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QUEEN MARY, UNIVERSITY OF LONDON 

ABSTRACT 

PHD THESIS 

APPLICATIONS OF ARTIFICIAL NEURAL NETWORKS (ANNS) IN 

EXPLORING MATERIALS PROPERTY-PROPERTY CORRELATIONS  

Xiaoyu Cheng 

The discoveries of materials property-property correlations usually require prior 

knowledge or serendipity, the process of which can be time-consuming, costly, 

and labour-intensive. On the other hand, artificial neural networks (ANNs) are 

intelligent and scalable modelling techniques that have been used extensively to 

predict properties from materials’ composition or processing parameters, but are 

seldom used in exploring materials property-property correlations. The work 

presented in this thesis has employed ANNs combinatorial searches to explore the 

correlations of different materials properties, through which, ‘known’ correlations 

are verified, and ‘unknown’ correlations are revealed. An evaluation criterion is 

proposed and demonstrated to be useful in identifying nontrivial correlations.  

The work has also extended the application of ANNs in the fields of data 

corrections, property predictions and identifications of variables’ contributions. A 

systematic ANN protocol has been developed and tested against the known 

correlating equations of elastic properties and the experimental data, and is found 

to be reliable and effective to correct suspect data in a complicated situation where 

no prior knowledge exists. Moreover, the hardness increments of pure metals due 

to HPT are accurately predicted from shear modulus, melting temperature and 

Burgers vector. The first two variables are identified to have the largest impacts 

on hardening. Finally, a combined ANN-SR (symbolic regression) method is 

proposed to yield parsimonious correlating equations by ruling out redundant 

variables through the partial derivatives method and the connection weight 

approach, which are based on the analysis of the ANNs weight vectors. By 

applying this method, two simple equations that are at least as accurate as other 

models in providing a rapid estimation of the enthalpies of vaporization for 

compounds are obtained. 
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Chapter 1 

1. Introduction 

1.1 Aims and objectives  

Materials properties correlations are compact summaries that provide ''a ready means of 

access to the information represented by a body of discrete values or the equivalent'' [1]. 

Correlations can be employed to generate new information, and are very useful for 

calculations involving materials properties [2]. The advances in computing power, 

coupled with the computational modelling, namely, artificial neural networks (ANNs), 

and the readily available materials properties databases, enable the author to apply this 

modelling approach, which is efficient in terms of both time and cost, to solve diverse 

problems by exploring materials property-property correlations from databases.  

Artificial neural networks are currently one of the most powerful data mining 

techniques that have been widely applied in many fields, including marketing strategy, 

chemistry, biology, materials science, and pattern recognition [3-8]. The general aim of 

this work is to use ANNs to explore correlations that might exist between different 

properties in materials, and employ such correlations to solve problems that are hardly 

accessible to conventional methods. Because correlating equations may be of greater 

interest as a source of property correlation information than graphical correlations or 

digital models [1], there is also a need to interpret the correlations captured by ANNs 

into explicit correlating equations.  

Thus, the general purpose of this work is to capture materials property-property 

correlations and apply such correlations to: i) the prediction of materials properties, ii) 

the detection of errors in materials properties databases, and iii) the identification of 

important input variables for the establishing of physical models and the construction of 

explicit correlating equations. In total, four distinct examples of ANNs applications are 

presented.  

The above aim implies the following specific objectives:  

1) To demonstrate that ANNs are capable of capturing meaningful property-

property correlations without any prior knowledge or any assumptions of the 

form of the relationship made in advance. 
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2) To test whether the ANN combinatorial search is feasible to explore property-

property correlations from a discrete, irregularly distributed database that is 

subject to unknown error. 

3) To model the binary, ternary, and quaternary order correlations between 24 

properties of 37 metals through an ANN combinatorial search, and provide an 

evaluation criterion to rank the correlation based on the model performance, a 

factor that implies how strong the correlation is. 

4) To illustrate that the ANN combinatorial search is a way of illuminating the 

facts by analysing the typical types of binary, ternary and quaternary order 

correlations captured in the search. 

5) To build the most reliable database of Young's modulus, shear modulus, bulk 

modulus, and Poisson's ratio for 68 pure metallic elements, because large 

discrepancies exist in literature. 

6) To extend the application of ANNs in detecting and correcting errors in 

handbooks and databases, and access the reliability of the method by comparing 

the results that are obtained from ANNs with the results that are generated by the 

physically established correlating equations, and the experimental values as well. 

7) To employ the ANN method in a situation where the size of data set has an 

inherent limitation. For example, only a relatively small number of pure metals 

have been processed through high pressure torsion. 

8) To predict the increments of Vickers hardness of pure metals due to high 

pressure torsion, and identify the properties that contribute most to the changes 

of hardness through two ANN approaches: the combinatorial search and the 

forward selection. 

9) To develop correlating equations through a combined approach of ANNs and 

symbolic regression (SR). This is exemplified by determining the enthalpies of 

vaporization for 175 compounds.  

10) To perform a comparison study of the Partial Derivatives method and the 

Connection Weight approach in accessing the contributions of input variables. 

Both methods utilize ANNs weight vectors. 
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1.2 Thesis outline 

The thesis is divided into seven chapters. Chapter 1 describes the motivation for the 

work performed in this thesis. It also includes a literature review of ANNs and an 

introduction for each application of ANNs in the exploration of materials property-

property correlations. The methodology used in the design of ANNs is discussed in 

Chapter 2. In Chapter 3, an ANN combinatorial search method is employed to capture 

property correlations hidden in the database. Chapter 4 presents a method of employing 

ANNs to detect and correct the errors of elastic properties of elements. Chapter 5 uses 

an example in the hardening of pure metals by HPT to describe a general method to 

identify important variables based on the correlations captured by ANNs. In Chapter 6, 

variable contributions are identified by the Partial Derivatives method and the 

Connection Weight approach. Thermal property-property correlations are not only 

captured but also obtained in analytic forms through a combined ANN-SR method. 

Chapter 7 summarises the main conclusions and presents an outlook for future work. 

Appendixes listed in the final chapter give extra information including all the numeric 

data used in the modelling. 

1.3 Academic contribution 

1.3.1 Journal article 

So far, parts of this work have been published or to be submitted as:  

1. Marco Starink, Xiaoyu Cheng, Shoufeng Yang (2012) Hardening of pure metals by 

high pressure torsion: a physically-based model. Acta Materialia 61(1), 183-192. 

2. Xiaoyu Cheng, Marco Starink, Shoufeng Yang (2014) Capturing materials 

properties correlations using artificial neural networks: an example in hardening of 

pure metals by high pressure torsion. Submitted to Acta Materialia. 

3. Xiaoyu Cheng, Shoufeng Yang (2014) Selected values of the elastic properties for 

elements. In preparation. 

4. Xiaoyu Cheng, Shoufeng Yang (2014). The discovery of materials properties 

correlations through artificial neural networks and symbolic regression. To be 

submitted. 
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5. Xiaoyu Cheng, Shoufeng Yang (2014) Capturing materials properties correlations 

through the combinatorial neural network search. In preparation. 

1.3.2 Conference 

Xiaoyu Cheng. An application of artificial neural networks in finding elastic properties 

of rare earth elements. The 3rd International Symposium on Rare Earth Resource 

Utilization (ISRERU-3) & The 3rd Special Symposium on Advances in Functional 

Materials (AFM-3). Changchun, China, 9-13 December 2012. Best oral presentation 

award. 

Xiaoyu Cheng. Capturing materials properties correlations using ANNs: an example in 

hardening of pure metals by HPT [Poster]. Queen Mary, University of London, SEMS 

Graduate Research Show. London, 14 November 2012. 

Xiaoyu Cheng. Selected values of the boiling points and the enthalpies of vaporization 

of the elements [Poster]. University of Southampton Postgraduate Conference 2011. 

Hilton hotel, Southampton, 28 September 2011. 

Xiaoyu Cheng. The discovery of materials properties correlations through artificial 

neural networks and genetic programming: an example in determining the enthalpy of 

vaporization. The 17th Joint Annual Conference of CSCST & SCI. Oxford University, 

UK, 17 October 2010. 

1.4 Literature review 

Materials Science and Engineering is a study that investigates the relationships that exist 

between the composition, structure, processing, and properties of materials [9]. For 

many years, the methodological framework for materials science has been following the 

composition-processing-structure-property causal pathway [10]. Material property 

values are usually obtained via a huge amount of experiments based on the 

understanding of materials' composition, processing, and structures. Advances in 

modern data analytic tools and statistical algorithms allow materials properties to be 

estimated by employing property interrelationships. 
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1.4.1 Property correlations of materials 

As Ashby points out, material properties ''derive ultimately from the way in which the 

atoms or molecules are arranged in space (structure) and the nature of the 

intermolecular forces that hold them together (bonding)'' [2]. Therefore, the properties 

of a material are correlated in varying degrees, see Figure 1-1 [10]. The property-

property correlations are strong when properties derive directly from the nature of the 

atomic bonding and structure, and are relatively weak when defects in the structure are 

introduced or environmental interactions are involved [2]. Moore and Notz [11] 

summarised the correlations between two variables into three types: 1) a direct 

causation, 2) common response, and 3) confounding. Such summary still holds good for 

correlations of higher order (i.e. correlations that are constituted with more variables).  

Compared to the study of structure-property relationships, which has many successes in 

materials science, the idea of exploring property-property correlations is less 

unconventional for binary order correlations, especially when both properties arise from 

the same atomic structural level. The relationship between thermal conductivity and 

electric conductivity for materials with more or less freely moving electrons is a well-

known example. A number of binary order correlations (for instance, the correlation 

between specific heat and atomic mass, and the correlation between boiling point and 

latent heat of vaporization) have been established, partially because the relationships 

can be easily obtained from conventional, simple regressions. However, complicated 

correlations between several numbers of properties require a scalable and sustainable 

predictive modelling technique, e.g. data mining. 

1.4.2 Data mining 

To deal with an information poor but data rich situation [12], and provide solutions 

where no practical experience exists, data mining (DM) is emerging as an efficient 

approach to derive implicit information and knowledge from databases. It is particularly 

useful for incomplete, noisy and fuzzy data [13]. DM has become an important research 

area that draws wide attention [14-16]. 

The underlying knowledge discovered by data mining is potentially useful information 

(such as knowledge rules, constrains, and regularities) [17], corresponding to general or 
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domain-specific problems [18]. Trying to interpret such knowledge into a solid physical 

model may not always be possible. However, it is still of great practical value to extract 

novel or interesting information on the premise of no clear assumption, as opposed to 

the requirement of traditional statistical linear approach [19]. Predictions made from 

interpolations or extrapolations of the captured correlations are expected to be reliable if 

similar patterns always exist in the observed data. 

 

Figure 1-1  Schematic arrangement of causation in materials science (from Ref. 

[10]). 

1.4.3 Artificial intelligence 

The most influential concept of artificial intelligence (AI) was described as the famous 

Turing's problem [20]. Though the question ''Can machines think" is much debated, AI 

has been gradually accepted as a reliable new technology that helps human beings to 

better understand the world through the use of computational models [21]. AI has been 

used in a wide range of fields including medical diagnosis [22], bioinformatics [23], 

manufacturing [24], property evaluation [25], modelling [26], process controlling 

[27], and scientific discovery [28].  

Artificial neural networks (ANNs) are generally considered as one of the most efficient 

AI approaches to incorporate and process qualitative knowledge derived from data [21]. 

Despite the fact that ANNs and AI share the same goal of simulating human intelligence, 

some researchers argue that ANNs are different from AI approaches, because the ANN 
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methods apply inductive reasoning while the AI approaches refer to deductive reasoning 

[29]. 

1.4.4 Artificial neural networks (ANNs) 

1) Introduction to ANNs 

Artificial neural networks (ANNs) attempt to simulate biological brain functions to 

perform parallel computations for data processing and knowledge extraction [29]. A 

typical structure of ANN comprises:  

a) Interconnected adaptive artificial neurons, which sometimes are referred as 

processing elements or nodes. A biased neuron, which is an additional input 

with constant value normally assumed equal to one, may be introduced in a 

ANN model to shift the threshold of the activation function [30];  

b) Layers. An ANN model normally includes an input layer, an output layer, and 

additional hidden layers. Each layer contains a number of neurons;  

c) Weights (value between 0 and 1), which are assigned to every connection of 

neurons.  

Figure 1-2 illustrates a generic artificial neuron with connections. The net input to the 

artificial neuron j is shown in Equation 1-1 [29, 31, 32]. The output of neuron j (Yj) is 

computed through an activation function  f  before it is sent to other neurons. Such 

activation function could be the hyperbolic tangent sigmoid transfer function 

( 1
1

2
2


  jnete

) [33], the logistic sigmoid function (
jnete1

1
) [34], the piecewise 

function or the linear function. 

∑    Equation 1-1 

where: 

ωij ─ the weight assigned to the connection of neuron i to neuron j; 

Xi ─ the output of neuron i and the input signal for neuron j; 
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bj ─ the amount of external/environmental input to neuron j, which is also known as the 

weight value of bias neuron.  

 

Figure 1-2  An illustration of how an artificial neuron functions (from Ref. [31]). 

2) Types of ANNs 

The frequently used types of ANNs are discussed as below: 

1. Multilayer perceptron network (MLP): as illustrated in Figure 1-3, it is usually a 

feed-forward neural network comprising an input layer, one or more hidden 

layers and an output layer. In MLP, the connection goes through the neurons in 

each layer sequentially. Usually, in this kind of network, the supervised learning 

process is the backpropagation algorithm. MLP is versatile and can be used in 

many fields such as data modelling, classification, forecasting, control, image 

compression and pattern recognition [34].  

2. Radial basis function network (RBF): it consists of an input layer, one hidden 

and an output layer, and uses a Gaussian kernel function to calculate the 

activations of the neurons. It is a special case of MLP network, which trains 

faster but is less versatile [35]. 

3. Hopfield network: it is a fully connected single layer network that acts as a 

nonlinear associative memory. After an input pattern is presented, the network 
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will converge by means of a state update rule to a stable pattern [36]. A Hopfield 

network is especially efficient in solving optimisation problems [37]. 

4. Self-organizing map (SOM): it is an unsupervised training technique based on 

competitive learning. Instead of mapping the input pattern to a target output, 

such network learns to form its own classification of training data by identifying 

the common features shared by the input patterns. Kohonen network is one 

particular kind of SOM [38]. 

3) Learning rules and backpropagation algorithm 

ANNs are trained to modify the weights and biases to perform a certain task through 

supervised learning, unsupervised learning or reinforcement learning [39]. In supervised 

learning, both the inputs and the corresponding target outputs are provided, and weights 

and biases are adjusted to make the network outputs closer to the target outputs. For an 

unsupervised learning, no training sets (inputs and corresponding target outputs) are 

provided. ANNs learn to discover common features in input patterns and classify input 

data into appropriate categories without feedback provided from the environment to 

improve the mapping [29]. When a competitive learning rule is used, the output neurons 

compete amongst themselves to be activated and only the winner produces an output 

signal. In contrast to supervised learning and unsupervised learning, evaluative feedback 

('right' or 'wrong') is given as reinforcement signal in reinforcement learning, and ANNs 

are modified to maximize the reward (feedback is 'right') [39]. 

In the present work, both the inputs and the corresponding target outputs are provided, 

so supervised learning rule is used. One of the most popular methods for performing 

supervised learning is the backpropagation algorithm (BP), which involves calculating 

errors backward through the network [40]. In feed forward backpropagation neural 

networks (BPANNs), a random set of initial weights is assigned to start mapping the 

input to the corresponding target output in a chosen input-output pair. With the fixed 

threshold units and activation function, neuron activation is propagating from the input 

layer through the hidden layers and then passing on to the output layer, while errors are 

computed and weights for the neurons are adjusted from the output layer to each hidden 

layer accordingly. As shown in Figure 1-3, this process is repeated until an epoch is 

completed, when all the input-output pairs have been presented to the network. The 
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network will stop learning if the desired number of epochs has reached or the desired 

level of output accuracy has been obtained. 

 

Figure 1-3  A typical three-layer feed-forward neural network with the back 

propagation learning method (from Ref. [29]). 

4) Application of ANNs 

Phenomenological models and empirical models are the two dominant analysis classes 

to characterise the properties of a given material system: in phenomenological models, 

the quantitative relationships between property variables are derived from physical 

theories, while in most empirical models the relationships are built on a priori postulate 

[41]. Compared to phenomenological models, which have complexities in designing and 

difficulties in generalizing, empirical models have more applications that are 

extensively used in practice. ANNs are one of the most wildly used empirical models 

emerged in recent years that can substantially reduce experimental testing needed in 

property evaluation and provide relative reliable data without having to perform an 

actual experimental test [42]. The great predictive capability of ANNs, especially for 

non-linear problems, is generally considered to surpass the performance of traditional 

statistical regression models [43]. 

i. A brief history of ANNs 

The earliest work on neural networks started in 1943 when McCulloch and Pitts [44] 

modeled the activity of biological neurons as a logic circuit. In 1958, a single layer 
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network, i.e. the perceptron, was developed by Rosenblatt [45], which showed initial 

successes in learning certain classifications by using trial-and-error method to randomly 

adjust connection weights. Such weight changing method is later modified into 

randomly choosing a direction vector, a process became known as descending on the 

gradient [46], and then was improved to be a gradient search method based on 

minimizing the squared error [47], i.e. Least Mean Squares. However, in 1969, the 

perceptron was demonstrated to be not able to solve non-linear classification problems, 

such as exclusive-or (XOR) logic [48]. Such limitation led to the decline of research in 

the field of neural networks until the 1980s that backpropagation algorithm using a 

differentiable sigmoidal function rather than signum function as the activation function 

for multi-layered networks, was introduced to solve this problem [49]. New ANN 

models that were developed by Grossberg [50], Kohonen [38], Klopf [51], and 

Hopfield [37], have also been applied to solve real life problems. 

In 1985, the first annual meeting on Neural Networks for Computing was hosted by the 

American Institute of Physics, and in 1987 the Institute of Electrical and Electronic 

Engineers (IEEE) first International Conference on Neural Networks drew the world's 

attention [52]. Ever since then, The International Conference on Artificial Intelligence 

and Neural Networks and The International Joint Conference on Neural Networks have 

become the two premier conferences for the presentation of new advances and research 

results. To date, researches in the field of ANNs continue to show the great advantages 

for pattern classification, clustering, function approximation, prediction, optimization 

and non-linear controlling [53, 54]. 

ii. General applications 

The general ANNs applications can be grouped into the following categories: 

Pattern recognition  

As summarized by Bishop [54], there are two pattern recognition problems: regression 

and classification. The first one is concerned with predicting the output values from the 

input variables (prediction/forecasting) with a suitable set of functions found by ANNs 

(function approximation), while the second one is to assign input patterns to a set of 

discrete classes.  
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Solving regression problems is possibly the most popular application of ANNs. Because 

ANNs are quantitative treatments that can rapidly approximate non-linear functions, it is 

appropriate to use ANNs to model a large quantity of data that broadly distribute over a 

wide range. ANNs are particularly useful when the relationship between input and 

target output is nonlinear and so complex that not yet accessible to physical modelling 

[55]. Unlike traditional statistical forecasting tools, i.e. linear least squares models, 

ANNs can be applied without any assumption on the forms of relationships made in 

advance. 

For classification problems, if the classes in the training set are pre-specified, it is 

referred as pattern classification; if no class labels are assigned to the training set, it is 

referred as unsupervised pattern classification, i.e. clustering [53]. Important 

applications of classification problem are including using SOM or RBF for speech and 

text recognition [56, 57], face recognition [58, 59], structure predicting [6] and image 

processing [60].  

Control 

In addition to the wide applications in data analysis, ANNs are considerably promising 

techniques in non-linear control. Surveys on the applications of a variety of neural 

network architectures in control have been proposed by Hunt et al. [61] and Hagan et al. 

[62]. The applications of ANNs in control systems include: a) real time positional 

control of welding equipment [63]; b) high precision motion control in the presence of 

large friction [64]; c) springback control in an air bending process [65]; d) automated 

control of an induction hardening process [66]; e) laser surface strengthening 

parameters control [67]; f) damping force control of magnetorheological fluid dampers 

[68]; g) surface roughness control [69]; h) drug release control from matrix tablets 

[70]; and i) steel strip deviation control in electro-hydraulic servo system [71]. 

Optimisation 

ANNs can also be applied to solve optimisation problems by finding a solution that 

satisfies a set of constraints in order to maximize or minimize an objective function, for 

example, the travelling salesman problem [53]. To deal with real-world problems, 

Rodemerck et al. [72] used ANNs to search for new catalytic composition. Song and 

Zhang [73] used ANNs to search the optimum heat treatment technique. Ootao et al. [74] 
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used ANNs to find the optimal material composition that minimize thermal stress 

distribution under thermal loading. Recently, ANNs have also been employed by 

Somashekhar et al. [75] to optimize material removal rate in a micro-electric discharge 

machining process, by Sun et al. [76] to predict flow stress of alloys during hot 

deformation, and by Elsayed [77] to model the pressure drop and the cut-off diameter 

for cyclone separators. 

iii. Applications in materials science 

ANNs have been used extensively in materials science with varying success [4, 5, 78, 

79], but most applications fall within the scope of establishing composition-processing-

structure-property-performance relationships. In most cases, materials compositional 

information and processing parameters are used as the main input variables to produce a 

desired result, although other descriptors sometimes are added to the models to help 

improve performance. For example, ANNs developed by Qian et al. [80] to predict 

tensile strength based on materials’ composition and microstructures, showed better 

precision and generalization ability than multiple statistical analysis. A critical review 

carried out by Zhang and Friedrich [81] suggests the ANN approach is a promising 

technique in predicting mechanical properties of polymer composites from materials 

composition. It is demonstrated by Abendroth and Kuna [82] that ANNs are suitable for 

the determination of load displacement of small punch test from the geometry of 

specimens and the loading parameters. Accurate predictions of the relative permittivity 

and oxygen diffusion properties of ceramic materials were obtained by Scott et al. [83], 

using compositional information as the core of the ANN input data. The ANN models 

built by Wen et al. [84] successfully captured the relationship between processing 

parameters and the bending strength and microhardness of compound materials. The 

potential of using ANNs to predict materials tribological properties as a function of 

materials’ composition and testing conditions was first investigated by Jones et al. [42], 

and extended by a number of researchers [85-96].  

Compared to the wide applications of ANNs utilizing compositional information and 

processing parameters as inputs, the number of studies in exploring materials property-

property correlations (excluding compositional information and processing parameters) 

has been very limited so far. Homer et al. [97] used physicochemical properties to 
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predict viscosity, density, heat of vaporization and boiling point for pure organic liquid 

hydrocarbons. Zhang et al. [8, 98] used ANNs to predict solid solubility limits in 

metallic systems with inputs including the atomic size parameter, the valence parameter, 

the electrochemical parameter and the structure parameter. They also derived the 

correlation between heat of vaporization and boiling point from ANNs, which is useful 

in correcting errors in handbooks [7]. 

1.5 Capturing property correlations through a 

combinatorial ANN search 

Combinatorial approaches are high-throughput screening methods that systematically 

investigate material composition-structure-property relationships [99]. It significantly 

reduces experimental time at a relatively lower cost, compared to traditional trial-and-

error approaches which normally test one sample at a time [100]. The modern idea of 

combinatorial approach was introduced in 1960s by Kennedy et al. [101] to determine 

isothermal sections of ternary‐alloy diagrams using samples with composition gradients. 

It was further developed by Hanak et al. [100] to include high-throughput property 

screening to find superconductors. The development of the combinatorial approach has 

attracted tremendous interests in the search for new materials or material property 

optimizations [102, 103].  

Although there is some scepticism criticizing the combinatorial method as ''an 

engineering shortcut, a route to invention that circumvents true understanding'' [104], 

the advent of computation power has further accelerated the applications of 

combinatorial approach. The synthesis and analysis of a large number materials that 

either has continuous composition gradients or discrete composition 'libraries' [105], are 

extended from the studies of functional materials, such as superconductors [100] and 

catalysts [102], to the fields of pharmaceutical and biotechnology [104].  

A large number of studies on the topic of combinatorial approach have become 

available. Amis et al. [104] ascribed the prevalence of combinatorial approach in 

materials science to the works published by a group of Berkeley researchers leaded by 

Xiang [103, 106]. Chen et al. [107] summarised the four basic methods in creating 

'libraries': 1) thin-film methods, 2) solution-based methods, 3) inkjet printing methods, 
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and 4) dry powder mixing methods. Barber and Blamire [105] discussed the influence 

of a range of parameters during thin film deposition, and pointed out that the property 

characterization process needs to be localised, sensitive, high-throughput and rapid to 

assure the efficiency of combinatorial approach.  

As can be seen, most combinatorial methods applied to materials science aim at 

mapping out the composition-structure-property correlations. A combinatorial approach 

has seldom been applied to correlate materials' properties. Historically, the discoveries 

of material correlations are in part similar to the discoveries of new materials, which are 

the results of deductive reasoning from known principles or serendipity [105]. In 

addition, material correlations can be derived from the time-consuming data analysis 

that involves substantial human effort by plotting properties against each other or by 

fitting them into hypothetical mathematical equations. The difficulty in discovering 

material correlations will be exacerbated with the increase of complexity that exists in 

the relationships. 

The study of property-property correlations is an emerging part in materials science. 

Property correlations can be utilized to identify materials confined to desired properties. 

Meanwhile, when a target property is difficult to be measured experimentally, property 

correlations can be employed to make fast estimation through the usage of the other 

known properties. Therefore, the pertinent question might be how to accelerate the 

process in the exploration of property correlations. 

Furthermore, the research community and industries have generated a tremendous 

amount of property data from scientific measurements. Deriving knowledge from those 

data is a longstanding issue and calls for human endeavour. The advanced automatic 

techniques, which allow huge datasets to be collected and stored, create ever larger 

challenges in this field. It is desirable to employ an advanced data mining method in 

capturing the complex property correlations hidden in the data with minimum or no 

prior knowledge. 

ANNs have become increasingly aware of the ability to search correlations; hence, 

ANN models can be built in an effort to understand property data. However, preparing 

input variables for modelling is a fundamental, crucial choice that needs to be decided 

before the modelling. As May et al. [108] pointed out, an exhaustive search that 
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evaluates all of the possible combinations of input variables is the only method that is 

guaranteed to determine the optimal set of input variables for a given ANN model, i.e. 

the most interesting property correlation.  

Inspired by the current combinatorial approach studies, the purpose of Chapter 3 is to 

apply the combinatorial approach as the exhaustive search method to produce possible 

property correlations for the subsequent ANN analysis. Instead of creating composition 

'libraries', property 'libraries' are prepared and analysed. For example, if 20 properties 

for elements in the Periodic Table are considered, roughly, 3400 ternary order 

correlations will be produced, representing all possible combinations of three properties.  

It should be emphasised that ANNs are capable of evaluating correlations in parallel, 

thus, the advantages of combinatorial approach that guarantee to find the optimal 

correlations in the shortest possible time are retained. By searching through the largely 

unexplored universe of binary, ternary, quaternary, or even higher order property 

correlations, it is possible to use ANNs to predict unknown data, test theoretical models 

and hypotheses, and finally enrich the understanding of the fundamental material 

properties.  

1.6 Verification of the elastic properties of the elements  

It is evident that the use of data is incredibly important in materials-based activities such 

as calculating, modelling and designing, whose performance clearly depends on the 

quality of input data [109]. Ensuring the quality of data has been a continuing concern 

due to the possible large cost of using inaccurate data [110]. Though handbooks and 

databases engaged in providing sufficient and authoritative data to satisfy the general 

needs of users, serious anomalies still exist. Data gaps and inconsistencies may arise 

and require clarifications, when the user finds different handbooks presenting different 

values. 

Such discrepancy is not accidental. Apart from the occurrences of typographical errors, 

inaccuracy could be introduced when subjective judgement is made in selecting the 

most practical value or using the average value of multiple differing reported values in 

literature [111]. It is also recognized that years may elapse between the first published 

data in literature and the most recent data. Improved technology of measurement, 
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increasing knowledge, and deeper understanding of materials, normally lead to a more 

accurate value, sometimes even disprove the previously recorded data.  

Small discrepancies between different handbooks and databases may be inescapable, 

but large discrepancies should be treated as errors that need to be verified. Correcting 

errors and updating the data are always important principles, under which new editions 

and newly written handbooks and databases are published [112]. However, such 

correction and updating seldom happen to the properties data of elements. Collections in 

handbooks or databases for elements are usually assembled/transcribed from earlier 

sources. As a result, existing errors could pass on like genetic mutations into subsequent 

editions [7]. This situation should now be changed. 

Young's modulus (E), shear modulus (G), bulk modulus (K) and Poisson's ratio (ν) of 

pure metals are the important and fundamental mechanical properties in materials 

research and manufacturing applications. Despite the fact that elastic properties are 

relatively less sensitive to the purity of metals than other mechanical properties 

associated with plastic deformation [113], and have been measured for many years, the 

scatter of the measurement results has drawn very little attention [114, 115]. The 

accuracy of elastic properties is associated with the accuracy of many other properties in 

the calculation and modelling, such as hardness [116], specific heat capacity [113], 

melting point [117], and Debye temperature [118]. The ever-growing demand for 

accurate data in industry and academia necessitates the verification of the four elastic 

properties and the clarification of discrepancy presented by the major handbooks and 

databases. 

Little work has been developed over the previous years to solve the problem of 

identifying outliers and errors in elastic properties of elements. To resolve the large 

discrepancy in handbooks and databases, it either needs large amounts of extra 

information in order to make subjective judgment that based on expert's knowledge 

[119] or must utilize the established mathematical equations between E, G, K and ν 

[114]. Like most statistical methods [2, 109] and outlier detections [120-123], such 

methods cannot be extended to a general situation where it is difficult or impossible to 

know the correlations or explicit mathematical function beforehand.  
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Artificial neural networks have been widely used to capture linear or nonlinear 

relationships with or without prior knowledge in diverse phenomena [124-126]. 

Recently, ANNs have been used to detect and correct errors of boiling points and 

enthalpies of vaporization of elements in handbooks [7]. However, Zhang et al. [7] only 

employed this method to a binary order correlation with data collected from five 

handbooks. Thus, it is desirable to know if ANNs are capable of detecting and 

correcting errors in a more complicated situation (i.e. a situation involving ternary order 

correlations). It is also desirable at this time to present a comprehensive review of single 

crystal elastic constants and polycrystalline elastic data for pure metals. 

It is well known that the values of four elastic data of pure metals heavily depend on 

specimen purity [127-129], experimental temperature [130-132], and experimental 

pressure [133, 134]. Considering the time needed for data collection and the possible 

heavy work load caused by the size of problems, the majority of Chapter 4 focuses on 

the data (normally within 99.99% purity) at ambient pressure and room temperature 

(295±5 K). A general idea of how experimental parameters affect elastic property is 

discussed in Ref. [135]. 

As more and more single crystal and polycrystalline data have become available in 

recent years, a few compilations of elastic properties for pure metals have been prepared. 

Scott [119] made an excellent compilation for rare earth elements in 1978, but lutetium 

and thulium were studied in a limited way at that time. Elastic properties of six platinum 

metals were surveyed by Darling [136]. Sisodia and Verma [137] calculated 

polycrystalline elastic moduli in terms of single crystal elastic constants of some 

hexagonal and tetragonal metals. For cubic metals, single crystal elastic constant data 

can be found in Ref. [138, 139].  

To the author's knowledge, the most completed compilation of elastic properties of 

elements was first prepared by Koster [140-142] and followed by Swamy and Narayana 

[115], and Gale [143]. However, some doubt has been cast on Koster's values [144], 

given the fact that his data were collected from static measurements. In addition, Gale's 

compilation [143] only included 52 pure metals, in which only 35 metals list bulk 

moduli. Even though Swamy and Narayana [115] intended to compile the data for a 

larger number of metals, most of their data were calculated from single crystal elastic 
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constants, providing no experimental polycrystalline data acquired from dynamic 

measurements. They also failed to disclose the original literature of single crystal data 

used for each element. 

1.6.1 Elementary definitions  

Elasticity is a physical property of materials that exhibits shape and volume changes to 

some extent when external stresses are applied, and will return to the original 

undeformed state after the stress removed [145]. Within the linear elastic regime, strain 

(ε) is proportional to stress (σ). The relationship between stress and strain is defined by 

Hooke's law in terms of elastic coefficient /compliance S or elastic constants /stiffness C: 

𝜀𝜀 = 𝑆𝑆𝑆𝑆 , 𝑆𝑆 = 𝐶𝐶𝜀𝜀    Equation 1-2 

When stresses and strains are acting in three-dimensions, and a subscript combination of 

1, 2, or 3 correlates the three-dimensional surface and direction the stress or strain 

acting upon, Hooke's law may be written in a component form (with suffixes) as 

Equation 1-3 [146]: 

klijklij S σε = , ijijklkl C εσ =    Equation 1-3 

where i, j, k, l is coordinate index (1, 2, or 3) 

Because stress and strain tensors are both symmetric tensors [146], 

jiklijkl SS =      Equation 1-4 

An abbreviation can be introduced to elastic constants Cijkl  [146]: 

( )
( )

( )
( )lklkkl

jijiij
lkkkk

jiiii

≠−−→
≠−−→

=→
=→

9
9

       

For elastic coefficient Sijkl [146]: 

ijkllkji

iikllki

iijjij

SS
SS

SS

4
2

9,9

9,

=

=

→

−−−−

−−
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Thus, tensor notation can be expanded to the form of compliance matrix S as the 

following: 

σε

σ
σ
σ
σ
σ
σ
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Its inverse matrix is the elastic constant matrix C: 
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The relationship between the elastic coefficient and elastic constant is that the 

compliance matrix S can be obtained by taking the reciprocal of the elastic constant 
matrix C [146]: 

( )
D

A
S pq

qp

qp

+−
=

1
    Equation 1-5 

where Apq is the subdeterminant of the stiffness matrix (Cpq) after eliminating the pth 

row and the qth column, and D is the determinant of (Cpq). 

In general, there are 36 matrix components. Since elastic constants represent the second 

derivatives of the energy density with respect to strain (see Equation 1-6) [147], and 

because the order of differentiation is irrelevant, the elastic constant matrices and elastic 

coefficient matrices should be symmetric. Therefore, only 21 stiffness components are 

actually independent for a anisotropic solid. The number of independent components of 

elastic constants can be further reduced considering the solid symmetry [148]. 












∂∂
∂

=
qp

qp
U

V
C

εε

21     Equation 1-6 
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In mechanical engineering, it is applicable to describe elastic deformation in solids with 

four elastic properties: Young's modulus (E), shear modulus, which is also known as 

rigidity modulus (G), bulk modulus (K), and Poisson's ratio (ν). E is defined as the ratio 

of stress to corresponding strain in a material under tension or compression, G and K are 

the ratio of stress to strain in a material subjected to shear stress and volumetric stress 

respectively, ν is the absolute value of ratio of lateral strain to corresponding axial 

(longitudinal) strain in the load direction [149]. 

/       Equation 1-7 

/       Equation 1-8 

/ ∆ /       Equation 1-9 

  /       Equation 1-10 

where σ is tensile or compression stress, ε is tensile or compression strain, τ is shear 

stress, γ is shear strain, σm is the mean or hydrostatic stress, and ΔV/V is volumetric 

strain. 

The Second Law of Thermodynamics requires the following holding limits on the 

elastic moduli: for any engineering materials, E>0, G>0, K>0, and -1<ν<0.5 [150]. 

Recently, Mott and Roland [151] theoretically limited the lower bound of Poisson's ratio 

in isotropic materials to 0.2. But the experimental minimum value 0.039 has been 

determined for beryllium [152]. Materials with an extremely low value of Poisson's 

ratio also include cork and concrete, while the upper limit of ν (0.5) corresponds to 

incompressible elastic materials, i.e. soft rubber. For most crystalline metals, ν normally 

lies in the range 1/4 to 1/3 [153], and the ratio of shear modulus to Young's modulus 

generally equals to 3/8 [154].  

1.6.2 Isotropic and anisotropic 

Most metals and metallic alloys are considered as isotropic materials, which have a 

homogenous internal organization and display the same mechanical properties in all 

directions at an arbitrary point regardless of which surface and direction a force is 

applied [155]. Isotropic materials require two independent components, i.e. C11 and C12, 

to specify their elastic constants matrix C. 
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In contrast, the mechanical properties of anisotropic materials depend on the directions 

in measurements. Without any planes of symmetry, a fourth rank tensor with 21 terms is 

required to describe the elasticity by relating the second rank tensor of stress and strain. 

