
Kent Academic Repository
Full text document (pdf)

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all

content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions

for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version.

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the

published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact:

researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down

information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Wang, Frank Z. (2014) DIANA: Data Interface All-iN-A-place for Big Data. In: IEEE Big
Data Science and Engineering, 24-26 September 2014, Tsinghua.

DOI

Link to record in KAR

https://kar.kent.ac.uk/42265/

Document Version

UNSPECIFIED

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/30703833?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Data Interface All-iN-A-place (DIANA) for Big Data

Frank Zhigang

Wang

Theo Dimitrakos Na Helian Sining Wu Yuhui Deng Ling Li Rodric

Yates

School of Computing

University of Kent

UK

Contact author:

frankwang@ieee.org

British

Telecommunication

UK

SCS

University of

Hertfordshire

UK

Xyratex

Havant

UK

University of

Jinan

China

School of

Computing

University of

Kent

UK

Hursley Lab.

IBM

UK

Abstract: “Variety” in Big Data means we have a wide range of

data types and sources: e.g. file systems and database systems

co-exist for decades as two popular data-accessing interfaces.

This work is to unify these two interfaces by presenting a Data

Interface All-iN-A-place (DIANA). The first challenge lies in

distinguishing structured and un-structured data and diverting

them to different underlying platforms. It is demonstrated that

a speedup of 5000 in indexing has been achieved at the expense

of a slowdown of 100 in extracting attributes. A DIANA-based

cloud storage system is constructed for versatile, long distance

and large volume big data accessing operations to address

“Volume” and “Velocity” in Big Data. It encapsulates a

dynamic multi-stream/multi-path engine at the socket level,

which conforms to Portable Operating System Interface

(POSIX).

Keywords: big data; variety; volume; velocity; file systems;

database systems; service-oriented architecture

I. INTRODUCTION

4Vs (volume, velocity, variety and value are four defining

properties or dimensions of big data, out of which variety

refers to the number of types of data [1]. Based on the above

4Vs model, the challenges of big data management come

from all four properties, rather than just the volume and

velocity.

File systems and database systems are two main stream

platforms in terms of interfacing applications and storage

devices. Computers can store information on several different

storage media, such as magnetic disks, magnetic tapes, and

optical disks. File systems and databases provide a uniform

logical view of information storage to abstract from the

physical properties of its storage devices.

A file system replies on POSIX (IEEE Std 1003.1-2001)

VFS (virtual file system or virtual filesystem switch) to

support applications [2]. The purpose of a VFS is to allow

client applications to access different types of concrete file

systems in a uniform way. A VFS can, for example, be used

to access local and network storage devices transparently

without the client application noticing the difference. It can

be used to bridge the differences in Windows, Mac OS and

Unix filesystems, so that applications can access files on local

file systems of those types without having to know what type

of file system they're accessing. One of the first virtual file

system mechanisms in Unix-like systems was introduced by

Sun Microsystems in SunOS 2.0 in 1985.

SQL (Structured Query Language) is a standard

interactive and programming language for querying and

modifying data and managing databases [3]. SQL was

adopted as a standard by ANSI in 1986 and ISO in 1987 [4].

The SQL standard has gone through a number of revisions:

SQL: 1999 (SQL3) added support for procedural and control-

of-flow statements and ISO/IEC 9075-14:2006 defines ways

in which SQL can be used in conjunction with XML [4].

Why are these two platforms formed historically? What

is the difference between a filesystem and a database?

File-based systems were an early attempt to computerize

the manual filing system that we are all familiar with. From

the end-user’s point of view, file systems proved to be a great

improvement over manual systems. Simply speaking, a file is

a stream of bytes, which are typically un-structured. An

example of a file could be a Text File (a collection of

alphanumeric characters that, when put together, form a

readable document) or a Bitmap Image File (a collection of

bytes that software would then interpret as pixels of an

image).

There are a number of problems with file systems [4]:

� Separation, isolation and duplication of data. Owing to

the decentralized approach, a file system encourages the

uncontrolled separation, isolation and duplication of data.

� Data dependence or Incompatible file formats. The

structure of files is embedded in the application programs.

� Fixed queries/proliferation of application programs. File

systems are very dependent upon the application developer,

who has to write any queries or reports that are required.

