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ABSTRACT

Unravelling the genotype–phenotype relationship in
humans remains a challenging task in genomics
studies. Recent advances in sequencing technolo-
gies mean there are now thousands of sequenced
human genomes, revealing millions of single nu-
cleotide variants (SNVs). For non-synonymous SNVs
present in proteins the difficulties of the problem
lie in first identifying those nsSNVs that result in a
functional change in the protein among the many
non-functional variants and in turn linking this func-
tional change to phenotype. Here we present Var-
Mod (Variant Modeller) a method that utilises both
protein sequence and structural features to predict
nsSNVs that alter protein function. VarMod devel-
ops recent observations that functional nsSNVs are
enriched at protein–protein interfaces and protein–
ligand binding sites and uses these characteristics
to make predictions. In benchmarking on a set of
nearly 3000 nsSNVs VarMod performance is com-
parable to an existing state of the art method. The
VarMod web server provides extensive resources to
investigate the sequence and structural features as-
sociated with the predictions including visualisation
of protein models and complexes via an interactive
JSmol molecular viewer. VarMod is available for use
at http://www.wasslab.org/varmod.

INTRODUCTION

The ability to sequence genomes has resulted in the iden-
tification of millions of genetic variants, particularly single
nucleotide variants (SNVs), within the human population
as highlighted by the 1000 genomes project (1,2). Addition-
ally, other studies have demonstrated that individuals have
many rare SNVs (3,4). The data generated by such studies
provide a unique resource for investigating the genotype to
phenotype relationship. However, this is a complex prob-
lem as demonstrated by Genome Wide Association Stud-
ies (GWAS), which have identified many variants associated

with disease risk but have only explained a limited amount
of heritability (5). Additionally, in these studies, it is diffi-
cult to identify causal variants from a selection of candidate
SNVs in the regions of the genome associated with the par-
ticular disease.

There is therefore a need to develop methods to iden-
tify SNVs, in our case non-synonymous SNVs (nsSNVs),
that are likely to affect the function of the protein in which
they are present and are more likely to be associated with a
change in phenotype. A number of methods have been de-
veloped previously (reviewed in (6)), with the Sorting Intol-
erant From Tolerant algorithm (SIFT, 7) and PolyPhen (8)
being among the most well known. SIFT uses residue con-
servation in multiple sequence alignments to identify func-
tion altering nsSNVs, while PolyPhen uses machine learning
to combine features from both sequence and structure.

Here we have developed VarMod a new method for iden-
tifying functional nsSNVs. VarMod develops our recent re-
search in which we demonstrated that disease associated
nsSNVs are enriched at protein–protein interfaces (9). Ad-
ditionally, in GWAS, we have previously used structural
modelling of ligand binding sites to identify likely candi-
dates for association with disease (10–12). For example, in
a kidney disease genome wide association study (10), we
demonstrated that the variant rs13538 results in a pheny-
lalanine to serine change located in the acetyl Co-enzymeA
binding site of the protein NAT8 and proposed that the vari-
ant may have an effect on the activity of the enzyme (10).
VarMod builds upon these observations and uses structural
modelling of ligand binding and protein–protein interface
sites to generate features that are combined with other fea-
tures such as residue to conservation to identify functional
nsSNVs. The VarMod web server provides an overall pre-
diction made using a machine learning approach (a support
vector machine) to combine the data from the different indi-
vidual analyses. Additionally the server provides users with
extensive resources to investigate the results from the sepa-
rate analyses.
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METHODS

The VarMod algorithm

VarMod obtains features from multiple analyses, which are
combined using a support vector machine (SVM) (13) to
make an overall prediction. The data sources used are de-
scribed below. Sequence conservation is calculated using
Jensen–Shannon divergence (14). Homologues of the query
sequence are identified by PSI-BLAST (15) using an ap-
proach shown to optimise results (16), where the query se-
quence is initially searched against UniRef50 to generate
a sequence profile that is used to search against the full
UniProt sequence database (17). The query sequence and
homologues are aligned using MUSCLE (18) and the re-
sulting multiple sequence alignment used to calculate the
Jensen–Shannon divergence.

To perform the structural analysis, a structural model of
the query protein is generated. To do this, template struc-
tures in the protein databank (PDB) (19) are identified using
hhblits (20) by searching a PDB sequence database repre-
sentative at 70% sequence identity. Templates are selected
with an hhblits probability (probability that the template
and query sequence are homologous) score >80% and such
that as much of the sequence is covered without redundantly
modelling the same region of the protein multiple times.
Initial structural models are generated using an approach
based on the one used by Phyre2 (21,22). Side chains are
added and optimised using pulchra (23). Small molecule
binding sites are modelled using 3DLigandSite (with de-
fault parameters) (24) with the structural model used as the
input.