Other material's behaviour is between isotropic and anisotropic, which needs between 2 

and 21 independent elastic constants to describe the strain-stress relationship. For 

example, 9 independent elastic constants are needed to specify the fourth rank tensor for 

orthotropic materials, while for materials with cubic symmetry, only 3 independent 

components are needed. Single crystal solid is normally anisotropic, while 

polycrystalline aggregates are usually treated as isotropic. A summary of crystal 

symmetry, corresponding elastic constant matrix with independent elastic constants, and 

simplified equations to calculate the bounds for the aggregate properties from the single 

crystal elastic constants (whenever available), are listed in Table 1-1 for most pure 

metals at room temperature. 
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The elastic properties of crystal aggregates can be derived from the elastic constants of 

single crystals by different approximations. One of the most widely used approximation 

methods is the Voigt-Reuss-Hill average (VRH) [156, 157], which is obtained by 

calculating the arithmetic mean of the Voigt bound (GV, KV) and the Reuss bound (GR, 

KR) of the elasticity based on the assumption of a homogeneous strain field and 

homogeneous stress field, respectively [158]. The VRH average can be determined from 

the single crystal elastic constants Cij by employing Equation 1-11 to Equation 1-16 

[159], where H denotes the Hill average value, and V and R denote the Voigt and Reuss 

bounds, respectively. Poisson's ratio and Young's modulus can be then computed from 

the values of shear modulus and bulk modulus determined by the VRH averaging 

method through the relationships described in Section 1.6.3. 
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Voigt approximation: 

𝐾𝐾𝑉𝑉 = 𝐴𝐴1+2𝐴𝐴2
3

       Equation 1-11 

𝐺𝐺𝑉𝑉 = 𝐴𝐴1−𝐴𝐴2+3𝐴𝐴3
5

      Equation 1-12 

3A1 = 𝐶𝐶11 + 𝐶𝐶22 + 𝐶𝐶33       

3A2 = 𝐶𝐶23 + 𝐶𝐶31 + 𝐶𝐶12       

3𝐴𝐴3 = 𝐶𝐶44 + 𝐶𝐶55 + 𝐶𝐶66       

Reuss approximation: 

𝐾𝐾𝑅𝑅 = 1
3𝑎𝑎1+6𝑎𝑎2

      Equation 1-13 

𝐺𝐺𝑅𝑅 = 5
4𝑎𝑎1−4𝑎𝑎2+3𝑎𝑎3

      Equation 1-14 

3a1 = 𝑆𝑆11 + 𝑆𝑆22 + 𝑆𝑆33       

3a2 = 𝑆𝑆23 + 𝑆𝑆31 + 𝑆𝑆12       

3𝑎𝑎3 = 𝑆𝑆44 + 𝑆𝑆55 + 𝑆𝑆66       

Hill approximation: 

𝐾𝐾𝐻𝐻 = 𝐾𝐾𝑉𝑉+𝐾𝐾𝑅𝑅
2

       Equation 1-15 

𝐺𝐺𝐻𝐻 = 𝐺𝐺𝑉𝑉+𝐺𝐺𝑅𝑅
2

       Equation 1-16 

Because the Voigt-Reuss approximation provides the lowest upper bounds and the 

highest lower bounds, and the Hill average is an empirical estimation, it is argued that 

the true elastic properties of aggregate crystals may lie anywhere between the Voigt 

bound and the Reuss bound [160].  

The Voigt-Reuss-Hill average is also known as the first-order bounds. The second-order 

bounds based on elastic energy expression have been introduced by Hashin and 

Shtrikman [161]. Though it is claimed to have higher accuracy than Voigt and Reuss 

bounds, and is suitable for various symmetries except triclinic [137, 162], the VRH 

average is still the most widely accepted method in literature regardless crystal 

symmetry. Therefore, as part of the present work, aggregates elastic properties 

calculated from single crystal elastic constants are all based on the VRH method. 
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Table 1-1 Summary of stiffness matrixes with independent elastic constants, and simplified VRH formulas for the typical pure metals at 

room temperature. 

Crystal System 
Axial 

Distances & 
Axial Angles 

Bravais Lattices Simplified stiffness matrix [148, 
163] 

Simplified Formulas for 
VRH Averaging [162] Metals 

Cubic 
a = b = c 

α = β = γ = 
90° 
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3
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=
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Au, Al, Ag, Ba, Ca, 
Cr, Cu, Fe, Mo, 
Mn1, Nb, Ni, Pb, 
Pd, Pt, Sr, Ta, V, 
W, Ir, Li, Rh, Cs, 
Th, Zr, Na, Ce, K, 

Eu, Rb, Yb 

1 Mn has the complex cubic structure. 
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Crystal System 
Axial 

Distances & 
Axial Angles 

Bravais Lattices Simplified stiffness matrix [148, 
163] 

Simplified Formulas for 
VRH Averaging [162] Metals 

Tetragonal 
a = b ≠ c 

α = β = γ = 
90° 
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Orthorhombic 
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α = β = γ = 
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Crystal System 
Axial 

Distances & 
Axial Angles 

Bravais Lattices Simplified stiffness matrix [148, 
163] 

Simplified Formulas for 
VRH Averaging [162] Metals 

Hexagonal 
a = b ≠ c 

α = β = 90°, 
γ = 120° 
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Co, Dy, Mg, Tb, Ti, 
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Bi, Sm 
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Crystal System 
Axial 

Distances & 
Axial Angles 

Bravais Lattices Simplified stiffness matrix [148, 
163] 

Simplified Formulas for 
VRH Averaging [162] Metals 

Monoclinic 
a ≠ b ≠ c 

α = γ = 90°, 
β ≠ 90° 
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1.6.3 The relationship between E, G, K and ν 

Provided that the solid is isotropic, a relationship exists between any three of the four 

elastic moduli, which means two independent elastic properties are sufficient to describe 

all modes of deformation [149]. Figure 1-4 illustrates the strained shape of a cube 

material subjected to the action of the shear and complementary shear forces [145].  

 

Figure 1-4 Element subjected to shear and associated complementary shear (from 

Ref. [145]). 

Assuming that the strains are so small that the angle ACB may be taken as 45°: 

𝜀𝜀𝑑𝑑 = 𝐵𝐵𝐵𝐵
𝑂𝑂𝐴𝐴

≈ 𝐴𝐴𝐵𝐵 𝑐𝑐𝑐𝑐𝑐𝑐 45°

𝑙𝑙√2
= 𝐴𝐴𝐵𝐵

2𝑙𝑙
= 𝑙𝑙𝑙𝑙

2𝑙𝑙
= 𝑙𝑙

2
      

∵ 𝛾𝛾 = 𝜏𝜏
𝐺𝐺
          

∴ 𝜀𝜀𝑑𝑑 = 𝜏𝜏
2𝐺𝐺

       Equation 1-17 

where εd is the strain on diagonal, l is the length of one side of the cube, γ is the angle of 

distortion or shear strain. 

The shear stresses system is equivalent to the direct stress system as shown in Figure 

1-5, which can be represented by one compressive set and one tensile set, each at 45° to 

the original shear directions, and equals in magnitude to the applied shear [145]. 
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Figure 1-5  Direct stresses due to shear (from Ref. [145]). 

( )νττντσ
ν

σ
ε +=

−
−=−= 121

EEEEEd    Equation 1-18 

Combining Equation 1-17 and Equation 1-18, the correlating equation between Young's 

modulus, shear modulus, and Poisson's ratio is obtained: 

𝐸𝐸 = 2𝐺𝐺(1 + 𝜈𝜈)      Equation 1-19 

Consider a cube subjected to three equal stresses σ [145]:    

𝜀𝜀𝑡𝑡 = 𝜎𝜎
𝐸𝐸
− 𝜈𝜈 𝜎𝜎

𝐸𝐸
− 𝜈𝜈 𝜎𝜎

𝐸𝐸
= 𝜎𝜎

𝐸𝐸
(1 − 2𝜈𝜈)       

∵ 𝜀𝜀𝑣𝑣 = 𝜀𝜀𝑥𝑥 + 𝜀𝜀𝑦𝑦 + 𝜀𝜀𝑧𝑧 = 3𝜀𝜀𝑡𝑡 = 3𝜎𝜎
𝐸𝐸

(1 − 2𝜈𝜈)     

∵ 𝜀𝜀𝑣𝑣 = 𝜎𝜎
𝐾𝐾

          

∴ 𝐸𝐸 = 3𝐾𝐾(1 − 2𝜈𝜈)         Equation 1-20 

where εt is the total strain along one edge, and εv is the volumetric strain.  

As shown in Equation 1-19 and  Equation 1-20 each elastic property can be expressed in 

terms of any other two properties. There are total 12 correlating equations as 

summarized in Table 1-2 [155]. Their corresponding annotations are listed in Table 1-3. 

For the sake of convenience, the correlating equations used in Chapter 4 refer to the 

equations listed in Table 1-2 unless otherwise specified. 

  

 τ 

τ 

σ2=-τ σ1=τ 

45° 
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Table 1-2  Relations between the elastic properties [155]. 

 
Young's modulus 

E 
Shear modulus 

G 
Bulk modulus 

K 
Poisson's ratio 

ν 

E, G   ( )EG
GE
−33
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GE
2

2−  

G, ν ( )ν+12G   
( )

( )ν
ν

213
12
−
+G   

G, K 
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+3

9    )3(2
23
GK
GK

+
−  

E, ν  ( )ν+12
E  ( )ν213 −

E   

E, K  
EK

EK
−9

3   
K

EK
6

3 −  

K, ν ( )ν213 −K  
( )
( )ν

ν
+
−

12
213K    

 

Table 1-3 Annotations for the correlating equations listed in Table 1-2. Equation 

1-21 is used to represent all the correlating equations for convenience. 

 
Young's modulus 

E 
Shear modulus 

G 
Bulk modulus 

K 
Poisson's ratio 

ν 

E, G   Equation 1-21-2 Equation 1-21-3 

G, ν Equation 1-21-1  Equation 1-21-4  

G, K Equation 1-21-5   Equation 1-21-6 

E, ν  Equation 1-21-7 Equation 1-21-8  

E, K  Equation 1-21-9  Equation 1-21-10 

K, ν Equation 1-21-11 Equation 1-21-12   
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1.6.4 Static and dynamic measurements  

The values of the elastic properties K, G, E and ν can be experimentally measured by a 

large number approaches based on static tests or dynamic tests, see Figure 1-6 [164]. 

The terms of static and dynamic refer to the strain rate and amplitude: static testing 

introduces large elastic strain with slow strain rates and is isothermal in nature, while 

dynamic testing involves small elastic strain with high strain rates and is inherently 

adiabatic process [165]. Sometimes, compressibility (χ), which is usually determined by 

static methods, is used instead of bulk modulus (K). As discussed in Ref. [119], 

isothermal values (χt) can be converted to adiabatic values (χs) via the following 

Equation 1-22. 

p

aL
tS C

TV29α
χχ −=     Equation 1-22 

where αL is linear thermal expansion coefficient, Va is atomic volume, which equals to 

the atomic weight divided by the density, T is absolute temperature (in unit of K), and 

Cp is isobaric specific heat.  

Because the difference between the isothermal and adiabatic value for a metal at room 

temperature is only a few percentage or less [166], and handbooks / databases usually 

do not specify whether isothermal or adiabatic values are given in their compilation, no 

distinction is made in the present work.  

1) Static approaches  

The static approaches are mostly based on the direct measurements of stresses and 

strains, such as tension tests, torsion tests and flexure tests. Although many standards 

[167-170] have been provided as guidance to determine elastic properties for metals, 

static approaches often yield poor results due to the strain from material creep or 

deflection of the test machine [171]. 
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Figure 1-6  Classification of the methodologies employed to determine the elastic 

properties of solids (from Ref. [164]). 

i. Tension test 

The Young's modulus can be measured from a simple uniaxial tension test. As shown in 

Figure 1-7 [172], a 'dogbone' specimen is elongated at a constant rate by the moving 

crosshead of the tensile testing machine. The increasing applied load F and the 

elongation (L-L0) is simultaneously measured using a load cell and an extensometer, 

respectively. Stress σ is then computed by dividing load F by the original cross-

sectional area A0 of the specimen, and strain ε is computed by dividing elongation (L-L0) 

by the original distance L0 (see Equation 1-23 to Equation 1-25 ) [173]. A typical stress-

strain curve obtained by plotting σ verse ε is also shown in Figure 1-7 (c). The 

magnitude of the slope of the linear line in elastic region equals the magnitude of 

Young's modulus.  

𝑆𝑆 = 𝐹𝐹
𝐴𝐴𝑜𝑜

      Equation 1-23 

𝜀𝜀 = 𝐿𝐿−𝐿𝐿𝑜𝑜
𝐿𝐿𝑜𝑜

      Equation 1-24 

E= σ
ε
       Equation 1-25 

where F is the instantaneous load applied perpendicular to the specimen cross section, 

A0 is the original cross-sectional area before any load is applied, L0 is the original length 

before any load is applied, L is the instantaneous length. 
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Figure 1-7  a) Schematic representation of the apparatus used to conduct tensile 

stress–strain tests (adapted from Ref. [172]); b) A typical standard specimen; and c) A 

typical stress-strain curve. 

ii. Torsion test 

The shear modulus can be obtained from a torsion test (see Figure 1-8). Point A on the 

surface of a solid cylindrical shaft of radius r rotates to point B subjected to a torque Tt. 

The shear stress τ, shear strain γ and shear modulus G are computed by the equations 

shown below [172]. 

𝜏𝜏 = 𝑇𝑇𝑡𝑡𝑟𝑟
𝐽𝐽

       Equation 1-26 

𝛾𝛾 = 𝑟𝑟𝜃𝜃1
𝐿𝐿

      Equation 1-27 

𝐺𝐺 = 𝑇𝑇𝑡𝑡𝐿𝐿
𝐽𝐽𝜃𝜃1

      Equation 1-28 

where θ1 is the angle of twist, L is the length of the cylindrical solid shaft, Tt is the 

applied torque, r is the radial distance, J is the polar moment of inertia, for a solid 

cylinder, 
2

4rJ π
= . 

   
A

0
=12.8 mm 

L0=60m

Elastic 
Plastic 

1 

E 

Strain 

Stress 
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Figure 1-8  Schematic representation of torsional deformation (from Ref. [172]). 

iii. Flexure test 

Flexural modulus testing is designed to apply small forces but achieve large 

displacements. It is ideal for brittle materials. There are two test types: 3-point flexure 

test and 4-point flexure test (see Figure 1-9). The former test is most common for 

polymers, while the latter is common for wood and composites.  

For the displacement of loading points in four-point bending [174]: 

( ) ( )
( )sct hb

dddFFE
δδ −
+−

= 3
21

2
121 32

    Equation 1-29 

where: 

 E = Young's modulus in Pa; 

F1 = Lower load level selected from recordings in N; 

F2 = Upper load level selected from recordings in N; 

d1 = Test jig inner roller to outer roller spacing in four-point bending in m; 

d2 = One half of the test jig inner span in four-point bending in m; 

bt = Test-piece width in m; 

τ 

τ 

θ1 

A B 

θ2 

θ1 

34 

 



Chapter 1 

35 

 

h = Test-piece thickness in m; 

δc = Displacement for the thin test-piece in the jig over load interval F1 to F2, in m; 

δs = Displacement for the thick steel bar (replacing the test-piece) in the jig over 

load interval F1 to F2, in m; 

 

Figure 1-9  Schematic diagrams of (top left) four-point flexure using machine 

displacement measurement, (top right) strain gauges applied to both sides of the test-

piece, and (lower) direct measurement of deflection between fixed points on the test-

piece surface using a single linear displacement transducer (from Ref. [174] and 

modified by the author). 
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2) Dynamic approaches  

In comparison with static approaches, dynamic approaches can very precisely and non-

destructively measure elastic moduli of specimens with a greater variety of shapes and 

dimensions at a wide range of temperatures [164]. Lord and Morrell [174] summarized 

the relative merits of the dynamic and static approaches for measuring elastic moduli, 

see Table 1-4. They concluded the theoretical errors in measurement of elastic moduli 

by dynamic methods are typically of the order of ±1%, in contrast to the much more 

significant errors generated by static methods at low strains. The advantages against 

static approaches encourage the developments of dynamic methods, which can be 

classified into two groups: wave propagation based methods and vibration methods. 

Table 1-4  Relative merits of the dynamic and static approaches [174]. 

 Static approach Dynamic approach 

Advantages 

 “Engineering value” for 

modulus 

 Generation of stress-strain 

curve 

 Widely available test 

equipment 

 Quick, simple, non-destructive 

 Good inherent accuracy 

 Uses small specimens 

 High temperature measurement 

 Can readily measure shear 

modulus and Poisson's ratio 

Disadvantages 

 High accuracy strain 

measurement required 

 Need averaging 

extensometry 

 Specialised test 

 Larger specimens required 

 Large interlaboratory 

scatter 

 Accurate high temperature 

measurements are difficult 

 Sensitive to dimensional 

tolerances 

 Methods do not always work 

well for some materials and 

composites 

 Calculations require some 

knowledge of other material 

parameters 

 Equipment not widely available 
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i. Wave propagation methods 

The most commonly used wave propagation method for the measurement of elastic 

property is the ultrasonic pulse technique. It is non-destructive and measures the speed 

of wave propagation through the material [175]. The elastic moduli of an isotropic 

material can be obtained by measuring the speed of sound velocities and material 

density. The four elastic properties can be determined from Equation 1-30 to Equation 

1-33 [176], and all elastic constants can be determined from Equation 1-34 to Equation 

1-36 [176]. For materials with preferred orientation, the equations to calculate elastic 

properties are more complex, requiring more sound speed measurements in specific 

directions relative to the material symmetry axes. 

     Equation 1-30 

     Equation 1-31 

      Equation 1-32 

       Equation 1-33 

	 2         Equation 1-34 

	 2 2 2      Equation 1-35 

	 2      Equation 1-36 

where VL and VS are the longitudinal and shear velocities. 

ii. Vibration methods 

Though wave propagation methods were robust and widely performed to determine the 

elastic constants of single crystals, possible inhomogeneity of test specimen would 

adversely affect the accuracy of measurements [164]. To deal with this problem, 

vibration methods have become available. With the knowledge of the size and mass 

information of the sample, such tests determine elastic properties, which are 

proportional to the square of material resonances, by making a beam test piece with 

uniform cross-section vibrate mechanically [174]. According to different vibration 



Chapter 1 

modes, these methods can be reduced to three categories, as illustrated in Figure 1-10 

[177]. 

Figure 1-11 is a schematic graph of a typical thread suspension flexural vibration test 

apparatus that has the advantage to allow the specimen to oscillate without significant 

restriction [178]. Electrical signal generated by the oscillator is amplified and 

transformed into mechanical oscillation through a transducer thus drives specimen at 

resonance. Another transducer on the other side detects such vibration in the specimen. 

The vibration transmitted through an amplifier, and is displayed on an oscilloscope. 

Frequency can be determined by either Lissajous figure analysis or a frequency meter. 

 

Figure 1-10  Three vibration modes using electromagnetic-acoustic transducers: a) 

longitudinal, b) torsional, and c) flexural [177]. 

 

Figure 1-11 Block diagram of a typical thread suspension flexural vibration test 

apparatus (from Ref. [178]). 
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1.7 Capturing materials properties correlations using 

artificial neural networks: an example in hardening of 

pure metals by high pressure torsion 

Capturing correlations from carefully measured experimental data and creating theories 

are one of the important methods in scientific research. One of the famous examples in 

history is the discovery of the laws of planetary motion by Johannes Kepler who spent 

many years in analysing Tycho Brahe's carefully and systematically recorded 

astronomical data. Capturing correlations has been dramatically accelerated by the 

application of modern IT technology [79, 123]. 

As one of the important Data Mining techniques, ANNs, which have been widely used 

to study diverse phenomena that are not yet accessible to full physical modelling, are 

capable of capturing linear or nonlinear relationships [126, 179]. The ability of ANNs in 

exploring relationships between multiple/unknown numbers of variables has been 

demonstrated by a number of successful applications in materials science [4, 78]. ANNs 

are especially useful in capturing relationships without knowing whether an explicit 

physical model exists.  

Advantages of ANNs include computationally high parallelism, fault and failure 

tolerance, learning ability to handle imprecise and fuzzy information, making this 

modelling very feasible [53]. Combinatorial search using ANNs is a quantitative 

treatment to handle a large numbers of variables with or without prior knowledge to 

pick up properties correlations that are perceived to be significant [180, 181]. It has 

been applied recently to automatically find the correlations between materials properties 

by searching a large number of data spaces.  

In Chapter 5, ANNs have been used to capture correlations between fundamental 

materials properties and the material’s hardness after high pressure torsion (HPT) 

processing. A physical model to explain this phenomenon has been published elsewhere 

[116]. The strength/hardness of metals can be significantly improved by HPT. In a HPT 

process, a disc sample subjected to compressive force and torsional straining (as shown 

in Figure 1-12), will result in grain refinement and reach a saturated hardness level 

[182].  
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Several factors influencing the hardness of pure metals due to HPT have been 

investigated, and it has been indicated that the hardness at saturated level correlates to 

atomic bond parameters, specific heat capacity, specific latent heat of fusion, linear 

thermal expansion coefficient, activation energy for self-diffusion, melting temperature 

and shear modulus [183-189]. However, little attention has been given to address the 

question: whether a limited set of physical properties can explain all measured changes 

in hardness due to HPT. 

 

Figure 1-12 The principle of high pressure torsion (from Ref. [182]). 

ANNs are generally used for complex system modelling with a large input data set. As a 

rule of thumb, training subset should be larger than the total number of input variables. 

It is generally recommended having more than 10 examples per input variable, though 

the size of data required in real practice is depending on the complexity of the problem 

and amount of noise in data [190]. Considering scientists would like to benefit from 

ANNs in a situation where the size of data set has an inherent limitation, it is time to 

find whether effective ANNs can be established with a small input data. For example, a 

relatively limited number of pure metals have been processed through HPT. Although 

the HPT processing has been applied to a wide range of materials [191], for instance, 

aluminium-based alloys, it is an easy start to create ANNs using results that only relate 

to pure metals. 

In Chapter 5, a systematic method based on artificial neural networks is analysed in 

detail. ANNs are applied to derive the correlations between the hardness increment of 
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pure metals and their thermal, electronic, and mechanical properties without any prior 

knowledge being applied. The aim is to identify the important properties that contribute 

most to the changes of hardness. In the author's related work [116], a physical model 

based on strengthening by dislocations and thermally activated recovery was developed 

to predict the increment of Vickers hardness of pure metals due to HPT. The physical 

model construction process initially benefited from the parameters identified by ANNs. 

Although ANNs are established by using only 17 data points (the same 17 metals that 

were used in the physical model), the results of ANN assessment and the physically 

based model mutually corroborate each other. 

1.8 The discovery of materials properties correlations by 

artificial neural networks and symbolic regression 

Materials property-property correlations have been used increasingly to describe new 

models, estimate property data, and match materials to designs. Unlike materials 

structure-property correlations, which are usually obtained from a conceptual view of 

bonding and structure, materials property-property correlations are often distilled from 

statistical analysis. They are expected to be presented in a quantitative way, i.e. in the 

forms of mathematical equation, which allows easy accesses and further explorations 

[192]. 

Despite the fact that materials property-property correlations could be complex and 

highly nonlinear, a wide range of modelling techniques are available for relationship 

modelling, property prediction and data forecasting. The modelling techniques include 

artificial neural networks [193], random forests [194], decision trees [195], support 

vector machines [196], and genetic programming (GP) [197]. Moreover, fixed-form 

parametric models can also be developed based on expert knowledge. Depending on the 

level of prior information needed to fully describe the model, Giustolisi and Savic [192] 

used white-box, grey-box and black-box to represent the situations where most, modest 

and least information is available in the model constructions process. Obtaining 

necessary information to construct white-box or grey-box models may not always be 

possible, thus, the applications of data driven modelling techniques have attracted a 

great deal of interests from scientists. 
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One of the emerging powerful methods to automatically find the analytic expressions of 

correlations is called symbolic regression (SR) via genetic programming. Instead of 

fitting parameters to an equation of a given form, SR evolutionarily searches for the 

optimum mathematical expression, including both the numerical parameters and the 

functional form of relationships between variables, by minimizing the modelling error 

[28]. The advantage to deal with nonlinear correlations without any prior knowledge 

makes SR override the traditional statistical models and empirical models that need to 

predefine equation structures. In contrast with other data driven modelling techniques, 

which are usually difficult to interpret as functional relationships [198], the solution of 

symbolic regression can be explicit interpreted into an analytic form of a mathematical 

correlating equation.  

Inspired by the pioneer work conducted by Koza [197], studies reporting the advantages 

of symbolic regression approach can be found in many disciplines [199]. Precise 

equations have been obtained by Brezocnik and Gusel [200] to predict radial stress 

distribution in cold-formed material. McKay et al. [201] employed symbolic regression 

to simulate multiple chemical process systems. Cai et al. [202] claimed that the heat 

transfer correlations extracted from the experimental data had smaller predictive errors 

than their published counterparts. Laws of geometric and momentum conservation from 

experimental data captured from various physical systems were re-discovered by 

Schmidt and Lipson [28]. In hydrology, applying symbolic expression to solve three 

example problems including rainfall-runoff modelling [203], resistance coefficient in 

corrugated pipes [204], and end-depth ratio in open channels [205], demonstrate the 

advantages of the new method as a 'transparent' and structured system identification that 

outperforms many data-driven methods.  

However, one major problem in employing symbolic regression via genetic 

programming is that the generated symbolic function tends to grow in complexity over 

time [192]. Several attempts have been made in order to yield more parsimonious model 

structures including improvements made by Grosman and Lewin [206], least squares 

optimization method [207], an evolutionary polynomial regression method proposed by 

Giustolisi and Savic [192], and so on. Nevertheless, Chapter 6 started from another 

perspective: the ANN method is employed as an additional automatic way to capture 
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domain knowledge of relevant inputs for SR systems, thus, the analytic function can be 

significantly reduced.  

In Chapter 6, the problem of obtaining mathematical equations (which represent the 

hidden materials property-correlations) from a large amount of data is investigated. To 

be specific, the correlating equations are expected to make accurate predictions about 

the enthalpies of vaporization of compounds. Firstly, ANNs are utilized to test whether 

any materials property-correlation exists in the dataset prepared from CRC handbook. 

When a property-correlation is found, the impact of each variable that contributes to the 

prediction is analysed through three different methods: i) the ANN combinatorial search, 

ii) the Partial Derivatives method (PaD), and iii) the Connection Weight approach (CW). 

Variables that have the largest influences on the accuracy of the prediction are identified 

by doing this. The extra information captured by ANNs is then fed into a standard SR 

model and an explicit mathematical equation has been obtained to predict the enthalpies 

of vaporization of 175 compounds. 

1.8.1 The enthalpy of vaporization 

The enthalpy of vaporization (ΔHvap, given in units of kJ/mol) is the energy required to 

transform a given quantity of a pure compound from liquid state into gas at the 

corresponding vapour pressure [208]. It is also known as the latent heat of vaporization, 

and is usually measured at the normal boiling point where the pressure equals to 101kPa 

(ΔHvb). The enthalpy of vaporization at the normal boiling point is an important 

parameter for the design and development of industrial processes at elevated 

temperatures [209, 210], such as distillation, evaporation, dry, etc. The value of ΔHvap at 

one temperature can be used to calculate the heat of vaporization of pure substances at 

other temperatures by employing the Watson functions indicated as Equation 1-37 [211]. 

 ∆𝐻𝐻𝑣𝑣𝑎𝑎𝑣𝑣2 = ∆𝐻𝐻𝑣𝑣𝑎𝑎𝑣𝑣1 �
1−𝑇𝑇𝑟𝑟2
1−𝑇𝑇𝑟𝑟1

�
𝑛𝑛

    Equation 1-37  

where the subscripts 1 and 2 refer to temperatures 1 and 2, Tri=Ti/Tc, and a common 

choice for the constant of n is 0.375 or 0.38. 

A few methods for the evaluation of ΔHvb utilizing other property parameters have been 

proposed [211]. However, all the estimation methods developed in decades are either 

modifications to the empirical models developed by the predecessors or white-box 
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models that were developed merely based on researchers' expert knowledge. Since 

ANNs can be used to capture correlations between properties. The author is curious to 

know whether their corresponding analytical forms utilizing the same input variables 

can also be acquired when the hidden correlations are found. In addition, it is of great 

interest to develop the correlating equations through SR, and compare such correlating 

equations with the empirical models proposed in literature. A simple but accurate 

correlating equation obtained from SR would show a great advantage especially when a 

new problem is encountered and the underlying mechanism is not wholly understood.  

1.8.2  Genetic programming and symbolic regression 

Genetic programming (GP) is a highly parallel computational modelling technique that 

emerged in the late 20th century and increased in popularity since then. Inspired by the 

evolution theory of natural selection, it simulates the process of genetic transmission of 

characteristics by performing the operation of reproduction, crossover, and mutation, 

when searching for a better solution [212]. When use GP to solve a given problem, each 

potential solution of the problem is referred as an individual, a number of individuals 

constitute a population (a group of possible solutions). By evaluating the fitness of each 

generation (i.e. how close the solution fit the input data), a set of feasible candidate 

solutions from one population is transformed into a newly created population that 

address user-defined issues with improved fitness.  

A flowchart of the 'survival of fittest' process is given in Figure 1-13 [212]. At the very 

beginning of GP, an initial population of individuals are randomly created as the 

evolutionary starting point. A fitness value is assigned for each individual according to 

an error evaluation function. Individuals with higher fitness survive and are reproduced 

at a higher rate, thus they are more likely to be preserved in the next generation. 

Meanwhile, the individuals chosen from the current generation are stochastically 

recombined to form a new population through the operator of crossover and mutation. 

The new population is then used in the next iteration of the algorithm, until some 

termination criterions are satisfied: a maximum number of generations have been 

produced, or a desired fitness level has been reached. 

The GP process of solving problems can be viewed as a search for a highly fitted tree-

like computer program, where all tree-nodes are selected randomly from the function set 
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or terminals set, while the root node uses only the function set [197]. A function set 

consists of operators such as arithmetic operations (+, -, ×, ÷, etc.), mathematical 

functions (sin, cos, exp, log, etc.), Boolean operations (AND, OR, NOT), conditional 

operators (If-Then-Else), functions causing iteration (Do-Until), and so on. The terminal 

set comprises the arguments that the function set can operate on, including constants. 

An example of such a tree-like program is given in Figure 1-14. The operations of 

reproduction, crossover, and mutation in a tree-like program are illustrated in Figure 

1-15. The major components of GP include the following aspects: (1) the set of 

terminals, (2) the set of functions, (3) the fitness measurement,(4) the parameters for 

controlling the run, (5) the criterion for termination and 6) the result designation method. 

Figure 1-16 is a summary for the basic GP preparatory steps [213]. 

The special application of GP used in this thesis is called Symbolic Regression. It 

searches for the optimal model structure (the form of equation) as well as associated 

parameters simultaneously, and generates a mathematical expression that provides a 

good solution to the input data points [28]. Unlike the traditional numeric regression 

problems, no predefined model structure is needed as a priori. In order to distinguish 

with the 'program-based GP', which has a program output (i.e. code), Elshorbagy et al. 

[214] use 'equation-based GP' to emphasise that an explicit equation can be obtained by 

SR.  

However, to generate parsimonious equations, a problem called 'bloat' needs to be 

solved. 'Bloat' is used to describe mathematical expressions that have non-functional 

codes (introns), making the solution harder to understand [199]. 'Bloat' could be caused 

by an inappropriate choice of input variables. Though it is claimed that SR has the 

ability to discriminate relevant and irrelevant inputs [215], 'bloat' can still occur due to 

the existing of redundant input variables which have limit impacts on the output. 

Having the redundant input variables removed in the beginning would make the 

generated mathematical equations easier to be interpreted.  

Moreover, mathematical expressions generated by SR are differing in size, shapes, and 

complexity, due to the computational resources, time, and expenses control. Identifying 

variables that have little or no predictive power and thus removing them before the 

implementation of SR, would offer substantially advantages. Nevertheless, input 

variables for SR modelling are generally chosen by users based on human intuition, 
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experiences and experiment observations [200]. It is desirable to have an additional 

automatic ways to determine the appropriate set of input variables from a possible large 

variable-pool for SR modelling [216]. 

1.8.3 ANNs to identify the contributions of input variables 

ANNs are one of the most widely used data-driven techniques that have the ability to 

deal with complex information. As demonstrated by the applications in Chapter 3 ~ 

Chapter 5, ANNs show great predictive power in capturing the linear or non-linear 

relationships between input variables without having to assume the relation function in 

advance. However, interpreting the symbolic meaning behind ANNs (in regard to the 

weight matrix and network internal behaviour) into a comprehensible form of 

knowledge has been a long standing issue [217].  

Though ANNs are often regarded as 'black-boxes' that the relationships are encoded as 

weight vectors [124, 218], a number of methods studying variable contributions in 

ANNs have been developed in recent years and received growing interests [219-222]. 

The most notable advances were made by Gevrey et al. [221] and Olden et al. [218] 

respectively, who agreed that ANNs could adequately identify redundant and noisy 

variables. Nevertheless, Gevrey et al. [221] compared different variable-importance 

evaluation methods based on an empirical dataset, and found the Partial Derivatives 

method, which calculated the partial derivatives of the output according to the input 

variables, outperforming other variable contribution analysis methods. But a 

comparison study to access the relative importance of the input factors provided by 

Olden et al. [218] based on a simulated dataset, indicates the Connection Weight 

approach that uses weight vectors of ANNs, is the optimal method to fully rank the 

importance of input variables.  

In Chapter 6, both the PaD method and the CW approach are deployed to study the 

contributions of input variables. A combinatorial search is also conducted to analyse the 

predictive performance of input variable combinations. The most important input 

variables are identified, and are subsequently used to develop the correlating equations 

through SR. Thus, explicit equations that exclude redundancy (uninformative candidate 

input variables) are generated. 
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Figure 1-13  Flowchart of the genetic programming paradigm (from Ref. [212]). 

Index i refers to an individual in the population of size M, and GEN is the number of the 

current generation. 
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Figure 1-14 A tree-like hierarchically structured computer program corresponding to 

the equation: (y/x)*y-y-cos(x+y). 
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Figure 1-15 Illustration of GP operations: a) reproduction, b) mutation, and c) 

crossover.  

 

Figure 1-16 Major preparatory steps of the basic GP process (from Ref. [213]).
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2. ANN methodology and configuration  

With better understanding of biological brain function and the faster development of 

scientific technology, modern neural network research has bifurcated into two fields: 

one is concerned with creating effective network architectures and algorithms, and the 

other is concerned with the applications of ANNs [21]. The work presented in the thesis 

belongs to the second field that a well-accepted standard BPANN model is employed in 

the application of materials science to explore property-property correlations.  

According to Masters [223] and Heaton [224] that problems that require two hidden 

layers are rarely encountered, as well as the promising initial results obtained when only 

one hidden layer was used, a three-layer feed forward backpropagation network 

containing an input layer, a hidden layer and an output layer has been chosen to be 

investigated for capturing the hidden property-property correlations. The number of 

neurons in the input layer equals the vectors/dimensions of the input data, the number of 

neurons in the output layer is constrained by the number of output data. In the four 

ANNs applications, the output of networks is defined to be one property. Hence, there is 

only one neuron in the output layer. Determining the optimum number of neurons in 

hidden layer (Zo) by adequate ANN training in a reasonable/acceptable amount of time 

is a long-standing puzzle since it depends on multiple factors [179]:  

• the size of input and output data;  

• the number of training cases,; 

• the quality of the data sets; 

• the complexity of problems intended to be solved;  

• the architecture of ANNs;  

• the type of activation function and transfer function;  

• the training algorithm;  

• regularization.  
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Based on the author's experience, the choice of Zo is generally considered to obey the 

following two rules: 

i. Z should be between the size of the input layer and the size of the output layer 

(i.e. 1) in order to avoid over-fitting or under-fitting. 

ii. The total number of connections in ANNs to be fitted should be smaller than the 

number of the cases available for ANNs training in order to avoid over-fitting. 

The larger number calculated from the above rules is denoted as H. A loop trial-and-

error program suggested by Malinov and Sha [225] is then applied to determine the best 

number of neurons within the range of [1, H] that achieves the best predictive 

performance. 

The predictive performance is assessed not only based on the observation cases, but also 

on the evaluation cases that were not used in the network training process. ANNs are 

trained by feeding a balanced set of training examples that effectively represent global 

signals into the networks. With enough information process capacity (neurons), training 

errors are reduced and general features hidden in the complicated data set are captured. 

However, if the training examples are not sufficient, which will cause a problem called 

under-fitting, or there are too many neurons to learn trivial features in the training 

examples that turn out to be irrelevant with the general population, which in turn results 

in over-fitting, the ANNs obtained will not be able to generalize well on a new dataset 

[90]. In order to make sure that the obtained ANNs have a good generalisation ability, 

the performance of ANNs using ‘unseen’ data, which are already collected but not been 

used in the training processes, is also evaluated and used as one of the criteria for the 

network performance evaluation.  

