
Graph Guessing Games and non-Shannon Information Inequalities
Baber, R; Christofides, D; Dang, AN; Riis, S; Vaughan, E

For additional information about this publication click this link.

http://qmro.qmul.ac.uk/xmlui/handle/123456789/11052

Information about this research object was correct at the time of download; we occasionally

make corrections to records, please therefore check the published record when citing. For

more information contact scholarlycommunications@qmul.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen Mary Research Online

https://core.ac.uk/display/30698147?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://qmro.qmul.ac.uk/xmlui/handle/123456789/11052

ar
X

iv
:1

41
0.

83
49

v2
 [

cs
.I

T
]

 2
 N

ov
 2

01
4

Graph Guessing Games and non-Shannon

Information Inequalities

Rahil Baber ∗ Demetres Christofides † Anh N. Dang ‡

Søren Riis § Emil R. Vaughan ¶

November 4, 2014

Abstract

Guessing games for directed graphs were introduced by Riis [9] for studying
multiple unicast network coding problems. In a guessing game, the players toss
generalised dice and can see some of the other outcomes depending on the structure
of an underlying digraph. They later guess simultaneously the outcome of their own
die. Their objective is to find a strategy which maximises the probability that they
all guess correctly. The performance of the optimal strategy for a graph is measured
by the guessing number of the digraph.

In [3], Christofides and Markström studied guessing numbers of undirected graphs
and defined a strategy which they conjectured to be optimal. One of the main results
of this paper is a disproof of this conjecture.

The main tool so far for computing guessing numbers of graphs is information
theoretic inequalities. The other main result of the paper is that Shannon’s infor-
mation inequalities, which work particularly well for a wide range of graph classes,
are not sufficient for computing the guessing number.

Finally we pose a few more interesting questions some of which we can answer
and some which we leave as open problems.

1 Introduction

Consider the following 2-player cooperative game: Two players toss a coin with
each player seeing the outcome of the coin toss of the other player (but not their
own). Then, they simultaneously guess the outcome of their own coin toss. The

∗School of Electronic Engineering and Computer Science, Queen Mary, University of London, London, E1 4NS,
U.K. Email: rahilbaber@hotmail.com.

†School of Sciences, UCLan Cyprus, 7080 Pyla, Cyprus. Email: d.christofides@uclan.ac.uk
‡School of Electronic Engineering and Computer Science, Queen Mary, University of London, London, E1 4NS,

U.K. Email: anh.dang@eecs.qmul.ac.uk
§School of Electronic Engineering and Computer Science, Queen Mary, University of London, London, E1 4NS,

U.K. Email: s.riis@qmul.ac.uk
¶School of Electronic Engineering and Computer Science, Queen Mary, University of London, London, E1 4NS,

U.K. Email: e.vaughan@qmul.ac.uk

1

http://arxiv.org/abs/1410.8349v2

players win the game if they both guess correctly. Of course, if they both guess
at random, then the probability of winning is 1/4. It turns out that the players
can use the extra information they have in order to improve the probability of
success. For example, if they agree beforehand to follow the strategy ‘guess what
you see’ then the probability of success increases to 1/2. We can generalise this
game (see Section 2) to guessing games with multiple players in which each player
sees the outcome of the coin tosses (or more generally of many-sided dice throws)
of other players, according to an underlying digraph.

These guessing games [9, 10] emerged from studying network coding problems
[1] where the network is multiple unicast, i.e. where each sender has precisely one
corresponding receiver who wishes to obtain the sender’s message, and a constrain
that only one message can be sent through each channel at a time. A multiple
unicast can be represented by a directed acyclic graph with n inputs/outputs
and m intermediate nodes. By merging the vertices which represent the senders
with their corresponding receiver vertices we can create an auxiliary directed
graph which has the nice property that there is no longer any distinction between
router, sender, or receiver vertices. Due to the way guessing games are defined,
coding functions on the original network can be translated into strategies for the
guessing game on the auxiliary graph and vice versa. The performance of the
optimal strategy for a guessing game is measured by the guessing number which
we will define precisely in Section 2.

One of the first applications of guessing games was the disproval in [9] of two
conjectures raised by Valiant [11] in circuit complexity in which he asked about
the optimal Boolean circuit for a Boolean function.

In this paper we provide a counterexample to a conjecture of Christofides and
Markström given in [3] which states that the optimal strategy for the guessing
game of an undirected graph is based on the fractional clique cover number of
the graph. (See Section 2 for more details.) Additionally, we will show that the
guessing number for undirected graphs cannot be determined by considering only
the Shannon information inequalities as explained in Section 5. We will also make
and investigate the Superman conjecture which suggests that the (asymptotic)
guessing number of an undirected graph does not increase when a directed edge
is added. Finally we will provide a possible example of a directed graph whose
guessing number changes when its edges are reversed.

The outline of our paper is as follows. In Section 2 we introduce the formal
language of guessing games. Section 3 is concerned with the asymptotic behaviour
of guessing numbers. In Section 4 we formally define the fractional clique cover
strategy from [3] which provides a feasible computational method for calculating
lower bounds of guessing numbers for undirected graphs. In Section 5 we intro-
duce a method for calculating upper bounds of guessing numbers by making use
of entropic arguments. Our main results appear in Section 6. We then discuss
some of the technical details of the computer searches we carried out in Section
7. We conclude with some open problems in Section 8.

2

2 Definitions

A directed graph, or digraph for short, is a pair G = (V (G), E(G)), where V (G) is
the set of vertices of G and E(G) is a set of ordered pairs of vertices of G called
the directed edges of G. Given a directed edge e = (u, v), which we also denote
by uv, we call u the tail and v the head of e and say that e goes from u to v.

For the purposes of guessing games we will assume throughout that our di-
graphs are loopless, i.e. they contain no edges of the form uu for u ∈ V (G). Once
we define the guessing game it will be easily seen that the probability of win-
ning on a digraph G is equal to the probability of winning on the subgraph of G
obtained by removing all vertices with loops.

Given a digraph G and a vertex v ∈ V (G), the in-neighbourhood of v is
Γ−(v) = {u : uv ∈ E(G)} and the out-neighbourhood of v is Γ+(v) = {u : vu ∈
E(G)}.

In this paper our main results will primarily be on undirected graphs which are
naturally treated as a special type of digraph G where uv ∈ E(G) if and only if
vu ∈ E(G). We call the pair of directed edges uv and vu, the undirected edge uv.
A major role in our guessing strategies will be played by cliques i.e. subgraphs in
which every pair of vertices are joined by an undirected edge.

Given a digraph G and an integer t ≥ 1, the t-uniform blowup of G which we
will write as G(t) is a digraph formed by replacing each vertex v in G with a class
of t vertices v1, . . . , vt with uivj ∈ E(G(t)) if and only if uv ∈ E(G).

A guessing game (G, s) is a game played on a digraph G and the alphabet
As = {0, 1, . . . , s− 1}. There are |V (G)| players working as a team. Each player
corresponds to one of the vertices of the digraph. Throughout the article we
will be freely speaking about the player v instead of the player corresponding
to the vertex v ∈ V (G). The players know the digraph G, the natural number
s, and are told to which of the vertices they correspond to. They may discuss
and agree upon a strategy using this information before the game begins, but no
communication between players is allowed after the game starts.