� No provision for security or integrity;

� Recovery, in the event of a hardware or software failure,

was limited or non-existent.

All the above limitations of file systems can be attributed

to two factors: (1) the definition of the data is embedded in

the application programs, rather than being stored separately

and independently; (2) there is no control over the access and

manipulation of data beyond that imposed by the application

programs.

2014 IEEE 13th International Conference on Trust, Security and Privacy in Computing and Communications

978-1-4799-6513-7/14 $31.00 © 2014 IEEE

DOI 10.1109/TrustCom.2014.86

665

To become more effective, a new approach of managing

data was required. What emerged were the database systems.

A database is both a program to store and organize data, and

make it searchable, and the data contained in it. A database

holds many tables and each table can hold many records as

well as fields. Each table in a database requires one field to

be designated as the Primary Key to uniquely identify a

record in a table.

Therefore, all databases are files, but not all files are

databases. A file or a database table is just a logical storage

unit. File systems are easy-to-use, un-structured, OS-resident

(easy-to-obtain) and easy-to-maintain. Databases tend to be

large but have strong data definition and manipulation

capabilities including query, search, sorting and calculation.

There two platforms co-exist for decades playing

complementary roles: for example file systems are well-used

to store un-structured text and image documents whereas

databases are designed to handle high transaction throughput

such as on-line transaction processing (OLTP) in order-entry,

stock control, accounting, banking, financing, etc.

Why not a pure database system? The answers are

probably as below:

� Scientific applications are usually based on a POSIX API.

Many tools are scripts or compiled programs that might be

difficult to modify to use a database.

� Users are accustomed to a POSIX API.

� Databases are good at storing structured data, but most

don’t store large unstructured data well.

Why filesystems alone aren’t a solution? Traditional B+-

tree and hashing are not suitable for multidimensional data as

they can handle only one dimensional data. Using multiple

B+-trees (one per dimension) or space linearization followed

by B+-tree indexing are not efficient solutions. We need

multidimensional index structures: those that can index data

based on multiple dimensions simultaneously, sometimes

beyond 10-15 dimensions in modern data-intensive

applications like multimedia retrieval (e.g., 64-d color

histograms), data mining/OLAP (e.g., 52-d bank data in

clustering) and time series/scientific/medical applications

(e.g., 20-d Space Shuttle data, 64-d Electrocardiogram data)

[5].

II. THE DIANA VISION AND UNIQUENESS

2.1 The DIANA vision

As shown in Fig.1, DIANA encapsulates POSIX, SQL

and an extensible interface reserved for metadata. In DIANA,

file and database operations are unified into a uniform

interface. That is to say, DIANA provides uniform access to

unstructured data stored in files and tabular data stored in

databases.

Fig.1 DIANA encapsulates POSIX VFS and SQL standard interfaces

as well as an extensible interface reserved for metadata operations.

DIANA provides uniform access to pluggable filesystems and
databases.

DINAE has a tighter coupling between files and database

tables, than provided by a separate file system and a

database. It supports the frequent interactions and great

synchronicity between data and metadata. For example,

while creating a file, an entry for the new file will be made

in the tabular directory. The directory entry records the name

of the file and the location in the file system, and possibly

other provenance metadata. In many domains provenance

increases an object’s value [6].

Metadata such as provenance is typically stored in

standalone database systems, maintained in parallel with the

data to which it refers to. Separating provenance from its data

introduces problems such as: ensuring consistency between

the provenance and the data, enforcing provenance

maintenance, and preserving provenance during backup,

restoration, copies, etc [6]. Provenance should ideally be

maintained by a unified platform such as DIANA, since

provenance is merely meta-data and DIANA is equipped with

powerful manipulation capability to query, index and manage

meta-data.

DIANA provides the following features:

� DIANA generates system-level metadata automatically.

Application-level solutions have to involve users to

manually collect metadata. In other words, it delays

provenance collection, performing it at user-level by

writing it to an external database.

� DIANA provides tight coupling between data and

metadata on the system level. Application-level solutions

have to involve users to synchronize data and metadata.

� While writing a file, given the name of the file, DIANA

searches the tabular directory via its SQL interface to

conveniently and quickly find the location of the file. A

pointer is provided to the location in memory where the

content to be written is kept. To read from a file, again,

the directory is searched via SQL for the associated

directory entry.

