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Abstract

Messages in communication networks often are considered as ”discrete” taking values in some
finite alphabet (e.g. a finite field). However, if we want to consider for example communication based
on analogue signals, we will have to consider messages that might be functions selected from an infinite
function space. In this paper, we extend linear network coding over finite/discrete alphabets/message
space to the infinite/continuous case. The key to our approach is to view the space of operators that
acts linearly on a space of signals as a module over a ring.

It turns out that modules over many rings R leads to unrealistic network models where communi-
cation channels have unlimited capacity. We show that a natural condition to avoid this is equivalent to
the ring R being Dedekind finite (or Neumann finite) i.e. each element in R has a left inverse if and
only if it has a right inverse. We then consider a strengthened capacity condition and show that this
requirement precisely corresponds to the class of (faithful) modules over stably finite rings (or weakly
finite).

The introduced framework makes it possible to compare the performance of digital and analogue
techniques. It turns out that within our model, digital and analogue communication outperforms each
other in different situations. More specifically we construct: 1) A communications network where digital
communication outperforms analogue communication 2) A communication network where analogue
communication outperforms digital communication.

The performance of a communication network is in the finite case usually measured in terms band
width (or capacity). We show this notion also remains valid for finite dimensional matrix rings which
make it possible (in principle) to establish gain of digital versus analogue (analogue versus digital)
communications.

I. INTRODUCTION - GENERAL CONSIDERATIONS

Control theory is a branch of engineering and mathematics that deals with the operation of
dynamical systems. The idea is that a controller manipulates the inputs to obtain the desired
effect of the output of the system. The task is to ensure that one or more output variables have
a particular behaviour when time progress.

Dynamic systems are often given by a graph with input and output nodes. This idea was
presented in [10]. The graph might be cyclic containing a complicated structure of ‘feedback
loops’. On the edges are attached operators that modify the signals according to certain rules
and transformations.

Control theory and dynamical systems have been intensively studied for more than 70 years
[11], [1]. Certain types of dynamic systems date back to antiquity.

Mathematical theories of information flows in networks were developed even before modern
information technology was developed. Some of the ideas used in designing Arpanet (the
precursor of the internet) was for example based on queuing theory [6].
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A crucial design idea for arplanet and the internet is called ”packet-switching” [7], [6]). The
idea is that messages are broken into a discrete number of pieces (packets). These pieces, each
of which contains information on where it is supposed to go, would then be sent out through
a network and once arriving at their destination they would be reassembled into the original
message.

In modern information systems packet-switching still plays a central, crucial role. A packet
of information behaves primarily as a car in a traffic system. To get from A to B, the packet of
information follows a particular path. During transmission, packets are not modified or mixed
with other messages.

Contrary to this approach, in (typical) dynamic control systems signals and influences are
spread out and travels along many distinct paths and might even appear in complicated feedback
structures. Thus, we cannot realistically expect a (non-trivial) link between regular routing (packet
switching) and (standard) control theory.

Recently a new approach to communication networks has been introduced. As part of multiuser
information theory network coding is concerned with organising and planning information flows
in communication networks. However in network coding there is no a priori assumption that
each message has to follow just one path, or that messages cannot be modified and combined
during transmission [17], [16], [8], [15], [12]. Intuitively, the behaviour of messages in network
coding resembles the action of signals in dynamic systems in control theory, and in this paper
I will initiate an investigation into this potential overlap of research areas.

We can consider the senders in a communication network as controllers - in the sense of
control theory. The output of the system is the messages/signals received at their destinations.
This makes it possible to consider a typical communication problem as particular type of control
problem.

Control theory typically deals with signals taking values in infinite ”continuous” structures
(e.g. complex-valued functions on some space), while messages in communication networks
often are considered as ”discrete” taking values in finite ”discrete” alphabets/sets (e.g. finite
fields). In this paper, I will show how the finite/discrete and infinite/continuous in the linear case
naturally can be unified into one general theory.

The basic idea in network coding can be explained by considering two ground stations that
are communicating via a satellite (see figure I.1)

Satellite

W E

x y
x⊕ y x⊕ y

Fig. I.1. Satellite communication problem

Example I.1. Suppose that W (for west) want to send a bit x ∈ {0, 1} to E (for east). Further,
suppose that E wants to send a bit y ∈ {0, 1} to W. The satellite receives the two bits (x, y) ∈
{0, 1}×{0, 1}. In traditional packet routing the satellite would have to beam back to earth both
the bit x and the bit y i.e. the satellite would have to transmit two bits. Using network coding we
can reduce this to a single bit by letting the satellite transmit the exclusive OR x⊕ y ∈ {0, 1}.
W can calculate y = (x⊕ y)⊕ x and E can calculate x = (x⊕ y)⊕ y. ♣
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We want to include to our approach the case where the space of messages is infinite. We do
this by considering the space of messages as a set M (commutative group) where a space of
operators R acts in a linear fashion. More specifically, let M̃ = (R,M) be a module over a ring
R. The messages are the elements in the module (i.e. the elements in M ) while the space of
operators that acts on the signals form the ring R.

Example I.2. Assume that W wants to send an element mW ∈ M to E, that simultaneously
wants to send an element mE ∈M to W. The satellite receives the messages mW and mE and
transmit a message m = rWmW + rEmE where rW, rE ∈ R. Assume that rE has a left inverse
r−1,leftE in R. In this case W can calculate

mE = r−1,leftE (rWmW + rEmE)− r−1,leftE rWmW

If rW has a left inverse r−1,leftW station E can compute

mW = r−1,leftW (rWmW + rEmE)− r−1,leftW rEmE

rWmW + rEmE

(W) (E)

mW mE

r−1E (rWmW + rEmE) r−1W (rWmW + rEmE)

−r−1E rWmW −r−1W rEmE

Fig. I.2. Satellite communication problem: solution over a module M̃ = (R,M)

♣

We can represent the satellite problem in figure I.2 as the so-called butterfly network in figure
I.3

mwest meast

satellite

meast mwest

rwest

r−1,lefteast

reast

r−1,leftwest

−r−1,lefteast rwest −r−1,leftwest reast

Fig. I.3. Butterfly network



4

Notice that the sum of the products along the (two) paths from the node in the top left corner
to the lower left corner is

(r−1,leftE rW − r−1,leftE rW)mW = 0

and the product of the path from the upper right node to the lower left node is

(r−1,leftE rE)mE = mE

The contribution of a node n is then given by the sum of the products of all paths from the
source nodes to n 1

We will use this point of calculation later when we analyse solutions to more complicated
communication networks. In the actual case, we can calculate the message received by the lower
left node by summing the products along each path from the source nodes (upper left and upper
right nodes) to the lower left node.Explicitly this sum of products is

(r−1,leftE rW − r−1,leftE rW)mW + (r−1,leftE rE)mE = (0 + 1)mE = mE

which shows that the lower left node receives message mE as required. A similar computation
shows that the lower right node receives message mW as required.

Now consider the communication network in figure I.4

m1 m2

satellite

m1 m2

r1

d1

r2

d2

Fig. I.4. Wingless butterfly network

This is a network similar to the butterfly network but without the wings. The network cor-
responds to the case with two senders, two receivers and a satellite. Sender 1 wants to send a
message m1 ∈M via the satellite to his friend receiver 1. And sender 2 wants to send a message
m2 ∈ M via the satellite to his friend receiver 2. Can this communication be solved, so the
satellite just broadcasting one message? Intuitively, in a realistic physical model it should not
be possible to solve this problem as it ought to be impossible encode two messages as one.

