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Abstract: A healthy immune system exhibits robustness to disease where the robust stability
and performance depends on the immune response mechanism. This paper presents an analysis
of the immune system from the viewpoint of variable structure control. The immune response
function is regarded as a switch. The influence of candidate personal immune response functions
inspired by both experimental and mathematical work from immunology on capturing this
crucial dynamics is reviewed. Motivated by this analysis and knowledge of variable structure
control, a discontinuous switch which yields more realism and an improvement in the stability
and robustness of the immune system has been designed and studied. In particular, surfaces
which are functions of immune cell concentrations are identified. These form analogous functions
to the well-known sliding mode surfaces which are known to represent a special class of variable
structure control. These functions can be seen from the biological viewpoint as system properties
which the healthy immune system appears to drive to zero, a well-known characteristic of the
sliding mode paradigm.

1. INTRODUCTION

The immune system is studied from a variable structure
control perspective. Sliding mode control as described by
Utkin (1977) is a special case of variable structure control
and is a well-known robust control paradigm in control
systems theory. The main features include inherent robust-
ness and reduced order dynamics produced by allowing the
system to evolve only on a user selected manifold in the
state-space. In recent years, the immune system has been
studied rigorously from a systems theoretical viewpoint as
can be seen in Alexander and Wahl (2011); Iwami et al.
(2009); Wing et al. (2006); Janeway et al. (2005) and the
references therein. The results presented in this paper are
motivated by the fact that the immune system can be
regarded as a biological robust control system, with an
inherent variable structure nature.

There is convincing evidence that characteristics of the
immune system match those of other types of dynami-
cal control system as can be seen from the work of De-
Boer and Perelson (2013); Blyuss and Nicholson (2012);
Alexander and Wahl (2011); Iwami et al. (2009, 2007);
Utzny and Burroughs (2003). The study in Alexander and
Wahl (2011); Bluestone et al. (2010); Wing et al. (2006);
Janeway et al. (2005)) reveals that the adaptive immune
system is a closed loop feedback which monitors antigen.
The work in DeFranco et al. (2007); Wing et al. (2006)
elucidates this sensing mechanism which is employed by
the Antigen Presenting Cells along with naive T-cells.
When the relevant signals are delivered, the control system
is activated seeking to restore the system to its healthy
antigenic steady-state. The control performance includes
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suitable response time, good disturbance rejection, robust-
ness to parameter variations and monitoring accuracy. The
biological environment (cell population, reaction speed
and biological activities) can be affected by several fac-
tors (natural evolution, aging, drugs, location) which can
disturb the optimal operation of the immune system.

Biologists have regarded the immune system as a single
structure which produces a linear response to the presence
of antigen. The studies in Britton (2003); Brown and
Rothery (1993) are examples of this. The population
of specific attacking cells increases proportionally with
the concentration of the specific antigen according to
a constant defined by immunological experience of the
cells. In control terms, it was considered analogous to a
linear state regulator design with a fixed structure of the
state feedback where the control parameter is set to meet
performance goals.

Recent immunological experience and related mathemat-
ical models argue that an adaptive immune response
comprises different structures involved with a potential
switching mechanism as discussed in DeBoer and Perelson
(2013); Blyuss and Nicholson (2012); Alexander and Wahl
(2011); Iwami et al. (2009). The different structures cor-
respond to different immunological states such as healthy,
chronic autoimmune disease and recurrent infection. The
adaptive immune response system switches from one sub-
system to the other according to a switching logic. Bio-
logically, it means that the states of the patient change
according to the behaviour a switching logic modelled
by the personal immune response function. Due to the
sophisticated nature of the adaptive immune response, the
position of the controller, the switching logic and the key
parameters of each immunological structure are still the
topic of intense research effort as can be seen in the con-

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Kent Academic Repository

https://core.ac.uk/display/30704314?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


tributions of DeBoer and Perelson (2013); Alexander and
Wahl (2011); A.Toda and C.A.Piccirillo (2006); Miyara
and Sakaguchi (2004).

