
The expressibility of functions on the Boolean domain, with applications to

Counting CSPs
Bulatov, A; Dyer, M; Goldberg, LA; Jerrum, M; McQuillan, C

For additional information about this publication click this link.

http://qmro.qmul.ac.uk/xmlui/handle/123456789/10337

Information about this research object was correct at the time of download; we occasionally

make corrections to records, please therefore check the published record when citing. For

more information contact scholarlycommunications@qmul.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen Mary Research Online

https://core.ac.uk/display/30698216?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://qmro.qmul.ac.uk/xmlui/handle/123456789/10337

The expressibility of functions on the Boolean
domain, with applications to Counting CSPs∗

Andrei A. Bulatov1 Martin Dyer2

Leslie Ann Goldberg3 Mark Jerrum4 Colin McQuillan3

22nd December 2012

Abstract

An important tool in the study of the complexity of Constraint Satisfaction Prob-
lems (CSPs) is the notion of a relational clone, which is the set of all relations express-
ible using primitive positive formulas over a particular set of base relations. Post’s
lattice gives a complete classification of all Boolean relational clones, and this has been
used to classify the computational difficulty of CSPs. Motivated by a desire to un-
derstand the computational complexity of (weighted) counting CSPs, we develop an
analogous notion of functional clones and study the landscape of these clones. One of
these clones is the collection of log-supermodular (lsm) functions, which turns out to
play a significant role in classifying counting CSPs. In the conservative case (where
all nonnegative unary functions are available), we show that there are no functional
clones lying strictly between the clone of lsm functions and the total clone (containing
all functions). Thus, any counting CSP that contains a single nontrivial non-lsm func-
tion is computationally as hard to approximate as any problem in #P. Furthermore,
we show that any non-trivial functional clone (in a sense that will be made precise)
contains the binary function “implies”. As a consequence, in the conservative case, all
non-trivial counting CSPs are as hard as #BIS, the problem of counting independent
sets in a bipartite graph. Given the complexity-theoretic results, it is natural to ask
whether the “implies” clone is equivalent to the clone of lsm functions. We use the
Möbius transform and the Fourier transform to show that these clones coincide pre-
cisely up to arity 3. It is an intriguing open question whether the lsm clone is finitely
generated. Finally, we investigate functional clones in which only restricted classes of
unary functions are available.

∗The work reported in this paper was supported by an EPSRC Research Grant “Computational Counting”
(refs. EP/I011528/1, EP/I011935/1, EP/I012087/1), and by an NSERC Discovery Grant, and by an EPSRC
doctoral training grant. Part of the work was supported by a visit to the Isaac Newton Institute for
Mathematical Sciences, under the programme “Discrete Analysis”. Some of the results were announced in
the preliminary papers [8] and [29].

1School of Computing Science, Simon Fraser University, 8888 University Drive, Burnaby BC, V5A 1S6,
Canada.

2School of Computing, University of Leeds, Leeds LS2 9JT, United Kingdom.
3Department of Computer Science, Ashton Building, University of Liverpool, Liverpool L69 3BX, United

Kingdom.
4School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E1 NS,

United Kingdom.

The expressibility of functions on the Boolean domain, with applications to Counting CSPs 2

1 Introduction

In the classical setting, a (non-uniform) constraint satisfaction problem CSP(Γ) is specified
by a finite domain D and a constraint language Γ , which is a set of relations of varying
arities over D. For example, D might be the Boolean domain {0, 1} and Γ might be the set
containing the single relation NAND = {(0, 0), (0, 1), (1, 0)}. An instance of CSP(Γ) is a set
of n variables taking values in D, together with a set of constraints on those variables. Each
constraint is a relation R from Γ applied to a tuple of variables, which is called the “scope”
of the constraint. The problem is to find an assignment of domain elements to the variables
which satisfies all of the constraints. For example, the problem of finding an independent
set in a graph can be represented as a CSP with Γ = {NAND}. The vertices of the graphs
are the variables of the CSP instance. The instance has one NAND constraint for each edge
of the graph. Vertices whose variables are mapped to domain element 1 are deemed to be in
the independent set. Constraint satisfaction problems (CSPs) may be viewed as generalised
satisfiability problems, among which usual satisfiability is a very special case.

The notion of expressibility is key to understanding the complexity of CSPs. A primitive
positive formula (pp-formula) in variables V = {v1, . . . , vn} is a formula of the form

∃vn+1 . . . vn+m
∧
i

ϕi,

where each atomic formula ϕi is either a relation R from Γ applied to some of the variables
in V ′ = {v1, . . . , vn+m} or an equality relation of the form vi = vj, which we write as
EQ(vi, vj). For example, the formula

∃v3 NAND(v1, v2)EQ(v1, v3)EQ(v2, v3)

is a pp-formula in variables v1 and v2. This formula corresponds to the relation {(0, 0)} since
the only way to satisfy the constraints is to map both v1 and v2 to the domain element 0.

The relational clone 〈Γ 〉R is the set of all relations expressible as pp-formulas over Γ .
Relational clones have played a key role in the development of the complexity of CSPs
because of the following important fact, which is described, for example, in the expository
chapter of Cohen and Jeavons [14]: If two sets of relations Γ and Γ ′ generate the same
relational clone, then the computational complexities of the corresponding CSPs, CSP(Γ)
and CSP(Γ ′), are exactly the same. Thus, in order to understand the complexity of CSPs,
one does not need to consider all sets of relations Γ . It suffices to consider those that are
relational clones.

Recently, there has been considerable interest in the computational complexity of count-
ing CSPs (see, for example [7, 10, 13, 19, 20, 35]). Here, the goal is to count the number
of solutions of a CSP rather than merely to decide if a solution exists. In fact, in order
to encompass the computation of partition functions of models from statistical physics and
other generating functions, it is common (see, for example, [9]) to consider weighted sums,
which can be expressed by replacing the relations in the constraint language by real-valued
or complex-valued functions. In this case, the weight of an assignment (of domain values
to the variables) is the product of the function values corresponding to that assignment,
while the value of the CSP instance itself is the sum of the weights of all assignments. If

Andrei A. Bulatov, Martin Dyer, Leslie Ann Goldberg, Mark Jerrum and Colin McQuillan 3

I is an instance of such a counting CSP then this weighted sum is called the “partition
function of I” (by analogy with the concept in statistical physics) and is denoted Z(I). For
a finite set of functions Γ we are interested in the problem #CSP(Γ), which is the problem
of computing Z(I), given an instance I which uses only functions from Γ .

Our first goal (see §2) is to determine the most useful analogues of pp-definability and
relational clones in the context of (weighted) counting CSPs (#CSPs), and to see what
insight this provides into the computational complexity of these problems. It is clear that,
in order to adapt the concept of pp-definability to the counting setting, one should replace
a conjunction of relations by a product of functions and replace existential quantification
by summation. However, there are sensible alternatives for the detailed definitions, and
these have ramifications for the complexity-theoretic consequences. There is at least one
proposal in the literature for extending pp-definability to the algebraic/functional setting
— that of Yamakami [35]. However, we find it useful to adopt a more liberal notion of
pp-definability, including a limit operation. Without this, a functional clone could contain
arbitrarily close approximations to a function F of interest, without including F itself. We
call this analogue of pp-definability “ppsω-definability”. The notion of ppsω-definability leads
to a more inclusive functional clone than the one considered in [35].

Aside from a desire for tidiness, there is a good empirical motivation for introducing
limits. Just as pp-definability is closely related to polynomial-time reductions between clas-
sical CSPs, so is ppsω-definability related to approximation-preserving reductions between
(weighted) counting CSPs. Lemma 18 is a precise statement of this connection. Many
approximation-preserving reductions in the literature (for example, those in [21]) are based
not on a fixed “gadget” but on sequences of increasingly-large gadgets that come arbitrar-
ily close to some property without actually attaining it. Our notion of ppsω-definability is
intended to capture this phenomenon.

The second, more concrete goal of this paper (see §3–§9) is to explore the space of
functional clones and to use what we learn about this space to classify the complexity of
approximating #CSPs. We restrict attention to the Boolean situation so the domain is {0, 1}
and the allowed functions are of the form {0, 1}k → R≥0 for some integer k. We examine the
landscape of functional clones for the case in which all nonnegative unary functions (weights)
are available. This case is known as the conservative case. It is also studied in the context
of decision and optimisation CSPs [6, 28] and in work related to counting CSPs such as Cai,
Lu and Xia’s work on classifying “Holant∗” problems [11]. The conservative case is easier to
to classify than the general case, so we are able to construct a useful map of the landscape
of functional clones (see Theorem 16). Note that Yamakami [35] has considered an even
more special case in which all unary weights (including negative weights) are available. In
that case the landscape turns out to be less rich and more pessimistic — negative weights
introduce cancellation, which tends to drive approximate counting CSPs in the direction of
intractability.

An issue that turns out to be important in the classification of conservative functional
clones is log-supermodularity. Roughly, a function with Boolean domain is said to be log-
supermodular if its logarithm is supermodular. (A formal definition appears later.) It is a
non-trivial fact (Lemma 7) that the set LSM of log-supermodular functions is a functional
clone (using our notion of ppsω-definability).

Conservative functional clones are classified as follows. A particularly simple functional

The expressibility of functions on the Boolean domain, with applications to Counting CSPs 4

clone is the clone generated by the disequality relation. A counting CSP derived from this
clone is trivial to solve exactly, as the partition function factorises. We say that functions
from this clone are of “product form”. Our main result (Theorem 16) is that any clone that
contains a function F that is not of product form necessarily contains the binary relation
IMP = {(0, 0), (0, 1), (1, 1)}. This has important complexity-theoretic consequences, which
will be discussed presently. Furthermore, (also Theorem 16), any non-trivial clone that
contains a function F that is not log-supermodular actually contains all functions. Therefore
a large part of the functional clone landscape is very simple. In particular, we have a complete
understanding of the clones below the clone generated by IMP and of the clones above LSM.
The complexity of the landscape of functional clones is thus sandwiched between the clone
generated by IMP and the clone LSM.

In order to derive complexity-theoretic consequences (see Theorem 19), we also present
an efficient version of ppsω-definability, and a corresponding notion of functional clone. The
complexity-theoretic consequences are the third contribution of the paper. In order to de-
scribe these, we need a quick digression into the complexity of approximate counting. The
complexity class #RHΠ1 of counting problems was introduced by Dyer, Goldberg, Greenhill
and Jerrum [20] as a means to classify a wide class of approximate counting problems that
were previously of indeterminate computational complexity. The problems in #RHΠ1 are
those that can be expressed in terms of counting the number of models of a logical formula
from a certain syntactically restricted class. The complexity class #RHΠ1 has a complete-
ness class (with respect to approximation-preserving “AP-reductions”) which includes a wide
and ever-increasing range of natural counting problems, including: independent sets in a bi-
partite graph, downsets in a partial order, configurations in the Widom-Rowlinson model
(all [20]) and stable matchings [12]. Either all of these problems admit a Fully Polynomial
Randomised Approximation Scheme (FPRAS), or none do. The latter is conjectured. A
typical complete problem in this class is #BIS, the problem of counting independent sets in
a bipartite graph.

Our complexity-theoretic results are presented in §10. As noted above, #CSP(F) is
computationally easy if every function in F is of product form. We show that, in every other
(conservative) case, it is as difficult to approximate as #BIS. If, in addition, F contains a
function F which is not log-supermodular, then the counting problem #CSP(F) turns out
to be universal for Boolean counting CSPs and hence is provably NP-hard to approximate.
As immediate corollaries, we recover existing results concerning the complexity of computing
the partition function of the Ising model [21].

Given the above discussion, one might speculate that the IMP-clone and LSM are the
same. In fact, they are not. In §11, we examine the classes 〈LSMk〉 generated by lsm functions
of arity at most k. We show that 〈LSM3〉 is equal to the IMP-clone, but we give a proof
that 〈LSM3〉 is strictly contained in 〈LSM4〉. This mirrors the situation for VCSPs, where
binary submodular functions can express all ternary submodular functions but not all arity
4 submodular functions [36]. However, we do not know whether there is a fixed k such that
LSM = 〈LSMk〉. We conjecture that this is not the case. If LSM = 〈LSMk〉 for some k, there
would still remain the question of whether LSM is finitely generated, i.e., whether it is the
functional clone generated by some finite set of functions F . We conjecture the opposite,
that there is no such F .

Finally, in §12 and §13, we step outside the conservative case, and study functional

Andrei A. Bulatov, Martin Dyer, Leslie Ann Goldberg, Mark Jerrum and Colin McQuillan 5

clones in which only restricted classes of unary functions are available. As might be ex-
pected, this yields a richer structure of functional clones, including one that corresponds
to the ferromagnetic Ising model with a consistent field, a problem that is tractable in the
FPRAS sense [25]. We also exhibit in this setting two clones that are provably incompa-
rable with respect to inclusion, even though their corresponding counting CSPs are related
by approximation-preserving reducibility. These counting CSPs have natural interpretations
as (a) evaluating the weight enumerator of a binary code, and (b) counting independent
sets in a bipartite graph. This example shows that, in demonstrating intractability, it may
sometimes be necessary to use reductions that go beyond ppsω-definability.

Although we focus on approximation of the partition functions of (weighted) #CSPs in
this paper, there is, of course, an extensive literature on exact evaluation. See, for example,
the recent survey of Chen [13].

2 Functional clones

As usual, we denote the natural numbers by N, the real numbers by R and the complex
numbers by C. For n ∈ N, we denote the set {1, 2, . . . , n} by [n].

Let (C ,+,×) be any subsemiring of (C,+,×), and let D be a finite domain. For n ∈ N,
denote by Un the set of all functions Dn → C ; also denote by U = U0 ∪ U1 ∪ U2 ∪ · · ·
the set of functions of all arities. Note that we do not specify the domain, which we take
to be understood from the context, in this notation. Suppose F ⊆ U is some collection of
functions, V = {v1, . . . , vn} is a set of variables and x : {v1, . . . , vn} → D is an assignment to
those variables. An atomic formula has the form ϕ = G(vi1 , . . . , via) where G ∈ F , a = a(G)
is the arity of G, and (vi1 , vi2 , . . . , via) ∈ V a is a scope. Note that repeated variables are
allowed. The function Fϕ : Dn → C represented by the atomic formula ϕ = G(vi1 , . . . , via)
is just

Fϕ(x) = G(x(vi1), . . . ,x(via)) = G(xi1 , . . . , xia),

where from now on we write xj = x(vj).
A pps-formula (“primitive product summation formula”) is a summation1 of a product

of atomic formulas. A pps-formula ψ in variables V ⊆ V ′ = {v1, . . . , vn+m} over F has the
form

(1) ψ =
∑

vn+1,...,vn+m

s∏
j=1

ϕj,

where ϕj are all atomic formulas over F in the variables V ′. (The variables V are free, and
the others, V ′ \ V , are bound.) The formula ψ specifies a function Fψ : Dn → C in the
following way:

(2) Fψ(x) =
∑
y∈Dm

s∏
j=1

Fϕj(x,y),

1To avoid ambiguity, we will try to use “summation” of functions only with the meaning given here. Sums
of different functions will be referred to as “addition”.

The expressibility of functions on the Boolean domain, with applications to Counting CSPs 6

where x and y are assignments V → D, V ′ \ V → D. The functional clone 〈F〉 generated
by F is the set of all functions in U that can be represented by a pps-formula over F ∪{EQ}
where EQ is the binary equality function defined by EQ(x, x) = 1 and EQ(x, y) = 0 for
x 6= y. We refer to the pps-formula as an implementation of the function.

Since pps-formulas are defined using sums of products (with just one level of each), we
need to check that functions that are pps-definable in terms of functions that are themselves
pps-definable over F are actually directly pps-definable over F . The following lemma ensures
that this is the case.

Lemma 1. If G ∈ 〈F〉 then 〈F , G〉 = 〈F〉.

