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Transformation of Input Space using Statistical Moments:

EA-Based Approach

Ahmed Kattan, Michael Kampouridis, Yew-Soon Ong, and Khalid Mehamdi

Abstract— Reliable regression models in the field of Machine

Learning (ML) revolve around the fundamental property of

generalisation. This ensures that the induced model is a concise

approximation of a data-generating process and performs

correctly when presented with data that have not been utilised

during the learning process. Normally, the regression model

is presented with n samples from an input space χ that is

composed of observational data of the form (xi, y(xi)), i =
1...n where each xi denotes a k-dimensional input vector of

design variables and y is the response. When k ≫ n, high

variance and over-fitting become a major concern. In this

paper we propose a novel approach to mitigate this problem by

transforming the input vectors into new smaller vectors (called

Z set) using only a set of simple statistical moments. Genetic

Algorithm (GA) has been used to evolve a transformation

procedure. GA is used to optimise an optimal sequence of

statistical moments and their input parameters. We used Linear

Regression (LR) as an example to quantify the quality of

the evolved transformation procedure. Empirical evidences,

collected from benchmark functions and real-world problems,

demonstrate that the proposed transformation approach is

able to dramatically improve LR generalisation and make it

outperform other state-of-the-art regression models such as

Genetic Programming, Kriging, and Radial Basis Functions

Networks. In addition, we present an analysis to shed light

on the most important statistical moments that are useful for

the transformation process.

I. INTRODUCTION

Regression is a common task in Machine Learning with a

variety of applications in science and engineering. Generally,

regression problems can be formalised as follows. Let χ

denote the input space that is usually viewed through a

finite set of n observational samples X = {x0, x1, ...xn}

where each xi ∈ R
k denotes a real-valued random input

vector, and Y = {y0, y1, ...yn} is the set of corresponding

outputs such that yi ∈ R is a real-valued random output

variable, with joint distribution P (X,Y ). To this end, all

regression models are expected to receive a labelled sample

S = {(x0, y0), (x1, y1), ..., (xn, yn) ∈ (X,Y )n}. Since

Ahmed Kattan with Um AlQura University, AI Real-World Applica-

tions Lab, Department of Computer Science, Kingdom of Saudi Ara-

bia, Michael Kampouridis with University of Kent, School of Com-

puting, United Kingdom, Yew-Soon Ong with the School of Computer

Engineering, Nanyang Technological University, Singapore, and Khalid

Mehamdi Um AlQura University, AI Real-World Applications Lab, De-

partment of Computer Science, Kingdom of Saudi Arabia. email: Ajkat-

tan@uqu.edu.sa, M.Kampouridis@kent.ac.uk, asysong@ntu.edu.sg, km-

mehmadi@uqu.edu.sa.

the labels are real-numbers it is very difficult to expect

the regression model to predict exactly the correct output.

Therefore, it is common to tolerate a range of errors. In

order to quantify the quality of the regression model a loss

function L(Y, f(X)) = (Y −f(X)2) is required. The aim is

to construct a model f : X → Y . Hence, given a hypothesis

set H of functions to map X to Y , the regression problem

consists of using the samples in S to find a hypothesis h ∈ H

with small loss (or generalisation error) denoted by:

R̂(h) =
1

n

n∑

i=0

L(yi, f(xi))

In principle, one can make very accurate predictions if S is

large enough. For example, using nearest-neighbour methods

[1] [9] a prediction for any query point xq ∈ R
k can be made

by finding the average responses of the p closest samples.

Closeness implies a metric, which normally is assumed to

be the Euclidean distance.

Although, if reasonably large S is available, one could

always approximate the theoretically optimal expectation

by nearest-neighbor averaging. Since it is possible to find

a fairly large neighbourhood of observations close to any

xq , this approach breaks down in high dimensions, and the

phenomenon is commonly referred to as the curse of dimen-

sionality [9]. In a high-dimensional input space, the distance

metric becomes hard to quantify. For example, consider the

nearest-neighbour procedure for inputs uniformly distributed

in a k-dimensional unit hypercube. In order to extract a

hypercubical neighbourhood around a query point we need to

capture a fraction r of the observations to make a prediction.