Apart from determination of the number of neurons in the hidden layer, the loop 

programme, as illustrated in Figure 2-1, is employed to randomly divide the total data 

set into two sub-sets, i.e. observation cases and evaluation cases, at a ratio of 4:1 for Q 

times. Because the amount of training time will increase dramatically with the increase 

in the number of training cases and hidden neurons, it would be time consuming to set 

Q to be a very large value for all problems. It is the author's experience that for 

regression problems, if the size of the observation cases is smaller than 500, Q setting to 

30 is large enough to obtain satisfactory ANN models in most cases. Thus, in the 
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experiments described in Chapter 4 ~ Chapter 6, Q is set to 30 (though some ANN 

models may not converge). While in the experiment described in Chapter 3, where all 

ANN models need to be successfully constructed for an effective correlation-group 

analysis, the minimum value of Q is set to 30, and the upper limit of Q equals to the 

times when ANNs finally converge.  

The entire programs are run on the Matlab 2010a platform [226] where initial weights 

and bias of the network are automatically generated. All input data are normalized to a 

uniform range of [-1, 1] using Equation 2-1, which is a standard procedure to improve 

the speed of learning process. The ‘trainbr’ training function, that can update weight and 

bias values according to Bayesian regularization, is used together with the mean square 

error performance function. It minimizes a combination of squared errors and weights to 

determine the best combination of squared errors and weights [227]. ‘Tansig' 

(hyperbolic tangent sigmoid transfer function) is used as transfer function for the hidden 

layers. The transfer function for the output layer is selected to be 'Purelin' (linear 

transfer function), which is popularly used especially in solving regression problems.  

       𝑦𝑦𝑖𝑖 = 2(𝑥𝑥𝑖𝑖−𝑥𝑥𝑚𝑚𝑖𝑖𝑚𝑚)
𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚−𝑥𝑥𝑚𝑚𝑖𝑖𝑚𝑚

− 1    Equation 2-1 

where xi is the ith input before normalization, xmin is the minimum value of the inputs, 

xmax is the maximum value of the inputs, and yi is the ith input after normalization. 

The network is trained for 800 epochs to meet a training goal of 1 × 10−8. During the 

training, the weights and biases are constantly updated to map the outputs with the 

inputs until: 1) the maximum number of epochs (800) is reached, or, 2) the minimum 

performance value is obtained, i.e. mean squared error (MSE, see Equation 2-2) equals 

to 1 × 10−8. 

𝑀𝑀𝑆𝑆𝐸𝐸 = 1
𝑁𝑁
∑ (𝑛𝑛𝑖𝑖)2𝑁𝑁
𝑖𝑖=1 = 1

𝑁𝑁
∑ (𝑛𝑛𝑖𝑖 − 𝑎𝑎𝑖𝑖)2𝑁𝑁
𝑖𝑖=1    Equation 2-2 

where ai is the network predicted value, ti is the target output, ei is the difference 

between the network predicted value and the target output, and N is the number of 

training cases available [227].  
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Figure 2-1  A flowchart showing how the desired Neural network with one hidden layer was achieved. 'Tansig' is the transfer function used in 

the hidden layer and 'Purelin' for the output layer. ‘Wt’ is the weight, while ‘bs’ stands for bias. The total available data are randomly 

partitioned as observation cases and evaluation cases at a ratio of 4:1. This process is repeated for Q times. For each time, the number of hidden 

neurons is decided in a loop program to achieve the smallest δ. The designate ANN is the one that has the smallest δ in all the Q times.
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2.1 Inputs and outputs of ANNs 

The inputs and outputs of ANNs for each application are discussed in the experimental 

section of each chapter. To summarise: 

In Chapter 3, a database of 37 metallic elements for the construction of ANNs is 

prepared from CES EduPack [228]. The inputs and outputs of ANNs are chosen from 

24 properties, which include: 1) atomic radius, 2) atomic weight, 3) boiling point, 4) 

bulk modulus, 5) cohesive energy, 6) debye temperature, 7) electrical resistivity, 8) heat 

of fusion, 9) heat of vaporization, 10) lattice parameter a, 11) magnetic susceptibility, 

12) melting temperature, 13) molar volume, 14) neutron absorption cross section (0.025 

eV), 15) neutron scattering cross section (0.025 eV), 16) Poisson's ratio, 17) shear 

modulus, 18) specific heat capacity, 19) surface energy, 20) T-dependence of resistivity, 

21) thermal conductivity, 22) thermal expansion coefficient, 23) work function, and 24) 

Young's modulus. 

In Chapter 4, the values of Young's modulus, shear modulus, bulk modulus and 

Poisson's ratio for the 68 pure metals are collected from 12 different sources. One 

property out of the four properties is selected as the output, and any other two properties 

are used as the inputs. 

In Chapter 5, the database of 17 pure metals is collected from several journal articles. 

The target output is the absolute increment of hardness after HPT. The input properties 

are chosen from 13 properties. The 13 properties are: 1) atomic number,2) binding 

energy per nucleon, 3) cohesive energy, 4) density, 5) heat of fusion, 6) lattice 

parameter a, 7) melting temperature, 8) molar volume, 9) shear modulus, 10) specific 

heat capacity, 11) thermal expansion coefficient, 12) work function, and 13) Burgers 

vector. 

In Chapter 6, the database of 175 organic and inorganic compounds is collected from 

CRC Handbook [229]. Enthalpy of vaporization at boiling point is the target output of 

ANNs and the SR models. The input properties are chosen from five properties: 1) 

normal boiling point, 2) critical point, 3) critical pressure, 4) dipole moment, and 5) 

molecular weight. 
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2.2 Early stopping 

A method called early stopping can improve network generalization when dataset size is 

relatively large [230]. Generally, data are randomly divided into three subsets at a ratio 

of 8:1:1, which are the training, validation and testing data respectively. The training 

data are used to train the network by updating the network weights and biases. The 

errors from validation data and test data are monitored to ensure the network generalises 

well during training:  

• if the validation error increases over 5 iterations, the training will be terminated; 

• if the iteration number of minimum error reached in the test set is significantly 

different from that of the validation set, a new partition of data may be needed.  

2.3 Bayesian regularization 

Another important technique called Bayesian regularization can improve network 

generalization when dataset size is relatively small. The objective of the ANN training 

process is to minimize the objective function. Initially, the objective function is 

equivalent to the sum of squared errors between the network predicted value and the 

target output (ED), while Bayesian regularization adds an additional term to modify the 

objective function from Equation 2-3 to Equation 2-4 [231]. 

The original objective function Fo: 

𝐹𝐹𝑐𝑐 = 𝐸𝐸𝐷𝐷 = ∑ (𝑛𝑛𝑖𝑖)2𝑁𝑁
𝑖𝑖=1 = ∑ (𝑛𝑛𝑖𝑖 − 𝑎𝑎𝑖𝑖)2𝑁𝑁

𝑖𝑖=1    Equation 2-3 

The modified objective function Fm: 

𝐹𝐹𝑚𝑚 = 𝛽𝛽𝐸𝐸𝐷𝐷 + 𝛼𝛼𝐸𝐸𝑤𝑤      Equation 2-4 

where Ew is the sum of squares of the network weights, and α and β are objective 

function parameters that automatically update in each iteration until reach convergence.  

In Bayesian regularization framework, it is assumed that the true underlying function 

has a degree of smoothness, and the network response will be smooth if the size of 

network weights is constrained [231]. Matlab employs a Gauss-Newton approximation 

to progressively refine the regularization parameters (i.e. α and β).  
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It has been demonstrated that the Bayesian regularization produces networks which 

have excellent generalization capabilities [232]. Because Bayesian regularization tends 

to provide better generalization performance than Early stopping method especially 

when the size of the dataset is relatively small [227], only Bayesian regularization is 

employed in the experiments described in Chapter 3 ~ Chapter 6 to improve ANNs 

generalization ability. Therefore, training data and test data are used instead of 

observation cases and evaluation cases to describe ANN results for the sake of 

convenience. 

2.4 General evaluation criteria 

In order to evaluate the overall performance of neural networks based on the total data 

set including both the observation cases and the evaluation cases, two methods can be 

used. The first one is δ (see Equation 2-5 and Equation 2-6), which is a comprehensive 

evaluation of Sl and Rl for both the training data and test data. The smaller the δ, the 

better ANNs perform, and the stronger the correlations. Another way is to simply 

compare the difference between the experimental data and the prediction values. In 

Chapter 3, the two evaluation criteria are combined to access correlation-group 

performances according to a quadratic superposition rule. In Chapter 4 ~ Chapter 6, 

when the difference of δ is relative small between different ANNs, the second 

evaluation criterion, i.e. the average error, is more favoured in describing the ANN 

performances.  

   𝛿𝛿 = |𝜑𝜑𝑐𝑐𝑜𝑜𝑐𝑐𝑜𝑜𝑟𝑟𝑣𝑣𝑎𝑎𝑡𝑡𝑖𝑖𝑐𝑐𝑛𝑛2 − 𝜑𝜑𝑜𝑜𝑣𝑣𝑎𝑎𝑙𝑙𝑒𝑒𝑎𝑎𝑡𝑡𝑖𝑖𝑐𝑐𝑛𝑛2 |          

   = |𝜑𝜑𝑜𝑜𝑏𝑏𝑜𝑜𝑛𝑛𝑜𝑜𝑜𝑜𝑎𝑎𝑛𝑛𝑖𝑖𝑜𝑜𝑛𝑛 + 𝜑𝜑𝑜𝑜𝑣𝑣𝑎𝑎𝑙𝑙𝑒𝑒𝑎𝑎𝑡𝑡𝑖𝑖𝑐𝑐𝑛𝑛| × |𝜑𝜑𝑜𝑜𝑏𝑏𝑜𝑜𝑛𝑛𝑜𝑜𝑜𝑜𝑎𝑎𝑛𝑛𝑖𝑖𝑜𝑜𝑛𝑛 − 𝜑𝜑𝑜𝑜𝑣𝑣𝑎𝑎𝑙𝑙𝑒𝑒𝑎𝑎𝑡𝑡𝑖𝑖𝑐𝑐𝑛𝑛|  Equation 2-5 

𝜑𝜑 = |𝑆𝑆𝑙𝑙 − 1| + (1 − 𝑅𝑅𝑙𝑙)      Equation 2-6 

where Sl is the slope of the linear regression line for both the observation cases and the 

evaluation cases, and Rl is the regression coefficient.  

The criterion δ is defined by Equation 2-5 and Equation 2-6. This criterion is first 

introduced in Ref. [10]. The smaller the |𝜑𝜑observation + 𝜑𝜑𝑜𝑜𝑣𝑣𝑎𝑎𝑙𝑙𝑒𝑒𝑎𝑎𝑡𝑡𝑖𝑖𝑐𝑐𝑛𝑛|, the lower error of 

the ANNs from either the observation cases that used to train the network and the 

evaluation cases that used to test the generalization ability of the network. The smaller 

the |𝜑𝜑observation − 𝜑𝜑𝑜𝑜𝑣𝑣𝑎𝑎𝑙𝑙𝑒𝑒𝑎𝑎𝑡𝑡𝑖𝑖𝑐𝑐𝑛𝑛|, the smaller difference between the accuracy of 
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observation cases and evaluation cases, which is expect to be as close to zero as possible. 

This is another indicator of the network generalization ability.  

The performance of an ANN increases with the decreases of δ, and the desired ANN is 

the one with the smallest δ. In this thesis, the best ANN out of Q independent trials that 

has the smallest value of δ is chosen. An example is given in Figure 2-2 (see more 

discussion about the figure in Section 5.2.3). It shows ANNs predicting the hardness 

increment due to HPT from shear modulus and melting temperature. For an accurate 

prediction, the solid red and dot blue line should coincide, and both the slope Sl and 

correlation coefficient Rl should approach 1.  

 

Figure 2-2 Result of ANNs in predicting the hardness increment due to HPT from 

shear modulus and melting temperature for 17 elements with δ equals to 0.04 and 12.67% 

error. 
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3. Capturing property correlations through a 

combinatorial ANN search 

3.1 Introduction  

Property correlations are useful in understanding the properties, generating new 

information, calculating missing property values, testing the internal consistency of 

experimental data, and the construction of theoretical models. However, capturing 

property correlations generally requires substantial human effort and prior expert 

knowledge. The difficulty of correlations exploration is exacerbated with the increase of 

complexity that exists in the correlations as well as the ever-enlarging databases.  

In the following section, an ANN combinatorial search is applied to investigate the 

binary, ternary and quaternary order correlations of 24 properties in 37 metallic 

elements. Instead of creating composition 'libraries', property 'libraries' are prepared and 

analysed. The ANN combinatorial search acts as an automatically exhaustive search 

method that evaluates all of the possible combinations of property correlations. To 

effectively identify meaningful and nontrivial property correlations and correlation-

groups, an evaluation criteria that combines the parameters of model performance (ψ), 

ANNs generalization ability (δ) and correlation error (Ec) is proposed. Then, a diverse 

set of correlations that was top-ranked by this new evaluation criterion is discussed. 

3.2 Experiment 

3.2.1 Data collection 

All data are collected from CES [228]. Though errors can be found in the database, the 

error rate is considered to fall below 5%. Hence, the data quality of CES will not 

heavily bias the ANN modelling. Compared to organic or inorganic compounds, 

elements in the Periodic Table have most completed and reliable property data: there are 

total 35 properties recorded for the elements. Because not every element has a full 35 

property record, a trade-off is made between the number of elements and the number of 

available property records. Finally, 37 elements, which are in solid state under 295±5 K 
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(except Hg), with a full record of 24 different properties, constitute the entire ANNs 

input dataset as listed in Appendix I.  

The 24 properties chosen according to the author's interests and according to their 

availability in the database of CES are listed in Table 3-1. As can be seen, this study 

extends the earlier work [233] by searching for a much larger domain of property 

correlations, and introducing new evaluation criteria to evaluate the importance of 

observed property correlations (which is discussed in Section 3.2.3). 

3.2.2 Input variables and output variables 

Prior to the application of the ANN analysis, no data transformation was performed 

besides the procedures described in Chapter 2. Though it is acknowledged that taking 

logarithmic pre-treatment may result in models with better performances, the standard 

procedures (without cleaning, integration, etc.) worked sufficiently well for the purpose 

of this study. Because this experiment aims to find the strongest property correlations 

through the ANN combinatorial search, there is no need to remove highly correlated 

properties in the inputs.  

In order to perform the ANN combinatorial search, the 24 properties listed in Table 3-1 

were used in turns as the output variable of ANNs (i.e. the property to be predicted). In 

total, the ANNs searched three different orders of property correlations, namely, binary, 

ternary, and quaternary order property correlations. Each binary, ternary, and quaternary 

order of property correlation was constituted by one input variable, two input variables, 

and three input variables, respectively. Once the output variable was determined, input 

variable 'libraries' representing all possible combination were selected from the rest 23 

properties. Since ANNs can be highly parallel distributed utilizing multiple computer 

cores, the advantages of employing ANNs to process the huge amount of data in the 

search for knowledge are evident. 
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Table 3-1 The 24 properties used in the ANN combinatorial search. 

Property symbol Property name Unit 

a Lattice parameter, a nm 

Ar Atomic weight dimensionless

Cp Specific heat capacity J/kg·K 

E Young's modulus at 300 K GPa 

Ecoh Cohesive energy kJ/mol 

G Shear modulus at 300 K GPa 

Hfus Heat of fusion kJ/mol 

K Bulk modulus at 300 K GPa 

r Atomic radius nm 

Tb Boiling point °C 

Tm Melting point °C 

Vm Molar volume m3/kmol 

W Work function eV 

Tr T dependence of resistivity Ω/°C 

αL Thermal expansion coefficient at 300 K µstrain/K 

ΔHvb Heat of vaporization at the normal boiling point kJ/mol 

θD Debye temperature °C 

λ Thermal conductivity at 300 K W/m·K 

ν Poisson's ratio dimensionless

ρe Electrical resistivity at 300 K µohm·cm 

σA Neutron absorption cross section (0.025 eV) barns 

σS Neutron scattering cross section (0.025 eV) barns 

ϒ Surface energy(liquid) J/m2 

χm Magnetic susceptibility dimensionless

 

3.2.3 Evaluation criteria 

One problem with the ANN combinatorial search is the extensive amount of results that 

need to be analysed. In this work, nearly 5000 ANN models have been created. A way 

to assess the correlation importance (i.e. how strong the correlation is) of those models 
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is in a deep need. Two criteria were applied to identify meaningful and nontrivial 

property correlations in this study:  

1. Generalization ability δ. The generalization ability of an ANN model is an 

important factor that shows how well the correlation can be applied to new data, 

which is not used in the model construction. As discussed in Chapter 2, δ can be 

assessed by analysing the model performance on the training data and the test 

data (see the discussion about Equation 2-5 and Equation 2-6 on page 56). 

          𝛿𝛿 = �𝜑𝜑𝑡𝑡𝑟𝑟𝑎𝑎𝑖𝑖𝑛𝑛𝑖𝑖𝑛𝑛𝑡𝑡2 − 𝜑𝜑𝑡𝑡𝑜𝑜𝑐𝑐𝑡𝑡2 �        Equation 2-5 

         𝜑𝜑 = |𝑆𝑆𝑙𝑙 − 1| + (1 − 𝑅𝑅𝑙𝑙)        Equation 2-6 

2. Correlation error (Ec). The validity of a property-correlation is reflected by its 

prediction accuracy (A), which indicates how accurate the correlation is when it 

is applied to the given data. Because Ec equals (1-A) when A is larger than zero, 

the higher accuracy means the lower prediction error. Thus, correlations that 

have the lowest prediction errors are perceived to show the best performances. 

On the other hand, the correlation accuracy could be heavily impaired by errors, 

and generally ~5% original data are subject to contamination [234, 235], the 

correlation error presented in this thesis always excluded the 5% data that have 

the largest errors. 

Property correlations can be evaluated on single correlation basis or on a correlation-

group basis. The concept of a correlation-group is illustrated in Figure 3-1. The ternary 

order correlation-group is constituted by three different correlations that utilizing the 

same three properties (X, Y and Z). For each correlation, one of the three properties is 

delegated as the output variable, and the other two properties are chosen to be the input 

variables. Similarly, the binary order correlation-group is constituted by two 

correlations that utilizing one of the two properties as the output variable, and the other 

property as the input variable. In addition, the quaternary order correlation-group is 

constituted by four correlations that utilizing one out of the four properties as the output 

variable, and the other three properties as the input variables.  

It is acknowledged that root mean square of errors (RMSE) and coefficient of 

determination (Rl) are the two modelling evaluation methods that widely adopted in the 
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literature [205]. Because the magnitude of average prediction error partly depends on 

the magnitude of experimental data, it makes no sense to compare the magnitude of 

error of different correlation models in predicting different properties. As for Rl, it has 

already been taken into the account by the generalization criteria δ. Thus, it is not 

suitable to use the two parameters (RMSE and Rl) as the overall evaluation criteria in 

this experiment. 

The two criteria (δ and Ec) mentioned above are considered to be equally important and 

are assessed simultaneous in three different ways, where the completed picture of model 

performance is given by ψ: 

1) A linear superposition rule:              𝜓𝜓 = 𝛿𝛿 + 𝐸𝐸𝑐𝑐 

2) A quadratic superposition rule:        𝜓𝜓2 = 𝛿𝛿2 + 𝐸𝐸𝑐𝑐2 

3) The rank: correlation-models are sorted based on δ and 𝑬𝑬𝒄𝒄  respectively. 

Therefore each correlation-model will have two ranking indexes 𝑰𝑰(𝜹𝜹) and 𝑰𝑰(𝑬𝑬𝒄𝒄). 

The final index of ψ is judged by [𝑰𝑰(𝜹𝜹) + 𝑰𝑰(𝑬𝑬𝒄𝒄)]. 

 

 

Figure 3-1 An example of a ternary order correlation-group that is constituted by 

three different correlations utilizing the property X, Y and Z. The three properties have 

been used as the output variable in turns, when the other two properties are used as the 

input variables. 

X   Y Z 

X   Z Y 

Z  Y X 

62 

 



Chapter 3 

As for a correlation-group constituted by N (N=2, 3 or 4) correlations, the group 

performance (𝝍𝝍𝑵𝑵) is evaluated according to Equation 3-1, which is also assumed to 

follow a quadratic superposition rule. A good correlation-group means the involved 

properties have common response to each other. 

 𝜓𝜓𝑁𝑁 = �𝜓𝜓�2 + 𝑜𝑜𝑠𝑠(𝜓𝜓)2 Equation 3-1 

where  𝝍𝝍�  and 𝒔𝒔𝒔𝒔(𝛙𝛙)  is the average value and standard deviation of 𝝍𝝍  for all the 

correlation-models (𝝍𝝍𝟏𝟏,𝝍𝝍𝟐𝟐 …𝝍𝝍𝒏𝒏).  

3.3 Results and discussion 

In total, 552 binary order property correlations, 6072 ternary order property correlations 

and 42504 quaternary order property correlations have been created and investigated 

through the performing of ANN combinatorial search. For the correlations prioritized as 

the top 1% of each order, all the three assessments (proposed in Section 3.2.3) in 

evaluating individual property relationship reach very similar conclusions. Appendix II 

and Appendix VII tabulates the top 50 property correlations and the top 25 property 

correlation-groups of each order based on the quadratic superposition ANNs evaluation 

criteria. To enable potential usage for interested readers, the entire results are available 

on the author's webpage at www.researchgate.net. 

ANN models with small correlation errors indicate the captured relationships have 

strong connections to nature laws. A large number of strong correlations are obtained 

through the combinatorial search, among which, some correlations have not been 

previously attended to, while some correlations have already been proposed in literature 

(especially for binary order correlations). It is beyond the framework of this study to 

discuss every strong correlation discovered by ANNs. In order to show the typical types 

of correlations that the ANN combinatorial search can find, two binary order 

correlation-groups and three ternary order correlation-groups are analysed in detail. In 

addition, the quaternary order property correlation between the work function and the 

confounding effect generated by surface energy, thermal conductivity, and lattice 

parameter a, is also discussed. 
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3.3.1 Top binary order correlations 

Appendix II and Appendix III list the top binary order correlations obtained by the 

ANN combinatorial search, including:  

a) the relation between cohesive energy of solid and heat of vaporization;  

b) the relation between atomic radius and molar volume (which is evident); 

c) the relation between boiling point and heat of vaporization (which will be 

further discussed in Chapter 6);  

d) the relation between shear modulus and Young's modulus (the ratio of shear 

modulus to Young's modulus generally equals to 3/8 [154]); 

e) the relation between atomic weight and specific heat capacity.  

To the author's best knowledge, the first correlation is hardly acknowledged in literature 

(though the correlation between cohesive energy of liquid metal and heat of 

vaporization is well known [236]), thus it is discussed emphatically in this section. 

While the relation between atomic weight and specific heat capacity, which is also 

known as the Dulong-Petit Law, is discussed in brief. The correlations captured by 

ANNs indicate that the ANN combinatorial search is a way of illuminating the facts, 

regardless of whether the facts have been discovered or not. 

1) Cohesive energy and heat of vaporization at the normal boiling point 

By definition, the heat of vaporization at normal boiling point (ΔHvb) is the energy per 

mol required to transform a substance from liquid into a gaseous state under the 

standard pressure (101kPa) at its normal boiling point [208]. The average discrepancy 

of ΔHvb between CES data [228], which is used in the ANN combinatorial search, and 

the data recently corrected by Zhang et al. [237], is about 4.2%. A more detailed 

discussion about ΔHvb can be found in Chapter 6. Among the several thermal properties 

such as melting point, heat of fusion, thermal expansion coefficient, and Debye 

temperature, the ANN combinatorial search indicates that ΔHvb is most strongly 

correlated with boiling point (Tb). There are some empirical equations available to make 

a fast estimation of ΔHvb from Tb, for example, the equation proposed by Kistiakowsky 

[208].  

The cohesive energy (Ecoh) is the energy per mole must be added to completely break 

the bonding of atoms of a solid at 0 K at 1 atm, separating the condensed materials into 
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isolated neutral free atoms, which have the same electronic configurations, at infinity 

(the gaseous state) [238, 239]. Ecoh is different from lattice energy as the latter is 

referring to ionic solid crystals [238]. 

The value of Ecoh offers an insight into the bonding strength between atoms in the solid 

materials [239]. As can be seen from the values of Ecoh for metals that are listed in 

Appendix I, the alkali metal crystals have the smallest values of the cohesive energy 

(~100 kJ/mol), because they are relatively weakly bonded. The transition element 

metals are strongly bounded, as they have the largest values (400 ~ 900 kJ/mol). While 

the alkaline earth metals and the poor metals, such as Al, Zn, Cd, In, Sb, Hg, Tl, Pb, and 

Bi, have intermediate values of Ecoh (100 ~ 200 kJ/mol). 

It should be noted that Ecoh mentioned in this work is for bulk materials rather than the 

corresponding nanoparticles. Since atoms on the surface of nanoparticles are 

incompletely bonded [238], Ecoh of nanoparticles is much lower than that of the 

corresponding bulk materials [240]. The particle size dependence also holds for melting 

point and surface tension [241, 242]. Without any further notice, all the properties 

mentioned here are for bulk materials. 

There is no direct measurement to obtain the absolute value of Ecoh [243]. Experimental 

results mentioned in literature can usually be traced back to the values compiled by 

Kittel [238] and Brewer [244]. In fact, Kittel claimed his data was supplied by Brewer. 

The average difference of Ecoh between CES data, which were used in the ANN 

combinatorial search, and the data provided by Kittel is less than 1%. For pure crystals, 

Farid and Godby [245] summarised the three experimental ways to obtain Ecoh: i) by 

measuring the heat of sublimation at various temperatures, and extrapolating the 

sublimation curve in the pressure-temperature plane to zero Kelvin, ii) by determining 

of the heat of reaction based on the measurements of the equilibrium constant, and ii) by 

calculating from thermodynamic tables at crystal phase (cr) and gas phase (g) through 

Equation 3-2 [245]. 

     ∆𝑓𝑓𝐻𝐻0 𝐾𝐾
𝑐𝑐 = ∆𝑓𝑓𝐻𝐻298.15 𝐾𝐾

𝑐𝑐 + (𝐻𝐻0 𝐾𝐾
𝑐𝑐 − 𝐻𝐻298.15 𝐾𝐾

𝑐𝑐 )𝑡𝑡 − (𝐻𝐻0 𝐾𝐾
𝑐𝑐 − 𝐻𝐻298.15 𝐾𝐾

𝑐𝑐 )𝑐𝑐𝑟𝑟 Equation 3-2 

where ∆𝒇𝒇𝑯𝑯𝑻𝑻 
𝒐𝒐  is the standard-state enthalpy of formation of the gas from the crystal at 

temperature T, and 𝑯𝑯𝑻𝑻 
𝒐𝒐  is the standard-state enthalpy at temperature T. 
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There are a number of studies in the correlation of cohesive energy with other materials 

properties. Because Ecoh provides a measure of the intermolecular forces of metals, it is 

found to increase linearly with the melting point (Tm) [239] and the bulk modulus (B, 

the inverse of compressibility) [246]. An empirical inverse relationship between 

cohesive energy and thermal expansion coefficient (αL) has been observed by Tsuru et 

al. [239] for metals and ceramics, and by Gangopadhyay et al. [247] for liquid transition 

metal alloys.  

Unfortunately, Tsuru et al. [239] gave no data on how accurate the relationships were. 

Nevertheless, the average error of Ecoh between the experimental data [228] and the 

predicted values by ANNs from Tm or αL in the present work is in the range of ±13% 

and ±20%, respectively. The correlation coefficient Rl between bulk modulus and 

cohesive energy is 0.876 in ANN models, in contrast to 0.817 in the empirical model 

proposed by Tamura [246]. In another words, the ANN combinatorial search has also 

evaluated those correlations proposed in literature and determined they are less 

attractive based on the criteria described in Section 3.2.3. 

However, the correlation between the cohesive energy of the solid and the heat of 

vaporization at the normal boiling point, obtained by the ANN combinatorial search, is 

somewhat surprisingly strong: the ANN prediction accuracy is about 97%. The cohesive 

energy of the solid equals the heat of sublimation at absolute zero temperature [245], 

which is the sum of heat of fusion, the heat to raise material to vaporization temperature, 

and the heat of vaporization [248]. The heat of vaporization is equivalent to the 

cohesive energy of the liquid [247], the magnitude of which should be smaller than the 

cohesive energy of the solid. Hence it is quite interesting to find the cohesive energy of 

the solid can be accurately predicted by simply using the heat of vaporization. 

As shown in Figure 3-2 (a), the ANN predicted values ΔHvb from Ecoh are plotted as the 

ordinate against ΔHvb experimental values as abscissa for the 37 metallic elements, and 

in Figure 3-2 (b), the ANN predicted values Ecoh from ΔHvb (Y axis) are plotted against 

Ecoh experimental values (X axis). The deviation from the straight line is <10% for most 

of the solids, except for Ba. Nevertheless, ΔHvb and Ecoh are highly correlated as the 

ANN predictions agree very well with the experimental data with an average correlation 

error less than 2.5%, i.e. the average prediction accuracy is higher than 97.5%.  
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Because the relationship between ΔHvb and Ecoh is a binary order correlation, it is 

possible to draw a 2-D plot of ΔHvb against Ecoh using experimental values (Figure 3-3). 

As can be seen, Ecoh increases with the increases of ΔHvb, except for two elements: Zr 

and Sb. The distribution of experimental data points seems to follow a straight line. A 

linear regression fit gives  𝑬𝑬𝒄𝒄𝒐𝒐𝒄𝒄 = 1.0476∆𝑯𝑯𝒗𝒗𝒗𝒗 + 11.731  with a high value of 

correlation factor Rl (0.998) and low average error (±3.29%), where both properties are 

in kJ mol-1. Like the correlations found by ANNs, it also indicates Ba as an outlier with 

a deviation of 10.34%. Unfortunately, no explanation is available to justify the 

abnormal behaviour of Ba. 

As previously stated, the cohesive energy of the solid is equal to the sum of heat of 

fusion and the heat of vaporization, thus it is easily to understand the increasing Ecoh 

with the rise of ΔHvb. It is reasonable to assume that for each element, its Ecoh is larger 

than its ΔHvb. However, Ecoh is a bit smaller than ΔHvb for Zr (Ecoh=610 kJ/mol, ΔHvb 

=611 kJ/mol) and Sb (Ecoh=261 kJ/mol, ΔHvb =262 kJ/mol) in CES [228], thus the 

reliability of the two data-pairs is questioned. To address this question, both data (Ecoh 

and ΔHvb) are carefully checked. Results show very small variances of Ecoh for Zr (1.1%) 

and Sb (1.5%) in CES database as compared to the values tabulated by Kittel [238]. But 

large disagreements of ΔHvb are found for Zr and Sb, and the detailed investigation is 

shown below. 

If the value of Ecoh data for Zr is reliable, and the correlations between Ecoh and ΔHvb are 

accurately captured by the ANN combinatorial search, the value of ΔHvb for Zr can be 

obtained from the established ANN model using Ecoh as the input. The predicted ΔHvb 

for Zr is 590.6 kJ/mol, and it agrees well with the data given by Zhang et al. [237] (591 

kJ/mol), and the data compiled by Hultgren et al. [249], (139112 cal/g-atom, which is 

corresponding to 582 kJ/mol).  

It is more complicated for Sb. If the value of Ecoh for Sb is reliable, the predicted ΔHvb 

for Sb is 251.1 kJ/mol, which differs by more than 10% from the value given by Zhang 

et al. [237] (193 kJ/mol). In fact, Zhang et al. [7, 237] had to choose either 195 kJ/mol 

[250], 193 kJ/mol [112] or 67.9 kJ/mol [251] from the limited sources they checked, 

and suggested a smaller value (176 kJ/mol) might be more appropriate. The value ~193 

kJ/mol seems to be first published in Lange's Handbook of Chemistry 10th edition [252], 

which gave 46.63 cal/g-atom (195 kJ/mol), and changed to 46.23 kcal/mol (193 kJ/mol) 

67 

 



Chapter 3 

in its later editions [112]. While the value of 67.9 kJ/mol can be traced back to the data 

compiled by Sinke [253], where it is claimed that for Sb ''the heat of vaporization of 1 

gram atomic weight at 1910 K to the equilibrium vapour is 16230 cal'' (which 

corresponds to 67.9 kJ/mol). So it is highly possible that ΔHvb is wrongly recorded in 

Lange's Handbook of Chemistry (should be 16.23 kcal/mol rather than 46.23 kcal/mol 

for atomic Sb).  

At lower temperatures, the substance almost entirely exists in the molecular form of Sb4. 

The proportion of Sb2 and Sb in the gas increases when the temperature is approaching 

to the boiling point (1860 K), and the dominant species are believed to be Sb4 and Sb2 at 

1860 K [249]. If Sb3 is used to represent the state of gas in combination of Sb4 and Sb2, 

the corresponding ΔHvb accounted for the molecular form Sb3 would be 203.7 kJ/mol. 

But there is more Sb2 than Sb4 in the gas when the temperature is equal to the boiling 

point [249], and the existing of Sb should not be neglected. So the real ΔHvb accounted 

for the molecular form of Sbx (X ∈  [1,4]) should be smaller than 203.7 kJ/mol, but 

larger than 67.9 kJ/mol. The deviation of ΔHvb predicted by ANNs for Sb (251.1 kJ/mol) 

in contrast to the real value is possibly due to using the less accurate value of Ecoh for Sb. 

Indeed, Brewer [244] used the thermodynamic data compiled by Hultgren et al. [249] to 

calculate Ecoh, but it is noted that the vapour pressure data below 900 K were evaluated 

as Sb4 (neglecting Sb2 and Sb) [249]. In this case, the corresponding ΔHvb accounted for 

the molecular form Sb4 would be 271.6 kJ/mol, which is very close to the ANN 

prediction in this experiment. 
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Figure 3-2 The correlation between the cohesive energy of the solid (Ecoh) and the 

heat of vaporization at normal boiling point (ΔHvb) obtained by the ANN combinatorial 

search for 37 metallic elements: a) Predict ΔHvb from Ecoh, both experimental (X axis) 

and predicted data (Y axis) are for ΔHvb, and the correlation error (Ec) is 2.2%; b) 

Predict Ecoh from ΔHvb, both experimental (X axis) and predicted data (Y axis) are for 

Ecoh, and the correlation error is 2.5%. 
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Figure 3-3 Linear correlation between the cohesive energy of the solid (Ecoh) and 

the heat of vaporization at normal boiling point (ΔHvb). 

2) Atomic weight and specific heat capacity 

The atomic weight (Ar) is the ratio of the average mass per atom of the element to 1/12 

of the mass of neutral atom of carbon-12, e.g. Ar(12C) = 12 [254]. A recommended table 

of atomic-weight values is published annually by International Union of Pure and 

Applied Chemistry (IUPAC). The average difference between the most recent IUPAC 

data [254] and the data recorded in CES [228] is less than 0.1%. The specific heat 

capacity (Cp) used here is the energy required to heat 1 gram of a material by 1 K at 

constant pressure (atmospheric pressure) [228]. For solids, Cp is very close to Cv, i.e. the 

specific heat capacity measured at constant volume. Cp data in CES are compared with 

the values recorded in CRC Handbook [229], and the average difference is 1.03%. 

Hence, the input data accuracy should have a very small impact on the correlations 

captured by ANNs. 
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Figure 3-4 The correlation between the atomic weight (Ar) and specific heat 

capacity (Cp) obtained by the ANN combinatorial search for 37 elements: a) Predict Ar 

from Cp, both experimental (X axis) and predicted data (Y axis) are for Ar, and the 

correlation error is 4.3%; b) Predict Cp from Ar, both experimental (X axis) and 

predicted data (Y axis) are for Cp, and the correlation error is 4.7%. 
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As shown in Figure 3-4, the ANN combinatorial search indicates atomic weight and 

specific heat capacity are strongly correlated, as the coefficients of determination Rl for 

both predictions are higher than 0.96, with the average correlation errors less than 5%. 

Among the 37 elements, beryllium and lithium have the largest prediction errors, 

possibly because they have the highest values in Cp and lowest values in Ar, which leave 

them on the prediction domain edge of the ANN, therefore the predictions are less 

accurate.  

The relationship between atomic weight and specific heat capacity can be interpreted by 

the correlation between molar mass and specific heat capacity. For the 37 elements used 

in the ANN combinatorial search, their molar masses are equal to their atomic weights 

multiplied by the molar mass constant (i.e. 1 g mol-1), assuming that the ideal crystalline 

solid is built of monatomic unit cells. Such relation might be enunciated as the Dulong-

Petit Law that ''the atoms of all simple bodies have exactly the same capacity for heat'' 

[255]. In modern terms, the law states the molar heat capacity (Cm) of solid elements is 

a constant [256]: 

3 6	 	 25	 	   Equation 3-3 

where  

Cm ─ molar specific heat capacity, J mol-1 K-1; 

M ─ molar mass; for a solid metallic element, it equals to Ar, g mol-1; 

Cp ─ mass specific heat capacity, J g-1 K-1; 

R ─ universal gas constant, which equals to 8.314 J mol-1 K-1. 

The relationship between atomic weight and specific heat capacity is attributed to lattice 

vibrations. A crystal has three modes of vibration per atom (one longitudinal mode and 

two transverse modes), each corresponding to a quadratic kinetic energy term and a 

quadratic potential energy term [256-258]. Similar to the ANN predictions, a significant 

deviation (~50%) is also observed for beryllium under the Dulong-Petit Law. 