Once the game begins, each player v ∈ V (G) is assigned a value av from As

uniformly and independently at random. The players do not have access to their
own values but can see some of the values assigned to the other players according
to the digraph G. To be more precise, once the values have been assigned each
player is given a list of the players in its in-neighbourhood with their corresponding
values. Using just this information each player must guess their own value. If all
players guess correctly they will all win, but if just one player guesses incorrectly
they will all lose. The objective of the players is to maximise their probability of
winning.

As an example we consider the guessing game (Kn, s), where Kn is the com-
plete (undirected) graph of order n, i.e. |V (Kn)| = n and E(Kn) = {uv : u, v ∈
V (G), u 6= v}. Naively we may think that since each player receives no informa-
tion about their own value that each player may as well guess randomly, meaning
that the probability they win is s−n. This however is not optimal. Certainly the

3

probability that any given player guesses correctly is 1/s, but Riis [9] noticed
that by discussing their strategies beforehand the players can in fact coordinate
the moments where they guess correctly, and therefore increase their chance of
winning. For example before the game begins they can agree that they will all
play under the assumption that

∑

v∈V (Kn)

av ≡ 0 mod s. (1)

Player u can see all the values except its own, and assuming (1) is true it knows
that

au ≡ −
∑

v∈V (Kn)

v 6=u

av mod s.

Consequently player u will guess that its value is−
∑

v∈V (Kn),v 6=u av mod s. Hence

if (1) is true every player will guess correctly and if (1) is false every player
will guess incorrectly. So the probability they all guess correctly is simply the
probability that (1) is true which is 1/s. This is clearly optimal as, irrespective
of the strategy, the probability that a single player guesses correctly is 1/s and
so we can not hope to do better.

We note that the optimal strategy given in the example was a pure strategy i.e.
there is no randomness involved in the guess each player makes given the values
it sees. The alternative is a mixed strategy in which the players randomly choose
a strategy to play from a set of pure strategies. The winning probability of the
mixed strategy is the average of the winning probabilities of the pure strategies
weighted according to the probabilities that they are chosen. This however is at
most the maximum of the winning probabilities of the pure strategies, and so we
gain no advantage by playing a mixed strategy. As such throughout this paper
we will only ever consider pure strategies.

Given a guessing game (G, s), for v ∈ V (G) a strategy for player v is formally

a function fv : A
|Γ−(v)|
s → As which maps the values of the in-neighbours of v

to an elements of As, which will be the guess of v. A strategy F for a guessing
game is a sequence of such functions (fv)v∈V (G) where fv is a strategy for player
v. We denote by Win(G, s,F) the event that all the players guess correctly when
playing (G, s) with strategy F . The players’ objective is to find a strategy F that
maximises P[Win(G, s,F)].

Rather than trying to find maxF P[Win(G, s,F)] we will instead work with
the guessing number gn(G, s) which we define as

gn(G, s) = |V (G)|+ logs

(

max
F

P[Win(G, s,F)]
)

.

Although this looks like a cumbersome property to work with we can think of it
as a measure of how much better the optimal strategy is over the strategy of just

4

making random guesses, as

max
F

P[Win(G, s,F)] =
sgn(G,s)

s|V (G)|
.

Later we will look at information entropy inequalities as a way of analyzing the
guessing game and in this context the definition of the guessing number will
appear more natural.

3 The asymptotic guessing number

Note that the guessing number of the example (Kn, s) we discussed earlier is rep-
resented by gn(Kn, s) = n−1 which does not depend on s. In general gn(G, s) will
depend on s and it is often extremely difficult to determine the guessing number
exactly. Consequently we will instead concentrate our efforts on evaluating the
asymptotic guessing number gn(G) which we define to be the limit of gn(G, s) as
s tends to infinity. To prove the limit exists we first need to consider the guessing
number on the blowup of G.

Lemma 3.1. Given a digraph G, and integers s, t ≥ 1,

max
F

P[Win(G(t), s,F)] ≥
(

max
F

P[Win(G, s,F)]
)t

or equivalently gn(G(t), s) ≥ t gn(G, s).

Proof. The digraph G(t) can be split into t vertex disjoint copies of G. We can
construct a strategy for (G(t), s) by playing the optimal strategy of (G, s) on each
of the t copies of G in G(t). The result follows immediately.

Lemma 3.2. Given a digraph G, and integers s, t ≥ 1,

max
F

P[Win(G(t), s,F)] = max
F

P[Win(G, st,F)]

or equivalently gn(G(t), s) = t gn(G, st).

Proof. First we will show that the optimal probability of winning on (G, st) is at
least that of (G(t), s). This follows simply from the fact that the members of the
alphabet of size st, can be represented as t digit numbers in base s. Hence given
a strategy on (G(t), s), a corresponding strategy can be played on (G, st) by each
player pretending to be t players: More precisely, if player v gets assigned value
a ∈ Ast, he writes it as at−1 · · · a1a0 in base s and pretends to be t players, say
v0, v1, . . . , vt−1, where player vi, for 0 ≤ i ≤ t − 1, gets assigned value ai ∈ As.
Furthermore, if player v sees the outcome of player u, then he can construct the
values assigned to the new players u0, u1, . . . , ut−1. So these new fictitious players
can play the (G(t), s) game using an optimal strategy. But if the fictitious players

5

can win the (G(t), s) game then the original players can win the (G, st) game as
we can reconstruct the value of a from the values of a0, a1, . . . , at−1.

A similar argument can be used to show that the optimal probability of win-
ning on (G, st) is at most that of (G(t), s). We will show that for every strategy
on (G, st) there is a corresponding strategy on (G(t), s). Every vertex class of t
players can simulate playing as one fictitious player by its members agreeing to
use the same strategy. The t values assigned to the players in the vertex class can
be combined to give an overall value for the vertex class. The strategy on (G, st)
can then be played allowing the members of the vertex class to make a guess for
the overall value assigned to the vertex class. This guess will be the same for each
member as they all agreed to use the same strategy and have access to precisely
the same information. Once the guess for the vertex class is made its value can
be decomposed into t values from As which can be used as the individual guesses
for each of its members.

Using these results about blowups of digraphs we can show that in some sense
the guessing number is almost monotonically increasing with respect to the size
of the alphabet.

Lemma 3.3. Given any digraph G, positive integer s, and real number ε > 0,
there exists t0(G, s, ε) > 0 such that for all integers t ≥ t0

gn(G, t) ≥ gn(G, s)− ε.

Proof. We will prove the result by showing that

gn(G, t) ≥
⌊logs t⌋

logs t
gn(G, s) (2)

holds for all t ≥ s. This will be sufficient since as t increases the right hand side
of (2) tends to gn(G, s).

We will prove (2) by constructing a strategy for (G, t). Let k = ⌊logs t⌋ and
note that sk is at most t. By considering only strategies in which every player is
restricted to guess a value in {0, 1, . . . , sk − 1} we get

max
F

P[Win(G, t,F)] ≥ P[av < sk for all v ∈ V (G)] max
F

P[Win(G, sk,F)].

Hence
tgn(G,t)

t|V (G)|
≥

(

sk

t

)|V (G)|
sk gn(G,sk)

sk|V (G)|

which rearranges to

gn(G, t) ≥
k

logs t
gn(G, sk). (3)

From Lemmas 3.1 and 3.2 we can show gn(G, sk) ≥ gn(G, s) which together with
(3) completes the proof of (2).