A fraction r of the unit volume, the expected edge length

will be ep(r) = r(1/p). In ten dimensions e10(0.01) = 0.63

and e10(0.1) = 0.80, while the entire range for each input

is only 1.0. So to capture 1% to 10% of the data to form

a local average, we must cover 63% to 80% of the range

of each input variable. Such neighbourhoods are no longer

considered as local. Reducing r dramatically does not help

much either, since the fewer observations we average, the

higher is the variance of our fit [9]. Also, in many real-

world problems S is normally is limited to a small set

of observations in which the number of dimensions k is

much larger than the number of observations n, often written

k ≫ n.



In this paper we propose a novel approach to mitigate this

problem by transforming the input vectors in X into new

smaller vectors Z = {z0, z1, ..., zn} where each zi ∈ R
g and

g > k. For the transformation procedure we use only a set

of simple statistical moments. Genetic Algorithm (GA) has

been used to evolve a transformation procedure to transform

the original input space χ into a new space ξ. GA is used

to optimise an optimal sequence of statistical moments and

their input parameters. We used Linear Regression (LR) as an

example to quantify the quality of the evolved transformation

procedure (more details in Section II). The contributions of

the paper can be formalised in threefold:

1) We propose a novel approach to transform the high-

dimensional input space of regression models using

only statistical moments.

2) We provide an analysis to understand the impact of

different statistical moments on the evolved transfor-

mation procedure.

3) We dramatically improve LR’s generalisation and make

it competitive to other state-of-the-art regression mod-

els such as Genetic Programming (GP), Kriging, and

Radial Basis Functions Networks (RBFN).

The remainder of this paper is structured as follows.

Section II provides a detailed explanation of the proposed

approach. Section III provides the experimental results and

their analysis. Section IV briefly presents some related works.

Finally, Section V provides some conclusive remarks and set

directions for future research.

II. EVOLVE TRANSFORMATION PROCEDURE

The idea is to find a transformation procedure using only a

set of primitive statistical features. Thus, we don’t only make

the transformed input smaller but also make it shares similar

statistical characteristics as the original input space and thus

relax the learners’ performance. Ideally, one would like to

find a single universal transformation procedure that works

well across different regression problems. However, this may

be extremely difficult given that each regression problem has

a unique surface. So, in this paper, we used an evolutionary

approach, namely GA, to find a suitable transformation for

the given problem. Table I illustrates the set of statistical

moments used in the proposed transformation procedure. To

this end, GA evolves a transformation procedure that receives

input variables from each xi ∈ X (note that X ⊂ R
k)

and transforms it into zi. The last result is a set Z =

{z0, z1, ..., zn} where Z ⊂ R
g and g < k.

A. GA Representation

As illustrated in Figure 1, GA individuals are encoded

as a sequence of integers to represent a set of selected

statistical moments (from the pool of moments in Table I)

and each selected statistical moment is linked with a set of

TABLE I

STATISTICAL MOMENTS USED IN THE TRANSFORMATION PROCEDURE

Function Input Output

Mean, Median, StD,

Variance, Geometric

Mean, Average Div,

Min, Max Copy,

Copy × Intercept

Randomly selected

variables from each

xi ∈ X

Real Number

*StD is Standard Deviation, and Average Div is Average Deviation

*Copy is an operator that copies selected variables without change

into the transformed vector

*Copy × Intercept is a transformation operator that multiply each

selected variable with the intercept value of LR.

selected variables from the original input space (variables

are not allowed to be duplicated within the same set). In our

representation, we allowed GA individuals to be of variable

sizes. Evaluation of individuals will result in a vector of

transformed input where each item holds a single number

that represent an abstract of some selected variables from

the original input space. For example, a GA individual may

transform each original input vector into a single number

that represents the mean of some selected variables or it

could transform each input vector into two numbers where

one represents the mean of some variables and the other

represents the variance of some other variables, or it even

could transform the each input vector into g numbers where

each number represents a statistical feature of some selected

variables.