Besides the Dulong-Petit Law, Schwarz [259] proposed an empirical non-linear 

function (Equation 3-4) to correlate molar specific heat capacity (at 25˚C) with atomic 

weight for each element family in the Periodic Table: 
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𝐶𝐶𝑣𝑣 = 1
𝐵𝐵1×𝐴𝐴𝑟𝑟+𝐵𝐵2

     Equation 3-4 

where Cp is in the unit of cal g-1 K-1, and C1 and C2 are constants for different element 

families in the Periodic Table, e.g. for alkali-metal family, C1 =0.1319, C2=0.27. 

It is worth to point out that the correlation captured by ANNs is constrained by the 

characteristics of input data. In this work, Cp data are considered to be temperature-

independent values obtained at room temperature, thus the correlation will not reflect 

the empirical behaviour that specific heat capacity of solids decrease exponentially at 

low temperatures, i.e. 𝑪𝑪𝒑𝒑(𝑇𝑇) ∝ 𝑻𝑻3, when T→0. 

3.3.2 Top ternary order correlations 

By analysing the top ternary order property correlations, three types of ternary order 

correlations were obtained by the ANN combinatorial search, if X and Y represent the 

two explanatory properties (input variables) and Z is the response property (output 

variable):  

i. Z can be accurately predicted by either X or Y, but X and Y produce a small 

confounding effect to improve the prediction accuracy. For example, the ternary 

order correlation between cohesive energy, boiling point and heat of 

vaporization; 

ii. Z is correlated to X or Y to a certain degree, and the accuracy to predict Z is 

significantly improved due to the confounding effect of X and Y. For example, 

the ternary order correlation between heat of vaporization, surface energy and 

molar volume; 

iii. Z is poorly correlated to the single variable X or Y, but Z can be accurately 

predicted due to the confounding effect of X and Y. For example, the ternary 

order correlation between shear modulus, bulk modulus and Poisson's ratio. 

1) Cohesive energy, boiling point and heat of vaporization 

As discussed in Section 3.3.1, there is a good relationship between cohesive energy and 

heat of vaporization, and between heat of vaporization and boiling point. In fact, the 

ANN combinatorial search also indicates cohesive energy is highly correlated with 

boiling point (see Appendix II and Appendix III). Hence, it is not surprising to find that 
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cohesive energy, heat of vaporization and boiling point constitutes a good ternary order 

correlation-group, i.e. each property can be predicted by the combination of other two 

properties at a reasonable accuracy.  

The ternary order correlation-group is illustrated by Figure 3-5. It shows the average 

accuracy to predict Ecoh from the other two properties is ~97%, which is similar to the 

average accuracy to predict ΔHvb, but a bit higher than the average accuracy to predict 

Tb (~93%). As shown in Table 3-2, the influence of Tb seems to be very small in the 

prediction of Ecoh or ΔHvb, because the ANN evaluation parameters are almost the same 

when the prediction is made with or without Tb. Table 3-2 also indicates that Ecoh and 

ΔHvb are equally important in predicting Tb. 

Table 3-2 The binary and ternary order correlations between cohesive energy, 

boiling point and heat of vaporization. 

Conditions ANNs evaluation parameters 

Predicted property Input property ψ δ Ec 

ΔHvb 
Ecoh 0 0.001 2.2% 
Tb 0.006 0.024 7.5% 

Ecoh and Tb 0.001 0.008 2.8% 

Ecoh 
ΔHvb 0.001 0.003 2.5% 

Tb 0.005 0.024 6.9% 
ΔHvb and Tb 0.001 0.004 2.7% 

Tb 
Ecoh 0.005 0.026 6.9% 
ΔHvb 0.005 0.024 6.9% 

Ecoh and ΔHvb 0.006 0.037 6.9% 
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Figure 3-5 The correlation between cohesive energy, heat of vaporization, and 

boiling point, which is obtained through the ANN combinatorial search: a) Predict Ecoh 

from ΔHvb and Tb, both experimental (X axis) and predicted data (Y axis) are for Ecoh, 

and the correlation error is 2.7%; b) Predict ΔHvb from Ecoh and Tb, both experimental 

(X axis) and predicted data (Y axis) are for ΔHvb and the correlation error is 2.8%; c) 

Predict Tb from Ecoh and ΔHvb, both experimental (X axis) and predicted data (Y axis) 

are for Tb and the correlation error is 6.9%. 
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Surface energy ϒ is an important property to characterize materials processing 

behaviours, such as welding and sintering [260]. It quantifies the energy that is 

necessary to create new surfaces by unit area [261], and is also defined as the excess 

energy at the surface of material compared to the bulk [262]. It is reported that the 
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The surface energy data used in the ANN combinatorial search is for liquid metals, 

where the surface energy (J/m2) is equivalent to the surface tension (N/m). Surface 

tension can be measured by the oscillating drop method using levitation under 

microgravity (see Equation 3-5) [265]. The total CES surface energy data [228] has an 

average error of ~1.6% comparing to the experimental results recorded in Ref. [260].  

𝛾𝛾 = 3
8
𝜋𝜋𝑓𝑓2𝑚𝑚     Equation 3-5 

where f is the oscillation frequency and m is the mass of the droplet. 

Table 3-3 summarises all the six binary order correlations and the three ternary order 

correlations between heat of vaporization, surface energy and molar volume. As can be 

seen, the correlations between any of the two properties are relatively weak, with the 

correlation errors ranging from 14.3% to 52.1% (the average error of the six binary 

order correlations is 29.5%). However, the correlation-group constituted by the three 

ternary order correlations, has a substantially lower average correlation error of 11.7%, 

indicating there are stronger correlations owing to the confounding effects of any two 

properties. 

The ANN results are in line with the empirical relationship between heat of vaporization 

(ΔHvb), surface energy (ϒ) and molar volume (Vm), showing in Equation 3-6 [266]. A 

more complicated equation linking heat of vaporization, surface energy, molar volume, 

and a self-defined structure factor, was derived by Overbury et al. [264]. 

𝜸𝜸 = ∆𝑬𝑬
𝑪𝑪𝑽𝑽𝒎𝒎2/3 = ∆𝑯𝑯𝒗𝒗𝒗𝒗−𝑃𝑃∆𝑉𝑉

𝐵𝐵𝑽𝑽𝒎𝒎2/3 ≈ ∆𝑯𝑯𝒗𝒗𝒗𝒗−𝑹𝑹𝑻𝑻
𝐵𝐵𝑽𝑽𝒎𝒎2/3     Equation 3-6 

where: 

ϒ = surface tension in dyn/cm; 

Vm = molar volume in cm3; 

ΔE = internal energy in cal; 

R = universal gas constant (1.986 cal K−1 mol−1); 

T = absolute temperature in K;  

C = a constant (~14).  
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Because heat of vaporization and cohesive energy (of solids at 0 K) is highly correlated 

(as discussed in Section 3.3.1), it is not surprising that ANNs also find a correlation 

between cohesive energy, molar volume and surface energy (see Appendix V). In fact, 

this correlation was first deployed by Stephan in 1886 (see Equation 3-7), to transition 

metals [260], as both properties reflect the energy required to break the bonds of atoms. 

It is worth to mention that the result of the ANN combinatorial search indicates such 

correlation is applicable not only for transition metals but also for some other metals. 

𝛾𝛾 = 𝐵𝐵𝑡𝑡𝐸𝐸𝑐𝑐𝑜𝑜ℎ
𝑉𝑉𝑚𝑚2/3      Equation 3-7 

where Ct is a constant that is rarely theoretically determined. 

Table 3-3 The binary and ternary order correlations between heat of vaporization, 

surface energy and molar volume. 

Conditions ANNs evaluation parameters 

Predicted property Input property ψ δ Ec 

ΔHvb 

ϒ 0.074 0.186 19.8% 

Vm 0.997 0.852 52.1% 

ϒ and Vm 0.018 0.051 12.4% 

ϒ 

ΔHvb 0.081 0.16 23.6% 

Vm 0.249 0.422 26.6% 

Vm and ΔHvb 0.014 0.017 11.6% 

Vm 

ϒ 0.027 0.081 14.3% 

ΔHvb 0.888 0.863 37.9% 

ϒ and ΔHvb 0.014 0.039 11.1% 

 

3) Shear modulus, bulk modulus, and Poisson's ratio 

Shear modulus G, bulk modulus K, and Poisson's ratio ν are fundamental mechanical 

properties that are used to describe materials’ elastic behaviour. The definitions, the 

common measurement methods, and the internal correlations of the three properties are 
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discussed in Chapter 1 together with Young's modulus. Here a brief summary is 

provided. 

When a material is subjected to elastic deformation: the shear modulus is defined as the 

ratio of the shear stress to the shear strain on the loading plane; the bulk modulus 

quantifies a material's resistance to change in volume under a pressure; and Poisson's 

ratio is the negative ratio of the lateral (transverse) strain to the axial strain in the 

loading direction [149]. The three elastic properties reflect the strength of the 

interatomic forces bonding the material, and can be measured by static tests or dynamic 

tests [164]. For anisotropic materials (e.g. single crystals), the values of the three 

properties depend on the directions in measurements, and the average data can be 

derived from the single crystal elastic constants through different approximation 

methods, such as the Voigt-Reuss-Hill average method [156]. 

To investigate the confounding effect of shear modulus, bulk modulus, and Poisson's 

ratio, Table 3-4 tabulates the three ternary order correlations as well as the six binary 

order ANN results. In total, there are nine pairs. Comparing the binary and ternary order 

correlations, it is found that all the six binary order correlations have very high values of 

total model performance (ψ), ANNs generalization ability (δ) and correlation error (Ec), 

thus they are perceived to be weak correlations, i.e. one property is poorly related to the 

other property. In particular, it is beyond the ability of ANNs to predict the values of 

bulk modulus or shear modulus merely based on the data of Poisson's ratio, as the 

prediction errors are as large as ~200%. This is partly due to the fact that for crystalline 

metals, the magnitudes of G and K have significant variances, but their ν normally lies 

in the range of 1/4 to 1/3 [153]. 

However, the prediction ability of ANNs is significantly improved by adding one more 

property. Comparing the six binary order correlations and the three ternary order 

correlations, the evaluation parameters, i.e. model performance (ψ) and ANNs 

generalization ability (δ) and correlation error (Ec) are substantially reduced from an 

average of 2.55, 0.63 and 99% to an average of 0.02, 0.03 and 9.2%, respectively. This 

means that good ternary order relationships exist between the three elastic properties. 

Indeed, such relationships can be explained by Equation 1-21, where each property can 

be expressed in terms of any other two properties: 
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𝐺𝐺 =
3𝐾𝐾(1 − 2𝜈𝜈)

2(1 + 𝜐𝜐)  

𝐾𝐾 =
2𝐺𝐺(1 + 𝜈𝜈)
3(1 − 2𝜐𝜐) 

𝑜𝑜 =
3𝐾𝐾 − 2𝐺𝐺

2(3𝐾𝐾 + 𝐺𝐺) 

The ANN evaluation parameters of the ternary order correlations between shear 

modulus, bulk modulus and Poisson's ratio are small enough to rank them as a top 

correlation group. However, as the validated correlating equations exist (Equation 1-21), 

the relative large errors in predicting G (18.0% error) and K (7.5% error) are very 

unusual, especially considering that two data with the largest prediction errors have 

been excluded in the calculation of the ANN correlation error. Even using Equation 

1-21, an average error of 9.1% for G, 8.42% for K and 4.56% for ν are obtained (two 

data with the largest error have also been excluded in the calculation).  

Table 3-4 The binary and ternary order correlations between shear modulus, bulk 

modulus and Poisson's ratio. 

Conditions ANNs evaluation parameters 

Predicted property Input property ψ δ Ec 

K 
ν 6.72 0.94 241.5% 
G 0.18 0.11 40.4% 

G and ν 0.01 0.01 7.5% 

G 
K 0.34 0.14 56.9% 
ν 6.02 0.75 233.5% 

K and ν 0.03 0.01 18.0% 

ν 
K 1.75 1.32 11.7% 
G 0.30 0.54 9.8% 

G and K 0.01 0.08 2.1% 

 

In this case, doubts are cast on the values of the three elastic properties (plus Young's 

modulus) recorded in CES. It is suspected that the large errors are caused by using 

incorrect data to train ANNs. As shown in Chapter 4, the assumption of 5% incorrect 

data underestimates the overall errors in the values of elastic properties. Thus, 
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correlations found within the ANN combinatorial search involving any elastic property 

will not be further discussed in this chapter due to the lack of confidence in data.  

3.3.3 Top quaternary order property correlations 

Because the ANN combinatorial search tests all possible property combinations, the 

strong correlations obtained may have redundant variables, especially for property 

correlations of higher order. As shown in Appendix VI, almost all the top 50 quaternary 

order property correlations can be simplified to be the correlation between atomic 

weight and specific heat capacity, where the other two properties play minor roles in the 

ANN models. By comparing the quaternary order property correlations with the binary 

and ternary order property correlations, quaternary order property correlation-groups are 

identified into four categories. 

For a quaternary order property correlation-group constituted by (X1, X2, X3 and Z), 

where Xi represents the possible explanatory property (input variable) and Z is the 

response property (output variable): 

i. Z is only correlated to X1, while X2 and X3 have little influence on Z. For 

example, the quaternary order correlation-group contains cohesive energy, heat 

of vaporization, atomic weight, and specific heat capacity. When Z is taken to be 

the cohesive energy, it can be explained by the heat of vaporization as discussed 

in Section 3.3.1, where the atomic weight and the specific heat capacity play no 

role in predicting the cohesive energy. When Z is taken to be the specific heat 

capacity, it can be well predicted by the atomic weight, where the cohesive 

energy and the heat of vaporization have very small impacts in the prediction. 

ii. Z is related to X1, and is correlated to X2 and X3 due to their confounding effect. 

For example, the quaternary order correlation-group constituted by heat of 

vaporization, cohesive energy, surface energy and molar volume. It can be 

considered as a binary order correlation between heat of vaporization and 

cohesive energy, added to a ternary order correlation between heat of 

vaporization, surface energy, and molar volume. 

iii. Z is correlated to any two independent properties, which means a ternary 

relationship exists between any three of the four properties. For example, the 
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quaternary order correlation-group constituted by Young's modulus, shear 

modulus, bulk modulus, and Poisson's ratio. 

iv. X1, X2 and X3 all contribute to the correlation with Z, among which some 

variables may have larger impacts than the others. Although such quaternary 

order property correlation-group is rare in the present work, some interesting 

quaternary order property correlations are found that belong to this type. One 

typical quaternary order property correlation that is using surface energy, 

thermal conductivity, and lattice parameter a to predict work function, is 

discussed with more details. 

1) Surface energy, thermal conductivity, lattice parameter a and work 

function 

The thermal conductivity (λ) measures the rate at which heat will flow through a solid 

per unit time across a surface with area As, and it can be calculated by Equation 3-8 

[267]: 

 𝝀𝝀 ≡ 𝑸𝑸𝒄𝒄
𝑨𝑨𝒔𝒔�

𝒔𝒔𝑻𝑻
𝒔𝒔𝒅𝒅�

     Equation 3-8 

where: 

Qh = heat flux in W; 

T = materials surface temperature in K; 

x = distance between the two temperatures in m. 

The work function (W) of a metal is the energy (usually measured in electron volts) 

required to extract one electron from highest filled level in the Fermi distribution of a 

solid to be at rest in vacuum at 0 K [268]. The data of work function recorded in CES 

[228] are the same as the data recently tabulated by Michaelson [269], excepted a very 

small variation for Mg (3.7 eV instead of 3.66 eV). 

The value of work function can be obtained by the absolute methods (thermionic, 

photoelectric, and field emission) or the relative method (contact potential difference) 

[270]. Measurements of work function are sensitive to the anisotropy of sample [271] as 

well as its surface condition, such as surface impurities (i.e. oxides and gases) [268], 
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and the surface morphology (i.e. roughness) [272]. Ibragimov and Korolkov [273] 

noticed a slight temperature dependence of work functions for metals.  
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Figure 3-6 Plots of the atomic number of a metal versus its: a) work function, b) 

surface energy, c) thermal conductivity, and d) lattice parameter a. 
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The work function of a metal is found to be a periodic function of its atomic number, 

and is correlated with its electronegativity [274] and its first ionization potential [268]. 

Empirical relations between work function and surface energy [275], melting 

temperature [276], sublimation entropies [277], and Young's modulus [278] have also 

been reported for metals in the Periodic Table. However, the proposed correlations are 

of binary order. Good binary order correlations can be relatively easily identified 

through a regression analysis or by plotting properties against each other. Ternary order 

correlations sometimes can be recognized by plotting their 3D graphs but are difficult to 

be obtained through traditional regression analysis unless their analytical forms are pre-

defined, not to mention quaternary order property correlations. However, this is not a 

problem for the ANN method. 

The ANN combinatorial search found a good quaternary order property relationship 

between work function, surface energy, thermal conductivity and lattice parameter a for 

the 37 elements. As shown in Figure 3-6, the data of work function, surface energy and 

thermal conductivity exhibit similar periodic trends when plotting against atomic 

number, while an roughly inverse trend is observed for the data of lattice parameter a. 

The relative importance of each property in the quaternary relationship with work 

function is explored by comparing the binary, ternary, and quaternary order correlations 

listed in Table 3-5. The surface energy is identified to be the variable that contributes 

most in the prediction of the work function, and followed by the lattice parameter a, and 

finally by the thermal conductivity. The work function and the surface energy of metals 

are expected to correlate with each other as they characterize the surface properties of a 

given material. In addition, both the work function and the thermal conductivity refer to 

electrons, thus the relation between the two properties seemingly origin in nature. 

However, the physical meaning behind the correlation between lattice parameter a and 

work function needs a further investigation. It could be the confounding effect of the 

three properties that substantially reduces the total correlation error to 2.7%. 
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Table 3-5 The binary, ternary and quaternary order correlations between work 

function, surface energy, thermal conductivity and lattice parameter a for the 37 

elements. 

Conditions ANNs evaluation parameters 

Predicted property Input property ψ δ Ec 

W 

ϒ 0.11 0.32 6.6% 

a 0.15 0.38 8.6% 

λ 3.15 1.77 15.8% 

ϒ and a 0.02 0.12 4.5% 

ϒ and λ 0.14 0.36 7.5% 

a and λ 0.64 0.80 10.7% 

ϒ, a and λ 0.00 0.04 2.7% 

 

3.4 Conclusion 

The ANNs combinatorial approach is devised as an exhaustive search method to 

evaluate all possible property correlations hidden in the database. Instead of creating 

composition 'libraries', property 'libraries' based on the 24 properties for 37 elements are 

prepared and analysed accordingly. A new evaluation criterion (ψ) that combines the 

parameters of ANN generalization ability (δ) and correlation error (Ec), is introduced to 

justify the importance of the observed property correlations. For property correlation-

group, such evaluation criterion can be applied according to a quadratic superposition 

rule. 

In addition, this work summarises the types of strong correlations that are identified by 

the ANN combinatorial search. Though it is impossible to discuss all the explored 

correlations, two typical examples of binary order property correlation-groups, three 

ternary order property correlation-groups, and a quaternary order property correlation, 

are discussed respectively. They are: 
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1) Binary order correlation groups:  

a) cohesive energy and heat of vaporization at the normal boiling point;  

b) atomic weight and specific heat capacity. 

2) Ternary order correlations groups:  

a) cohesive energy, boiling point and heat of vaporization;  

b) heat of vaporization, surface energy and molar volume;  

c) shear modulus, bulk modulus, and Poisson's ratio. 

3) Quaternary order property correlation: using surface energy, thermal 

conductivity and lattice parameter a to predict work function, 

Among those correlations, some have been discovered in history as the results of 

deductive reasoning from known principles or serendipity, such as the Dulong-Petit 

Law, while some correlations are first introduced, for example, the relation between 

cohesive energy of solid and heat of vaporization at the normal boiling point. Though 

empirical correlations obtained by ANNs do not provide deep insight into the physical 

nature, they could enrich the understanding of the fundamental material properties. 

Furthermore, the potential of applying the ANN combinatorial search to capture 

correlations hidden in a database is very promising. The captured correlations can be 

employed to predict unknown data, test theoretical models or hypotheses, and to check 

the internal consistency of experimental data. It is assumed that the present work will 

stimulate further activity in this field for discovering new physical laws. In the 

meantime, the poor data quality noticed in the elastic properties database motives the 

author to conduct a careful data evaluation in the next chapter. 
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4. Verification of the elastic properties of the 

elements through ANNs 

4.1 Introduction 

The Young's modulus (E), shear modulus (G), bulk modulus (K) and Poisson's ratio (ν) 

of pure metals are the important and fundamental mechanical properties. Their data 

quality plays a vital role in defining the accuracy of many materials-based activities [113, 

117]. However, an inspection of elastic moduli data in the 68 metallic elements will show 

large discrepancies exist in the prestigious handbooks and databases. Because the 

discrepancy is substantial for many elements, and more importantly, to inspire confidence 

in users, the author feels it is necessary to verify the inconsistent data.  

A data-correction method utilizing binary order correlations through the ANN approach 

has been proposed recently [7]. In this chapter, to minimize the using of prior knowledge, 

the ANN method is extended to capture the ternary order correlations between elastic 

properties, and utilize such correlations to correct suspect data. The construction of ANN 

models is based on the premise that most handbooks and databases have recorded correct 

values for the most commonly known pure metals. To ensure the data accuracy, 

comparisons are made between the values obtained by the ANN method, the results 

generated by the correlating equations (i.e. Equation 1-21), and the available 

experimental values. To explain data disparity, both experimental and theoretical factors 

are discussed. 

4.2 Experiment 

The error in a database normally lies between 1% and 5% [234, 235]. However, 

examining the elastic property data recorded in literature for 68 pure metallic elements, 

more than 80% data are found to have variances larger than 10%. Such finding serves the 

purpose to conduct an integrated quality research of elastic property data to distinguish 

errors from reasonable variances. 
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4.2.1 Data discrepancy in handbooks and databases 

As tabulated in Appendix VIII ~ Appendix XI, the values of Young's moduli, shear 

moduli, bulk moduli and Poisson's ratio at 295±5 K of the 68 elementary metals, are 

collected from seven different books published from 1960s to 2010s, one journal article, 

one recently released electronic databases, and three Internet sources with very high 

search rankings. The total 12 sources are referred as 'the source pool' in the following 

sections. The largest variation in 13 different editions of CRC Handbook of Chemistry 

and Physics, or in 3 editions of Tables of Physical and Chemical Constants, or in 2 

editions of Handbook of Mechanical Engineering, or in the database of CES released in 

from 2008 to 2011, is scarcely perceptible. Therefore, the value from the last edition of 

each source is used. Conversion to SI unit needs to be done before the evaluation. 

Elements are flagged based on a 10% variation between the minimum and maximum 

values recorded in the source pool. If (Max-Min)/Min is larger than 10%, the property 

value of such element is recognized as an exceptional value and need to be checked. A 

critical analysis is made later by tracking back to the original literature to locate the 

reasons of disparity. 

4.2.2 Data pre-treatment 

1) Annotation removed 

Young's modulus, shear modulus, bulk modulus and Poisson's ratio are the mechanical 

properties to describe materials in the real world. The differences in experimental 

conditions would influence property values. In the source pool, some data are labelled as 

estimate values, approximate values, calculated values or values read from the graph. To 

enable data comparisons, such annotations are removed. In addition, only the values at 

ambient pressure and room temperature (295±5 K) are considered unless otherwise 

specified.  

No literature/database in the source pool records specimens' purity data except for one 

handbook [279], in which, for example, the Young's modulus of ruthenium is recorded as 

''447 GPa (at 296 K, annealed, purity 99.8%)'', and the lowest purity listed the handbook 
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is 99.1% for scandium. Because most sources do not specify the measurement conditions, 

only the principal numeric value, i.e. '447', is retained in order to compare with the data 

from other sources. 

2) SI unit conversion 

Because different units of elastic properties are used in the source pool, data are 

normalized into the SI unit 'GPa'. During the SI unit conversion, the maximum number of 

decimal digits is designated to be three for Poisson's ratio and two for other elastic 

properties. The unit conversions are described as below:  

Table 4-1 Unit conversion. 

Non-SI Unit SI Unit /GPa 

1 dyn/cm2 1 10  

1 psi 6.894 10  

1 kbar 0.1 

1 kgf/cm2 9.807 10  

 

3) Data distribution information 

For each element, the maximum value (Vmax), the minimum value (Vmin), the mean 

value (Vmean), the median value (Vmedian), the variance (Vvar) and the value that has 

the highest occurrence (Vmode) in the source pool are calculated and listed in Appendix 

VIII ~ Appendix XI. Data distribution information is analysed for each element in 

Section 4.3.3. 

4.2.3 ANN methodology 

The principal of the ANN methodology to detect and correct errors is based on the 

method proposed by Zhang et al. [7], who evaluated the boiling point and the heat of 

vaporization of elements. In contrast to the utilizing of binary order correlations, this 
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work is extended to employ the ternary order correlations among four elastic properties, 

so it would be suitable for wider applications. 

The first step is to identify the inconsistent data values. Elements are judged based on the 

basis of a 10% variation between the minimum and maximum values in the source pool. 

If (Max-Min)/Min (denoted as 'Dminmaxp' in Appendix VIII ~ Appendix XI) is larger 

than 10%, the data are recognized as inconsistent and need to be verified or judged. If 

(Max-Min)/Min is smaller than or equal to 10%, the element is recognized as having 

consistent data with reasonable uncertainty, and the median of all available data in the 

source pool will be used. 

Table 4-2  Systematic methodology for error corrections, where 1 represents an 

element with consistent data and 0 indicates values are inconsistent. Consistent data are 

used to construct ANN models that represent property correlations; such models are then 

used to evaluate inconsistent data (from Ref. [7]). 

Categories A B C Methodology 

I 1 1 1 
Use consistent data to 

construct 
ANNs 

II 

1 1 0 

Apply ANNs to 
inconsistent data 

1 0 1 
0 1 1 

III 

1 0 0 
0 1 0 
0 0 1 

IV 0 0 0 

 

According to Zhang et al. [7], the ternary order correlation constituting by the property A, 

B and C can be classified into four categories, as shown in Table 4-2, where 1 represents 

the property records have consistent data and 0 indicates the records are inconsistent. 

Category I has consistent records of all three properties, which will be used to train three 
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ANNs (i.e. ANN1, the prediction of C using A and B, ANN2, the prediction of B using A 

and C, and ANN3, the prediction of A using B and C). The other records are classified 

into Categories II-IV according to the number of inconsistent properties. 

For elements in Category II: 

The inconsistent properties can be predicted directly from the other two properties. For 

example, if the property C has inconsistent records, the value of C can be predicted from 

the values of A and B by using ANN1. Assume the predicted value C(p) is obtained from 

ANN1, the predicted value C(p) is compared with all the values of that property recorded 

in the source pool, and is replaced with the closest original value C(o). 

For elements in Category III: 

Two mutual correlated ANNs bound the reasonable values. For example, if the property 

B and C have inconsistent records, while the records in property A are consistent, for m 

different records of property B ( ){ }mjB jo ,2,1, =  and n different records of property C 

( ){ }nkC ko ,2,1, = , the ANN2 will predict n records of property B ( ){ }nkB kp ,2,1, =  

from property A and n property C. The fractional prediction errors of property B are 

{ }jkyY = , where ( )

( )
.,2,1,,2,1,1 nkmj

B
B

y
jo

kp
jk  ==−=  Similarly, ANN3 will predict 

m records of property C ( ){ }mjC jp ,2,1, =  from property A and m property B. The 

fractional prediction errors of property C are { }jkzZ = , where 

( )

( )
nkmj

C
C

z
ko

jp
jk  ,2,1,,2,1,1 ==−= . The correct combination is the one that has the 

minimum value of jke , where ( ) ( )22
jkjkjkikjk zyzye −++= . 

For elements in Category IV: 

Three mutual correlated ANNs bound the reasonable values. For l different records of 

property A ( ){ }liA io ,2,1, = , m different records of property B ( ){ }mjB jo ,2,1, =  and n 

different records of property C ( ){ }nkC ko ,2,1, = , the ANN1 will predict nm× records 
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of property A ( ){ }nkmjA jkp  ,2,1,,2,1, ==  from m property B and n property C. The 

fractional prediction errors of property A are  𝑋𝑋 = �𝑥𝑥𝑖𝑖𝑗𝑗𝑖𝑖� , where   𝑥𝑥𝑖𝑖𝑗𝑗𝑖𝑖 = �1 −
𝐴𝐴(𝑝𝑝)𝑗𝑗𝑗𝑗

𝐴𝐴(𝑜𝑜)𝑖𝑖
�

nkmjli  ,2,1,,2,1,,,2,1 === .  

Similarly, ANN2 will predict nl × records of property B ( ){ }nkliB ikp  ,2,1,,2,1, ==  

from l property A and n property C. The fractional prediction errors of property B are

{ }ijkyY = , where ( )

( )
.,2,1,,2,1,,,2,1,1 nkmjli

B
B

y
jo

ikp
ijk  ===−= Again, ANN3 will 

predict ml ×  records of property ( ){ }mjliC ijp  ,2,1,,2,1, ==  from l property A and m 

property B. The fractional prediction errors of property C are { }ijkzZ = , where 

( )

( )
nkmjli

C
C

z
ko

ijp
ijk  ,2,1,,2,1,,,2,1,1 ===−= .  

The correct combination is the one that has the minimum value of ijke , where

( ) ( ) ( ) ( )2222
ijkijkijkijkijkijkijkijkijkijk zyzxyxzyxe −+−+−+++= . 

The elastic properties of the consistent elements in Category I are listed in Table 4-3. 

Ideally, there would be 12 ANNs constructed using the consistent data from Categories 1, 

which would be applied to verify the inconsistent data in Category II ~ Category IV. 

For isotropic materials, the correlations between the four elastic properties (E, G, K and ν) 

are ternary order correlations, i.e. one property is correlated to any other two properties, 

meaning three properties out of four will suffice to construct ANNs. Therefore, there are 

several correlations that can be utilized to predict the property that has inconsistent 

records, which may results in different predictions.  

For example, if ANN1 predicts E using G and K, ANN2 predicts E using G and ν, ANN3 

predicts E using K and ν, and the property E has inconsistent records, E can be predicted 

from ANN1, ANN2 or ANN3 utilizing any two properties that have consistent values. As 

a result, three predicted values E(p)1, E(p)2 and E(p)3 will be obtained from each ANN 

model. The predicted values E(p)1, E(p)2 and E(p)3 are compared with all the values of the 
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property E recorded in the source pool, and is replaced with the closest original value 

E(o)1, E(o)2 and E(o)3.  

However, in a few cases, ANN1, ANN2 and ANN3 may not yield the same results. If the 

magnitudes of E(o)1, E(o)2 and E(o)3 are very close to each other, i.e. the (Max-Min)/Min of 

(E(o)1, E(o)2 and E(o)3) is smaller than 10% (the same standard to judge data consistency), 

the median value of E(o)1, E(o)2 and E(o)3 is selected. However, if E(o)1, E(o)2 and E(o)3 

differ from each other, i.e. (Max-Min)/Min is larger than 10%, an methodology is needed 

to solve the discrepancy. Such methodology is described by Table 4-6 in the section 

'Employ ANNs to verify data'). 

1) ANN constructions 

The number of consistent data in the source pool is very small. In the 68 metallic 

elements, only five elements (Co, Dy, Fe, Ta and Tb) have consistent data, i.e. the 

variances of the four elastic properties are all smaller than 10%. Five elements (Ac, Fr, 

Np, Pa, Ra) have only one data available in the source pool (collected from CES [228]), 

and Pm only has estimate values. 

To construct reliable ANNs, the input dataset needs to be large enough to cover the whole 

problem domain. Because a dataset that contains only five input-output data pairs (i.e. 

values of the five consistent elements) is too small to build a reliable ANN model, more 

elements' data need to be added. On the other hand, since problem domains are not 

always clear in a general situation, it is better to have the fewest subjective decisions on 

which element should be added.  

It is reasonable to assume that most handbooks and databases have recorded correct 

values for the most commonly known pure metals. Thus, the values of elastic property 

that has the highest occurrence in the source pool of twenty-two well studied and widely 

used pure metal (Ag, Al, Au, Ba, Bi, Ca, Cr, Cu, Mg, Mn, Mo, Nb, Ni, Pb, Pd, Pt, Sn, Sr, 

Ti, V, W and Zn), are pre-chosen and defined as 'consistent' without any pre-treatment. 

The values of the twenty-two pure metals together with the five consistent data (Co, Dy, 

Fe, Np, Ta and Tb), are used to build ANN models (shown in Table 4-3). It should be 

mentioned that the elastic property data of the twenty-two elements might be incorrect. 
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However, ANNs are capable of giving fairly unbiased simulations without compromising 

to a small portion of tampered data. A further study as described in Section 4.3.1 is also 

performed to validate the elastic property data of the twenty-two elements.  

Table 4-3  Dataset used to build the ANNs includes the consistent values of 5 

elements (Co, Dy, Fe, Np, Ta and Tb) and the most common values of 22 elements (Ag, Al, 

Au, Ba, Bi, Ca, Cr, Cu, Mg, Mn, Mo, Nb, Ni, Pb, Pd, Pt, Sn, Sr, Ti, V, W and Zn). E is 

Young's modulus, G is shear modulus, K is bulk modulus and ν is Poisson's ratio. 

Atomic number Symbol E K G ν 

47 Ag 82.7 103.6 30.3 0.37 

13 Al 70 76 26 0.345 

79 Au 78.5 171 26 0.42 

56 Ba 12.8 9.6 4.86 0.28 

83 Bi 32 31 12 0.33 

20 Ca 19.6 17 7.4 0.31 

27 Co 209 181.5 82 0.31 

24 Cr 279 160.2 115 0.21 

29 Cu 129.8 137.8 48.3 0.343 

66 Dy 61.4 40.5 24.7 0.247 

26 Fe 211 170 82 0.28 

12 Mg 44.7 35.6 17.3 0.29 

25 Mn 191 120 79.5 0.24 

42 Mo 324.8 261.2 125.6 0.31 

41 Nb 104.9 170.3 37.5 0.397 

28 Ni 199.5 177.3 76 0.31 

82 Pb 16 45.8 5.59 0.44 

46 Pd 121 187 43.6 0.39 

78 Pt 170 276 60.9 0.39 

50 Sn 49.9 58.2 18.4 0.33 

38 Sr 15.7 12 6.03 0.28 

73 Ta 185.7 196.3 69.2 0.34 

65 Tb 55.7 38.7 22.1 0.261 
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Atomic number Symbol E K G ν 

22 Ti 116 108.4 45.6 0.32 

23 V 127.6 158 46.7 0.365 

74 W 411 311 160.6 0.28 

30 Zn 104.5 69.4 41.9 0.249 

 

2) ANNs simulations 

The four elastic properties in the ANN training and testing dataset are for 27 metallic 

elements with atomic number ranging from 12 to 83, E ranging from 12.8 to 411 GPa, K 

ranging from 9.6 to 311 GPa, G ranging from 4.86 to 160.6 GPa, and ν ranging from 0.21 

to 0.44. Except the ANN model of predicting ν from E and G could not be established 

(ANN model failed to converge after 30 independent trials), the ANNs of predicting one 

elastic property from any other two properties are all successfully constructed, see Figure 

4-1 ~ Figure 4-4. Their correlation coefficients are larger than 0.99, except for the ANN 

of predicting ν from E and K, whose correlation coefficients equals to 0.987. The average 

error between the ANN predictions and values listed in Table 4-3 is far below 10%, 

except for the ANN model of predicting K from E and G, whose average error reaches as 

high as 13%, thus is relatively less reliable, and should be used with great caution. The 

summary of ANN simulations of the four elastic properties correlations is listed in Table 

4-4. 

 

Table 4-4  A summary of ANN simulations of the elastic properties correlations that 

are constituted by E, G, K and ν. 

Property group ANNs correlation Average error 
percentage 

E, K, ν 

Predict ν from E and K 2.34% 
Predict K from E and ν 3.08% 
Predict E from K and ν 3.54% 
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Property group ANNs correlation Average error 
percentage 

G, K, ν 

Predict ν from K and G 1.99% 

Predict G from K and ν 5.87% 

Predict K from G and ν 3.98% 

G, E, ν 

Predict ν from E and G* ─ 

Predict G from E and ν 6.11% 

Predict E from G and ν 1.47% 

G, E, K 

Predict K from E and G** 13.15% 

Predict E from K and G 1.10% 

Predict G from E and K 1.43% 

* The ANN model failed to converge in 30 independent trials, thus, it is inapplicable 
for further usage. 

** ANNs should be used with great caution due to large prediction error. 

 

Theoretically, a ANN model with one hidden layer (with sigmoid transfer function) and 

enough neurons is capable of representing versatile functional relationships between the 

inputs and the outputs [227]. However, the ANN model predicting ν from E and G failed 

to converge after 30 independent trials. A possible reason is that the initial weights and 

bias in training ANNs could be set inappropriately that cause the ANN to oscillate 

between relatively poor solutions. Different training functions, more hidden layers and 

more training may help to yield a good result. 

