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Abstract Self-Adaptive systems are software-intensive sys-
tems endowed with the ability to respond to a variety of
changes that may occur in their environment, goals, or the
system itself, by adapting their structure and behavior at run-
time in an autonomous way. Controllers are complex com-
ponents incorporated in self-adaptive systems, which are cru-
cial to their function since they are in charge of adapting the
target system by executing actions through effectors, based
on information monitored by probes. However, although these
controllers are becoming critical in many application do-
mains, so far very little has been done to assess their robust-
ness. In this paper, we propose an approach for evaluating
the robustness of controllers for self-adaptive software sys-
tems, aiming to identify faults in the design of these con-
trollers. Our proposal considers the stateful nature of the
controller, and identifies a set of robustness tests, which in-
cludes the provision of mutated inputs to the interfaces be-
tween the controller and the target system (i.e., probes). The
feasibility of the approach is evaluated on Rainbow, a frame-
work for architecture-based self-adaptation, and in the con-
text of the Znn.com case study.
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1 Introduction

One of the main traits of a self-adaptive software system,
compared to any other kind of system, is its ability to de-
liver its services in spite of changes that may occur in the
system, its environment or even in its goals. A key compo-
nent that enables self-adaptive systems to handle changes
at run-time (e.g., repairing anomalies and improving oper-
ation) is a controller that relies on a feedback control loop
for managing adaptations [3] by executing actions through
system-level effectors on the target system, based on infor-
mation monitored by probes. In the context of complex soft-
ware systems, these controllers typically implement the tra-
ditional sense-plan-act architectures. An example of such
controllers is the MAPE-K model, which includes four dis-
tinct operational stages, namely, monitoring, analysis, plan-
ning and execution [14]. Despite major achievements in the
area, existing approaches in autonomic systems and self-
adaptation do not systematically address the need to deter-
mine if a self-adaptive system can deliver a service that can
justifiably be trusted when facing changes (i.e., that it will
be resilient [17]). This lack of assurances is an issue that has
hampered the widespread adoption of self-adaptive systems,
which are often regarded as unreliable by industry. A ma-
jor problem associated with the provision of evidence is the
combinatorial nature of the stateful aspects of a controller
and the changes that may affect the system being controlled.
Since the different operational stages in the feedback control
loop should be functionally independent from each other,
a change might have a different impact on the controller
depending on the state of the controller. Moreover, if the
controller is expected to act upon a change when it occurs,
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there is a wide range of issues that needs to be considered
when producing the appropriate action, including the place
in which the change has occurred, the type and the frequency
of the change, and whether it can be anticipated [2]. These
factors have to be considered regarding the provision of as-
surances about the services to be delivered by the target sys-
tem. Hence, novel techniques need to be devised in order to
uncover potential faults in the controller.

The present paper describes an approach for evaluating
the robustness of controllers for self-adaptive systems by ab-
stracting away, in a first instance, from the state of the tar-
get system being controlled. The rationale behind this is the
fact that the complexity associated with these controllers is
such that we need first to devise novel means for evaluating
the core logic that enables adaptation, before exploring the
ensemble target system plus controller. Moreover, if the ro-
bustness evaluation is performed on the ensemble, some of
the controller faults could be masked by the target system, or
their effects upon the system could be more difficult to an-
alyze. Hence the decision to define an approach that can be
used in the robustness evaluation of different controllers, as-
suming that the core logic of the different operational stages
is basically the same on the different controllers [10]. In
such a way, we restrict the robustness tests in our approach
to the inputs of the controller, which are characterized by
the probes. Although the proposed approach abstracts away
from the target system, we need to consider the stateful as-
pects of the controller, which are related to its different op-
erational stages.

The primary contribution of this paper is the definition
of an approach for evaluating the robustness of controllers,
which part of a bigger initiative that is looking into the re-
silience evaluation of self-adaptive systems. Our proposal
considers the stateful nature of the controller by defining
how the controller interface should be tested according to a
target system changeload [1,6], and the operational stage of
the controller. To achieve our goal, the approach defines a set
of mutation rules that should be applied to the inputs of the
controller, a tailored version of a classification of the differ-
ent controller failure modes, and an experimental setup and
testing procedure that is specific to self-adaptive systems.
A preliminary evaluation [5] of the feasibility of our ap-
proach was carried out using the Rainbow framework, which
consists of a controller that supports architecture-based self-
adaptation [10], and in the context of a simplified version
of the Znn.com case study [8]. Experimentation using Rain-
bow is very convenient, since its software has been widely
available, its structure facilitates access to its internal com-
ponents, its design is amenable to the injection of faults, and
the logs Rainbow produces are suitable for analyzing the ef-
fects of the injected faults upon the controller. The present
paper extends our preliminary study by reporting on an ex-
haustive evaluation of the approach on a full-fledged deploy-

ment of Rainbow/Znn.com, including extensive tests carried
out on a comprehensive set of probes implemented using dif-
ferent technologies.

The rest of this paper is structured as follows. Section 2
provides some background on self-adaptive systems and re-
lated work in the area of robustness testing. Section 3 in-
troduces the Znn.com case study, which is used throughout
the paper for illustrating the proposed approach. Section 4
describes our approach that is focused specifically on evalu-
ating the robustness of controllers for self-adaptive systems.
Section 5 presents the experimental results obtained from
the evaluation of our approach. Finally, Section 6 concludes
the paper and indicates future research directions.

