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1 Introduction

The presence of self-organisation in economic systems is one of the earliest features identified

in economic thought. This phenomenon, referred to initially as the “invisible hand” by Adam

Smith, then as “spontaneous order” following the work of Hayek (1945), is now often referred to

as “emergence” by the agent-based computational economic literature, for instance in Tesfatsion

(2006). Two common elements in all three of these interpretations are the notion that (a) economic

mechanisms are not planned ex ante but appear as the result of interactions between agents, and

(b) these mechanisms maintain the organisation of economic activity over time. To some extent,

this is analogous to the Schrödinger (1967) definition of living organisms as entities able to maintain

or increase their internal order, thus maintaining or reducing their internal entropy.

This paper argues that a consequence of such self-organisation is that under the right conditions,

the evolution over time of economic systems should be predictable by signal restoration algorithms.

The intuition for this is simple: signal restoration algorithms are designed to reconstruct signals

that have been degraded by noise or by distortion. The standard interpretation of this, in a system

where entropy (i.e. disorder) increases with time is that the non-degraded signal existed in the

past. However, in a self-organising system, the arrow of time is reversed and the non-degraded

signal exists in the future. In practical terms, the paper establishes this result by obtaining a

strong formal statement relating to self-organisation in allocation problems, and then illustrates it

by using Maximum Entropy (MaxEnt) signal restoration to successfully predict the evolution of a

simple self-organising agent-based model.

The rest of the paper is structured as follows. The conceptual structure of the argument and

the various strands of literature required to obtain it are first detailed in section 2, and section 3

explains how the use of MaxEnt in signal restoration is related to its existing use in economics.

Section 4 then shows the equivalence of allocation problems and congestion games under reasonable

assumptions on preferences, opening up the use of signal restoration algorithms due to the presence

of systematic improvement paths. This possibility is then illustrated in section 5 by applying

MaxEnt to the Schelling model of segregation. Section 6 discusses the implications of these findings

and concludes.

2 Review of the relevant literature

The main contribution of the paper is that as a consequence of the self-organising nature of

economic systems, signal restoration algorithms, which are normally designed to retrieve the past
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states of physical systems, can be used instead to look into the future. Several distinct strands

of literature are combined to demonstrate this concept both theoretically and with a practical

application.

The first strand is taken from the extensive economics and operational research literature on

object allocation, initiated amongst others by Hurwicz (1973), Harris and Raviv (1981) or Myerson

(1981). The specific type of allocation problem used in the paper is based on the knapsack problem,

which is a well known combinatorial optimisation problem where one has a set of objects with given

values and weights and the objective is to pick the combination of objects with the highest value,

without exceeding fixed a weight limit, i.e. the capacity of the knapsack. The specific variant used

here is the multichoice multi-dimensional knapsack problem (MMKP), in which several groups

of objects are available, with each object providing a specific value and requiring a particular

subset of several distinct sets of resources. The objective is to pick a single object from each

of the groups, maximising their aggregate value while ensuring the multi-dimensional resource

constraint is met. As will be show in section 4.1, this offers enough flexibility to model a very

general economic allocation problem. In fact, the MMKP has already been used in the operational

research literature to model problems such as the allocation of nurses with different skills and

time preferences to different types of shifts (Dowsland and Thompson, 2000), or the allocation

of distinct computing resources such as memory and CPU cycles to several networked users with

different session preferences (Khan et al, 2002).

In contrast to the object allocation literature, however, the aim of modelling object allocation

with the MMKP is not to provide a practical solution to or an optimal design for the general

allocation problem, but rather to establish an important property relating to self-organisation.

This is achieved by showing that the MMKP allocation problem is related to the literature on

congestion and potential games. Congestion games were introduced by Rosenthal (1973) as a

way of modelling resource allocation on a network, with Rosenthal’s initial example of road users

attempting to select routes so as to minimise the congestion they experience providing the name

to this class of games. The paper then relies on the fundamental result provided by Monderer and

Shapely (1996), who prove that every congestion game is isomorphic to a potential game, where

a single potential function encodes all the payoffs of the game. This in turn ensures the existence

of the finite improvement property (FIP), which implies that every initial condition is linked to

a Nash equilibrium by a finite number of improvement steps. As will be shown in section 4, this

chain of reasoning allows us to make a strong statement of self-organisation for general allocation

problems.
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A third important strand of literature used in the paper relates to the use of the MaxEnt

metodology both in existing economic research and in signal restoration literature. Because the

MaxEnt method forms the base of the proposed algorithm, the formal relation between the two

approaches is detailed separately in section 3, however it is important to point out the track-

record that MaxEnt already possess in economic theory. Versions of this methodology have been

used by Foley (1994) and Toda (2010) to prove the existence of a statistical market equilibrium

when agents have offer sets of transactions they are willing to accept and meet in a random

fashion. Applied investigations using the MaxEnt methodology include Castaldi and Milaković

(2007), which investigates the distribution of wealth using information on turnover in portfolios and

Alfarano and Milaković (2008) which similarly explored the origin of the Laplace distribution of firm

growth rates. A second important reason for choosing the MaxEnt signal restoration algorithm is

that because it uses Shannon (1948) information entropy as its objective function, it offers a natural

information-theoretical intuition of why signal restoration in the presence of self-organisation is in

fact a prediction on the future, in keeping with the Schrödinger (1967) definition of self-organisation

mentioned above.