2.2 Related works and our innovation

666

OGSA-DAI (Data Access and Integration) is perhaps one

of the most useful and successful Globus components [7].

Developed in the UK, it provides uniform Web Services

interfaces to diverse data resources. These interfaces allow

clients not only to "access" data, but also to query, update,

transform, and deliver it. In other words, they let you specify

some pretty fancy server-side operations [8]. Audit records

generated during job execution are stored in a database and

can subsequently be retrieved by (authorized) clients. OGSA-

DAI is used to create a virtual database from internal audit

and accounting databases. The value of the OGSA-DAI

abstractions and implementation has been positively

evaluated [9]. However DAI is just a universal interface for

heterogamous database products.

The PVFS (Parallel Virtual File System) serves as both a

platform for parallel I/O research as well as a production file

system for the cluster computing community. PVFS supports

the UNIX I/O interface and allows existing UNIX I/O

programs to use PVFS files without recompiling [10]. The

familiar UNIX file tools (ls, cp, rm, etc.) will all operate on

PVFS files and directories as well. This is accomplished via

a Linux kernel module which is provided as a separate

package [10]. In the Sloan Digital Sky Survey or SkyServer

project, Carnegie Mellon University and Los Alamos Lab,

together with an astronomy community, have added

multidimensional extensions on SQLite DB to PVFS [5].

Such a multidimensional filesystem is one which also indexes

and allows efficient access to files based on their meta-data

tags. Anyway, PVFS is an enhanced file system with a multi-

dimensional index extension.

Provenance-Aware Storage System (PASS) originated by

Hardvard University is a storage system that automatically

collects and maintains provenance or lineage, the complete

history or ancestry of an item [6]. PASS manages its

provenance database directly in the kernel and extends SQL

to support lineage and accuracy information when requested

by a user or application. PASS provides useful provenance-

aware functionality via the conventional filesystem interface.

In short, PASS is a storage system with the functionality not

available in today’s file systems or provenance management

systems.

To our best knowledge, Data Interface All-iN-A-place

(DIANA) is the first attempt to unify the two popular

interfaces: filesystems and databases. DIANA is expected to

provide the advantages of both worlds.

III. DIANA IMPLEMENTATION

To implement DIANA (Fig.1), an interface needs to be

designed first, which should include system calls in the form

of functions to universally store, index and query all types of

data objects, no matter if they are structured, semi-structured

or un-structured. A system call is the mechanism used by an

application program to request service from the operating

system.

On Unix-based and POSIX-based systems, popular

system calls are open, read, write, close, wait, exec, fork, exit,

and kill.

SQL allows a user to create the database and table

(relation) structures; perform basic data management tasks,

such as the insertion, modification, and deletion of data from

the tables; perform both simple and complex queries.

3.1 DIANA interface design

DIANA encapsulates POSIX VFS and SQL standard

interfaces as well as an extensible interface reserved for

metadata input/query. DIANA provides uniform access to

unstructured data stored in files and tabular data stored in

databases.

POSIX consists of both operating system interfaces and

shell/utilities. Six basic file operations are provided to create,

write, read, reposition, delete, and truncate files. We have

identified u_create (open), u_write, u_read and u_delete

functions (“u” stands for “universal”) in our prototype

implementation. As listed in the table, their corresponding

functions in SQL are: create table, load/insert/update, select

and drop table. Search against a certain criteria has not been

defined in POSIX but it could be implemented as a shell

command. The corresponding function in SQL is the select

function with a “where” clause.

The following operations in DIANA are highlighted:

u_create (dataset_name);

It creates an entry in the Global Multi-dimensional Index

Facility (GMDIF) under the current user’s account. First,

space in the file system or the database must be found for the

newly-created object. Second, an entry for the new object

must be made in the GMDIF directory. The directory entry

records the name of the object and the location in the file

system or database, and possibly other information.

u_write (dataset_name, location/object);

It writes an assigned data object (a text, an image, or

tabular data with an extension) from the path to a new

dataset_name. To write an object, we specify the name of the

object and the dataset_name to receive this object. Given

dataset_name, DIANA searches the GMDIF directory to find

the location of the dataset_name. A pointer is provided to the

location in memory where the content to be written is kept.