Motivated by the apparent adaptive and variable structure
nature of the immune system, it is argued in this paper
that the natural biological design of the immune system
fits into the philosophy of a variable structure system
(VSS) defined in Utkin (1977). The study of the immune
system is undertaken as a robust control system by in-
troducing a purely discontinuous switch in the dynamics
of the immune cells. The results show that this does not
significantly change the overall dynamics. Furthermore, a
detailed analysis of the resulting equilibria is also given
that matches the qualitative behaviour reported in the
literature. Motivated by the inherent robustness properties
and the discontinuous nature of the immune cell activation
dynamics, a new perspective involving expressions of at-
tractor surfaces are established based on the principles of
sliding mode control. The ensuing analysis shows math-
ematically that the naturally occurring robust immune
system exhibits attraction to these surfaces in a similar
way to that observed in controlled physical systems.

The novelty of this paper is the analysis of the mechanisms
of the adaptive immune response of T-cells using variable
structure control theory along with the proposition of
a discontinuous function to model the inducement of
the activation and proliferation of T-cells due to antigen
stimulation.

The paper is organized as follows. Section 2 presents the
model of the immune system. Section 3 presents the study
of a new discontinuous immune response function and
compares the overall qualitative behaviour obtained with
other models appearing in the literature. Section 4 then
identifies mathematically an attractive manifold and the
analysis of convergence of the states of the system to this
manifold. Section 5 presents some conclusions.

2. ANALYSIS OF A SIMPLE MODEL OF THE
IMMUNE RESPONSE

The immune response is a defense mechanism responsible
for protecting the body against entities judged to be
harmful while causing minimum damage to the body itself.
The immune system model considered in this paper is
a third order model which describes the variation over
time of the population of healthy target cells T , damaged
cells (antigen concentration) D and immune cells C such
as CD4+ or CD8+ T-cells. This representation is well
established within the literature in the dynamics of disease
as can be seen from Perelson and Nelson (1998); Smith
and Leenheer (2003); Iwami et al. (2007). The population
growth of healthy cells is assumed to be affine and target
cells are produced at a rate λ. The production of antigen
is induced by the damage and removal process of immune
cells on target cells with an efficacy coefficient β. It is
assumed that there are constant natural removal rates for
each type of cell (µ, α, γ), respectively. More details can
be found in Iwami et al. (2007). The dynamical equations
are given below

Ṫ = λ− µT − βTC
Ḋ= βTC − αD (1)

Ċ = fPI(D)− γC

The function fPI(D) is called the personal immune re-
sponse function. It models the relationship between the
concentration of antigen(D) and the inducement of im-
mune cells (C). The triggering elements and the subse-
quent behaviour of the switches in the immune system
are complex as described by Kim and Ahmed (2010); Kim
et al. (2007). This paper looks at the personal immune
response function as a switched control action because
it changes the immunological states and it has a major
impact on their dynamical behaviour and robustness.

3. CANDIDATE PERSONAL IMMUNE RESPONSE
FUNCTIONS

Different mathematical representations of the personal im-
mune response function have been studied in the literature
and supported by theoretical or experimental immunolog-
ical evidence as discussed by Iwami et al. (2007, 2009).
The dynamical behaviour induced by different fPI(D)
candidates corresponds to a range of clinical symptoms
observed in autoimmune disease and described by Iwami
et al. (2007); Alexander and Wahl (2011); Blyuss and
Nicholson (2012). The way in which the total inducement
of immune cells depends on the antigen density, fPI(D),
can be represented by a linear, a Michaelis-Menten, a
sigmoidal or a bell-shaped function. Iwami et al. (2007,
2009).

The linear function assumes that the production of im-
mune cells is proportional to the concentration of antigen
and is expressed as

fPI(D) = kD (2)

The average magnitude of activation/production of im-
mune cells is encompassed by the parameter k. This linear
candidate has been investigated in Iwami et al. (2007);
Smith and Leenheer (2003). The system has two steady-
states: one trivial equilibrium located at TL0 = λ

µ ;DL0 =

CL0 = 0 corresponding to a healthy (tolerance) state and
a non-trivial equilibrium located at TL1 = αγ

βk ;DL1 = λ
α −

µγ
βk ;CL1 = λk

αγ corresponding to an autoimmune disease

state. The sign of the poles depends on the relation λβk−
µγγ = 0. Therefore, the stability of the equilibria depends
on the parameter values linked by the ratio R0 = βkTL0

γα .