Finally, as stated in the introduction, a practical demonstration of the methodology is provided

by applying the proposed methodology to the Schelling (1969, 1971) model of segregation. The

model is chosen because of its simplicity,1 and crucially because the literature establishes that its

strong self-organisation is underpinned by presence of a potential function. Indeed, in the physical

analog to the Schelling model proposed by Vinkovic and Kirman (2006), particles on a lattice

systematically rearrange themselves to reduce the internal energy of their configuration, and the

overall energy of the system provides the potential function. Very recent analysis of the model by

Grauwin et al (2012) confirms that it possess a potential function for continuous neighbourhoods

under some parameterisations. The existence of the a potential function for the Schelling model

ensures the presence of the FIP, making it ideally suited as a test bed for illustrating the theoretical

argument proposed in the paper.

3 Maximum entropy as a Bayesian signal restoration method

The use of MaxEnt as a signal restoration methodology is formally equivalent to its use in the

economics literature, with two main differences that will be explained below. The first is that the

methodology has an explicitly Bayesian setting, with maximum entropy being used to assign priors

1 Marks (2007) shows that the functional complexity of the Schelling model is relatively low, with most of it coming
from the random initial condition. This makes the model a desirable benchmark, as the proposed methodology is
useless if it cannot function on even the simplest cases.
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for a degenerate maximisation. The second is that the entropy function used for signal restoration

is more general and thus offers more flexibility than the one used in the literature mentioned above.

As an illustration, let us assumed that a message made up of N characters, each one drawn from

an alphabet of length C is transmitted to an observer over a noisy channel. This general structure

encompasses a wide range of possible messages, such a string of N letters, intensities in a N -pixel

image, or some data measurements for N agents, etc. As a result of the noisy transmission channel,

the data d received by the observer will be different from the original message. Supposing that the

observer wishes to identify the best possible reconstruction of the signal h from the imperfect data

d, a reasonable criterion for doing so is to maximise the posterior probability of h being the true

signal given the data available, i.e. arg maxh p (h|d). Bayes’ rule states that this posterior can be

expressed as the product of a prior on h and the likelihood p(d|h), normalised by the evidence p(d):

p (h|d) =
p (h) p (d|h)

p (d)
(1)

As is standard with Bayesian methods, rewriting using the log-likelihood `(d|h), simplifies the

maximisation of the posterior with respect to h to:

arg max
h

p (h|d)⇔ arg max
h

[p (h) exp (−` (d|h))] (2)

At this point one might think that solving (2) is a matter of maximising the likelihood, effectively

leaving aside the prior probability of the hypothesis p(h). However, in this case, because h and d

have the same size and the same support, there are as many ‘parameters’ to determine in h as

there are ‘data points’ in d. As a result the maximisation problem is degenerate and the choice of

prior will have a strong effect on the prediction. The central tenet of MaxEnt is that in such cases,

the prior probability of a hypothetical distribution h should be exponentially proportional to the

information entropy of the distribution.

p (h) =
exp (αS (h))

ZS
(3)

Here α is a regularisation parameter and S (h) is the Shannon (1948) information entropy of

the candidate reconstruction h. Using i ∈ N to index locations in the message and c ∈ C to

index characters in the alphabet, the following information entropy measures the uncertainty of

the observer as to the content of a proposed reconstruction h:

S (h) = −
∑

i

∑
c
hci lnhci (4)
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The justification for this, provided by Jaynes (1957) and Foley (1994), is that S (h) is in fact

the logarithm of the multiplicity of h, i.e the number of ways the distribution can be realised. This

implies that the prior probability (3) of a candidate reconstruction h is simply proportional to its

multiplicity. This allows the methodology to be “maximally noncomittal with regard to missing

information” (Jaynes, 1957, p. 623). A formal proof of this is provided by Shore and Johnson

(1980), who prove that it is the only method of selecting priors that satisfies three key axioms: the

prior leads to a unique prediction; it is independent of the coordinate system used; and it does not

depend on whether information about independent systems or sub-systems is accounted for jointly

or separately.

In practice, the observer often has knowledge of a pre-existing structure in the message or

of some properties of the noise process in the transmission. The observer’s uncertainty about h,

which (4) measures in absolute terms, must therefore be corrected so that it is measured relative

to this pre-existing knowledge, modeled by m. This is achieved by using the following relative

entropy, which is equal to minus the Kullback-Leibler (KL) divergence from m to h, and measures

the similarity between two distributions.2 It reaches a global maximum of zero for m = h and is

strictly negative for m 6= h.

S (h|m) = −
∑

i

∑
c
hci ln

hci
mc

i

(5)

In the case where m is a uninformative uniform distribution, the two forms of entropy (4) and

(5) are equivalent in a maximisation problem. This corresponds to a situation where the observer

has no useful prior knowledge about the possible reconstructions, and measuring uncertainty in

absolute terms is equivalent to measuring it relative to an uninformative m.

Given the entropic prior (3) and relative entropy (5), the posterior probability (1) can now be

expressed as:

p (h|d) =
exp (αS (h|m)− ` (d|h))

p (d)ZSZ`
(6)

One can see from (6) that identifying the candidate distribution h with the highest a posterior

probability involves maximising the information entropy of h subject to a set of constraints provided

by the observations received in d:

arg max
h

p (h|d)⇔ arg max
h

(αS (h|m)− ` (d|h))

2 Formally, the KL divergence measures how many bits of information are gained by learning that the true
distribution is h rather than m. As explained by Cover and Thomas (1991) it is often used as a measure of the
distance between two distributions, and its additive inverse is therefore a measure of similarity.
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The general prediction is given by the expression below, where 1/α plays the role of a Lagrange

multiplier.

hci = mc
i exp

(
1

α

∂` (d|h)

∂hci

)
(7)

If one assumes a uniform value for m, this structure nests the existing approaches of Foley

(1994) or Toda (2010). For instance, using a uniform m and a likelihood of the form ` (d|h) =∑
i

∑
c ch

c
i − Nd recovers the exponential endowment distributions in a pure exchange economy

found by Foley (1994), where c is the individual endowment level and d is the aggregate endow-

ment. The advantage of using relative entropy (5) rather than the Shannon entropy (4) is that it

allows additional flexibility through the integration of a model m, which can incorporate any prior

knowledge of existing structure in the reconstruction h which might be missing from the observed

data d. The usefulness of this extra flexibility when making predictions about economic systems

will be demonstrated when applying the methodology in section 5. We first need to formally show,

however, why it is appropriate to use MaxEnt signal restoration as a prediction methodology in

self-organising economic systems.