2 Background and Related Work

The run-time management of increasingly complex software-
intensive systems has become a central concern in Software
Engineering over the last few years [7,19]. Specifically, a
major issue in the area is concerns achieving conformance to
functional and non-functional requirements in a dependable
and cost-effective manner despite the influence of changes
that may affect the system, its environment, and system goals.

One of the seminal works addressing this concern was
IBM’s Autonomic Computing initiative [14], which intro-
duced a layer implementing what is known as the MAPE-K
control loop to Monitor, Analyze, Plan, and Execute adap-
tation (with a Knowledge base that supports the different
activities in the control loop) for the purpose of managing a
target system. In particular, some successful approaches that
rely on this closed-loop control paradigm for self-adaptation
exploit architectural models for high-level reasoning about
the target system under management [10,23]. In particu-
lar, Rainbow [10] is a framework which provides a base of
reusable infrastructure that can be applied to a wide range of
systems through customization. The framework defined by
Rainbow includes mechanisms for monitoring a target sys-
tem and its environment (using the observations for updat-
ing the architectural model of the target system), detecting
opportunities for improving the system’s quality of services
(QoS), deciding the best course of adaptation based on the
state of the system. Section 4.4 provides further details about
the Rainbow framework, which is used for the experimental
validation of our approach.

2.1 Resilience Evaluation in Self-Adaptive Systems

Despite the fact that research in the field of autonomic and
self-adaptive systems is relatively new, there are already some
contributions regarding their provision of assurances. How-
ever, the applicability of these contributions has been fo-
cused on the ensemble target system plus controller. To the
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best of our knowledge, no approaches have been proposed
regarding the evaluation of controllers, although there is al-
ready some ground work pointing in this direction [7,19].

One of the areas that are related to that of resilience
evaluation is that of resilience benchmarking, which encom-
passes techniques from previous efforts in performance bench-
marking [11], dependability benchmarking [13], and secu-
rity benchmarking [20], due to its inherent relation to per-
formance, dependability and security. Comparing to estab-
lished benchmarks, a resilience benchmark may be specified
following the same basic approach, but comprising a wide-
ranging changeload (which will include, but will be not lim-
ited to, faults), as well as resilience metrics [1].

Other approaches deal with resilience evaluation through
quantitative analysis using probabilistic model-checking [4],
considering the system environment as the only source of
change and leaving out changes that are internal to the sys-
tem. The cited approaches quantitatively measure resilience
in the self-adaptive system when facing changes either in-
ternal or external to the system. However, they do not deal
with an additional source of problems from the perspective
of resilience, which are robustness issues addressed by the
techniques presented in the current paper.

2.2 Robustness Testing

Robustness testing consists in stimulating a system with er-
roneous input conditions with the goal of triggering internal
errors. This allows testers to differentiate systems accord-
ing to the number and type of errors uncovered and provides
developers with information to solve or wrap the identified
problems [22].

Ballista [15] uses a set of tests that combine acceptable
and exceptional values on calls to kernel functions of oper-
ating systems. The parameter values used in each invocation
are randomly extracted from a set of predefined tests and for
each parameter a set of values of a certain data type is as-
sociated. Each operating system is classified in terms of its
robustness and according to a predefined scale (the CRASH
scale [15]) that distinguishes several failure modes.

Initially, Ballista was developed for POSIX APIs (in-
cluding real time extensions). Further work has been de-
veloped to adapt it to Windows operating systems [28]. In
that study the authors present the results of executing Bal-
lista generated exception handling tests over several func-
tions and system calls in Windows 95, 98, CE, NT, 2000,
and Linux. The authors were able to trigger system crashes
in Windows 95, 98, and CE. The other systems also revealed
robustness problems, but not complete system crashes.

MAFALDA (Microkernel Assessment by Fault injection
AnaLysis and Design Aid) [25] is a tool that enables the
characterisation of the behaviour of microkernels in the pres-
ence of faults. Fault injection is performed at two levels: in

the parameters of system calls, and in the memory segments
holding the target microkernel. However, only the former is
relevant when the goal is robustness testing.

The robustness testing techniques have been applied not
only at the operating system level but also at the middleware
layer and targeting different types of systems. The problem
of robustness testing of high availability middleware is dis-
cussed in [21]. The paper presents a testing framework that
integrates previous testing techniques (e.g., scenario-based
testing and test result classification). The case study con-
ducted on OpenAIS (an open implementation of the Ap-
plication Interface Specification (AIS) provided by the Ser-
vice Availability Forum) showed that simple techniques can
identify robustness problems. However the implementation
of more complex techniques is required since these are able
to find faults not detected by the simple ones.

Ballista was also adapted to be applied to middleware
systems. In particular, [24] studies the robustness of vari-
ous CORBA ORB implementations. In this case, the failure
modes were adapted to better characterize the CORBA con-
text and the authors were able to reveal several issues in the
middleware being tested.

In [18] we propose an experimental approach for the ro-
bustness evaluation of JMS middleware. The technique is
applied successfully to three major JMS middleware providers
exposing serious robustness problems, including severe se-
curity issues, which also highlights the importance of the
application of robustness testing to real-world systems.