6

Theorem 3.4. For any digraph G, gn(G) = lim
s→∞

gn(G, s) exists.

Proof. By definition gn(G, s) ≤ |V (G)| for all s, and maxs≤n gn(G, s) is an in-
creasing sequence with respect to n, therefore its limit exists which we will call ℓ.
Since gn(G, s) ≤ ℓ for all s it will be enough to show that gn(G, s) converges to
ℓ from below.

By the definition of ℓ, given ε > 0 there exists s0(ε) such that gn(G, s0(ε)) ≥
ℓ− ε. From Lemma 3.3 we know that there exists t0(ε) such that for all t ≥ t0(ε),
gn(G, t) ≥ gn(G, s0(ε)) − ε which implies gn(G, t) ≥ ℓ − 2ε proving we have
convergence.

Before we move on to the next section it is worth mentioning that for any s the
guessing number gn(G, s) is a lower bound for gn(G). This follows immediately
from Lemma 3.3. Furthermore for any strategy F on (G, s) we have

gn(G, s) ≥ |V (G)|+ logsP[Win(G, s,F)].

Consequently we can lower bound the asymptotic guessing number by considering
any strategy on any alphabet size.

4 Lower bounds using the fractional clique cover

In this section we will describe a strategy specifically for undirected graphs. As
shown in the previous section this can be used to provide a lower bound for the
asymptotic guessing number. Christofides and Markström [3] conjectured that
this bound always equals the asymptotic guessing number.

In Section 2 we saw that when an undirected graph is complete an optimal
strategy is for each player to play assuming the sum of all the values is congruent
to 0 mod s (where s is the alphabet size). We call this the complete graph strategy.
We can generalise this strategy to undirected graphs which are not complete. We
simply decompose the undirected graph into vertex disjoint cliques and then let
the players play the complete graph strategy on each of the cliques. If we are
playing on an alphabet of size s and we decompose the graph into t cliques,
then on each clique the probability of winning is s−1 and so the probability of
winning the guessing game, which is equal to the probability of winning in each
of the cliques, is s−t. Clearly the probability of winning is higher if we choose
to decompose the graph into as few cliques as possible. The smallest number of
cliques that we can decompose a graph into is called the minimum clique cover
number of G and we will represent it by κ(G). In this notation we have

gn(G) ≥ gn(G, s) ≥ |V (G)| − κ(G).

It is worth mentioning that finding the minimum clique cover number of a graph
is equivalent to finding the chromatic number of the graph’s complement. As

7

such it is difficult to determine this number in the sense that the computation of
the chromatic number of a graph is an NP-complete problem [8].

We can improve this bound further by considering blowups ofG. From Lemma
3.2 we know that gn(G, st) = gn(G(t), s)/t, hence by the clique cover strategy on
G(t) we get a lower bound of |V (G)|−κ(G(t))/t. The question is now to determine
mint κ(G(t))/t. We do this by looking at the fractional clique cover of G.

Let K(G) be the set of all cliques in G, and let K(G, v) be the set of all cliques
containing vertex v. A fractional clique cover of G is a weighting w : K(G) →
[0, 1] such that for all v ∈ V (G)

∑

k∈K(G,v)

w(k) ≥ 1.

The minimum value of
∑

k∈K(G)w(k) over all choices of fractional clique covers

w is known as the fractional clique cover number which we will denote by κf(G).
(Although we do not define it here, we point out that the fractional clique cover
number of a graph is equal to the fractional chromatic number of its complement.)

For the purposes of guessing game strategies it will be more convenient to in-
stead consider a special type of fractional clique cover called the regular fractional
clique cover. A regular fractional clique cover of G is a weighting w : K(G) →
[0, 1] such that for all v ∈ V (G)

∑

k∈K(G,v)

w(k) = 1.

The minimum value of
∑

k∈K(G)w(k) over all choices of regular fractional clique

covers w can be shown to be equal to the fractional clique cover number κf(G).
To see this, observe firstly that since all regular fractional clique covers are frac-
tional clique covers the minimum value of

∑

k∈K(G)w(k) over all choices of regular

fractional clique covers w is at least κf(G). Finally, to show it is at most κf(G)
we simply observe that the optimal fractional clique cover can be made into a
regular fractional cover by moving weights from larger cliques to smaller cliques.
In particular, given a vertex v for which

∑

k∈K(G,v)w(k) > 1 we pick a clique

k1 ∈ K(G, v) with w(k1) > 0 and proceed as follows: We change the weight of k1
from w(k1) to

w′(k1) = max

0, 1−
∑

k∈K(G,v)

k 6=k1

w(k)

< w(k1)

We also change the weight of the clique k′1 = k1 \ {v} from w(k′1) to w′(k′1) =
w(k′1) + w(k1) − w′(k1). We leave the weight of all other vertices the same. In
this way, the total sum of weights over all cliques remains the same, the total
sum of weights over all cliques containing a given vertex v′ 6= v also remains the
same, but the total sum of weights over all cliques containing v is reduced. This

8

process has to terminate because whenever we change the weight of k1 it will
either become equal to 0 or the total sum of weight of all cliques containing v will
become equal to 1.

Clearly κf(G) and an optimal regular fractional clique cover w can be deter-
mined by linear programming. Since all the coefficients of the constraints and
objective function are integers, w(k) will be rational for all k ∈ K(G) as will
κf(G). If we let d be the common denominator of all the weights, then dw(k) for
k ∈ K(G) describes a clique cover of G(d). In particular it decomposes G(d) into
dκf(G) cliques, proving a lower bound of

gn(G) ≥ |V (G)| − κf(G). (4)

We claim that

min
t

κ(G(t))

t
≥ κf(G)

and therefore we cannot hope to use regular fractional clique cover strategies to
improve (4). To prove our claim we begin by observing that for all t we have
κ(G(t)) ≥ κf (G(t)). This is immediate as a minimal clique cover is a special type
of fractional clique cover, namely one where all weights are 0 or 1. Hence it is
enough to show that

κf(G(t)) = tκf (G).

This can be proved simply from observing that an optimal weighting of K(G(t))
can always be transformed into another optimal weighting which is symmetric
with respect to vertices in the same vertex class. This can be done just by
moving the weights between cliques. Therefore determining κf(G(t)) is equivalent
to determining κf(G) but with the constraints

∑

k∈K(G,v)w(k) = t rather than 1.

The result κf (G(t)) = tκf(G) is a simple consequence of this.
A useful bound on κf(G) which we will make use of later is given by the

following lemma.

Lemma 4.1. For any undirected graph G

κf(G) ≥
|V (G)|

ω(G)
,

where ω(G) is the number of vertices in a maximum clique in G.

Proof. Let w be an optimal regular fractional clique cover. Since

∑

k∈K(G,v)

w(k) = 1

holds for all v ∈ V (G), summing both sides over v gives us,

∑

k∈K(G)

w(k)|V (k)| = |V (G)|,

9

where |V (k)| is the number of vertices in clique k. The result trivially follows
from observing

∑

k∈K(G)

w(k)|V (k)| ≤
∑

k∈K(G)

w(k)ω(G) = κf(G)ω(G).