From Iwami et al. (2007) the trivial equilibrium is globally
asymptotically stable (GAS) if R0 <= 1 and the non-
trivial equilibrium is GAS if R0 > 1. The value of the
parameter k is varied whilst the other parameter values
are non-negative constants. Since dR0

dk > 0, it has been
shown that the stability of the healthy state shifts to the
autoimmune state as k increases. A small k leads to a
stable trivial equilibrium whilst a large k makes the non
trivial equilibrium stable.

The Michaelis-Menten function

fPI(D) =
mD

Km +D
(3)



where m is the maximum proliferation rate of immune
cells and Km is the antigen concentration at which the
proliferation rate is half maximal, has been investigated
by Iwami et al. (2007); Brown and Rothery (1993). This
nonlinear saturation function is an asymptotic switching
curve. When D � Km, fPI = m

Km
D so that the prolifera-

tion is directly proportional to the antigen concentration.
When the antigen concentration is very large, fPI = m
and the proliferation rate is saturated and independent
of the antigen concentration. Although the Michaelis-
Menten function improves the realism by changing the
expression of the two equilibria, the resultant qualitative
behaviour of the system is similar to that of the linear
approximation (2). Hence, the system with a linear or a
Michaelis-Menten immune response function has stability
and performance characteristics determined by parameters
and their variation and the behaviour does not depend on
initial conditions.

The influence of a Holling type III personal immune
response function has been investigated in Iwami et al.
(2007). This sigmoidal function is expressed as

fPI(D) =
mD2

D2 + h2
(4)

where m is the maximum proliferation rate of immune
cells and h is the antigen concentration at which the
proliferation rate is half maximal. It was demonstrated
that a sigmoidal immune response function dramatically
affects the qualitative behaviour of the dynamics. In fact,
the system has three equilibria: a trivial equilibrium E0

and two non-trivial equilibria E− and E+ which exist if
and only if λ2β2m2 − 4µγα2h2(µγ + βm) > 0. The poles
of the trivial equilibrium are :−µ;−α;−γ. Since biological
parameters are positive, the poles are negative. Therefore,
the system is always stable at the trivial equilibrium. It
has been proven that whenever E+ exists it is always
stable if µ >> γ. E− is a saddle equilibrium having a two-
dimensional stable manifold and a one dimensional unsta-
ble manifold. It was shown in Fig. 8 in Iwami et al. (2007)
that E− depicts a boundary surface between the absorbing
domain of E0 and E+. When the antigen population is
small the stable trivial equilibrium is reached whereas
the stable non-trivial equilibrium is experienced when the
antigen concentration is large. Thus, a sigmoidal switch
modifies the dynamical behaviour and mathematical struc-
tures, leading to a bistable immune system. Hence, the
immunological steady-states are robust against parameter
variations and they depend on initial conditions, where the
antigen concentration is particularly important.

Within the domain of engineering applications, a pure
switch within the control strategy can yield interesting
robustness properties. However, it is often not appropriate
to implement a discontinuous control action in practical
implementation. A solution to this problem is to use a
step-like sigmoidal function for smoothing the disconti-
nuity as discussed in Burton and Zinober (1986). It is
interesting to note that the curvature of the biologically
inspired sigmoidal function is different from the curvature
of the typical sigmoidal switching function implemented
in engineering applications. Indeed, the curvature of the
Holling type III function is less steep than the curvature
of the sigmoidal engineering switch. The “S” shape of this
personal immune response function represents exponential

Fig. 1. Different personal immune response curves: - linear,
+ Michaelis-Menten, o sigmoidal and x discontinuous.

growth producing a rapid rate of change and incorporates
saturation which decreases the rate of change as described
by Britton (2003). Fundamentally in this sigmoidal repre-
sentation, the nonlinearity is achieved by increasing the
effect of D and Km of the Michaelis Menton function.
This function shows the tolerance of the switch when a
low number of triggering elements are present which is an
essential element of the biological system.