The corresponding metadata is also written to the GMDIF

index automatically and transparently.

u_read (location, dataset_name);

It reads an existing dataset_name (a text, an image, or

tabular data with an extension) to the location. Again, the

GMDIF directory is searched for the associated directory

entry.

u_search (dataset_name, ‘key1’ ‘key2’…);

It performs a multi-dimensional search, returning a

GMDIF location of one or more dataset_name that matches

the provided keys. The keys could be a number of keywords

667

of a text, the current date/time and GPS location information

of a photo, and any attribute values of a table, etc.

In principle, DIANA includes not only the above

commonly-used operations of VFS and SQL but also all the

pure VFS and SQL operations. In other words, it covers

nearly all the data operations. It is universal. DIANA is also

extensible in terms of reserving an interface for metadata-

related operations, such as definition, interaction and

synchronization.

3.2 A DIANA Prototype Implementation

Driven by the identified problems of “Variety”, “Volume”
and “Velocity” in Big Data, we implemented a prototype

DIANA (Fig.2) in Linux 2.4.20. The implementation is

approximately 5,000 lines of code. This prototype includes

the POSIX VFS standard and the SQL standard. The

challenge lies in distinguishing structured and un-structured

data. For example, text and image data may ideally be

processed and stored on files in a less-structured file system

environment but the transactions and metadata (including

provenance) should be separately operated on tuples within a

database framework due to its power in data manipulation.

As shown in Fig.2, DIANA uses a switch to divert un-

structured data to a file system and structured data to a

database system. This switch distinguishes the extension of

an input data object. For example, “.txt”, “.doc”, “jpg” and

“.bmp” are categorized as un-structured data whereas “.sql”,

“.mdb” are structured data. A conservative policy has been

adopted in DIANA, which means an un-recognized object

will be treated as an un-structured one. A semi-structured

object such as “.html” and “.xml” will also be viewed as an

un-structured one. There may be performance degradation

with this conservative policy. The overhead will be measured

and evaluated in Section 4.

A further advanced switch is being implemented, which

can scan the content of an unknown object to accurately

distinguish its structure. This is a challenging work taking

into consideration that there are enormous types of data

objects. Like the above work, a conservative policy is thought

to be still needed in case the distinguishing procedure fails.

As shown in Fig.2, Global Multi-Dimensional Index

Facility (GMDIF) implemented on MySQL helps an end user

find the files or databases he/she needs quickly. Traditional

filesystems allow one to access files along a single

dimension: that of the filename and path. However, filenames

are frequently irrelevant in practice, in which analysis needs

to be applied to all data with a certain set of attributes not a

certain name. The GMDIF is a multidimensional index that

universally locates a desired object across filesystems and

databases based on its multiple meta-data tags (attributes).

Fig.2 DIANA includes a switch to divert un-structured data to a file
system and structured data to a database system. Global

Multidimensional Index Facility (GMDIF) on MySQL help an end
user find the files or databases he/she needs quickly. A channel is

designed to penetrate the boundary between the user space and the

kernel for synchronization and consistency purposes via a pair of
inter-connected Kernel Demon and User Demon.

Fig.3 A pipe is used to connect the Kernel Demon and the User

Demon, one end of which is written by the Kernel Demon and
another end of which is read by the User Demon.

In hybrid filesystem/database DIANA, MySQL is not only

used to store structured data objects, but also to index and

query metadata referring to all saved objects. This is an

embedded solution with low total cost of ownership. All

‘normal’ metadata (POSIX attributes, file sizes, etc.) are

indexed. DIANA also allows application-specific metadata

(e.g., the current time/date and the GPS location of a photo)

to be added as extended attributes for any object indexed by

the GMDIF. Attributes are asynchronously written to

GMDIF. Queries are SQL style query strings. Expressiveness

limited only by application metadata tags. Clients collate and

report results.

The metadata interface is designed to enable that user to

input and query these metadata. The interface may also

automate the collection of provenance associated with data

and their operations, which can be used to further boost the

GMDIF.