4 Finite improvement paths in object allocation

4.1 Object allocation as a knapsack problem

As explained in section 2, we show that the object allocation problem facing the social planner can

be modeled using a MMKP. Formally, there are N agents in the economy, labeled i ∈ {1, 2, ..., N},

and the social planner has to allocate Q different units amongst those agents. Although this does

not influence the general problem, it will be convenient in the discussion to distinguish K types

of commodities, labeled k ∈ {1, 2, ...,K} for which quantities qk ∈ N are available, in which case

Q =
∑

k qk. The allocation problem can be solved, in principle, with the following four steps.

– Step 1: The social planner labels all the possible bundles that can be built with the Q units

available and lists them in a 2Q × Q binary table B, shown in table 1. Each {0, 1} cell of the

table states whether the jth unit is included in the bth bundle or not. The binary string formed

by each row therefore provides not only the corresponding bundle’s composition but also a

unique identifier for the bundle.

– Step 2: The social planner sends the B-table to the N agents who, assuming completeness, rank

the 2Q bundles according to their preferences. The rankings are returned to the social planner
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Table 1 Binary bundle identifiers

B j = 1 j = 2 j = 3 j = 4 ... j = Q
b = 1 0 0 0 0 ... 0
b = 2 1 0 0 0 ... 0
b = 3 0 1 0 0 ... 0

... ... ... ... ... ...
b = 2Q 1 1 1 1 ... 1

Table 2 Bundle preference ranking

U i = 1 i = 2 i = 3 i = 4 ... i = N
b = 1 1 1 1 1 ... 1
b = 2 ... ... ... ... ... ...

... ... ... ... ... ...
b = 2Q 2Q 2Q 2Q 2Q ... 2Q

who then builds a 2Q ×N ranking table U , shown in table 2. Under the usual assumptions of

transitivity and monotonicity, all agents will rank the full bundle highest and the empty bundle

lowest.

– Step 3: The social planner must pick a bundle for each agent, using a 2Q × N choice matrix

X, where the choice variables are Xb,i ∈ {0, 1}. Importantly, each agent only receives a single

bundle, i.e.
2Q∑
b=1

Xb,i = 1 ∀i ∈ N .3 The goal of the social planner is to maximise the sum of

the ranks over agents while remaining within the resource constraint. Formally, this can be

expressed as the following MMKP:

max tr (UX ′)

s.t. :B′X1N = 1Q

(8)

Here 1N and 1Q are the N and Q-length unit vectors respectively. Choosing an objective

function for the MMKP is directly related to the problem of choosing a social welfare function.

The standard approach of knapsack problems is to maximise the sum of the values of the objects

chosen, which in this case means maximising the sum of the individual rankings. This choice

is equivalent to a Benthamite social welfare function, where overall social welfare is simply the

sum of individual orderings.4 The constraint ensures that the sum of the binary identifiers for

each selected bundle equals the unit vector, i.e. each unit in Q is selected only once. Expressed

in scalar notation, this corresponds to the standard MMKP as presented by Hifi et al (2004);

Sbihi (2007). The only differences compared to the more general framework in the operational

3 One can see that even if the agent is allocated two bundles a and b from B, then a+ b is also a bundle in B.
4 This use of the term Bethamite as a reference to a simple sum of individual rankings is borrowed from Ng

(1975). This may seem overly simplistic, however given that a utility function is never uniquely defined, it is in
fact possible to modify the choice of social welfare function to some extent within the linear sum framework of the
MMKP by first applying monotonic transformations to the rankings expressed by the agents in table U.
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Table 3 Allocation table

A∗ i = 1 i = 2 i = 3 i = 4 ... i = N
j = 1 0 0 1 0 ... 0
j = 2 1 0 0 0 ... 0
j = 3 0 1 0 0 ... 0

... ... ... ... ... ...
j = Q 0 0 0 1 ... 0

research literature is that the resource requirement per bundle in B is the same for all i agents

and the available capacity is restricted to one for all dimensions in Q:

max
N∑
i=1

2Q∑
b=1

Ub,iXb,i

s.t. :
N∑
i=1

2Q∑
b=1

Bb,jXb,i = 1 ∀j ∈ Q
(9)

– Step 4: Once the optimal choice table X∗ is obtained, the social planner can build a Q × N

allocation table A∗ = B′X∗, shown in table 3. This table uniquely assigns every unit in Q to

an agent in N , and can therefore be used for the purpose of selecting goods one by one and

dispatching them to their allocated owner.

In theory all four steps of the MMKP are feasible and A∗ exists. The problem is not tractable in

practice, however, and one of the main advantages of the framework is that it neatly separates the

types of hurdles facing a social planner. The first is the choice of the correct social welfare function,

followed, as pointed out by Hayek (1945), by a high and potentially unfeasible informational re-

quirement (Step 2) and by a large and computationally complex combinatorial optimisation (Step

3).5 As a result, although it exists, the optimal allocation A∗ is unknown to the social planner. We

now move to proving a strong statement about the emergence of a stable decentralised allocation

in such a system.

4.2 Knapsacks, congestion games and improvement paths

As explained in section 2, the operational research literature has used the MMKP to model resource

allocation on a network, a setting similar to that of the congestion game in Rosenthal (1973). We

now show that the two are in fact equivalent under standard assumptions on preferences, which

has important implications in terms of self-organisation.