Note that, to simplify notation, we write 〈F , G〉 in place of the more correct 〈F ∪ {G}〉.
More generally, we shall often drop set-brackets, replace the union symbol ∪ by a comma,
and confuse a singleton set with the element it contains.

Proof of Lemma 1. Let F ′ = F ∪ {EQ}. Suppose that ψ is a pps-formula over F ′ ∪ {G}
given by

(3) ψ =
∑

vn+1,...,vn+m

(
r∏
i=1

ϕi

)(
s∏
j=1

χj

)
,

where {ϕi} are atomic F ′-formulas and {χj} are atomic G-formulas in the variables V ′.
Then

(4) Fψ(x) =
∑
y∈Dm

(
r∏
i=1

Fϕi(x,y)

)(
s∏
j=1

Fχj(x,y)

)
,

where x and y are assignments x : {v1, . . . , vn} → D and y : {vn+1, . . . , vn+m} → D. Now,
since G is pps-definable over F ′, and each χj is an atomic G-formula in the variables V ′, we
can write each χj as

χj =
∑

vνj+1,...,vνj+`

t∏
k=1

ϕj,k,

where ` is the number of bound variables used in the definition of χj (` is independent of j),
νj = n + m + (j − 1)` is the number of free variables plus the number of bound variables
that are “used up” by χ1, . . . , χj−1, and each ϕj,k is an atomic F ′-formula over the variables
V ′ ∪ {vνj+1, . . . , vνj+`}. We get

Fψ(x) =
∑
y∈Dm

(
r∏
i=1

Fϕi(x,y)

)(
s∏
j=1

∑
zj∈D`

t∏
k=1

Fϕj,k(x,y, z
j)

)

=
∑
y∈Dm

∑
z1∈D`

· · ·
∑

zs∈D`

(
r∏
i=1

Fϕi(x,y)

)(
s∏
j=1

t∏
k=1

Fϕj,k(x,y, z
j)

)
,

Andrei A. Bulatov, Martin Dyer, Leslie Ann Goldberg, Mark Jerrum and Colin McQuillan 7

where each zj is an assignment zj : {vνj+1, . . . , vνj+`} → D. So

ϕ =
∑

vn+1,...,vνs+`

(
r∏
i=1

ϕi

)(
s∏
j=1

t∏
k=1

ϕj,k

)

is a pps-formula over F ′ for the function Fψ.

To extend the notion of definability, we allow limits as follows. We say that an a-ary
function F ∈ U is ppsω-definable over F if there exists a finite subset SF of F , such that,

for every ε > 0, there exists an a-ary function F̂ , pps-definable over SF , such that

‖F̂ − F‖∞ = max
x∈Da

|F̂ (x)− F (x)| < ε.

Denote the set of functions that are ppsω-definable over F ∪ {EQ} by 〈F〉ω; we call this
the ppsω-definable functional clone generated by F . Observe that functions in 〈F〉ω are
determined only by finite subsets of F . This feature will be important when we come to
define a computationally efficient version of the the limiting operation, but ultimately is not
restrictive since #CSP(F) is defined only for finite sets of functions F . Also observe that
some functions taking values outside C may be the limit of functions pps-definable over F .
But they are not ppsω-definable, since the function values of the limit must be in C . The
domain C of the universal class of functions U in operation at any time will be clear from
the context.

The following lemma is an analogue of Lemma 1.

Lemma 2. If G ∈ 〈F〉ω then 〈F , G〉ω = 〈F〉ω.

Proof. Let F ′ = F ∪ {EQ}. Suppose that H is an a-ary function in 〈F , G〉ω. Let SH be a
finite subset of F ′ ∪ {G} such that the following is true: Given ε > 0, there exists an a-ary

function Ĥ, pps-definable over SH , such that ‖Ĥ − H‖∞ < ε/2. Let ψ be a pps-formula

over SH representing Ĥ. For any function Ĝ with the same arity as G, denote by ψ[G:=Ĝ]

the formula obtained from ψ by replacing all occurrences of G by Ĝ. By continuity of the
operators of pps-formulas, we know there exists δ > 0 such that, for every function Ĝ of the
same arity as G, ‖Ĝ−G‖∞ < δ implies

‖Fψ[G:=Ĝ] − Fψ‖∞ < ε/2.

This claim will be explicitly quantified in the proof of Lemma 4, but we don’t need so much
detail here. Of course, Ĥ = Fψ so for each such Ĝ we have ‖Fψ[G:=Ĝ] − Ĥ‖∞ < ε/2. Now
let SG be the finite subset of F ′ used to show that G is ppsω-definable over F ′. Let S =

SG ∪SH \ {G} ⊆ F ′. Choose a function Ĝ, pps-definable over SG, satisfying ‖Ĝ−G‖∞ < δ.

Notice that Ĝ ∈ 〈S〉 and Fψ ∈ 〈S,G〉 so Fψ[G:=Ĝ] ∈ 〈S〉 (by Lemma 1), and

‖Fψ[G:=Ĝ] −H‖∞ ≤ ‖Fψ[G:=Ĝ] − Ĥ‖∞ + ‖Ĥ −H‖∞ < ε.

Since ε > 0 is arbitrary, and S ⊆ F ′ is finite, we conclude that H ∈ 〈F〉ω.

The expressibility of functions on the Boolean domain, with applications to Counting CSPs 8

That completes the setup for expressibility. In order to deduce complexity results, we
need an efficient version of 〈F〉ω. We say that a function F is efficiently ppsω-definable over
F if there is a finite subset SF of F , and a TMMF,SF with the following property: on input
ε > 0, MF,SF computes a pps-formula ψ over SF such that Fψ has the same arity as F and
‖Fψ −F‖∞ < ε. The running time ofMF,SF is at most a polynomial in log ε−1. Denote the
set of functions in U that are efficiently ppsω-definable over F ∪{EQ} by 〈F〉ω,p; we call this
the efficient ppsω-definable functional clone generated by F ,

The following useful observation is immediate from the definition of 〈F〉ω,p.
Observation 3. Suppose F ∈ 〈F〉ω,p (or F ∈ 〈F〉ω). Then there is a finite subset SF of F
such that F ∈ 〈SF 〉ω,p (resp. F ∈ 〈SF 〉ω).

The following lemma is an analogue of Lemma 2 .

Lemma 4. If G ∈ 〈F〉ω,p then 〈F , G〉ω,p = 〈F〉ω,p.

Proof. Let F ′ = F ∪ {EQ}. Suppose H is an a-ary function in 〈F ′, G〉ω,p. Our goal is to
specify a finite subset S of F ′ and to construct a TM MH,S with the following property: on
input ε > 0, MH,S should compute an a-ary pps-formula ϕ over S such that ‖Fϕ−H‖∞ < ε.
The running time of MH,S should be at most a polynomial in log ε−1.

Let SH be the finite subset of F ′ ∪ {G} from the efficient ppsω-definition of H over
F ′ ∪ {G}. Given an input ε/2, the TM MH,SH computes an a-ary pps-formula ψ over SH
such that ‖Fψ−H‖∞ < ε/2. Write ψ as in Equation (3) so Fψ is written as in Equation (4).
Suppose that, for j ∈ [s] and y ∈ {0, 1}m, δj,y(x) is a function of x. Consider the expression

Υ(x) =
∑
y∈Dm

(
r∏
i=1

Fϕi(x,y)

)(
s∏
j=1

(Fχj(x,y) + δj,y(x))

)

−
∑
y∈Dm

(
r∏
i=1

Fϕi(x,y)

)(
s∏
j=1

Fχj(x,y)

)
,

which can be expanded as

Υ(x) =
∑
y∈Dm

∑
∅⊂T⊆[s]

Cy,T (x)
∏
j∈T

δj,y(x),

where

Cy,T (x) =
r∏
i=1

Fϕi(x,y)
∏

j∈[s]\T

Fχj(x,y).

Let C = maxx,y,T |Cy,T (x)| and let δ = ε2−(s+1)|D|−mC−1 < 1.
Now let SG be the finite subset of F ′ used to show that G is efficiently ppsω-definable

over F ′. Given the input δ, the TM MG,SG computes a pps-formula χ̂ over SG representing a
function Fχ̂ with the same arity as G such that ‖Fχ̂ −G‖∞ < δ. Since each χj is an atomic
G-formula in the variables V ′, we may appropriately name the variables of χ̂ to obtain a
pps-formula χ̂j over SG such that ‖Fχ̂j − Fχj‖∞ < δ.

For y ∈ Dm, let δj,y(x) = Fχ̂j(x,y) − Fχj(x,y) and note that |δj,y(x)| ≤ δ. Let
S = SG ∪ SH \ {G} ⊆ F ′. Let ψ′ be the formula over S formed from ψ by substituting

Andrei A. Bulatov, Martin Dyer, Leslie Ann Goldberg, Mark Jerrum and Colin McQuillan 9

each occurrence of χj with χ̂j. Convert ψ′ to a pps-formula ϕ as in Lemma 1. From the
calculation above,

‖Fϕ − Fψ‖∞ = ‖Fψ′ − Fψ‖∞
= max

x
|Fψ′(x)− Fψ(x)|

= max
x
|Υ(x)|

≤ 2s|D|mCδ = ε/2.

Note that
‖Fϕ −H‖∞ ≤ ‖Fϕ − Fψ‖∞ + ‖Fψ −H‖∞ < ε.

Thus, the formula ϕ is an appropriate output for our TM MH,S.
Finally, let us check how long the computation takes. The running time of MH,SH is at

most poly(log ε−1). Since this machine outputs the formula ψ, we conclude that m and r and
s are bounded from above by polynomials in log ε−1. Let ∆ be the ceiling of the maximum
absolute value of any function in SH . Note that C ≤ ∆r+s. The running time of MG,SG is
at most poly(log(δ−1)), which is at most a polynomial in m+ s+ log(C) + log(ε−1) which is
at most a polynomial in log(ε−1). Finally, the direct manipulation of the formulas that we
did (renaming variables from χ̂ to obtain χ̂j and producing the pps-formula ϕ from ψ and
the χ̂j formulas) takes time at most polynomial in the size of ψ and χ̂, which is at most a
polynomial in log(ε−1).

Lemma 4 may have wider applications in the study of approximate counting problems.
Often, approximation-preserving reductions between counting problems are complicated to
describe and difficult to analyse, owing to the need to track error estimates. Lemma 4
suggests breaking the reduction into smaller steps, and analysing each of them independently.
This assumes, of course, that the reductions are ppsω-definable, but that often seems to be
the case in practice.

3 Relational clones and nonnegative functions

A function F ∈ U is Boolean2 if its range is a subset of {0, 1}. Then F encodes a relation R
as follows: x is in the relation R iff F (x) = 1. We will not distinguish between relations and
the Boolean functions that define them. Suppose that R ⊆ U is a set of relations/Boolean
functions. A pp-formula overR is an existentially quantified product of atomic formulas (this
is called an ∃CNF(R)-formula in [16]). More precisely, a pp-formula ψ over R in variables
V ′ = {v1, . . . , vn+m} has the form

ψ = ∃ vn+1, . . . , vn+m

s∧
j=1

ϕj,

2Note that “Boolean” applies to the codomain here, not the domain. All of the functions that we consider
from now on have Boolean domains. This usage of “Boolean function” is unfortunate, but is well established
in the literature. When the range is not a subset of {0, 1} we emphasise this fact by referring to the function
as a “pseudo-Boolean” function.

The expressibility of functions on the Boolean domain, with applications to Counting CSPs 10

where ϕj are all atomic formulas over R in the variables V ′. As before, the variables V =
{v1, . . . , vn} are called “free”, and the others, V ′ \ V , are called “bound”. The formula ψ
specifies a Boolean function Rψ : Dn → {0, 1} in the following way. Rψ(x) = 1 if there is a
vector y ∈ Dm such that

∧s
j=1Rϕj(x,y) evaluates to “1”, where x and y are assignments

x : {v1, . . . , vn} → D and y : {vn+1, . . . , vn+m} → D; Rψ(x) = 0 otherwise. We call the
pp-formula an implementation of Rψ.

A relational clone (often called a “co-clone”) is a set of relations containing the equality
relation and closed under finite Cartesian products, projections, and identification of vari-
ables. A basis [16] for the relational clone I is a set R of Boolean relations such that the
relations in I are exactly the relations that can be implemented with a pp-formula over R.
Every relational clone has such a basis.

For every set R of Boolean relations, let 〈R〉R denote the set of relations that can be
represented by a pp-formula over R ∪ {EQ}. It is well-known that if R ∈ 〈R〉R then
〈R ∪ {R}〉R = 〈R〉R (This can be proved similarly to the proof of Lemma 1.) Thus, 〈R〉R is
in fact a relational clone with basis R.

A basis R for a relational clone 〈R〉R is called a “plain basis” [16, Definition 1] if every
member of 〈R〉R is definable by a CNF(R)-formula (a pp-formula over R with no ∃).

Pseudo-Boolean functions [5] are defined on the Boolean domain D = {0, 1}, and have
codomain C = R, the real numbers. For n ∈ N, denote by Bn the set of all functions
{0, 1}n → R, and denote the set of functions of all arities by B = B0 ∪B1 ∪B2 ∪ · · · . Note
that any tuple x ∈ {0, 1}n is the indicator function of a subset of [n]. We write |x| for the
cardinality of this set, i.e. |x| =

∑n
j=1 xj.

For most of this paper, we restrict attention to the codomain C = R≥0 of nonnegative
real numbers. Then Bn is the set given by replacing R by R≥0 in the definition of Bn, and
then B is defined analogously to B. We will also need to consider the permissive functions
in B. These are functions which are positive everywhere, so the codomain C = R>0, the
positive real numbers. Thus B>0

n and B>0 are given by replacing R by R>0 in the definitions
of Bn and B.

The advantage of working with the Boolean domain is (i) it has a well-developed theory
of relational clones, and (ii) the concept of a log-supermodular function exists (see §4). As
explained in the introduction, the advantage of working with nonnegative real numbers is that
we disallow cancellation, and potentially obtain a more nuanced expressibility/complexity
landscape.

Given a function F ∈ B, let RF be the function corresponding to the relation under-
lying F . That is, RF (x) = 0 if F (x) = 0 and RF (x) = 1 if F (x) > 0. The following
straightforward lemma will be useful.

Lemma 5. Suppose F ⊆ B. Then

〈{RF | F ∈ F}〉R = {RF | F ∈ 〈F〉}.

Proof. Let F be a subset of B. First, we must show that, for any R ∈ 〈{RF | F ∈ F}〉R, R
is in {RF | F ∈ 〈F〉}.

Let ψ be the pp-formula over {RF | F ∈ F} ∪ {EQ} that is used to represent R. Write

Andrei A. Bulatov, Martin Dyer, Leslie Ann Goldberg, Mark Jerrum and Colin McQuillan 11

ψ as

ψ = ∃ vn+1, . . . , vn+m

s∧
j=1

RFj(vi(j,1), . . . , vi(j,aj)),

where Fj is an arity-aj function in F ∪ {EQ}, and the index function i(·, ·) picks out an
index in the range [1, n+m], and hence a variable from V ′ = {v1, . . . , vn+m}. Let ψ′ be the
pps-formula over F ∪ {EQ} given by

ψ′ =
∑

vn+1,...,vn+m

s∏
j=1

Fj(vi(j,1), . . . , vi(j,aj)).

Let F ′ = Fψ′ . Note that F ′ ∈ 〈F〉 and that RF ′ = R.
By reversing this construction, we can show that, for any R ∈ {RF | F ∈ 〈F〉}, R is in

〈{RF | F ∈ F}〉R.

4 Log-supermodular functions

A function F ∈ Bn is log-supermodular (lsm) if F (x ∨ y)F (x ∧ y) ≥ F (x)F (y) for all
x,y ∈ {0, 1}n. The terminology is justified by the observation that F ∈ B>0

n is lsm if and
only if f = logF is supermodular. We denote by LSM ⊂ B the class of all lsm functions. The
second part of our main result (Theorem 16) says that, in terms of expressibility, everything
of interest takes place within the class LSM. Consequently, in §11, we will investigate the
internal structure of LSM.