Table 1 summarises the influence of the candidate personal
immune response function on the qualitative behaviour
of the immune system. Figure 1 shows a comparison of
the shapes of the different immune response switching
curves. From this comparison, it can be deduced that the
nature of fPI influences the stability, performance and
robustness of the observed immunological states as well as
their corresponding mathematical structures as in Iwami
et al. (2007, 2009); Alexander and Wahl (2011).

3.1 Discontinuous personal immune response proposed by
control engineering perspective

From a control engineering perceptive, this paper argues
that the immune system operates as a variable structure
control system because the activation and proliferation of

Table 1. Comparison of the mathematical
structures and robustness of the immune sys-
tem due to changes in the personal immune

response function.

Personal immune Qualitative
response function behaviour

Proportional to Stability and
antigen performance of

concentration as in the two equilibria are
(2), Smith and Leenheer (2003) sensitive to parameter values

Michaelis Menten Similar to
as in (3), Iwami et al. (2007) above

Sigmoidal Bistability
(Holling type III) Saddle equilibrium

(4), Iwami et al. (2007) Robust performance

Discontinuous switch Bistability
based on antigen population Unstable equilibrium

(5) Robust performance



T-cells switches immunological states depending on the
antigen density uptake.

Full consideration of the characteristics of the model used
for the biological switch is interesting because it illustrates
the synergies between the immune system response, as a
closed-loop control system, and the behaviour of dynam-
ical systems represented by ODEs where a discontinuous
feedback control is applied. Moreover, it contributes to new
understanding and/or reinforcement of existing biological
knowledge of the underlying phenomena. The immune
system itself is a robust and highly sophisticated biological
system and thus including discontinuous behaviour of the
switch models the robustness properties. In this paper,
a discontinuous personal immune response has been de-
veloped. Mathematically, the proposed discontinuous per-
sonal immune response function is given as:

fPI(D) = m
1

2

(
D − h
‖D − h‖

+ 1

)
(5)

A sign function based on D is effectively used to pro-
duce an on/off immunological switch. The sign function is
shifted in the positive quadrant so that its output is always
positive and biologically meaningful. To encompass the
tolerance characteristics of the immune system, an antigen
threshold h is set to match with the concentration of dam-
aged cells at the point where the proliferation rate is half
of the maximum for a sigmoidal response used in Iwami
et al. (2007). The immune response is induced when D,
the concentration of antigen, exceeds that threshold. The
amplitude of the response m, is the saturation (maximum)
proliferation rate of the attacking immune cells. Unlike
the personal immune response function currently used in
the literature, the discontinuous fPI(D) is not inspired
from biology. It does not aim to be the ”ideal” personal
immune response function. It has a step like behaviour
made up of a brutal (sharp) change in its output, the
proliferation of attacking immune cells. The discontinuous
behaviour also yields antigen tolerance but implies an
instantaneous change of behaviour (activation/inhibition).
The behaviour of the discontinuous personal immune re-
sponse function is the switching logic which changes the
mathematical structure of the immune system whilst mov-
ing between the healthy and the autoimmune diseased
state.

The steady-state analysis performed in Iwami et al. (2007)
is carried out for (5). A trivial equilibrium is found analyti-
cally at T0 = λ

µ ,D0 = 0, C0 = 0. The Jacobian is evaluated

at this point. The roots of the characteristic equation are
: −µ;−α;−γ. Since death rates are always positive, the
poles are always negative. Therefore, this equilibrium is
always stable. This trivial equilibrium depicts the case
where there are no symptoms of autoimmune disease.
Therefore, it represents the healthy (tolerance) state of the
immune system. It should be noted that the discontinuous
element of fpi(D) in equation (5) influences the analytical
expression of the equilibrium points of the system (1). As
a result, the expression for the equilibrium points depends
on the output of the personal immune response function,
especially on the output of sign(D − h).