Since we allow GA individuals to be of variable sizes,

search operators can shrink or extend individuals. We re-

stricted the maximum size of the individuals to be less than

the the number of variables in the original input space. In

other words, we do not allow the dimensionality of the

transformed space to be bigger than the original space.

The designed GA representation is able to process all data

samples in the space χ ⊂ R
k, viewed through the set X , and

transform them into a new space ξ ⊂ R
g , viewed through

the set Z.

B. GA Fitness Function

In order to measure the effectiveness of GA individuals

we need to find out whether they will improve regression

models performance. This is a challenging problem because

the fitness measure needs to be aware of the generalisation

level induced by the transformed space. We used average

prediction errors of LR as a fitness measure for GA. LR is

very simple algorithm where it considers the family of linear

hypotheses:

H = {x → w.Φ(x) + b : w ∈ R
k, b ∈ R}

and seeks a hypothesis in H with smallest loss function.

Generally, LR is known to give accurate predictions if the
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Fig. 1. GA individuals’ representation.

sample inputs are linearly aligned with their corresponding

outputs. Moreover, LR is known to perform better when the

number of dimensions is limited. Hence, given these features

LR can push the GA’s evolutionary process to linearly align

the transformed inputs with their outputs and minimise the

dimensionality of the new space. The GA aims to minimise

the following fitness function:

fitness =

∑n
i=0(|yi − LR(xi)|)

n
(1)

C. GA Search Operators

The search operators are designed to maintain proper

syntax of the individual’s representation. Here, we consider

three operators to explore the search space. First, we used

a crossover operator in which two individuals exchange

statistical moments and their parameters, randomly. Second,

there is an aggressive mutation operator that replaces a

statistical moment and its parameters, randomly selected,

with another randomly selected moments from the pool of

statistical moments. This aggressive mutation operator allows

individuals to shrink or extend. Finally, we used a smooth

mutation operator where a parameter of a randomly selected

statistical moment is mutated into a new parameter. Note that

parameters of a single statistical moment are not allowed to

be duplicated.

D. GA Training

GA runs for a fixed number of generations where indi-

viduals are evaluated as explained in Equation 1. Before

the run starts we generate two disjoint sets: training and

validation. The training set is used to evaluate individuals

where LR uses a twofold cross-validation approach. The

best individual in each generation is further tested with the

validation set. Finally, we select the individual that yields the

best performance on the validation set across the run. For

the GA, we set the number of generations and population

size to 50, crossover, mutation and aggressive mutation rates

were set to 0.7, 0.1, and 0.2, respectively. Finally, we used

standard tournament selection of size 2.

One may argue that the proposed GA approach eventually

does a simple variable selection and especially that it uses

some selective moments such as Min and Max as well

as a copy operator (as illustrated in Table I). In order to

investigate this assumption, in preliminary experiments, we

compared the proposed approach against variable selection

approach based on standard GA (that uses a binary represen-

tation) and we found that our proposed approach achieves far

better results which verifies that it does more than a simple

variable selection.

III. EMPIRICAL TESTS AND ANALYSIS

A. Settings

A set of experiments has been conducted to evaluate the

proposed approach. We tested the effects of the transforma-

tion procedure on LR and compared the results against five

regression models, namely, RBFN, Kriging, LR, piecewise

LR [6], and GP. These models were selected because they

are some of the most important techniques in the literature.

Piecewise LR is basically dividing the input samples into

groups based on their Euclidean distance and train a single

LR model for each group, thus, in principle, it allows LR

to approximate non-linear surfaces. For the GP, we used

similar settings as the GA (see Section II-D), except that we

used standard sub-tree crossover at 0.7 and standard sub-tree

mutation at 0.3. In addition, GP was equipped with standard

arithmetic operators and 10 random constants from the range

[−1, 1]. Finally, to compare the proposed approach against

standard dimensionality reduction technique we included

Principle Component Analysis (PCA) [2] in the experiments.