The allocation of Q goods over N agents with preferences given by U is modeled as a road

congestion game where qk ∈ N users of K different types have to choose a route i in an N -

5 The knapsack problem is known to be NP-complete, in other words solutions to the problem can be verified
efficiently (in polynomial time), but there is no known algorithm for calculating the solutions efficiently in the first
place.
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s f

Fig. 1 Multigraph congestion game

edge multigraph between start point s and finish point f , in order to maximise their payoff V k
b,i.

Elaborating on Rosenthal (1973), one could imagine that the K different types represent different

categories of vehicles, such as cars, trucks, etc. who each generate different congestion costs. This

choice of graph as, illustrated by Figure 1, implies that distinct routes follow separate edges i.e.

there are no externalities between routes, where the benefit of a user choosing a route might depend

on the number of users choosing another route.

As is standard in congestion games, the payoffs V k
b,i for choosing an edge are a function of the

number of users already on the edge. These will be derived from the ranking information returned

in table 2. Specifically, let us define ∆kUb,i = Ub,i−Ub{−k},i as the change in ranks at the margin,

following the addition of the last k-type good to bundle b. In terms of notation, b{−k} is the

bundle obtained by removing a k-type good from bundle b. Similarly, in the following, b{+k} will

refer to the bundle obtained by adding a k-type good to bundle b.6 This allows the derivation of

a 2Q ×N ×K payoff array V which is set as V k
b,i = ∆kUb,i.

The following two assumptions on the rankings in the table 2 are required in order to show

equivalence between the MMKP and the congestion game frameworks:

Monotonicity: ∆kUb,i > 0 ∀ k, i, b.

Concavity: Given two bundles a and b, ∀ i ∈ N if Ub,i > Ua,i then ∆kUb,i < ∆kUa,i.

Monotonicity, which was already implicity assumed in the description of the rankings table 2,

ensures that all the congestion game payoffs in V are strictly positive. Concavity intuitively means

that the bundle rankings exhibit decreasing marginal values, as adding extra units of k-type goods

to a bundle, keeping the rest of the bundle constant, will bring successively smaller increases in the

ranking. Together with monotonicity, this is required in order to ensure that the payoff of choosing

a particular edge is decreasing with the number of users on that edge, as in the basic congestion

6 ∆kUb,i is of course undefined for the empty bundle and whenever bundle b contains no k-type units.
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game framework of Rosenthal (1973).7 We now prove that if the rankings table U satisfies these

two assumptions, the MMKP and congestion game formulations are equivalent.

Proposition: If the ranking table U displays monotonicity and concavity, the optimal solution

to the MMKP problem is a Nash equilibrium for the corresponding multigraph congestion game

based on payoff table V.

Proof: By contradiction. Let X∗ be the decision table that satisfies the MMKP (8) and A∗ =

B′X∗ the corresponding allocation of the Q users over the N edges of the multigraph. Let us

assume that A∗ is not a Nash equilibrium for the Q users. If b and a are the bundles allocated to

edges i and x respectively by X∗, this implies:

∃ i, x, k : V k
a{+k},x > V k

b,i

Let Y be the decision table resulting from the switch of the k-type agent from edge i to x. Y

is identical to X∗, except for edges i and x, which receive bundles b{−k} and a{+k} respectively.

Using the definition of V k
b,i:

∆kUa{+k},x > ∆kUb,i

Ua{+k},x + Ub{−k},i > Ua,x + Ub,i

tr (UY ′)> tr
(
UX∗

′
)

X∗ does not satisfy the MMKP, which is a contradiction. �

Corollary: If the ranking table U displays monotonicity and concavity, the objective function of

the MMKP is an exact potential function for the corresponding multigraph congestion game based

on payoff table V.

Proof: Immediate from the previous proof and the definition of the payoffs V k
b,i. The change in

payoff to a k-type user for switching from edge i to x is V k
a{+k},x − V

k
b,i. Given that V k

b,i = ∆kUb,i

one has:

V k
a{+k},x − V

k
b,i = ∆kUa{+k},x −∆kUb,i = tr (UY ′)− tr

(
UX∗

′
)

The objective function of the MMKP is an exact potential for the congestion game based on

the corresponding V k
b,i payoffs. �

7 In the standard framework of Rosenthal (1973), congestion costs on an edge are increasing with the numbers of
users on the edge, and the aim of the network users is to choose the edge with the lowest cost. This is equivalent to
the framework used here, where the benefit of using an edge falls with the numbers of users on the edge, and users
choose the edge with the highest benefit.
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As was shown by Monderer and Shapely (1996) and explained in section 2, the equivalence of

the MMKP and congestion game frameworks and the existence of a potential function implies the

existence of the finite improvement property (FIP). Starting from any initial state a simple myopic

best-response path will lead to a Nash equilibrium in a finite number of steps. For the MMKP, an

Edgeworth process where agent pairs meet randomly and trade goods with low marginal utility

∆kUb,i against goods with higher marginal utility would satisfy the requirement, as the potential

function tr(UX ′) would increase following such trades.8 The central implication of this result is

that if the rankings expressed by the N agents are monotonic and concave, then even though

the MMKP cannot be solved centrally, the social planner can be confident that the system will

eventually reach a decentralised allocation.

The existence of a convergence process to a set of decentralised allocations is no surprise and

only duplicates the existing findings of the objet allocation literature mentioned in section 2.