The result of Christofides and Markström [3] states the following:

Theorem 4.2. If G is an undirected graph then

gn(G) ≥ |V (G)| − κf(G).

In [3] it was proved that the above lower bound is actually an equality for
various families of undirected graphs including perfect graphs, odd cycles and
complements of odd cycles. This led Christofides and Markström [3] to conjecture
that we always have equality.

Conjecture 4.3. If G is an undirected graph then

gn(G) = |V (G)| − κf(G).

To prove or disprove such a claim we require a way of upper bounding gn(G).
This is the purpose of the next section.

5 Upper bounds using entropy

Recall that it is sufficient to only consider pure strategies on guessing games.
Hence given a strategy F on a guessing game (G, s) we can explicitly determine
S(F) the set of all assignment tuples (av)v∈V (G) that result in the players winning
given they are playing strategy F . In this context the players’ objective is to
choose a strategy that maximizes |S(F)|. We have

gn(G, s) = |V (G)|+ logs

(

max
F

P[Win(G, s,F)]
)

= |V (G)|+max
F

logs
|S(F)|

s|V (G)|

= max
F

logs |S(F)|.

Consider the probability space on the set of all assignment tuples A
|V (G)|
s with

the members in S(F) occurring with uniform probability and all other assign-
ments occurring with 0 probability. For each v ∈ V (G) we define the discrete
random variable Xv on this probability space to be the value assigned to vertex
v. The s-entropy of a discrete random variable X with outcomes x1, x2, . . . , xn is
defined as

Hs(X) = −
n

∑

i=1

P[X = xi] logsP[X = xi],

10

where we take 0 logs 0 to be 0 for consistency. Note that traditionally entropy
is defined using base 2 logarithms, however it will be more convenient for us to
work with base s logarithms. We will usually write H(X) instead of Hs(x). We
will mention here all basic results concerning entropy that we are going to use.
For more information, we refer the reader to [5].

Given a set of random variables Y1, . . . , Yn with sets of outcomes Im(Y1), . . . , Im(Yn)
respectively, the joint entropy H(Y1, . . . , Yn) is defined as

−
∑

y1∈Im(Y1)

· · ·
∑

yn∈Im(Yn)

P[Y1 = y1, . . . , Yn = yn] logsP[Y1 = y1, . . . , Yn = yn].

Given a set of random variables Y = {Y1, . . . , Yn} we will also use the nota-
tion H(Y) to represent the joint entropy H(Y1, . . . , Yn). Furthermore for sets of
random variables Y and Z we will use the notation H(Y, Z) as shorthand for
H(Y ∪ Z). For completeness we also define H(∅) = 0.

Observe that under these definitions, the joint entropy of the set of variables
XG = {Xv : v ∈ V (G)} is

H(XG) = −
∑

(av)∈S(F)

1

|S(F)|
logs

(

1

|S(F)|

)

= logs |S(F)|

Therefore by upper bounding H(XG) for all choices of F we can upper bound
gn(G, s).

We begin by stating some inequalities that most hold regardless of F .

Theorem 5.1. Given X, Y, Z ⊂ XG,

1. H(X) ≥ 0.

2. H(X) ≤ |X|.

3. Shannon’s information inequality:

H(X,Z) +H(Y, Z)−H(X, Y, Z)−H(Z) ≥ 0.

4. Suppose A,B ⊂ V (G) with Γ−(u) ⊂ B for all u ∈ A. Let X = {Xv : v ∈ A}
and Y = {Xv : v ∈ B}. Then

H(X, Y) = H(Y).

Proof.

1. Property 1 follows immediately from the definition of entropy.

11

2. Property 2 follows from first observing thatH(X) = E[logs(1/P[X])]. Since
the function x 7→ logs(x) is concave, by Jensen’s inequality we get that

H(X) ≤ logsE[1/P[X]] = logs | Im(X)|

where Im(X) is the set of outcomes for X. Since Im(X) = A
|X |
s we have the

desired inequality H(X) ≤ |X|.

3. Property 3 again follows from Jensen’s inequality. First we observe that

H(X,Z) +H(Y, Z)−H(X, Y, Z)−H(Z) = EX,Y,Z

[

− logs

(

P[X,Z]P[Y, Z]

P[X, Y, Z]P[Z]

)]

.

By an application of Jensen’s inequality this is at least

− logs

(

EX,Y,Z

[

P[X,Z]P[Y, Z]

P[X, Y, Z]P[Z]

])

= − logs

∑

X,Y,Z

P[X,Z]P[Y, Z]

P[Z]

 = 0.

4. Property 4 is a simple consequence of the fact that the values assigned
to the vertices in A are completely determined by the values assigned to
the vertices in B. Since P[X, Y] is either 0 or P[Y], the result is trivially
attained by considering the definition of H(X, Y) and summing over the
variables in X.

From Theorem 5.1 we can form a linear program to upper bound H(XG). In
particular the linear program consists of 2|V (G)| variables corresponding to the
values of H(X) for each X ⊂ XG. The variables are constrained by the linear
inequalities given in Theorem 5.1 and the objective is to maximize the value of
the variable corresponding to H(XG). We call the result of the optimization the
Shannon bound of G and denote it by Sh(G).

Note that Sh(G) can be calculated without making any explicit use of F or
s. Hence it is not only an upper bound on gn(G, s) but also on gn(G).

More recently information entropy inequalities that cannot be derived from
linear combinations of Shannon’s inequality (Property 3 in Theorem 5.1) have
been discovered. The first such inequality was found by Zhang and Yeung [12].
The Zhang-Yeung inequality states that

− 2H(A)− 2H(B)−H(C) + 3H(A,B) + 3H(A,C) +H(A,D)+

3H(B,C) +H(B,D)−H(C,D)− 4H(A,B, C)−H(A,B,D) ≥ 0

for sets of random variables A,B, C,D. By setting A = X ∪ Z, B = Z, C =
Y ∪ Z, D = Z, the Zhang-Yeung inequality reduces to Shannon’s inequality. By
replacing the Shannon inequality constraints with those given by the Zhang-Yeung
inequality we can potentially get a better upper bound from the linear program.

12

However, we pay for this potentially better bound by a significant increase in the
running time of the linear program. We will call the bound on gn(G) obtained
by use of the Zhang-Yeung inequality the Zhang-Yeung bound and denote it by
ZY(G).

In fact there are known to be infinite families of non-Shannon inequalities even
on 4 variables. We cannot hope to add infinite constraints to the linear program
so instead we will consider the 214 inequalities given by Dougherty, Freiling, and
Zeger [7, Section VIII]. We will refer to the resulting bound as the Dougherty-
Freiling-Zeger bound and denote it by DFZ(G). It is perhaps worth mentioning
for those interested that the 214 Dougherty-Freiling-Zeger inequalities imply the
Zhang-Yeung inequality (simply sum inequalities 56 and 90) and therefore they
also imply Shannon’s inequality.

The final bound we will consider is the Ingleton bound which we will denote
by Ingl(G). This is obtained when we replace the Shannon inequality constraints
with the Ingleton inequality

−H(A)−H(B) +H(A,B) +H(A,C) +H(A,D) +H(B,C)+

H(B,D)−H(C,D)−H(A,B, C)−H(A,B,D) ≥ 0.