Now if the space of messages is infinite, it’s easy to provide linear operators that solve the
wingless butterfly communication problem,

Example I.3. Let M̃ = (k, V ) be a k-module where V be in infinite dimension vector space
over the field k such that there is a k-isomorphism θ : V → V ⊕ V . Define projections p1, p2 :
V ⊕ V → V by p1(v1, v2) := v1 and p2(v1, v2) := v2 and define inclusions i1, i2 : V → V ⊕ V
by i1(v) = (v, 0) ∈ V ⊕ V and i2(v) = (0, v) ∈ V ⊕ V .

1An elaboration of this idea that reassembles the Feynman integral can be found in [14]
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V V

V ⊕ V

V

i1 i2
p1 p2

θ−1θ

d1
r1

d2
r2

Fig. I.5. Commutative diagram

Consider the commutative diagram in figure I.5. The k-homomorphisms r1, r2, d1 and d2 on the
dashed lines are uniquely determined by d1 := p1θ, d2 := p2θ, r1 := θ−1i1, r2 := θ−1i2.

The communication problem in figure I.4 can now be solved by letting the satellite broadcast
the message

msatellite := θ−1i1v1 + θ−1i2v2

where v1 := m1, v2 := m2, and thus m1 = p1θmsatellite and m2 = p2θmsatellite. ♣

This example illustrate that: The issue whether operators (like r1, r2, d1 and d2) should be
considered realistic from a physical point of view (they are not) is determined by properties
of the ring they generate.

The wingless butterfly communication problem can be expressed in mathematical terms as
follows: The satellite receives the messages m1 ∈M and m2 ∈M and broadcast a message of
the form m = r1m1+r2m2 ∈M . For this communication to work there need to be ring elements
d1, d2 ∈ R that the receivers can use for decoding. More specifically the communication problem
has a solution over the module M̃ = (R,M) if and only

(∗) ∃r1, r2, d1, d2 ∈ R ∀m1,m2 ∈M : m1 = d1(r1m1+r2m2) and m2 = d2(r1m1+r2m2)

We will often assume that R acts faithfully on M i.e. if an operator behaves like the identity,
it is the identity i.e. ∀r ∈ R : (∀m ∈ M rm = m) → r = 1. This is logically equivalent to
the the statement that two operators are identical if on only if the behave the same way i.e.
∀r, s ∈ R : (∀m ∈ M rm = sm) → r = s. This in turn is equivalent to the most common
definition of R acting faithfully: ∀r ∈ R \ {0} ∃m ∈M : rm 6= 0.

If R acts faithfully on M (*) is equivalent to

(∗∗) ∃r1, r2, d1, d2 ∈ R : d1r1 = d2r2 = 1 and d1r2 = d2r1 = 0

For many rings (**) is valid, but as we just noted in a realistic physical model it should not
be possible to encode two messages as one. From a mathematic point of view this is of course
unproblematic to consider modules over rings R that satisfy (**), however we want to formalise
the idea that each channel has bounded finite capacity rather than unbounded capacity. We take
the view that a module M̃ = (R,M) over a ring R that satisfies (**) cannot be implemented
by any realistic physical system.
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II. DEDEKIND FINITE RINGS AND THE CAPACITY CONDITION

A. Dedekind finite rings
A ring R (with 1-element) is Dedekind finite (or von Neumann finite, or directly finite) if

∀x, y ∈ R : xy = 1→ yx = 1

i.e. all one-sided inverses in R are two-sided [9]
Many classes of rings are Dedekind finite. Commutative rings, finite rings, and the matrix

rings Mn(F ) are Dedekind finite. Domains are Dedekind finite and so are left as well as right
Noetherian rings. For a field k any finitely dimensional k-algebra is Dedekind finite. And for
any group G the group algebra kG is Dedekind finite. Rings with only finitely many nilpotent
elements (i.e. elements x where xn = 0 for some n ∈ {1, 2, ...}) are Dedekind finite. Reversible
rings i.e. rings where ∀x, y (xy = 0 → yx = 0) are Dedekind finite. Any direct product of
Dedekind finite rings is Dedekind finite.

Example II.1. Let V be a vector space and let R be the ring of linear operators acting on
V . A linear operator T ∈ R is injective (i.e. 1-1) if and only if it has a left-inverse, and it
is surjective (i.e. onto) if and only if it has a right-inverse. More concretely, assume we try to
solve an operator equation Tx = v for some v ∈ V . If T has a left inverse T−1,left we know
that Tx = v has either no or one solution. Furthermore, if the equation has a solution, it is
given by T−1,leftv. If T has a right inverse T−1,right we know that T−1,rightv is a solution, but
the equation Tx = v might have other solutions. Dedekind finite rings are rings R of operators
where surjective, injective or bijective are equivalent properties. ♣

There are various ways to express that a ring R is Dedekind finite. The following list is not
exhaustive but is sufficient for our purpose.

Theorem II.2. Let R be a ring with 1 element. Then the following statements are equivalent:
1) R is Dedekind finite i.e. ∀x, y ∈ R (xy = 1→ yx = 1)
2) Each element that has a right inverse has a left inverse i.e. ∀x ((∃y xy = 1)→ (∃z zx =

1))
3) ∀x, y, z ∈ R ((xy = 1 ∧ xz = 0)→ z = 0) (capacity condition)
4) Each element has at most one right inverse i.e. ∀x, y, z ∈ R ((xy = 1∧xz = 1)→ y = z)
5) Each element that has a left inverse have a two sided inverse i.e.
∀x, y ((yx = 1)→ (∃z xz = zx = 1))

6) Each element that has a left inverse has a right inverse i.e. ∀x ((∃y yx = 1)→ (∃z xz =
1))

7) ∀x, y, z ∈ R ((yx = 1 ∧ zx = 0)→ z = 0) (the dual of the capacity condition)
8) Each element has at most one left inverse i.e. ∀x, y, z ∈ R ((yx = 1 ∧ zx = 1)→ y = z)
9) Each element that has a right inverse have a two sided inverse i.e.
∀x, y ((xy = 1)→ (∃z xz = zx = 1))

To the best of my knowledge condition 3 and condition 7 are new ways of expressing that a
ring is Dedekind finite.
Proof:
(1) =⇒ (2): (1) can be stated as ∀x ((∃y xy = 1→ yx = 1) which logically implies (2)
(2) =⇒ (3): Assume xy = 1 and xz = 0 and assume that (2). Then since x has a right inverse
y it has a left inverse w so wx = 1. But then 0 = w0 = w(xz) = (wx)z = 1z = z.
(3) =⇒ (4): Assume y1, y2 are right inverse of x ∈ R. Then xy1 = 1 and xy2 = 1 and so
x(y2 − y1) = 0. But then according to the assumption (3) y2 − y1 = 0 and y1 = y2.
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(4) =⇒ (1): Assume that xy = 1. Consider the element (1 − yx + y) and notice that x(1 −
yx + y) = x − xyx + xy = xy = 1. Since we assumed that x has at most one right inverse it
follows that y = (1− yx+ y), than thus that yx = 1.
(1) =⇒ (5): Assume that y has left inverse x i.e. that xy = 1. Then according to 1 it follows
that yx = 1 i.e. that y has a two sided inverse.
(5) =⇒ (1): Assume xy = 1 i.e. y has a left inverse. But then y has a two sided inverse i.e
the exist z ∈ R s.t. zy = yz = 1. But then yx = yx(yz) = y(xy)z = yz = 1 i.e. xy = yx = 1.