The abovementioned works implement robustness test-
ing approaches that do not consider the state of the sys-
tem under test. In [9] the impact of state on robustness test-
ing of a safety-critical operating system (OS) is investigated
by including the OS state in test cases definition. Although
system-specific, results show that the state can play an im-
portant role in testing since they are able to cover more cases
when compared to the traditional approaches.

An approach for robustness testing method of stateful
Web services, modelled with Symbolic Transition Systems,
is presented in [27]. A test case generation method is pro-
posed using unusual values and replacement and additions
of operation names. States are transversed using different
operations and starting from a system specification which,
depending on the system being tested, may not always be
available. The authors assume that messages sent and re-
ceived are only SOAP messages and suggest that a Web ser-
vice could be considered as a grey box from which any type
of message could be observed, increasing the potential of
the technique.

In [5] we present an approach to evaluate the robustness
of controllers for self-adaptive software systems, aiming at
the identification of design faults. The approach is based on
a set of robustness tests that include the provision of mutated
inputs to the interfaces between the controller and the target



4 Javier Cámara et al.

system (i.e., probes). The feasibility of the approach is eval-
uated in the context of Znn.com, a case study implemented
using the Rainbow framework for architecture-based self-
adaptation.

3 Case Study

To illustrate our approach for robustness testing, we use the
Znn.com case study [8], which is implemented using Rain-
bow, and is able to reproduce the typical infrastructure for a
news website. It has a three-tier architecture consisting of a
set of servers that provide contents from backend databases
to clients via front-end presentation logic. Architecturally, it
is a web-based client-server system that satisfies an N-tier
style, as illustrated in Figure 1. The system uses a load bal-
ancer to balance requests across a pool of replicated servers,
the size of which can be adjusted according to service de-
mand. A set of client processes makes stateless requests, and
the servers deliver the requested contents (i.e., text, images
and videos).

c0

c1

c2

lbproxy

s0

s1

s2

s3

Fig. 1 Znn.com system architecture

The main objective for Znn.com is to provide content to
customers within a reasonable response time, while keeping
the cost of the server pool within a certain operating budget.
It is considered that from time to time, due to highly popular
events, Znn.com experiences spikes in requests that it cannot
serve adequately, even at maximum pool size. To prevent
losing customers, the system can provide minimal textual
contents during such peak times, instead of not providing
service to some of its customers. Concretely, there are two
main quality objectives for the self-adaptation of the system:
(i) performance, which depends on request response time,
server load, and network bandwidth, and (ii) cost, associated
to the number of active servers.

In the case of Znn.com, Rainbow is capable of analysing
trade-offs among the different objectives, and execute dif-
ferent adaptations according to the particular run-time con-
ditions of the system. For instance, when response time be-
comes too high, the system should increment server pool
size if it is within budget to improve its performance; other-

wise, servers should be switched to textual mode (start serv-
ing minimal text content) if cost is near budget limit.

4 Approach

Our approach for robustness evaluation of controllers in a
self-adaptive software system considers the model depicted
in Figure 2. The environment consists of all non-controllable
elements that determine the operating conditions of the sys-
tem (e.g., hardware, network, physical context, etc.). Re-
garding the system itself, we distinguish two main subsys-
tems: a target system, which interacts with the environment
by monitoring relevant variables associated with operating
conditions, and a controller that manages the target system,
driving adaptation whenever it is required. Concretely, the
controller carries out its function by: (i) monitoring the tar-
get system and its environment by means of probes that pro-
vide information about the value of relevant variables, (ii)
deciding if the current state of the target system and envi-
ronment demands adaptation, and if this is the case, (iii) ap-
plying a sequence of control actions through system-level
effectors.

Self-Adaptive Software System

Controller

Environment
Non-controllable software, hardware, 

network, physical context

Target System

Effectors

Adapt

Probes

Monitor

MonitorAffect
M

o
n

it
o

r

Probes

Fig. 2 Self-adaptive software system

In this work, we focus exclusively on the robustness of
the controller, i.e., we modify the probes’ inputs into the
controller with the intent of evaluating how robust is the con-
troller regarding changes that may affect its interface when
exceptional input is provided. The controller is considered
as a stateful entity, regarding evaluation purposes, since for
the same input, the controller’s internal state may influence
its output. In order to tackle this issue, we consider input mu-
tation during the different operation stages of the controller 1

to create an appropriate context for evaluating its robustness.
The key elements of our approach are: changeload, which is
a set of representative change scenarios, where changes are

1 Specifically, during analysis, planning, and execution. Monitoring
is transversal to the rest of the activities in the MAPE-K loop.
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based on controller input mutations; failure mode classifica-
tion, that characterizes the run-time behaviour of the con-
troller while the target system is running in the presence of
the changeload; and robustness tests, the mutation rules that
are applied to the input probes into the controller.

In the following, in addition of describing the key ele-
ments of our approach, we also present how robustness tests
are performed at the controller interface by mutating the in-
puts provided by the probes. To exemplify the principles of
our approach, we have instantiated it into Rainbow [10].

4.1 Changeload Model

This section describes the proposed model for the changeload,
presenting the definitions adopted for the fundamental con-
cepts that form the basis of its structure.