The challenge also lies in establishing a channel penetrating

the boundary between the user space and the kernel for

668

synchronization and consistency purposes. As shown in

Fig.2, a kernel-memory module, the DIANA Kernel Demon,

acts as a VFS interface. The DIANA server nominates a user-

space daemon, the DIANA User Demon, to communicate

with the Kernel Demon. The VFS is implemented in the

kernel. This implementation conforms naturally to the

standard POSIX semantics and provides applications with

seamless access to DIANA. A request is linked into the VFS's

request queue by a kernel thread and is then swept up in a

perpetual loop supported by the above Kernel Demon and the

User Demon. A copy of the request is transferred to the user

space from within the kernel. It dives repeatedly into the

kernel to copy the data, then transmits it in standard SQL

code.

In DIANA, the above-mentioned pair of the Kernel

Demon and the User Demon is connected by three different

message/data passing mechanisms for different

considerations. The first mechanism is a pipe, as shown in

Fig.3, one end of which is written by the Kernel Demon and

another end of which is read by the User Demon. The second

mechanism is a message queue, in which each message

generated by the User Demon stays until the Kernel Demon

reads it. The third is a new mechanism, which we call “Data

Window” (Fig.4). The Data Window mechanism exceeds the

space limit (32 MB) of the well-used IPC shared memory (in

this means we focus our attention on the bulk data transfer).

Like the IPC shared memory, the implemented “Data

Window” mechanism also avoids copying data between the

user space and the kernel space. A tighter coupling between

files and database tables, than provided by a separate file

system and a database, is easily guaranteed in DIANA, which

supports the frequent interactions and great synchronicity

between data and metadata.

Fig.4 The invented ”Data Window” mechanism breaks the space

limit (32 MB) of the well-used IPC shared memory. A driver

maps a virtual address to the User Demon’s user space (page
table), which allows the User Demon and the Kernel Demon to

access some common data structures.

Fig.5 Graph of write time versus the number of texts.

IV. DIANA EVALUATION

The purpose of this evaluation was to examine the alpha

release of the DIANA code, and to test and compare its

performance with that of traditional standards. The local file

system was configured as EXT3. We have selected EXT3 as

the candidate for comparison for two reasons: 1. EXT is

mature and de facto in the Unix/Linux user community; 2.

EXT and DIANA-FS can run on precisely the same hardware

and OS. They can, in fact, coexist on the same machine and

be used simultaneously. Using EXT allowed us to conduct

controlled experiments in which the only significant variable

was the file system component. The performance differences

we observed were due to the design and implementation of

the file systems and were not artifacts of hardware, network,

or OS variation.

We evaluated our DIANA prototype on a 1 GHz Dell

machine with 1024MB of RAM, 80GB of a SATA disk drive,

running RedHat 7.3. To quantify the overhead of our system,

we took measurements on both a DIANA and a non-DIANA

system. We obtain results marked “DIANA” by running our

DIANA interface on EXT3FS and MySQL. We obtain non-

DIANA results, marked “EXT3”, running on Linux 2.4.20

kernel and EXT3FS.

We will measure the overhead of typical data-accessing

operations (u_write, u_read, u_search, etc.). Ten trials are

used to generate each data point. In nearly all cases, the

standard deviations were less than 5%. Measurements are

carried out in a cold cache environment unless stated. To

ensure a cold cache, we reformatted the file system on which

the experiments took place between test runs. For each file

read/write mechanism, we transferred a set of objects

numbering from 1 to 4096.

4.1 Text operations

When a new object is written not only the data need to be

stored but also the metadata information is stored in the

database. The overhead time to extract the top five most

frequent keywords from a text document (.txt) of 611,235

Bytes and add them to the database is included in the u_write

operation of that document. We have measured the overhead

imposed by the DIANA interface. Graph of write time versus

the number of texts is shown in Table 1 and Fig.5. Although

a slowdown (the reciprocal of speedup) of 1.4 – 17.7 is

669

shown, note that EXT3 does not extract any keywords during

a write operation.

Table.1 Write time of in seconds versus the number of texts.

No. of

Texts

DIANA write

with an

extraction of top

5 keywords to

DB

EXT3 write

without any

extraction

Slowdo

wn

1 text 0.172 0.121 1.4

64 texts 6.491 0.366 17.7

256 texts 26.754 2.778 9.6

1024 texts 104.622 30.117 3.5

4096 texts 434.31 159.154 2.7

A comparative behaviour of multi-dimensional indexing in

a filesystem needs to be measured. Unfortunately, today’s file

systems do not support multi-dimensional indexing. When a

file is created, an entry in the directory tree is added. The

directory entry records the name of the file and other

information. We changed the file name format as a

concatenation of the selected attributes, as illustrated in Fig.6.