This shows that (1) ⇐⇒ (2) ⇐⇒ (3) ⇐⇒ (4) ⇐⇒ (5). The dual versions (1) ⇐⇒ (6) ⇐⇒
(7) ⇐⇒ (8) ⇐⇒ (9) can be shown in by simillar (but dual) arguments.

B. The Capacity condition
Consider the network in figure II.1.

m1 m2

r1m1 + r2m2

m1

r1 r2 = 0

d1

Fig. II.1. Capacity condition

The network takes two massage m1 and m2 as input and the message m1 can be calculated at
the left lower receiver. We could have added a receiver at the lower right, but since this receiver
node has no special requirement we omit it. Intuitively the full bandwidth of the involved channels
is used to transmit the message m1 and thus r1m1 + r2m2 cannot depend on m2. In other words
if d1 is a decoding operator i.e. d1(r1m1 +r2m2) = m1 i.e. if d1r1 = 1 and d1r2 = 0 then r2 = 0
(see figure II.2 for a commutative diagram expressing the capacity condition).

M M

M

M

r1

d1 0

1

r2 = 0

Fig. II.2. Commutative diagram: Capacity condition

This condition on R can formally be expressed as:

∀x, y, z ∈ R ((xy = 1 ∧ xz = 0)→ z = 0) (1)
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We showed in the previous section that this condition is equivalent to R being a Dedekind
finite ring.

Example II.3. Let R be a ring that satisfies condition (**) we considered previously i.e.

(∗∗) ∃r1, r2, d1, d2 ∈ R : d1r1 = d2r2 = 1 and d1r2 = d2r1 = 0

Clearly R is not Dedekind finite since if R were Dedekind finite d1r1 = 1 and d1r2 = 0
would imply that r2 = 0 (by the capacity condition) which would be a contradiction since
1 = d2r2 = d20 = 0. ♣

m1 m2

r1m1 + r2m2

m1 independent of m1

r1 r2

d1 d2 = 0

Fig. II.3. Dual capacity condition

Example II.4. Consider figure II.3. A message m1 is being transmitted through a channel and
being decoded such that d1r1m1 = m1. Then intuitively r1m1 is bijective so if for some operator
d2, d2r1m1 = 0 then d2 = 0. Thus if d1r1 = 1 and d2r1 = 0, then d2 = 0 (see figure II.4 for a
commutative diagram expressing this condition).

M

M

M M

r1

d1

0

1

d2 = 0

Fig. II.4. Commutative diagram: Dual capacity condition

This principle can be stated as:

∀x, y, z ∈ R ((yx = 1 ∧ zx = 0)→ z = 0) (2)

which is the dual capacity condition. As we showed in the previous section, this condition is
also equivalent to R being Dedekind finite. ♣

Example II.5. Polynomial identity rings (PI-rings) have been extensively investigated in the
literature [4], [5]. PI-rings (are isomorphic to) rings that occur by considering a commutative
ring S and then consider formal polynomial expressions p ∈ S[x1, x2, ..., xn] in non-commuting
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variables that satisfies at least one identity p(a1, a2, ..., an) = 0 for all a1, ..., an ∈ S[x1, ...., xn].
If A is a PI-ring then obviously every subring of A and homomorphic image of A will satisfy
the identity as well. It can be shown that every PI ring is Dedekind finite.

The case where p = x1x2 − x2x1 = 0 corresponds to commutative rings (that trivially are
Dedekind finite).

Consider the ring A = M2(S) of 2 × 2 matrices with coefficients in S. For any a1, a2 ∈ A,
clearly tr(a1a2 − a1a1) = 0 and thus by the Cayley-Hamilton Theorem (a1a2 − a2a1)2 = s1 for
some s ∈ S. Therefore (a1a2 − a2a1)2 commute with every element in A. Thus A is a PI-ring
since it satisfies the polynomial identity p = (x1x2 − x2x1)2x3 − x3(x1x2 − x2x1)2 = 0.

More, generally the Amitsur-Levitzki Theorem provide a (multilinear) polynomial identity for
each ring Mk(S) of k × k matrices with coefficients in S. ♣

III. FINITELY STABLE RINGS AND THE STRENGTHENED CAPACITY CONDITION

A. Finitely stable rings
For a ring R we can consider the matrix ring Mk(R) that consists of k × k matrices with

entries in R. Multiplication is the usual matrix multiplication and addition is matrix addition.

Definition III.1. We say that a ring R is k-stable if the matrix ring Mk(R) is Dedekind finite 2

We say R is finitely stable (or fully Dedekind finite or weakly finite) if R is k-stable for each
k ∈ {1, 2, 3, ....}.

Commutative rings can be shown to be finitely stable. Noetherian rings and Artinian rings are
stably finite. A subring of a stably finite ring and a matrix ring over a stably finite ring is stably
finite.

1-stable is the same as Dedekind finite. Notice that m-stable implies k-stable when m > k.
Thus each 2-stable ring is Dedekind finite. The converse is not valid: There exists a Dedekind
finite ring R (in fact R can be chosen to be a domain) such that R fails to be a 2-stable. (see
exercise 1.18 that outlines the argument). More generally there exists for each k > 1 a k-stable
ring R that is not (k + 1)-stable.

Example III.2. The nth Weyl algebra is the ring Rweyl,n := k[x1, x2, ..., xn,
∂
x1
, ∂
x2
, ..., ∂

xn
] of

differential operators ∂
x1
, ∂
x2
, ..., ∂

xn
on the polynomial ring of n variables over a field k with the

obvious relations. Weyl algebras are named after Hermann Weyl, who introduced them to study
the Heisenberg uncertainty principle in quantum mechanics. Each Weyl algebra Rweyl,n is an
infinitely dimensional vector space over k. The nth Weyl algebra is a simple Noetherian domain
and thus stably finite. ♣

B. Requirements from finite capacity
We will now argue that the class of Dedekind finite rings is too broad to serve as the class

of rings that intuitively should be considered rings of legitimate operators.
Consider the network in figure III.1.