Definition 1 (Change Type) A change type is a tuple (src,m, A)
that characterises a change, where:

– src identifies the source probe type where a mutation
rule is applied,

– m identifies the mutation rule applied on probe input,
– A = 〈a1, . . . , an〉 (possibly empty) is a vector of attributes

that holds specific information about the mutation rule.

Example 1 In Znn.com, consider the change “Set an invalid
timestamp date on a response time probe (type ClientProx-
yProbeT)”. A possible change type definition for this would
be:

invalidDateCPP CT= ( ClientProxyProbeT, TSInvalidDate,
〈date〉)

Definition 2 (Change) Given a set of change types CT , a
change is a tuple (ct, srcinst,VA, ti, d) that corresponds to an
instantiation of a change type, where:

– ct = (src,m, A) ∈ CT determines the change type to be
instanced as a change,

– srcinst is the probe instance that is the source of change
(i.e., in which the input is mutated),

– VA = 〈vA1, . . . , vAn〉 is a vector of attribute values instan-
tiating the attributes in A,

– ti ∈ R+0 determines the time instant in which the change
is triggered,

– d ∈ R+ is the duration associated with the change.

It is worth observing that while some specific changes
may be transient, impacting the controller’s input during a
particular amount of time, in the definition above duration
can be considered equal to∞ if the change is permanent.

Example 2 If we consider the change type described in Ex-
ample 1, a possible instantiation of it could be:

(invalidDateCPP CT,ClientProxyProbe1, 〈′2/29/1985′〉, 10, 2)

The systematic identification and classification of change
types is fundamental to support the definition of change sce-
narios, which is discussed in the next paragraphs.

The main base concept in our changeload model is the
scenario. A scenario is a postulated sequence of events that
captures the state of the system and its environment, sys-
tem goals 2, and changes affecting all the aforementioned
elements. It is defined in terms of state (system and environ-
ment) and changes applied to that state.

Definition 3 (Scenario) A scenario is a tuple (wl, oc,C),
where:

– wl represents the workload, that is, the amount and type
of work assigned to the system (not necessarily static),

– oc are the operational conditions of the system (includ-
ing software and hardware resources needed for the sys-
tem to perform its service),

– C is a set of changes applied to controller input in the
presence of the workload and operational conditions.

Based on the definition above, a change scenario is one
which includes a non-empty set of changes (C , ∅).

Definition 4 (Changeload) A changeload is a set of change
scenarios.

4.2 Controller Failure Modes

The robustness of a controller for a self-adaptive system can
be classified according to an adapted version of the CRASH
scale [16], which distinguishes the following failure modes:

1. Catastrophic: the whole controller crashes or becomes
corrupted (this might include the OS or machine on which
the controller is running). No output is produced.

2. Restart: the controllers execution hangs and may not
issue any output commands, or send always the same
command, within the worst case execution time associ-
ated with the adaptation cycle. The controller needs to
be externally re-booted.

3. Abort: abnormal behavior in the controller occurs due to
an exception raised at run-time inside of the controller.

4. Silent: the controller fails to acknowledge an error, for
instance by signalling an exception, which causes the
controller to continue operating improperly.

5. Hindering: the controller fails to return a correct error
code, which may hinder error recovery. The difference
between a silent failure and this case is that, here an error
is acknowledged by the controller but the returned error
code is incorrect.

2 For the sake of simplicity, in this paper we abstract away from
system goals, which are not required to deal with robustness evaluation
of the controller.
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In particular, it is worth observing that the tailored ver-
sion of the CRASH scale for controllers in self-adaptive
software systems includes an specific adaptation which is
related with time (2).

4.3 Robustness Tests

The basis of the proposed approach for evaluating the ro-
bustness of controllers for self-adaptive software systems
relies on stimulating the interface of the controller, which
consists of probes that monitor both the target system and
its environment (see Figure 2). For evaluating how robust is
the controller, regarding changes that my affect its interface,
the probes’ inputs into the controller are modified according
to a comprehensive set of mutation rules. Moreover, since
the inputs of these probes may affect the different stages of
a MAPE-K control loop, the evaluation needs to consider the
controller as stateful. Although for evaluating the robustness
of a controller we are able to abstract away from the appli-
cation (target system), we nevertheless use the application
to drive the evaluation.

4.3.1 Mutation Rules

The set of robustness tests performed is automatically gen-
erated by applying a set of predefined mutation rules to the
messages sent by probes, which characterizes the monitor-
ing stage of the controller. Although concrete message for-
mats and additional elements may exist depending on the
case, the basic input supplied by probes to the controller
typically consists of three basic elements: (i) an identifier
of the variable being monitored, (ii) the actual value for the
variable, and (iii) a timestamp that provides a temporal con-
text for the variable being monitored. For example, in the
case of Rainbow, the kind of input received by the controller
consists of simple messages encoded as text strings with the
following format:

[ timestamp ] variable name : variable value

Based on this general description of probe input, we pro-
pose a set of rules (Table 1), which have been defined based
on previous works on robustness testing [16,29,26], and ex-
plore limit conditions that are typically the source of robust-
ness problems.

