPR, using its private key, to

obtain the PId of the user. It looks up the user in its

database, and filters the user’s linked accounts against the

SP’s security policy. It then displays the attribute selection

screen to the user.

E. Attribute Aggregation with the IdPs

Normal HTTPS request/response messages are used
between the browser and TAAS to enable the user to select
which attributes from which IdPs she wishes to aggregate
together.

Once the set of IdPs has been determined, TAAS
constructs a referral to each IdP by creating a SAMLv2
Bearer assertion containing an EPR with the encrypted PId
of the user that is shared between itself and the IdP. TAAS
then constructs a SAMLv2 attribute query message to each
IdP, using the SAMLv2.0 Attribute query profile from
SAML Core [9], requesting the subset of attributes that the
user has chosen to be returned from this IdP. The SOAP
envelope containing the AttributeQuery message has a
<samlp:AttributeQuery> as its body element and a
<wsse:Security> [10] element in its header, which
comprises the newly constructed SAMLv2 Bearer
assertion and the original authentication assertion from the
authenticating IdP. The subject of these attribute queries is
the transient/random identifier extracted from the initial
authentication assertion. The IdP identifies the user’s
account by decrypting the PId in the SAMLv2 Bearer
assertion stored in the <wsse:Security> header and
determines whether or not it trusts the initial act of
authentication by examining the signature of the
authentication assertion in the same <wsse:Security>
header. The IdP can differentiate between the referral
assertion and the authentication assertion as only the ID in
the referral assertion will match a stored PId in the IdP’s
system, and this assertion will directly reference the
authentication assertion. It then uses the transient/random
subject identifier from the authentication assertion as the
subject ID in the newly generated attribute assertion.

As it is TAAS that is querying the IdP directly rather
than the SP, it is necessary to include an
AssertionConsumerServiceURL attribute in the
AttributeQuery message that specifies the SP as the entity
to which the resulting attribute assertion should be
encrypted (Section 3.4.1 of [9]). The encrypted attribute
assertion is then inserted into a <samlp:Response> and
returned to the querying TAAS.

TAAS waits until each queried IdP has responded and
collates the combined set of attribute assertions into a
single SAMLv2 Assertion. This contains a single attribute
statement containing each of the aggregated assertions as
separate attribute values. Any self-asserted attributes
stored in TAAS’s database form an additional assertion
value. The single assertion is signed by TAAS and
returned to the SP’s endpoint defined in its security policy
by using a TLS encrypted HTTP POST message that is
returned to the browser, which posts it to the SP.

IV. CONCLUSIONS AND FUTURE WORK

Whilst the CardSpace model had some notable security
and usability properties, it also had some significant flaws.
We have combined the best user-centric features from
CardSpace with the existing SAMLv2 security framework
to provide a system that is better than the sum of its parts.
The resulting TAAS system provides users with a more
user friendly portable approach to identity management,
which gives them fuller control and consent over the

selection and release of their attributes, whilst protecting
them from phishing attacks. TAAS also goes beyond the
capabilities of either previous system by providing built in
support for attribute aggregation. We believe this will
become an increasingly important access control
requirement as applications become more demanding and
security conscious, where the present model of expecting a
single IdP to hold all a user’s attributes will no longer be
sufficient.

We have implemented the work described in this paper
as a fully featured demonstrator

1
 and released the code as

open source as part of the Open PERMIS project
2
. Future

work could be to provide the TAAS functionality entirely
within the browser, as an alternative to using an external
trusted server. Work is still required to define a standard
ontology for both attributes and IdPs, so that an SP’s
security policy can refer to generic entities rather than to
individually named attributes and IdPs, which could get
lengthy if there are many trusted entities of the same type.

ACKNOWLEDGMENT

The research leading to these results has received
funding from the UK JISC and the EC's FP7 programme
under grant agreement n° 216287 (TAS³ - Trusted
Architecture for Securely Shared Services).

REFERENCES

[1] David Chappell. “Introducing Windows CardSpace”. MSDN. April
2006. Available from http://msdn.microsoft.com/en-
us/library/aa480189.aspx

[2] R. L. "Bob" Morgan, Scott Cantor, Steven Carmody, Walter
Hoehn, and Ken Klingenstein. “Federated Security: The Shibboleth
Approach”. Educause Quarterly. Volume 27, Number 4, 2004

[3] http://www.ukfederation.org.uk/content/Documents/MemberList

[4] David W. Chadwick, George Inman, Nate Klingenstein “A
Conceptual Model for Attribute Aggregation”. Future Generation
Computer Systems. Volume 26, Issue 7, July 2010, Pages 1043-
1052.

[5] William E. Burr, Donna F. Dodson, Elaine M. Newton, Ray A.
Perlner, W. Timothy Polk, Sarbari Gupta, Emad A. Nabbus.
“Electronic Authentication Guideline”, NIST Special Publication
800-63-1, Dec 2011.

[6] John Watt, Richard O Sinnott, George Inman, David Chadwick.
"Federated Authentication and Authorisation in the Social Science
Domain". Sixth International Conference on Availability,
Reliability and Security (ARES), 22-26 Aug 2011, pp541-548

[7] OASIS. "SAML V2.0 Identity Assurance Profiles Version 1.0”
Committee Specification 01, 5 November 2010.

[8] Hodges, J. Aarts, R. Madsen, P. and Cantor, S.(Editors). “Liberty
ID-WSF Authentication, Single Sign-On, and Identity Mapping
Services Specification v2.0”. Liberty Alliance Project.

[9] OASIS. “Assertions and Protocol for the OASIS Security Assertion
Markup Language (SAML) V2.0”, OASIS Standard, 15 March
2005

[10] Hodges, J. Kemp, J. Aarts, R. Whitehead, G. Madsen, P. “Liberty
ID-WSF SOAP Binding Specification v2.0” Liberty Alliance
Project.

[11] Liberty Alliance Project. “Liberty ID-WSF Web Services
Framework Overview” Version: 2.0” Available from
http://www.projectliberty.org/specifications__1

[12] OASIS. "Metadata for the OASIS Security Assertion Markup
Language (SAML) V2.0". OASIS Standard, 15 March 2005

[13] OASIS, “WS-Trust 1.3”, OASIS Standard, 19 March 2007

1
 TAAS Demo. http://sec.cs.kent.ac.uk/demos/taas.html

2
 http://www.openpermis.org and http://sec.cs.kent.ac.uk/permis.