2There doesn’t seem to be an agreed name for k-stable rings though this class of rings certainly have been considered in the
literature
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m1 m2 m3

r14m1 + r24m2 + r34m3 r15m1 + r25m2 + r35m3

m1 m2

r14 r24
r34 = 0

r15 r25
r35 = 0

r46 r47

r56

r57

Fig. III.1. Strengthened capacity condition

If we can assign operators rij ∈ R i, j ∈ {1, 2, 3, 4, 5, 6, 7, 8} to the edges in the graph
such that m1 and m2 can be reconstructed correctly at the two lower bottom nodes we get the
following identitity:[

r46 r56
r47 r57

] [
r14 r24 r34
r15 r25 r35

]m1

m2

m3

 =

[
1 0 0
0 1 0

]m1

m2

m3

 =

[
m1

m2

]
which can also be written as[

r46 r56
r47 r57

] [
r14 r24
r15 r25

] [
m1

m2

]
=

[
1 0
0 1

] [
m1

m2

]
and [

r46 r56
r47 r57

] [
r34
r35

] [
m3

]
=

[
0
0

] [
m3

]
Now these matrix equations have a solution if and only if the following matrix equations are

solvable for a suitable choice of operators ri,j ∈ R i.e.[
r46 r56
r47 r57

] [
r14 r24
r15 r25

]
=

[
1 0
0 1

]
and [

r46 r56
r47 r57

] [
r34 r′34
r35 r′35

]
=

[
0 0
0 0

]
This condition is equivalent to the matrix ring M2(R) satisfying the condition

∀x, y, z ∈ R ((xy = 1 ∧ xz = 0)→ z = 0)

where

x =

[
r46 r56
r47 r57

]
, y =

[
r14 r24
r15 r25

]
, z =

[
r34 r′34
r35 r′35

]
Using proposition II.2 we conclude that the matrix equations have a solution if and and only

ring M2(R) Dedekind finite. Thus the matrix equations are solvable if and only if R is 2-stable.

Example III.3. A ring R has the Invariant Basis Number property (IBN-property) if Rm and
Rn are isomorphic as R modules if and only if m = n. Stably finite rings are IBN rings.

Consider figure III.2 and consider the principle Prin(n) that x1, x2, ....xn+1 cannot all be
reconstructions at the n + 1 corresponding receiver nodes. Prin(1) is equivalent to condition
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(∗∗). For n ≥ 1 the principle Prin(n) can be shown to be equivalent to the property that Rn is
not isomorphic to Rn+1. The principle Prin(n) for n = 1, 2, 3, ... can be shown to be equivalent
to R has the IBN-property.

Consider figure III.2. Intuitively, if x1, x2, ..., xn can be reconstructed correctly at the receiver
notes x1, x2, ..., xn, then the message received by node n+ 1 must be independent of xn+1.

Fig. III.2.

The case n = 1 is the network where the condition Cond(1) on R is equivalent to R being
Dedekind finite. The condition arising for n = 2 is the condition Cond(2) we just considered
leading to the requirement that M2(R) is Dedekind finite.

Now consider Cond(k). Let the inputs denote m1,m2, ...,mk for nodes 1, 2, ..., k and denote
the input to node k+1 by mk+1. Cond(k) can be written as the condition that the matrix identity

B̃Ã = 1, B̃C̃ = 0

of k×k matices in Mk(R) implies that C̃ = 0. Thus Cond(k) is equivalent to the condition that
the matrix ring Mk(R) satisfies the condition

∀x, y, z ∈ R ((xy = 1 ∧ xz = 0)→ z = 0)

Again, applying proposition II.2 this is equivalent to the matrix ring Mk(R) being Dedekind
finite. Thus we get:

Proposition III.4. A ring R satisfies condition Cond(k) if and only if R is k-stable. A ring R
satisfies each condition Cond(k) for k ∈ {1, 2, 3, ...} if and only if R is stably finite.

IV. DIGITAL SIGNALS CAN BE MORE EFFICIENT THAN ANALOGUE SIGNALS

As previous consider a R-module M̃ = (R,M), where the elements in the ring R acts on the
elements in the additive space of messages (signals) M . In general when signals (i.e. point in
M ) are real or complex valued functions, f(t) + f(t) = 0 only when f(t) = 0. Thus if 1 ∈ R is
the identity operator 1 + 1 6= 0. On the other hand if data consists of binary strings bit(j), j ∈ I
(with I finite or infinite), bit(j) + bit(j) = 0 and thus 1 + 1 = 0.

Consider the following Information Network in figure IV. This network was constructed
based on intuitive, informal considerations. It is possible to be more systematic and apply the
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constructions in [2]. However, these methods only seem to work for commutative rings, and a lot
of extra work would be needed to implement this approach. Also, the resulting networks would
be larger and more complex than the ad hoc network constructed here. In the communication
network we have constructed in figure IV, the task is to transmit messages x, y, z ∈ M from
node 1, 2 and 3 to the notes 7, 9, 10 and 11 as indicated.

Fig. IV.1.

We will show:

Theorem IV.1. The Communication Network in figure IV has a linear solution over any ring
where 1 + 1 = 0, but has no solutions over Dedekind finite rings where 1 + 1 6= 0

Proof: Let us denote the operators (ring elements) assigned to the different edges by

r1,4, r1,6, r2,4, r2,5, r2,6, r3,5, r3,6, r3,11, r4,7, r4,8, r5,8, r5,9, r6,7, r6,9, r6,10, r8,10, r8,11

The ring elements provide a solution to the communication problem if and only if the following
12 equations hold.

(1) paths from ix to ox : r6,9r1,6 = 1

(2) paths from ix to oy : r8,10r4,8r1,4 + r6,10r1,6 = 0

(3) paths from ix to oz : r4,7r1,4 + r6,7r1,6 = 0

(4) paths from ix to ōx : r8,11r4,8r1,4 = 1

(5) paths from iy to ox : r5,9r2,5 + r6,9r2,6 = 0

(6) paths from iy to oy : r8,10r4,8r2,4 + r8,10r5,8r2,5 + r6,10r6,2 = 1
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(7) paths from iy to oz : r4,7r2,4 + r6,7r2,6 = 0

(8) paths from iy to ōx : r8,11r4,8r2,4 + r8,11r5,8r2,5 = 0

(9) paths from iz to ox : r5,9r3,5 + r6,9r3,6 = 0

(10) paths from iz to oy : r6,10r3,6 + r8,10r5,8r3,5 = 0

(11) paths from iz to oz : r6,7r3,6 = 1

(12) paths from iz to ōx : r8,11r5,8r3,5 + r3,11 = 0

The first part of the theorem follows since the equations (1)-(12) have a solution over any ring
where 1 + 1 = 0 since equations (1)-(12) holds if we chose each rij = 1 i.e.

r1,4 = r1,6 = r2,4 = r2,5 = r2,6 = r3,5 = r3,6 = r3,11 =

r4,7 = r4,8 = r5,8 = r5,9 = r6,7 = r6,9 = r6,10 = r8,10 = r8,11 = 1

To show the second part of the theorem we need to show that any Dedekind finite ring R that
satisfies equations (1)-(12) is forced to have 1 + 1 = 0.

(13) According to (1) r6,9r1,6 = 1. Thus r1,6 and r6,9 each have a two-sided inverse.

(14) According to (4) r8,11r4,8r1,4 = 1. Thus r8,11, r4,8 and r1,4 each have a two-sided inverse.

(15) According to (8) r8,11r4,8r2,4 + r8,11r5,8r2,5 = 0. Since r8,11 has a left inverse (14), it
follows that r4,8r2,4 + r5,8r2,5 = 0.

(16) According ro (6) r8,10r4,8r2,4+r8,10r5,8r2,5+r6,10r2,6 = 1. According to (15) r8,10(r4,8r2,4+
r5,8r2,5) + r6,10r2,6 = r6,10r2,6 = 1. Thus r2,6 and r6,10 each have a two-sided inverse.