However, the author has no intention to use all possible means in constructing a valid 

ANN model to predict ν from E and G or obtaining a more accurate ANN model to 

predict K from E and G. First, in the practice of employing ANNs to find property 

correlations in materials science, there is no way to know whether a strong hypothetical 

relationship exists without any prior knowledge, knowledge that is seldom available in a 

general situation. The ANN results summarized in Table 4-4 only indicate there are ten 

strong correlations and one relatively weak correlation. Realizing that ν can be predicted 

from E and G and K can be accurately obtained from E and G requires prior knowledge. 

Secondly, it is also interesting to see if the ANN data policing methodology still holds 
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when ANNs have not successfully identified a hidden correlation. In this case, the 11 

ANNs listed in Table 4-4 are utilized in the next step. 
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Figure 4-1  ANN correlations of property group (E, K and ν): a) Predict ν from E and 

K, b) Predict K from E and ν, c) Predict E from K and ν. 
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Figure 4-2   ANN correlations of property group (G, K and ν): a) Predict ν 

from K and G, b) Predict G from K and ν, c) Predict K from G and ν. 
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Figure 4-3   ANN correlations of property group (G, E and ν): a) Predict G 

from E and ν, b) Predict E from G and ν.  
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Figure 4-4 ANN correlations of property group (G, E and K): a) Predict K from E 

and G, b) Predict E from K and G, c) Predict G from E and K. 
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3) Employ ANNs to verify data 

The eleven ANNs of elastic property correlations constructed from 27 data are then used 

to predict inconsistent data as demonstrated in Table 4-5. Similarly, inconsistent data can 

also be calculated through the correlating equations that listed in Table 1-2. The data 

verified by ANNs are listed in Table 4-9, and are compared with the data calculated from 

the correlating equations.  

Table 4-5  Correlation for error checking in the source pool. 

Categories Inconsistent 
property 

Total 
elements Element Symbol Useful correlation  

1 - 

22 

Ag, Al, Au, Ba, Bi, Ca, 
Cr, Cu, Mg, Mn, Mo, Nb, 
Ni, Pb, Pd, Pt, Sn, Sr, Ti, 

V, W, Zn ─ 

5 Co, Dy, Fe, Ta, Tb 

6* Ac, Fr, Np, Pa, Ra, Pm 

2 

G 2 Gd, Nd 

Predict G from K and ν 

Predict G from E and ν 

Predict G from E and K 

E ─ ─ ─ 

K 2 Er, Ir 

Predict K from E and ν 

Predict K from G and ν 

Predict K from E and G** 

ν ─ ─ ─ 

3 

E, G 3 Li, Pr, Tc 

Predict E from ν and K 

Predict G from K and ν 

Predict E from G and ν 

Predict G from E and ν 

Predict E from K and G 

Predict G from E and K 

K, E 1 Rh 
Predict K from G and ν 

Predict E from G and ν 
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Categories Inconsistent 
property 

Total 
elements Element Symbol Useful correlation  

Predict E from K and ν 

Predict K from E and ν 

Predict K from E and G** 

Predict E from K and G 

K, G ─ ─ ─ 

K, ν 8 Cs, Os, Re, Ru, Sc, Tm, 
Y 

Predict K from E and G** 

Predict K from E and ν 

Predict ν from E and K 

Predict K from G and ν 

Predict ν from K and G 

E, ν 1 Th 

Predict E from K and G 

Predict ν from K and G 

Predict E from K and ν 

Predict ν from E and K 

ν, G ─ ─ ─ 

4 

ν, K, E 2 Ho, Zr 

Predict K from E and G** 

Predict E from K and G 

Predict K from G and ν 

Predict ν from K and G 

Predict K from E and ν 

Predict ν from E and K 

Predict E from K and ν 

ν, K, G ─ ─ ─ 

ν, E, G 3 Hf, Na, Pu 

Predict ν from K and G 

Predict G from K and ν 

Predict ν from E and K 

Predict E from K and ν 

Predict G from E and K 

Predict E from K and G 
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Categories Inconsistent 
property 

Total 
elements Element Symbol Useful correlation  

K, E, G 4 Ce, In, K, Tl 

Predict E from K and ν 

Predict K from E and ν 

Predict K from G and ν 

Predict G from K and ν 

Predict E from G and ν 

Predict G from E and ν 

Predict G from E and K 

Predict E from K and G 

Predict K from E and G** 

5 K, G, E, ν 10 Be, Cd, Eu, Ga, La, Lu, 
Rb, Sm, U, Yb 

Predict E from K and ν 

Predict K from E and ν 

Predict ν from E and K 

Predict G from E and K 

Predict E from K and G 

Predict K from E and G** 

Predict G from K and ν 

Predict K from G and ν 

Predict ν from K and G 

* The elements are omitted from the evaluation for lack of reliable data. 
** The ANN model should be used with great caution due to the large error prediction. 
 

Due to the complexity of the data recorded in the source pool, in a few cases, elastic 

properties predicted utilizing different correlations established by ANNs or by the 

correlating equations may not yield consistent results. Take rhodium (Rh) as an example, 

Young's modulus and bulk modulus calculated using known shear modulus (149.45 GPa) 

and Poisson's ratio (0.26) are 377 GPa and 262 GPa, respectively. The corresponding 

closest data-pair recorded in the source pool is 379 GPa and 270.3 GPa, which are 

consistent with the best data pair (380 GPa and 276 GPa) determined with shear modulus 

and Equation 1-21-2 and Equation 1-21-5, but is in contradiction with the best data pair 
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(318.5 GPa and 221.2 GPa) selected solely according to Poisson's ratio and Equation 

1-21-8 and Equation 1-21-11. Methods 1, 2 and 3 (as listed in Table 4-6) can resolve such 

discrepancy: 

Table 4-6  The systematic methodology to resolve the discrepancy among different 

ANN predictions. 1 indicates property records are consistent in the source pool, and 0 

indicates property records are inconsistent in the source pool. 

Categories A B C D Methodology 

1 1 1 1 1 

2 

2.1 1 1 1 0 

Method 1 
2.2 1 1 0 1 

2.3 1 0 1 1 

2.4 0 1 1 1 

3 

3.1 1 1 0 0 

Method 2 

3.2 1 0 1 0 

3.3 1 0 0 1 

3.4 0 1 1 0 

3.5 0 1 0 1 

3.6 0 0 1 1 

4 

4.1 1 0 0 0 

Method 3 
4.2 0 1 0 0 

4.3 0 0 1 0 

4.4 0 0 0 1 

5 0 0 0 0 Method 1, 2 or 3 

 

Method 1: Take Category 2.1 as an example. With a unique record of property A, B and 

C, l different sets of property D  liDi ,1,   will be obtained from different 

correlations, i.e. using the correlation of A and B to predict D, using the correlation of A 

and C to predict D, and using the correlation of B and C to predict D. With the correlation 

of using A and D to predict B and the correlation of using C and D to predict B, property 



Chapter 4 

B { }liBB iCDiAD ,1,, )()( =  will be obtained from each set of property (A and iD ), and 

from each set of property (C and iD ), respectively. The fractional errors of property B is

{ }iCDiAD xxX )()( ,= , where
B

B
x iAD

iAD
)(

)( 1−= , 
B

B
x iCD

iCD
)(

)( 1−= , li ,2,1= . Similarly, a 

set of property A { }iCDiBD AA )()( ,  with corresponding fractional errors { }iCDiBD yyY )()( ,= , 

and a set of property C { }iBDiAD CC )()( ,  with corresponding fractional errors 

{ }iBDiAD zzZ )()( ,=  will be obtained. The best set to be chosen has the minimum value of

ie , where 

( ) ( ) ( ) ( )2)()()()()()(
2

)()(
2

)()(
2

)()( iBDiADiCDiBDiCDiADiBDiADiCDiBDiCDiADi zzyyxxzzyyxxe ++++++−+−+−=

 

Method 2: Take Category 3.1 as an example. Within a unique record of property A and 

property B, l different sets of property C and property D { }liDC ii ,2,1,, =  may be 

obtained from different correlations. Again, using the l different sets of (property C and 

property D), l different sets of (property A and property B){ }liBA ii ,2,1,, =  may be 

obtained, with corresponding fractional errors of property A, i.e.
A
Ax i

iCD −= 1)( ,

li ,2,1=  and property B, i.e. 
B
By i

iCD −= 1)( , li ,2,1= . The best set to be chosen has 

the minimum value of ei, where 

( ) ( )2)()(
2

)()( iCDiCDiCDiCDi yxyxe ++−= .
 

Method 3: Take Category 4.1 as an example. Within a unique record of property A, l 

different sets of property B, property C and property D{ }liDCB iii ,2,1,,,, =  may be 

obtained from different correlations. Again, using those l different sets, l different sets of 

property A ( ) ( ) ( ){ }liAAA iCDiBDiBC ,2,1,,, =  from property set (B and C), (B and D), and 

(C and D) may be obtained. Their corresponding fractional errors are ( ) ,iBCx ( )iBDx and
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( )iCDx , where ( )
( )

A
A

x iBC
iBC −= 1 , ( )

( )

A
A

x iBD
iBD −= 1 , ( )

( )

A
A

x iCD
iCD −= 1 , li ,2,1= . The 

best set to be chosen has the minimum value of ie , where 

( ) ( ) ( ) ( )2)()()(
2

)()(
2

)()(
2

)()( iCDiBDiBCiCDiBDiCDiBCiBDiBCi xxxxxxxxxe +++−+−+−= . 

For Category 5, because at least one elastic property predicted by employing different 

correlations established by either ANNs or the correlating equations listed in Table 1-2 

has a variance smaller than 10%, such property data can be treated as consistent. Methods 

1, 2 and 3 described above can then be applied to yield the best predictions of the other 

properties.  

4.3 Result and discussion 

4.3.1 Validation of ANNs 

Two questions may arise in employing ANNs to capture the correlations hidden in elastic 

property data. The first one is whether any experimental evidence supports the hypothesis 

that the elastic property data of the 27 elements that were used to build ANNs are correct. 

The second one is to what degree the elastic property correlations simulated by ANNs 

from a relatively small dataset are analogous to the known relationships represented by 

the correlating equations listed in Table 1-2. The two questions are addressed as below. 

1) Valid inputs for ANN constructions 

Because ANNs are data-driven modelling approaches, the relationships captured by 

ANNs highly depend on the input data. In order to validate the elastic properties of 27 

elements which are used to train ANNs, the pre-defined consistent data (i.e. the most 

common values in the source pool), are compared with the elastic properties calculated 

from the single crystal elastic constants through the VRH averaging method, except for 

Mn and Ca (see Table 4-7 and Table 4-8). To the author's knowledge, no elastic constant 

measurement on the single crystal of manganese or calcium is available. The 

experimental values used for the two elements were tabulated by Koster [140].  
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A comparison of Table 4-7 and Table 4-8 indicates the pre-defined consistent elastic 

properties of 27 elements are in excellent agreement with experimental values, except for 

barium and lead, whose Young's modulus and shear modulus calculated from single 

crystal elastic constants are more than 10% larger than the pre-defined values. The only 

literature providing the single crystal elastic constants for barium is poorly determined, as 

neither C11 nor C12 is directly obtained from the experiment [280]. Though it is not 

possible to assign a reason for the large discrepancy observed for lead, the elastic 

properties calculated from the single crystal elastic constants (provided by Ref. [281]) are 

probably more reliable than the values that first appeared in Ref. [140], which had little 

experimental information.  

Nevertheless, the discrepancy of elastic property relating to barium and lead and the 

uncertainty of elastic property associated with manganese or calcium for lacking single 

crystal data, should not affect the intrinsic relationships established by the ANNs. These 

data still obey the correlating equations that are listed in Table 1-2, which the ANNs are 

supposed to capture 

Table 4-7  Comparison of elastic properties of 27 pre-defined consistent elements 

between the values used to train ANNs (denoted as Anp.), and the values calculated from 

single crystal elastic constants (denoted as Exp.). See text for a discussion for Mn and Ca. 

Symbol 
Young's modulus 

/GPa 
Shear modulus  

/GPa 
Bulk modulus  

/GPa 
Poisson's ratio 

Exp. Anp. Exp. Anp. Exp. Anp. Exp. Anp. 

Ag 80.99 82.7 29.56 30.3 103.78 103.6 0.37 0.37 

Al 70.04 70 26.01 26 76.09 76 0.35 0.345 

Au 78.33 78.5 27.50 26 172.87 171 0.42 0.42 

Ba 13.65 12.8 5.41 4.86 9.55 9.6 0.26 0.28 

Bi 33.68 32 12.63 12 33.63 31 0.33 0.33 

Ca 19.61 19.6 7.49 7.4 17.16 17 0.31 0.31 

Co 215.93 209 82.36 82 190.33 181.5 0.31 0.31 
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Symbol 
Young's modulus 

/GPa 
Shear modulus  

/GPa 
Bulk modulus  

/GPa 
Poisson's ratio 

Exp. Anp. Exp. Anp. Exp. Anp. Exp. Anp. 

Cr 279.65 279 115.36 115 161.87 160.2 0.21 0.21 

Cu 127.35 129.8 47.31 48.3 137.83 137.8 0.35 0.343 

Dy 61.43 61.4 24.63 24.7 40.45 40.5 0.25 0.247 

Fe 208.19 211 80.66 82 165.67 170 0.29 0.28 

Mg 44.70 44.7 17.34 17.3 35.26 35.6 0.29 0.29 

Mn 197.70 191 80.15 79.5 123.56 120 0.23 0.24 

Mo 319.45 324.8 122.72 125.6 268.27 261.2 0.30 0.31 

Nb 105.20 104.9 37.64 37.5 171.33 170.3 0.398 0.397 

Ni 209.73 199.5 79.90 76 186.33 177.3 0.31 0.31 

Pb 24.14 16 8.56 5.59 44.61 45.8 0.41 0.44 

Pd 131.52 121 47.43 43.6 193.06 187 0.39 0.39 

Pt 161.63 170 57.47 60.9 287.16 276 0.41 0.39 

Sn 48.47 49.9 17.90 18.4 55.38 58.2 0.35 0.33 

Sr 14.80 15.7 5.72 6.03 11.99 12 0.29 0.28 

Ta 182.66 185.7 68.09 69.2 191.92 196.3 0.34 0.34 

Tb 56.99 55.7 22.69 22.1 38.89 38.7 0.26 0.261 

Ti 114.62 116 43.36 45.6 107.27 108.4 0.32 0.32 

V 129.14 127.6 47.39 46.7 156.49 158 0.36 0.365 

W 409.56 411 160.16 160.6 308.33 311 0.28 0.28 

Zn 100.96 104.5 40.74 41.9 64.48 69.4 0.24 0.249 
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Table 4-8  The elastic property data for the 27 pre-defined consistent elements. Values are calculated from single crystal elastic 

constants at 295±5 K, except for Mn and Ca. E is Young's modulus, G is shear modulus, K is bulk modulus and ν is Poisson's ratio. 

Symbol Structure 
Elastic property Elastic constant /GPa 

Ref 
E /GPa G /GPa K /GPa ν C11 C44 C12 C13 C14 C33 C66 

Ag Cubic 80.99 29.56 103.78 0.37 123.99 46.12 93.67 
    

[282] 

Al Cubic 70.04 26.01 76.09 0.35 106.78 28.21 60.74 
    

[283] 

Au Cubic 78.33 27.50 172.87 0.42 192.34 41.95 163.14 
    

[282] 

Ba Cubic 13.65 5.41 9.55 0.26 12.6 9.5 8.02 
    

[280] 

Bi Rhom 33.68 12.63 33.63 0.33 63.5 11.3 24.7 24.5 7.23 38.1 19.4 [284] 

Ca* Cubic 19.61 7.49 17.16 0.31 
       

[140] 

Co Hex 215.93 82.36 190.33 0.31 307.1 75.5 165 102.7 
 

358.1 71.05 [285] 

Cr Cubic 279.65 115.36 161.87 0.21 350 100.8 67.8 
    

[286] 

Cu Cubic 127.35 47.31 137.83 0.35 169.1 75.42 122.2 
    

[287] 

Dy Hex 61.43 24.63 40.45 0.25 73.1 24 25.3 22.3 
 

78.1 23.9 [288] 

Fe Cubic 208.19 80.66 165.67 0.29 229 115 134 
    

[289] 

Mg Hex 44.70 17.34 35.26 0.29 59.4 16.4 25.61 21.44 
 

61.6 16.9 [290] 

Mn* Complex 
cubic 197.70 80.15 123.56 0.23 

       
[140] 

Mo Cubic 319.45 122.72 268.27 0.30 469.6 106.8 167.6 
    

[291] 

Nb Cubic 105.20 37.64 171.33 0.40 246 28.7 134 
    

[292] 

Ni Cubic 209.73 79.90 186.33 0.31 249 114 155 
    

[289] 

Pb Cubic 24.14 8.56 44.61 0.41 49.5 14.92 42.16 
    

[281] 
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Symbol Structure 
Elastic property Elastic constant /GPa 

Ref 
E /GPa G /GPa K /GPa ν C11 C44 C12 C13 C14 C33 C66 

Pd Cubic 131.52 47.43 193.06 0.39 227.1 71.73 176.04 [293]

Pt Cubic 161.63 57.47 287.16 0.41 338.03 75.63 261.72 [294]

Sn tetra 48.47 17.90 55.38 0.35 72 21.9 58.5 37.4 88 24 [284]

Sr Cubic 14.80 5.72 11.99 0.29 15.3 9.9 10.34 [280]

Ta Cubic 182.66 68.09 191.92 0.34 260.91 81.82 157.43 [295]

Tb Hex 56.99 22.69 38.89 0.26 69.24 21.75 24.98 21.79 74.39 22.13 [296]

Ti Hex 114.62 43.36 107.27 0.32 162.4 46.7 92 69 180.7 35.2 [297]

V Cubic 129.14 47.39 156.49 0.36 230.06 42.81 119.71 [298]

W Cubic 409.56 160.16 308.33 0.28 521.4 160.4 201.8 [291]

Zn Hex 100.96 40.74 64.48 0.24 163 39.4 30.6 48.1 60.3 65.9** [299]

 
* No single crystal elastic constant is available, see text for further discussion. 

** The data of C66 listed here is directly adopted from Ref. [299], which is the average value over a large number of studies. Although 

its magnitude is slightly smaller than 1/2(C11-C12), it is expected to be closer to the true level of pure metal. 
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2) Correlations captured by ANNs 

Ideally, the elastic property correlations captured by ANNs should be the same as the 

relationships indicated by the correlating equations listed in Table 1-2. However, due to 

the small size of training data, this is unlikely to happen. Appendix XVIII illustrates 

how each elastic property (denoted by the Z axis) would change with the increasing of 

any other two properties (denoted by the X axis and the Y axis) in the correlating 

equations and the ANN models. In total, 11 figures were drawn. The changing tendency 

of the correlating equation is indicated as mesh grids, while the changing tendency of 

the ANN models is indicated as colourful surfaces, i.e. the yellow surfaces represent the 

ANNs predicting the Young's modulus. Similarly, the blue surfaces represent the ANNs 

predicting the shear modulus, the green surfaces represent the ANNs predicting the bulk 

modulus, and the cyan surfaces represent the ANNs predicting the Poisson's ratio. The 

values of 27 elements, which are used to construct the ANNs, are also plotted in the 

figures as red data points.  

Figure 4-5 is an example that compares the ANN modelling (three-dimensional yellow 

shaded surface) with the correlating equations (mesh grids) in predicting the Young's 

modulus from the Poisson's ratio and the shear modulus. The Young's moduli (Z 

component) are obtained by assuming a series of values at fixed intervals for Poisson's 

ratio (Y component) and shear moduli (X component). As can be seen, the true values 

of the 27 elements are located in the overlapping areas of the yellow surface and the 

mesh grids. Moreover, in the data range that is bound by the maximum and minimum 

value of the 27 elements (i.e. shear moduli from ~4 GPa to ~170 GPa, Young's moduli 

from ~12 GPa to ~411 GPa, Poisson's ratio from ~0.2 to ~0.44), the trend of the ANN 

model are very similar to the trend of the correlating equation. For an enlarged data 

region, the similarity between the correlation captured by ANNs and the relationship 

illustrated by the correlating equation will decline. Because not enough data in such 

region are applied for the ANN training, the uncertainty of the ANN increases by 

extrapolation, making the ANN less applicable when presented with new data. 

. 
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Figure 4-5 Comparison of the ANN model and the correlating equation in 

predicting E from ν and G in 3D dimensions.  

4.3.2 Comparisons of elastic properties predicted by ANNs and the 

correlating equations 

Table 4-9 tabulates the results that are evaluated by the ANN models and the results that 

are evaluated by the correlating equations (according to the same methodology that is 

described in Table 4-6). It also includes the data that occur most frequently in the source 

pool for each element. The underlined data in italic font indicate the values are 

inconsistent for the labelled property in the source pool, which are verified by the ANNs 

and by utilizing the correlating equations. 

The results also show that the ANNs are equivalent to the correlating equations in a 

reasonable data range. For elements, whose values are located in data range of the 27 

training examples, the data predicted by the ANNs are in good agreement with the 

values obtained from the correlating equations is evident: the average error is about 2%. 
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However, for elements whose elastic property data are outside the range of the training 

examples, the extrapolations from the ANN model are less reliable. Especially for Ru, 

Na, In, Tl, Eu, Rb, U and Yb, the average error is as large as ~23%. 

Because the ANNs are trained with a relatively small size of data, the ANN predictions 

that are outside training domain provide rough estimations. However, the prediction 

accuracies of the ANNs might be improved by employing multiple correlations (ANN 

models) that mutually restrict each other. Take lithium as an example. Its largest value 

of shear modulus recorded in the source pool, i.e. 4.31 GPa, is smaller than the smallest 

input in ANNs training examples, i.e. 4.86 GPa. The result predicted by the ANN model 

from the consistent bulk modulus and Poisson's ratio is 7.82 GPa, which leads to 4.31 

GPa to be chosen from the source pool as the closest value to the prediction. However, 

the data predicted within the usage of an ANN model that correlate Poisson's ratio and 

Young's modulus (to-be-determined), together with an ANN model that correlate bulk 

modulus and Young's modulus (to-be-determined), is 3.85 GPa. It is the same as the 

result directly obtained by employing Equation 1-21-1 and Equation 1-21-7.  

It should be emphasised, however, the results predicted from a single ANN correlation 

and from several mutual-restrained ANN correlations should be treated equally if the 

magnitude of data is within the data range covered by the ANN training examples. In 

this case, the data recommend by ANNs are their average value (if the difference is less 

than 10%) or the value re-determined through the approach that is described in Table 

4-6 (if elastic properties predicted by utilizing different correlations do not yield results 

within 10% variation). 
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Table 4-9  Comparison of the elastic property values yield by ANNs and the Equation 1-21. 

Symbol
Most common value in the source pool Results yield by ANNs  Results yield by Equations 

ν K /GPa E /GPa G /GPa ν K /GPa E /GPa G /GPa ν K /GPa E /GPa G /GPa 

Gd 0.259 38 55 21.9 21.8 21.8 

Nd 0.281 31.9 41.2 16.15 16 16 

Er 0.237 44.4 69.95 28.3 44 44.4 

Ir 0.26 365 528 209.8 383 371 

Li 0.36 11.2 4.91 4.23 10.44 3.85 10.44 3.85 

Pr 0.281 28.8 37.3 14.8 37 15 36 14.8 

Tc 0.301 289 351 134 322 123 322 123 

Rh 0.26 275.5 330 149.45 276 379 270.3 379 

Cs 0.295 1.6 1.7 0.65 0.295 1.4 0.295 1.4 

Os 0.25 376.45 558.75 222.25 0.253 379.9 0.255 379.9 

Re 0.293 367.5 463 180 0.298 365 0.289 365 

Ru* 0.286 286 432 173 0.3 348 0.25 286 

Sc 0.279 56.6 74.4 29.1 0.279 57.3 0.28 56.6 

Tm 0.213 44.5 74 30.5 0.235 45 0.217 43.6 

Y 0.252 41.2 64.4 25.6 0.246 46.9 0.242 46.9 

Th 0.27 54 78.3 30.8 0.263 75.65 0.26 78.3 
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Symbol 
Most common value in the source pool Results yield by ANNs  Results yield by Equations 

ν K /GPa E /GPa G /GPa ν K /GPa E /GPa G /GPa ν K /GPa E /GPa G /GPa 

Ho 0.231 40.2 64.8 26.3 0.255 39.7 65 
 

0.23 40 64.8 
 

Zr 0.34 89.8 94.95 35 0.332 95.3 94 
 

0.332 95.3 94.95 
 

Hf 0.3 109 140 54.9 0.282 
 

140 56 0.282 
 

143 55.8 

Na* 0.34 6.52 6.8 2.915 0.315 
 

6.8 2.53 0.366 
 

5.41 1.98 

Pu 0.195 54 96 43 0.21 
 

87.5 34.5 0.21 
 

91.75 34.5 

Ce 0.245 21.7 33.6 13.5 
 

21.5 33.5 14 
 

22 33.6 13.53 

In* 0.45 41.1 10.8 3.68 
 

42 14 3.68 
 

41.1 13.8 4.78 

K 0.35 3.14 3.53 1.3 
 

4.2 3.53 1.3 
 

4.2 3.53 1.3 

Tl* 0.45 35.8 7.975 2.775 
 

28.5 15.42 5.4 
 

35.7 15.42 5.4 

Be 0.032 117.785 291.8 139 0.118 130 287 128.4 0.118 125.57 287.25 128.4 

Cd 0.3 46.7 58.6 24 0.303 51 62.3 24.6 0.302 52.9 62.54 24 

Eu* 0.152 8.3 18.2 7.9 0.286 14.7 18.2 7.9 0.152 8.7 18.2 7.9 

Ga 0.47 42.6 9.81 6.67 0.235 58.2 93.2 37.8 0.233 58.2 93.2 37.8 

La 0.28 27.9 37.5 14.9 0.284 30.3 36.8 14.15 0.284 28 37 14.25 

Lu 0.2605 47.6 68.6 27.2 0.26 42.6 61.5 24.41 0.26 42.7 61.5 24.41 

Rb* 0.328 2.5 2.35 0.91 0.3 2.3 2.4 1.02 0.374 2.3 1.73 0.63 

Sm 0.274 37.8 49.7 19.5 0.268 35.7 49.7 19.55 0.268 35.7 49.7 19.6 
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Symbol 
Most common value in the source pool Results yield by ANNs  Results yield by Equations 

ν K /GPa E /GPa G /GPa ν K /GPa E /GPa G /GPa ν K /GPa E /GPa G /GPa 

U* 0.22 100 208 97.7 0.24 97.9 175.8 73.1 0.205 100 175.8 74.05 

Yb* 0.207 30.5 23.9 9.9 0.284 13.8 18 7.1 0.205 13.2 23.93 9.95 

* The value predicted from the ANNs is different from the value calculated from the correlating equations. 
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4.3.3 Original experimental value 

In order to access the uncertainty of the ANN data policing method, and to analyse the 

reason that causes data disparity in the source pool, an attempt is made to present all 

available information, referring to the original sources, for the 35 elements that have 

inconsistent elastic property data. The investigations of the experimental elastic 

property data at room temperature for each element have been summarized in Table 

4-10 ~ Table 4-44, including the measurements that were conducted on single crystals 

and polycrystalline samples. When the measurements on single crystals are available, 

the elastic constants are provided as well as the elastic properties obtained through the 

VRH averaging method. For the measurements on polycrystalline materials, elastic 

property data are directly collected from the literature.  

The author's choices of the best experimental values of elastic properties for the 35 

elements are marked in bold and italic font in Table 4-10 ~ Table 4-44 for each element 

for comparison, and are summarised in Appendix XVII. In general, data obtained on 

single crystals are preferred, because the assumption that polycrystalline materials are 

isotropic is not always true [119]. If multiple studies on the elastic constants are 

available for an element, the values from the latest experiments that were conducted on 

a wider temperature range are selected, because the original sources may give extra 

information including the temperature dependences of elastic properties, for example, 

Na (see page 138). When no single crystal elastic constant was measured at room 

temperature, or when estimations are made in obtaining single crystal elastic constants, 

data obtained from polycrystalline material are used, such as the data chosen for the 

elements Tc, Cs and Tm. Moreover, the elastic property data of polycrystalline 

materials obtained from dynamic measurements are believed to be more accurate than 

the data obtained from static measurements [171, 174]. Consequently, the dynamic 

measurement results are deemed the best values. 

To compare the experimental values and the values verified by the ANNs and by the 

correlating equations (listed in Table 1-2), the property that has sparse values in the 

source pool has its data underlined in Table 4-10 ~ Table 4-44 for each element. Most 

errors in the source pool attribute to different experimental conditions, i.e. temperature, 

purity, specimen structure (single crystal or polycrystalline), and measurements (static 
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or dynamic methods). Some errors are the results of incorrect unit conversions, e.g. 

gallium.  

1) Gd and Nd (Inconsistent G) 

Both gadolinium (Gd) and neodymium (Nd) are rare earth elements that adopt the 

hexagonal close-packed (hcp) structure at room temperature. They have a large 

discrepancy of shear moduli in the source pool. Except for the smallest value for Gd 

(12.5 GPa) which comes from Ref. [279], the other 7 data are around 22 GPa, the same 

value recommended by the ANNs and the correlating equations. For Nd, shear modulus 

data recorded in CES [228] and Ref. [279] (~14.5 GPa) differ from the data recorded in 

the other 6 sources (~16 GPa). Both ANNs and the correlating equations recommend 

that the correct value for Nd is 16 GPa.  

The elastic properties of Gd and Nd have been thoroughly reviewed by Scott [119], who 

studied several investigations and found the experimental values of shear moduli were 

in excellent agreement at ~22 GPa for Gd [296, 300-304]. While for Nd, the minimum 

value of shear moduli, i.e. 14.5 GPa, is given by Smith et al. [300], but other 

experiments values, either by calculating from the single crystal elastic constants [305] 

or by determining from the polycrystalline samples [303, 306], are all close to 16 GPa. 

2) Er and Ir (Inconsistent K) 

i. Erbium (Er)  

Er is the rare earth element with hcp structure. Its bulk modulus data in the source pool 

are in good agreement, except for the smallest value (41.1 GPa, a variation of 13.14%) 

recorded in CES. The smallest value seems to be obtained by Bridgman using a static 

method [152, 307]. Because the bulk modulus (~45 GPa) calculated through the VRH 

averaging method using the single crystal elastic constants, which were obtained by 

Fisher et al. [308], Rosen et al. [309], Palmer et al. [296], and Plessis [310], coincides 

with the polycrystalline value that were reported by Smith et al.[300] and Rosen [302], 

it is believed to be more accurate than Bridgman's data. 
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Table 4-10  Elastic property of gadolinium (Gd) and neodymium (Nd). 

Element 
C11 C33 C44 C66=(C11-

C12)/2 C13 C12 E G K 
ν Ref 

GPa 

Gd 67.83 71.23 20.77 21.12 20.72 25.59 54.8 21.8 37.9 0.259 [296] 

 
 

 
  

  56.2 22.3 38.92 0.259 [300] 

 
 

 
  

  55.6 22.2 38.1 0.252 [301, 
302] 

 
 

 
  

  59.2 23.8 38.6 0.244 [119, 
304] 

 
 

 
  

  56.1 22.3 38.46 0.257 [303] 

 
 

 
  

  55 21.8 38 0.259 Equations 

 
 

 
  

  55 21.8 38 0.259 ANNs 

Nd 54.82 60.86 15.03 15.1 16.6 24.62 41.8 16.3 31.8 0.281 [305] 

 
 

 
  

  37.9 14.5 32.47 0.306 [300] 

 
 

 
  

  40.7 15.8 31.35 0.283 [301, 
306] 

 
 

 
  

  43.1 16.8 33.11 0.283 [303] 

 
 

 
  

  41.2 16 31.9 0.281 Equations 

 
 

 
  

  41.2 16 31.9 0.281 ANNs 

 

i. Iridium (Ir)  

Ir is face-centred cubic (fcc) transition metal, which is found to be brittle at room 

temperature in both single crystal and polycrystalline state [311]. Its single crystal 

elastic constants were dynamically studied by Macfarlane et al. [131] from 4.2 K to 

room temperature. The elastic properties of polycrystalline Ir were thoroughly 

investigated by Merker et al. [312] from room temperature to 1500 K using the 

resonance technique. The substantial discrepancy of bulk moduli may be ascribed to the 

anisotropy associated with the as-cast microstructure of Merker's test specimen. The 

bulk modulus that is calculated using the single crystal elastic constants is in good 

agreement with the static measurement results (~355 GPa) [152, 313].  

The elastic property data recorded in the source pool are identical to the values tabulated 

by Koster [140], excepted for bulk modulus data, which generally falls in two groups: 
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~320 GPa and ~370 GPa. Only the larger value corresponds relatively well with the data 

in Ref. [140]. The difference between the bulk modulus predicted from ANNs and the 

value calculated using the correlating equations is very small (about 3%), thus it is 

acceptable. 

Table 4-11  Elastic property of erbium (Er). 

C11 C33 C44 
C66=(C11-

C12)/2 
C13 C12 E G K 

ν Ref 
GPa 

86.3 85.5 28.1 27.9 22.7 30.5 71.6 28.9 45.5 0.238 [308] 

82.5 84.5 27.9 27 21.1 28.5 70.0 28.4 43.4 0.231 [309] * 

83.67 84.45 27.53 27.19 22.22 29.29 69.9 28.3 44.3 0.237 [296] 

83.88 84.32 26.45 27.31 24.21 29.26 68.9 27.6 45.3 0.246 [310] 

   73.3 29.6 46.48 0.238 [300] 

   72.9 29.6 45.66 0.233 [301, 302]

   73.35 29.62 41.07 0.238 [152] 

   69.95 28.3 44.4 0.237 Equations

   69.95 28.3 44 0.237 ANNs 

* Elastic constants are read off from the graph. 

Table 4-12  Elastic property of iridium (Ir). 

C11 C44 C12 E G K 
ν Ref 

GPa 

580 256 242 540.19 216.74 354.67 0.246 [131] 

525.5 218.2 296.06* 0.204* [312] 

527.89 209.86 365.79 0.260 [140] 

528 209.8 371 0.26 Equations 

528 209.8 383 0.26 ANNs 

                *  The value is obtained using Equation 1-21. 
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3)  Li, Pr and Tc (Inconsistent E and G) 

i. Lithium (Li) 

Li is a very soft alkali metal with a cubic structure. Robertson and Montgomery 

[314] studied the Young's modulus of isotopically concentrated polycrystalline Li (~8 

GPa) at room temperature through the resonant measurement, and found the isotopic 

mass had no effect on the elastic properties. The elastic constants of single crystal Li 

have been dynamically measured by Nash and Smith [315] at low temperature (78 K, 

155 K and 195 K), by Jain [134] at 300 K and by Felice et al. [316] from 90 K to 300 K. 

Their data were in reasonably good agreement when extrapolated to room temperature. 

Data from Felice et al. [316] are recommended to be the best values because elastic 

properties were provided at a wider temperature range. 

In the source pool, Young's moduli (~10 GPa) provided by CES and Ref. [115], which 

are close to the experimental results [134, 315, 316], seriously disagree with the value 

4.9 GPa provided by other sources. The value 4.9 GPa was acquired from a static test 

that was first reported by Bridgman [317]. While the most common value of shear 

moduli in the source pool (~4.2 GPa) seems to be calculated from the single crystal data 

at 83 K by Gschneidner [152]. It is much larger than the recent experimental results 

listed in Ref. [134, 315, 316]. Even though the shear modulus and Young's modulus of 

Li are slightly smaller than the lower bounds of ANNs training and testing datasets, the 

ANNs gave the same values as the correlating equations did. 

Table 4-13  Elastic property of lithium (Li). 

C11 C44 C12 E G K 
ν Ref 

GPa 

14.85 10.80 12.53 12.66 4.72 13.30 0.341 [315]* 

11.51 8.56 9.60 10.10 3.78 10.23 0.335 [315]** 

14.06 8.8 12.02 10.69 3.93 12.70 0.360 [134] 

13.36 8.82 11.28 10.70 3.96 11.97 0.351 [316] 

   
4.90 1.72 11.11 0.427 [317] 

   
11.47 4.23 11.57 0.362 [152]& 
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C11 C44 C12 E G K 
ν Ref 

GPa 

10.44 3.85 11.2 0.36 Equations

10.44 3.85 11.2 0.36 ANNs 

 * At 78 K. 

 ** Linearly extrapolated to 300 K. 
& At 83 K. 

ii. Praseodymium (Pr) 

Pr is a rare earth element with hcp structure at room temperature and below [318]. Scott 

[119] made an excellent compilation for the elastic data published in literature and 

recommended the data that were obtained by Greiner et al. [318] for a future usage. 