4.3.2 Probe Usage Categories

The effect of applying mutation rules on the outputs gener-
ated by the probes may manifest in different ways (or not
manifest at all) in the controller, depending on its internal
state. This results from the stateful nature of the controller,
which may use different inputs and in a different way, de-
pending on its operation stage (i.e., analysis, planning, or

execution). Changes in the internal operation stage of the
controller are also induced by input obtained from probes.

Table 2 distinguishes different probe categories, accord-
ing to their use in the different operation stages of the con-
troller. Different robustness issues may arise in the controller,
depending on the particular stage/probe in which mutation
rules are applied, even if the set of mutations rules applied
are the same. The same probe can belong to different usage
categories and be used during different stages in the con-
troller. We consider the controller to be a gray box, while its
different operation stages are black boxes on which probe
mutation is applied. For the time being, we assume that each
of these black boxes are stateless, even if that is not the case
as far as the target system is concerned. The different stages
in the controller are sequential, while monitoring is transver-
sal to all of them.

4.4 Testing Procedure

As discussed previously, inputs to the Rainbow controller
are delivered with the use of probes, which provide impor-
tant system and environment information such as experi-
enced response time, network latency, or server load. Ro-
bustness testing focuses on the controller’s input points (i.e.,
the probe information). Therefore, a complete robustness
experiment must include a set of tests that focuses precisely
on the information provided by each of the input probes.

Figure 3 represents the complete experimental proce-
dure and, as we can see in the figure, each experiment in-
cludes several tests, each one focusing on a given probe.
For each probe (which, at runtime is continuously deliver-
ing information to the controller under test) we apply a sin-
gle change for each probe data sample. However, we apply
(in the subsequent probe data samples) the same change for
a given period of time, which potentially gives us the possi-
bility of further disturbing the system under test.

Each robustness test focuses on a single mutation rule
type, and having identified the three major controller oper-
ational stages (analysis, planning, execution), we must exe-
cute the tests with the controller in each of these stages, as it
allows us to cover more cases and potentially disclose more
robustness problems. Therefore, in each test, we must drive
the system from an initial state to a target state by submit-
ting the system to a changeload for a given amount of time
(t1 in Figure 3). This target state is the one in which the sys-
tem should be in order to start testing, and can correspond
to any entry point to any of the three controller stages previ-
ously mentioned. With the controller in the target state, we
can start applying the changes (of the same type) during a
t2 amount of time (see Figure 3) and while the controller
is on the target state. This period of time should be set to
the typical time required to transition from the target con-
troller state for the test to the next state. After this probe
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Table 1 Mutation rules for probes

Type Rule Name Description

A
.M

es
sa

ge

1. MsgNull Replace by null value
2. MsgEmpty Replace by empty string
3. MsgPredefined Replace by predefined string
4. MsgNonPrintable Replace by string with non-printable characters
5. MsgAddNonPrintable Add non-printable characters to the string
6. MsgOverflow Add characters to overflow max string size

B
.T

im
es

ta
m

p

1. TSEmpty Replace by empty timestamp
2. TSRemove Remove timestamp from response
3. TSInvalidFormat Replace by timestamp with invalid format
4. TSDateMaxRange Replace date in timestamp by maximum valid
5. TSDateMinRange Replace date in timestamp by minimum valid
6. TSDateMaxRangePlusOne Replace date in timestamp by maximum valid plus one
7. TSDateMinRangeMinusOne Replace date in timestamp by minimum valid minus one
8. TSDateAdd100 Add 100 years to date in timestamp
9. TSDateSubtract100 Subtract 100 years from date in timestamp
10. TSInvalidDate Replace date in timestamp by invalid date (e.g., 2/29/1985)

C
.V

ar
.N

am
e 1. VNRemove Remove variable name

2. VNSwap Replace by different valid variable name of same type
3. VNSwapType Replace by different valid variable name of different type
4. VNInvalidFormat Replace by variable name with invalid format
5. VNNotExist Replace by non-existing variable name

D
.V

ar
.V

al
ue

1. VVRemove Remove variable value

2. VVInvalidFormat Replace value by one with invalid format
Number

3. VVNumAbsoluteMinusOne Replace by -1
4. VVNumAbsoluteOne Replace by 1
5. VVNumAbsoluteZero Replace by 0
6. VVNumAddOne Add 1
7. VVNumSubtractOne Subtract 1
8. VVNumMax Replace by maximum number valid for type
9. VVNumMin Replace by minimum number valid for type
10. VVNumMaxPlusOne Replace by maximum number valid for type plus one
11. VVNumMinMinusOne Replace by minimum number valid for type minus one
12. VVNumMaxRange Replace by maximum number valid for variable
13. VVNumMinRange Replace by minimum number valid for variable
14. VVNumMaxRangePlusOne Replace by maximum number valid for variable plus one
15. VVNumMinRangeMinusOne Replace by minimum number valid for variable minus one

Boolean
16. VVBoolPredefined Replace by predefined value

Table 2 Probe categories

Probe Usage Category Controller Stage Input Usage Example Rainbow/Znn.com
Analysis The controller analyzes the

current state of the target sys-
tem for detecting anomalies,
and triggering adaptation if
needed.

Anomaly
detection.

Rainbow checks whether
the current response time
(through response time
probes) in Znn.com is above
the maximum acceptable
response time threshold.