Instead, the result of interest is the presence of the FIP, as this is what underpins the proposed

use of the MaxEnt signal restoration methodology. Indeed, under the FIP any initial state I is

linked to a final Nash equilibrium F by a finite sequence of intermediate states I → F on which

transitions are the result of agents making best-response, welfare-increasing trades. If, however, the

same sequence of states is viewed in reverse, F → I, transitions now reflect a systematic sequence

of random errors. This is because a reverse transition will involve at least one agent moving from

a unique and optimal situation to one of many possible sub-optimal ones. The key consequence of

this is that the initial condition I can be treated as the realisation of a particular noise process

applied to F . The implication is thus that the problem of predicting F from I is equivalent to the

signal restoration problem presented in section 3. The following section illustrates this argument

by applying the analysis the Schelling model, which is known to posses the FIP.

5 Application to the Schelling model of segregation

5.1 FIP in the Schelling model of segregation

In the standard setting of the Schelling model two types of agents live in a city made up of discrete

locations, and each type has a preference for living in a local neighbourhood composed of agents

of the same type. When agents are allowed to move, segregated neighborhoods will emerge from

an integrated initial condition as agents relocate to unoccupied locations in the city that are more

attractive. The attractiveness of a location to an agent is a function of the number of similar

8 Clearly, the switching process used in the proof is simplistic: one does not expect goods to choose their owners
in order to maximise a payoff! Edgeworth trading, however, can be broken down into a sequence of such switches:
a k-type good moves from agent i to agent x, immediately followed by a another commodity switching from x to i.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2 Emergence of segregation in the Schelling model

agents in the vicinity, which usually determined by counting the number of similar agents within

a neighbourhood of given width. If B is a N × N binary matrix which identifies the neighbours

for all N locations, and lc is the binary vector for the location of c-type agents, this similarity for

each location i is given by:

(B × lc)i =
∑

j
Bi,j l

c
j (10)

As is the case with the work of Grauwin et al (2012), it is assumed that the space occupied by

the city is toroidal, so that the top/bottom and left/right edges are in contact. This simplification

allows the neighbourhood matrix B to be encoded as a circulant matrix, which greatly facilitates

the analysis. A further assumption used here is that the utility of an agent is directly proportional

to the number of similar neighbors. This is contrast to original Schelling (1969, 1971) model,
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where utility is a unimodal function of similarity, initially increasing with similarity, peaking for

a balanced neighbourhood composed of 50% of agents of each type, then declining as similarity

increases further. Indeed, Grauwin et al (2012) show that in the case of continuous neighborhoods

such as (10), the existence of a potential function - critical to presence of the FIP discussed in

section 4.2 - requires that utility functions be linear functions of the number of similar agents.

Because it is assumed that relocation opportunities arrive randomly (typically as a Poisson

process), simulation is usually the method of choice for investigating this model. Grauwin et al

(2012) themselves point out that most analyses of this model rely on agent-based simulations and

lack analytical solutions. Such a simulation is therefore provided as a point of reference for the

MaxEnt prediction methodology. 9

The sequence of images in Figure 2 (a)→(i) provides a time-lapse of the simulation process, and

illustrates the concept of a finite improvement path. The random initial state is given in Figure 2

(a) , while Figure 2 (i) represents the state of the city after 44841 individual moves have occurred.

The final state in 2 (i), which exhibits the segregated outcomes typical of the Schelling model, is

stable as no further utility-improving relocations exist.

5.2 MaxEnt prediction

The finite improvement path visible in Figure 2 provides a simple yet effective illustration for the

argument made in section 4.2. Indeed, viewing the finite improvement path in reverse, (i)→(a),

provides a situation where an initially well-defined and coherent image gradually picks up noise,

eventually obscuring the initial information. Thus, the problem of predicting 2 (i) from the initial

condition 2 (a) is equivalent to the problem of reconstructing a signal 2 (i) from noisy data 2 (a).

We show that predictions of the Schelling model from the initial condition can indeed be obtained

using a modified version of the MaxEnt image reconstruction approach discussed in section 3,

specifically the algorithm of Skilling and Gull (1991).

Within the setting described above in 5.1, let hci be the probability that the ith location is

occupied by an agent of the cth colour, with c ∈ {R,G,W} and
∑

c h
c
i = 1. Given this, relative

entropy (5) measures the expected information content of a message revealing the final state of a

randomly picked location, relative to any prior information on the location of agents:

S (h|m) = − 1

N

∑
i

∑
c
hci ln

hci
mc

i

(11)

9 The parameters for the benchmark simulation are as follows: the city is 200 pixels across and each pixel represents
a location, so there are N = 2002 = 40000 locations. There are NR = NG = 16000 red and green agents and
NW = 8000 free spaces. The continuous neighborhood agents consider when assessing the desirability of a given
location is a 7× 7 square area centered on that location.
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As outlined in Section 3, relative entropy (11) encodes prior information through the underlying

model mc
i . In the Schelling model, however, agent satisfaction does not depend on absolute location,

but on location relative to other agents. As a result, there is no prior information regarding the

probability of a single location being occupied by a particular type of agent, and mc
i in expression

(11) is not particularly useful. This is dealt with by following Skilling and Gull (1987) and con-

sidering the expected information content of a message revealing the state {c, d} of two randomly

picked locations {x, y}.10 Using expression (12) enables the integration of a two-dimensional model

mc,d
i,j which can contain knowledge of correlations across locations.11 This is better suited to the

prior information provided in the Schelling model, in which one expects neighbouring locations to

have a relatively high probability of being occupied by similar agents.