(17) According to (5) r5,9r2,5 +r6,9r2,6 = 0. We showed that r2,6 has a two-sided inverse (16),
and that r6,9 has a two-sided inverse (13). Thus r5,9r2,5r−12,6r

−1
6,9 = −1 from which its straight

forward to conclude that r5,9 and r2,5 each have a two sided inverse.

(18) According to (11) r6,7r3,6 = 1. Thus r3,6 and r6,7 each have a two sided inverse.

(19) According to (9) r5,9r3,5 + r6,9r3,6 = 0. We have already shown that r3,6 has a two-sided
inverse (18), and we also have shown that r6,9 has a two-sided inverse (13). Thus r5,9r3,5r−13,6r

−1
6,9 =

−1 and thus r3,5 has a two sided inverse.

(20) According to (7) r4,7r2,4+r6,7r2,6 = 0. We already showed that r6,7 has a two-sided inverse
(18), and we also showed that r2,6 has a two-sided inverse (16). Thus r4,7r2,4r−12,6r

−1
6,7 = −1. Thus

r4,7 and r2,4 each have a two-sided inverse.

(21) According to (10) r6,10r3,6 + r8,10r5,8r3,5 = 0. Now r3,6 and r6,10 each has a two-sided
inverse (18),(16). From this we conclude that r8,10r5,8r3,5r−13,6r

−1
6,10 = −1 and that r8,10 and r5,8

each has a two sided inverse.

(22) According to (8) r4,8r2,4 + r5,8r2,5 = 0. We already showed that r2,5 and r5,8 each has a
two-sided inverse (17),(21). Thus r4,8r2,4r−12,5r

−1
5,8 = −1 and r4,8 has a two sided inverse.
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(23) According to (1) r6,9r1,6 = 1. From this we already concluded in (13) that r6,9 and r1,6
each has a two-sided inverse, and thus r1,6 = r−16,9.

(24) According to (2) r8,10r4,8r1,4 + r6,10r1,6 = 0 thus according to (13), (14) and (21) we can
conclude that r1,4 = −r−14,8r

−1
8,10r6,10r

−1
6,9.

(25) According to (3) r4,7r1,4+r6,7r1,6 = 0. Thus according to (24) it follows that r4,7(−r−14,8r
−1
8,10r6,10r

−1
6,9)+

r6,7r
−1
6,9 = 0. From this and (13) we conclude that r6,7 = r4,7r

−1
4,8r

−1
8,10r6,10.

(26) According to (4) r8,11r4,8r1,4 = 1. From (24) we conclude that r8,11 = r−11,4r
−1
4,8 =

(−r−14,8r
−1
8,10r6,10r

−1
6,9)
−1r−14,8 = −r6,9r−16,10r8,10r4,8r

−1
4,8 = −r6,9r−16,10r8,10

(27) According to (5) r5,9r2,5+r6,9r2,6 = 0. According to (17) it follows that r2,5 = −r−15,9r6,9r2,6.

(28) According to (8) r8,11r4,8r2,4 + r8,11r5,8r2,5 = 0. According to (21) r4,8r2,4 + r5,8r2,5 =
0 and (14) r2,4 = −r−14,8r5,8r2,5. Substituting (22) into this we get r2,4 = −r−14,8r5,8r2,5 =
−r−14,8r5,8(−r−15,9r6,9r2,6) = r−14,8r5,8r

−1
5,9r6,9r2,6.

(29) According to (6) r8,10r4,8r2,4 +r8,10r5,8r2,5 +r6,10r2,6 = 1. According to (16) r6,10r2,6 = 1
and thus r2,6 = r−16,10.

(30) According to (27) and (29) r2,5 = −r−15,9r6,9r2,6 = −r−15,9r6,9r
−1
6,10.

(31) According to (7) r4,7r2,4 + r6,7r2,6 = 0. According to (28) we have 0 = r4,7r2,4 +
r6,7r2,6 = r4,7(r

−1
4,8r5,8r

−1
5,9r6,9r

−1
6,10) + (r4,7r

−1
4,8r

−1
8,10r6,10)r

−1
6,10. Thus 0 = r4,7r

−1
4,8r5,8r

−1
5,9r6,9r

−1
6,10 +

r4,7r
−1
4,8r

−1
8,10r6,10r

−1
6,10 = r4,7r

−1
4,8r5,8r

−1
5,9r6,9r

−1
6,10 + r4,7r

−1
4,8r

−1
8,10. Thus r8,10 = −r6,10r−16,9r5,9r

−1
5,8 and

r−18,10 = −r5,8r−15,9r6,9r
−1
6,10.

(32) According to (24) and (31) r1,4 = −r−14,8r
−1
8,10r6,10r

−1
6,9 = −r−14,8(−r5,8r−15,9r6,9r

−1
6,10)r6,10r

−1
6,9 =

r−14,8r5,8r
−1
5,9

(33) According to (25) and (31) r6,7 = r4,7r
−1
4,8r

−1
8,10r6,10 = r4,7r

−1
4,8(−r5,8r−15,9r6,9r

−1
6,10)r6,10 =

−r4,7r−14,8r5,8r
−1
5,9r6,9.

(34) According to (26) and (31) r8,11 = −r6,9r−16,10r8,10 = −r6,9r−16,10(−r6,10r−16,9r5,9r
−1
5,8) =

r5,9r
−1
5,8.

(35) According to (9) r5,9r3,5 + r6,9r3,6 = 0. Thus according to (17) r3,5 = −r−15,9r6,9r3,6.

(36) Finally according to (10) r6,10r3,6 + r8,10r5,8r3,5 = 0. Combining this with (31) and
(35) we get 0 = r6,10r3,6 + r8,10r5,8r3,5 = r6,10r3,6 + (−r6,10r−16,9r5,9r

−1
5,8)r5,8(−r−15,9r6,9r3,6) =

r6,10r3,6 + r6,10r3,6 = 2(r6,10r3,6).

(37) Multiplying (36) with r−13,6r
−1
6,10 from the right (or from the left) we get 0 = 2.

Remark: We did not use equation (12) in this derivation. And equation (11) was only used to
show each ring element rij had a two sided inverse.

Corollary IV.2. The network N in figure IV cannot be solved over any ring R (Dedekind finite)
of operators that acts on analogue signals (i.e. 1 + 1 6= 0). The network N is solvable over any
ring R that acts on digital (binary) signals (i.e.where 1 + 1 = 0).
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Remark: The communication network is not a multiple unicast network (i.e. a communication
network where each message is required at exactly one receiver node) , however it can be
shown- as explained in section XII: multiple unicast networks [13] - that it possible to modify
the network so it becomes a multiple unicast networks that separate digital from analogue.

V. COMMUNICATION NETWORK THAT FAVOURS ANALOGUE SIGNALS OVER DIGITAL
SIGNALS

Fig. V.1.

Consider the communication network in figure V. We will show

Theorem V.1. The Network in figure V is solvable over any ring R where the element 1 + 1 is
invertible. The network is not solvable over any Dedekind finite ring R where 1 + 1 fails to be
invertible.