Planning The controller determines if
any adaptation plans can be
applied to the system, and se-
lects the best alternative.

Adaptation
plan selection.

If the maximum response
time is above threshold,
Rainbow detects anomaly and
determines the best adaptation
strategy (based on response
time and server fidelity
probes).

Execution The controller executes the se-
lected course of action.

Control action
selection.

Rainbow executes the selected
adaptation strategy for reduc-
ing response time (monitors
response time, server fidelity,
and server load probes).
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t1#–"Rampup"(changeload"execu2on)"
t2"–"Fault"injec2on"(while"s2ll"on"the"target"state."What"is"the"limit"for"fault"
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Fig. 3 Robustness testing procedure

mutation period there is a t3 period which is the time re-
quired for the system to reach a final state, which marks the
end of the current test, and corresponds to the completion
of the controller’s execution stage. At most, t3 should be set
to the worst case execution duration found in the adaptation
strategies specification. The t4 period (composed by t3 and
t2) is an observation period that can be used to register any
deviations from expected controller behaviour.

5 Experimental Evaluation

The aim of our experiments is assessing the validity of our
approach to evaluate controller robustness in self-adaptive
systems. In particular, we evaluate the robustness of Rain-
bow’s controller (i.e., Rainbow master) on an implementa-
tion of the Znn.com case study described in Section 3.

5.1 The Rainbow Framework

In this paper, we focus on Rainbow [10], an architecture-
based platform for self-adaptation, which provides a sub-
stantial base of reusable infrastructure through customiza-
tion, which aims to reduce the cost of self-adaptive system
development. Rainbow has distinctive features: an explicit
architecture model of the target system, a collection of adap-
tation strategies, and utility preferences to guide adaptation.

The framework defined by Rainbow includes mechanisms
for (Figure 4): monitoring a target system and its environ-
ment (using the observations for updating the architectural
model of the target system), detecting opportunities for im-
proving the system’s quality of services (QoS), deciding the
best course of adaptation based on the state of the system,
and effecting the most appropriate changes.

Rainbow’s component-and-connector architectural model
of the target system is one of the main elements used in

System
Layer

Architecture Layer

Target SystemTarget System

Translation
Infrastructure

Adaptation
Manager

Model Manager

Strategy
Executor

System API ProbesEffectors

Architecture
Evaluator

(Analyze)

(Plan)

(Execute)

(Analyze, Plan, Execute)

Fig. 4 The Rainbow framework

its decision-making process, using it to update monitored
system information and reason about appropriate adaptation
mechanisms for a particular situation.

The main components of the framework are:

– Architecture Evaluator: evaluates the model upon up-
date to ensure that the system is operating within an ac-
ceptable range. If the evaluator determines that the sys-
tem is not operating within the accepted range, it triggers
the adaptation.

– Adaptation Manager: chooses a suitable strategy based
on current state of the system (reflected in the architec-
tural model).

– Strategy Executor: executes the strategy chosen by the
adaptation manager on the running system via system-
level effectors.

– Model Manager: updates the architecture model using
the information observed in the system via probes.

5.2 Experimental Setup

znns1

znnproxyznnclient

znns0

znns3

znns2

znndb

znnmaster

ClientProxyProbe

ServerFidelityProbe

ServerLoadProbe

Fig. 5 Znn.com experimental setup

For our experimental setup, we deployed Rainbow and
the corresponding implementation of Znn.com across seven
different machines (Figure 5): znns0-3 are the four content
servers running Apache v2.2.16, znndb is a common backend
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database running mySql v14.14d5.1.61, from which the dif-
ferent servers extract the contents, and znnproxy is the proxy
machine that runs the load balancing software (Apache run-
ning mod proxy balancer v2.1). The controller is deployed in
a separate machine (znnmaster). All machines run Debian
Linux v6.0.4, and have 512MB of memory. Moreover, an ad-
ditional machine znnclient running JMeter v2.5.1 generates
the traffic during the execution of the system.

To build the changeload used for our experiments, we
identified the:

1. Workload and operating conditions for our change sce-
narios, which is characteristic of a slashdot-type effect,
based on a sample collected by Juric [12], previously
used for a general evaluation of the effectiveness of Rain-
bow in Znn.com [8]. In this case, scenarios have been
scaled down to a duration of 5 minutes, which is enough
to drive the controller through its different operational
stages and apply the robustness tests.

2. Sets of probes for the different controller operational
stages. The three last columns of Table 3 indicate the
set of probes used during the analysis, planning, and ex-
ecution stages of the controller. This information was
identified by inspecting the specification of architecture
models and adaptation strategies. Specifically, the use of
a probe during the analysis stage can be determined by
checking whether the constraints specified for the archi-
tecture model are defined over variables updated by a
given probe. Moreover, an analogous process can be fol-
lowed to identify probes used during the planning stage,
which update information in variables used to specify
applicability conditions of adaptation strategies. Finally,
probes used during execution are identified by inspect-
ing the predicates included in the code of the adaptation
strategy itself.