The Ingleton inequality provides the outer-bound of the inner-cone of linearly
representable entropy vectors [4]. By setting A = Z,C = Y and B = D = X ∪Z,
the Ingleton inequality reduces to Shannon’s inequality.

If each player’s strategy can be expressed as a linear combination of the values
it sees, then the Ingleton inequality will hold. Therefore the inequality holds for
a strategy on (G, st) that can be represented as a linear strategy on (G(t), s) (as
described in the proof of Lemma 3.2). As such, the Ingleton bound gives us an
upper bound when we restrict ourselves to strategies which are linear on the digits
of the values. An important such strategy is the fractional clique cover strategy
[3] which leads to the proof of Theorem 4.2.

In searching for a counterexample to Conjecture 4.3 we carried out an exhaus-
tive search on all undirected graphs with at most 9 vertices. We compared the
lower bound given by the fractional clique cover with the upper bound given by
the Shannon bound and in all cases the two bounds matched. The bounds were
calculated using floating point arithmetic and so we do not claim this search to
be rigorous, however it suggested the following conjecture.

Conjecture 5.2. If G is an undirected graph then gn(G) = Sh(G).

6 Main results

In this section we present our new results, most notably that both Conjectures
4.3 and 5.2 are false. Counterexamples were found by searching through all undi-
rected graphs on 10 vertices or less. For speed purposes, the search was done
using floating point arithmetic and as such there may be counterexamples that

13

were missed due to rounding errors. (Although this is highly unlikely, we do not
claim that it is impossible.) Despite this, we feel that it is still remarkable that
of the roughly 12 million graphs that were checked we only found 2 graphs whose
lower and upper bounds (given by the fractional clique cover, and Shannon bound
respectively) did not match: the graph R given in Figure 1, and the graph R−

which is identical to R but with the undirected edge between vertices 9 and 10
removed.

Figure 1: The undirected graph R.

The graph R is particularly extraordinary as we will see that with a few simple
modifications we can create graphs which answer a few other open problems.

We begin our analysis of R and R− by determining their fractional clique cover
number.

Lemma 6.1. We have κf(R) = κf (R
−) = 10/3.

Proof. By Lemma 4.1 we know that κf(R) and κf(R
−) are bounded below by

10/3. To show they can actually attain 10/3 we need to construct explicit regular
fractional clique covers whose weights add up to 10/3.

For R− we give a weight of 1/3 to the cliques {1, 2, 3}, {1, 4, 5}, {1, 6, 7},
{2, 3, 9}, {2, 7, 10}, {3, 8, 9}, {4, 5, 10}, {4, 8, 10}, {5, 6, 9}, {6, 7, 8}, and a weight
of 0 to all other cliques. Note that this is also an optimal regular fractional clique
cover for R.

Theorem 6.2. We have

1. Sh(R−) = 114/17 = 6.705 . . .

2. ZY(R−) = 1212/181 = 6.696 . . .

3. DFZ(R−) = 59767/8929 = 6.693 . . .

4. Ingl(R−) = 20/3 = 6.666 . . .

14

From Lemma 6.1 and Theorem 6.2 we know that

20/3 ≤ gn(R−) ≤ 59767/8929,

and although we could not determine the asymptotic guessing number exactly it
does show that it does not equal the Shannon bound, disproving Conjecture 5.2.
Given that the Shannon bound is not sharp we might be tempted to conjecture
that the asymptotic guessing number is the same as the Zhang-Yeung bound, but
Theorem 6.2 also shows this to be false. Interestingly the Ingleton bound does
match the lower bound, showing that if we restrict ourselves to only considering
linear strategies on blowups we can do no better than the fractional clique cover
strategy.

It remains an open question as to whether a non-linear strategy on R− can do
better than 20/3 or whether by considering the right set of entropy inequalities
we can push the upper bound down to 20/3.

Proof of Theorem 6.2. Calculating the upper bounds involves solving rather large
linear programs. Hence the proofs are too long to reproduce here and it is unfea-
sible for them to be checked by humans. Data files verifying our claims can be
provided upon request. We stress that although the results were verified using
a computer that no floating point data types were used during the verification.
Consequently no rounding errors could occur in the calculations making the re-
sults completely rigorous.

Although R is a counterexample to Conjecture 4.3 its optimal strategy is
somewhat complicated. So instead we will disprove the conjecture by showing a
related graph which we will call Rc is a counterexample. The undirected graph Rc

is constructed from R by cloning 3 of its vertices. (Cloning 3 vertices is equivalent
to creating a blowup of R with 2 vertices in 3 of the vertex classes and just 1
vertex in the other classes.) The vertices we clone are 8, 9, 10, and we label the
resulting new vertices 8′, 9′, and 10′ respectively.

Theorem 6.3. We have gn(Rc) = 9 while the fractional clique cover bound of Rc

is 26/3 < 9. In particular, Rc provides a counterexample to Conjecture 4.3.

Proof. To prove that the fractional clique cover bound is 26/3 it is enough to
show that κf(Rc) = 13 − 26/3 = 13/3. Lemma 4.1 tells us κf(Rc) ≥ 13/3. It is
also easy to show κf(Rc) ≤ 13/3 as it trivially follows from extending the regular
fractional clique cover given in the proof of Lemma 6.1 by giving a weight of 1 to
the clique {8′, 9′, 10′}.

The Shannon bound of Rc is 9 proving gn(Rc) ≤ 9. We do not provide the
details of the Shannon bound proof as it is too long to present here, however data
files containing the proof are available upon request.

All that remains is to prove gn(Rc) ≥ 9. Even though this proof was discovered
partly using a computer it can be easily verified by humans. In particular, the

15

main conclusion of this theorem, that Rc is a counterexample to Conjecture 4.3,
can be verified without the need of any computing power.

Recall that in Section 3 we showed that the asymptotic guessing number can
be lower bounded by considering any strategy on any alphabet size. We will take
our alphabet size s to be 3. Our strategy involves all players agreeing to play
assuming the following four conditions hold on the assigned values

a1 + a2 + 2a3 + a4 + 2a5 + a6 + 2a7 ≡ 0 mod 3, (5)

a2 + a5 + a8 + a8′ + a9 + a10′ ≡ 0 mod 3, (6)

a3 + a6 + a8 + a9′ + a10 + a10′ ≡ 0 mod 3, (7)

a4 + a7 + a8′ + a9 + a9′ + a10 ≡ 0 mod 3. (8)

Note that the terms in (5) consist of a1, and values which player 1 can see.
Hence (5) naturally gives us a strategy for player 1, i.e. that player 1 should
guess −a2 − 2a3 − a4 − 2a5 − a6 − 2a7 mod 3. Similarly strategies for players
8, 8′, 9, 9′, 10, and 10′ can be achieved by rearranging conditions (7), (8), (6), (7),
(8) and (6) respectively. A strategy for player 2 can be obtained by taking a
linear combination of the conditions. In particular if we sum (7), (8), twice (5),
and twice (6) we get

2a1 + a2 + 2a3 + 2a7 + 2a9′ + 2a10 ≡ 0 mod 3,

which consists of a2 and values which player 2 can see, allowing us to construct
a strategy for player 2. We leave it to the reader to verify that by taking the
following linear combinations we obtain strategies for players 3, 4, 5, 6, and 7:

• For player 3, we sum (5),(6),(8) and twice (7).