Experiments included the following five benchmark func-

tions; F1 = Rastrigin, F2 = Schwefel, F3 = Michalewicz,

F4 = Sphere, and F5 = Dixon & Price [13]. For each test

function, we trained all regression models to approximate the

given function when the number of variables is 100, 500,

and 1000. The total number of benchmark test problems is

15 (i.e., 5 test functions ×3 different variables sizes). For

all test problems, we randomly generated three disjoint sets;

a training set of 100 points, a validation set of 50 points,

and a testing set of 150 points from the interval [−1, 1].

All techniques have been compared based on the average of

absolute errors on the testing set.

In addition, we included another three real-world prob-

lems. The problems we used for this set of experiments

comes from the field of financial forecasting. In this area,

traders have the belief that patterns exist in historical data

and that these patterns will repeat themselves in the future.



Consequently, it is worth identifying these patterns, so that

we can exploit them in the future and make profit. A very

common way of doing this is by using the method of

technical analysis [4]. Technical analysis uses indicators,

which are formulas that measure different aspects of a given

financial dataset, such as trend, volatility and momentum.

An example of such indicators is the Moving Average

(MA), which calculates the averages of a given dataset under

sliding windows of a fixed length L. For our experiments,

we are using 6 different indicators (Moving Average, Trade

Break Out, Volatility, Filter, Momentum, Momentum Moving

Average), with 3 different L values for each indicator:

100, 500, and 1000. Thus, each experiment has 6 × 100,

6× 500, and 6× 1000 variables, respectively. The data were

divided into three sets as follows: 40% for training, 10%

validation, and 50% testing.

B. Results

1) Benchmark Results: For the benchmark functions, Ta-

ble II shows improvements of predictions after testing our

proposed transformation procedure with LR (referred to as

LR+Z in the table) in comparison to all nine other algorithms.

Note that the transformation procedure is coming from a

stochastic evolutionary process, therefore, we run the GA 20

independent times and used the best evolved transformation

in the comparison. To assure a fair comparison, we also

run both GP and GP+PCA 20 times for each problem

and reported their best results. Each time GA evolves a

transformation procedure GP runs for 5 independent times

and returns the best results. As it can be seen from Table

II, LR+Z remarkably outperforms all competitors. The non-

parametric Friedman test in Table III ranked LR+Z first

with a rank of 1.0, while the second and third ranking

algorithms were GP and LR+PCA, with a ranking of 2.07

and 4.74, respectively. Subsequent analysis of the post-hoc

Bonferroni-Dunn test [3], [8] found that the LR+Z’s ranking

was significant at 5% level when compared to seven of the

nine algorithms from our experiments (the only exception

was the GP). This is an important result, because it confirms

our approach’s superiority, across a number of other state-

of-the-art algorithms.

Furthermore, Table IV presents a summary of the dimen-

sionality of the transformed space. Interestingly, there seems

to be no clear relation between number of dimensions in

the transformed space and the original space. For all three

dimensions in the comparison, GA managed to find a single

dimension (abstracted from several variables), using only one

statistical moment, to represent the new space. Although,

GA managed to achieve this dramatic abstraction in the

dimensions, we noted that this does not necessarily lead to

produce the best prediction results. For example, Figure 2

Fig. 2. Sample of transformed testing set using an evolved transformation

procedure. The upper figure shows a transformation of F1, D1000 and the

lower figure shows a transformation of F2, D500. LR+Z error of the upper

and lower figures are 188.404 and 5.13, respectively

depicts two instances of a 1D-transformed inputs for two

different problems.