Considering the case where S = −1 => fPI = 0 which
means that the population of antigen is less than the

threshold, the (trivial) equilibrium point is obtained. The
second outcome is reached when the concentration of
antigen is equal to the antigen threshold. Mathematically,
S = 0 <=> fPI = m/2 i.e. the immune response is
in a transient phase so it produces half the maximum
proliferation rate of attacking immune cells. The transient
equilibrium point is:

T1 =
2λγ

βm+ 2µγ
;D1 =

βλm

α(βm+ 2µγ)
;C1 =

m

2γ
(6)

The Jacobian at this equilibrium point is evaluated. The
characteristic equation is a third order polynomial having
positive coefficients for all powers of s. The Routh-Hurwitz
stability criteria are applied. The system is unstable at the
transient equilibrium (6). Hence, in the current immuno-
logical scenario, the immune response is activated and it
is in an unstable transient phase. Now, the immunological
scenario when D > h <=> S = 1 <=> fPI = m, the
antigen threshold is surpassed and the personal immune
response function delivers the maximum proliferation rate
of immune cells. the resultant equilibrium point is ex-
pressed as:

T2 =
λ

µ+ (mβγ )
;D2 =

mβλ

mβα+ αµγ
;C2 =

m

v
(7)

This non-trivial equilibrium (7) is associated with an
active immune response for chronic auto immune disease.
The Jacobian at this equilibrium (7) is evaluated and

its eigenvalues are: −α;−γ;−(µ + (mβγ ). Since biological

parameters are always positive, the eigenvalues are all
negative. Therefore, the system (1) is always stable at the
equilibrium point (7). Hence, when the concentration of
antigen is above the threshold, the immune response is
activated and a stable chronic autoimmune disease state
is exhibited by the patient.

Simulations are conducted with parameter values in (4)
taken from Iwami et al. (2007). Numerically, the healthy
equilibrium is at (T0 = 100;D0 = C0 = 0), the transient
equilibrium (T1 = 97.518;D1 = 0.2256;C1 = 0.0051) and
the autoimmune disease equilibrium (T2 = 2.70357;D2 =
8.8451;C2 = 7.197). The autoimmune disease equilibrium
exists when h < D2. h = D− = 0.2256 which is the value
of the saddle antigen equilibrium when a sigmoidal switch
is applied. This selection facilitates the comparison of the
dynamical behaviour by remaining in the same numerical
range as in Iwami et al. (2007). Considering the simulation
with initial conditions T (0) = 100;D(0) = 0.2;C(0) = 0,
the population of target cells remains large and the other
cell populations are driven to zero. The resultant healthy
state of the system does not change since the antigen
concentration is less than the threshold. This behaviour
has been suggested and demonstrated by previous theoret-
ical and experimental publications reported in Wing et al.
(2006); Iwami et al. (2007); Alexander and Wahl (2011);
Blyuss and Nicholson (2012).

When the antigen concentration is above the threshold, the
trajectories of the different cell types move first towards
the unstable equilibrium because it incorporates an attrac-
tive manifold. This behaviour is not shown on Figure 2
due to scale because the mechanism of dormancy is faster.



Fig. 2. Simulation of the state of autoimmune disease with
initial conditions: T(0)=100; D(0)=1; C(0)=0.

Indeed, the response time of the immune system with
a discontinuous switch is much smaller than that of the
sigmoidal switch studied in Fig. 5 in Iwami et al. (2007).

The response time in Figure 2 is very rapid with the
population of target cells rising whilst the population
of target cells decreases. The number of healthy cells
becomes negligible compared to the number of immune
cells which stabilise at a high level. At the same time
the antigen concentration reaches a peak value and then
decreases and remains constant. This dynamical behaviour
which models acute and chronic symptoms is typical
of the disease dynamics shown in Iwami et al. (2007);
Smith and Leenheer (2003). This antigen peak is caused
by the coupling between target cells and immune cells.
The transition from the trivial equilibrium to the non-
trivial equilibrium makes the product of the target cell
and immune cell population reach its maximum value for
producing antigen. The non-trivial autoimmune disease
equilibrium is as attractive as the healthy equilibrium. The
simulations confirm the analytical results. The qualitative
behaviour of the system is affected by the choice of initial
conditions.