• For player 4, we sum (6),(7), twice (5) and twice (8).

• For player 5, we sum (5),(7),(8) and twice (6).

• For player 6, we sum (6),(8), twice (5) and twice (7).

• For player 7, we sum (5),(6),(7) and twice (8).

The probability that all players guess correctly under this strategy is 3−4, i.e.
the probability that (5), (6), (7), (8) all hold. (It is not difficult to check that the
conditions are linearly independent.) Consequently

gn(Rc) ≥ |V (Rc)|+ log3P[Win(Rc, 3,F)] = 9

as desired.

For completeness we give the asymptotic guessing number of R and note that
it does not match the fractional clique cover bound of 20/3 as claimed.

Theorem 6.4. We have gn(R) = 27/4.

16

Proof. The Shannon bound of R is 27/4 (data files can be provided upon request).
To show gn(R) ≥ 27/4 we will show gn(R, 81) ≥ 27/4. By Lemma 3.2 this can

be achieved if we can construct a strategy on the guessing game (R(4), 3) which
has a probability of winning 3−13 (which implies gn(R(4), 3) ≥ 27). To describe
such a strategy let us label the vertices of R(4) such that the four vertices that
are constructed from blowing up v ∈ V (R) are labelled va, vb, vc, and vd. Under
this labelling our strategy for R(4) is to have the cliques {1a, 2a, 3a}, {1b, 4a, 5a},
{1c, 6a, 7a}, {2b, 3b, 9a}, {2c, 3c, 9b}, {4b, 5b, 10a}, {4c, 5c, 10b}, {6b, 7b, 8a} and {6c, 7c, 8b}
play the complete graph strategy, and the remaining 13 vertices, which form a
copy of Rc, to play the strategy for Rc as described in the proof of Theorem.
6.3.

Now that we have shown that Conjectures 4.3 and 5.2 are not true, we turn
our attention to other open questions. Due to the limited tools and methods
currently available, there are many seemingly trivial problems on guessing games
which still remain unsolved. One such problem is the following.

Problem 6.5. Does there exist an undirected graph whose asymptotic guessing
number increases when a single directed edge is added?

Adding a directed edge gives one of the players more information, which can-
not lower the probability that the players win. However, surprisingly it seems
extremely difficult to make use of the extra directed edge to increase the asymp-
totic guessing number. An exhaustive (but not completely rigorous) search on
undirected graphs with 9 vertices or less did not yield any examples.

As such, we significantly weaken the requirements in Problem 6.5 by introduc-
ing the concept of a Superman vertex. We define a Superman vertex to be one
that all other vertices can see. I.e., given a digraph G, we call vertex u ∈ V (G)
a Superman vertex if uv ∈ E(G) for all v ∈ V (G) \ {u}. We can similarly define
a Luthor vertex as one which sees all other vertices. To be precise u is a Luthor
vertex if vu ∈ E(G) for all v ∈ V (G) \ {u}.

Problem 6.6. Does there exist an undirected graph whose asymptotic guessing
number increases when directed edges are added to change one of the vertices into
a Superman vertex (or a Luthor vertex)?

To change one of the vertices into a Superman or Luthor vertex will often
involve adding multiple directed edges, meaning the players will have a lot more
information at their disposal when making their guesses. We again searched all
undirected graphs on 9 vertices or less and remarkably still could not find any
examples.

With the discovery of the graph R and in particular the graph Rc we can show
the answer is yes to Problem 6.5 and consequently Problem 6.6. We define the
undirected graph R−

c to be the same as the graph Rc but with the undirected
edge between vertices 3 and 8 removed. We also define the directed graph R+

c

17

to be the same as R−
c but with the addition of a single directed edge going from

vertex 3 to vertex 8.

Theorem 6.7. We have gn(R−
c) = 53/6 and gn(R+

c) = 9.

Proof. The Shannon bounds for R−
c and R+

c are 53/6 and 9 respectively (data
files can be provided upon request).

We will prove gn(R+
c) ≥ 9 by observing that the strategy for (Rc, 3) (see the

proof of Theorem 6.3) is a valid strategy for (R+
c , 3). With the exception of player

3 all players in (R+
c , 3) have access to the same information they did in (Rc, 3).

Player 3 however, now no longer has access to a8. By studying the strategy player
3 uses in (Rc, 3) we will see that this is of no consequence. Summing conditions
(5), (6), (8), and twice (7), gives

a1 + 2a2 + a3 + 2a4 + 2a8′ + 2a9 ≡ 0 mod 3,

hence player 3 guesses −a1− 2a2− 2a4− 2a8′ − 2a9 mod 3 in (Rc, 3). Since player
3 makes no use of a8 this validates our claims.

We complete our proof by showing gn(R−
c) ≥ 53/6. We know gn(R−

c) ≥
gn(R−

c , 3
6) = gn(R−

c (6), 3)/6 so it is enough to show gn(R−
c (6), 3) ≥ 53. Since

R−
c (6) had 78 vertices we can do this by finding a strategy on (R−

c (6), 3) that
wins with a probability of 3−25. To this end, let us label the vertices of R−

c (6)
such that the six vertices that are constructed from blowing up v ∈ V (R−

c) are
labelled va, vb, vc, vd, ve, and vf . Under this labelling, our strategy for R−

c (6) is
to play the complete graph strategy on the cliques

{1a, 2a, 3a}, {1b, 2b, 7a}, {1c, 3b, 4a}, {2c, 3c, 9
′
a}, {4b, 5a, 10

′
a},

{4c, 5b, 10
′
b}, {5c, 6a, 9

′
b}, {6b, 7b, 8a}, {6c, 7c, 8b}, {8c, 9

′
c, 10

′
c},

{8d, 9
′
d, 10

′
d}, {8e, 9

′
e, 10

′
e}, {8f , 9

′
f , 10

′
f},

and to play the Rc strategy on the vertices

{1d, 2d, 3d, 4d, 5d, 6d, 7d, 8
′
a, 8

′
b, 9a, 9b, 10a, 10b},

{1e, 2e, 3e, 4e, 5e, 6e, 7e, 8
′
c, 8

′
d, 9c, 9d, 10c, 10d},

{1f , 2f , 3f , 4f , 5f , 6f , 7f , 8
′
e, 8

′
f , 9e, 9f , 10e, 10f}.

The probability of winning in each of these 13 cliques is 3−1 while the probability
of winning in each of the three copies of Rc is 3

−4. So the overall probability of
winning is indeed 3−25, therefore completing the proof.

We finish this section by considering a problem motivated by the reversibility
of networks in network coding. Given a digraph G, let Reverse(G) be the digraph
formed from G by reversing all the edges, i.e. uv ∈ E(G) if and only if vu ∈
E(Reverse(G)).

Problem 6.8. Does there exist a digraph G, such that gn(G) 6= gn(Reverse(G)).

18

We were not able to solve this problem. We did however find a graph RS for
which the Shannon bound of RS and the Shannon bound of Reverse(RS) did not
match. RS is simply the digraph formed by making vertex 1 in R a Superman
vertex. In other words, we add three directed edges to R: the edge going from
1 to 8, from 1 to 9, and from 1 to 10. Consequently Reverse(RS) is the graph
formed by making vertex 1 in R a Luthor vertex. As such, we will refer to it as
RL.