2) Learning from Evolution: Because the performance of

the evolved transformation procedures are good, in most

cases, it would be interesting to understand what they actu-

ally do. When looking at the evolved sequence of moments,

one quickly realises that they are not easy to understand

or easy to capture a clear relation. Therefore, we visually

project statistical moments in heat maps according to their

contribution to good solutions for each problem, in Figure

3. The idea of this figure is inspired from the work of Smits

et. al. [14]. If a statistical moment is absolutely essential

to produce a good transformation procedure then it must be

present in individuals with good fitnesses. Other less essential

statistical moments may be present in both good individuals

and inferior ones, so their fitness will be closer to the average

fitness over all individuals. To this end, in order to rank the

importance of statistical moments, we equally distribute the

fitness value of each individual over all moments present

in that individual and project these values in heat maps

as presented in Figure 3. It is clear from the heat maps

that each problem has its unique characteristics. However,

interestingly, there is a consensus among all maps that the



TABLE II

SUMMARY OF RUNS ON 15 BENCHMARK PROBLEMS

Algorithm RBFN RBFN+PCA Kriging Kriging+PCA LR LR+Z Piecewise LR LR+PCA GP GP+PCA

F1, D = 100 8.1E+01 8.4E+01 8.1E+01 8.1E+01 1.5E+03 5.8E+01 1.2E+06 8.1E+01 7.8E+01 8.4E+01

F1, D = 500 1.9E+02 2.1E+02 1.9E+02 1.9E+02 1.8E+06 1.2E+02 2.5E+08 1.9E+02 1.8E+02 1.9E+02

F1, D = 1000 2.3E+02 2.3E+02 2.3E+02 2.3E+02 8.0E+06 1.7E+02 3.7E+08 2.3E+02 2.3E+02 2.3E+02

F2, D = 100 2.2E+00 2.5E+00 2.2E+00 3.1E+00 6.3E+02 2.0E+00 2.4E+03 2.2E+00 2.1E+00 2.2E+00

F2, D = 500 4.6E+00 4.6E+00 4.6E+00 4.7E+00 4.7E+04 4.4E+00 1.5E+04 4.6E+00 4.5E+00 4.6E+00

F2, D = 1000 2.4E+04 3.7E+04 2.4E+04 2.5E+04 1.9E+08 1.6E+04 5.8E+09 2.5E+04 2.4E+04 2.4E+04

F3, D = 100 3.7E+00 3.5E+00 3.7E+00 1.5E+01 2.7E+05 3.0E-01 4.7E+07 3.7E+00 3.7E+00 7.2E+00

F3, D = 500 7.5E+00 8.3E+00 7.5E+00 9.4E+00 4.2E+08 8.8E-01 5.8E+08 7.6E+00 7.4E+00 1.8E+01

F3, D = 1000 1.2E+01 1.3E+01 1.2E+01 1.3E+01 1.9E+08 9.5E-01 4.3E+09 1.2E+01 1.1E+01 4.9E+01

F4, D = 100 2.5E+00 2.9E+00 2.5E+00 2.2E+01 6.4E+01 3.2E-01 1.6E+04 2.5E+00 2.4E+00 2.4E+00

F4, D = 500 5.5E+00 6.4E+00 5.5E+00 5.6E+01 2.7E+04 3.6E-01 1.4E+06 5.5E+00 5.4E+00 5.5E+00

F4, D = 1000 8.3E+00 1.0E+01 8.3E+00 5.5E+01 2.8E+05 8.2E-01 1.4E+07 8.3E+00 8.1E+00 8.4E+00

F5, D = 100 7.7E+02 1.1E+03 7.7E+02 8.6E+02 5.6E+04 5.0E+02 4.8E+06 7.7E+02 7.7E+02 7.8E+02

F5, D = 500 9.4E+03 1.0E+04 9.4E+03 9.7E+03 1.5E+08 5.3E+03 1.0E+09 9.4E+03 9.3E+03 9.5E+03

F5, D = 1000 2.4E+04 3.7E+04 2.4E+04 2.5E+04 1.9E+08 5.5E+03 1.0E+09 2.5E+04 9.3E+03 2.4E+04

* Bold numbers are the lowest.