Proof: Let R be a Dedekind finite ring. Any solution over R-module (where R acts
faithfully) must satisfy the following 12 equations:

(1) Path from a to a: r10,4r4,1 = 1

(2) Path from b to b: r9,4r4,2 = 1

(3) Path from c to cl: r8,4r4,3 = 1

(4) Paths from c to cr: r11,7r7,3 + r11,6r6,3 = 1

(5) Paths from a to b: r9,6r6,1 + r9,4r4,1 = 0

(6) Paths from a to cl: r8,5r5,1 + r8,4r4,1 = 0
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(7) Paths from a to cr: r11,6r6,1 + r11,5r5,1 = 0

(8) Paths from b to a: r10,7r7,2 + r10,4r4,2 = 0

(9) Paths from b to cl: r8,5r5,2 + r8,4r4,2 = 0

(10) Paths from b to cr: r11,7r7,2 + r11,5r5,2 = 0

(11) Paths from c to a: r10,7r7,3 + r10,4r4,3 = 0

(12) Paths from c to b: r9,6r6,3 + r9,4r4,3 = 0
We now use these equations and the fact that R is a Dedekind finite ring so having a right
inverse implies having an left inverse.

(13) r10,4 and r4,1 have two sided inverses (1)

(14) r9,4 and r4,2 have two sided inverses (2)

(15) r8,4 and r4,3 have two sided inverses (3)

(16) r9,6r6,1 = −r9,4r4,1 according to (5) and thus using (13) and (14) we have r−14,1r
−1
9,4(−1)r9,6r6,1 =

1. From this we conclude that r6,1 has a left inverse, and thus r6,1 has a two sided inverse.

(17) r9,6r6,1 = −r9,4r4,1 (5) and thus using (13) and (14) r9,6r6,1(−1)r−14,1r
−1
9,4 = 1. From this we

conclude that r9,6 has a right inverse, and thus r9,6 has a two sided inverse.

(18) We conclude that r8,5 has a two sided inverse.

(19) We conclude that r5,1 has a two sided inverse.

(20) r10,7 has a two sided inverse.

(21) r7,2 has a two sided inverse.

(22) r9,6 has a two sided inverse.

(23) r6,3 has a two sided inverse.

(24) According to (4), (7) and (10) and the fact r6,1 and r7,2 are invertible we get: 1 = (r11,7r7,3+
r11,6r6,3) + (r11,5r5,1 + r11,6r6,1)r

−1
6,1r6,3 + (r11,5r5,2 + r11,7r7,2)r

−1
7,2r7,3

(25) By expanding (24) we get: 1 = r11,7r7,3 + r11,6r6,3 + r11,6r6,1r
−1
6,1r6,3 + r11,7r7,2r

−1
7,2r7,3 +

r11,5r5,1r
−1
6,1r6,3 + r11,5r5,2r

−1
7,2r7,3 = 2(r11,7r7,3 + r11,6r6,3) + r11,5(r5,1r

−1
6,1r6,3 + r5,2r

−1
7,2r7,3)

(26) r−16,1 = −r−14,1r
−1
9,4r9,6 according to (5) and the fact that r6,1, r4,1 and r9,4 are invertible.

(27) r−17,2 = −r−14,2r
−1
10,4r10,7 according to (8) and the fact that r7,2, r4,2 and r10,4 are invertible.

(28) Substituting (26) and (27) into (25) gives: 1 = 2(r11,7r7,3+r11,6r6,3)+r11,5(r5,1(−r−14,1r
1
9,4r9,6)r6,3+

r5,2(−r−14,2r
−1
10,4r10,7)r7,3

(29) According to (12) r9,6r6,3 = −r10,7r7,3
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(30) According to (11) r10,7r7,3 = −r10,4r4,3

(31) Inserting (29) and (30) into (28) we get: 1 = 2(r11,7r7,3+r11,6r6,3)+r11,5(r5,1r
−1
4,1r

−1
9,4r9,4r4,3+

r5,2r
−1
4,2r

−1
10,4r10,4r4,3 = 2(r11,7r7,3 + r11,6r6,3) + r11,5(r5,1r

−1
4,1 + r5,2r

−1
4,2)r4,3

(32) r5,1 = −r−18,5r8,4r4,1 according to (6)

(33) r5,2 = −r−18,5r8,4r4,2 according to (9)

(34) Substituting (32) and (33) into (31) we get 1 = 2(r11,7r7,3+r11,6r6,3)+r11,5((−r−18,5r8,4r4,1r
−1
4,1−

r−18,5r8,4r4,2r
−1
4,2)r4,3

(35) Reducing (34) we finally get: 1 = 2(r11,7r7,3 + r11,6r6,3 − r11,5r−18,5r8,4r4,3)

This shows that if the equations (1)-(12) has a solution over a Dedekind finite ring R, 1 + 1 = 2
must be invertible in R.

On the other hand we claim that the equations (1)-(12) are solvable in any ring R where 1+1
is invertible.

A general solution that is valid over any ring R where 2 = 1 + 1 is invertible is indicated
in figure V. Explicitly a solution is given by letting r4,1 = r5,1 = r6,1 = r4,2 = r5,2 = r7,2 =
r4,3 = r6,3 = r7,3 = r8,4 = r9,4 = r4,10 = 1, letting r8,5 = r9,6 = r10,7 = −1 and letting
r11,6 = r11,7 = −r11,5 = 1

2
where 1

2
denote the multiplicative inverse of 2.

Corollary V.2. The network N can be solved over any ring R of operators that acts on analogue
signals. The network N is unsolvable over any ring R (that is Dedekind finite) that acts on digital
(binary) signals.

Proof: Assume M is a space of analogue signals (messages). We assume such signals have
amplitudes (e.g. reals or complex numbers) and that we can double and half amplitudes. Thus
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the space R of linear operators that contain the operator 2 (doubling the amplitude) as well as its
inverse 2−1 (halfing the amplitude). Now, R acts faithfully so m = 2−1(m+m) = 2−12m = 1m
and it follows that the doubling and the halving operators indeed are 2 and 2−1 which satisfied
2−12 = 1.

Next assume that M is a space of digital (binary) signals. More specifically, any b ∈M is a
string (possible infinite) of binary symbols with b+ b = 0. Thus 2b = b+ b = 0 for all b ∈ M ,
and since R acts faithfully it follows that 2 = 1 + 1 = 0 fail to be invertible.

VI. ANALYSIS OF NETWORK CAPACITY

A. Definitions and methods
In the general case where R is stably finite its not obvious that its possible to define the capacity

(reciprocal to bandwidth) of a network in a proper manner. To make the definition meaningful
we will strengthen the assumption on the ring R from being stably finite (or Dedekind finite)
and assume that R is a finite dimensional matrix ring GLn(F ) over some field F (finite or
infinite). In fact we will assume R is a field, but notice that the definition of network capacity
ensures that the capacity of a network with regards to a field F is the same as the capacity with
regards to any finite dimensional matrix ring over F . With this restriction we can now define
the capacity of a communication network as in [3].