Theorem 6.9. We have Sh(RS) = 27/4 = 6.75. For RL we have the following
bounds:

1. Sh(RL) = 34/5 = 6.8.

2. ZY(RL) = 61/9 = 6.777 . . .

3. DFZ(RL) = 359/53 = 6.773 . . .

4. Ingl(RL) = 27/4 = 6.75.

Proof. The proofs are given in data files which can be made available upon re-
quest.

From the strategy on R we know that gn(RS) ≥ 27/4 and gn(RL) ≥ 27/4.
Hence we have gn(RS) = 27/4. We do not however know the precise value of
gn(RL) so it is possible that the asymptotic guessing numbers of RS and RL do
not match.

7 Speeding up the computer search

In this section we mention a few of the simple tricks we used in order to speed up
the computer search which allowed us to search through all the 10 vertex graphs
and find the graph R. We hope that this may be of use to others continuing this
research.

The majority of time spent during the searches was spent determining the
Shannon bound by solving a large linear program. By reducing the number of
constraints that we add to the linear program we can speed up the optimisation.
Given a graph on n vertices a naive formation of the linear program would result
in considering all 23n Shannon inequalities of the form

H(A,C) +H(B,C)−H(A,B, C)−H(C) ≥ 0 for A,B, C ⊂ XG.

However most of these do not need to be added to the linear program. In fact it
is sufficient to just include the inequalities given by the following lemma.

19

Lemma 7.1. Given a set of discrete random variables XG, the set of Shannon
inequalities

H(A,C) +H(B,C)−H(A,B, C)−H(C) ≥ 0 for A,B, C ⊂ XG,

is equivalent to the set of inequalities given by

(i) H(Y) ≤ H(XG) for Y ⊂ XG with |Y | = |XG| − 1.

(ii) H(Y) +H(Z)−H(Y ∪Z)−H(Y ∩Z) ≥ 0 for Y, Z ⊂ XG with |Y | = |Z| =
|Y ∩ Z|+ 1.

Observe that for a graph on n vertices there are n inequalities of type (i) and
n(n − 1)2n−3 inequalities of type (ii). (Counting the inequalities of type (ii) is
equivalent to counting the number of squares in the hypercube poset formed from
looking at the subsets of XG.) Overall, this is about the cube root of the initial
number of inequalities.

Proof of Lemma 7.1. Setting A = XG, B = XG, and C = Y , shows that the
Shannon inequalities imply the set of inequalities described by (i). Setting A = Y ,
B = Z, and C = Y ∩ Z, shows that the Shannon inequalities imply (ii).

To show (i) and (ii) imply the Shannon inequalities we will first generalise (i)
and (ii).

We will begin by showing that (ii) implies

H(Y) +H(Z)−H(Y ∪ Z)−H(Y ∩ Z) ≥ 0

for any Y, Z ⊂ XG. Let Y \ (Y ∩ Z) = {Y1, Y2, . . . , Yn} and Z \ (Y ∩ Z) =
{Z1, Z2, . . . , Zm}, where Y1, . . . , Yn and Z1, . . . , Zm are single discrete random
variables. Define Y ′

i to be {Y1, . . . , Yi} for 1 ≤ i ≤ n and Y ′
0 = ∅. We define

Z ′
i similarly. Finally let Xi,j = (Y ∩ Z) ∪ Y ′

i ∪ Z ′
j, and note that X0,0 = Y ∩ Z,

Xn,0 = Y , X0,m = Z, and Xn,m = Y ∪ Z. By (ii) we have

0 ≤
n−1
∑

i=0

m−1
∑

j=0

[H(Xi+1,j) +H(Xi,j+1)−H(Xi+1,j+1)−H(Xi,j)].

Here, the right hand side is telescopic and simplifies to the desired expression

H(Y) +H(Z)−H(Y ∪ Z)−H(Y ∩ Z).

Next we will generalise (i) to show that for any Y ⊂ Z ⊂ XG with |Y | = |Z|−1
we have H(Y) ≤ H(Z). Let us define Z to be XG \ Z. Then, by the generalised
version of (ii) we know that

H(Z) +H(Y ∪ Z)−H(Z ∪ (Y ∪ Z))−H(Z ∩ (Y ∪ Z)) ≥ 0

20

which simplifies to

H(Z) +H(Y ∪ Z)−H(XG)−H(Y) ≥ 0. (9)

Observe that |Y ∪ Z| = |XG| − 1, so (i) tells us that H(XG) − H(Y ∪ Z) ≥ 0
which when added to (9) gives the inequality H(Z)−H(Y) ≥ 0 as required.

We can now further generalise (i) to show that for any Y ⊂ Z ⊂ XG we have
that H(Y) ≤ H(Z). To do this, let Z \ Y = {Z1, Z2, . . . , Zn}, where Z1, . . . , Zn

are single discrete random variables. Then, by repeated applications of our gen-
eralisation of (i) we have

H(Y) ≤ H(Y, Z1) ≤ H(Y, Z1, Z2) ≤ · · · ≤ H(Y, Z1, . . . , Zn) = H(Z).

It is now a trivial matter to show that (i) and (ii) imply Shannon’s inequality.
Simply set Y = A ∪ C and Z = B ∪ C in the generalised version of (ii) to get

H(A,C) +H(B,C)−H(A,B, C)−H(A ∩B,C) ≥ 0

and since H(A∩B,C) ≥ H(C) by the improved version of (i), the result follows.

It is also worth mentioning that H(∅) = 0 together with the Shannon inequal-
ities imply H(Y, Z) ≤ H(Y) + H(Z) for disjoint Y, Z. Hence, the constraints
H(X) ≤ |X| for all X in the Shannon bound linear program are not all necessary
and can be reduced to H(X) ≤ |X| for |X| = 0, or 1.

When determining each graph’s asymptotic guessing number, the natural ap-
proach is to calculate the lower bound using the fractional clique cover number,
then calculate the Shannon bound and check if they match. However the linear
program that gives us the fractional clique cover number also gives us a regular
fractional clique cover from which an explicit strategy can be constructed. It is
easy to convert this strategy into a feasible point of the Shannon bound linear
program. Hence we can save a significant amount of time by simply checking if
this feasible point is optimal, rather than by calculating the Shannon bound from
scratch. Note that we check for optimality by solving the same Shannon bound
linear program with the modification that we remove those constraints for which
equality is not achieved by the feasible point.

The modified Shannon bound linear program is still the most time consum-
ing process in the search, so ideally we would like to avoid it when possible.
Christofides and Markström [3] show that for an undirected graph G

gn(G) ≤ |V (G)| − α(G),

where α(G) is the number of vertices in the maximum independent set. This can
be interpreted as a simple consequence of the fact that removing players increases
the probability the remaining players will win. (If the probability of winning
decreased, the players could just create fictitious replacement players before the
game started.) As such we present a simple generalization of this result.

21

Lemma 7.2. Given a digraph G and an induced subgraph G′,

max
F

P[Win(G, s,F)] ≤ max
F

P[Win(G′, s,F)]

or equivalently gn(G, s) ≤ |V (G)| − |V (G′)|+ gn(G′, s). Hence

gn(G) ≤ |V (G)| − |V (G′)|+ gn(G′).