Table 4-14 is the summery of elastic properties measured at room temperature through 

dynamic measurements. Smith et al. [300], Rosen [306] and Gust and Royce [303] all 

investigated the elastic behaviour of polycrystalline Pr. Only Greiner et al. [318] has 

determined Pr single crystals data.  

In the source pool, the maximum value of Young's moduli (50 GPa) is recorded in CES, 

which exhibits a significant gap from the rest data (~37 GPa). The variation of shear 

moduli recorded in the source pool is close to 10%, and is narrowed down by the ANNs 

and the correlating equations. In addition, the Young's moduli and shear moduli 

predicted by ANNs and the correlating equations agrees well with the experimental 

values. 

Table 4-14  Elastic property of praseodymium (Pr). 

C11 C33 C44 
C66=(C11-

C12)/2 
C13 C12 E G  K 

ν Ref 
GPa 

49.35 57.4 13.6 13.2 14.3 22.95 37.9 14.8 28.8 0.281 [318] 

      35.2 13.5 29.9 0.305 [300] 

      36 13.9 28 0.291 [306] 

      38.5 15 29.9 0.283 [303] 

      36 14.8 28.8 0.281 Equations

      37 15 28.8 0.281 ANNs 
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iii. Technetium (Tc) 

Tc crystallizes in hcp structure at room temperature [319]. Very few studies have 

reported the elastic properties for Tc, owing to the difficulty in acquiring a sample with 

high purity [320]. Therefore, it is no surprise to find that there are only two data in the 

source pool for Tc: the smaller data (E=322 GPa, G=123 GPa) is collected from Ref. 

[115], and the larger one (E=380 GPa, G=145 GPa) is collected from CES. The larger 

data can be traced back to the values of polycrystalline Tc that were dynamically 

measured by Love et al. [320]. Though there is no direct measurement on Tc single 

crystal, the VRH averaging results using elastic constants derived by Guillermet and 

Grimvall [319] from experimental phonon dispersion curves based on the assumption 

that C12 equals C13, are in close agreement with Love's data. 

No literature can be identified as the origin of the data recorded in CES, but Ref. [115] 

and CES give relatively consistent values for Poisson's ratio (~0.3) and bulk modulus 

(~290 GPa). The calculated values of Young's modulus and shear modulus by 

employing Equation 1-21 are the same as the ANN predicted data. Table 4-15 lists the 

experimental elastic properties [319, 320] together with the values estimated by 

Gschneidner [152]. 

Table 4-15  Elastic property of technetium (Tc). 

C11 C33 C44 C66=(C11-C12)/2 C13 C12 E G K 
ν Ref 

GPa 

433 470 117 117 199 199 313.6 119.4 280.9 0.314 [319]* 

      322.0 123.0 281.0 0.309 [320] 

      368.73 142.20 297.14 0.293 [152]** 

      322 123 289 0.301 Equations

      322 123 289 0.301 ANNs 

* Assuming C12 equals C13. 

** Estimated values. 
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4) Rh (Inconsistent E and K) 

Rhodium (Rh) is a transition metal possessing fcc crystal structure at room temperature 

[321]. Most bulk moduli data in the source pool are close to 270 GPa, excepted the 

largest value (380 GPa) that is recorded in the online database [322], and the smallest 

value (~220 GPa) that is recorded in the article [115]. Young's moduli generally fall into 

three ranges: ~380 GPa, ~330 GPa and ~270 GPa. Besides the single crystal 

measurement that were conducted below ambient temperature (from 4.2 K to 250 K) by 

Maurer et al. [321], the only investigation on single crystal elastic constants at room 

temperature for Rh is performed by Walker et al. [323]. According to their elastic 

constants, the bulk modulus and the Young's modulus calculated through the VRH 

averaging method are 267 GPa and 378 GPa, which are very close to the values 

predicted by ANNs and the correlating equations. Experimental data measured by 

Walker et al. [323], Maurer et al. [321] and the values tabulated by Gschneidner [152] 

from static measurements are also listed in Table 4-16. 

Table 4-16  Elastic property of rhodium (Rh). 

C11 C44 C12 E G K 
ν Ref 

GPa 

412.6 184.1 193.5 377.84 149.49 266.53 0.264 [323] 

406.03 185.05 187.45 377.10 149.81 260.31 0.259 [321]* 

   
372.65 147.10 270.47 0.270 [152] 

   
379 149.45 270.3 0.26 Equations 

   
379 149.45 276 0.26 ANNs 

         * Linear extrapolated to 300 K. 
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5) Cs, Os, Re, Ru, Sc, Tm and Y (Inconsistent K and ν) 

i. Cesium (Cs) 

Cs is a heavy alkali metal, and will transform from bcc to fcc phase under pressure ~2 

GPa at room temperature [324]. In the source pool, the unique data of Poisson's ratio 

(0.356) in contrast to the most common value 0.295 is recorded in CES. The largest two 

bulk moduli data (>2 GPa) are recorded in CES and Ref. [279], while the smallest data 

are obtained from Ref. [115]. The only available single crystal elastic constants are 

determined by Kollarits and Trivisonno [325] at low temperature (2 K and 78 K) by an 

ultrasonic pulse echo technique. The relatively consistent Young's moduli (~1.7 GPa) 

and shear moduli (~0.65 GPa) in the source pool, are identical to the values that are 

calculated by Gschneidner [152] using the experimental bulk modulus and the estimated 

ratio of Young's modulus to shear modulus. The bulk modulus (~1.7 GPa) of 

polycrystalline Cs at close room temperature (290 K) measured by Anderson and 

Swenson [326] is smaller than that measured by Bridgman [327] (~2 GPa). Voronov et 

al. [324] found the shear modulus of polycrystalline Cs was roughly 0.63 GPa. 

As described previously, ANN of predicting K from E and G is less accurate, thus its 

prediction should be used with great caution to compare with other ANNs predictions. 

This concern should also be extended to the ANN predictions for Os, Re, Ru, Sc, Tm 

and Y, where the bulk modulus predicted from the shear modulus and the Young's 

modulus should be excluded in the values finally determined by ANNs. Though the 

experimental data are smaller than the lower bound of the ANN input dataset, ANNs 

yield the same results as the correlating equations do. The inconsistence between ANNs 

predictions and the experimental values is possibly due to the different Young's moduli 

used as the input: a less than 5% change in the Young's modulus will result a larger than 

10% change in the bulk modulus and the shear modulus. 

Table 4-17  Elastic property of cesium (Cs). 

C11 C44 C12 E G K 
ν Ref 

GPa 

2.47 1.48 2.06 1.89 0.70 2.19 0.356 [325]* 
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C11 C44 C12 E G K 
ν Ref 

GPa 

2.12 1.13 1.70 1.59 0.59 1.84 0.356 [325]** 

1.76 0.65 2.03 0.356 [152] 

1.7 0.65 1.4 0.295 Equations

1.7 0.65 1.4 0.295 ANNs 

 * At 78 K. 
 ** Values have been linearly extrapolated to 300 K. 

ii. Osmium (Os) and Ruthenium (Ru) 

Os and Ru belong to the platinum group metals, and possess an hcp structure under 

ambient conditions of pressure and temperature. Particularly, Os has the highest 

Young's modulus (~650 GPa) in the Periodic Table. In the source pool, the unique 

Poisson's ratio value (0.285) from CES is different from the rest of data (~0.25). CES 

and Ref. [328] also record the unique bulk modulus value 462 GP. For Ru, data 

discrepancy is surprisingly large: the Poisson's ratio ranges from 0.25 to 0.3, and the 

bulk moduli spread from 220 GPa to 384 GPa. 

Elastic properties of Os and Ru have been determined by Darling [136], and Narayana 

and Swamy [329]. They all indicate the Young's modulus and the shear modulus of 

polycrystalline Os should be ~560 GPa and ~220 GPa, respectively. However, much 

larger values (E=648 GPa and G=263 GPa) were obtained by Pantea et al. [330] from 

Os single crystal. The largest controversy that causes disputes in literature is its bulk 

modulus. The X-ray diffraction experiment conducted by Cynn et al. [331] indicates the 

bulk modulus for Os is 462 GPa, even exceeding that of diamond (~446 GPa). Such 

result is challenged by Darling [136], Narayana and Swamy [329], Pandey et al. [332], 

Occelli et al. [333], Armentrout [127], Pantea et al. [330, 334], and Kenichi [335]. Their 

values range from 380 GPa to 420 GPa, but are all smaller than that of diamond. It is 

argued that the larger value of bulk modulus determined by Cynn et al. is attributable to 

the inappropriate pressure-transmitting medium (Ar) used in the experiments, 

introducing systematic error by giving large non-hydrostatic stress [334]. If under 

hydrostatic condition by replacing Ar to He, the bulk modulus will decrease to ~395 

GPa [335].  



Chapter 4 

130 

 

Table 4-18  Elastic property of osmium (Os). 

C11 C33 C44 C66 C13 C12 E G K 
ν Ref 

GPa 

749.5 819.9 259.2 259.9 217.8 229.9 654.0 265.6 405.3 0.231 [330] 

   558.5 222.5* 380* 0.255* [329] 

   560 220 380 0.25 [136] 

   558.75 222.25 379.9 0.255 Equations

   558.75 222.25 379.9 0.253 ANNs 

 * Estimated data. 

In addition to the experiments that were conducted by Darling [136], Narayana and 

Swamy [329], Pandey et al. [332], Brown et al. [336] also measured polycrystalline Ru 

at room temperature. The only single crystal elastic constants for Ru were measured by 

Fisher and Dever [337] over the temperature range 4 K to 1123 K. Their data together 

with the results obtained through VRH averaging method using the single crystal elastic 

constants are reported below. Data predicted from ANNs and that calculated from the 

correlating equations are consistent for Os, but inconsistent for Ru, probably because 

the values of the elastic property of Ru are out of ANNs training domain.  

Table 4-19  Elastic property of ruthenium (Ru). 

C11 C33 C44 
C66=(C11-

C12)/2 
C13 C12 E G K 

ν Ref 
GPa 

562.6 624.2 180.6 187.4 168.2 187.8 475.2 190.8 310.7 0.245 [337] 

447 173 365 0.3 [336] 

420 163 327.1 0.286 [152] 

413.7 163* 298.5 0.269* [329] 

430 172 292 0.25 [136] 

432 173 286.3 0.25 Equations

432 173 348 0.3 ANNs 

* Estimated data. 
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iii. Rhenium (Re) 

Re is an hcp metal with the axial ratio c/a of 1.6 at 300 K, which is slightly smaller than 

the ideal value 1.633 [337, 338]. Its single crystal elastic constants have been measured 

by Shepard and Smith [339], Fisher and Dever [337], and Manghnani et al. [338] 

through the dynamic approaches. Polycrystalline data at room temperature have been 

reported by Brown et al. [336] and Darling [136]. 

In the source pool, the smallest data of Poisson's ratio (0.26) and bulk modulus (334 

GPa) for Re are recorded in the handbook [251] and the handbook [143]. The online 

database [340] also reports the bulk modulus of Re being 334 GPa. The ANNs 

predictions are in good agreement with the correlating equation calculations. They can 

be traced back to Brown's experimental values [336], and are very close to the other set 

of experimental results [337]. 

Table 4-20  Elastic property of rhenium (Re). 

C11 C33 C44 
C66=(C11-

C12)/2 C13 C12 E G K 
ν Ref 

GPa 

612.6 682.7 162.5 171.4 206 270 461.7 179.2 363.5 0.288 [339] 

618.2 683.5 160.6 171.4 207.8 275.3 460.8 178.5 366.9 0.291 [337] 

617.7 682.8 160.5 171.4 205.5 274.9 460.8 178.6 365.6 0.290 [338] 

      
463 178.6 378 0.296 [336] 

      
470 182 379 0.293 [152, 

336] 

      
472 180 340 0.26 [136] 

      
463 180 365 0.289 Equations 

      
463 180 365 0.298 ANNs 

 

iv. Scandium (Sc) 

Sc, Th and Y are hcp rare earth elements. A completed set of single crystal elastic 

constants of Sc has been provided by Fisher and Dever [341] over a wide temperature 

range, followed by Leisure [342] measuring at room temperature. Polycrystalline data at 

room temperature have been determined by Browns et al. [336] and Gust and Royce 
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[303] through dynamic methods, and tabulated by Gschneidner [152]. It is noted that 

elastic properties calculated by Scott [119] are slightly different from the VRH results 

listed below, especially for the shear modulus and the Poisson's ratio, which have 13% 

and 8% differences. Because Scott did not present the elastic constants he actually used, 

and the present VRH results are supported by Ref. [342, 343], it is believed that data in 

Table 4-21 have higher accuracy.  

The largest Poisson's ratio (0.309) and bulk modulus (67.1 GPa) in the source pool from 

Ref. [279] can be traced back to the Browns' measurement [336], and the smallest data 

(ν=0.258, K=55.1 GPa) from Ref. [115] is similar to the result obtained by Gust and 

Royce [303]. Results yielded by ANNs are generally consistent with results yielded by 

the correlating equations. 

Table 4-21  Elastic property of scandium (Sc). 

C11 C33 C44 
C66=(C11-

C12)/2 C13 C12 E G K 
ν Ref 

GPa 

98.6 106.2 27.5 26.9 29.5 44.8 75.1 29.4 56.8 0.279 [342] 

99.3 106.9 27.7 26.8 29.4 45.7 75.5 29.5 57.1 0.280 [341] 

      
74.4 29.1 56.6 0.278 [119] 

      
77 29.4 67.2 0.31 [336] 

      
80.9 31.9 44.4 0.269 [152, 

336] 

      
79.9 31.8 55.2 0.257 [303] 

      
74.4 29.1 56.6 0.28 Equations 

      
74.4 29.1 57.3 0.279 ANNs 

 

v. Thulium (Tm) 

Very few experiments have been performed to study the elastic property of hcp Tm. 

Rosen [344] measured high purity polycrystalline Tm at the temperature ranging from 

4.2 K to 300 K. Lim et al. [345] measured the single crystal elastic constants of Tm as a 

function of temperature. They both use an ultrasonic pulse technique. However, due to 

the small sample size, Lim et al. [345] did not measure C13 because of the difficulty in 
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preparing parallel faces required for the propagation of ultrasonic waves. Instead, they 

used an interpolated data. In this case, the VRH averaging values listed in Table 4-22 

must be taken with some reservation. The smallest bulk modulus (~37 GPa) [228, 279] 

recorded in the source pool may be derived from the Bridgman's compression data [119]. 

The ANN determined data are close to the experimental values recorded in Ref. [344]. 

Table 4-22  Elastic property of thulium (Tm). 

C11 C33 C44 
C66=(C11

-C12)/2 C13 C12 E G K 
ν Ref 

GPa 

92.5 81.5 28.2 29.5 25* 33.5 73.1 29.3 47.9 0.246 [345] 

      
74 30.5 44.5 0.213 [344] 

      
74 30.5 43.6 0.217 Equations 

      
74 30.5 45 0.235 ANNs 

* Interpolated data. 
 

vi. Yttrium (Y) 

Yttrium is an hcp rare earth element. Poisson's ratio data in the source pool for Y can be 

divided in two categories with a variation of 10.42%: ~0.24 and ~0.265. The smallest 

value of bulk modulus (36.6 GPa) recorded in CES and the largest value (46.9 GPa) 

recorded in Ref. [279] differ from the rest data listed in the source pool(~41 GPa).  

Smith et al. [300], Gust and Royce [303], Smith and Gjevre [346] and Savage et al. 

[347] all measured the elastic properties of Y, but only the last two experiments 

determined the single crystal elastic constants of Y over a wide temperature range. Scott 

[119] also calculated elastic properties using single crystal elastic constants from Ref. 

[346]. Because his calculation is very similar to the present results (see Table 4-23), 

probably his claim that C44 and C66 were interchanged in Ref. [346] is questionable 

since no correction is made in this calculation.  

It is also noted that the elastic constants presented in Ref. [347] are consistent with the 

data listed in Ref. [346], excepted for C13, leading significant changes in the calculation 

of bulk modulus and Poisson's ratio. Though Savage et al. [347] attribute the variation 
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in C13 to their higher sample purity, it should be emphasised that this does not 

necessarily mean their data are more reliable, because their six elastic constants were 

collected from five different samples containing different impurities. It makes more 

sense to use data collected from the consistent purity sample as presented by Ref. [346]. 

The elastic properties predicted by ANNs are equal to the values calculated from the 

correlating equations, and close to the experimental values in Ref. [300, 346].  

Table 4-23  Elastic property of yttrium (Y). 

C11 C33 C44 
C66=(C11-

C12)/2 
C13 C12 E G K 

ν Ref 
GPa 

77.9 76.9 24.31 24.7 21 28.5 63.3 25.4 41.5 0.246 [346] 

79.10 78.70 24.66 24.80 32.60 29.47 62.2 24.3 47.4 0.281 [347] 

66.3 26.2 46.92 0.265 [300] 

60.9 23.5 49.75 0.296 [303] 

63.5 25.6 41.2 0.243 [119, 346]

64.4 25.6 46.9 0.242 Equations

64.4 25.6 46.9 0.246 ANNS 

 

6) Th (Inconsistent E and ν) 

Thorium (Th) has the fcc structure at room temperature. The two properties recorded in 

source pool that have sparse data are Young's modulus and Poisson's ratio. Ref. [348] 

presents a much smaller value for Young's modulus (58.6 GPa), comparing to the most 

common value 78.3 GPa, while the largest Poisson's ratio 0.3 is recorded in CES. 

The elastic properties of polycrystalline Th were first dynamically measured by 

Reynolds [349]. Carlson et al. [350] adopted the bulk modulus data from Reynolds' 

result, but used different values for the other three elastic properties, so his data do not 

obey the relationships between the elastic property (as shown in Table 1-2). The single 

crystal elastic constants of Th were first determined by Armstrong et al. [351], followed 

by Greiner et al. [352] measuring over temperature range 4.2 K ~ 300 K. Their data 

together with the VRH averaging results are listed in Table 4-24. Though ANNs yields 

the similar results as employing the correlating equations, it should be mentioned that 
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the experimental values in Ref. [352] are recommended to be the best values to describe 

the elastic behaviour of Th. The differences between ANNs predictions and the 

experimental values are due to the different shear moduli and bulk moduli using as 

inputs.  

Table 4-24  Elastic property of thorium (Th). 

C11 C44 C12 E G K 
ν Ref 

GPa 

75.3 47.8 48.9 73.74 28.65 57.70 0.287 [351] 

77.02 45.54 50.88 71.94 27.70 59.59 0.30 [352] 

   
72.8 28 60.67 0.3 [349] 

   
72.4 27.6 60.67 0.27 [350] 

   
78.3 30.80 54.00 0.26 Equations 

   
75.65 30.80 54.00 0.263 ANNs 

 

7) Ho and Zr (Inconsistent E, K and ν) 

i. Holmium (Ho) 

Ho is a heavy rare earth metal that crystallizes in hcp structure at room temperature. 

Apart from the dynamic measurement carried out on polycrystalline Ho [301, 302], 

Palmer and Lee [288], Salama et al. [353] and Rosen et al. [354] determined the elastic 

constants of Ho over a wide temperature range. Their bulk modulus are larger than the 

adiabatic bulk modulus (39.6 GPa) converted by Scott [119] from Bridgeman's 

isothermal compressibility data obtained by the static method [307]. Because Palmer 

and Lee made corrections for density and acoustic path length, their results are believed 

more accurate [119]. 

In the source pool, only the shear moduli are documented in accordance with each other 

(~26.3 GPa). Poisson's ratio can be generally divided into three categories: ~0.231, 

~0.255 and ~0.272. The largest bulk modulus (48.9 GPa) recorded in Ref. [115] is 

approximately 20% larger than the smallest value (39.7 GPa) from CES. CES also 
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provides the largest Young's modulus (72 GPa), which is close to the value obtained at 

0 K rather than 300 K [288]. 

Table 4-25  Elastic property of holmium (Ho). 

C11 C33 C44 
C66=(C11-

C12)/2 
C13 C12 E G K 

ν Ref 
GPa 

76.1 77.6 25.7 25.65 20.6 24.8 64.8 26.3 40.2 0.231 [288] 

76.12 80.15 25.92 25.06 20.72 26 65.0 26.3 40.8 0.235 [353] 

77.31 81.24 26.13 25.63 26.11 26.84 65.3 26.1 43.8 0.251 [354]* 

   66.3 27.3 39.06 0.216 [301] 

   66.9** 26.4** 48.4*** 0.269*** [302] 

   67.1 26.7 45.83 0.255 [300] 

   64.8 26.3 40 0.23 Equations

   65 26.3 39.7 0.255 ANNs 

* Elastic constants are all read off from graph. 

** Read from graph. 

*** Calculated from the correlating equations. 

 

ii. Zirconium (Zr) 

Zr transforms from the bcc structure (β phase) to the hcp structure (α phase) at 1135 K. 

The elastic properties of polycrystalline Zr have been measured dynamically by 

Reynolds [349] and Myers [355]. Fisher and Renken [297, 356, 357] conducted a series 

of experiments over a wide temperature ranging from 4 K up to 1155 K on Zr single 

crystal. The results from their last measurements are taken as the best values. 

Examination in the source pool indicates the Poisson's ratio, bulk moduli and Young's 

moduli of Zr drop in two categories: ~0.34 and ~0.38 for ν, ~89.9 GPa and ~95.3 GPa 

for K, and ~68 GPa and ~98 GPa for E, respectively. Only the shear moduli are 

generally consistent within 10% variation (~35 GPa). As shown in Table 4-26, the ANN 

predictions agree well with the experimental values and the calculations utilizing the 

correlating equations.  
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Table 4-26  Elastic property of zirconium (Zr). 

C11 C33 C44 
C66=(C11-

C12)/2 
C13 C12 E G K 

ν Ref 
GPa 

143.5 164.9 32.07 35.5 65.4 72.5 96.2 36.1 95.3 0.332 [356] 

143.4 164.8 32 35.3 65.3 72.8 96.0 36.0 95.3 0.332 [297] 

143.68 165.17 32.14 35.32 65.88 73.04 96.1 36.1 95.7 0.333 [357] 

      92.05 34.45 91.1 0.34 
[349, 
356] 

      91 34.3 94.9 0.339 [355] 

      94.95 35 95.3 0.332 Equations

      95.3 35 95.3 0.332 ANNs 

 

8) Hf, Na and Pu (Inconsistent E, G and ν) 

i. Hafnium (Hf) 

Hf possesses an hcp structure at room temperature. Gschneidner [152] summarized the 

elastic properties of polycrystalline Hf in 1964, later Fisher and Renken [297] measured 

single crystal elastic constants of Hf from 4 K to 300 K. In the source pool, the bulk 

moduli are in excellent agreement (~109 GPa). However, Poisson's ratio varies from 

0.26 to 0.37, the corresponding Young's moduli varies from 141 GPa to 78 GPa, and the 

shear moduli varies from 56 GPa to 30 GPa. The values predicted from ANNs are 

consistent with the values obtained from the correlating equations, and are close to the 

experimental results [297].  

Table 4-27  Elastic property of hafnium (Hf). 

C11 C33 C44 
C66=(C11

-C12)/2 
C13 C12 E G K 

ν Ref 
GPa 

181.
1 

196.9 55.7 52 66.1 77.2 143.0 55.8 108.6 0.281 [297] 

   137.29 52.96 108.85 0.3 [152] 

   143 55.8 109 0.282 Equations

   140 56 109 0.282 ANNs 
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ii. Sodium (Na) 

Na is an alkali metal with a bcc structure. The earliest experimental measurement on 

single crystal Na was probably carried out by Quimby and Siegel at 80 K [358]. Daniels 

[359] extrapolated their elastic constants to 300 K, and found good agreement on C44 

with his own investigation but large differences in C11 and C12, owing to the possible 

errors introduced by the extrapolation. Martinson [360] studied the elastic constants of 

Na at a wider temperature range, and presented similar values. Hence, his data are chose 

to the best values. It should be noted that the elastic properties of Na compiled by 

Gschneidner [152] are based on single crystal measurements at 90 K (excepted for the 

bulk modulus). 

In the source pool, the values of Poisson's ratio for Na were 0.315, 0.34 and 0.366. 

Though the 9.5% variation of bulk modulus is somewhat smaller than the inconsistent 

judgment criterion (10% variation), it ranges from 6.3 GPa to 6.8 GPa. The data of 

Young's moduli and shear moduli can generally be divided into three categories: 5 GPa, 

6.8 GPa and 10 GPa for Young's moduli, and 1.98 GPa, 2.53 GPa, 3.3 GPa for shear 

moduli.  

As shown in Table 4-28, elastic properties predicted from ANNs, which are close to the 

experimental value measured at 80 K [358] rather than that at room temperature, are 

different from the values calculated using the correlating equations. The differences are 

caused by two factors: i) ANN models are less accurate than the correlating equations 

listed in Table 1-2; ii) The elastic data of Na are smaller than the lower bound of dataset 

that was used to construct ANNs, thus, ANNs extrapolation is less accurate. 

Table 4-28  Elastic property of sodium (Na). 

C11 C44 C12 E G K 
ν Ref 

GPa 

7.36 5.68 5.94 6.86 2.60 6.41 0.322 [358]* 

5.21 4.17 4.01 5.18 1.99 4.41 0.304 
[358, 
359]** 

7.38 4.19 6.21 5.40 1.98 6.60 0.364 [359] 

7.69 4.31 6.47 5.58 2.05 6.88 0.365 [360] 
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C11 C44 C12 E G K 
ν Ref 

GPa 

8.94 3.43 6.81 0.315 [152]& 

5.41 1.98 6.52 0.366 Equations

6.8 2.53 6.52 0.315 ANNs 

 * At 80 K. 
& At 90 K. 

 ** Values are extrapolated to 300 K. 

 

iii. Plutonium (Pu) 

Plutonium is in alpha phase with monoclinic structure at room temperature [361]. 

Because α-Pu is brittle during the tension test and relatively ductile in the compression 

test [362], elastic property data obtained through a dynamic method is much more 

reliable. A summary of experimental measurements on polycrystalline α-Pu elastic 

properties has been reported by Migliori et al. [361]. The completed sets of 

experimental data are quoted in Table 4-29. A recent measurement [363] over a wider 

temperature range (300 K to 750 K) is also included in the table and is deemed to 

provide the best values. 

Compared to the unique bulk modulus data for Pu in the source pool, i.e. 54 GPa (from 

CES), the other three elastic properties are supplied by more sources, though large 

disparities exist. Roughly, the Young's moduli of Pu are recorded close to 87.5 GPa or 

96 GPa, the shear moduli are recorded close to 34.5 GPa or 43 GPa, and Poisson's ratio 

are recorded close to 0.15, 0.18 or 0.21, respectively. The ANNs predictions agree well 

with the calculations. 

Table 4-29  Elastic property of plutonium (Pu). 

E G K 
ν Ref 

GPa 

98.3 40.9 54.3 0.199 [361, 364] 

100.7 42.3 53.4 0.186 [361, 365] 
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E G K 
ν Ref 

GPa 

99.3 43.3 46.7 0.15 [361, 366] 

107 44.5 59.9 0.202 [361, 367] 

107.5 46 54.1 0.169 [361, 368] 

92.8 39.1 49.4 0.187 [361, 369] 

108 45.9 55.9 0.178 [361] 

103.09 43.46 54.72 0.186 [363] 

91.75 34.5 54 0.21 Equations 

87.5 34.5 54 0.21 ANNs 

 

9) Ce, In, K and Tl (Inconsistent E, G and K) 

i. Cerium (Ce) 

Ce is in γ phase with fcc structure at room temperature [300]. Most elastic properties 

measurements are conducted on polycrystalline Ce [300, 301, 303]. Only one 

experiment is undertaken to determine the single crystal elastic constants of γ-Ce, which 

was using ultrasonic pulse technique. The values of bulk modulus and Poisson's ratio 

derived from the single crystal elastic constants through the VRH averaging method are 

somewhat smaller than the values reported for polycrystalline γ-Ce.  

Table 4-30  Elastic property of cerium (Ce). 

C11 C44 C12 E G K 
ν Ref 

GPa 

26.01 17.30 14.26 27.94 11.23 18.18 0.244 [370] 

   
30 12 19.81 0.248 [300] 

   
33.7 13.6 21.55 0.24 [301] 

   
30 11.8 21.74 0.269 [303] 

   
33.6 13.53 22 0.245 Equations 

   
33.5 14 21.5 0.245 ANNs 
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Poisson's ratio data in the source pool are in great agreement for Ce, i.e. 0.245. However, 

the largest bulk modulus (26.2 GPa) from CES is about 30% higher than the smallest 

data (19.8 GPa) that is recorded in Ref. [279], and is about 20% higher than the most 

common value 22 GPa. The unique data of Young's modulus (30 GPa) and shear 

modulus (~12 GPa) from CES and Ref. [279], are the smallest values recorded in the 

source pool. As shown in Table 4-30, the ANN predictions are consistent with the 

values calculated from the correlating equations.  

ii. Indium (In) 

Indium has an unusual face-centred-tetragonal structure with axial ratio c/a extended to 

1.08 [371]. The single crystal elastic constants of indium were measured through 

ultrasonic pulse method by Winder and Smith [371] at room temperature, 

Chandrasekhar and Rayne [372] from 1.4 K to 300 K, and Vold et al. [281] from room 

temperature to the melting point. Their VRH averaging results are in satisfactory 

agreement with the elastic properties directly measured using high purity (99.99%) 

polycrystalline indium by Kim [373]. However, the values are quite different from the 

data compiled by Gschneidner [152], who was using data measured by Koster [141, 142] 

and Bridgman [374]. 

Table 4-31  Elastic property of indium (In). 

C11 C33 C44 C66 C13 C12 E G K 
ν Ref 

GPa 

44.5 44.4 6.55 12.2 40.51 39.44 13.8 4.8 41.6 0.445 [371] 

45.35 45.15 6.51 12.07 41.51 40.06 13.6 4.7 42.4 0.447 [372] 

45.1 45.3 6.53 11.9 41.1 39.7 13.9 4.8 42.1 0.445 [281] 

      12.74 4.394 42.33 0.4498 [373] 

      10.49 3.73 41.08 0.460 [152] 

      13.8 4.78 41.1 0.45 Equations 

      14 3.68 42 0.45 ANNs 
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In the source pool, Poisson's ratio data for indium is very consistent and equals to 0.45. 

However, the other three elastic properties data roughly fall into two categories: 36.4 

GPa and 42 GPa for bulk modulus, 11 GPa and 14 GPa for Young's modulus, and 3.68 

GPa and 4.78 GPa for shear modulus, respectively. 

iii. Potassium (K) 

Bender [375] first measured the single crystal elastic constants bcc potassium at 83 K 

through a static method. The elastic constants measured by Smith et al. [376] at room 

temperature using ultrasonic pulse technique are in excellent agreement with the lower 

temperature values (195 K to 4.2 K) when extrapolated to room temperature [377]. The 

difficulty of using dynamic methods lies in the determination of the specimen length 

due to the mechanical softness of potassium. The bulk modulus calculated from the 

VRH averaging method using Smith's data agrees well with Bridgman compressibility 

data obtained from the hydrostatic measurements on polycrystalline samples [152]. 

Table 4-32  Elastic property of potassium (K). 

C11 C44 C12 E G K 
ν Ref 

GPa 

4.59 2.63 3.72 3.55 1.31 4.01 0.35 [375]* 

3.7 1.88 3.14 2.49 0.91 3.33 0.38 [376] 

  3.18  [152] 

3.53 1.3 4.2 0.35 Equations

3.53 1.3 4.2 0.35 ANNs 

 * At 83 K. 
 
In the source pool, three sources provide Poisson's ratio data for potassium, and they are 

relatively consistent, i.e. 0.35. Excepted the largest value (4.2 GPa) in Ref. [279], the 

bulk moduli provided by other sources are almost the same (~3.1 GPa). The Young's 

moduli recorded in CES and Ref. [115] (~2.4 GPa) are much smaller than the rest of 

data (3.53 GPa). The smallest value of shear modulus (0.9 GPa) also comes from Ref. 

[115], comparing to the most common value 1.3 GPa. The use of Poisson's ratio 0.35 is 
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possibly the main reason that the ANN prediction and the calculation from correlating 

equations are all close to the elastic property data obtained in Ref. [375]. 

iv. Thallium (Tl) 

Tl crystallizes in an hcp structure at room structure. To the author's knowledge, the only 

single crystal elastic constants measurement were conducted by Ferris et al. [378] at 

temperature ranging 4.2 K to 300 K. The bulk modulus calculated through the VRH 

averaging method is very close to the value derived from Bridgman compressibility data 

[374]. However, the Young's modulus, shear modulus and Poisson's ratio calculated 

from the elastic constants are substantially different from the data obtained by Koster 

[141, 142] from static measurement on polycrystalline samples. A compilation made by 

Gschneidner's [152] contains the data referring to Bridgman and Koster's results.  

The Poisson's ratio data for Tl recorded in the source pool is quite consistent, but the 

other three elastic properties are not. The bulk moduli for Tl range from 28.5 GPa to 43 

GPa, and the Young's moduli range from 8 GPa to 15.42 GPa. The largest shear 

modulus 5.4 GPa from Ref. [115] is almost twice larger than the rest of the available 

values. The large Poisson's ratio (outside of the ANN training domain) is probably the 

reason that leads to the variation of bulk modulus predicted from ANNs and the bulk 

modulus calculated using the correlating equations. 

Table 4-33  Elastic property of thallium (Tl). 

C11 C33 C44 C66=(C11-C12)/2 C13 C12 E G K 
ν Ref 

GPa 

40.8 52.8 7.26 2.7 29 35.4 15.3 5.3 35.6 0.429 [378] 

   
   

7.94 2.75 35.92 0.460 [141, 142, 
152, 374] 

   
   

15.42 5.4 35.7 0.45 Equations 

   
   

15.42 5.4 28.5 0.45 ANNs 
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10) Be, Cd, Eu, Ga, La, Lu, Rb, Sm, U and Yb (Inconsistent E, G, K and ν) 

i. Beryllium (Be) 

The five independent elastic constants of beryllium hcp single crystal have been 

determined through dynamic approach by Gold [379], Smith and Arbogast [380], 

Silversmith and Averbach [381], Rowlands and White [382], and Migliori et al. [383]. 

Only Migliori et al. investigated the elastic properties of polycrystalline Be as well, thus 

their results are deemed to be the best values with internal consistencies. The marked 

disparity between the values reported by Gold and others is attributable to Gold's highly 

questionable assumption that the specimen is sufficiently isotropic [380]. With the 

exception of Gold's data, major variances lie in C12 and C13, the accuracy of which 

depend on the established values of C11, C33 and C44 and the propagation angle in the 

measurements [382]. 

Table 4-34  Elastic property of beryllium (Be). 

 

The variation in Poisson's ratio is probably the result of specimen's anisotropy [384]. 

The fact that large discrepancies of elastic properties exist in original literature is 

reflected in the source pool. The Poisson's ratio of Be varies from 0.02 to 0.118, its bulk 

moduli vary from 110 GPa to 130 GPa, its Young's moduli vary from 287 GPa to 318 

C11 C33 C44 C66=(C11-
C12)/2 C13 C12 E G K 

ν Ref 
GPa 

308 357 110 183 87 -58 293.2 131.4 127.1 0.115 [379] 

292.3 336.4 162.5 132.8 14 26.7 311.1 148.6 114.4 0.047 [380] 

295.4 356.1 170.6 134.8 -1 25.9 317.6 155.6 110.4 0.020 [381] 

288.8 354.2 154.9 134.35 4.7 20.1 306.9 148.4 109.8 0.034 [382] 

293.6 356.7 162.2 133.4 14 26.8 315.2 150.1 116.8 0.050 [383] 

   
   

313.8 149.2 116.6 0.051
6 [383] 

   
   

287.25 128.4 125.57 0.118 Equations 

   
   

287 128.4 130 0.118 ANNs 
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GPa, and its shear moduli vary from 128.4 GPa to 156 GPa. Due to the small Poisson's 

ratio (outside of the ANN training domain), the values predicted from ANNs point to 

Gold's less accurate data, though they are consistent with the values calculated utilizing 

the correlating equations. 

ii. Cadmium (Cd) 

The atoms of cadmium are arranged in hexagonal lattices at room temperature, 

exhibiting anomalously large axial ratio (c/a=1.886) [385]. The single crystal elastic 

constants of Cd measured by Bridgman [386] through the static approach should only 

serve as the preliminary results due to his intention to discard the inconsistent data on 

comparing with those obtained by Gruneisen and Goens [387]. The other two sets of 

single crystal elastic constants of Cd were measured through an ultrasonic pulse 

technique by Garland and Silverman [385] from 4.2 K to 300 K, and by Chang and 

Himmel [388] from 300 K to its melting point 575 K. Their data are in good agreement 

with polycrystalline data compiled by Gschneidner [152], except for Poisson's ratio and 

bulk modulus. Because Garland and Silverman used a less accurate density value in 

their calculation, data obtained by Chang and Himmel are recommended to be the best 

values.  

Table 4-35  Elastic property of cadmium (Cd). 