Definition VI.1. Assume F is a field and that k, n ∈ {1, 2, 3, ....}. We say that a network has a
solution that achieve capacity k

n
(or use bandwidth n

k
) if there is a solution where each sender

edge is assigned a n × k R-matrix (i.e. a matrix with entries in R), each edge ending in a
receiver node is assigned a k×n R-matrix, and each inner edge is assigned a n×n R-matrix.
The capacity of the communication network N over a field F is given by

capacity(N,F ) = sup{k
n

: N has a solution over F that has capacity
k

n
}

B. Simple example
Let’s first consider a rather trivial example that illustrate the idea of capacity of a communi-

cation network.

x y

satellite

y x

r13

r34

r23

r14

r35

Fig. VI.1. Simple example

Proposition VI.2. The satellite communication problem in figure VI.1 has capacity c = 1
2

= 0.5.
Equivalently, the problem can be solved if and only if the bandwidth of the communication to
and from the satellite has bandwidth at least 2.



19

Proof: This communication has a solution of capacity k
n

if the following system (1)-(4) of
matrix equations has a solution:

(1) rk,k1,4 + rk,n3,4 r
n,k
1,3 = 0k,k.

(2) rk,n3,5 r
n,k
1,3 = 1k,k.

(3) rk,n3,4 r
n,k
2,3 = 1k,k.

(4) rk,n3,5 r
n,k
2,3 = 0k,k.

For n = 2 and k = 1 we have the following solution:

r1,11,4 =
[
0
]
, r1,23,4 =

[
0 1

]
, r2,11,3 =

[
1
0

]
, r1,23,5 =

[
1 0

]
, r2,12,3 =

[
0
1

]
This shows that c ≥ 1

2
.

For the upper bound we proceed as follows: From (2) we conclude that

k = rank(1k,k) = rank(rk,n3,5 r
n,k
1,3 ) ≤ min(rank(rk,n3,5 ), rank(rn,k1,3 ))

Since k ≤ n it follows that rank(rk,n3,5 ) ≤ k and rank(rn,k1,3 ) ≤ k. From this we conclude that
rank(rk,n3,5 ) = rank(rn,k1,3 ) = k.

From (3) we conclude that

k = rank(1k,k) = rank(rk,n3,4 r
n,k
2,3 ) ≤ min(rank(rk,n3,4 ), rank(rn,k2,3 ))

Since k ≤ n it follows that rank(rk,n3,4 ) ≤ k and rank(rn,k2,3 ) ≤ k. From this we conclude that
rank(rk,n3,4 ) = rank(rn,k2,3 ) = k.

From (4) we conclude that

2k − n = rank(rk,n3,5 ) + rank(rn,k2,3 )− n ≤ rank(rk,n3,5 r
n,k
2,3 ) = rank(0k,k) = 0

i.e. n ≥ 2k and thus that c ≤ 1
2
.

Notice we did not use condition (1) so the network has c = 1
2

with or without an edge from
node 1 to node 4.

VII. DIGITAL COMMUNICATION CAN ACHIEVE HIGHER CAPACITY THAN ANALOGUE
COMMUNICATION

A. Basic considerations (digital versus analogue)
Let us revisit the communication network in figure IV. The communication network has

capacity k
n

over the field F if the network has a solution where each edge from a sender mode
is assigned a n×k F -matrix, each edge ending in a receiver node is assigned a k×n F -matrix,
and each inner edge is assigned a n × n F -matrix. We want to lower and upper bound the
capacity given by

capacity(N,F ) = sup{k
n

: N has a solution over F that has capacity
k

n
}
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Proposition VII.1. The communication network in figure IV has capacity at least 3
4

= 0.75, and
at most 1.

Proof (stating the problem): More specifically the network has a solution of capacity k
n

if
the matrix equations (1)-(12) below can be solved simultaneously. Lower and upper bounds on
the capacity of the communication network depend on the solvability of the the matrix equations
(1)-(12) for various choices of k and n.

(1) paths from ix to ox : rk,n6,9 r
n,k
1,6 = 1k,k

(2) paths from ix to oy : rk,n8,10r
n,n
4,8 r

n,k
1,4 + rk,n6,10r

n,k
1,6 = 0k,k

(3) paths from ix to oz : rk,n4,7 r
n,k
1,4 + rk,n6,7 r

n,k
1,6 = 0k,k

(4) paths from ix to ōx : rk,n8,11r
n,n
4,8 r

n,k
1,4 = 1k,k

(5) paths from iy to ox : rk,n5,9 r
n,k
2,5 + rk,n6,9 r

n,k
2,6 = 0k,k

(6) paths from iy to oy : rk,n8,10r
n,n
4,8 r

n,k
2,4 + rk,n8,10r

n,n
5,8 r

n,k
2,5 + rk,n6,10r

n,k
6,2 = 1k,k

(7) paths from iy to oz : rk,n4,7 r
n,k
2,4 + rk,n6,7 r

n,k
2,6 = 0k,k

(8) paths from iy to ōx : rk,n8,11r
n,n
4,8 r

n,k
2,4 + rk,n8,11r

n,n
5,8 r

n,k
2,5 = 0k,k

(9) paths from iz to ox : rk,n5,9 r
n,k
3,5 + rk,n6,9 r

n,k
3,6 = 0k,k

(10) paths from iz to oy : rk,n6,10r
n,k
3,6 + rk,n8,10r

n,n
5,8 r

n,k
3,5 = 0k,k

(11) paths from iz to oz : rk,n6,7 r
n,k
3,6 = 1k,k

(12) paths from iz to ōx : rk,n8,11r
n,n
5,8 r

n,k
3,5 + rk,k3,11 = 0k,k

Proof (lower bound): For the lower bound we construct a solution for n = 4 and k = 3.
The matrix solution was non-trivial to construct, but can be checked by hand. The main idea
behind the construction was to construct a solution based on ”timesharing”. In the solution n
represents 4 time slots, and each message is split into 3 parts. After, extensive calculations
(compute checked) we found the following matrix solution that shows that the capacity of the
communication network is at least 3

4
:

r4,31,4 =


1 0 0
0 1 0
0 0 1
1 0 0

 , r4,31,6 =


1 0 0
0 1 0
0 0 1
1 0 0

 , r4,32,4 =


1 0 0
0 0 0
0 0 0
0 0 1

 , r4,32,5 =


−1 0 0
0 1 0
0 0 0
0 0 1

 , r4,32,6 =


1 0 0
0 1 0
0 0 0
0 0 1



r4,33,5 =


1 0 0
0 0 0
0 1 0
0 0 1

 , r4,33,6 =


1 0 0
0 0 0
0 1 0
0 0 1

 , r3,33,11 =

−1 0 0
0 0 0
0 0 0

 , r4,34,7 =

−1 0 0 0
0 0 −1 0
0 0 0 −1


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r4,44,8 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , r4,45,8 =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 , r3,45,9 =

0 0 0 −1
0 −1 0 0
0 0 −1 0

 , r3,46,7 =

1 0 0 0
0 0 1 0
0 0 0 1



r3,46,9 =

0 0 0 1
0 1 0 0
0 0 1 0

 , r3,46,10 =

1 0 0 0
0 1 0 0
0 0 0 −1

 , r3,48,10 =

−1 0 0 0
0 −1 0 0
0 0 0 1

 r3,48,11 =

1 0 0 0
0 1 0 0
0 0 1 0


This solution shows that the capacity of the communication network is at least 3

4
= 0.75.

Proof (upper bound): The upper bound of 1 follows from the fact that each matrix ring
Mk(F ) is Dedekind finite with 1k,k + 1k,k 6= 0k,k. Applying Theorem IV.1 to this fact shows that
the network has no analogue solution for k = n.