Note that B0,B1 ⊂ LSM, since log-supermodularity is trivial for nullary or unary func-
tions, and hence the class LSM is conservative. And it fits naturally into our study of
expressibility because of the following closure property: functions that are ppsω-definable
from lsm functions are lsm. The non-trivial step in showing this is encapsulated in the
following lemma. It is a special case of the Ahlswede-Daykin “four functions” theorem [1].
However [1] is a much stronger result than is required, so we give an easier proof, using an
argument similar to the base case of the induction in [1].

Lemma 6. If G ∈ Bn+m, let G′ ∈ Bn be defined by G′(x) =
∑

z∈{0,1}m G(x, z). Then
G ∈ LSM implies G′ ∈ LSM.

Proof. By symmetry and induction, it suffices to consider summation on the last variable.
Thus, let (x, xn+1), (y, yn+1) ∈ {0, 1}n+1, and let

αz = G(x, z), βz = G(y, z), γz = G(x ∨ y, z), δz = G(x ∧ y, z) (z ∈ {0, 1}).

Then we must show that G ∈ LSM implies

(α0 + α1)(β0 + β1) ≤ (γ0 + γ1)(δ0 + δ1),

which expands to

(5) α0β0 + α1β0 + α0β1 + α1β1 ≤ γ0δ0 + γ0δ1 + γ1δ0 + γ1δ1.

The expressibility of functions on the Boolean domain, with applications to Counting CSPs 12

Since G ∈ LSM, we have the following four inequalities,

(6) α0β0 ≤ γ0δ0, (7) α0β1 ≤ γ1δ0, (8) α1β0 ≤ γ1δ0, (9) α1β1 ≤ γ1δ1.

We will complete the proof by showing that (6) to (9) imply (5) for arbitrary nonnegative
real numbers αz, βz, γz, δz (z ∈ {0, 1}).

Using (6) and (9), it follows that (5) is implied by

(10) α1β0 + α0β1 ≤ γ0δ1 + γ1δ0.

Observe that γ1δ0 = 0 implies (10), since the left side is zero by (7) and (8). Thus we may
assume γ1δ0 > 0.

Now, using (6) and (9) again, (10) is implied by

(11) α1β0 + α0β1 ≤
(α0β0)(α1β1)

δ0γ1
+ γ1δ0 =

(α1β0)(α0β1)

γ1δ0
+ γ1δ0.

Now (11) can be rewritten as

0 ≤ (γ1δ0 − α1β0)(γ1δ0 − α0β1),

which is implied by (7) and (8).

Lemma 7. If F ⊆ LSM then 〈F〉ω ⊆ LSM.

Proof. We just need to show that each level in the definition of ppsω-definable function
preserves lsm: first that every atomic formula over F ∪ {EQ} defines an lsm function, then
that a product of lsm functions is lsm, then that a summation of an lsm function is lsm,
and finally that a limit of lsm functions is lsm. As we shall see below, only the third step is
non-trivial, and it is covered by Lemma 6.

First, note that the EQ is lsm, so every function in F ∪ {EQ} is lsm, An atomic formula
ϕ = G(vi1 , . . . , via) defines a function Fϕ(x) = G(xi1 , . . . , xia) which is lsm:

Fϕ(x ∨ y)Fϕ(x ∧ y) = G(xi1 ∨ yi1 , . . . , xia ∨ yia)G(xi1 ∧ yi1 , . . . , xia ∧ yia)
≥ G(xi1 , . . . , xia)G(yi1 , . . . , yia)

= Fϕ(x)Fϕ(y).

Note that we do not need to assume that i1, . . . , ia are all distinct.
It is immediate that the product of two lsm functions (and hence the product of any

number) is lsm. Thus the product
∏s

j=1 Fϕj appearing in (2) is lsm. Then, by Lemma 6, the
pps-definable function Fψ in (2) is lsm.

Finally, we will show that any function that is approximated by lsm functions is lsm.
Suppose that a function F ∈ Bn has the property that, for every ε > 0, there is an arity-n
lsm function F̂ satisfying

‖F̂ − F‖∞ = max
x∈{0,1}a

|F̂ (x)− F (x)| < ε.

We wish to show that F is lsm. Let Fmax = maxx F (x). Suppose for contradiction that F
is not lsm, so there is a δ > 0 and x,y ∈ {0, 1}n such that

F (x ∨ y)F (x ∧ y) ≤ F (x)F (y)− δ.

Andrei A. Bulatov, Martin Dyer, Leslie Ann Goldberg, Mark Jerrum and Colin McQuillan 13

Let ε > 0 be sufficiently small that εmax(Fmax, 1) is tiny compared to δ. Then

F̂ (x ∨ y)F̂ (x ∧ y) ≤ (F (x ∨ y) + ε)(F (x ∧ y) + ε)

≤ F (x ∨ y)F (x ∧ y) + 2εFmax + ε2

≤ F (x)F (y)− δ + 2εFmax + ε2

≤ (F̂ (x) + ε)(F̂ (y) + ε)− δ + 2εFmax + ε2

≤ F̂ (x)F̂ (y) + 2ε(Fmax + ε)− δ + 2εFmax + 2ε2

< F̂ (x)F̂ (y),

so F̂ is not lsm, giving a contradiction.

An important example of an lsm function is the 0,1-function “implies”,

IMP(x, y) =

{
0, if (x, y) = (1, 0);

1, otherwise.

We also think of this as a binary relation IMP = {(0, 0), (0, 1), (1, 1)}. Complexity-theoretic
issues will be treated in detail in §10. However, it may be helpful to give a pointer here to
the importance of IMP in the study of approximate counting problems.

The problem #BIS is that of counting independent sets in a bipartite graph. Dyer et
al. [18] exhibited a class of counting problems, including #BIS, which are interreducible via
approximation-preserving reductions. Further natural problems have been shown to lie in
this class, providing compelling evidence that is of intermediate complexity between counting
problems that are tractable (admit a polynomial-time approximation algorithm) and those
that are NP-hard to approximate. We will see in due course (Theorem 19 and Proposition 37)
that #BIS and #CSP(IMP) are interreducible via approximation-preserving reductions, and
hence are of equivalent difficulty.

We know from Lemma 7 that 〈IMP,B1〉ω ⊆ LSM, and one might ask whether this inclu-
sion is strict. We will address this question in §11.

5 Pinnings and modular functions

Let δ0 be the unary function with δ0(0) = 1 and δ0(1) = 0 and let δ1 be the unary function
with δ1(0) = 0 and δ1(1) = 1.

Let S ⊆ [n], let x′ = (xj)j /∈S, and x′′ = (xj)j∈S, and partition x ∈ {0, 1}n as (x′;x′′).
Then, if F ∈ Bn, the function F (x′; c) given by setting x′′j = cj for constants cj ∈ {0, 1}
(j ∈ S) is a pinning of F . Note that we allow the empty pinning S = ∅, which is F itself,
and the pinning of all variables S = [n], which is a nullary function.

Clearly, every pinning of F is in 〈F, δ0, δ1〉, since a constant c ∈ {0, 1} can be implemented
using either δ0 or δ1, i.e. we add δc(xi) to the constraint set. We will use the notation i← c
to indicate that the ith variable has been pinned to c.

If n ≥ 2 then a 2-pinning of a function F ∈ Bn is a function F (xi, xj; c) which pins all
but 2 of the variables. Thus [n] \ S = {i, j}, where i and j are distinct indices in [n], and
c ∈ {0, 1}n−2. Clearly, every 2-pinning of F is in 〈F,B1〉, since it is a pinning of F .

The expressibility of functions on the Boolean domain, with applications to Counting CSPs 14

We say that a function F ∈ Bn is log-modular if F (x ∨ y)F (x ∧ y) = F (x)F (y) for all
x,y ∈ {0, 1}n.

It is a fact that LSM and the class of log-modular functions are closed under pinning. This
is a consequence of the following lemma about 2-pinnings of lsm and log-modular functions.
It is due, in essence, to Topkis [31], but we provide a short proof for completeness.

Lemma 8 (Topkis). A function F ∈ B>0 is lsm iff every 2-pinning is lsm, and is log-modular
iff every 2-pinning is log-modular.

Proof. The necessity of the 2-pinning condition is obvious, but we must prove sufficiency.
We need only show F (x)F (y) ≤ F (x ∨ y)F (x ∧ y) for x,y such that xi 6= yi (i ∈ [n]).
All other cases follow from this. Note that log-supermodularity is preserved under arbitrary
permutation of variables. Thus, if 0r, 1r denote r-tuples of 0’s and 1’s respectively, we must
show that, for all r, s > 0 with r + s = n,

(12) F (0r, 1s)F (1r, 0s) ≤ F (1r, 1s)F (0r, 0s).

We will prove this by induction, assuming it is true for all r′, s′ > 0 such that r′ + s′ < n.
The base case, r′ = s′ = 1, is the 2-pinning assumption. If r > 1, then we have

F (0r, 1s)F (1r−1, 0s+1) ≤ F (1r−1, 0, 1s)F (0r, 0s),(13)

by induction, after pinning the rth position to 0,

F (1r−1, 0, 1s)F (1r, 0s) ≤ F (1r, 1s)F (1r−1, 0s+1)(14)

by induction, after pinning the first r − 1 > 0 positions to 1.

Now, multiplying (13) and (14) gives (12) after cancellation, which is valid since F is
permissive. If r = 1, we do not have the induction giving (14), so we use instead

F (1, 0s)F (0, 1, 0s−1) ≤ F (0, 0s)F (1, 1, 0s−1),(15)

by induction, using the base case after pinning the last s− 1 positions to 0,

F (1, 1, 0s−1)F (0, 1s) ≤ F (1, 1s)F (0, 1, 0s−1).(16)

by induction, after pinning the second position to 1.

Now, multiplying (15) and (16) gives (12) after cancellation, completing the proof for
log-supermodularity. The proof for log-modularity is identical, except that every “≤” must
be replaced by “=”.

Remark 9. We have proved Lemma 8 only for permissive functions because, in fact, it is
false more generally. Consider, for example, the function F ∈ B4 such that F (1, 1, 0, 0) =
F (0, 0, 1, 1) = 1, F (x) = 0 otherwise. It is easy to see that all the 2-pinnings F ′ of F
have F ′(x, y) > 0 for at most one (x, y) ∈ {0, 1}2. It follows that every 2-pinning of F is
log-modular. But F is not even lsm, since F (1, 1, 0, 0)F (0, 0, 1, 1) > F (1, 1, 1, 1)F (0, 0, 0, 0).

Andrei A. Bulatov, Martin Dyer, Leslie Ann Goldberg, Mark Jerrum and Colin McQuillan 15

6 Computable real numbers

Since we want to be able to derive computational results, we will now focus attention on
functions whose co-domain is restricted to efficiently-computable real numbers. We will
say that a real number is polynomial-time computable if the n most significant bits of its
binary expansion can be computed in time polynomial in n. This is essentially the definition
given in [27]. Let Rp denote the set of nonnegative real numbers that are polynomial-time
computable. For n ∈ N, denote by Bpn the set of all functions {0, 1}n → Rp; also denote by
Bp = Bp0 ∪ B

p
1 ∪ B

p
2 ∪ · · · the set of functions of all arities.

Remark 10. As we have defined them, it is known that the polynomial-time computable
numbers form a field [27], and hence a subsemiring C of C, as we require. Thus, in our
definitions, there is no difficulty with pps-definability. However, there could be a problem
with ppsω-definability, since the limit of a sequence of polynomial-time computable reals
may not be polynomial-time computable. Polynomial-time computability is ensured only by
placing restrictions on speed of convergence. See [27, 32] for details. However, observe that
our definition of efficient ppsω-definability avoids this difficulty entirely, by insisting that
the limit of a sequence of reals will be permitted only if the limit is itself polynomial-time
computable.

Remark 11. The polynomial-time computable real numbers are a proper subclass of the
efficiently approximable real numbers, defined in [22]. (This fact can be deduced from [27].)
We have made this restriction since it results in a more uniform treatment of limits when
we discuss efficient ppsω-definability for functions in Bp.

7 Binary functions

We begin the study of the conservative case in the simplest nontrivial situation. We consider
the functional clones 〈F,Bp1〉ω,p, where F is a single binary function.

Recall that EQ is the binary relation EQ = {(0, 0), (1, 1)}. (We used the name “EQ” to
denote the equivalent binary function, but it will do no harm to use the same symbol for
the relation and the function.) Denote by OR, NEQ, and NAND the binary relations OR =
{(0, 1), (1, 0), (1, 1)}, NEQ = {(0, 1), (1, 0)}, and NAND = {(0, 0), (0, 1), (1, 0)}. When we
write a function F ∈ B2, we will identify the arguments by writing F (x1, x2). We may
represent F by a 2× 2 matrix

M(F) =

[
F (0, 0) F (0, 1)
F (1, 0) F (1, 1)

]
=

[
f00 f01
f10 f11

]
,

say, with rows indexed by x1 ∈ {0, 1} and columns by x2 ∈ {0, 1}. We will assume f01 ≥
f10, since otherwise we may consider the function F T , such that F T (x1, x2) = F (x2, x1),
represented by the matrix M(F)T . Clearly 〈F T 〉 = 〈F 〉.

If U is a unary function, we will write U = (U(0), U(1)) = (u0, u1), say. Then we have

M
(
U(x1)F (x1, x2)

)
=

[
u0f00 u0f01
u1f10 u1f11

]
, M

(
U(x2)F (x1, x2)

)
=

[
u0f00 u1f01
u0f10 u1f11

]
,

The expressibility of functions on the Boolean domain, with applications to Counting CSPs 16

where both U(x1)F (x1, x2) and U(x2)F (x1, x2) are clearly in 〈F,U〉.
If F1, F2 ∈ B2, then M(F1)M(F2) = M(F), where F ∈ 〈F1, F2〉 is such that

F (x1, x2) =
1∑
y=0

F1(x1, y)F2(y, x2).

Lemma 12. Let F ∈ Bp2. Assuming f01 ≥ f10,

(i) if f00f11 = f01f10, then 〈F,Bp1〉ω,p = 〈Bp1〉ω,p;
(ii) if f01, f10 = 0 and f00, f11 > 0, then 〈F,Bp1〉ω,p = 〈Bp1〉ω,p;

(iii) if f00, f11 = 0 and f01, f10 > 0, then 〈F,Bp1〉ω,p = 〈NEQ,Bp1〉ω,p;
(iv) if f00, f01, f11 > 0 and f00f11 > f01f10, then 〈F,Bp1〉ω,p = 〈IMP,Bp1〉ω,p;
(v) otherwise, 〈F,Bp1〉ω,p = 〈OR,Bp1〉ω,p.

The non-efficient version — with B1,B2 replacing Bp1,B
p
2, and 〈·〉ω replacing 〈·〉ω,p — also

holds.

Proof. To prove 〈F1,Bp1〉ω,p = 〈F2,Bp1〉ω,p, it suffices to show that F2 ∈ 〈F1,Bp1〉ω,p and F1 ∈
〈F2,Bp1〉ω,p. We will verify this in each of the five cases.

(i) Suppose f00f11 = f01f10. If f00, f01 = 0, then

F (x1, x2) = U1(x1)U2(x2)

with U1 = (0, 1) and U2 = (f10, f11). Similarly if f00, f10 = 0, f01, f11 = 0, or f10, f11 =
0. In the remaining case f00, f01, f10, f11 > 0. Then choose U1 = (1, f10/f00), U2 =
(f00, f01). In all cases F ∈ 〈U1, U2〉, so 〈F,Bp1〉ω,p = 〈Bp1〉ω,p.

(ii) If f01, f10 = 0 and f00, f11 > 0, then F (x1, x2) = U(x1)EQ(x1, x2), where U = (f00, f11),
so F ∈ 〈U〉. Hence 〈F,Bp1〉ω,p = 〈Bp1〉ω,p.