We do not provide a proof as it is trivial. Note that the result gn(G) ≤
|V (G)| − α(G) is a simple corollary of this result as an independent set has a
guessing number of 0.

Given a graph G, if we can find a subgraph such that the upper bound given in
Lemma 7.2 matches the fractional clique cover bound, then we have determined
the asymptotic guessing number, and can avoid an expensive Shannon bound
calculation. This approach is particularly fast when doing an exhaustive search
as all the smaller graphs will have had their asymptotic guessing numbers already
determined.

One issue with this method is that if we are looking for a counterexample
to the Shannon bound being sharp, there is a possibility that we may miss them
because we avoided calculating the Shannon bound for every graph. Consequently
to alleviate our fear we need the following result.

Lemma 7.3. Given a digraph G and an induced subgraph G′, we have

Sh(G) ≤ |V (G)| − |V (G′)|+ Sh(G′).

Proof. It is sufficient to prove the result only for induced subgraphs G′ for which
|V (G)|− |V (G′)| = 1, as the result then follows by induction on |V (G)|− |V (G′)|.
Let u ∈ V (G) be the vertex that is removed from G to produce G′.

The Shannon bound for G′ comes from solving a linear program, and as such
the solution to the dual program naturally gives us a proof that H(XG′) ≤
Sh(G′). In particular, this proof consists of summing appropriate linear com-
binations of the constraints. Suppose that in each such contraint we replace
H(X) with H(X,Xu)−H(Xu) for every X ⊂ XG′. This effectively would replace
constraints from the linear program for G′ with inequalities which are implied
from the linear program for G. For example, H(X) ≥ 0 for G′, would become
H(X,Xu) − H(Xu) ≥ 0 for G (which is true by Shannon’s inequality). As an-
other example, H(X) ≤ |X| becomes H(X,Xu)−H(Xu) ≤ |X| (which is true as
H(X,Xu) ≤ H(X) +H(Xu) ≤ |X|+H(Xu)). This shows that all constraints in
Theorem 5.1 of types (1) and (2) can be replaces as claimed. The same happens
for constraints of types (3) and (4). Consequently, under this transformation, the
proof that H(XG′) ≤ Sh(G′) becomes a proof that H(XG) − H(Xu) ≤ Sh(G′).
Since H(Xu) ≤ 1 the result immediately follows.

We have seen that by removing vertices from a graph G we make the game
easier allowing us to upper bound gn(G). Another way we can make the game

22

easier is by adding extra edges to G. Consequently we can avoid the Shannon
bound calculation by also using the asymptotic guessing number of supergraphs
of G which have the same number of vertices as G.

We end this section by considering the problem of how to calculate the non-
Shannon bounds, i.e. the Zhang-Yeung bound, the Dougherty-Freiling-Zeger bound,
and the Ingleton bound. They all involve inequalities on 4 variables and conse-
quently a naive approach is to add at least 24n inequalities to the linear program,
where n is the order of the graph. Unfortunately such a linear program is far
too large to be computationally feasible. Our approach is given by the following
algorithm:

1. Let C be the set of Shannon bound constraints.

2. Solve the linear program which consists only of constraints C.

3. Check if the solution satisfies all required 4 variable information inequalities
(e.g. the Zhang-Yeung inequalities if we are calculating the Zhang-Yeung
bound).

(a) If all the inequalities are satisfied then terminate, returning the objec-
tive value.

(b) If one of the inequalities is not satisfied add this constraint to C and
go back to 2.

We note that due to the large number of inequalities, Step 3 can take a while.
So it is advisable to add some extra constraints to the linear program to limit the
search to a solution which is symmetric under the automorphisms of the graph
(there always exists such a solution due to the linearity of the problem). This
extra symmetry can be used to avoid checking a significant proportion of the
inequalities in Step 3.

8 Open Problems

Problem 6.8 asks whether there exists an irreversible guessing game, i.e. a guess-
ing game G such that gn(G) 6= gn(Reverse(G)). This can be answered in the
affirmative if gn(RL) can be shown to be strictly larger than 27

4 = 6.75. Un-
fortunately, this might be hard to prove as it would establish the existence of a
non-linear guessing strategy that improves the lower bound we derived.

It would also be interesting to determine the exact value of gn(R−) as R−

according to our calculations is the only undirected graph on at most 10 vertices
whose guessing number remains undetermined. Any lower bound that implies
gn(R−) > 20

3 would show that there exists a non-linear guessing strategy that
outperforms the fractional clique cover strategy for R−.

23

9 Acknowledgements

We would like to thank Peter Cameron and Peter Keevash. An extended abstract
of this paper appeared in [2] and we would like to thank the three anonymous
referees for their useful comments. This work was partly supported by EPSRC
ref: EP/H016015/1.

References

[1] R. Ahlswede, N. Cai, S-Y. R. Li and R. W. Yeung, Network information flow,
IEEE Trans. Inform. Theory 46:4 (2000), 1204–1216.

[2] R. Baber, D. Christofides, A. N. Dang, S. Riis and E. R. Vaughan, Multi-
ple unicasts, graph guessing games, and non-Shannon inequalities, in 2013
International Symposium on Network Coding (Netcod), Calgart, June 2013.

[3] D. Christofides and K. Markström, The guessing number of undirected graphs,
Electron. J. Combin. 18 (2011), Research Paper 192, 19 pp.

[4] T. H. Chan, Capacity regions for linear and abelian network codes, in Pro-
ceedings of the 2007 Information Theory and Applications Workshop, La Jolla,
CA Jan./Feb. 2007, pp. 73–78.

[5] T. M. Cover and J. A. Thomas, Elements of information theory, second edi-
tion, Wiley-Interscience, Hoboken, NJ, 2006.

[6] R. Dougherty, C. Freiling and K. Zeger, Networks, Matroids, and Non-
Shannon Information Inequalities, IEEE Trans. Inform. Theory, 53:6 (2007),
1949–1969.

[7] R. Dougherty, C. Freiling and K. Zeger, ”Non-Shannon Information Inequal-
ities in Four Random Variables”, arXiv:1104.3602.

[8] R. M. Karp, Reducibility among combinatorial problems, in Complexity of
computer computations (Proc. Sympos., IBM Thomas J. Watson Res. Center,
Yorktown Heights, N.Y., 1972), 85–103, Plenum, New York.

[9] S. Riis, Information flows, graphs and their guessing numbers, Electron. J.
Combin. 14 (2007), Research Paper 44, 17 pp.

[10] S. Riis, Reversible and irreversible information networks, IEEE Trans. In-
form. Theory 53 (2007), 4339–4349.

[11] L. G. Valiant, Why is Boolean complexity theory difficult?, in Boolean func-
tion complexity (Durham, 1990), 84–94, London Math. Soc. Lecture Note Ser.,
169 Cambridge Univ. Press, Cambridge.

24

[12] Z. Zhang and R. W. Yeung, On characterization of entropy function via
information inequalities, IEEE Trans. Inform. Theory 44 (1998), 1440–1452.

25

	1 Introduction
	2 Definitions
	3 The asymptotic guessing number
	4 Lower bounds using the fractional clique cover
	5 Upper bounds using entropy
	6 Main results
	7 Speeding up the computer search
	8 Open Problems
	9 Acknowledgements