S (hx, hy|mx,y) =
1

N

(
−2
∑

i

∑
c
hci lnhci +

1

N

∑
i,j

∑
c,d
hcih

d
j lnmc,d

i,j

)
(12)

The second important piece of information required for the MaxEnt prediction is the initial

condition of the system, which provides the data entering the likelihood in (6). With the reversed

FIP, where Figure 2 (i) decays to a noisy state in Figure 2 (a), this represents the information

that has not been wiped out in the decayed image. Within the Schelling setting, this intuitively

represents the key stable locations that are initially most attractive and are not modified as the

segregated outcome emerges. This information is revealed by taking the convolutions of the initial

state in order to determine the initial attractiveness (10) for each type of population, shown in

Figure 3.

As a further simplification we assume, following the standard image restoration literature,

that the divergence between the prediction hc and the initial attractiveness data dc is normally

distributed. This implies that the likelihood p(dc|hc) = exp(−`(dc|hc))/Z` is gaussian, and therefore

the log-likelihood `(dc|hc) is directly related to the chi-squared deviation between the initial data

available and the prediction, where (σc)2 is the variance of the dc data.

` (dc|hc) =
∑

i

((B ∗ hc)i − dci )
2

(σc)
2 =

χ2 (hc)

2
(13)

The the information theoretic problem is therefore to maximise the ignorance of an observer

(12) subject to the information provided by the likelihood (13), normalising to ensure that the

predicted number of agents of each colour equals the initial amount N c. As pointed out by Skilling

10 The derivation of the double entropy specification is detailed in appendix A.
11 This structure also allows correlations across agent types, for example if agents were to evaluate the attractiveness

of a location not only by the number of similar agents but also by the number of agents of a different type. This is
not the case here as in the basic Schelling model, agents only consider their own type in their location decision, in

other words mc,d
i,j = 0 ∀d 6= c.
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(a) initial green state (b) initial green attractiveness

(c) initial red state (d) initial red attractiveness

Fig. 3 Initial condition information

and Gull (1991), the value of the implicit Lagrange parameter α is used to constrain the noise level

measured by (13) to be equal to number of degrees of freedom controlled by noise, i.e. the overall

number of locations N minus the number of good locations Γ c in the initial data.12

The first order condition of the problem directly provides the best prediction for the distribution

of agents over the locations:

hci =
µc
i

Zc
exp

(
− 1

2αc

∂χ2 (hc)

∂hci

)
(14)

The effective model µc
i and the normalisation parameter Zc are given by:

µc
i = exp

(
1

2N

∑
j

∑
c,d
hdj lnmc,d

i,j

)
and Zc =

1

N c

∑
i
µc
i exp

(
− 1

2αc

∂χ2 (hc)

∂hci

)

One can see that the effective model for a location µc
i is simply the geometric mean of the

individual correlations mi,j , weighted by the probability vector. As pointed out by Skilling and

Gull (1987), this is effectively a convolution of the reconstruction hc with the logarithm of the

N × N model matrix, similar to (10). 13 It is important to point out that expression (14) only

12 The relation between α and the number of noisy degrees of freedom as well as the calculation of Γ c are explained
in appendix B.
13 In practice the convolution used in the prediction algorithm is different: instead of calculating hdj lnmc,d

i,j the

algorithm uses mc,d
i,j lnhdj . This is done for computational reasons. Most of the entries in the model M are vanishingly

small as one expects the correlations across locations to exist only over short distances. As a result they are truncated
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(a) Final green state (b) Monte Carlo green fre-
quency

(c) MaxEnt Green probability
density

(d) Final red state (e) Monte Carlo red frequency (f) MaxEnt Red probability
density

Fig. 4 MaxEnt predictions vs. Monte Carlo frequencies

provides an implicit solution for the probability distribution hci as both the model term µc
i and

noise term χ2(hc) are themselves functions of hci . The predicted distributions are therefore obtained

using a gradient-based algorithm, outlined in appendix B.

A Monte-Carlo (MC) analysis was carried out in addition to the MaxEnt reconstruction in

order to assess the predictive power of the proposed methodology. Colour-specific frequencies f c

were obtained by running 1000 Monte-Carlo (MC) iterations of the Schelling model on the same

initial condition. Intuitively, f ci indicates the percentage of simulations that resulted in the ith

location being occupied by an c-coloured agent, and these can directly be compared to hci , the

probability that location i is of colour c in the MaxEnt reconstruction. Figures 4 (a) and (d) are

the colour-specific results of the simulation shown in Figure 2, while figures 4 (c) and (f) provide

the MaxEnt prediction (14) given the information from the initial condition in Figure 3. The MC

frequencies f c are shown in Figures 4 (b) and (e).

Table 4 provides two main measures of goodness of fit for the reconstruction hc compared to

the MC frequencies f c for both types of agents. The first is the Spearman rank correlation between

the two vectors, which is large and highly significant. A second measure is the relative mean square

error (MSE) of hc as a predictor of f c , which is calculated as the sum of squared deviations between

out of the matrix, which can be stored efficiently as a sparse matrix with many zero elements. Taking the logarithm
of this sparse matrix thus becomes problematic, therefore in practice it is easier to take the logarithm of the hc.
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Table 4 Goodness of fit tests, Monte Carlo vs. MaxEnt

Spearman’s ρ p-value MSE/σ2 Standardised MSE/σ2

Green 0.910 0 0.9879 0.2292
Red 0.8190 0 0.9888 0.4546

the hc and f c relative to the variance of the MC frequency f c, i.e. (f−h)′(f−h)[(f− f̄)′(f− f̄)]−1.

The MSE values just below unity suggests that hc is a better predictor of f c than the expectation

f̄ c = h̄c = NC/N , but only by a small margin. This is because in practice the reconstruction hc

is very flat, with a standard deviations of 0.0023 and 0.0026 for the greens and reds respectively,

which means that hc never moves very far from its expected value h̄c = NC/N . Intuitively, there is

so much noise in the initial information of Figure 3, as measured by the chi-squared deviation (13),

that the degrees of freedom available for the description of the reconstructed image (14), measured

by Γ c = N − χ2 (hc), are severely limited.