(iii) If f00, f11 = 0 and f01, f10 > 0, then F (x1, x2) = U(x1)NEQ(x1, x2), where U =
(f01, f10), so F ∈ 〈NEQ, U〉. Similarly NEQ(x1, x2) = U ′(x1)F (x1, x2), where U ′ =
(1/f01, 1/f10), so NEQ ∈ 〈F,U ′〉. So 〈F,Bp1〉ω,p = 〈NEQ,Bp1〉ω,p.

(iv) If f00, f01, f11 > 0, f00f11 > f01f10, we can apply unary weights U1, U2, where U1 =
(1/f00, f01/f00f11), U2 = (1, f00/f01), to implement IMPα(x1, x2) = U1(x1)U2(x2)F (x1, x2),
where

M(IMPα) =

[
1 1
α 1

]
,

where α = f01f10/f00f11 < 1. Then we have IMPα ∈ 〈F,U1, U2〉. Note that IMP0 =
IMP. If α > 0, consider the function IMPk

α, with matrix

M(IMPk
α) =

[
1 1
αk 1

]
.

Now IMPk
α can be implemented as IMPk

α(x1, x2) = Uk
1 (x1)U

k
2 (x2)F

k(x1, x2), by taking
k copies of U1, U2 and F . Since α < 1, we see that limk→∞ IMPk

α = IMP0 = IMP.

Andrei A. Bulatov, Martin Dyer, Leslie Ann Goldberg, Mark Jerrum and Colin McQuillan 17

Moreover, the limit is efficient, since ‖IMP− IMPk
α‖∞ < ε if k = O(log ε−1) (for fixed

α < 1), and so an ε-approximation to IMP can be computed in O(log ε−1) time. Hence
IMP ∈ 〈F,Bp1〉ω,p.

Note that “powering” limits like that used here will be employed below without further
discussion of their efficiency.

Conversely, from IMP, we first implement IMPα. If α = 0, we do nothing. Otherwise,
we use unary weights U1, U2 such that U1 = (1/α − 1, 1), U2 = (α, 1), to implement
F1(x1, x2) = U1(x1)U2(x2)IMP(x2, x1), where

M(F1) =

[
1− α 0
α 1

]
.

Then M(IMPα) = M(IMP)M(F1), so IMPα ∈ 〈IMP, U1, U2〉. Now we can recover
F (x1, x2) = U3(x1)U4(x2)IMPα(x1, x2), where U3 = (f00, f00f11/f01), U4 = (1, f01/f00),
so we have F ∈ 〈IMP, U1, U2, U3, U4〉. Hence 〈F,Bp1〉ω,p = 〈IMP,Bp1〉ω,p.

(v) The remaining cases are (a) f01, f10, f11 > 0, f00f11 < f01f10 and (b) f00, f01, f10 > 0,
f11 = 0.

First, we deal with part (a): If f01, f10, f11 > 0 and f00f11 < f01f10, we apply
unary weights U1, U2, where U1 = (f11/f01, 1), U2 = (1/f10, 1/f11), to implement
ORα(x1, x2) = U1(x1)U2(x2)F (x1, x2), where α = f00f11/f01f10 < 1, and

M(ORα) =

[
α 1
1 1

]
If α = 0, OR0 = OR, so we have OR ∈ 〈F,Bp1〉. Otherwise limk→∞ORk

α = OR0 = OR,
so we have OR ∈ 〈F,Bp1〉ω,p.

Conversely, from OR, we first express NEQ. Use the unary function U = (2, 1/2) to
implement F1 = U(x1)U(x2)OR(x1, x2), where

M(F1) =

[
0 1
1 1/4

]
.

Then limk→∞ F
k
1 = NEQ, so NEQ ∈ 〈OR,Bp1〉ω,p. Now we observe that M(IMP) =

M(NEQ)M(OR), which implies IMP ∈ 〈OR,Bp1〉ω,p. Also, we have IMPα ∈ 〈OR,Bp1〉ω,p,
as in (iv) above. Finally, M(ORα) = M(NEQ)M(IMPα), so ORα ∈ 〈OR,Bp1〉ω,p. Now
we can reverse the transformation from F to ORα to recover F .

Now, we consider part (b): If f00, f01, f10 > 0 and f11 = 0, we apply unary weights
U1, U2, where U1 = (1/f00, 1/f10), U2 = (1, f00/f01), to implement NAND(x1, x2) =
U1(x1)U2(x2)F (x1, x2), where

M(NAND) =

[
1 1
1 0

]
,

The expressibility of functions on the Boolean domain, with applications to Counting CSPs 18

so we have NAND ∈ 〈F,Bp1〉. We now use unary weight U = (1/2, 2) to implement
F1(x1) = U(x1)U(x1)NAND(x1, x2) with

M(F1) =

[
1/4 1
1 0

]
.

Then we have limk→∞ F
k
1 = NEQ, so again NEQ ∈ 〈F,Bp1〉ω,p. Then we observe that

M(OR) = M(NEQ)M(NAND)M(NEQ), so OR ∈ 〈F,Bp1〉ω,p.
Conversely, from OR, we have NEQ ∈ 〈OR,Bp1〉ω,p from the above. Then we have
M(NAND) = M(NEQ)M(OR)M(NEQ), so NAND ∈ 〈OR,Bp1〉ω,p. Now we reverse
the transformation above from F to NAND to recover F . Thus F ∈ 〈OR,Bp1〉ω,p.

Remark 13. From Lemma 12, we see that IMP does not really occupy a special position in
〈IMP,Bp1〉ω,p, in the sense that there are other functions F with 〈F,Bp1〉ω,p = 〈IMP,Bp1〉ω,p.
Similarly, OR does not occupy a special position in 〈OR,Bp1〉ω,p. Nevertheless, it is useful to
label the classes this way, and we will do so.

Remark 14. From the proof of Lemma 12, we have the following inclusions between the four
classes involved.

〈Bp1〉ω,p ⊆
〈NEQ,Bp1〉ω,p
〈IMP,Bp1〉ω,p

⊆ 〈OR,Bp1〉ω,p.

In fact, 〈NEQ,Bp1〉ω,p and 〈IMP,Bp1〉ω,p are incomparable, and hence all the inclusions are ac-
tually strict. For one non-inclusion, note the clone 〈IMP,Bp1〉ω,p contains only lsm functions,
and hence does not contain NEQ. For the other, we claim that any binary function in the
clone 〈NEQ,Bp1〉ω,p has one of three forms, U1(x)U2(y), U(x)EQ(x, y) or U(x)NEQ(x, y), and
then observe that IMP matches none of these. The claim is a special case of a more general
one, namely that any function in 〈NEQ,Bp1〉ω,p is of the form Fϕ, where ϕ is a product of
atomic formulas involving only unary functions, EQ and NEQ. To show this, we need only
consider summing over a single variable. By induction, assume we have a pps-formula of the
form

∑
y∈{0,1} Fϕ(x, z)Fψ(x, y), where Fψ is a product of atomic formulas involving y (and

certain other variables x), and Fϕ is a product not involving y. Then

∑
y∈{0,1}

Fϕ(x, z)Fψ(x, y) = Fϕ(x, z)
∑

y∈{0,1}

U(y)
k∏
i=1

NEQ(xi, y)

= Fϕ(x, z)Ū(x1)
k∏
i=1

EQ(xi, x1),

where Ū(x1) = U(1 − x1). The product of equalities can be removed by substituting xj
(j = 2, . . . , k) by x1 in ϕ(x, z), continuing the induction.

Finally, it is straightforward to show that this class is closed under limits. That is, the
limit of a sequence of functions which are products of unary and NEQ functions must itself
be of this form. To see this, note that every k-ary function in this class can be written as
a product of O(k2) unary and NEQ functions. Then the conclusion follows by a standard
compactness argument. The efficient version also follows.

Andrei A. Bulatov, Martin Dyer, Leslie Ann Goldberg, Mark Jerrum and Colin McQuillan 19

8 The class 〈OR,Bp1〉ω,p
In the conservative case, we show that, somewhat surprisingly, the clone generated by the
single binary function OR contains every function in Bp.

Lemma 15. 〈OR,Bp1〉ω,p = Bp.

Proof. Suppose F ∈ Bpn. Suppose x1, . . . , xn are variables. For each A ⊆ [n], let 1A be the
assignment to x1, . . . , xn in which xi = 1 if i ∈ A and xi = 0 otherwise. Then we will use the
notation F (A) as shorthand for F (1A). Let A = {A : F (A) > 0}, and let µ = minA∈A F (A).
For any A ⊆ [n], let uA ∈ Bp1 be the function such that uA(0) = 1 and uA(1) = 2F (A)/µ−1 ≥
1. Note that every function uA is in Bp1 and we have IMP,NAND ∈ 〈OR,Bp1〉ω,p, from the
proof of Lemma 12.

Our goal will be to show that there is a finite subset SF of {IMP,NAND} ∪ Bp1 and a
TM MF,SF with the following property: on input ε > 0, MF,SF computes an arity-n pps-
formula ψ over SF such that ‖Fψ − F‖∞ < ε. The running time of MF,SF should be at
most a polynomial in log ε−1. To define SF , we will use two unary functions U1 and U2

(both of which are actually constant functions). We define these by U1(0) = U1(1) = 1/2 and
U2(0) = U2(1) = µ/2. Then SF = {IMP,NAND, U1, U2} ∪

⋃
A∈A{uA}.

Let V = {v1, . . . , vn}. For A ∈ A, introduce a new variable zA. Let V ′′ = {zA | A ∈ A}
and

ψ1 =
∑
V ′′

(∏
A∈A

uA(zA)

)(∏
i∈A

IMP(zA, xi)

)(∏
i/∈A

NAND(zA, xi)

)
.

For every A ∈ A the assignment x = 1A can be extended in two ways (both with zA = 0
and with zA = 1) to satisfy

(17)

(∏
i∈A

IMP(zA, xi)

)(∏
i/∈A

NAND(zA, xi)

)
= 1.

Any other assignment x can be extended in only one way (zA = 0) to satisfy (17). So if
A ∈ A then

Fψ1(A) = (2F (A)/µ− 1) + 1 = 2F (A)/µ.

On the other hand, if A /∈ A then
Fψ1(A) = 1.

We have shown that Fψ1 ∈ 〈SF 〉. Let us now define

ψ2 =
∑
V ′′

(∏
A∈A

∏
i∈A

IMP(zA, xi)

)(∏
i/∈A

NAND(zA, xi)

)
.

As before, for every A ∈ A the assignment x = 1A can be extended in two ways (zA = 0
and zA = 1) to satisfy (17), and any other assignment x can be extended in only one way
(zA = 0) to satisfy it. So

Fψ2(A) = 2 (A ∈ A), Fψ2(A) = 1 (A /∈ A).

The expressibility of functions on the Boolean domain, with applications to Counting CSPs 20

Thus Fψ2 ∈ 〈SF 〉. Now define F3 by F3(A) = U1(x1)Fψ2(A), so F3 ∈ 〈SF 〉, where

F3(A) = 1 (A ∈ A), F3(A) = 1/2 (A /∈ A).

Now limk→∞ F
k
3 = F0, where

F0(A) = 1 (A ∈ A), F0(A) = 0 (A /∈ A),

and thus F0 ∈ 〈SF 〉ω,p.
Note that F0 = RF , the underlying relation of F . Now define F4 = Fψ1F0, so that

F4(A) = 2F (A)/µ (A ∈ A), F4(A) = 0 (A /∈ A),

Thus, by Lemma 4, F4 ∈ 〈SF 〉ω,p. Now define F5 by F5(A) = U2(x1)F4(A), so F5 ∈ 〈SF 〉ω,p,
where

F5(A) = F (A) (A ∈ A), F5(A) = 0 (A /∈ A).

Since F5 = F , the proof is complete.

9 The main theorem

In this section we prove our main structural result, which characterises, in the conservative
case, the clones generated by a single pseudo-Boolean function. Since it is known that
any clone generated by a finite set of functions can be generated by a single function [7],
Theorem 16 implicitly gives a characterisation of all finitely generated functional clones.
This characterisation is given explicitly in Corollary 17 below.

Theorem 16. Suppose F ∈ Bp.

• If F /∈ 〈NEQ,Bp1〉 then IMP ∈ 〈F,Bp1〉ω,p, and hence 〈IMP,Bp1〉ω,p ⊆ 〈F,B
p
1〉ω,p

• If, in addition, F /∈ LSM then 〈F,Bp1〉ω,p = Bp.

The non-efficient version — with B,B1 replacing Bp,Bp1, and 〈·〉ω replacing 〈·〉ω,p — also
holds.

Proof. We start with the first part of the theorem. The aim is to show that either IMP ∈
〈F,Bp1〉ω,p or F ∈ 〈NEQ,Bp1〉. Let C be the relational clone 〈RF , δ0, δ1〉R. Since {RF , δ0, δ1} ⊆
{RF ′ | F ′ ∈ {F} ∪ Bp1}, C ⊆ 〈RF ′ | F ′ ∈ {F} ∪ Bp1〉R, so by Lemma 5, C ⊆ {RF ′ | F ′ ∈
〈F,Bp1〉}.

First, suppose IMP ∈ C. Then 〈F,Bp1〉ω,p contains a function F ′ such that RF ′ = IMP.
The function F ′ falls into parts (iv) or (v) of Lemma 12, so by this lemma, 〈F,Bp1〉ω,p is either
〈IMP,Bp1〉ω,p or 〈OR,Bp1〉ω,p. Either way, 〈F,Bp1〉ω,p contains IMP (as noted in Remark 14).
Similarly, if OR ∈ C or NAND ∈ C then IMP ∈ 〈F,Bp1〉ω,p.

We now consider the possibilities. If RF is not affine, then Creignou, Khanna and Sudan
[15, Lemma 5.30] have shown that one of IMP, OR and NAND is in C. This is also stated and
proved as [20, Lemma 15]. In fact, the set of all relational clones (also called “co-clones”) is
well understood. They are listed in [16, Table 2], which gives a plain basis for each relational

Andrei A. Bulatov, Martin Dyer, Leslie Ann Goldberg, Mark Jerrum and Colin McQuillan 21

IBF

IR0 IR1

IR2

IM

IM0 IM1

IM2

ID

ILIE IV

IN

II

ID1

ID2

IL1IL0

IL2

IL3

IN2

II2

II1II0

IV1

IV2IE2

IE0 IV0IE1

IS02

IS03
IS022

IS023

IS012

IS013
IS002

IS0
IS003

IS02IS01

IS00IS10

IS11IS12

IS1 IS103

IS113IS123
IS102

IS112
IS13

IS122

IS12

Figure 1: Post’s lattice from [3, Fig. 2].

clone. There is a similar table in [4] (though the bases given there are not plain). A Hasse
diagram illustrating the inclusions between the relational clones is depicted in [3, Figure 2].
This diagram is reproduced here as Figure 1. A downwards edge from one clone to another
indicates that the lower clone is a subset of the higher one. For example, since there is a
path (in this case, an edge) from ID1 down to IR2 in Figure 1, we deduce that IR2 ⊂ ID1.
We will not require bases for all relational clones, but we have reproduced the part of [16,
Table 2] that we use here as Table 1.

If RF is affine then the relations in C are given by linear equations, so C is either the
relational clone IL2 (whose plain basis the set of all Boolean linear equations) or C is some
subset of IL2, in which case it is below IL2 in Figure 1.

Now, EQ, δ0 and δ1 are in C. The relational clone containing these relations (and nothing

The expressibility of functions on the Boolean domain, with applications to Counting CSPs 22

Plain Basis
IR2 {EQ, δ0, δ1}
ID1 {EQ,NEQ, δ0, δ1}
IL2 {{(x1, . . . , xk) ∈ {0, 1}k | x1 + . . .+ xk = c (mod 2)} | k ∈ N, c ∈ {0, 1}}

Table 1: The relevant portion of Table 2 of [16]: Some relational clones and their plain bases.

else) is IR2, so C is a (not necessarily proper) superset of IR2. Thus, C is (not necessarily
strictly) above IR2 in Figure 1. From the figure, it is clear that the only possibilities are that
C is one of the relational clones IL2, ID1 and IR2.