C11 C33 C44 C66=(C11-C12)/2 C13 C12 E G K 
ν Ref 

GPa 

109 45.9 15.6 34.5 37.5 40 54.9 20.9 49.6 0.316 [386] 

121 51.3 18.5 36.5 44.2 48 60.5 22.9 56.6 0.322 [385, 
387] 

115.8 51.4 20.39 38.01 40.6 39.75 63.5 24.4 53.6 0.303 [385] 

114.5 50.85 19.85 37.5 39.9 39.5 62.6 24.0 53.0 0.303 [388] 

   62.27 24.12 46.74 0.300 [152] 

   62.54 24 52.9 0.302 Equations

   62.3 24.6 51 0.303 ANNs 
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The unique value of Poisson's ratio 0.39 compared to the most common values 0.3 in 

the source pool is recorded in Ref. [279]. The other three elastic properties generally fall 

into two or three categories: 19 GPa and 24 GPa for shear modulus; 42 GPa, 46.7 GPa, 

and 51 GPa for bulk modulus; and 50 GPa, 55 GPa and 62 GPa for Young's modulus. 

The values predicted from ANNs are in good agreement with the values calculated from 

the correlating equations and the experimental data. 

iii. Europium (Eu) 

In contrast to most rare earth metals crystalizing in an hcp structure, Eu has a bcc 

structure. Though no single crystal elastic constant data has been found for Eu, 

extensive elastic properties data of polycrystalline Eu have been measured through 

ultrasonic wave propagation technique over a wide temperature range by Rosen [301, 

389], Burkhanov et al. [390], and Gust and Royce [303]. Their results are in good 

agreement with the data of Young's modulus measured by Bodryakov and Nikitin [391] 

through the vibration method. As Scott [119] pointing out, the smallest data obtained by 

Rosen appear to be obtained from the highest purity specimen. Scott's recommendation 

is reflected in the source pool excepted Ref. [279] and CES. The results predicted by the 

ANNs for bulk modulus and Poisson's ratio are almost twice larger than the values 

obtained in the experiments or that obtained from the correlating equations. Again, it 

indicates that ANN extrapolation outside its problem domain is less reliable, when the 

values are smaller than the lowest bound of the dataset that was used to construct ANNs. 

Table 4-36  Elastic property of europium (Eu). 

E G K 
ν Ref 

GPa 

18.2 7.9 8.85 0.155 [301, 389] 

21.40 8.70 13.16 0.230 [390] 

19.6 7.5 17.06 0.308 [303] 

20.8    [391] 

18.2 7.9 8.7 0.152 Equations 

18.2 7.9 14.7 0.286 ANNs 
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iv. Gallium (Ga) 

Due to the low melting temperature 303 K of Ga, the elastic properties of the base-

centred orthorhombic Ga were usually measured below room temperature [392]. A 

completed set of single crystal elastic constants for Ga has been dynamically measured 

by Lyall and Cochran [393] at 273 K, 77 K, and 4.2 K. It is in good agreement with the 

extrapolation obtained by Langill and Trivisonno [394] from 4.2 K to 190 K. Lyapin et 

al. [395] investigated the pressure dependence of polycrystalline gallium at temperature 

range 240 K to 360 K, in which region contains orthorhombic Ga, bcc Ga and liquid Ga. 

Their data for orthorhombic Ga are slightly larger than the VRH averaging values 

obtained using Lyall and Cochran's results, or the data compiled by Gschneidner [152]. 

Further study on the elastic properties of Ga is needed in order to narrow down the 

discrepancies.  

In the source pool, the most common data of Young's modulus is equivalent to ~9.8 

GPa, approximately 10 times less than the experimental value and data recorded in Ref. 

[115], hence is highly suspect as a result of wrongly placed decimal point or unit, i.e. 

should be dynes/cm2 rather than GPa. In this case, no surprise that only the shear 

modulus recorded in Ref. [115] as well as the Poisson's ratio recorded in Ref. [115] and 

CES are close to the experimental data 40 GPa and 0.23, respectively, not to mention 

bulk moduli varying from 35 GPa to 58.2 GPa. 

v. Lanthanum (La) 

La is stable in an hcp structure at ambient conditions, but will transfer into fcc or bcc 

structure with increased temperature or pressure [396]. No single crystal elastic constant 

data are available for hcp La, but the elastic properties of polycrystalline La at room 

temperature have been dynamically measured by Smith et al. [300], Rosen [301], and 

Gust and Royce [303]. Literature values are summarized in Table 4-37. As suggested by 

Scott [119], Gust and Royce gave the best experimental values. Most elastic data in the 

source pool are identical to the values obtained by Gust and Royce or Gschneidner, 

except the bizarre value recorded in Ref. [115].  
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Table 4-37  Elastic property of lanthanum (La). 

E G K 
ν Ref 

GPa 

33.7 13.6 16 0.166 [119, 301] 

38.4 14.9 30.3 0.288 [119, 300] 

36.6 14.3 27.9 0.28 [119, 303] 

37.95 14.91 24.29 0.288 [152] 

37 14.25 28 0.284 Equations 

36.8 14.15 30.3 0.284 ANNs 

148 

 



Chapter 4 

149 

 

 

Table 4-38  Elastic property of gallium (Ga). 

C11 C22 C33 C44 C55 C66 C12 C13 C23 E G K 
ν Ref 

GPa 

101.9 92.2 137.6 35.6 42 41.3 44.5 27.6 24 90.99 38.4 48.1 0.23 [393, 395]* 

103.74 93.39 140.38 36.78 42.85 41.69        [394] * 

         103.43 42.38 61.63 0.21 [395]** 

         102.33 41.73 62.25 0.23 [395]§ 

         92.57 37.46 56.88 0.235 [152] * 

         93.2 37.8 58.2 0.233 Equations 

         93.2 37.8 58.2 0.235 ANNs 

    
 * Data are obtained at 273 K. 
 ** Data are obtained at 268 K, but the values of C12, C12, and C23 are not available. 
 § Read from graph at 283 K.
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vi. Lutetium (Lu) 

The single crystal elastic constants of hcp Lu at room temperature have been measured 

by Tonnies et al. [397] and Greiner et al. [129]. Tonnies et al. also investigated the 

temperatures dependences, and Greiner et al. focused on the study of impurities 

influence, especially hydrogen. It should be noted that Greiner et al. did not determine 

the off-diagonal constant C13. Therefore, the value obtained by Tonnies et al. [397] is 

used for the VRH averaging method. However, other values reported are estimated by 

Gschneidner [152] based on the assumption that the Young's modulus is proportional to 

the shear modulus and utilizing Bridgman compressibility data [307]. The Young's 

modulus given by Gschneidner is about 14% smaller than the VRH averaging value. 

Apparently, the data in the source pool are close to one of two set data. To be specific, 

CES seems to use the estimated data from Gschneidner, others all adopt the results 

provided by Tonnies et al. [397]. 

Table 4-39  Elastic property of lutetium (Lu). 

* Estimated data. 

 

vii. Rubidium (Rb) 

A completed set of single crystal elastic constants of Rb with a bcc structure has been 

determined by Roberts and Meister [398] at 80 K, and Gutman and Trivisonno [399] 

from 78 K to 170 K. The mechanical softness of Rb made it difficult to generate shear 

waves at room temperature, i.e. lack of sufficiently rigid bond between transducer and 

specimen in the acoustic study. Those data are listed in Table 4-40 including data that 

are linearly extrapolated to 293 K.  

C11 C33 C44 
C66=(C11

-C12)/2 
C13 C12 E G  K 

ν Ref 
GPa 

86.2 80.9 26.8 27.1 28 32 68.4 27.2 47.6 0.261 [397] 

88.19 82.59 27.11 27.4 28 33.39 69.6 27.6 48.6 0.261 [129] 

   84.34* 33.83* 41.12 0.233* [152] 

   61.5 24.41 42.7 0.26 Equations

   61.5 24.41 42.6 0.26 ANNs 
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It is worth to point out that the extrapolated data of C11 at 293 K (2.58 GPa) is in good 

agreement with the experimental data obtained by Roberts and Meister (2.41±0.12 GPa), 

and the value of bulk modulus calculated from the VRH averaging method also agrees 

well with the experimental compression data given by Anderson and Swenson at 295 K 

[400]. With the data of bulk modulus determined by Bridgeman in 1931's, Koster [140] 

interpolated the elastic properties of Rb by assuming a ratio of bulk modulus to Young's 

modulus equals to 0.8. However, the data given by Bridgman before 1940's were found 

to be incorrect. The estimated values given by Gschneidner [152] were based on the 

bulk modulus data derived from Bridgeman 1948's measurement and an assumption of a 

constant ratio (2.71) of Young's modulus against shear modulus. Consequently, the 

linearly extrapolated data at 293 K from single crystal elastic constants are probably 

more reliable. In the source pool, excepted the data recorded in Ref. [115], which is 

very close to my extrapolated value, other values either refer to the low temperature 

experimental results or use estimate data from Koster or Gschneidner. 

Table 4-40  Elastic property of rubidium (Rb). 

C11 C44 C12 E G K 
ν Ref 

GPa 

2.96 1.6 2.44 2.16 0.79 2.61 0.362 [398]* 

3.25 1.98 2.73 2.49 0.92 2.90 0.357 [399]§ 

2.96 1.71 2.5 2.18 0.80 2.65 0.363 [399]** 

2.58 1.36 2.19 1.78 0.65 2.32 0.372 [399]§§ 

2.35 0.91 1.86 0.29 [140] 

2.72 1.00 3.14 0.356 [152] 

1.73 0.63 2.3 0.374 Equations

2.4 1.02 2.3 0.3 ANNs 

 * At 80 K. 

 § At 78 K. 

 ** At 170 K 

 §§ Extrapolated to 293 K 
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viii. Samarium (Sm) 

No single crystal elastic constants data available for Sm, probably due to its low 

symmetry rhombohedral structure [401]. However, polycrystalline elastic properties of 

Sm have been extensively studied through dynamic approach by Smith et al. [300], 

Rosen [301, 306] (from 4 K to 300 K), and Gust and Royce [303]. The compilation 

made by Gschneidner [152] adopted the elastic property data obtained by Smith et al. 

except for the bulk modulus, which was obtained by Bridgman through a static 

approach. 

The inconsistent four experimental results lead to the discrepancies of elastic property 

data recorded in the source pool. It seems that CES and Ref. [279] are using 

Gschneidner's data, while others are using data listed by Gust and Royce or Rosen. 

Nevertheless, Scott [119] suggested using the Rosen' values, because there are more 

experimental details available in literature. 

Table 4-41  Elastic property of samarium (Sm). 

E G K 
ν Ref 

GPa 

34.1 12.6 38.31 0.352 [300] 

48 18.7 37.88 0.284 [301, 306] 

50.6 19.9 37.31 0.272 [303] 

34.13 12.65 29.40 0.352 [152] 

49.7 19.6 35.7 0.268 Equations 

49.7 19.55 35.7 0.268 ANNs 

 

ix. Uranium (U) 

α-U with a orthorhombic structure is stable up to 935 K then changes to tetragonal β-U 

[402]. Polycrystalline elastic properties of α-U have been investigated by Rosen [403], 

Armstrong et al. [404] and Abey and Bonner [405] over a wide temperature and 

pressure range. Fisher et al. [402, 406-408] conducted a series of dynamic study on the 

temperature dependence of single crystal elastic constants of U from 2 K to 923 K. A 
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variation as large as 30% in the experimental data is the main cause of the disparity that 

is noticed in the source pool. 

Table 4-42  Elastic constants of uranium (U). 

Unit C11 C12 C13 C22 C23 C33 C44 C55 C66 Ref 

(GPa) 
214.7 46.5 21.8 198.6 107.6 267.1 124.44 73.42 74.33 

[402, 406-
408] 

 

Table 4-43  Elastic property of uranium (U). 

E G K 
ν Ref 

GPa 

217.09 79.90 255.80 0.359 [402, 406-408] 

186.01* 80.25* 90.88* 0.159** [403] 

201.00 81.40 126.25** 0.23 [404] 

204.66** 86.00 110.00 0.190** [405] 

186.33 73.55 98.75 0.245 [152] 

175.8 74.05 100 0.205 Equations 

175.8 73.1 97.9 0.24 ANNs 

* Read off from graph. 

**Calculated using Equation 1-21. 

 

x. Ytterbium (Yb) 

Like Eu, Yb has an fcc structure in contrast to the common hcp structure for rare earth 

elements. However, there is no single crystal elastic constant measurement for Yb. The 

elastic property data obtained by Smith et al. [300] and Gust and Royce [303] through 

wave propagation technique for polycrystalline Yb, are very close to the data obtained 

by Bridgman [307], but quite different from the values obtained by Rosen [301, 344]. 

Such disagreement is evidently reflected in the source pool. 
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Data in CES and Ref. [279] refer to the results of Smith et al., others in the source pool 

may be traced back to Rosen's experimental values, except for the bulk modulus (~31 

GPa), which probably mistook 31 for 13. It should be emphasised that this mistake has 

been published repeatedly in several sources including CRC handbook. It is a typical 

example where errors passing along like genetic mutation to the subsequent publications. 

Scott [119] recommended to use Rosen's data because it is the only work included the 

temperature dependence. Nevertheless, elastic property recently investigated by 

Boguslavskii et al.[409] suggests their room temperature values are in good agreement 

with the experimental results obtained by Smith et al. [300]. Because Boguslavskii et al. 

described their results in a graph rather than in the form of numeric data, the 

experimental data given by Rosen are chose to be the best values. 

Table 4-44 Elastic property of ytterbium (Yb). 

E G K 
ν Ref 

GPa 

17.8 7 13.77 0.284 [300] 

23.8 9.9 13.61 0.207 [301, 344] 

18.8 7.3 14.97 0.29 [303] 

17.77* 6.93** 13.54** 0.281* [409] 

23.93 9.95 13.2 0.205 Equations 

18 7.1 13.8 0.284 ANNs 

* Read from graph. 
  ** Calculated using Equation 1-21. 
 

4.3.4 Factors that influence elastic properties 

1) Theoretical factors 

The magnitudes of E, G, K and ν ultimately depend on the element electronic 

configuration and position in the Periodic Table. The most important assumption made 

in determining elastic property of polycrystalline is that the grains are sufficiently 

numerous and randomly oriented so the specimen may be approximated as elastic 
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isotropic [300]. However, elastic properties can show remarkable variation with crystal 

orientation [410].  

As mentioned in Section 1.6, the ratio of Young's modulus to the shear modulus is 

roughly a constant which equals to 3/8 [154]. Another method to estimate an elastic 

property is to utilize the value of bulk modulus and the ratio of Young's modulus to 

shear modulus, when only the bulk modulus are available [152]. However, this method 

not only introduces errors by assuming Young's modulus is proportional to shear 

modulus, but also highly depends on the accuracy of bulk modulus. In fact, a large 

number of compressibility data and corresponding bulk modulus data in literature are 

collected from Bridgman's static measurements. However, very few people are aware 

that Bridgman made corrections on his previous data, as errors were still retained in 

recent publications [152]. 

2) Experimental factors  

i. Purity 

Addition of boron reduces osmium's bulk modulus from 421 to 365 GPa [127]. Greiner 

et al. investigated the effect of the carbon addition to Th single crystal, and found it 

strengthened dilatational deformation and torsional deformation along <110> directions, 

but weaken torsional deformation along <100> directions [352]. Ashida et al. [128] 

studied the elastic property changes on Zr caused by hydrogen concentration, and found 

the Young's modulus and the shear modulus decrease linearly with increasing hydrogen 

concentration in the hcp phase (below 1135 K) but increase linearly in the bcc phase. 

Comparisons made by Greiner et al. on Lu single crystals indicate that the impact of 

interstitial impurities (e.g. H, C, N, and O) on the elastic constants attributes to lattice 

stiffen by increasing bounding [129]. 

ii. Temperature 

At atmosphere pressure, the elastic constants as well as the Young's modulus and the 

shear modulus appear to decrease linearly with the increasing temperature, and may 

exhibit an abruptly decrease at phase transition temperature [360]. At lower temperature, 

the non-linear variation with temperature is not related to the effects of lattice defects 

[411], but ascribed to anharmonic vibration of metal atoms [128]. Vold et al. [281] 
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noted the elastic anisotropy increase dramatically with increasing temperature in In 

single crystal. Burkhanov et al. [390] observed a sudden change in the elastic property 

of Eu took place at antiferromagnetic transitions temperature due to the existence of 

considerable magnetostriction stress and possible crystallographic symmetry change. 

Rosen [389] believed the peak anomalies in ultrasonic attenuation near the Neel point 

are the result of interaction between critical fluctuations of the spins and acoustical 

phonons. Apart from antiferromagnetic ordering, electron-type transition and 

temperature-dependent crystallographic phase change may also cause abnormal changes 

in the temperature dependence of elastic properties [306]. 

iii. Mechanical processing 

The elastic constants of single crystal are quite sensitive to its past processing history, 

which will affect specimen geometry, texture, surface condition, and internal defects. 

Elastic property measurement of γ-cerium exhibits differences if the specimen has been 

previously cooling down to liquid helium temperature and then warming up to room 

temperature. Such process will produce a small amount of β phase content [412]. In 

order to satisfactorily removed a finite amount of residual strain introduced in specimen 

preparation, crystals should be annealed before the tests [380].  

iv. Static or dynamic measurements 

Experimental uncertainties might lie in the transit-time determination and possible 

dislocation effects [372]. A systematic error (known as 'transit – time error') may occur 

in the ultrasonic pulse-echo method due to the acoustic reflections. The acoustic 

reflections gradually change the shape of a pulse and make it difficult to identify correct 

cycles in the successive echoes at the quartz-specimen interfaces [371]. Adoption of a 

improved technique that avoids the direct measurement of delay time [381], or a 

modified experimental apparatus (such as the buffer technique [377]), could eliminate 

the potential error. Transit-time may need to be corrected when actual directions in 

measurement substantially deviated from the propagation and polarization directions 

indicated in sound velocity calculations [372]. Transit time reading obtained during the 

heating cycle may also differ from that obtained on cooling due to the specimen 

temperature hysteresis effects [382]. A method to correct transit-time error arising from 

transducer loading is outlined in Ref. [413]. 
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Data accuracy also depends on the precision in measuring the sample dimensions which 

control the density and propagation path length in wave propagation technique [382]. 

The sample length [381], density [388], as well as angle of wave velocity propagation 

[385], may need appropriate correction using thermal expansion data over a comparable 

temperature range when measured at different temperatures [377]. A significant 

uncertainty is always expected in length measurement of mechanically soft metal, i.e. 

potassium [376]. Phase transition trigged by temperature changing will cause difficulty 

in preserving the ultrasonic coupling between specimen and transducer [412]. Thus, 

coupling between specimen and transducer need to be tight enough to hold them 

together without cause structure change in specimen.  

4.4 Conclusion 

A systematic and potentially automatic method has been applied in this work to identify 

outliers and correct errors that exist in handbooks and databases. This is demonstrated 

by employing ANNs to explore the ternary order correlations of the elastic properties of 

68 metallic elements, and by utilizing such correlations to identify and correct the 

suspect data. The ANN models are built on the premise that correct values are provided 

by most sources for the most commonly known pure metals. Such presupposition is 

proved to be essentially correct. 

The elastic property data that were recorded in prestigious handbooks and databases for 

elements in the Periodic Table were thought to be very reliable, and errors were likely to 

be lower than 5%. However, a carefully conducted inspection for 68 metallic elements 

in the Periodic Table shows that large discrepancies exist in the 12 sources. Only five 

metallic elements (Co, Dy, Fe, Ta and Tb) have the variances of the four elastic 

properties smaller than 10%, apart from 6 elements (Ac, Fr, Np, Pa, Ra and Pm) that 

have very limited data available in the source pool. 

Totally, 11 ANN models are successfully constructed using the consistent values for 5 

elements (Co, Dy, Fe, Np, Ta and Tb) plus the most common values for 22 elements 

(Ag, Al, Au, Ba, Bi, Ca, Cr, Cu, Mg, Mn, Mo, Nb, Ni, Pb, Pd, Pt, Sn, Sr, Ti, V, W and 

Zn). The correlations that are captured from the 27 training examples are then used to 

evaluate the inconsistent data for the rest 35 elements. In general, the obtained ANN 

models agree well with the correlating equations (established from the physical models) 
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in the data ranges that are determined by the maximum and minimum values of the 27 

training examples. For an enlarged data range, the similarity between the ANN models 

and the correlating equations declines. 

For ternary order correlations, one missing property data can be predicted from several 

relationships. When elastic properties predicted by utilizing different ANN models do 

not yield results within 10% variation, a systematic methodology is proposed to resolve 

the possible discrepancy. When suspect data lie in the ANN training domain, the data 

verified by ANNs are very close to the data verified by the correlating equations. For 

suspect data that exceed the training domain, the accuracy of ANN estimation can be 

improved by employing multiple mutually constrained correlations. 

A detailed literature review providing a completed set of available experimental values 

has also been conducted to evaluate the elastic properties of 35 elements, including 

elastic constants for single crystals and the corresponding elastic properties obtained 

through the VRH averaging method. Factors that would affect the experimental values 

have been discussed. Meanwhile, reasons for data variances have been analysed case by 

case for each element. Most data discrepancies attribute to the different experimental 

conditions, i.e. experimental temperature, specimen structure, purity, and processing 

history, and measurement methods. Incorrect unit conversions or publication typos also 

result some errors. Finally, a considerable effort has gone into making sure elements' 

elastic data provided in this chapter much reliable, and thus enables readers to use them 

with more confidence. 
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5. Capturing materials properties correlations using 

artificial neural networks: an example in 

hardening of pure metals by high pressure 

torsion 

5.1 Introduction 

There has been considerable interest in material processing by high pressure torsion, a 

metal forming method that produces improvements in properties, especially in strength, 

by imposing a very high strain on a bulk solid [191]. Extensive work in the field by a 

range of researchers indicates that the hardness saturates to steady-state levels at high 

strains and remains unchanged with further straining [184-187, 189]. The saturated 

values correlated to several mechanical properties and atomic bond parameters. 

However, little attention is given to establishing whether a limited set of physical 

properties can explain all measured changes in hardness due to HPT. 

In the following section, ANNs are employed to capture the statistical relations between 

hardness increment of pure HPT processed metals and 13 physical, mechanical, and 

electronic properties. To propose the most promising variables for the construction of a 

physically based model, the ANN combinatorial search method and the forward 

selection method are both applied to identify the properties that constitute the strongest 

correlations. Because the available data on the hardness of HPT-processed pure metals 

are of limited supply (only 17 pure metal data), the question that whether fruitful ANN 

models can be obtained when dealing with a small dataset is addressed. 

5.2 Methodology 

5.2.1 Data collection 

Among the 70 metals in the periodical table, roughly 30 pure metals and semi-metals 

with various crystal structures have been processed by HPT, and their Vickers hardness 

at the saturated level (HVs) have been reported [191, 414-417]. Thus, the absolute 

harness increments (∆HV) due to HPT can be calculated by subtracting the hardness at 
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annealed state (HVi) from the hardness at the saturated level (HVs), i.e. ∆HV =HVs -HVi. 

However, no systematic measurement of HVi has been conducted for all the metals. 

Through the exhaustive searches in various databases including various journals, 

handbooks and online databases such as Reaxys and Landolt-Börnstein, the HVi data 

were obtained in different experimental conditions, for example, ‘as-received’ or 

'annealed'. Consequently, the smallest reported value for each element was adopted, as it 

is believed to better reflect the initial pure un-deformed condition (see Table 5-1). The 

influences of HVi data on model accuracy are discussed in Section 5.3.3. 

Table 5-1  Vickers hardness data of 17 elements before and after HPT (HVs and HVi) 

and the absolute increment of hardness (∆HV). 

Elements Structure HVs 
/GPa 

HVi 
/GPa 

∆HV 
/GPa Reference for HVi 

Mg hcp 0.342 0.285 0.057 [414] 

Al fcc 0.313 0.167 0.146 [279] 

Ti hcp 2.599 0.971 1.628 [279] 

V bcc 2.354 0.628 1.726 [279] 

Cr bcc 4.756 1.060 3.696 [279] 

Fe bcc 3.020 0.608 2.412 [279] 

Co hcp 3.544 1.043 2.501 [279] 

Ni fcc 3.021 0.638 2.383 [279] 

Cu fcc 1.298 0.369 0.929 [279] 

Zn hcp 0.362 0.353 0.009 [186] 

Zr hcp 2.532 0.903 1.629 [279] 

Nb bcc 2.354 0.354 2.000 [418] 

Pd fcc 2.127 0.461 1.666 [279] 

Ag fcc 0.941 0.251 0.690 [279] 

Ta bcc 4.132 0.873 3.259 [279] 

Pt fcc 2.525 0.549 1.976 [279] 

Au fcc 0.804 0.216 0.588 [279] 
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To allow a comparison with the physical model [116], the same 17 pure metals (Mg, Al, 

Ti, V, Cr, Fe, Co, Ni, Cu, Zn, Zr, Nb, Pd, Ag, Ta, Pt and Au), which are considered the 

most reliable, are used to conduct the ANN analysis. The input arguments are selected 

initially from 12 properties given in CES [228] together with Burgers vector data (b) 

from Edalati and Cullity [185, 419]. The 13 properties plus the target property ∆HV are 

listed in Table 5-2, and the entire dataset is listed in Appendix XII. Though some of 

these 12 properties may have strong internal correlations, ANNs are capable of 

highlighting the most important parameters.  

Table 5-2 The 14 properties used in ANNs: ∆HV is the target output, while the input 

variables are chosen from the rest 13 properties. 

Property 
symbol Property Unit 

∆HV Hardness increment after HPT GPa 

b Burgers vector nm 

An Atomic number 

BE/A Binding energy per nucleon keV 

Ecoh Cohesive energy kJ/mol 

ρ Density at 300 K kg/m3 

Hfus Heat of fusion kJ/mol 

a Lattice parameter, a nm 

Tm Melting temperature K 

Vm Molar volume m3/kmol 

G Shear modulus at 300 K GPa 

Cp Specific heat capacity J/kg°C 

αL Thermal expansion coefficient at 300 K µstrain/°C 

W Work function eV 

 

5.2.2 The inputs and output  

Artificial neural networks are a biologically motivated computing paradigm that is 

capable of mapping a set of input data values to the associated output data within a 

desired accuracy [4, 5, 78]. The target output of the ANN and the physical model is the 
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absolute increment of hardness after HPT (∆HV). The performance of ANNs depends on 

the various combinations of input variables, which indicates if the correlation exists or 

not.  

The combinatorial correlations search started from the prediction of ∆HV using one 

input parameter (1st order search). The results of 1st order search is the binary order 

correlations between ∆HV and the other property chosen from the 13 properties prepared 

for the 17 metals. Subsequently, the combinations of any two parameters selected from 

the 13 properties were used as input variables for the prediction of 2nd order search. 

Similarly, searches were performed up to the 4th order. The results of 2nd order search 

and 3rd order search are ternary order correlations and quaternary order correlations, 

respectively. The results will show the 4th order search is not an appropriate choice.  

In the forward selection, the key variable that have the potential to deliver satisfactory 

explanations of phenomena are initially determined from the 1st order search. In the next 

step (2nd order search), such variable is fixed as one of the input properties, and the 

second input properties is chosen from rest 12 properties. Therefore, 12 ANNs 

representing 12 ternary order correlations are constructed. After analysing the 12 ANN 

models, the two key variables that have the most predictive power are fixed as the input 

properties, a third property is selected from the rest 11 properties to conduct a 3rd order 

search for quaternary correlations. 

5.2.3 Neural network analysis method 

Figure 5-1 shows a 2nd order ANN predicting ∆HV from shear modulus (G) and melting 

temperature (Tm). For an accurate prediction, the solid red and dot blue line should 

coincide, and both the slope Sl and correlation coefficient Rl should approach 1. Element 

symbol is used to label the data point if the prediction deviation is greater than 10%. For 

Ag, Ti and Zr, ∆HV is underestimated by ~0.2 GPa, while for Zn, Mg and Al, ANNs 

show a slight overestimation of ~0.05 GPa, comparing to the experimental values. For 

the other studied metals, the ANN model give quite accurate results.  

To numerically evaluate the performance of the ANNs, two methods can be used. The 

first one is δ, which is a comprehensive evaluation of Sl and Rl for both the training data 

and test data [10]. The smaller δ, the better ANNs perform, and the stronger the 

correlations. Typically, ANNs start to reveal important correlations when δ is smaller 
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than 0.1. Another way is to simply compare the difference between the experimental 

data and the prediction data by scrutinizing both individual difference and the average 

difference. When the difference of δ is small between two similar ANNs, the average 

error percentage is also used to justify the performance of the ANNs.  

In assessing model performance, it is important to note that it has been shown that on 

average 5% or more of the data in handbooks and databases are incorrect or to a 

significant extent inaccurate. Though they may not have a big impact on the 

performance of ANNs [7], a small percentage of incorrect data could change the 

average error percentage dramatically. As suggested by Chapman [234] and Chrisman 

[235], it is anticipated that about 5% of the data are incorrect in the prepared data, and 

hence 5% of data with the biggest error were not included during the calculation of 

average error percentage to provide a “fair” comparison. This average error percentage 

is considered as the second criterion. All ANN results are ranked based on the two 

criteria. The top properties correlations will come forth as the priority attributes that can 

be used to reveal the underlying physical principles. 

5.2.4 Knowledge extraction  

The major challenge in extracting knowledge (rather than just correlations) from the 

ANN modelling results is to find a way to determine which input variables significantly 

affect the output variable, finally leading to the construction of analytical theory. When 

the number of the input variables is small, it is instructive to conduct the exhaustive 

search to identify the optimal set of input variables for a given ANN model [108]. 

However, when the search space of candidate sets is highly dimensional (system has 

high complexity), and exhibits a computational time dependence which scales as Nd, 

where N is some measure of the size of the problem, d is the search space dimension, 

evaluating all the possible combinations of input variables to select the best set 

according to a predetermined optimality criteria may not always be possible [420]. A 

forward selection strategy can be applied as a solution. 

The forward selection method is a linear incremental search strategy to efficiently locate 

the key parameters that have the potential to deliver satisfactory explanations of 

phenomena [108]. It selects candidate variables one at a time and is terminated either 
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when the result has yielded to a desired level of accuracy or when it has reached a pre-

set number of parameter values that one is interested in exploring in the blind search.  

 

Figure 5-1 The result of ANNs in predicting ∆HV from G and Tm, where δ equals to 

0.04 and the correlation error equals to 12.67%. 

5.3 Results and discussion 

5.3.1 Comparison of ANN curves 

The influence of each input variable on the output data is determined by both linear 

regression and 1st order search ANNs using only one input variable to predict the ∆HV. 

Totally, 13 ANNs have been searched during which the largest correlation coefficient 

(Rl) 0.88 obtained from the prediction of ∆HV from G, followed by Tm, Hfus and αL with 

Rl equalling to 0.85, 0.82 and 0.81, respectively. For all the other nine properties, Rl is 

much smaller than 0.80. Linear regressions between a possible physical property and 

the hardness increment exhibit similar trends. Although Rl is similar for the ANN results 
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predicting from G or Tm, the first evaluation criteria δ indicates G can be considered to 

have the strongest impact on ∆HV (see Table 5-3).  

Table 5-3 Comparison of 1st order ANN models and linear regression results using 

13 properties. Rl is the relative coefficient of the experimental result and the ANN 

prediction using each property as the input, δ is the criteria to evaluate the ANN 

performance. R2 is the relative coefficient between the input property and the target 

output ∆HV from the linear regression analysis. 

Property 
symbol 

ANNs evaluation parameters Linear regression 
R2 Rl δ Ec 

b 0.46 1.31 179.0% 0.15 

An 0.17 1.83 290.3% 0.17 

BE/A 0.43 1.42 189.3% 0.18 

Ecoh 0.67 0.91 87.5% 0.66 

ρ 0.28 1.54 189.9% 0.25 

Hfus 0.82 0.44 44.5% 0.72 

a 0.46 1.27 284.7% 0.36 

Tm 0.85 0.41 60.6% 0.81 

Vm 0.41 1.37 99.9% 0.40 

G 0.88 0.32 54.1% 0.87 

Cp 0.46 1.44 219.1% 0.38 

αL 0.81 0.55 48.6% 0.8 

W 0.36 1.47 136.1% 0.26 

 

In the next step (2nd order search), G is fixed as one of the input properties. For the 2nd 

order ANNs, there are 12 properties left to be chosen as the second input properties. The 

results are shown in Table 5-4. ANNs provide the best predictions by using G and Tm, G 

and αL, and G and Hfus with correlation coefficient Rl all larger than 0.98 and δ all 

smaller than 0.1. However, the average error percentage is larger than 10% in all ternary 

order correlations. Though G and Tm make the optimal input variable set for the 2nd 
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order ANN modelling, it should be noticed that the predictions, G and αL and from G 

and Hfus give very similar results. Given the fact that Tm and Hfus as well as Tm and αL 

are correlated to some extent [421, 422], these similar results predicted by ANNs may 

simply be related to these correlations.  

In the 3rd order ANNs search, G is fixed as first input properties, and Tm, Hfus or αL is 

fixed as the second input property, and 11 properties are left to be chosen as the third 

input property. Table 5-5 tabulates the most accurate ANNs for predictions of the 

quaternary order correlations. ∆HV predicted by using b, G and Tm is found to be a very 

good match to the experimental result as shown in Figure 5-2. In fact, b, G and Tm are 

the key parameters in the suggested physical model [116]. 

 

 

Figure 5-2 Result of ANNs in predicting ∆HV from G, Tm and b with δ equals to 

0.01 and 8.05% error. 
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Table 5-4 The 12 ANNs correlations to predict ∆HV using 2 properties in the 

forward selection results. 

Importance 
ANNs evaluation parameters 

Input properties 
ψ δ Ec 

1 0.13 0.04 12.67% Tm, G 
2 0.19 0.03 19.13% αL, G 
3 0.27 0.02 27.03% Hfus, G 
4 0.36 0.06 35.85% Ecoh, G 
5 0.42 0.15 38.72% Vm, G 
6 0.43 0.33 27.04% Cp, G 
7 0.56 0.31 46.78% BE/A, G 
8 0.67 0.35 57.68% a, G 
9 0.71 0.35 61.58% An, G 
10 0.75 0.28 69.70% W, G 
11 0.80 0.22 77.41% b, G 
12 1.06 0.47 95.13% ρ, G 

 

The 4th order ANNs search has also been conducted. Not surprisingly, the results from 

top-ranked combinations are almost same as the 2nd and the 3rd order searches, 

consisting of G plus Tm, Hfus or αL within Rl approaching 0.98, δ smaller than 0.1 and 

error ranging from 5% to 15%. This may be due to the relatively small available data set 

combined with large degrees of freedom introduced by the 4th order search, therefore 

loosing generalization [423, 424]. As mentioned before, it is generally recommended 

having more than 10 examples per input variable, though the size of data required in 

practice depends on the complexity of the problem and amount of noise in the data 

[190]. Because the number of records available for training and testing was relatively 

small, only 17 in total, ANNs are more reliable when constructed with a fewer degrees 

of freedom. Thus, the search space of 4th order would be too large for 17 data to 

generate appropriate ANNs. Another possible reason is that, as shown in Table 5-4 and 

Table 5-5, ∆HV can already be predicted quite well by using only two parameters, G and 

Tm, as b only plays a minor role in the optimal function.  
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Table 5-5 Top 12 ANNs correlations to predict ∆HV using 3 properties in the 

forward selection results. 

Importance 
ANNs evaluation parameters 

Input properties 
ψ δ Ec 

1 0.08 0.01 8.05% b, Tm, G 

2 0.09 0.02 8.59% Vm, Tm, G 

3 0.11 0.02 10.56% αL, Tm, G 

4 0.13 0.04 12.61% a, Tm, G 

5 0.13 0.03 13.00% Ecoh, Tm, G 

6 0.14 0.03 13.26% An, Tm, G 

7 0.15 0.04 14.52% W, Tm, G 

8 0.16 0.03 15.46% ρ, Tm, G 

9 0.16 0.03 15.97% BE/A, αL, G, 

10 0.17 0.06 15.94% Hfus, Tm, G 

11 0.17 0.02 16.89% αL, Hfus, G 

12 0.21 0.03 20.51% BE/A, Tm, G 

 

Whilst strengthening theories generally confirm that G is a key parameter, it could be 

argued that in a pure adaptive modelling sense the choice of G to be fixed as input 

variables for the 2nd ~ 4th order ANNs search. However, other parameters may be 

confounded and their effects on the prediction could be larger than the pre-set input 

variable G. In order to avoid any possible missing parameters that might be important 

for interpretation in the physical theory and to prove the forward selection method is 

effective in this study, an exhaustive search of input variables of the 2nd and 3rd order 

was employed. The top 12 sets according to the same criteria described before are 

selected, in contrast to the 12 input candidates that can be chose to construct ANNs in 

the forward selection method.  