3. Set of changes to be applied on our set of probes. Ta-
ble 3 also indicates the set of non-applicable mutation
rules to each of the probes, which are determined by
the type of probe implemented, as well as, the data type
and value range of the variables they update. Regard-
ing probe implementation type, probes ServerLoadPro-
beT and ServerFidelityProbeT are implemented in Perl,
whereas the ClientProxyProbeT is implemented in Java.
In both cases, the length of strings is unrestrained, there-
fore mutation rule MsgOverflow (A6) is not applicable to
any of the probes. In the particular case of Perl probes,
the null datatype does not exist, disallowing the applica-
bility of mutation MsgNull (A1). Regarding data types,
all of the studied probes update numerical variables, dis-
allowing the applicability of mutation rule VVBoolPre-
defined (D16). The only exception is the ServerLoadPro-
beT, which is not associated with a simple datatype and
reports a message with a custom format in the variable
value, therefore preventing the use of mutation rules D3-

D16. Finally, the variables updated by some of the probes
do not have a value range explicitly defined. In the case
of probe ClientProxyProbeT there is an implicit lower bound
of zero, due to the semantics of the information con-
tained in the variable (e.g., negative times would make
no sense), but there is no upper bound, discarding the use
of rules D12 and D14 that involve the maximum value
range.

5.3 Experimental Results and Discussion

Each change scenario of the changeload results from com-
bining the workload and operating conditions with a sin-
gle change type based on an applicable mutation rule. In
our changeload, each mutation rule gives way to up to three
change scenarios (i.e., applied during the analysis, planning,
and execution stages, respectively), which are triggered in
the time instant in which the controller enters the corre-
sponding stage, and their duration is permanent. Overall, we
run 209 robustness tests using our experimental setup (33
× 3 applicable mutation rules for ClientProxyProbeT, 21 × 2
applicable mutation rules for ServerLoadT, 34 × 2 applicable
mutation rules for ServerFidelityProbeT, ).

Table 4 details the experimental results obtained from
the tests that apply the change scenarios based on each of the
identified applicable mutation rules at each one of the con-
troller stages. To begin with, 108 out of the 209 conducted
tests uncovered robustness issues (51.6%). Moreover, one
of the first observations that can be made is that no catas-
trophic, restart, nor hindering failures were identified dur-
ing the tests. Although no catastrophic, restart, or hindering
failures have been identified during our tests, these failure
modes are still needed, as they portray relevant behaviours
of the controller. Specifically, only 2.7% of the issues uncov-
ered correspond to abort failures, which only occur on tests
based on the mutation MsgNull (in this case, in the Client-
ProxyProbeT probe type, which is the only one implemented
in Java). Specifically, this abort case consists of the same
unhandled java.lang.NullPointerException in each of the three
stages of the controller during the parsing of probe response
with a regular expression matcher. It is worth mentioning
that additional unhandled exceptions have been detected dur-
ing the course of the experiments. However, these have not
been considered in the results table, since they have been
originated outside of the controller (concretely, on the re-
sponse time probe itself).

Silent failures are by far the most frequent failure type
discovered during the tests (97.3%). These mostly corre-
spond to incorrect updates (or the lack thereof) of property
values in the architecture model of the target system which
are not acknowledged by the controller. In the case of the
probes implemented in Perl (ServerLoadProbeT and Server-
FidelityProbeT), when incorrect input is received by the con-
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Table 3 Probe use per controller stage and applicable mutation rules for Znn.com

Probe Type Description Non-appicable mutation rules A
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ClientProxyProbeT Measures experienced response time in proxy. A6,D12,D14,D16 x x x
ServerLoadProbeT Measures the load of a given server. A1,A6,D3-16 x x
ServerFidelityProbeT Reports the fidelity level of the contents served from a given server. A1,A6,D16 x x

Table 4 Robustness issues uncovered by the experiments
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Mutation Rule A S A S A S A S A S A S A S
MsgNull 1 1 1 1 1 1 1
MsgEmpty 1 1 1 1 1 1 1
MsgPredefined 1 1 1 1 1 1 1
MsgNonPrintable 1 1 1 1 1 1 1
MsgAddNonPrintable 1 1 1 1 1 1 1

TSEmpty 1 1 1 1 1 1 1
TSRemove 1 1 1 1 1 1 1

VNRemove 1 1 1 1 1 1 1
VNSwap 1 1 1 1
VNInvalidFormat 1 1 1 1
VNNotExist 1 1 1 1

VVRemove 1 1 1 1 1 1 1
VVInvalidFormat 1 1 1 1 1 1 1
VVNumAbsoluteMinusOne 1 1 1 1 1
VVNumMax 1 1 1
VVNumMin 1 1 1 1 1
VVNumMaxPlusOne 1 1 1 1 1
VVNumMinMinusOne 1 1 1 1 1
VVNumMinRangeMinusOne 1 1 1 1 1

TOTAL/PROBE 1 16 0 12 1 16 0 18 1 16 0 18 0 12
TOTAL/STAGE A: 1, S: 28 A: 1, S: 34 A: 1, S: 46

troller, the update is ignored in all cases, and the property
in the model is not updated. In contrast, in the Java probe
(ClientProxyProbeT), properties are updated with clearly in-
correct values (such as negative values in the case of Client-
ProxyProbeT with mutations VVNumAbsoluteMinusOne or VVNum-
Min), or not updated in some other cases (e.g., mutations Ms-
gNonPrintable or VNRemove).