Now IR2 ⊂ ID1 and the plain basis of ID1 is {EQ,NEQ, δ0, δ1}. Therefore if C = IR2 or
C = ID1, then RF is definable by a CNF formula over {EQ,NEQ, δ0, δ1}.

Suppose that F (x) has arity n and, to avoid trivialities, that RF is not the empty
relation. Suppose that ψ(v1, . . . , vn) is a CNF formula over {EQ,NEQ, δ0, δ1} implementing
the relation Rψ = RF .

Let V = {v1, . . . , vn}. Let ψi be the projection of ψ onto variable vi. ψi is one of the
three unary relations {(0)}, {(1)}, and {(0), (1)}. Let V ′ = {vi ∈ V | ψi = {(0), (1)}}. (V ′

is the set of variables that are not pinned in RF .) For vi ∈ V ′ and vj ∈ V ′, let ψi,j be the
projection of ψ onto variables vi and vj. ψi,j is a binary relation. Of the 16 possible binary
relations, the only ones that can occur are EQ, NEQ and {0, 1}2. The empty relation is
ruled out since RF is not empty. The four single-tuple binary relations are ruled out since
vi and vj are in V ′. For the same reason, the other four two-tuple binary relations are ruled
out. The three-tuple binary relations are ruled out since ψi,j ∈ ID1.

We define an equivalence relation ∼ on V ′ in which vi ∼ vj iff ψi,j ∈ {EQ,NEQ}. Let V ′′

contain exactly one variable from each equivalence class in V ′. Let k = |V ′′|. For convenience,
we will assume V ′′ = {v1, . . . , vk}. (This can be achieved by renaming variables.)

Now, for every assignment x : {v1, . . . , vk} → {0, 1} there is exactly one assignment
y : {vk+1, . . . , vn} → {0, 1} such that RF (x,y) = 1. Let σ(x) be this assignment y. Now,
define the arity-k function G by G(x) = F (x, σ(x)). Note that

(18) G(x) =
∑

y∈{0,1}n−k
F (x,y),

where y is an assignment y : {vk+1, . . . , vn} → {0, 1}. Clearly, from (18), G ∈ 〈F,Bp1〉ω,p.
Also, by construction, G(x) is a permissive function so we can apply Lemma 8. We finish
with two cases.

Case 1. Every 2-pinning of G is log-modular. Then G is log-modular, by Lemma 8.
This means (see, for example, [5, Proposition 24]) that g = log2G is an affine function of
x1, . . . , xk and x̄1, . . . , x̄k so G ∈ 〈NEQ,Bp1〉. For example, if g = a0 + a1x1 + a2x2 + a3x̄3
then G can be written as

G(x1, x2, x3) =
∑
y3

U0 U1(x1)U2(x2)U3(y3)NEQ(x3, y3),

where U0 = 2a0 ∈ Bp0 and Ui(x) = 2aix ∈ Bp1. (Note that each quantity 2ai may be expressed
as the quotient of two evaluations of the permissive function G ∈ Bp, and hence is in Bp0.)
Since F (x,y) = RF (x,y)G(x), we conclude that F ∈ 〈NEQ,Bp1〉.

Andrei A. Bulatov, Martin Dyer, Leslie Ann Goldberg, Mark Jerrum and Colin McQuillan 23

Case 2. There is a 2-pinning G′ of G that is not log-modular. Since G is strictly positive,
so is G′. Since G ∈ 〈F,Bp1〉ω,p, so is G′. By Lemma 12, (parts (iv) or (v)), IMP ∈ 〈G′,Bp1〉ω,p.
By Lemma 4, IMP ∈ 〈F,Bp1〉ω,p.

Finally, we consider the case in which C = IL2. Let ⊕3 be the relation {(0, 0, 0), (0, 1, 1),
(1, 0, 1), (1, 1, 0)} containing all triples whose Boolean sums are 0. From the plain basis of
IL2 (Table 1), we see that the relation ⊕3 is in C, so 〈F,Bp1〉 contains a function F ′ with
RF ′ = ⊕3. Let F ′′ be the symmetrisation of F ′ implemented by

F ′′(x, y, z) = F ′(x, y, z)F ′(x, z, y)F ′(y, x, z)F ′(y, z, x)F ′(z, x, y)F ′(z, y, x).

Now let µ0 = F ′′(0, 0, 0) and µ2 = F ′′(0, 1, 1). Let U be the unary function with U(0) =

µ
−1/3
0 and U(1) = µ

1/6
0 µ

−1/2
2 . Note that since F ∈ Bp, the appropriate roots of µ0 and

µ2 are efficiently computable, so U ∈ Bp1. Now ⊕3(x, y, z) = U(x)U(y)U(z)F ′′(x, y, z), so
⊕3 ∈ 〈F,Bp1〉. Finally, let U ′ be the unary function defined by U ′(0) = 1 and U ′(1) = 2 and let
G(x, z) =

∑
y⊕3(x, y, z)U ′(y). Note that G(0, 0) = G(1, 1) = 1 and G(0, 1) = G(1, 0) = 2.

By Lemma 1, G is in 〈F,Bp1〉. But by Lemma 12, IMP ∈ 〈G,Bp1〉ω,p so by Lemma 4,
IMP ∈ 〈F,Bp1〉ω,p.

We now prove Part 2 of the theorem. Suppose that F is not lsm and that F /∈ 〈NEQ,Bp1〉
so, by Part 1 of the theorem, we have IMP ∈ 〈F,Bp1〉ω,p. Let

H(x1, x2) =
∑
y1,y2

IMP(y1, x1)IMP(y1, x2)IMP(x1, y2)IMP(x2, y2).

Note that H(0, 0) = H(1, 1) = 2 and H(0, 1) = H(1, 0) = 1. Now for any integer k, let

Hk(x1, . . . , xn) =
∑

y1,...,yn

F (y1, . . . , yn)
n∏
i=1

H(xi, yi)
k.

By construction, Hk is strictly positive. Also, as k gets large, Hk(x1, . . . , xn) gets closer
and closer to 2knF (x1, . . . , xn). Thus, for sufficiently large k, Hk is not lsm. By Lemma 1,
H ∈ 〈F,Bp1〉ω,p so Hk ∈ 〈F,Bp1〉ω,p. Applying Lemma 8 to Hk, there is a binary function
F1 ∈ 〈F,Bp1〉ω,p that is not lsm so

F1(0, 0)F1(1, 1) < F1(0, 1)F1(1, 0).

By Parts (iii) and (v) of Lemma 12, we either have NEQ ∈ 〈F,Bp1〉ω,p or OR ∈ 〈F,Bp1〉ω,p.
In the latter case, we are finished by Lemma 15. In the former case, we are also finished
since (in the notation of the proof of Lemma 12) M(NEQ)M(IMP) = M(OR) so OR ∈
〈IMP,NEQ〉.

Corollary 17. Suppose F ⊆ Bp.

• If F 6⊆ 〈NEQ,Bp1〉 then 〈IMP,Bp1〉ω,p ⊆ 〈F ,B
p
1〉ω,p

• If, in addition, F 6⊆ LSM then 〈F ,Bp1〉ω,p = Bp.

The non-efficient version — with B,B1 replacing Bp,Bp1, and 〈·〉ω replacing 〈·〉ω,p — also
holds.

The expressibility of functions on the Boolean domain, with applications to Counting CSPs 24

Proof. If F 6⊆ 〈NEQ,Bp〉 then there exists F ∈ F such that F /∈ 〈NEQ,Bp〉, so by Part 1 of
Theorem 16, 〈IMP,Bp1〉ω,p ⊆ 〈F,B

p
1〉ω,p ⊆ 〈F ,B

p
1〉ω,p.

If, in addition, F 6⊆ LSM then suppose F1 ∈ F and F2 ∈ F where F1 /∈ 〈NEQ,Bp1〉 and
F2 /∈ LSM. (F1 and F2 might be the same function or might not be.) Suppose F1 and F2

have arities a1 and a2. Let F be the “direct product” of F1 and F2 defined by F (x,y) =
F1(x)F2(y) where x ∈ {0, 1}a1 and y ∈ {0, 1}a2 . Then F ∈ 〈F〉 and F /∈ 〈NEQ,Bp1〉 and
F /∈ LSM. Then, by Theorem 16, 〈F ,Bp1〉ω,p ⊇ 〈F,B

p
1〉ω,p = Bp.

10 Complexity-theoretic consequences

In order to explore the consequences of Theorem 16 for the computational complexity of
approximately evaluating #CSPs, we recall the following definitions of FPRASes and AP-
reductions from [18].

For our purposes, a counting problem is a function Π from instances w (encoded as
a word over some alphabet Σ) to a number Π(w) ∈ R≥0. For example, w might encode
an instance I of a counting CSP problem #CSP(Γ), in which case Π(w) would be the
partition function Z(I) associated with I. A randomised approximation scheme for Π is a
randomised algorithm that takes an instance w and returns an approximation Y to Π(w).
The approximation scheme has a parameter ε > 0 which specifies the error tolerance. Since
the algorithm is randomised, the output Y is a random variable depending on the “coin
tosses” made by the algorithm. We require that, for every instance w and every ε > 0,

(19) Pr
[
e−εΠ(w) ≤ Y ≤ eεΠ(w)

]
≥ 3/4 .

The randomised approximation scheme is said to be a fully polynomial randomised approxi-
mation scheme, or FPRAS, if it runs in time bounded by a polynomial in |w| (the length of
the word w) and ε−1. See Mitzenmacher and Upfal [30, Definition 10.2]. Note that the quan-
tity 3/4 in Equation (19) could be changed to any value in the open interval (1/2, 1) without
changing the set of problems that have randomised approximation schemes [26, Lemma 6.1].

Suppose that Π1 and Π2 are functions from Σ∗ to R≥0. An “approximation-preserving
reduction” (AP-reduction) [18] from Π1 to Π2 gives a way to turn an FPRAS for Π2 into an
FPRAS for Π1. Specifically, an AP-reduction from Π1 to Π2 is a randomised algorithm A
for computing Π1 using an oracle3 for Π2. The algorithm A takes as input a pair (w, ε) ∈
Σ∗ × (0, 1), and satisfies the following three conditions: (i) every oracle call made by A is
of the form (v, δ), where v ∈ Σ∗ is an instance of Π2, and 0 < δ < 1 is an error bound
satisfying δ−1 ≤ poly(|w|, ε−1); (ii) the algorithm A meets the specification for being a
randomised approximation scheme for Π1 (as described above) whenever the oracle meets
the specification for being a randomised approximation scheme for Π2; and (iii) the run-
time of A is polynomial in |w| and ε−1. Note that the class of functions computable by
an FPRAS is closed under AP-reducibility. Informally, AP-reducibility is the most liberal
notion of reduction meeting this requirement. If an AP-reduction from Π1 to Π2 exists
we write Π1 ≤AP Π2. If Π1 ≤AP Π2 and Π2 ≤AP Π1 then we say that Π1 and Π2 are
AP-interreducible, and write Π1 =AP Π2.

3The reader who is not familiar with oracle Turing machines can just think of this as an imaginary
(unwritten) subroutine for computing Π2.

Andrei A. Bulatov, Martin Dyer, Leslie Ann Goldberg, Mark Jerrum and Colin McQuillan 25

A word of warning about terminology. Subsequent to [18] the notation ≤AP has been
used to denote a different type of approximation-preserving reduction which applies to opti-
misation problems. We will not study optimisation problems in this paper, so hopefully this
will not cause confusion.

The complexity of approximating Boolean #CSPs in the unweighted case, where the
functions in Γ have codomain {0, 1}, was studied earlier [20] by some of the authors of
this paper. Two counting problems played a special role there, and in previous work in the
complexity of approximate counting [18]. They also play a key role here.

Name #SAT

Instance A Boolean formula ϕ in conjunctive normal form.

Output The number of satisfying assignments of ϕ.

Name #BIS.

Instance A bipartite graph B.

Output The number of independent sets in B.

An FPRAS for #SAT would, in particular, have to decide with high probability between
a formula having some satisfying assignments or having none. Thus #SAT cannot have
an FPRAS unless NP = RP.4 The same is true of any problem to which #SAT is AP-
reducible. As far as we are aware, the complexity of approximating #BIS does not relate
to any of the standard complexity theoretic assumptions, such as NP 6= RP. Nevertheless,
there is increasing empirical evidence that no FPRAS for #BIS exists, and we adopt this as a
working hypothesis. Of course, this hypothesis implies that no #BIS-hard problem (problem
to which #BIS is AP-reducible) admits an FPRAS.

Finally, a precise statement of the computational task we are interested in. A (weighted)
#CSP problem is parameterised by a finite subset F of Bp and defined as follows.

Name #CSP(F)

Instance A pps-formula ψ consisting of a product of m atomic F -formulas over n free vari-
ables x. (Thus, ψ has no bound variables.)

Output The value
∑

x∈{0,1}n Fψ(x) where Fψ is the function defined by that formula.

Officially, the input size |w| is the length of the encoding of the instance. However, we
shall take the size of a #CSP(F) instance to be n + m, where n is the number of (free)
variables and m is the number of constraints (atomic formulas). This is acceptable, as
we are only concerned to measure the input size within a polynomial factor; moreover, we
have restricted F to be finite, thereby avoiding the issue of how to encode the constraint
functions F . We typically denote an instance of #CSP(F) by I and the output by Z(I); by
analogy with systems in statistical physics we refer to Z(I) as the partition function.

4The supposed FPRAS would provide a polynomial-time decision procedure for satisfiability with two-
sided error; however, there is a standard trick for converting two-sided error to the one-sided error demanded
by the definition of RP [34, Thm 10.5.9].

The expressibility of functions on the Boolean domain, with applications to Counting CSPs 26

Aside from simplifying the representation of problem instances, there is another, more
important reason for decreeing that F is finite, namely, that it allows us to prove the following
basic lemma relating functional clones and computational complexity. It is, of course, based
on a similar result for classical decision CSPs.

Lemma 18. Suppose that F is a finite subset of Bp. If F ∈ 〈F〉ω,p then

#CSP(F,F) ≤AP #CSP(F).

Proof. Let k be the arity of F . Let M be a TM which, on input ε′ > 0, computes a k-ary
pps-formula ψ over F ∪ EQ such that ‖Fψ − F‖∞ < ε′. We can assume without loss of
generality that no function in {F} ∪ F is identically zero (otherwise every #CSP instance
using this function has partition function 0). Let µmax be the maximum value in the range
of F and let µmin be the minimum of 1 and the minimum non-zero value in the range of F .
Similarly, let S be the set of non-zero values in the range of functions in F ∪{EQ}. Let νmax

be the maximum value in S and let νmin be the minimum of 1 and the minimum value in S.
Consider an input (I, ε) where I is an instance of #CSP(F,F) and ε is an accuracy

parameter. Suppose that I has n variables, m F -constraints, and m′ other constraints. We
can assume without loss of generality that m > 0 (otherwise, I is an instance of #CSP(F)).

The key idea of the proof is to construct an instance I ′ of #CSP(F) by replacing each
F -constraint in I with the set of constraints and extra (bound) variables in the formula ψ
that is output by M with input ε′. We determine how small to make ε′ in terms of the
following quantities. Let

A =
4m

µmin

2nµmmaxν
m′

max

B = 2n(µmax + 1)m−1νm
′

max

C = µmminν
m′

min.

Let ε′ = ε
4

C
A+B

. The time needed to construct ψ for a given ε′ > 0 is at most poly(log (ε′−1)),
which is at most a polynomial in n, m, m′ and ε−1, as required by the definition of AP-
reduction. We shall see that (I ′, ε/2) is the sought-for instance/tolerance pair required by
our reduction.