The advantage of changing the filename format is that we don

not need to modify the directory tree structure in a filesystem.

The query time of a multi-dimensional “find” by scanning all

the extended filenames in EXT3 is included in Table 2. It

takes 242 seconds to generate those 4096 texts’ extended

filenames in EXT3. The multi-dimensional query time by

scanning all saved texts in EXT3 is also included. A speedup

of 4800 has been achieved. The overhead of extracting

attributes to GMDIF while writing has been paid off.

Fig.6 A multi-dimensional search in a traditional filesystem can be
performed by changing the filename format as a concatenation of the

selected attributes.

Fig.7 Graph of write time versus the number of images.

Table.2 Search time (s) of 4096 text entries against No. of attributes. The

speedup is the time of EXT search (scanning texts) over that of SQL search.

No. of

attributes 1 2 3 4 5

EXT search

by scanning

all the

saved texts

202.

4 202.5 202.5 202.6 202.6

EXT search

by scanning

all the

extended

filenames

0.08

3 0.084 0.084 0.084 0.084

SQL search

in GMDIF

0.04

2 0.043 0.041 0.045 0.044

Speedup 4819 4707 4937 4498 4600

4.2 Image operations

The overhead time to extract six selected tags (attributes)

from the header of a JPG image of 105,542 Bytes and add

them to the database is included in the u_write operation of

that image. Graph of write time versus the number of images

is shown in Table 3 and Fig.7. Although a slowdown of 5-76

is shown, note that EXT3 does not extract any attribute during

a write operation.

Table.3 Write time of in seconds versus the number of images.

No. of

Images

DIANA write

with an

extraction of 6

attributes to DB

EXT3

write

without

any

extraction slowdown

1 image 0.286 0.054 5.3

64 images 10.99 0.202 54.4

256 images 43.598 0.573 76.1

1024

images 176.566 4.817 36.7

4096

images 720.202 29.433 24.5

In the above JPG image files, Exchangeable Image File

Format (EXIF) is used to include metadata. EXIF is a

specification for the image file format used by digital

cameras. The specification uses the existing JPEG, TIFF Rev.

6.0, and RIFF WAV file formats, with the addition of specific

metadata tags. An EXIF file header consists of a collection of

tagged attribute/value pairs, some of which are provenance.

The metadata tags defined in the EXIF standard cover a broad

spectrum [11]:

• Date and time information. Digital cameras will record the

current date and time and save this in the metadata.

• Camera settings. This includes static information such as

the camera model and make, and information that varies with

each image such as orientation, aperture, shutter speed, focal

length, metering mode, and ISO speed information.

• A thumbnail for previewing the picture on the camera's

LCD screen, in file managers, or in photo manipulation

software.

• Descriptions and copyright information.

The EXIF format has standard tags for location

information. Currently, only very few cameras, such as the

Ricoh 500SE, have a built-in GPS receiver and store the

670

location information in the EXIF header when the picture is

taken. But GPS data can be added to any digital photograph

on a computer, either by correlating the time stamps of the

photographs with a GPS record from a hand-held GPS

receiver or manually using a map or mapping software. The

process of adding geographic information to a photograph is

known as geocoding [11].

Whenever such an image file is transformed, additional

metadata is added to this header. This approach addresses the

challenge of making the metadata and data inseparable, but it

introduces other disadvantages. It is expensive to search the

attribute space to find objects meeting some criteria. In

DIANA, extracting attributes of an image to the Global

Multidimensional Index Facility (GMDIF) is expected to find

the images quickly.

Similar to Section 4.1, the query time of a multi-

dimensional “find” by scanning all the extended filenames in

EXT3 is included in Table 4. It takes 638 seconds to generate

those 4096 images’ extended filenames in EXT3. The multi-

dimensional query time by scanning the headers of all saved

images in EXT3 is also included. A speedup of 5200 has been

achieved. Again, the overhead of extracting attributes to

GMDIF while writing has been paid off.