TABLE III

AVERAGE RANKINGS OF

THE ALGORITHMS FOR

BENCHMARK PROBLEMS

Algorithm Ranking

RBFN 4.30

RBFN+PCA 6.67

Kriging 4.57

Kriging+PCA 7.13

LR 9.07

LR+Z 1.00

LR+Cluster 9.94

LR+PCA 4.74

GP 2.07

GP+PCA 5.54

TABLE IV

SUMMARY OF DIMENSIONALITY OF TRANSFORMED SPACE

D = 100 D = 500 D = 1000

Function Mean Best Median StD Mean Best Median StD Mean Best Median StD

F1 4.25 1.00 4.00 2.19 7.95 3.00 4.50 5.95 52.10 1.00 7.50 190.73

F2 5.30 1.00 5.00 2.59 7.65 7.65 5.50 6.51 12.06 2.00 5.00 11.26

F3 16.55 5.00 16.00 7.60 10.55 1.00 11.50 5.37 64.00 9.00 10.00 214.65

F4 6.00 1.00 5.50 3.33 10.60 3.00 9.00 5.63 802.60 17.00 999.00 392.80

F5 8.25 3.00 8.50 2.98 6.90 3.00 6.00 2.90 10.70 1.00 5.00 10.90

TABLE V

SUMMARY OF RUNS ON 3 REAL-WORLD PROBLEMS

Algorithm RBFN RBFN+PCA Kriging Kriging+PCA LR LR+Z Piecewise LR LR+PCA GP GP+PCA GP+RTS

D = 100 24.41 178.91 24.50 24.59 22.65 18.88 278.39 24.48 21.09 22.18 21.15

D = 500 16.32 18.66 16.32 16.32 79.12 8.22 432.01 9.70 9.70 12.70 10.15

D = 1000 16.32 16.36 16.32 16.34 33540.40 6.04 1887.49 16.04 8.70 11.95 8.22

* Bold numbers are the lowest.

operators copy and copy × intercept do not contribute to

the construction of good transformation procedures. Also,

all maps agree that the Average Deviation, Geometric Mean,

Min and Max are important across all problems. We still do

not have a full understanding of the effect of these moments

on the transformed space. In future research we will focus

on this aspect.

3) Real-world Problems: For the three real-world prob-

lems included in the experiments, we added a new algorithm

in the comparison. Namely, GP with random training sub-

set selection (referred to as GP+RTS). Random training

sub-set selection is a common technique used in the GP

literature to overcome the over-fitting problem. The idea is

to randomly select a different sub-set of training samples in

each generation. We conducted two sets of experiments for

the real-world problems. For the first set, we eliminated non-

essential statistical moments as suggested by the heat maps

(See section III-B.2). For the second set, we included all
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Fig. 3. Heatmaps of statistical moments’ importance in terms of their contribution to individuals’ fitnesses. Each map is averaged from 60 independent runs

(20 runs for each test dimension). The statistical moments, from left to right: Mean, Median, Standard Deviation, Variance, Average Deviation, Geometric

Mean, Max, Min, Copy Same, Copy Intercept.

statistical moments. We found that the evolution has been

accelerated in the first experimental set in comparison to

the second set of experiments. However, as this was not

consistent across the three different dimensions, we decided

to report the results of the second experimental set only. We

leave it as a future work to further look into this.

Table V presents the results. Similar to the previous

experiment set, for each problem we run GA 20 times and

report the performance of the best evolved transformation

procedure. Also, each of GP, GP+PCA and GP+RTS received

the same number of runs, to assure fairness. Each time GA

evolves a transformation procedure all GP systems run 5

independent times and return the best results. It is clear from

the table that LR+Z comes in first place in all three problems.

Results of GP is little competitive.