Protein–protein interface sites are modelled using an ap-
proach based on Interactome3D (25). The Interactome3D
high confidence set of protein–protein interactions with
template complexes in the PDB was used to generate models
of the complexes. For each sequence–template pair the se-
quence is modelled using the template by applying the struc-
tural modelling approach described above.

The features used in the SVM fall into two areas of se-
quence and structural features (a full list is available in Sup-
plementary Table S1). The sequence features include residue
conservation (the Jensen–Shannon convergence) and three
features that represent the change of amino acid properties
of size/mass, charge and functional group. The size/mass
change of the amino acid is represented by the ratio of the
mass of the two amino acids. To consider the change in
charge between the two amino acids, the 20 amino acids
are grouped according to charge (Supplementary Table S2).
The feature representing the change in the charge of the
amino acid considers changes between these charge groups,
with values set in Supplementary Table S3. A further feature
represents the change of chemical functional group present
in the amino acid side chain. The amino acids are grouped
as described by Innis et al. (26) (Supplementary Table S4)
and the feature captures changes between these functional
groups.

The structural features use the ligand binding site, inter-
face site and general structural features of the model. Where
ligand-binding sites have been identified the distance of the
variant to the binding site is calculated and used as a fea-

ture. When a variant is in a binding site, two further features
capture results from the 3DLigandSite analysis. Where in-
terface sites have been predicted, a further feature represents
the distance of the variant to an interface site. Two features
represent the type of secondary structure that the variant is
located in. The first uses the secondary structure types clas-
sified by DSSP (27,28), while a second feature reduces these
to the three main categories of helix, sheet and coil. A final
feature represents the solvent accessibility (calculated using
DSSP).

The features generated are input into each of the five op-
timised SVM models generated during cross-validation (de-
tails below) to predict whether each variant is functional or
non-functional. The outputs from each of the SVM models
are converted to probabilities as described in Platt (29). An
ensemble approach is taken with the probability from each
SVM model weighted according to its accuracy in cross val-
idation. The weighted probabilities are summed and nor-
malised to generate a final probability for the VarMod pre-
diction.

Generating a test set

Dataset 5 from VariBench (30) was used to train and test
VarMod. This dataset contains human pathogenic and neu-
tral variants, excludes cancer mutations and is clustered so
that protein sequences share no >30% sequence identity.
This set was initially split with 1401 pathogenic and 1527
neutral variants retained for final testing. The remaining
11 336 pathogenic and 12 737 neutral variants were split
into five groups by protein sequence to perform 5-fold cross-
validation to ensure that variants from each individual se-
quence appear in only 1-fold.

SVM training

The SVMs were generated by SVMlight (31) using a linear
kernel. For each of the 5-folds, three were used for training,
a further fold was used for validation and the SVM tested
on the remaining fold. The SVMs were optimised for the
trade off between training error and margin and also the
cost factor to identify how training errors on positive ex-
amples should outweigh those on negative examples.

Comparison with PolyPhen-2

To compare VarMod performance with PolyPhen-2, the fi-
nal test set of nsSNVs was run on the PolyPhen-2 web server
(on 1 March 2014). Predictions were made using the two
different classifiers available (HumDiv and HumVar) with
default settings. The ROC and Precision–Recall analyses
of PolyPhen-2 were performed by varying the ‘pph2 prob’
score.

EVALUATING VARMOD PERFORMANCE

The performance of VarMod was assessed using the set
of sequences from VariBench that were not used in cross-
validation. The performance of VarMod on the test set of
sequences was assessed using the measures of specificity,
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Figure 1. Benchmarking VarMod. Analysis of the VarMod and PolyPhen-2 predictions on the non-cross validation test set. (A) ROC analysis, (B) precision–
recall graph.

sensitivity (recall), precision and a Receiver Operator Char-
acteristic (ROC) analysis. The ROC curve and Precision–
Recall graph in Figure 1 show the performance of VarMod
and the comparison with PolyPhen-2. It shows that Var-
Mod performance is comparable to PolyPhen-2. Interest-
ingly, in the ROC analysis, neither of the PolyPhen-2 clas-
sifiers reaches the point 0,0 which is due to a small num-
ber of high confidence false positive predictions (i.e. neu-
tral variants predicted to be pathogenic). This may reflect
that PolyPhen-2 has been trained using different sets of
pathogenic and neutral variants. It has also been previously
observed that there is limited overlap between the predic-
tions of different methods (32).