As it can be observed, mutations that pertain the over-
all probe response message and the variable value (first and
fourth group in Table 4, respectively) present the highest
concentration of silent failures. In contrast, mutations that
concern timestamps and variable names present silent fail-
ures only in cases in which the concrete element is removed
(mutations TSEmpty, TSRemove and VNRemove). This is a
consequence of the way in which the Rainbow master pro-
cesses inputs from the probes. Messages sent from the probes
are parsed in such a way that only the presence of a variable

name and a timestamp in the message is assessed, but their
concrete values are not checked syntactically nor semanti-
cally. However, this does not prevent the correct update of
values in the architectural model of the system inside of the
controller, which uses a unique probe identifier to update the
value in the correct place in spite of incorrect variable names
or timestamps in probe input.

In spite of the similarity of failure patterns across probes,
we have been able to observe that there are slight differences
in them directly related with their type of implementation:
(i) all instances of abort failures are given when mutating
the Java probe, and (ii) silent failures when mutating Perl
probes always stops the updates of property values in the
architecture model, in contrast with the Java probe, in which
incorrect updates of values in the architectural model can
also appear.
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It is also worth mentioning that in spite of the similar
failure patterns for the same probe across different controller
stages, the specific failure instances discovered in the dif-
ferent controller stages are different. An instance of this is
the mutation of the Java probe with the MsgNull, which re-
sults in the properties of the architecture model being up-
dated with null values in tests conducted during the analysis
stage, whereas in the planning and execution stages the last
valid value on the model becomes frozen when the mutation
rule is applied on the probe, and this can lead to completely
different effects when considering the ensemble controller
plus system.

Summarizing, although in general terms Rainbow mas-
ter is fairly robust, experimental results have shown that our
approach has been able to uncover a relevant set of robust-
ness issues in the controller. Although in this particular case
the identified pattern of robustness issues at the different
stages of the controller differs only to a limited extent, this
can be attributed to the particular architecture of Rainbow,
which uses its model manager as a safeguard for the logic
in the rest of the components used throughout the different
operational stages. Moreover, the obtained results align with
previous research, which has shown that robustness testing
may disclose a small number of different issues, despite of
their potentially high relevancy to the particular system be-
ing tested [18].

6 Conclusions

In this paper, we have presented a novel approach for test-
ing the robustness of controllers for self-adaptive software
systems. The approach consists in mutating the inputs pro-
vided by probes to the controller, according to a set of muta-
tion rules and a target system’s changeload, and taking into
account the stateful nature of the controller. The proposal
also includes an experimental setup and testing procedure
specific to self-adaptive systems, as well as an adapted ver-
sion of the CRASH failure scale that characterizes the dif-
ferent failure modes of a controller for self-adaptive soft-
ware systems. We have evaluated the feasibility of our ap-
proach using Rainbow as a controller, which is based on
an architecture-based self-adaptation framework, and in the
context of the Znn.com case study, which reproduces the
typical infrastructure for a news website.

Our experimental results have shown that the proposed
approach has been able to discover a relevant number of con-
troller failures that might impact negatively on the resilience
of the self-adaptive system. However, despite the relevant
number of failures uncovered, our approach has been un-
able to identify any catastrophic, restart, or hindering fail-
ures in the controller. Although this might be related to the
restricted observability of the controller’s internal behavior,

other factors such as the architectural robustness of the con-
troller might be a plausible explanation for such results. In-
deed, the obtained results align with previous research on ro-
bustness testing, which has shown that these techniques may
disclose a narrow range of different issues, despite of their
potential relevance to the particular system being tested [18].
Regarding discovered failures, most of them correspond to
silent ones and are distributed in similar patterns across the
different probes and controller operational stages. However,
it is worth observing that even if the failure categories co-
incide, the specific issues discovered are different between
probes implemented with different technology, i.e., Java and
Perl. This is also true in some specific cases in which muta-
tions on the same probe in different operational stages of the
controller result in different kinds of silent failures.

Concerning future work, there are different lines of re-
search that we intend to exploit based on the groundwork
setup by this paper:

– Employ different controllers and additional case stud-
ies for assessing our approach in terms of its efficiency
in uncovering faults in the controller of a self-adaptive
software system.

– While the focus of this paper was the evaluation of the
controller, there is the need for considering the self-adaptive
system in its entirety, and this would inevitably lead to
new challenges, such as, the necessity to consider the
full state of the target system when evaluating the ro-
bustness of the entire system, i.e., the controller plus the
target system.

– Develop a framework for resilience evaluation of self-
adaptive software systems based on our technique for
evaluating the robustness of controllers. This work will
be based upon previous work conducted on resilience
evaluation of self-adaptive software systems [4,6], and
will enable us to explore how robustness issues in the
controller can influence the resilience of the overall self-
adaptive system.

– Extend our robustness evaluation approach into the in-
ternal components of the controller that implement the
MAPE-K loop. The idea is to test the interfaces between
its components, in contrast with just focusing on the in-
terface between the controller and the target system.
A long term goal is to perform the type of evaluation de-
scribed in this paper at run-time rather than development-
time since the structure of a self-adaptive software sys-
tem is expected to evolve during run-time.
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