The above findings are confirmed by the algorithm’s

ranking across the three different dimensions, according

to the Friedman test presented in Table VI. As we can

observe, LR+Z is ranked first again with a rank of 1.0,

with the GP coming second with a rank of 2.5. The post-

TABLE VI

AVERAGE RANKINGS OF THE ALGORITHMS FOR REAL-WORLD

PROBLEMS

Algorithm Ranking

RBFN 6.33

RBFN+PCA 9.33

Kriging 7.67

Kriging+PCA 7.67

LR 8.67

LR+Z 1.00

LR+Cluster 10.67

LR+PCA 4.83

GP 2.50

GP+PCA 4.33

GP+RTS 3.00

hoc test this time, however, only found LR+Z significantly

better than LR+Cluster, RBFN+PCA, and LR. The remaining

differences were not significant at 5% level. However, this is

not unexpected, as the number of problems we experimented

with in the real-world was very low, only three (a single

dataset under three different dimensions, 100, 500, and



1000). Nevertheless, the fact remains that LR+Z was ranked

first among all algorithms in the comparison, and it also

consistently outperformed its competitors in terms of Mean

and Median results, as it can be seen from Table VII.1 We

leave the investigation of more datasets from the real-world

as a future work.

TABLE VII

COMPARISON SUMMARY OF 20 INDEPENDENT LR+Z-SET, GP AND

GP+RTS.

(FOR EACH EVOLVED Z SET EACH OF GP AND GP+RTS RUNS 5 TIMES

AND REPORT THE BEST RESULT)

NOTE: IN TOTAL EACH OF GP AND GP+RTS RANS FOR 20× 5 TIMES

Algorithm LR+Z GP GP+RTS

D = 100

Average 20.30 21.69 21.93

Best 18.88 21.09 21.15

Median 20.30 21.60 21.91

StD 1.12 0.57 0.62

D = 500

Average 10.16 12.56 12.20

Best 8.22 9.70 10.15

Median 10.31 12.02 11.94

StD 1.11 2.23 1.53

D = 1000

Average 7.75 12.39 11.89

Best 6.04 8.70 8.22

Median 6.65 11.52 11.31

StD 2.30 3.20 2.17

* Bold numbers are the lowest.

Finally, Table VIII presents a statistical summary of the

dimensionality of the transformed space. As we can observe,

the GA has managed to decrease the input space significantly.

TABLE VIII

STATISTICAL MOMENTS USED IN THE TRANSFORMATION PROCEDURE

Measure

Dimensions Mean Best Median StD

100 47.65 9.00 53.00 18.04

500 46.25 1.00 28.00 61.81

1000 28.70 2.00 6.00 52.81

IV. RELATED WORKS

Dimensionality reduction techniques to mitigate the curse

of dimensionality problem is a well-explored topic. Many

techniques have been developed and used with feature selec-

tion and classification problems (e.g., [14], [5]). However,

the idea of evolving a transformation procedure to reduce

the number of design variables in the regression problems to

improve generalisation is relatively little explored thus far. In

this section we focus the review on dimensionality reduction

and transformation approaches for regression models since

these are directly relevant to the work reported in this paper.

1We only present LR+Z, GP, and GP+RTS, as these are the only

algorithms that follow a stochastic process, thus it is possible to calculate

the Mean and Median values only for these algorithms.

Sobester and Nair in [15] presented a GP approach for

generating functions in closed analytic form that map the in-

put space of a complex function approximation problem into

one where the output is more amenable to linear regression.

To achieve this, the authors used a co-evolutionary approach

where multiple populations are evolved in parallel. Each

population evolves part of the solutions. The system collects

the best individual in each evolved population to form a

new transformed input vector z. The ith element of evolved

z vector is an output of an evolved function that received

the ith input from the original input vector. The proposed

approach was evaluated with several benchmark functions

and real-world problems. However, the authors claimed that

their results are not conclusive and they are merely serve

as proof of concept. In addition, the new transformed input

vector z has the same dimensionality as the original vector.