VIII. ANALOGUE COMMUNICATION CAN ACHIEVE HIGHER CAPACITY THAN DIGITAL
COMMUNICATION

A. Basic considerations (Analogue versus digital)
We have already seen that communication network in figure V is only solvable over Dedekind

finite rings where 1 + 1 is invertible. In the section we want to quantify this difference. For the
definition of capacity to be well defined we only consider the case where the underlying ring is
a matrix ring GLF,m of m×m matrices with elements in the field F .

Proposition VIII.1. The communication network in figure V has capacity at least 3
4

= 0.75, and
at most 1.

Proof (stating the problem):

(1) Path from a to a: rk,n10,4r
n,k
4,1 = 1k,k

(2) Path from b to b: rk,n9,4 r
n,k
4,2 = 1k,k

(3) Path from c to cl: rk,n8,4 r
n,k
4,3 = 1k,k

(4) Paths from c to cr: rk,n11,7r
n,k
7,3 + rk,n11,6r

n,k
6,3 = 1k,k

(5) Paths from a to b: rk,n9,6 r
n,k
6,1 + rk,n9,4 r

n,k
4,1 = 0k,k

(6) Paths from a to cl: rk,n8,5 r
n,k
5,1 + rk,n8,4 r

n,k
4,1 = 0k,k

(7) Paths from a to cr: rk,n11,6r
n,k
6,1 + rk,n11,5r

n,k
5,1 = 0k,k

(8) Paths from b to a: rk,n10,7r
n,k
7,2 + rk,n10,4r

n,k
4,2 = 0k,k

(9) Paths from b to cl: rk,n8,5 r
n,k
5,2 + rk,n8,4 r

n,k
4,2 = 0k,k

(10) Paths from b to cr: rk,n11,7r
n,k
7,2 + rk,n11,5r

n,k
5,2 = 0k,k

(11) Paths from c to a: rk,n10,7r
n,k
7,3 + rk,n10,4r

k,n
4,3 = 0k,k
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(12) Paths from c to b: rk,n9,6 r
n,k
6,3 + rk,n9,4 r

n,k
4,3 = 0k,k

Proof (lower bound): For the lower bound we can get a solution for n = 4 and k = 3.
Like in the solution in the previous section we construct the solution by ”timesharing” where
n represents 4 time slots, and each message is split into 3 parts. Like in the previous case by
extensive computer checked calculations we found the following matrix solution that shows the
capacity of the communication network over rings with 1 + 1 = 0 is at least 3

4
:

r4,34,1 =


1 0 0
0 1 0
0 0 1
0 0 0

 , r4,35,1 =


1 0 0
0 0 0
0 0 1
0 0 0

 , r4,36,1 =


1 0 0
0 1 0
0 0 1
0 0 0

 , r4,34,2 =


1 0 0
0 1 0
0 0 0
0 0 1

 , r4,35,2 =


1 0 0
0 1 0
0 0 0
0 0 1



r4,37,2 =


1 0 0
0 1 0
0 0 0
0 0 1

 , r4,34,3 =


1 0 0
1 0 0
0 1 0
0 0 1

 , r4,36,3 =


1 0 0
1 0 0
0 1 0
0 0 1

 , r4,37,3 =


1 0 0
1 0 0
0 1 0
0 0 1


r3,48,4 =

1 0 0 0
0 0 1 0
0 0 0 1

 , r3,410,4 =

1 0 0 0
0 1 0 0
0 0 1 0

 , r3,48,5 =

1 0 0 0
0 0 1 0
0 0 0 1

 ,
r3,411,5 =

0 1 0 0
0 0 0 0
0 0 0 1

 r3,49,4 =

1 0 0 0
0 1 0 0
0 0 0 1

 , r3,49,6 =

1 0 0 0
0 1 0 0
0 0 0 1

 ,
r3,411,6 =

0 0 0 0
0 0 0 0
0 0 0 0

 r3,410,7 =

1 0 0 0
0 1 0 0
0 0 1 0

 r3,411,7 =

0 1 0 0
0 0 1 0
0 0 0 1


Proof (upper bound): The upper bound of 1 follows from the fact that each matrix ring

Mk(F ) is Dedekind finite with 1k,k + 1k,k = 0k,k. Applying Theorem V.1 to this fact shows that
the network has no digital solution for k = n.

IX. OPEN PROBLEMS AND CONCLUSION

A. A few specific questions
In the simple example in section VI-B we were able to provide a matching lower and upper

bound. For the two main cases we considered (digital versus analogue, and analogue versus
digital) there is a gap between the lower and upper bound. This naturally leads to the following
questions and conjectures

Open question IX.1. Determine the analogue capacity of the communication network in figure
IV.

Open question IX.2. Determine the digital capacity of the communication network in figure V

Conjecture IX.3. The analogue capacity of the network in figure IV is strictly less than 1.

Conjecture IX.4. The digital capacity of the network in figure V is strictly less than 1.
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Open question IX.5. Considering all communication problems N where digital communication
outperforms analogue communication, what is the maximal ratio digital capacity

analogue capacity

Open question IX.6. Considering all communication problems N where analogue communica-
tion outperforms digital communication, what is the maximal ratio analogue capacity

digital capacity

Conjecture IX.7. The maximal ratio in IX.5 is strictly larger than 1

Conjecture IX.8. The maximal ratio in IX.6 is strictly larger than 1

Notice that Conjecture IX.3 implies Conjecture IX.5, and that Conjecture IX.4 implies Con-
jecture IX.6.

B. More open ended questions
Are the digital vs analogue (analogue vs digital) network in constructed in the paper the

simplest possible?
For any pair of (Dedekind finite) rings R1 and R2 we might ask if there exist a communication

problem that is solvable over R1, but unsolvable over R2. And vise versa. In certain questions
of this type the general approach developed in [2] might be useful though a lot of detains will
need to be checked.

More specifically can for example the nth Weyl algebra be separated from the (n+1)th -Weyl
algebra? Does there exists a communication problem that not is solvable over any commutative
ring, but is solvable over a given non-commutative ring (e.g. the 1st Weyl algebra)? Does there
exist communication problems that has a solution over some Dedekind finite ring, but has no
solution over any finite ring? F

Does the class of stably finite rings precisely capture the condition that bottlenecks are well
behaved? Or is it possible to impose natural requirements that impose stronger restrictions than
the ring being stably finite?

One general class of questions concerns quantum communication, where we consider for
example a module consisting of a ring of operators acting on a Hilbert space. It would be inter-
esting to develop a general theory of quantum network communication based on our approach.
Does there exist communication problems that cannot be solved classically, but has quantum
mechanical solutions?

We defined the capacity of a communication networks over finitely dimension matrix rings
GLn(F ). Can this definition be extended to a larger class of Rings?

Finally, it would be interesting to expand the theory we developed to accommodate networks
with feedback loops in the style of (non-commutative) control theory.

C. Conclusion
In the paper, we developed linear network coding over rings and modules. We showed that

information bottlenecks are somewhat well behaved over Dedekind finite rings, and even more
so over stably finite rings. Network coding over rings and modules seems to be a fertile area
with many changeling questions that combine algebra, with problems of a graph theoretical and
combinatorial flavour.
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