Let Iψ be the instance formed from I by replacing every F -constraint with an Fψ-
constraint. Note that Z(Iψ) = Z(I ′), since I ′, an instance of #CSP(F), is an implementation
of Iψ. We want to show that if an oracle produces a sufficiently accurate approximation to
Z(I ′) (and hence to Z(Iψ)) then we can deduce a sufficiently accurate approximation to Z(I).
Observe that the definition of FPRAS allows no margin of error when Z(I) = 0, and our
reduction must give the correct result, namely 0, in this case. Therefore we need to treat
separately the cases Z(I) = 0 and Z(I) > 0. We will show that

(20) Z(I) = 0 implies Z(Iψ) < C/3,

and

(21) Z(I) > 0 implies Z(Iψ) > 2C/3;

Andrei A. Bulatov, Martin Dyer, Leslie Ann Goldberg, Mark Jerrum and Colin McQuillan 27

moreover, in the latter case,

(22) e−ε/2Z(I) ≤ Z(Iψ) ≤ eε/2Z(I).

These estimates are enough to ensure correctness of the reduction. For a call to an oracle
for #CSP(F) with instance I ′ and accuracy parameter ε/2 would return a result in the
range [e−ε/2Z(Iψ), eε/2Z(Iψ)] with high probability. Observe that this estimate is sufficient
to distinguish between cases (20) and (21). In the former case, we are able to return the
exact result, namely 0. In the latter case, we return the result given by the oracle, which
by (22) satisfies the conditions for an FPRAS.

To establish (20–22), let Y ′ be the set of assignments to the variables of instance I
which make a non-zero contribution to Z(I) and let Y ′′ be the remaining assignments to the
variables of instance I. Let Z ′(Iψ) be the contribution to Z(Iψ) due to assignments in Y ′ and
Z ′′(Iψ) be the contribution to Z(Iψ) due to assignments in Y ′′ (so Z(Iψ) = Z ′(Iψ) +Z ′′(Iψ)).
We can similarly write Z(I) = Z ′(I) + Z ′′(I), though of course Z ′′(I) = 0.

First, note that if |Fψ(x)− F (x)| ≤ ε′ and F (x) > 0 then

|Fψ(x)/F (x)− 1| ≤ ε′/F (x) ≤ ε′/µmin,

so

e−2ε
′/µmin ≤ Fψ(x)

F (x)
≤ e2ε

′/µmin .

We conclude that
e−2ε

′m/µminZ ′(I) ≤ Z ′(Iψ) ≤ e2ε
′m/µminZ ′(I),

so

|Z ′(I)− Z ′(Iψ)| ≤ 4ε′m

µmin

Z(I) ≤ ε′A.

Furthermore,
|Z ′′(I)− Z ′′(Iψ)| = Z ′′(Iψ) ≤ ε′B.

Here we use ‖Fψ − F‖∞ < ε′ < 1; the “ + 1” in the definition of B absorbs the discrepancy
between Fψ and F . Combining these two inequalities yields

(23) |Z(I)− Z(Iψ)| ≤ ε′(A+B) ≤ εC

4
.

Now, Z(I) > 0 implies Z(I) ≥ C, and hence (20) and (21) follow directly from (23). If
Z(I) > 0 we further have∣∣∣∣Z(Iψ)

Z(I)
− 1

∣∣∣∣ ≤ ε′(A+B)

Z(I)
≤ ε′(A+B)

C
≤ ε/3.

This establishes (22) and completes the verification of the reduction.

Theorem 19. Suppose F is a finite subset of Bp.

• If F ⊆ 〈NEQ,Bp1〉 then, for any finite subset S of Bp1, there is an FPRAS for #CSP(F , S).

The expressibility of functions on the Boolean domain, with applications to Counting CSPs 28

• Otherwise,

◦ There is a finite subset S of Bp1 such that #BIS ≤AP #CSP(F , S).

◦ If F 6⊆ LSM then there is a finite subset S of Bp1 such that #SAT =AP #CSP(F , S).

Proof. First, suppose that F ⊆ 〈NEQ,Bp1〉. Let S be a finite subset of Bp1. Given an m-
constraint input I of #CSP(F , S) and an accuracy parameter ε, we first approximate each

arity-k function F ∈ F used in I with a function F̂ : {0, 1}k → Q≥0 such that RF̂ = RF ,
and for every x for which F (x) > 0,

(24) e−ε/m ≤ F̂ (x)

F (x)
≤ eε/m.

Let F̂ = {F̂ | F ∈ F} and let Î be the instance of #CSP(F̂ , S) formed from I by replacing

each F -constraint with F̂ . [19, Theorem 4] gives a polynomial-time algorithm for computing

the partition function Z(Î), which satisfies

(25) e−εZ(I) ≤ Z(Î) ≤ eεZ(I).

Second, suppose that F 6⊆ 〈NEQ,Bp1〉. By Theorem 16, IMP ∈ 〈F ,Bp1〉ω,p. By Observa-
tion 3, there is a finite subset S of Bp1 such that IMP ∈ 〈F , S〉ω,p. Thus, #CSP(IMP) ≤AP

#CSP(F , S), by Lemma 18. However, #BIS =AP #CSP(IMP) by [20, Theorem 3].

Finally, suppose that F 6⊆ LSM. By Corollary 17, 〈F ,Bp1〉ω,p = Bp so OR ∈ 〈F ,Bp1〉ω,p.
By Observation 3, there is a finite subset S of Bp1 such that OR ∈ 〈F , S〉ω,p, so by Lemma 18,
#CSP(OR) ≤AP #CSP(F , S). However, by [20, Lemma 7] #SAT ≤AP #CSP(OR). To see
that #CSP(F , S) ≤AP #SAT, let I be an m-constraint instance of #CSP(F , S). For each

function G ∈ F ∪ S, define Ĝ as in (24). Let Î be the instance of #CSP({Ĝ | G ∈ F ∪ S})
formed from I by replacing each G-constraint with a Ĝ-constraint. Equation (25) holds, as

above. Furthermore, from [19, Section 1.3] the problem of evaluating #CSP({Ĝ | G ∈ F∪S})
(even with Ĝ as part of the input) is in #PQ, the complexity class comprising functions which
are a function in #P divided by a function in FP, so can be AP-reduced to #SAT.

Example 20. Let F ∈ Bp2 be the function defined by F (0, 0) = F (1, 1) = λ and F (0, 1) =
F (1, 0) = 1, where λ > 1. Then, from Theorem 19, #CSP(F, S) is #BIS-hard, for some set
S of unary weights. (In fact, this counting CSP is also #BIS-easy.) Note that #CSP(F, S)
is nothing other than the ferromagnetic Ising model with an applied field. So we recover,
with no effort, the main result of Goldberg and Jerrum’s investigation of this model [21].

Example 21. If F is as before, but λ ∈ (0, 1), then F /∈ LSM and Theorem 19 tells us
that #CSP(F, S) is #SAT-hard, for some set S of unary weights. This is a restatement of
the known fact that the partition function of the antiferromagnetic Ising model is hard to
approximate [25]. Actually, this is true without weights, but that is not directly implied by
Theorem 19.

Andrei A. Bulatov, Martin Dyer, Leslie Ann Goldberg, Mark Jerrum and Colin McQuillan 29

11 The classes 〈LSMk〉
In this section, we will be concerned with expressibility, and less so with efficient computabil-
ity. Thus, we will use function classes without attempting to distinguish the efficiently
computable functions in the class from the remainder.

Define LSMk = LSM ∩ Bk. It follows from the proof of Lemma 12 that 〈LSM2〉 =
〈IMP,B1〉. Since LSM is central to Theorem 16, we need to consider whether LSM = 〈LSM2〉ω
and, if not, what internal structure it may possess. To this end, we consider here the
functional clones 〈LSMk〉ω for k > 2. As mentioned in the abstract, we will make use of two
transforms: the Möbius transform to show 〈LSM3〉ω = 〈LSM2〉ω (in fact we prove the stronger
statement 〈LSM3〉 = 〈LSM2〉), and the Fourier transform to show that 〈LSM4〉ω 6= 〈LSM2〉ω.
See [2, 36, 33] for corresponding results in the context of optimisation.

For all x,y ∈ {0, 1}n, we will write x ≤ y to mean that for all 1 ≤ i ≤ n we have xi ≤ yi.

For all f ∈ Bn define the Möbius transform f̃ ∈ Bn by

f̃(y) =
∑
w≤y

(−1)|y−w|f(w) (y ∈ {0, 1}n),(26)

and note that the Möbius transform is invertible:

f(x) =
∑
y≤x

f̃(y) (x ∈ {0, 1}n).(27)

See also [24] for further information. We will not require anything other than (26) and
(27). We next show that certain simple functions are in 〈LSM2〉.

Lemma 22. Let y ∈ {0, 1}n. Let t ∈ R, with t ≥ 0 if |y| > 1. Let F ∈ Bn be the unique

function satisfying l̃ogF (y) = t and l̃ogF (x) = 0 for x 6= y. (Explicitly, F (x) = et for
y ≤ x and F (x) = 1 otherwise.) Then F ∈ 〈LSM2〉.

Proof. If t ≥ 0 define U ∈ LSM1 by U(0) = 1 and U(1) = et − 1. We will argue that for all
x we have

F (x) =
∑
z

U(z)
∏
i:yi=1

IMP(z, xi).

Indeed if y ≤ x we get F (x) = U(0) + U(1) = et, and otherwise F (x) = U(0) = 1.
Now we consider the case |y| ≤ 1. If y = 0 let i = 1, and otherwise let i be the unique

index with yi = 1. Then F (x) = U(xi) where U(0) = F (0) and U(1) = F (1). Hence
F ∈ 〈LSM1〉 ⊂ 〈LSM2〉.

If x ∈ {0, 1}n, let x̄ = 1− x and, if F ∈ Bn, let F̄ (x) = F (x̄). We will use the following
simple fact.

Lemma 23. F ∈ LSMk iff F̄ ∈ LSMk.

Proof. By symmetry, it suffices to show that, for any x,y ∈ {0, 1}k,

F̄ (x)F̄ (y) = F (x̄)F (ȳ) ≤ F (x̄ ∧ ȳ)F (x̄ ∨ ȳ)

= F (x ∨ y)F (x ∧ y) = F̄ (x ∨ y)F̄ (x ∧ y).

The expressibility of functions on the Boolean domain, with applications to Counting CSPs 30

Now we show that it is only necessary to consider permissive functions. The construction
used in the lemma is adapted from one given, in a more general setting, by Topkis [31].

Lemma 24. For every F ∈ LSMk there exists G ∈ LSM>0
k such that F = RFG. Furthermore

RF ∈ 〈LSM2〉, so 〈LSMk〉 = 〈LSM>0
k , LSM2〉.

Proof. First, assume F (0) 6= 0. Let µ = minx{F (x) | F (x) 6= 0}/maxx F (x). Set

G(x) = max{F (y)µ|x|−|y| | y ≤ x}.

Then G is strictly positive and G(x) = F (x) wherever F (x) 6= 0. It remains to show that
G ∈ LSM. For all x,x′ there exist y ≤ x and y′ ≤ x′ such that

G(x)G(x′) = F (y)F (y′)µ|x|−|y|+|x
′|−|y′|

≤ F (y ∧ y′)F (y ∨ y′)µ|x|−|y|+|x
′|−|y′|

= F (y ∧ y′)F (y ∨ y′)µ|x∧x
′|−|y∧y′|+|x∨x′|−|y∨y′|

≤ G(x ∧ x′)G(x ∨ x′).

Now we deal with the case F (0) = 0. Let F ′(x) = F (x) for all x 6= 0 and let F ′(0) = 1.
Then F ′ ∈ LSM and F ′(0) 6= 0, and we have shown that there exists G ∈ LSM>0 such that
F ′ = RF ′G. But then F = RFG.

By [20, Corollary 18], RF is a conjunction of implications and constants, and hence
RF ∈ 〈δ0, δ1, IMP〉 ⊂ 〈LSM2〉. Thus 〈LSMk〉 ⊆ 〈LSM>0

k , LSM2〉. The reverse inclusion is
trivial.

Lemma 25. 〈LSM3〉 = 〈LSM2〉.

Proof. From Lemma 24, we need only prove LSM>0
3 ⊆ 〈LSM2〉. Thus let F ∈ LSM>0

3 ,

f = logF , and first assume f̃(1, 1, 1) ≥ 0. We will show that F ∈ 〈LSM2〉. Note that, by
log-supermodularity of F ,

f̃(1, 1, 0) = f(0, 0, 0)− f(1, 0, 0)− f(0, 1, 0) + f(1, 1, 0) ≥ 0.

and similarly f̃(1, 0, 1), f̃(0, 1, 1) ≥ 0. Hence f̃(y) ≥ 0 for all |y| > 1. For all y ∈ {0, 1}3

let Fy be the unique function satisfying l̃ogFy(y) = f̃(y) and l̃ogFy(z) = 0 for z 6= y.

Then l̃ogF =
∑

y l̃ogFy, which implies logF =
∑

y logFy, which implies F =
∏

y Fy. By

Lemma 22 we have Fy ∈ 〈LSM2〉 for all y, and therefore F ∈ 〈LSM2〉. If f̃(1, 1, 1) < 0,

let H = F . Note that H ∈ LSM>0
3 and l̃ogH(1, 1, 1) > 0, so by the previous paragraph,

H ∈ 〈LSM2〉. By Lemma 23 this implies F ∈ 〈LSM2〉.

In view of Lemma 25, it might be conjectured that LSM = 〈LSM2〉ω. In fact, this is not
the case, as we will now show. First we consider the class P of functions F ∈ B for which
the Fourier transform F̂ has nonnegative coefficients, where

F̂ (y) =
1

2n

∑
w∈{0,1}n

(−1)|w∧y|F (w) (y ∈ {0, 1}n).(28)

Andrei A. Bulatov, Martin Dyer, Leslie Ann Goldberg, Mark Jerrum and Colin McQuillan 31

Thus F ∈ P if and only if F̂ ∈ B. See [17] for further information. We will use (28) and the
convolution theorem: for all F,G ∈ Bn we have

F̂G(x) =
∑

y∈{0,1}n
F̂ (y)Ĝ(x⊕ y) (x,y ∈ {0, 1}n).(29)

where ⊕ denotes componentwise addition modulo 2. See for example [17, Section 2.3] for a
proof of the dual statement.

To show that P is closed under pps-formula evaluation, it is useful to restrict to atomic
formulas where variables are not repeated within a scope.

Lemma 26. Let F ⊆ B. For all pps-formulas ψ over F there is another pps-formula ψ′

over F ∪{EQ} such that Fψ = Fψ′ and no atomic formula of ψ′ contains a repeated variable.

Proof. Given ψ obtain ψ′ as follows. For each variable vi that is used di ≥ 2 times in total in
ψ, replace the uses of vi by new distinct variables v1i , · · · , v

di
i , multiply by atomic formulas

EQ(vi, v
j
i) for 1 ≤ j ≤ di, then sum over these new variables vji .

Lemma 27. P is closed under addition, summation, products and limits. Moreover, P is a
ppsω-definable functional clone.

Proof. If F,G ∈ P , then F̂ +G = F̂ + Ĝ is clearly non-negative, and F̂G is nonnegative
by the convolution theorem (29). For summation, as in Lemma 6, we consider summing
over the last variable. So, let H(x) =

∑
t F (x, t). Then it follows easily from (28) that

Ĥ(y) = 2F̂ (y, 0) ≥ 0 for all y. For limits note that if Fn → F then F̂n → F̂ , and a limit of
non-negative functions is non-negative.