In [7] the authors presented a GP-based approach for

symbolic regression of discontinuous functions in multivari-

ate data sets. The idea is to identify the portions of the

input space that require different approximating functions

by means of an algorithm referred to as Hyper-Volume

Error Separation (HVES). To this end, a preliminary GP

evolution run is used to partition the input space based

on the error exhibited by the best individual across the

training set. The training set is partitioned several times

into smaller groups. Although the authors claimed that their

approach, in principle, can work with multivariate data-sets,

their experiments covered problems of two variables only.

In [11] the authors proposed a technique based on latent

variables, non-linear sensitivity analysis, and GP to manage

approximation problems when the number of input variables

is high. The proposed technique was tested with 340 input

variable problems. The proposed approach was designed to

consider problems where all input variables have similar

influence on the model’s output. Thus, standard variable

pruning techniques are not applicable.

McConaghy [12] presented a deterministic technique, re-

ferred to as Fast Function Extraction (FFX), for solving a

symbolic regression problem that achieves higher approxi-

mation accuracy than standard GP and several state-of-the-art

regression techniques. FFX generates a set of basis functions

where each function can be a linear or non-linear combina-

tion of the input design variables. Once FFX generates a

set of possible basis functions it assigns the best coefficients

for each function. FFX execution takes only a few seconds

to return simpler models from a large number of design

variables. The authors verified FFX on a broad set of real-

world problems with different number of variables ranging

from 13 to 1468. Later, Icke and Bongard [10] hybridised

FFX and GP to create an improved learner for symbolic

regression problems. In this work, the authors showed that a



hybrid deterministic/GP for symbolic regression outperforms

GP alone and several state-of-the-art deterministic regression

techniques alone on a set of multivariate polynomial sym-

bolic regression tasks. The proposed approach was tested

to approximate data-sets of different dimensionality, ranging

from 1 to 25 dimensions.

Kattan and Kampouridis [?], proposed a new approach

based on GP to transform the original input space into a

new input space that has smaller input vectors and are easier

to be mapped into their corresponding responses. To achieve

this, GP is designed to evolve several non-linear transforma-

tion equations that extract different statistical features from

different intervals of the original input vectors. Each equation

is generated from a different sub-tree in an individual, thus,

each tree in the population produces multiple outputs (i.e.,

transformed output).

As can be seen, most of previous work tried to mitigate

the curse of dimensionality problem for regression models

by transforming the input space into a new input space using

linear or non-linear transformation functions. In this paper we

show that it is possible to mitigate the curse of dimensionality

problem and improve the generalisation by transforming the

input space into new space using only simple statistical

moments. This allows the transformed input not only to be

smaller but also to share similar statistical characteristics

as the original input space and thus relaxes the learners’

performance.

V. CONCLUSIONS

This paper presents a novel approach to mitigate the curse

of dimensionality for regression problems. The idea is based

on transforming the input vectors of the data samples into

new smaller vectors (called Z set). This is unlike other

existing works where transformation of input space is done

using linear or non-linear transformation functions. In this

paper we show that it is possible to transform the input

space into new space using only simple statistical moments.

GA has been used to evolve a transformation procedure.

GA is used to optimise an optimal sequence of statistical

moments and their input parameters. We used LR as an

example to quantify the quality of the evolved transformation

procedure. Empirical evidences, collected from 18 different

benchmark and real-world problems, demonstrate that the

proposed transformation approach is able to dramatically

improve LR generalisation and make it outperform other

state-of-the-art regression models such as GP, Kriging, and

RBFN.

The contributions of this paper can be formalised as

follows:

1) We propose a novel approach to transform the high-

dimensional input space of regression models using

only statistical moments.

2) We provide an analysis to understand the impact of

different statistical moments on the evolved transfor-

mation procedure.

3) We dramatically improve LR’s generalisation.

For future work, we will try to understand the effect of

different statistical moments on the transformed space. Also,

we will explore the idea of making the GA’s search space

to be adaptive by pruning non-essential statistical moments

based on their importance in terms of the contribution to

good individuals.
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