THE VARMOD WEB SERVER

The VarMod web server is available at http://www.wasslab.
org/varmod. Users are required to submit a protein se-
quence (raw sequence or FASTA formatted) or a UniProt
accession, and a list of variant positions (e.g. A45C, where
the single letter code is used to define the amino acids).
A UniProt accession is required to perform the protein–
protein interface analysis (optional). Processing time for
each submission varies from 5 min to a few hours. Struc-
tural data has been pre-computed for all of the UniProt hu-
man principal protein isoforms, so submissions using these
sequences are processed in a few minutes. Where other se-
quences are submitted, the structural models and binding
sites need to be modelled thereby increasing the running
time to a few hours.

Results output

The display of VarMod results is split into multiple sec-
tions (Figures 2 and 3). The first section provides a sum-

mary table of the analyses performed and the overall pre-
diction made for each of the submitted nsSNVs. This ta-
ble is colour coded to highlight the results from the individ-
ual analyses/features to indicate if they suggest the variant
could affect protein function. For example, the binding site
column is coloured red if the variant is in the binding site
and the colour changes to blue the more distant the vari-
ant is from a known ligand-binding site. The summary ta-
ble enables the user to see the overall result and to identify
analyses that may be of interest for further inspection.

The sequence and structure sections display the main
analyses. The sequence section displays the protein se-
quence, colour coded to highlight multiple features includ-
ing residue conservation, ligand binding sites and protein–
protein interfaces. The summary results and sequence view
can be downloaded as a PDF file.

The structural section first displays the details of the
structural templates and models of the protein that have
been generated (one for each region/domain for which a
template was identified). A JSmol (www.jmol.org) molec-
ular viewer forms the main part of the structural section
and initially displays the model with the highest confidence
(probability from hhblits alignment). The JSmol viewer en-
ables visualisation of the modelled protein and by default
is coloured to highlight the functional regions of the pro-
tein (ligand-binding and protein–protein interface sites) and
the nsSNVs (red). A control panel to the right of the dis-
play enables the user to investigate the nsSNVs by dis-
playing a different model, or modifying the display style
(cartoon/spacefill or sticks representations) and colour of
the whole protein, nsSNVs or functional sites. The user is
able to generate high quality images of the displayed model
by clicking on the ‘generate image’ button, enabling the
analysis to be used for reports or publications.
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Figure 2. Display of VarMod results. The results for variants in Phosphorylase b kinase gamma catalytic chain (UniProt accession P15735). The variants
shown are known to have a role in Glycogen storage disease 9C. (A) The prediction summary table, showing the overall VarMod prediction and summarising
the output from the different analyses. Results are colour coded to indicate the likely relevance of the changes, with features that suggest the variant is
likely to be functional coloured red with the colour scale ranging to blue for features that are least likely to lead to functional changes. (B) The VarMod
sequence display, residues are coloured to indicate conservation and the presence of ligand binding and interface sites. (C) The VarMod structural view.

The location of the nsSNVs in relation to the protein–
protein interface sites can be explored further via the mod-
elled complexes. The complex models are listed in a table,
which also indicates the nsSNVs that are present in the
model and if they occur within an interface. The complexes
can be viewed in a separate JSmol viewer accessed from a
link for each of the entries in the list.

CONCLUDING REMARKS

VarMod was developed to use recent observations that dis-
ease associated nsSNVs are frequently located at ligand-
binding and protein–protein interface sites and to automate
manual approaches that we have previously used to analyse
GWAS candidate nsSNVs. We have demonstrated that Var-
Mod performance on a large and established benchmark
set is comparable to an existing state of the art method
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Figure 3. The VarMod interactions view for investigating variants located
at protein–protein interfaces.

(PolyPhen-2). The VarMod server provides a resource for
users to identify functional nvSNVs and to investigate the
individual features associated with these variants. Plans for
future improvements to the server include increasing the
number of interface and binding site features such as con-
sidering how variants may alter binding energies and op-
tions to submit variants in alternative formats such as Vari-
ant Call Files (VCF), which will facilitate high throughput
analysis of nsSNVs identified from sequencing studies.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENT

We would like to thank Dr Lawrence Kelley for advice on
structural modelling and on the use of SVMs.

FUNDING

Royal Society research grant (to M.N.W.). Funding for
open access charge: University of Kent.
Conflict of interest statement. None declared.

REFERENCES
1. 1000 Genomes Project Consortium (2010) A map of human genome

variation from population-scale sequencing. Nature, 467, 1061–1073.
2. 1000 Genomes Project Consortium, Abecasis,G.R., Auton,A.,

Brooks,L.D., DePristo,M.A., Durbin,R.M., Handsaker,R.E.,
Kang,H.M., Marth,G.T. and McVean,G.A. (2012) An integrated map
of genetic variation from 1092 human genomes. Nature, 491, 56–65.