Let ψ be a pps-formula over P ∪ {EQ}. We will argue that that Fψ ∈ P . By Lemma
26 there is a pps-formula ψ′ over P ∪ {EQ} such that Fψ = Fψ′ and such that no atomic
formula of ψ contains a repeated variable. The functions Fϕ defined by atomic formulas
ϕ = G(vi1 , · · · , vik) of ψ′ are therefore “expansions”: permutations of the function G′ ∈ Bn,
n ≥ k, defined by

G′(x,x′) = G(x) (x ∈ {0, 1}k and x′ ∈ {0, 1}n−k).(30)

It therefore suffices to check that P is closed under expansions. Let G′ be the expansion
defined by (30). Then, for all y ∈ {0, 1}k and y′ ∈ {0, 1}n−k, we have Ĝ′(y,y′) = Ĝ(y) if

y′ = 0k, and Ĝ′(y,y′) = 0 otherwise, and hence G′ ∈ P . Note that ÊQ = 1
2
EQ, so EQ ∈ P .

Thus P is a pps-definable functional clone, but it is also closed under limits.

For F ∈ B, let F ? denote FF̄ . Now let C be the class of functions F ∈ B such that G? ∈ P
for every pinning G(x) = F (x; c). Note, in particular, that if U ∈ B1, U?(z) = U(0)U(1), a
nonnegative constant. Therefore we have B1 ⊆ C and, to establish that F ∈ C, we need only
check pinnings of F of arity at least 2.

Lemma 28. C is a ppsω-definable functional clone.

The expressibility of functions on the Boolean domain, with applications to Counting CSPs 32

Proof. As in Lemma 27 we will check that C is closed under “expansions”, products, sum-
mations, and limits. But a pinning of an expansion (or product, summation, or limit) of
functions in C is an expansion (or product, summation, or limit) of pinnings of functions in
C, which are necessarily in C because C is closed under pinnings. So it suffices to check the
C condition for trivial pinnings, for example to check closure under products it suffices to
show that F,G ∈ C implies (FG)? ∈ P .

Let G ∈ C have arity k, let n ≥ k, let G′ be the function defined by (30). Note that G′G′

is an expansion of GG, so G′G′ ∈ P and G′ ∈ C. We have EQ ∈ C, since EQEQ = EQ ∈ P .
Closure under product follows from Lemma 27 and the observation that (FG)? = F ?G?.
For summation, again as in Lemma 6, we consider summing over the last variable. Then, if
H(x) =

∑
t F (x, t), where F has arity k + 1, then

H?(x) =
∑

t F (x, t)
∑

t F̄ (x, t) = (F0)
?(x) + (F1)

?(x) +
∑

t F
?(x, t).

where F0 and F1 are the pinnings Fi(x) = F (x; i). We have (F0)
?, (F1)

? ∈ P by the pinning
assumption, and the arity k function

∑
t F

?(x, t) is in P by Lemma 27. Thus H? is the sum
of three functions in P , and so, using Lemma 27 again, H? ∈ P . Finally note that C is closed
under limits: if Fn → F as n→∞ then F ?

n → F ?, but P is closed under limits.

Lemma 29. 〈LSM2〉ω ⊆ C.

Proof. Let F ∈ LSM2. Note that F̂ ?(0, 0) = (F (0, 0)F (1, 1)+F (0, 1)F (1, 0))/2, and F̂ ?(0, 1) =

F̂ ?(1, 0) = 0, and F̂ ?(1, 1) = (F (0, 0)F (1, 1)− F (0, 1)F (1, 0))/2 ≥ 0. So F ? ∈ P , and hence
F ∈ C. Thus LSM2 ⊆ C and, since C is a ppsω-definable functional clone, 〈LSM2〉ω ⊆ C.

Lemma 30. 〈LSM2〉ω ⊂ 〈LSM4〉ω.

Proof. Since LSM2 ⊆ C by Lemma 29, we need only exhibit a function F ∈ LSM4 which is
not in C. Define F : {0, 1}4 → R>0 by

F (x1, x2, x3, x4) =

4, if x1 + x2 + x3 + x4 = 4;
2, if x1 + x2 + x3 + x4 = 3;
1, otherwise.

To show F ∈ LSM4, by the symmetry of F and Lemma 8, it suffices to show that the three
2-pinnings F (0, 0, x3, x4), F (0, 1, x3, x4) and F (1, 1, x3, x4) are lsm. This is equivalent to the
inequalities 1× 1 ≥ 1× 1, 2× 1 ≥ 1× 1, and 4× 1 ≥ 2× 2 respectively, which clearly hold.

To show that F /∈ C, we need only use (28) to calculate

F̂ ?(1, 1, 1, 1) =
4× 1− 4× 2 + 6× 1− 4× 2 + 4× 1

24
= −1

8
< 0.

Indeed F ∈ 〈LSM4〉ω but F /∈ C. By Lemma 29, 〈LSM2〉ω ⊆ 〈LSM4〉ω ∩C ⊂ 〈LSM4〉ω.

Unfortunately, this approach does not seem to extend to showing 〈LSM4〉ω ⊂ LSM or even
〈LSM4〉 ⊂ LSM. Neither can we extend the result of Lemma 25 to show that 〈LSM4〉ω =
〈LSM5〉ω. However, we will venture the following, which is true for k = 1.

Conjecture 31. For all k ≥ 1, 〈LSM2k〉ω = 〈LSM2k+1〉ω ⊂ 〈LSM2k+2〉ω.

A consequence of a proof of Conjecture 31 would be that LSM 6= 〈F〉ω for any finite set
of functions F .

Andrei A. Bulatov, Martin Dyer, Leslie Ann Goldberg, Mark Jerrum and Colin McQuillan 33

12 Restricted unary weights

In this section and the next, we depart from the conservative case, and consider allowing
only restricted classes of unary weights.

We have already noted that restricting to nonnegative (as opposed to arbitrary real) unary
weights produces a richer lattice of functional clones, and an apparently richer complexity
landscape. Thus, by further restricting the unary functions available, we might expect to
further refine the lattice of functional clones.

In this section, we will consider the unary functions that favour 1 over 0, or vice versa.
With a view to studying this setting, let Bdown

1 (respectively Bup
1) be the class of unary

functions U from B1 such that U(1) ≤ U(0) (respectively, U(0) ≤ U(1)). By Bdown,p
1 and

Bup,p
1 we denote the efficient versions of these sets. Also denote by EQ′ the permissive equality

function defined by EQ′(x, y) = 2 if x = y, and EQ′(x, y) = 1 otherwise.

The first hint that partitioning B1 into Bup
1 and Bdown

1 may yield new phenomena comes
from the observation that for any finite subset S of Bdown,p

1 , the problem #CSP(EQ′, S)
reduces to the ferromagnetic Ising model with a consistent external field, for which Jerrum
and Sinclair have given an FPRAS [25]. (A consistent field is one that favours one of the
two spins consistently over every site.) The point here is that #CSP(EQ′, S) is tractable,
even though EQ′ /∈ 〈NEQ,B1〉ω. In contrast, by Theorem 19 or from the arguments in [21],
there is a finite subset S of Bp1 such that #CSP(EQ′, S) — the ferromagnetic Ising model
with local fields, with different spins favoured at different sites — is #BIS-hard. Of course
similar remarks apply to Bup,p

1 .

In terms of functional clones, the clone 〈EQ′,Bdown
1 〉ω is not amongst those we met in §9:

it is incomparable with 〈NEQ,B1〉ω, and strictly contained in 〈IMP,B1〉ω. Specifically, we
have

Lemma 32. (i) NEQ /∈ 〈EQ′,Bdown
1 〉ω.

(ii) EQ′ /∈ 〈NEQ,B1〉ω.

(iii) 〈EQ′,Bdown
1 〉ω ⊂ 〈EQ′,B1〉ω = 〈IMP,B1〉ω,

and 〈EQ′,Bdown,p
1 〉ω,p ⊂ 〈EQ′,Bp1〉ω,p = 〈IMP,Bp1〉ω,p.

Proof. Recall the class P of functions with non-negative Fourier coefficients defined in §11.

Note that P is a ppsω-definable functional clone by Lemma 27. Note that ÊQ′(0, 0) = 6/4

and ÊQ′(1, 1) = 2/4 and ÊQ′(0, 1) = ÊQ′(1, 0) = 0, so EQ′ ∈ P . Also, for any U ∈ B1
we always have Û(0) ≥ 0, but Û(1) = (U(0) − U(1))/2 ≥ 0 if and only if U ∈ Bdown

1 . So
〈EQ′,Bdown

1 〉ω ⊆ P .

For (i) note that N̂EQ(1, 1) = −2/4 < 0 so NEQ /∈ P .

For (ii), Remark 14 showed that all functions in 〈NEQ,B1〉ω are products of atomic
formulas. Therefore, if EQ′ ∈ 〈NEQ,B1〉ω, it must have one of the three forms U1(x)U2(y),
U1(x)EQ(x, y) or U1(x)NEQ(x, y), where U1, U2 ∈ B1. Now note that EQ′(x, y) is not of any
of these.

For (iii), the inclusion 〈EQ′,Bdown
1 〉ω ⊆ 〈EQ′,B1〉ω is trivial. It is strict since, as we

showed above, 〈EQ′,Bdown
1 〉ω ∩ B1 = Bdown

1 . The equality follows from Lemma 12(iv).

The expressibility of functions on the Boolean domain, with applications to Counting CSPs 34

It is interesting to note that the strict inclusion between 〈EQ′,Bdown
1 〉ω,p and 〈EQ′,B1〉ω,p

is provable, even though the gap in the computational complexity of the related counting
problems is only suspected. The other side of the coin is that two functional clones may differ,
without there being a corresponding gap in complexity between the two counting CSPs. The
main result of the section exhibits this phenomenon in a natural context: the two functional
clones are incomparable, but there is an approximation-preserving reduction from one of the
corresponding counting CSPs to the other. This is interesting, as it demonstrates that it is
sometimes necessary, when constructing approximation-preserving reductions, to go beyond
the gadgetry implied by the clone construction (even with the liberal notion employed here,
including limits).

Recall that ⊕3 is the relation {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)}.

Lemma 33. ⊕3 /∈ 〈IMP,Bdown,p
1 〉ω,p and IMP /∈ 〈⊕3,Bdown,p

1 〉ω,p

Proof. First we show that ⊕3 /∈ 〈IMP,Bdown,p
1 〉ω,p. By Lemma 7, 〈IMP,Bdown,p

1 〉ω,p ⊆ LSM.
However, ⊕3 /∈ LSM, since for x = (1, 1, 0) and y = (0, 1, 1),

0 = ⊕3(x ∨ y)⊕3(x ∧ y) < ⊕3(x)⊕3(y) = 1.

Now we show that IMP /∈ 〈⊕3,Bdown,p
1 〉ω,p. Recall the class P of functions with non-

negative Fourier coefficients defined in §11. Note that P is a ppsω-definable functional clone

by Lemma 27. For all U ∈ Bdown
1 we have Û(0) = (U(0) + U(1))/2 ≥ 0 and Û(1) =

(U(0) − U(1))/2 ≥ 0, so U ∈ P . Also, ⊕̂3 = 1
2
EQ3 where EQ3 is the arity 3 equality

relation {(0, 0, 0), (1, 1, 1)}. So 〈⊕3,Bdown,p
1 〉ω,p ⊆ P . But ÎMP(0, 1) = (1− 1− 1)/4 < 0, so

IMP /∈ P .

We know now that IMP is not ppsω-definable in terms of ⊕3 and Bdown,p
1 . In contrast, we

see in the next result that IMP is nevertheless efficiently reducible to ⊕3 and Bdown,p
1 .

Lemma 34. There is a finite subset S of Bdown,p
1 such that

#CSP(IMP) ≤AP #CSP(⊕3, S)

Proof. First, we need some definitions. Suppose that M is a matrix over GF(2) with rows V
and columns E with |V | = n. For a column e and a “configuration” σ : V → {0, 1}, define
δe(σ) to be

⊕
i∈V Mi,eσ(i), where the addition is over GF(2). δe(σ) is the parity of the

number of 1s in column e of M that are assigned to 1 by σ. Given a parameter y > 0, the
Ising partition function of the binary matroid M represented by M is given by

ZIsing(M; y) =
∑

σ:V→{0,1}

∏
e∈E

y1⊕δe(σ).

Now, from [20, Theorem 3], #CSP(IMP) =AP #BIS. Also, for every efficiently approx-
imable real number y > 1, from [23, Theorem 1] there is an AP-reduction from #BIS to the
problem of computing ZIsing(M; y), for given M .

The set of subsets A ⊆ E such that the submatrix corresponding to A has an even
number of 1s in every row is called the cycle space of M and is denoted C(M). A standard
calculation expresses ZIsing(M; y) in terms of C(M). Let w = (y − 1)/(y + 1).

Andrei A. Bulatov, Martin Dyer, Leslie Ann Goldberg, Mark Jerrum and Colin McQuillan 35

∑
σ:V→{0,1}

∏
e∈E

y1⊕δe(σ) =
∑
σ

∏
e

(
y + 1

2
+
y − 1

2
(−1)δe(σ)

)

=

(
y + 1

2

)|E|∑
σ

∏
e

(
1 + w(−1)δe(σ)

)
=

(
y + 1

2

)|E|∑
σ

∑
A⊆E

∏
e∈A

w(−1)δe(σ)

=

(
y + 1

2

)|E|∑
A⊆E

w|A|
∑
σ

∏
e∈A

(−1)δe(σ)

=

(
y + 1

2

)|E| ∑
A∈C(M)

w|A|2n,

=

(
y + 1

2

)|E|
2n

∑
A∈C(M)

w|A|.

Here is the justification of the penultimate line (why only A ∈ C(M) contribute to the
sum, and why the factor 2n): Suppose, for a set A ⊆ E, that some row i has has an odd
number of 1’s in columns in A. Then for any configuration σ′ : V \ {i} → {0, 1}, one of the
contributions extending σ′ to domain V contributes −1 and the other contributes +1. On
the other hand, if i has an even number of 1’s in A, then the two contributions are the same,
so we just get a factor of 2 times the contribution from the smaller problem, without this
row.

Note that, since y > 1, we have 0 < w < 1. Now the point is that it is easy to express the
sum

∑
A∈C(M)w

|A| as the solution to an instance of #CSP(⊕3, Uw), where Uw is the unary

function defined by Uw(0) = 1 and Uw(1) = w. A vector x represents the choice of A ⊆ E
— the j’th column is in A iff xj = 1. Then the constraint that the submatrix corresponding
to A has an even number of 1s in some row, say row i, is given by the linear equation⊕

j:Mi,j=1 xj = 0. If this linear equation has just two terms then it is an equality, and it can
be represented in the CSP instance by substituting one variable for the other. Otherwise, it
can be expressed using conjunctions of atomic formulas ⊕3. Thus, we have an AP-reduction
from #CSP(IMP) to #CSP(⊕3, Uw).

Remark 35. Lemma 33 and 34 show that, as far as counting CSPs are concerned, the ex-
pressibility provided by efficient ppsω-definable functional clones is more limited than AP-
reductions. Here we show that the problem #CSP(IMP) is AP-reducible to a #CSP problem
whose constraint language consists of functional constraints from ⊕3∪Bdown,p

1 , but we aren’t
able to express IMP using ⊕3∪Bdown,p

1 . On the other hand, if the definition of efficient ppsω-
definable functional clones were somehow extended to remedy this deficiency, then Lemma 18
would probably have to be weakened. While we do know (from Lemma 34) that there is
a finite subset S of Bdown,p

1 for which #CSP(IMP) ≤AP #CSP(⊕3, S), the corresponding
stronger statement from Lemma 18, #CSP(IMP,⊕3, S) ≤AP #CSP(⊕3, S), is unlikely to be
true since #CSP(IMP,⊕3, S) =AP #SAT [20, Theorem 3].

The expressibility of functions on the Boolean domain, with applications to Counting CSPs 36

Remark 36. Lemma 33, as with the earlier Lemma 32, shows that there may be a rich
structure of efficient functional clones 〈F〉ω,p with Bdown,p

1 ⊆ F . By contrast, Corollary 17
and Lemma 7 guarantee that if Bp1 ⊆ F , then, the only possibilities are

• 〈F〉ω,p ⊆ 〈NEQ,Bp1〉ω,p, or

• 〈IMP,Bp1〉ω,p ⊆ 〈F〉ω,p ⊆ LSM,

• or 〈F〉ω,p = Bp.