4. ATTRACTIVE SLIDING SURFACE

This section identifies certain attractive surfaces in the
state-space of dynamics (1) to build engineering applica-
tions evidence of robustness in the immune system in a
way generally followed in applications of variable structure
systems Utkin (1977).

Consider model (1). Consider the following equation of

s = D + C. (8)

Sliding mode control synthesis typically begins with such
a surface so that the closed-loop system exhibits desired
behaviour when constrained to this surface. The first
design guideline is thus to select an appropriate surface
underpinning a stable behaviour.

Fig. 3. Evolution of the switching surface s(t)

In the present case, there is no synthesis being carried
out. Rather, motivated by understanding the naturally
occurring sliding surfaces, the above choice of sliding line
is motivated by the fact that a stable healthy immune
system would drive the antigen concentration D and the
immune cell population C to zero. Motivated by the usual
guidelines of sliding mode control, it is then of interest to
see if the temporal derivative of sliding line (8) vanishes
along the system trajectories (1). The temporal derivative
of the surface (8) can be obtained as follows:

ṡ = Ḋ + Ċ = βTC − αD + fPI(D)− γC
Considering the case of a healthy immune system where
fPI(D) = 0, we have the following simplification,

ṡ= βTC − αD − γC (9)

It should be noted that s > 0 for all D,C as these form
concentrations of cell population. Hence an expression sim-
ilar to the well-known reachability condition as described
in Utkin (1977) can be obtained as follows:

sṡ≤ |s|(βTC − αD − γC) (10)

Following the discussion in Section 2, it should be noted
that unlike the traditional sliding mode control, the func-
tion fPI does not switch around the sliding surface s.
Rather the asymptotic attraction to or repellency for this
surface s is obtained due to a certain value of fPI . The
surface s is rendered attractive by a healthy immune
system if the following expression holds true:

βTC − αD − γC < 0 (11)

Fig. 3 shows the time history of the surface s(t) and Fig. 4
shows the time history of the function βTC − αD − γC.
It can be seen that the function βTC − αD − γC always
remains negative thereby rendering s = 0 the domain of
attraction. It can also be claimed that those values of the
model constants α, β, γ that induce such a behaviour forms
a sufficient condition for s = 0 to be attractive, thereby
inducing a stable healthy steady-state.

Although, there are similarities in the above analysis to
variable structure control, there are some dissimilarities,
too. Sliding mode systems typically have uniform decay of



Fig. 4. Function βTC − αD − γC

s(t) to zero. An exponential decay is always preferable in
control of physical systems. Since there is no synthesis in
the present case, there is no control over how s(t) decays.
The resulting non-uniform decay of the surface s(t) and the
initial increase in the value of s(t) are distinctly different
behaviours when compared to those prescribed by a typical
variable structure control. However, from the biological
view-point, such behaviour is not new as can be seen
from Fig. 5 and 8 of Iwami et al. (2007). The reason for
this is that the two stable steady-states are separated by
an unstable or saddle transient equilibrium. The immune
system typically requires a certain threshold of a particular
cell population to be surpassed before it becomes active.
The plot in Fig. 3 exhibits such behaviour where, after
a certain point in time (between two and three units),
the immune system becomes active and drives both the
populations D and C to zero. Hence, the attractive surface
s thus identified can be seen as a valid candidate model
for capturing key dynamics of the natural healthy immune
response.

5. CONCLUSION

The effects on the immune system model of different can-
didate personal immune response functions inspired from
biology have been analysed from a control engineering
perspective. It is deduced through analytical and numeri-
cal evidence that the personal immune response function
can be regarded as a discontinuous switching function
because it changes the states according to the antigen
concentration. Thus the immune system has been studied
as a variable structure control system. Subsequently, an
appropriate expression of a naturally occurring attractor
surface was identified. The resulting immune system sat-
isfies established conditions to render the sliding surface
attractive. Consequently, the similarities and differences in
behaviour between a discontinuous model of the immune
response and a classical model of a discontinuous feedback
control are highlighted.
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