3. Nelson,M.R., Wegmann,D., Ehm,M.G., Kessner,D., St Jean,P.,
Verzilli,C., Shen,J., Tang,Z., Bacanu,S.-A., Fraser,D. et al. (2012) An
abundance of rare functional variants in 202 drug target genes
sequenced in 14 002 people. Science, 337, 100–104.

4. Tennessen,J.A., Bigham,A.W., O’Connor,T.D., Fu,W., Kenny,E.E.,
Gravel,S., McGee,S., Do,R., Liu,X., Jun,G. et al. (2012) Evolution
and functional impact of rare coding variation from deep sequencing
of human exomes. Science, 337, 64–69.

5. Eichler,E.E., Flint,J., Gibson,G., Kong,A., Leal,S.M., Moore,J.H.
and Nadeau,J.H. (2010) Missing heritability and strategies for finding
the underlying causes of complex disease. Nat. Rev. Genet., 11,
446–450.

6. Peterson,T.A., Doughty,E. and Kann,M.G. (2013) Towards precision
medicine: advances in computational approaches for the analysis of
human variants. J. Mol. Biol., 425, 4047–4063.

7. Sim,N.L., Kumar,P., Hu,J., Henikoff,S., Schneider,G. and Ng,P.C.
(2012) SIFT web server: predicting effects of amino acid substitutions
on proteins. Nucleic Acids Res., 40, W452–W457.

8. Adzhubei,I.A., Schmidt,S., Peshkin,L., Ramensky,V.E.,
Gerasimova,A., Bork,P., Kondrashov,A.S. and Sunyaev,S.R. (2010)
A method and server for predicting damaging missense mutations.
Nat. Methods, 7, 248–249.

9. David,A., Razali,R., Wass,M.N. and Sternberg,M.J.E. (2012)
Protein-protein interaction sites are hot spots for disease-associated
nonsynonymous SNPs. Hum. Mutat., 33, 359–363.

10. Chambers,J.C., Zhang,W., Lord,G.M., Van der Harst,P.,
Lawlor,D.A., Sehmi,J.S., Gale,D.P., Wass,M.N., Ahmadi,K.R.,
Bakker,S.J.L. et al. (2010) Genetic loci influencing kidney function
and chronic kidney disease. Nat. Genet., 42, 373–375.

11. Chambers,J.C., Zhang,W., Sehmi,J., Li,X., Wass,M.N., Van der
Harst,P., Holm,H., Sanna,S., Kavousi,M., Baumeister,S.E. et al.
(2011) Genome-wide association study identifies loci influencing
concentrations of liver enzymes in plasma. Nat. Genet., 43,
1131–1138.

12. Chambers,J.C., Zhang,W., Li,Y., Sehmi,J., Wass,M.N., Zabaneh,D.,
Hoggart,C., Bayele,H., McCarthy,M.I., Peltonen,L. et al. (2009)
Genome-wide association study identifies variants in TMPRSS6
associated with hemoglobin levels. Nat. Genet., 41, 1170–1172.

13. Vapnik,V.N. (1999) An overview of statistical learning theory. IEEE
Trans. Neural Netw., 10, 988–999.

14. Capra J,M. and Singh,M. (2008) Characterization and prediction of
residues determining protein functional. Bioinformatics, 24,
1473–1480.

15. Altschul,S.F., Madden,T.L., Schaffer,A.A., Zhang,J., Zhang,Z.,
Miller,W. and Lipman,D.J. (1997) Gapped BLAST and PSI-BLAST:
a new generation of protein database search programs. Nucleic Acids
Res., 25, 3389–3402.

16. Chubb,D., Jefferys,B.R., Sternberg,M.J. and Kelley,L.A. (2010)
Sequencing delivers diminishing returns for homology detection:
implications for mapping the protein universe. Bioinformatics, 26,
2664–2671.

17. UniProt Consortium (2012) Reorganizing the protein space at the
Universal Protein Resource (UniProt). Nucleic Acids Res., 40,
D71–D75.

18. Edgar,R.C. (2004) MUSCLE: multiple sequence alignment with high
accuracy and high throughput. Nucleic Acids Res., 32, 1792–1797.

19. Rose,P.W., Bi,C., Bluhm,W.F., Christie,C.H., Dimitropoulos,D.,
Dutta,S., Green,R.K., Goodsell,D.S., Prlic,A., Quesada,M. et al.
(2013) The RCSB Protein Data Bank: new resources for research and
education. Nucleic Acids Res., 41, D475–D482.

20. Remmert,M., Biegert,A., Hauser,A. and Söding,J. (2012) HHblits:
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