13 Using fewer weights

In this section, we show that one or two unary weights often suffice to generate the functional
clones that we encountered in previous sections.

In the following proposition, 1
2

denotes the constant nullary function that takes value 1
2
.

Lemma 37. (i) B1 ⊆ 〈IMP, 1
2
〉ω (Bp1 ⊆ 〈IMP, 1

2
〉ω,p).

(ii) Bup
1 ⊆ 〈OR, 1

2
〉ω (Bup,p

1 ⊆ 〈OR, 1
2
〉ω,p).

(iii) Bdown
1 ⊆ 〈NAND, 1

2
〉ω (Bdown,p

1 ⊆ 〈NAND, 1
2
〉ω,p).

Proof. Note that (iii) is the same as (ii) with the roles of 0 and 1 reversed, so we will just
prove (i) and (ii). We start with a general construction that works for both parts (i) and (ii)
of the proposition. Let F be a binary function and I, J instances of #CSP(F). We assume
the sets of variables of I and J are disjoint. The disjoint sum I]J of I and J is the instance
whose set of variables is the union of those of I and J , and F (x, y) is in I] J if and only
if F (x, y) occurs in I or J . The ordinal sum I +≤ J of I and J is their disjoint sum along
with every atomic formula F (x, y) such that x is a variable of I and y is a variable of J .

Claim. (i) For any F ∈ B2, Z(I] J) = Z(I) · Z(J).

(ii) If F ∈ {IMP,OR} then Z(I +≤ J) = Z(I) + Z(J)− 1.

The first part is trivial. To show the second part consider an assignment (x,y) such that
x,y map the variables of I, J , respectively, to {0, 1}, and FI+≤J(x,y) 6= 0. If F = IMP
and any of the components of x equals 1, then y = 1. However, if x = 0 (or y = 1) then y
(resp. x) can be any legitimate assignment of J (resp. I). If F = OR then one of the x,y
must be 1, while the remaining one can be any assignment with FI(x) 6= 0 or FJ(y) 6= 0.
This completes the proof of the claim.

Denote the instance consisting of a single variable without constraints by 2, the disjoint
sum of k instances 2 by 2k, and the ordinal sum I +≤ . . . +≤ I of k copies of instance
I by k · I. (Note that the operator +≤ is associative, so this makes sense.) Let also 1

2

denote the instance consisting of a single nullary 1
2

function, and let 1
2

k
denote the sum

of k copies of 1
2
. Note that Z(2) = 2 and Z(1

2
) = 1

2
, justifying the notation. Note that

for every natural number a and every positive integer `, Z(a · 2`) = a2` − a + 1. (This
can be proved by induction on a with base case a = 0, using Part (ii) of the claim for the
inductive step.) Furthermore, for every positive integer k, if a1, . . . , ak are natural numbers

Andrei A. Bulatov, Martin Dyer, Leslie Ann Goldberg, Mark Jerrum and Colin McQuillan 37

then Z(a1 · 21 +≤ · · · +≤ ak · 2k) = (a12
1 + · · · + ak2

k) − (a1 + · · · + ak) + 1. (This can be
proved by induction on k using base case k = 1 using the previous observation.)

Suppose G ∈ B1 and let G(n) be a rational valued approximation to G such that G(n)(z) 6=
0 and |G(n)(z) − G(z)| ≤ 2−n, for z ∈ {0, 1}. (This is possible even if G(z) = 0.) Assume
that this rational approximation is given as a finite binary expansion, so that G(n)(0) =
1
2m

(a0 + a12
1 + · · · + ak2

k) 6= 0 and G(n)(1) = 1
2m

(b0 + b12
1 + · · · + b`2

`) 6= 0. Let I, J be
instances of #CSP(F) given by

I = a1 · 21 +≤ · · ·+≤ ak · 2k +≤ (a0 + a1 + · · ·+ ak − 1) · 2,
J = b1 · 21 +≤ · · ·+≤ b` · 2` +≤ (b0 + b1 + · · ·+ b` − 1) · 2.

From the observations above, Z((a0 + · · ·+ ak − 1) · 2) = a0 + · · ·+ ak so Z(I) = 2mG(n)(0).
Similarly, Z(J) = 2mG(n)(1). Let V0, V1 be the variables of I, J , respectively, and let C0

(respectively, C1) be the set of pairs (x, y) such that F (x, y) is an atomic formula of I
(respectively, J).

First suppose F = IMP. Consider the formula

ψn =
∑

(1
2
)m

 ∏
(a,b)∈C0∪C1

IMP(a, b)

(∏
a∈V0

IMP(c, a)

)(∏
b∈V1

IMP(b, c)

)

where c is a new variable and the sum is over all variables in V0 ∪ V1. An assignment
x : V0 ∪ V1 ∪ {c} → {0, 1} can only contribute to Fψn if either: x(c) = 0 and x(b) = 0 for
all b ∈ V1, or x(c) = 1 and x(a) = 1 for all a ∈ V0. Hence Fψn(0) = 2−mZ(I) = G(n)(0) and
Fψn(1) = 2−mZ(J) = G(n)(1).

Now suppose F = OR, and let G ∈ Bup
1 and G(n) be as before, but with the restriction

G(1) > G(0). This time, let G(n)(0) = 1
2m

(a0 +a12
1 + · · ·+ak2

k) 6= 0 and G(n)(1)−G(n)(0) =
1
2m

(b0 + b12
1 + . . .+ b`2

`) 6= 0. Here we are using the fact that G(n)(1)−G(n)(0) > 0, which
follows from G(1) > G(0) for sufficiently large n. (In the degenerate case G(1) = G(0), one
can still find suitable approximations by taking b0, b1, . . . , b`−1 = 0 and b` = 1.) Let instances
I, J be defined for the values a0 + a12

1 + · · ·+ ak2
k, 1 + b0 + b12

1 + · · ·+ b`2
` in the similar

way to before (but note the extra 1); and let V0, V1, C0, C1 again denote the set of variables
and constraints of I, J . As before Z(I) = 2mG(n)(0) and Z(J) = 2m(G(n)(1)−G(n)(0)) + 1.
Let K = I+≤ J and let C be the set of scopes of the constraints in K. Consider the formula

ψn =
∑

(1
2
)m

 ∏
(a,b)∈C

OR(a, b)

(∏
b∈V1

OR(b, c)

)
,

where c is a new free variable and the sum is over all variables in V0 ∪ V1. An assignment
x : V0 ∪ V1 ∪ {c} → {0, 1} can only contribute to Fψn if either: x(c) = 0 and x(b) = 1 for all
b ∈ V0, or x(c) = 1. Therefore Fψn(0) = 2−mZ(I) = G(n)(0) and Fψn(1) = 2−mZ(I +≤ J) =
2−m(Z(I) + Z(J)− 1) = G(n)(1).

To obtain the efficient version of the proposition let M0 and M1 be TMs that, given n,
compute the first n bits of G(0) and G(1) respectively, in time polynomial in n. Then a TM
M ′ that constructs Gε ∈ 〈F, 12〉 such that ‖Gε − G‖∞ < ε works as follows. First, it finds

The expressibility of functions on the Boolean domain, with applications to Counting CSPs 38

the smallest n such that n > log ε−1. Then it runs M0 and M1 on input n to find G(n)(0)
and G(n)(1). Finally, M ′ outputs the formula ψn. The running time of M ′ is the sum of: the
time to run M0, the time to run M1, and time O(log2 ε−1) to construct ψn.

Corollary 38. Let G ∈ B1. (For the results on efficient pps-definability assume G ∈ Bp1.)

(i) If G(0) > G(1) and G(1) 6= 0 then B1 ⊆ 〈OR, G, 1
2
〉ω,

and Bp1 ⊆ 〈OR, G, 1
2
〉ω,p.

(ii) If G(0) < G(1) and G(0) 6= 0 then B1 ⊆ 〈NAND, G, 1
2
〉ω,

and Bp1 ⊆ 〈NAND, G, 1
2
〉ω,p.

Proof. We prove (i), as (ii) is quite similar. Let H be a function in B1. If H(0) ≤ H(1) then,
by Proposition 37, H ∈ 〈OR, 1

2
〉ω (or H ∈ 〈OR, 1

2
〉ω,p). Assume H(0) > H(1). There is k such

that G(0)k

G(1)k
> H(0)

H(1)
. Let H ′ = H/Gk. Then H ′ ∈ Bup

1 so, by Proposition 37, H ′ ∈ 〈OR, 1
2
〉ω.

Hence H ∈ 〈OR, G, 1
2
〉ω. Also, if G,H ∈ Bp1 then H ′ ∈ Bup,p

1 so H ′ ∈ 〈OR, 1
2
〉ω,p. Hence

H ∈ 〈OR, G, 1
2
〉ω,p.

Corollary 39. B ⊆ 〈OR,NAND, 1
2
〉ω and Bp ⊆ 〈OR,NAND, 1

2
〉ω,p.

Proof. Let F ∈ Bp. Let U(x) =
∑

y NAND(x, y). Then U(0) = 2 and U(1) = 1 and

U ∈ 〈OR,NAND, 1
2
〉ω,p. By Corollary 38 we have Bp1 ⊆ 〈OR, U, 1

2
〉ω,p, and by Lemma 15,

F ∈ 〈OR,Bp1〉ω,p. So F ∈ 〈OR,NAND, 1
2
〉ω,p by Lemma 4.

References

[1] R. Ahlswede and D. E. Daykin, An inequality for the weights of two families of
sets, their unions and intersections, Z. Wahrsch. Verw. Gebiete, 43 (1978), pp. 183–185.

[2] A. Billionnet and M. Minoux, Maximizing a supermodular pseudoboolean function:
A polynomial algorithm for supermodular cubic functions, Discrete Applied Mathemat-
ics, 12 (1985), pp. 1 – 11.

[3] E. Böhler, N. Creignou, S. Reith, and H. Vollmer, Playing with Boolean
blocks, part II: Constraint satisfaction problems, ACM SIGACT Newsletter, 35 (2004),
pp. 22–35.

[4] E. Böhler, S. Reith, H. Schnoor, and H. Vollmer, Bases for Boolean co-clones,
Inf. Process. Lett., 96 (2005), pp. 59–66.

[5] E. Boros and P. L. Hammer, Pseudo-Boolean optimization, Discrete Applied Math-
ematics, 123 (2002), pp. 155–225.

[6] A. A. Bulatov, Complexity of conservative constraint satisfaction problems, ACM
Trans. Comput. Log., 12 (2011), pp. 24:1–24:66.

[7] A. A. Bulatov, M. Dyer, L. A. Goldberg, M. Jalsenius, M. Jerrum, and
D. Richerby, The complexity of weighted and unweighted #CSP, J. Comput. Syst.
Sci., 78 (2012), pp. 681–688.

Andrei A. Bulatov, Martin Dyer, Leslie Ann Goldberg, Mark Jerrum and Colin McQuillan 39

[8] A. A. Bulatov, M. Dyer, L. A. Goldberg, and M. Jerrum, Log-supermodular
functions, functional clones and counting CSPs, in 29th International Symposium on
Theoretical Aspects of Computer Science, Schloss Dagstuhl - Leibniz-Zentrum für In-
formatik, 2012, pp. 302–313.

[9] A. A. Bulatov and M. Grohe, The complexity of partition functions, Theor. Com-
put. Sci., 348 (2005), pp. 148–186.

[10] J.-Y. Cai, X. Chen, and P. Lu, Non-negative weighted #CSPs: An effective com-
plexity dichotomy, CoRR, abs/1012.5659 (2010).

[11] J.-Y. Cai, P. Lu, and M. Xia, Dichotomy for Holant* problems of Boolean domain,
in Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms,
2011, pp. 1714–1728.

[12] P. Chebolu, L. A. Goldberg, and R. Martin, The complexity of approximately
counting stable matchings, Theoretical Computer Science, 437 (2012), pp. 35 – 68.

[13] X. Chen, Guest column: Complexity dichotomies of counting problems, SIGACT News,
42 (2011), pp. 54–76.

[14] D. Cohen and P. Jeavons, Chapter 8: The complexity of constraint languages, in
Handbook of Constraint Programming, vol. 2 of Foundations of Artificial Intelligence,
Elsevier, 2006, pp. 245–280.

[15] N. Creignou, S. Khanna, and M. Sudan, Complexity Classifications of Boolean
Constraint Satisfaction Problems, SIAM, Philadelphia, PA, USA, 2001.

[16] N. Creignou, P. Kolaitis, and B. Zanuttini, Structure identification of Boolean
relations and plain bases for co-clones, Journal of Computer and System Sciences, 74
(2008), pp. 1103–1115.

[17] R. de Wolf, A Brief Introduction to Fourier Analysis on the Boolean Cube, no. 1 in
Graduate Surveys, Theory of Computing Library, 2008.

[18] M. Dyer, L. A. Goldberg, C. Greenhill, and M. Jerrum, The relative com-
plexity of approximate counting problems, Algorithmica, 38 (2004), pp. 471–500.

[19] M. Dyer, L. A. Goldberg, and M. Jerrum, The complexity of weighted Boolean
#CSP, SIAM Journal on Computing, 38 (2009), pp. 1970–1986.

[20] , An approximation trichotomy for Boolean #CSP, Journal of Computer and Sys-
tem Sciences, 76 (2010), pp. 267–277.

[21] L. A. Goldberg and M. Jerrum, The complexity of ferromagnetic Ising with local
fields, Combin. Probab. Comput., 16 (2007), pp. 43–61.

The expressibility of functions on the Boolean domain, with applications to Counting CSPs 40

[22] L. A. Goldberg and M. Jerrum, Approximating the partition function of the ferro-
magnetic Potts model, in Automata, Languages and Programming, 37th International
Colloquium, Proceedings, Part I, vol. 6198 of Lecture Notes in Computer Science,
Springer, 2010, pp. 396–407.

[23] , Approximating the Tutte polynomial of a binary matroid and other related combi-
natorial polynomials, CoRR, abs/1006.5234 (2010).

[24] M. Grabisch, J.-L. Marichal, and M. Roubens, Equivalent representations of
set functions, Math. Oper. Res., 25 (2000), pp. 157–178.

[25] M. Jerrum and A. Sinclair, Polynomial-time approximation algorithms for the Ising
model, SIAM J. Comput., 22 (1993), pp. 1087–1116.

[26] M. Jerrum, L. G. Valiant, and V. Vazirani, Random generation of combinatorial
structures from a uniform distribution, Theoret. Comput. Sci., 43 (1986), pp. 169–188.

[27] K.-I. Ko and H. Friedman, Computational complexity of real functions, Theoretical
Computer Science, 20 (1982), pp. 323–352.

[28] V. Kolmogorov and S. Živný, The complexity of conservative valued CSPs, in
Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM,
2012, pp. 750–759.

[29] C. McQuillan, LSM is not generated by binary functions, CoRR, abs/1110.0461
(2011).

[30] M. Mitzenmacher and E. Upfal, Probability and Computing, Cambridge University
Press, Cambridge, 2005.

[31] D. M. Topkis, Minimizing a submodular function on a lattice, Operations Research,
26 (1978), pp. 305–321.

[32] J. Torán, On the complexity of computable real sequences, RAIRO Inform. Théor.
Appl., 21 (1987), pp. 175–180.

[33] S. Živný and P. Jeavons, Classes of submodular constraints expressible by graph
cuts, Constraints, 15 (2010), pp. 430–452.

[34] I. Wegener, Complexity Theory, Springer-Verlag, Berlin, 2005.

[35] T. Yamakami, Approximate counting for complex-weighted Boolean constraint satis-
faction problems, CoRR, abs/1007.0391 (2010).

[36] S. Živný, D. Cohen, and P. Jeavons, The expressive power of binary submodular
functions, Discrete Appl. Math., 157 (2009), pp. 3347–3358.