Once the relative flatness of the reconstruction is controlled for by standardising both vectors

hc and f c, the MSE measure falls significantly, which is shown in the final column of Table 4.

This standardised MSE supports the good predictive power of hc with regards to the location of

red/green agents, which is what is revealed by visual comparison in Figure 4. One can conclude

from this that although the initial information in Figure 3 is very noisy and therefore seems of

limited use, and even though the power of the MaxEnt methodology is limited in terms of predicting

the amplitude of the absolute frequencies f c, it nevertheless provides a reliable prediction for the

relative locations of the two sets of agents.

6 Discussion and Conclusion

The formal justification provided for transposing the signal restoration interpretation of MaxEnt

into economics is the structural similarity between object allocation problems, as modeled by the

MMKP, and congestion games frameworks. In fact, the only requirement for the optimal MMKP

allocation to also be a Nash equilibrium in a corresponding congestion game is concavity in the

bundle rankings, allowing the MMKP objective function to become an exact potential for the game.

Assuming this is the case, the system displays the FIP, i.e. from any initial state there exists a

finite path to a Nash equilibrium under even the simplest adjustment dynamics. It is the presence

of the FIP and the corresponding improvement path that then provides the key motivation for the

use of the MaxEnt signal restoration methodology in such a system. Indeed, the sequence of states

forming the improvement path can be interpreted in two ways, depending the direction in which

it is viewed.
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If the improvement path is viewed forward, starting at the initial state and finishing at the

equilibrium, the picture one has is of a system that gradually self-organises as agents perform

systematic welfare-increasing trades. This corresponds to the self-organisation concept mentioned

in introduction and, as illustrated with Figure 2, this interpretation corresponds to the biological

entropy reduction insight of Schrödinger (1967): the amount of information required to describe

the state of the overall system falls over time as it organises itself. If, however, the same improve-

ment path is played backwards, i.e. starting at the equilibrium and traveling back towards the

initial condition, then a physical analogy is more appropriate. Agents now appear to be making

systematic welfare-decreasing trades, in other words systematic errors. With this reverse view,

the initially ordered state gradually decays as noise is introduced. This corresponds to the direct

physical interpretation of entropy increases: An initially ordered system, say an ice cube in a glass

of water, which gradually decays into a disordered thermal equilibrium. In this case the increas-

ing information entropy measures ignorance as to the amount and type of noise that has been

introduced.

The central finding is therefore that if a system possesses the FIP, then predicting its equilibrium

distribution from a known initial state is formally equivalent to reconstructing an unobserved clean

signal out of an observed noisy one. This is illustrated by the application to the Schelling model,

where such an algorithm is shown to be able to predict the emergence and location of segregated

neighbourhoods with a good level of accuracy. Not only does this provide a stronger justification

for the use of MaxEnt and information-theoretic methods in economics, but it also suggests that

signal reconstruction algorithms, designed specifically for the purpose of recovering a degraded

signal, could become useful tools in agent-based computational economics. As pointed out by

Fagiolo et al (2007) as part of a special issue of Computational Economics the empirical validation

in agent-based models is still an open question, and the methodology outlined here might be helpful

in that regard.

There are two important considerations going forwards, however. The first is that the use

of the FIP as a formal definition of self-organisation is probably too strong. The FIP implies

both systematic improvements in transitions and a finite horizon, i.e. the existence of a stable

final state. While this helps to underpin the use of MaxEnt, it is easy to imagine richer self-

organising systems where neither holds, for example if forward-looking agents accept short run

welfare reductions in order to benefit in the longer run or simply if agents occasionally make

mistakes. It is therefore interesting to examine the performance of signal reconstruction methods in

such weaker environments. A second consideration is that the MaxEnt algorithm is chosen because

versions of it have already been used in economics, and because it offers an intuitive illustration of
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the arrow-of-time interpretation of the mechanism. However, while it seems to perform adequately

in the case presented here, it is only one of many available signal reconstruction algorithms, and

may not be the most powerful or the most adapted to the specific economic case.
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A Information-theoretic framework

The key difference between the standard relative information content (11) typically used in the image processing

literature and the specification (12) used here is the use of the double space entropy suggested by Skilling and Gull

(1987) to integrate prior knowledge of relative rather than absolute positions of agents. Formally, the relative entropy

is the same as (11), except that it encodes the information content of a message revealing the colours {c, d} of a

randomly chosen pair of locations {x, y}, relative to what would be expected given prior knowledge of correlations

mx,y :

S (hx, hy |mx,y) = −
1

N2

∑
i,j

∑
c,d

hc,di,j ln

(
hc,di,j

mc,d
i,j

)
(A-1)

S (hx, hy |mx,y) = −
1

N2

∑
i,j

∑
c,d

hc,di,j lnhc,di,j +
1

N2

∑
i,j

∑
c,d

hc,di,j lnmc,d
i,j (A-2)

Treating the joint probability as the product of the marginal probabilities hc,di,j = hcih
d
j , and recognising that∑

i

∑
c h

c
i lnhci =

∑
j

∑
d h

d
j lnhdj , one obtains the specification used in equation (12). Although the existence

correlations in the model mc,d
i,j means that the probabilities are not in fact independent, this assumption allows the

relative entropy to measure the extra information required to treat probabilities hci and hdj as independent when

they are in fact related by the underlying model.