Table.4 Search time (s) of 4096 image entries against No. of attributes. The
speedup is the time of EXT search (scanning headers) over that of SQL

search.

No. of

attributes 1 2 3 4 5

EXT

search by

scanning

the

headers

of all

saved

images

621.

2 621.3 621.3 621.3 621.4

EXT

search by

scanning

all the

extended

filenames

0.39

5 0.395 0.396 0.396 0.396

SQL

search in

GMDIF

0.11

8 0.119 0.12 0.122 0.121

Speedup 5265 5221 5177 5093 5135

4.3 Exhaustive Search

We have measured the performance improvement compared

with traditional approaches (B+-tree and hashing in

filesystems). A Linux-2.4.20 source code tree is used as a

searching target. After compiled, this source code tree has

21,777 file entries in total. A shell command “find” is first

used search the tree for “Makefile” meeting a criteria of

obj_size < 4096 bytes. This tree is then inserted into a

MySQL table with 21,777 records (one-inode-per-record). A

DIANA search operation is performed to search the tabular

tree (the creation time of this tabular tree is 589.625 seconds)

for the same object with the same criteria. Query time is

shown in Table 5. A speedup of 410 has been achieved. The

overhead of extracting attributes to DB while writing has

been paid off.

Table.5 Comparison of query time between DIANA search and the shell

command “find” against the Linux-2.4.20 source code tree with 21,777 file
entries.

DIANA search Shell find speedup

0.067s 27.534s 410

We have also measured the dependency of operation

overhead in a typical multi-attribute search on the number of

attributes. It is observed that the performance of DIANA

search behaves much more rapidly than the POSIX interface.

Traditional B+-tree and hashing are not suitable for

multidimensional data as they can handle only one

dimensional data. A DB-based multidimensional index

structures can index data based on multiple dimensions

simultaneously. We have also increased the number of

criteria in the search operation but no additional overhead is

observed. This is because either the single-dimensional or

multi-dimensional search is performed against a single index

table. A simple sequential scan through the entire tabular

index to answer the query is even faster than using a

multidimensional B+-tree structure.

4.4 Tailoring Operations

The DIANA includes mechanisms for tailoring the input and

output streams (typically images, audio or other multimedia

objects). This is performed by associating a 'BLOB (binary

large object)' datatype with the input and storing a collection

of binary data as a single entity in the database. These

conversion operations occur on the fly and are conveniently

transparent to the user.

As mentioned in Section III, a conservative policy has been

adopted in DIANA, which means an un-recognized object

will be treated as an un-structured one. On the other hand, the

performance may degrade if while writing or reading an un-

structured object in a structured environment (a database) by

mistake.

We deliberately inserted a JPG image (800x600 pixels,

105,542 Bytes) into a MySQL table in BLOB. A file is a

stream of bytes. Every 32 KBytes of that image file are

inserted into a record of the created database table used to

receive that image. The comparison of writing time between

DIANA and EXT3 is summarized in Table 6. DIANA is a

universal interface that can process and store any type of data.

Thanks to the above-mentioned conservative policy of

treating an un-recognized object as an un-structured one, this

universality may not result in degradation in performance.

Table.6 Comparison of writing/reading time of an image between DIANA
and EXT3.

Operation DIANA EXT3 DIANA/EXT

write 0.271s 0.147s 1.84

671

read 0.031s 0.033s 0.94

4.5 Summary

DIANA provides functionality, unavailable in either a pure

filesystem or a pure database, with moderate overhead. A

speedup of 5000 in indexing has been achieved at the expense

of a slowdown of 100 in metadata extracting. We and our

users are satisfied with the performance.

V. CASE STUDY: DIANA/CLOUDJET

We have constructed a DIANA/CloudJet system, in which a

new data communication protocol (CloudJet) is designed for

long distance and large volume big data accessing operations

to alleviate the large latencies encountered in sharing big data

resources in the clouds [12]. CloudJet encapsulates a

dynamic multi-stream/multi-path engine at the socket level,

which conforms to Portable Operating System Interface

(POSIX) and thereby can accelerate any POSIX-compatible

applications across IP based networks. A mixture of texts,

photos and tables can be stored and indexed universally and

efficiently via a graphic interface.