Given the specifications for the entropy (12) and the the likelihood (13), maximising the posterior distribution

involves solving the following maximum entropy problem. It is assumed that the αc parameter integrates the

multiplicative 2/N term in (12).

arg max
hc
i

(
αcS (hx, hy |mx,y)−

χ2 (hc)

2

)
(A-3)

This leads to the following first order condition with respect to hci :

αc (− lnhci − 1 + lnµci )−
1

2

∂χ2 (hc)

∂hci
= 0 (A-4)

hci ∝ µci exp

(
−

1

2αc

∂χ2 (hc)

∂hci

)
(A-5)

Because Nc, the total number of agents of a particular colour, is given in the initial condition and does not

change over time, it is possible to derive a partition function Zc which serves to normalise the distribution over

locations:

∑
i
hci = Nc ⇒ Zc =

1

Nc

∑
i
µci exp

(
−

1

2αc

∂χ2 (hc)

∂hci

)
(A-6)

B Maximum entropy algorithm

The algorithm used to obtain the probability distribution (14) follows from Skilling and Gull (1991).14 The initial

probability and model vectors are given by the uniform distribution hci = mc
i = Nc/N . Prior to running the algo-

rithm, the initial conditions are processed in order to extract the relevant data for calibrating the model constraints:

14 The code for the Schelling simulation and the MaxEnt reconstruction algorithm is available from the author on
request, as well as the initial condition matrix required for replicating the figures shown here.



23

– The initial attractiveness data vector dc is calculated as a convolution of initial state vector lc0, i.e. dc = B× lc0.

– The initially most attractive locations G are determined as those where dci ≷ dc ± 2σc. Because these good

locations are clustered, the number of distinct clusters Γ c is obtained by convolving the initial attractive locations

G with B a second time to identify those which most attractive because located closest to each other. This

provides ΓR = 14 and ΓG = 11.

– Finally the expected radius of a cluster b =
√
G/(Γ c ∗ π) is calculated. This is used to calibrate the model Mc,

which is assumed to be a circulant matrix containing a gaussian convolution of standard deviation b.

B.1 Newton method iteration

The iterative algorithm uses the Newton method to find the most probable reconstruction h. In terms of notation,

assuming that v is a N × 1 column vector, [v] refers to a N × N diagonal matrix with the entries of v on the

main diagonal and zeros off the main diagonal. Referring to Qc as the argument of the maximisation in (A-3), the

Jacobian vector and Hessian matrix are given by:

∇Qc = αc∇S (hx, hy |mx,y)−∇` (dc|hc)

∇∇Qc = αc∇∇S (hx, hy |mx,y)−∇∇` (dc|hc)
(A-7)

The step change in the probability vector at each iteration can be calculated using the standard Newton method:

∆hc = − (∇∇Qc)−1 .∇Qc (A-8)

Given that the Hessian matrix ∇∇Qc is symmetric by construction, calculation of the iteration step (A-8) can be

carried out efficiently by using the Preconditioned Conjugate Gradient method (PCG) to solve −∇∇Qc.∆hc = ∇Qc

without inverting the Hessian ∇∇Qc. Once this is done, the prediction is updated: hc + ∆hc. The model is also

updated at this point using ∆µc = [µc] [hc]−1Mc∆hc.

B.2 Control and termination

Two related control issues must be solved as the Newton iterations proceed. First of all, the value of the αc

parameter has to be determined and adjusted, and secondly the iteration must be terminated at some point. The

main advantage of the Skilling and Gull (1991) approach is that it is the optimal value of αc which both controls

the iteration process and provides this termination condition. By integrating αc into the hypothesis space of the

Bayesian problem, they show that the most probable α̂c satisfies:

−2αcS (hx, hy |mx,y) = tr
(

(αcI + Lc)−1 Lc
)

where αcI + Lc = [hc]
1
2 ∇∇Qc [hc]

1
2 (A-9)

If λci are the eigenvalues of Lc, then tr
(

(αcI + Lc)−1 Lc
)

=
∑

i λ
c
i/(α

c + λci ). The trace term is therefore a

measure of the number of good observations in the data, i.e. the number of dimensions for which λci >> αc, and

the role of αc is to identify the number of good observations and hence the amount of noise, as −2αcS + χ2 = N .

If r is a N × 1 vector of N(0, 1) errors, then the trace term can be estimated by:

tr
(

(αcI + Lc)−1 Lc
)

=
〈
r′ [hc]−

1
2 (∇∇Qc)−1 . [hc]−

1
2 Lcr

〉
(A-10)
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This implies that the tr
(

(αcI + Lc)−1 Lc
)

term can be calculated by using PCG to solve∇∇Qc.Y = [hc]−
1
2 Lcr,

then calculating r′ [hc]−
1
2 Y . Given the similarity of (A-10) and the step-size problem (A-8), this is carried out in par-

allel to the main iteration at very little extra cost. This provides control by providing a target value α̃c = −trace/(2S)

towards which the αc parameter can be adjusted at each iteration.

In the original Skilling and Gull (1991) algorithm, equation (A-9) also provides the following termination con-

dition for the algorithm, which is satisfied when Ω ≈ 1.

Ω = −
tr
(

(αcI + Lc)−1 Lc
)

2αcS (hx, hy |mx,y)
(A-11)

Given that the number of distinct good locations Γ c is known in advance, (A-9) and (A-11) are modified to take

this into account, by rescaling αc with a free parameter θ, shown below. This parameter ensures that when the Ω ≈ 1

termination condition is reached α̂c = α̃c. More importantly, it also ensures 2(α̂cθ)S = tr((α̂cI + Lc)−1Lc) = Γ c

and χ2(ĥc) = N − Γ c.

θ = −
2αcS (hx, hy |mx,y)

Γ c
(A-12)

αc = −θ
tr
(

(αcI + Lc)−1 Lc
)

2S (hx, hy |mx,y)
(A-13)

Ω = −θ
tr
(

(αcI + Lc)−1 Lc
)

2αcS (hx, hy |mx,y)
(A-14)