In our practice, service is interpreted as an environment

in which an end user is immersed. In other words, service

comprises all components except for the end user

himself/herself within the framework. As a result, DIANA is

featured with not only encapsulation of all resources but also

transparent and automatic interactions between data and

metadata.

We began the DIANA implementation with the simplest

and lowest-level schema that could meet our query needs. In

parallel with development of the prototype, we are also

extending DIANA into the OS kernel to provide “micro-

services” to application programs. Such micro-services can

be used by an application program to request a universal DS5

storage space from the OS.

According to our investigations [13][14][15], a large

number of applications, either legacy or newly-emerged,

demand for file support as well as database support

interactively. For example, in a provenance-aware system,

the raw data may be processed and stored on files in a less-

structured file system environment but, ideally, the

provenance (metadata) should be separately operated on

tuples within a database framework due to its power in data

manipulation [6].

VI. CONCLUSIONS AND DISCUSSIONS

Just as the shipping container revolutionized the flow of

goods [16], the Data Interface All-iN-A-place (DIANA)

revolutionizes the flow of information for big data

applications. As generic as a container can hold just about

anything, from coffee beans to cellphone components,

DIANA attempts to unify the two most popular data-

accessing interfaces: filesystems and databases. By sharply

cutting costs and enhancing reliability, container-based

shipping enormously increased the volume of international

trade and made complex supply chains possible. In a similar

way, DIANA is expected to be service-oriented and make

complex data accesses simple for big data management.

The overhead of extracting metadata from a data object

and the performance improvement in typical multi-

dimensional searches have been measured. It is shown that a

speedup of 5000 in indexing has been achieved at the expense

of a slowdown of 100 in extracting attributes, so the new

features incur no perceptible cost. Typical big data

applications such as very large database (VLDB), data

mining, media streaming and office applications can be

accelerated up to tenfold in real-world DIANA/CloudJet tests.

VII. Acknowledgments
This work is sponsored by the UK government and European

Commission (EC) through an EPSRC/DTI grant (£ 1 million) “Grid-

oriented Storage (GOS)”, an EPSRC grant (£470k) "Accelerating

NFS/CIFS", an EC grant (€1 million) “QuickLinux” and an EC

grant (€400k) “EuroAsiaGrid”.

References
[1] L. Douglas, "The Importance of 'Big Data': A Definition".

Gartner. Retrieved 21 June 2012.

[2] A. Silberschatz, et al, Operating System Concepts, John Wiley

& Sons, 2007

[3] SQL, en.wikipedia.org/wiki/SQL, 2008

[4] Connolly, T., “Database Systems: A Practical Approach to

Design, Implementation and Management”, Addison Wesley

Longman, 2007

[5] Milo Polte, Finding the Needles in the Haystack:

Multidimensional Extensions to a Distributed Filesystem, 2007

[6] K. Reddy, et al, Provenance-Aware Storage Systems, USENIX

Annual Conference, 2006.

[7] Ian Foster, Data Access and Integration, 2006

[8] A. Sanchez. MAPFS-DAI, Future Generation Computer

Systems 23 (2007) pp.138-145.

[9] M. Oever. The Use of OGSA-DAI with IBM DB2 Content

Manager for Multiplatforms in the eDiaMoND Project. The Future

of Grid Data Environments Workshop, GGF10, March 2004.

[10] Parallel Virtual File System, pvfs.org/, 2008

[11] EXIF, www.exif.org/, 2008

[12] Frank Wang, et al, CloudJet4BigData: Streamlining Big Data

via an accelerated socket interface, IEEE Big Data, USA, June 2014

[13] In-Kernel Berkeley DB Databases, www.am-utils.org/project-

kbdb.html, 2008

[14] Frank Wang, et al, Grid-oriented Storage: A Single-Image,

Cross-Domain, High-Bandwidth Architecture, IEEE Transaction on

Computers, ISSN: 0018-9340, pp.474-487, Vol.56, No.4, 2007.

 [15] Yuhui Deng and Frank Wang, A Heterogeneous Storage Grid

Enabled by Grid Service, ACM Operating System Review, ACM

SIGOPS, No.1, Vol.41, 2007.

[16] The Container That Changed the World, VIRGINIA

POSTRER, March 23, 2006

672