Recognizing that when the differences of δ and the average error percentage between 

the ANNs are small in the top ranked ANNs, the absolute ranking of the ANNs may not 

reflect the genuine physical model due to noise and possible errors from the data, hence 

a statistic of frequency of the input variables in the top ANNs are used. ANN programs 

using all possible input variable combinations were analysed to determine how many 
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times each input appears in the 12 top models that yield the optimal generalisation 

performance of the trained ANNs. The results, shown in Figure 5-3, indicate that in both 

the 2nd and the 3rd order of searches, input variable G always has the highest frequency, 

followed by Tm, then αL and Hfus. It indicates that input parameters of ANNs should 

include G as the fundamental parameter plus either Tm, αL or Hfus. Apart from these 

three properties, all the others appear at very low frequency more or less randomly. In 

spite of strong correlations in the input parameters, such as between Tm and Hfus, and 

between Tm and αL, ANNs adequately identify the most salient input variable being Tm. 

 

Figure 5-3  The property importance revealed in the top 12 correlations of 2nd and 

3rd order in predicting ∆HV from the ANN combinatorial search. 

5.3.2 Modelling with a limited data supply 

Most studies and comparisons of the effectiveness of ANN techniques attempted to use 

a large database, which has hundreds or even thousands of data points. Experiments 

using a database of 10-20 data points are not rare, but raise controversy on the models' 

validity for using inadequate quantities of data to create sophisticated models [5, 425-
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428]. However, the ANN models presented in this study should not be perceived as 

impaired, owing to only 17 input-output data were used for establishing the networks. 

One argument to justify the validity of a model is that, there should be more data than 

fitting points [428]. For a neural network with one hidden layer, its structure can be 

denoted as Ninp─Nhid─Nout, where Ninp represents the number of input variables, Nhid 

represents the number of neurons in the hidden layer, and Nout represents the number of 

output parameters. The total number of weights to be determined, i.e.�𝑵𝑵𝒊𝒊𝒏𝒏𝒑𝒑 + 1� ×

𝑵𝑵𝒄𝒄𝒊𝒊𝒔𝒔 + (𝑵𝑵𝒄𝒄𝒊𝒊𝒔𝒔 + 𝟏𝟏) × 𝑵𝑵𝒐𝒐𝒐𝒐𝒐𝒐, should be smaller than the number of data pairs available 

for training. 

As described in Chapter 2, at a ratio of 4:1, 14 data pairs are randomly selected to train 

ANNs, and 3 data pairs are used to test the generation ability of the trained ANNs. The 

number of hidden neurons is strictly constrained to the maximum connections between 

neurons in the input, hidden, and output layers. Because the only output variable is the 

hardness increment due to HPT, there is only one output neuron in an ANN model. The 

maximum number of hidden neurons deceases with the increase of input neurons. For 

the 1st order search targeting at the binary order correlations, there is one input neuron. 

Therefore, the number of hidden neurons is chosen from one to four. Similarly, for the 

2nd order ANN searcher targeting at the ternary order correlations, the number of hidden 

neurons is chosen from one to three, and for the 3rd order ANN searcher targeting at the 

quaternary order correlations, the number of hidden neurons is chosen from one to two. 

Therefore, the amount of data used in the present work is enough to determine the 

number of fitting parameters in the networks. Moreover, the constructed ANN models 

achieve good performances with three testing data.  

The second argument deals with the uncertainty of modelling [5, 78]. In light of the 

limited amount of data available, 30 ANN models are created based on the methodology 

described in the Chapter 2. These models are not identical, but they all reasonably 

explain the experimental data. The reproduction accuracy for trained ANNs is shown in 

Figure 5-4 as a quantitative measure of the modelling uncertainty. It displays the 

minimum, average and maximum value of ∆HV predicted from G and Tm obtained from 

the 30 independent ANNs. The x-axis corresponds to the experimental value of ∆HV, 

the y-axis corresponds to the predicted value from the ANNs. All the elements were 

found to be located within the reasonable uncertainty range, meaning the ANNs capture 
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the correlation that exists between ∆HV, G and Tm while retaining the modelling 

accuracy. The uncertainty could be the result of noise in the data or lacking of other 

properties that have small impacts on ∆HV, i.e. b. 

 

Figure 5-4 Modelling uncertainty: predicting ∆HV from G and Tm from 30 

independent ANNs. 

5.3.3 Factors that affect the accuracy in the prediction 

Apart from the ANN modelling error tolerance, the prediction accuracy is mostly 

influenced by the accuracy of data used to build the model, which are G, Tm and ∆HV. 
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elements (Mg, Ti, V, Cr, Fe, Zr, Hf and Ta) are in good agreement with variations 

typically smaller than 2%. Data on G of pure metals are not very consistent, and the 

largest spread in reported values of G for pure metals occurs for Pd (a variation of 

~20%). However, the model accuracy is not significantly influenced if using different 

reported G values. As the determination of corresponding Hvi for each element has been 

explained previously, the accuracy of HVs is discussed in detail here. 

The purity, grain size, dislocation density, texture, thermo-mechanical history, 

recrystallization effects of samples, as well as deformation technique, testing 

atmosphere, and other experiment conditions are all important factors that may cause 

variation of mechanical prosperities in nominally "pure" metals. Impurities can 

adversely affect the grain size and fraction of high-angle boundaries [429]. Gludovatz et 

al. [430] observed that both grain size and microstructure have a strong impact on the 

fracture behaviour for materials with a low impurity concentration. Wei et al. [417] also 

noticed a variation of hardness on top and bottom faces of the HPT disk. Recent study 

reports that hardness after HPT of some metals begins to decrease during storage at 

room temperature, such as Ag and Au [431]. Errors could be introduced if the hardness 

measurement has not been performed in time.  

In Table 5-6, HVs of Al, Ti, Fe, Ni, Cu, Zr, Ta and Nb, the 8 metals processed under the 

similar HPT experimental condition that can be found out of the 17 metals in other 

references [432-440], were compared with the results reported by Edalati et al. [183-185, 

187]. The absolute discrepancies of HVs data are mainly within ±0.15 GPa if disc 

samples were processed under pressure 2~6 GPa for 4~10 revolutions at room 

temperature avoiding phase change [184], with variation from a few percentage up to 

near 30%. The influence of HVs on ∆HV was also been reported in the last column of 

Table 5-6. 

Table 5-6  Hardness at steady state after HPT in different sources, * indicated the 

value used for each element. 

Metal HVs /GPa Reference for 
HVs 

HVs 
Difference/GPa 

HVs 
Variation 

∆HV* 
/GPa 

∆HV 
variation 

Al 
0.313* [183-185, 

187] +0.090 28.75% 0.15 61.64% 
0.403 [437] 
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Metal HVs /GPa Reference for 
HVs 

HVs 
Difference/GPa 

HVs 
Variation 

∆HV* 
/GPa 

∆HV 
variation 

Ti 
2.599* [183-185, 

187] +0.098 3.77% 1.63 6.02% 
2.697 [433] 

Fe 
3.020* [183-185, 

187] +0.580 19.21% 2.41 24.05% 
3.600 [440] 

Ni 
3.021* [183-185, 

187] -0.168 5.56% 2.38 7.05% 
2.853 [441] 

Cu 
1.298* [183-185, 

187] +0.049 3.78% 0.93 5.27% 
1.347 [182] 

Zr 
2.532* [183-185, 

187] -0.325 12.84% 1.63 19.95% 
2.207 [438] 

Ta 
4.132* [183-185, 

187] -0.132 3.19% 3.26 4.05% 
4.000 [435] 

Nb 
2.354* [183-185, 

187] +0.176 7.48% 0.35 8.80% 
2.530 [434] 

 

The largest variations of HVs of Al, Fe and Zr cause more than 10% variations on their 

calculated ∆HV. Harai et al.[442] observed a maximum hardness about 0.4 GPa in Al at 

an equivalent strain of ~2, similar to the result obtained by Xu et al. [437], which then 

decreased to about 0.3 GPa when equivalent strain reach ~6, and remained unchanged 

with respect to imposed strain, due to the mutual interaction between dislocation density 

and grain boundaries. For Fe, the difference in HVs is possibly due to the different 

carbon contents in the experimental materials [443], while for Zr, the discrepancy of 

HVs is possibly due to the impurities in the experimental materials and the different test 

pressures [438]. Thus, the overestimates of Al and Fe and underestimate of Zr in ANNs 

as shown in Figure 5-4 may actually reflect the true experimental values.  

  

173 

 



Chapter 5 

5.3.4 Underlying physical principle of parameters extracted by ANNs  

The results shown in Figure 5-2 indicate the confounding effect of shear modulus, 

melting point and Burgers vector on the increment of hardness. Comparing with Figure 

5-1, the Burgers vector plays a minor role in the ANN models. It is desirable to explore 

the physical principles behind the information revealed by the ANNs, in order to verify 

the feasibility of adopting this method to explore other unknown cross-property 

relationships in the future. 

Edalati et al. [187] pointed out that G and Tm are important parameters to scale HVs 

attained by HPT because ''G is a parameter to explain dislocation interactions, 

deformation processes and hardening rate'' and ''Tm is a parameter to explain the 

activation energy for diffusion, recovery processes and softening rate''. Since HVs is a 

characteristic property of each metal, and so does HVi, it is reasonable to believe the 

increment of hardness after HPT, ∆HV, can also be represented by G and Tm, or better 

expressed as homologous temperature to correlate temperature dependence of 

deformation for different metals [186]. Because the HPT processing used here occurs at 

room temperature, homologous temperature varies inversely with Tm. Burgers vector is 

well known in describing dislocation of crystal lattice and dislocations at grain 

boundaries [444], which is connected to the main aspect of hardening and recovery 

during HPT process. Because the magnitudes of Burgers vector of 17 metals are very 

close, the impact of b on the prediction of ∆HV is expected to be quite small, which is 

consistent with the ANN results. 

Atomic bond energy and activation energy for self-diffusion are the two properties that 

recently have been reported to show a correlation with HVs of HPT processed metal 

[185]. The ANN models utilizing the two properties have also been conducted. 

However, they show no significant impacts in predicting ∆HV. Because the data of the 

two properties in CES for the 17 metals reveal a moderate variance from the data listed 

in the Ref. [185], they are not included in the systematic ANNs search.  

5.3.5 Comparison with the physical model 

In parallel with the present study, a physically-based model (using the same 17 metals) 

incorporating volume-averaged thermally activated dislocation annihilation and grain 

boundary formation to predict the increment of hardness and grain refinement of pure 
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metals due to HPT, is proposed in Ref. [116]. The ANN results presented in this study is 

beneficial to the construction of the physical model for illuminating the most important 

parameters (i.e. b, Tm and G). From the point view of the physically-based model [116], 

the hardness increment due to HPT is the result of dislocation hardening and grain 

boundary strengthening, which can be mainly determined by shear modulus and 

Burgers vector. Melting temperature is linearly correlated to the activation energy for a 

relaxation process. The physical model exhibits the almost same prediction accuracy as 

the ANN model constructed with the three parameters. The RMSE for ∆HV for 17 

elements of the physically based model is 0.14 GPa (9% of the average ∆HV) and the 

RMSE of the ANN is 0.13 GPa.  

It should be emphasised that: 1) Due to the small input data set (17 metals), it is 

impossible to establish reliable ANNs with the same variables as used in the physical 

model. ANNs constructed with four variables are suffering from over-fitting, producing 

bad generalization to new data. 2) The physical model is a simplified model that ignores 

some secondary effects. For example, the treatment of thermally activated dislocation 

annihilation ignores multiple interacting thermally activated processes impact on the 

rate of dislocation annihilation. 3) Instead of dynamic recovery employed in the 

physically based model, dynamic recrystallization may be a dominant mechanism in 

strengthening HPT processed metals [185]. Therefore, the physical model utilizing five 

variables is not the only model that can be used to explain the phenomena of hardness 

increment. 4) Strong correlations with the melting temperature, such as heat of fusion, 

cohesive energy and thermal expansion coefficient, are the reasons why they show a 

correlation with ΔHV or ΔHV/G when plotted, however there is no suggestion of a 

causal relation. None of the other physical, chemical, and mechanical parameters 

assessed by ANN has a statistically significant influence on hardening due to HPT 

separate from the parameters identified. 5) Nevertheless, the ANNs successfully reveal 

that shear modulus and melting point are the significant properties that influence the 

hardening of pure metals most, and Burgers vector has a relatively small impact. The 

correlations captured by the ANNs shed a light on the construction of a physically based 

model by identifying the salient input parameters. 
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5.3.6 The applicability of the forward selection method 

The forward selection method is expected to find the most important input parameters 

that have maximum influence on the predicted results, and is particularly effective when 

the database is relatively small but the search space of inputs is quite large. For a 

database that is large enough compared to the relatively small search space of inputs, 

variable contributions can be analysed by utilizing the weight vectors of ANNs (see the 

discussions in Section 6.2.1 and Section 6.3.2). 

In a general situation, for nth order correlations with m properties already determined as 

the significant parameters in previous (n-1)th order correlations, by analysing the ANN 

results with linearly increased inputs, a minimal acceptable model that can characterise 

the system with optimal prediction ability is identified. In this chapter, ANNs are 

generated for correlation modelling up to 4th order, and G, Tm and b are identified as the 

most important physical properties to explain the hardness increase mechanism, within 

the average error less than 10% and the relative coefficient (between the experimental 

data and the ANNs predictions) larger than 0.99. 

5.4 Conclusion 

The main finding of this chapter is that an ANN model can be devised to explore an 

underlying physical principle with minimum or no prior knowledge. As an example, the 

increment of Vickers hardness of pure metals due to HPT is accurately predicted from a 

limited set of properties. The limited set of properties, which are determined by ANNs 

from 13 physical properties that may explain the measured changes, constitutes very 

strong correlations with hardness increment.  

By conducting the ANNs input variables forward selection and the ANN combinatorial 

search, shear modulus and melting temperature are identified to have the largest impacts 

on hardening. They can be used to quantitatively predict the ∆HV due to HPT at an 

accuracy of 87%. Adding Burgers vector as the third input variable, the new ANN 

model produces the optimal performance. The quaternary correlation between b, Tm, G 

and ∆HV outperform any other ANN models (i.e. correlations of the same or lower 

order) that an accuracy of 92% is finally reached. The problems related to the accuracy 
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of input data mainly depended on HVs. However, using different HVs data does not 

heavily impair the predict power of the ANNs. 

Nevertheless, even using a small database of 17 data points, the ANNs presented in this 

study should be perceived as valid models. Because the number of hidden neurons is 

strictly restricted to a maximum value, the amount of data used in the experiment is 

large enough to determine the number of fitting parameters in the networks. Moreover, 

to ensure the generalization ability of ANN models, testing data are always used. 

Meanwhile, the modelling uncertainty of the best binary order correlation has also been 

analysed.  

A proposed physically based model corroborates the dominant correlations revealed by 

the ANNs. The correlations found by ANNs shed a light on the construction of 

physically based model by pointing out the input parameters of greatest importance. It 

suggests that, even with a limited supply of data, ANNs can be applied to explore 

property correlations in materials science where a physically based model is not readily 

available. 
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6. The discovery of materials properties 

correlations through artificial neural networks 

and symbolic regression 

6.1 Introduction 

Data mapping is not a new concept. Various data-driven techniques are available to 

create models, including ANNs and genetic programming. However, research in 

automatically generating the analytic forms of correlations (mathematical equations) is 

rare in materials science. In this chapter, a combined ANN-SR (symbolic regression) 

method is employed to determine the enthalpies of vaporization of 175 organic and 

inorganic compounds. ANNs are applied to capture the correlations hidden in the data 

and to identify the important input variables. SR is then employed to derive the 

correlating equations. 

Though ANNs have long been regarded as 'black-boxes' that are encoded with weight 

vectors, a number of methods studying variable contributions in ANNs have been 

developed in recent years. The 'PaD' method [220] and the 'CW' approach [221] are the 

two methods providing explanatory insight of the 'black-boxes' and receive the greatest 

attention in many disciplines. A comparison study of the two methods is performed to 

evaluate the contributions of the five input variables, namely, Mw, Tb, Tc, Pc and Dm. 

Meanwhile, the contribution of each input variable is also accessed through the ANN 

combinatorial search and the SR approach. 

6.2 Experiment 

Since the basic architecture of ANNs and the corresponding performance evaluation 

process have been covered in Chapter 2, the description of ANNs herein is limited to 

the needs of this chapter. The six properties collected from CRC Handbook [229] were: 

i) normal boiling point (Tb), ii) critical point (Tc), iii) critical pressure (Pc), iv) dipole 

moment (Dm), v) molecular weight (Mw), and vi) enthalpy of vaporization at boiling 

point (ΔHvb). The five properties were selected because they are considered to correlate 

with the enthalpy of vaporization to a certain degree. In total, the experimental data 
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consist of 175 organic and inorganic compounds that have full records of all six 

properties. All data are listed in Appendix XIV, among which Tb ranges from 82 K to 

613 K, Tc ranges from 133 K to 850 K, Pc ranges from 2 MPa to 22 MPa, Dm ranges 

from 0.023 to 4.270 D, Mw ranges from 17 to 278, and ΔHvb ranges from 6.04 kJ/mol to 

79.20 kJ/mol.  

The target property is ΔHvb, i.e. the output of the ANNs and the SR models. Any 

combination of input variables chosen from the remaining five properties (Tb, Tc, Pc, Dm 

and Mw) is used as the inputs. Both the 'PaD' method and the 'CW' method are employed 

on the ANN models, which are constructed using the entire input candidates. Once 

ANNs determine the predominant input variables, SR is applied to derive the 

mathematical expression represented by the same parameters. Furthermore, to compare 

the prediction accuracy of the SR approach with the ANN results, and to prove the 

necessity of additional feature selections, SR models utilizing all 5 variables are 

constructed and the contribution of each input variable is analysed. 

The platform of ANNs is Matlab 2010a, while SR is performed on Discipulus Genetic 

Programming System. The SR models are evaluated by taking the average of the 

absolute error over the total 175 data. A combination of input variables is considered 

valuable in predicting ΔHvb if the average absolute error is less than 5% (the lower error, 

the better predictive power). In the meantime, a good combination should contain as 

few variables as possible. 

The experiment is systematically performed in four steps: 1) performing an ANN 

combinatorial search; 2) analysing the input variable contribution through the 'PaD' 

method and the 'CW' method; 3) conducting symbolic regression within all available 

features; and 4) conducting symbolic regression within the features selected based on 

the first two steps. 

6.2.1 The contribution of the different variables in ANNs 

1) The 'PaD' method 

The 'PaD' method computes the partial derivatives of the ANN output with respect to 

the inputs. It was first proposed by Dimopoulos et al. [220] using a logistic sigmoid 

function as the transfer function. Based on the same principle, Equation 6-1 is derived 
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for a network with 'Tansig-Purelin' as the transfer function. For a network with {Xi} 

inputs (i=1, 2…n), one hidden layer with m neurones, and one output, if the transfer 

function between the input layer and the hidden layer is 'Tansig', and transfer function 

between the hidden layer and the output layer is 'Purelin', the partial derivatives of the 

output Y with respect to the input Xi is denoted as di (see Equation 6-1). The relative 

contribution of the input variables can be accessed by ranking their squared partial 

derivatives. 

       𝑠𝑠𝑖𝑖 = ∑ 𝐼𝐼𝐼𝐼𝑖𝑖,𝑗𝑗𝐿𝐿𝐼𝐼𝑗𝑗 𝑜𝑜𝑛𝑛𝑐𝑐ℎ2�∑ 𝐼𝐼𝐼𝐼𝑖𝑖,𝑗𝑗𝑋𝑋𝑖𝑖 + 𝑏𝑏𝑗𝑗𝑛𝑛
𝑖𝑖=1 �𝑚𝑚

𝑗𝑗=1    Equation 6-1 

where: 

IW ─ the weight vector between the input layer and the hidden layer, IWi,j is the weight 

assigned to the hidden neurone j with respect to the input Xi;  

LW ─ the weight vector between the hidden layer and the output layer, LWj is the 

weight assigned to the output Y with respect to the hidden neurone j; 

bj ─ the bias added to the hidden neurone j; 

Xi ─ the ith input; 

2) The 'CW' method 

The idea of 'CW' method is using the weight vector to reveal the relative importance of 

input variables [445]. According to Gevrey et al. [221], the weight partitioning process 

is calculated as below: 

1) Construct a network with {Xi} inputs (with i=1, 2…n), one hidden layer with m 

neurones, and one output. Obtain the weight vector IW between the input layer 

and the hidden layer, and the weight vector LW between the hidden layer and 

the output layer. 

2) For each hidden neuron j, multiply the absolute value of the hidden-output layer 

connection weight by the absolute value of the hidden input layer connection 

weight for each input variable Xi. 

                      𝑃𝑃𝑖𝑖,𝑗𝑗=�𝐼𝐼𝐼𝐼𝑖𝑖,𝑗𝑗� × �𝐿𝐿𝐼𝐼𝑗𝑗�    Equation 6-2 
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3) For each hidden neuron j, divide Pi,j by the sum of the absolute value of the 

input-hidden layer connection weight of all input neurons. 

                     𝑄𝑄𝑖𝑖,𝑗𝑗 = 𝑃𝑃𝑖𝑖,𝑗𝑗
∑ 𝑃𝑃𝑖𝑖,𝑗𝑗𝑚𝑚
𝑖𝑖=1

       Equation 6-3 

4) For each input variable Xi, sum up the Qi,j. 

                      𝑆𝑆𝑖𝑖 = ∑ 𝑄𝑄𝑖𝑖,𝑗𝑗𝑚𝑚
𝑗𝑗=1                    Equation 6-4 

5) The relative importance of input variable Xi, i.e. CWi, is obtained by dividing Si 

with the sum of the Si. 

                    𝐶𝐶𝐼𝐼𝑖𝑖 = 𝑆𝑆𝑖𝑖
∑ 𝑆𝑆𝑖𝑖𝑚𝑚
𝑖𝑖=1

     Equation 6-5 

6.2.2 SR modelling to obtain the mathematical expression 

When the ANNs have been used to quantify the variable's importance, variables that 

contribute most to the prediction performance are selected as inputs to obtain SR results 

through Discipulus [446], a commercial genetic programming software package. It 

should be noted that the SR models are constructed with the same 175 compounds as in 

ANN models to predict the enthalpy of vaporization at boiling point. Similarly, 

Discipulus requires both training data and validation data sets in the model creation. 

Unlike ANNs where training data and validation data (i.e. test data) are split at a ratio of 

4:1, training data and validation data in Discipulus are randomly but equally divided: 88 

data for training and 87 data for validation, as recommended in Ref. [447]. The initial 

population size is set to be 500. The mutation frequency (Mf), crossover frequency (Cf) 

and reproduction frequency (Rf) is set to be 95%, 50% and 2.5% respectively. Be noted, 

mutation is applied regardless whether the programme has been selected for crossover 

or not, thus the reproduction rate is calculated (in percentages) by Equation 6-6 [447]:  

𝑅𝑅𝑓𝑓 = 1 −𝑀𝑀𝑓𝑓 − �𝐶𝐶𝑓𝑓 × �1 −𝑀𝑀𝑓𝑓��   Equation 6-6 

The operators function set consists of arithmetic operations (+, -, *, /), mathematical 

functions (exponential), comparison and exchange functions. Data values are converted 

into logarithm values as the standard procedure in performing SR [448], due to the 

lacking of logarithm operator in Discipulus. A single run of SR terminates at 300 

generations without improvement in fitness. A total of 500 runs are performed in this 
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study. The SR models that have the least square error are selected and further 

interpreted into mathematical expressions. 

6.3 Results and discussion 

6.3.1 ANN combinatorial search 

The ANN combinatorial search was conducted by using all the possible combinations of 

input variables (Tb, Tc, Pc, Dm and Mw) as inputs. The exhaustive search for the 

prediction of ΔHvb stated by using one input variables (1st order search) to construct 

ANNs and increased to use more variables, until all the five variables were used 

together. The predictive capacity for each ANN model is tabulated in Table 6-1 at the 

descending order of the general ANN modelling performance (ψ). A proportion of 5% 

data that have the largest errors in predicting ΔHvb are excluded in the average error 

calculation, in order to reduce the possible influence of noise data [234]. The evaluation 

criteria ψ, δ and (Ec) are described in Chapter 2 and Chapter 3. ANNs have better 

generalization ability when δ is smaller, and have good prediction accuracy when (Ec) is 

small.  

As shown in Table 6-1, the error of the top five ANNs is around 2.6%, all of which 

contain input variables Tb, Tc and Pc, except Row 4. In contrast to the first row, because 

the addition of Dm in the third row has only 0.2% contribution on the modelling 

accuracy, Dm is regarded as an insignificant input. Similarly, by comparing Row 1 and 

Row 5, Mw is considered to be a less important variable. Furthermore, the comparison 

between Row 1 and Row 4 indicates Pc and Mw have similar contributions in predicting 

ΔHvb. However, if only Tb and Tc are used as input variables, the prediction error 

dramatically increases from 2.7% (Row 1) to 4.3% (Row 11). In addition, the ANN 

model constructed using Tb overrides any other model constructed using only one input 

variable (Row 12), and the model constructed using Tc is the second best (Row 20). In 

this case, Pc or Mw is a necessary input variable though neither of them is as important 

as Tb or Tc. Thus, according to the general ANN modelling performance (ψ), which has 

taken the modelling accuracy (A) and the ANN generalization ability (δ) into 

consideration, the three input variables, namely, Tb, Tc and Pc, constitute the most 

promising correlation with ΔHvb. The second promising combination of inputs utilizing 

three variables is Mw, Tb and Tc.  
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Figure 6-1 presents the normalized frequency of variables in the top 20% ANN models 

during the ANN combinatorial search of 1st order, 2nd order, 3rd order and 4th order (the 

Ith order model refers to the model constructed using I different input variables). As can 

be seen from the sum of normalized frequency, Tb is the largest contributed variable, 

and followed by Tc, Pc and Mw. The last candidate, i.e. Dm, has the least contribution in 

these top 20% predictions, thus are regarded to be the less-significant variable.  

Figure 6-2 shows the results of ANNs in predicting ΔHvb from three different input 

variable combinations: i) Tb, ii) Tb, Tc and Pc, and iii) Mw, Tb and Tc. As can be seen, 

the prediction accuracy of testing data (indicated by the green square points) is slightly 

less than the training data (indicated by the blue circle points). However, the 

determination coefficient Rl of the total 175 data is 0.964, 0.985, and 0.980 respectively, 

thus these models are believed to give very reliable predictions. 

6.3.2 The 'PaD' 'and 'CW' method 

Figure 6-3 presents the relative contributions of the five variables with maximum-

minimum range that are accessed by the 'PaD' method and the 'CW' method on three 

independent ANN models. All data are listed in Appendix XV. The two methods reach 

similar conclusions that they both indicate Tb is the variable that has the largest 

contribution, and then followed by Tc, Pc, Mw and Dm. There is no significant 

contribution difference between Pc and Mw, and it shows Dm has the least impact. The 

results are in good agreement with the discussions in Section 6.3.1. Compared to the 

result of the 'CW' method, the large variation in the evaluation of Pc indicates the 'PaD' 

method is less stable. However, the variable contribution difference based on the 'PaD' 

method is larger than that based on the 'CW' method, making it more visible in terms of 

contribution evaluation. 

Table 6-1 ANN models in the prediction of ΔHvb using different input variables. 

Importance 
ANNs evaluation parameters 

Input properties 
ψ δ Ec 

1 0.04 0.029 2.7% Tb, Tc, Pc 

2 0.05 0.039 2.7% Mw, Tb, Tc, Pc, Dm 
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Importance 
ANNs evaluation parameters 

Input properties 
ψ δ Ec 

3 0.05 0.042 2.5% Tb, Tc, Pc, Dm 

4 0.05 0.044 2.6% Mw, Tb, Tc 

5 0.06 0.049 2.5% Mw, Tb, Tc, Pc 

6 0.06 0.049 3.5% Mw, Tb, Dm 

7 0.06 0.054 3.6% Mw, Tb, Tc, Dm 

8 0.07 0.063 3.8% Mw, Tb, Pc, Dm 

9 0.08 0.068 4.3% Mw, Tb 

10 0.08 0.071 4.2% Mw, Tb, Pc 

11 0.08 0.071 4.3% Tb, Tc 

12 0.09 0.079 3.8% Tb 

13 0.09 0.082 4.1% Tb, Tc, Dm 

14 0.10 0.089 4.1% Tb, Pc 

15 0.10 0.087 4.7% Tb, Dm 

16 0.10 0.091 4.1% Tb, Pc, Dm 

17 0.11 0.103 4.9% Tc, Pc, Dm 

18 0.12 0.109 4.9% Mw, Tc, Pc, Dm 

19 0.12 0.108 5.6% Mw, Tc 

20 0.12 0.11 5.2% Tc 

21 0.14 0.127 5.6% Mw, Tc, Pc 

22 0.15 0.134 5.7% Tc, Pc 

23 0.16 0.148 6.2% Mw, Tc, Dm 

24 0.16 0.151 6.3% Tc, Dm 

25 0.66 0.649 14.0% Mw, Pc, Dm 

26 0.70 0.689 14.9% Dm 

27 0.71 0.688 15.8% Pc, Dm 

28 0.76 0.746 15.3% Mw, Dm 

29 0.95 0.94 15.6% Mw, Pc 

30 0.97 0.955 15.1% Mw 
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Importance 
ANNs evaluation parameters 

Input properties 
ψ δ Ec 

31 1.15 1.138 18.4% Pc 

 

  

Figure 6-1 The property importance revealed in the top 20% correlations of 1st, 2nd, 

3rd and 4th order in predicting ΔHvb from the ANN combinatorial search.  
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Figure 6-2 Results of ANNs in predicting ΔHvb from a) Tb with δ equals to 0.079 

and an error of 3.8%; b) Tb, Tc, Pc with δ equals to 0.029 and an error of 2.7%; and c) 

Mw, Tb, Tc with δ equals to 0.044 and an error of 2.6%.  

6.3.3 The important input variables - Tb, Tc and Pc 

ANN results show Tb is the most important variable among the five input candiadates. 

In fact, Kistiakowsky [208] has proposed a simple equation to make a fast estimation of 

ΔHvb. As shown in Equation 6-7, the predicted value from this approach generally falls 

within ±5% of the experiment value [211].  

∆𝐻𝐻𝑣𝑣𝑣𝑣
𝑇𝑇𝑣𝑣

= 36.6 + 𝑅𝑅 𝑐𝑐𝑛𝑛 𝑇𝑇𝑜𝑜     Equation 6-7 

The ANN study also shows that a combination of input varibles Tb, Tc and Pc produces 

the good performance for the prediction of ΔHvb. The finding is in agreement with the 

empirical results of other researchers [208, 211, 449, 450]. Equation 6-8 to Equation 

6-11 are the ones that have been widely employed to make good estimates of ΔHvb. 

Their predicted values generally fall within ±3% of the experiment values [211]. It is 

interesting to note that ANNs have obtained a similar accuracy.  
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Figure 6-3 The contributions of the 5 variables accessed by the 'PaD' method and 

the 'CW' method in the prediction of ΔHvb. The error bars indicate the maximum and 

minimum values obtained in 3 independent ANN models. 

The Giacalone's equation [449]: 

∆𝐻𝐻𝑣𝑣𝑜𝑜 = 𝑅𝑅𝑇𝑇𝑐𝑐𝑇𝑇𝑜𝑜𝑟𝑟 �
𝑙𝑙𝑛𝑛(𝑃𝑃𝑐𝑐/1.01325)

1−𝑇𝑇𝑣𝑣𝑟𝑟
�     Equation 6-8 

The Riedel's equation [208]: 

∆𝐻𝐻𝑣𝑣𝑜𝑜 = 1.093𝑅𝑅𝑇𝑇𝑐𝑐𝑇𝑇𝑜𝑜𝑟𝑟 �
𝑙𝑙𝑛𝑛𝑃𝑃𝑐𝑐−1.013
0.93−𝑇𝑇𝑣𝑣𝑟𝑟

�    Equation 6-9 

The Chen's equation [450]: 

∆𝐻𝐻𝑣𝑣𝑜𝑜 = 𝑅𝑅𝑇𝑇𝑐𝑐𝑇𝑇𝑜𝑜𝑟𝑟 �
1.555𝑙𝑙𝑛𝑛 𝑃𝑃𝑐𝑐+3.978𝑇𝑇𝑣𝑣𝑟𝑟−3.958

1.07−𝑇𝑇𝑣𝑣𝑟𝑟
�   Equation 6-10 

The Vetere's equation [211]: 

∆𝐻𝐻𝑣𝑣𝑜𝑜 = 𝑅𝑅𝑇𝑇𝑐𝑐𝑇𝑇𝑜𝑜𝑟𝑟 �
0.4343𝑙𝑙𝑛𝑛 𝑃𝑃𝑐𝑐+0.89584𝑇𝑇𝑣𝑣𝑟𝑟−0.69431

0.37691−0.37306𝑇𝑇𝑣𝑣𝑟𝑟+0.15075𝑃𝑃𝑐𝑐−1𝑇𝑇𝑣𝑣𝑟𝑟−2
� Equation 6-11 

where:  

Tb = boiling point in K; 

Tc = critical point in K; 

0%

10%

20%

30%

40%

50%

60%

70%

80%

Mw Tb Tc Pc DM

%
 o

f c
on

tr
ib

ut
io

n

'PaD'method

'CW' method

Mw                  Tb                     Tc                   Pc                    Dm 

188 

 



Chapter 6 

Pc = critical pressure in bar; 

Tbr = reduced boiling point, which equals to Tb/Tc; 

R = gas constant, which equals to 8.314 J mol-1 K-1. 

6.3.4 SR model analysis 

1) SR models using all five input variables 

Though GP might be superior to other data-driven techniques with or without feature 

selection in respect to the prediction accuracy [451], to identify the optimal functional 

form of statistical models, the determination of input variables is a very important and 

challengeable task for all data-driven techniques [108]. Generally, to obtain a robust SR 

model, the input variables not only need to be diverse enough to describe the knowledge 

hidden in the experimental data, but also succinct enough to acquire a parsimonious 

equation [452]. It is the author's experience that the largest difficulty of SR lies in 

obtaining the parsimonious equations from hundreds or even thousands 'evolved' 

programmes without substantially sacrificing the accuracy. Generating SR programmes 

within different input variables only exacerbate the problem as more 'evolved' 

programmes need to be analysed. 

In this study, the ANN approach is used as an alternative method to identify the most 

promising input variables without any prior knowledge. The applications of ANNs to 

predict material properties are readily available in many studies, and explanatory 

methods, such as the 'PaD' method and the 'CW' method, have been developed to 

analyse the contribution of each input variable. Because all the five available variables 

(Mw, Tb, Tc, Pc and Dm) are used as inputs in both methods (the 'PaD' method and the 

'CW' method), it is interesting to address the performance of SR utilizing the same five 

variables as inputs. 

Discipulus provides a way to look through all of the best 30 SR models generated in one 

experiment [447]. By analysing the variable appearances in models, and the average and 

maximum impacts of variables when they are removed and replaced by the average 

value of that input, the contribution of each input variable to the fitness of models can 

be accessed. Figure 6-4 presents the frequency, the average impact, and the maximum 

impact of the five variables in the best 30 SR models obtained in three independent 
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experiments. All data are listed in Appendix XVI. The error bars indicate the maximum 

and minimum values obtained in the 3 experiments. The average prediction accuracy of 

SR models is around 95%. It should be noted that frequency and the impact are two 

independent characters to describe the behaviours of the input variables. A value of 100% 

of frequency indicates that the input variable appeared in 100% of the best 30 SR 

models. To be specific, Tb, Tc, Mw and Dm are most commonly used, that they are found 

in more than ~90% of models. Even the last variable Pc is likely to occur in half of the 

models.  

Neither the average impact nor the maximum impact of Tb, Tc, Pc, Mw and Dm shows 

identical trends with the changes of the frequency. A higher frequency does not 

necessarily imply a larger influence on the output. This is probably because programs 

generated by SR usually contain instructions that utilize all the inputs including 

redundant inputs, for example, inputs within small changes might be used as constants 

in SR models [447]. Moreover, the variation trend of the average impact of the five 

variables does not correspond to that of the maximum impact, indicating different 

components in the SR models. Like the 'PaD' and the 'CW' method, Tb and Tc are 

identified to be the variables with largest impacts. However, it is difficult to distingush 

the contribution made by Pc, Mw and Dm. The average impacts of Pc, Mw and Dm are 

smaller than 3%, while the maximum influence of the three input variables varies. The 

maximum impact of Mw and Dm can reach as large as ~60% and ~90% respectively.  

As can be seen, without a feature selection in prior, SR tends to use all available input 

variables in the terminals set to build the model, in which some variables may have very 

limited contributions. Huge time and effort are required to interpret a complicated SR 

model into a parsimonious correlating equation due to the existing redundancy. On the 

other hand, by analysing SR models, though it is possible to identify the primary 

variables that have the largest impacts, the ability to identify the secondary important 

variables is restricted. As a result, it is important for ANNs to act as an additional yet 

automatic method to determine necessary input variables to feed into SR models. 
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Figure 6-4 The contributions of the 5 variables accessed by Discipulus (SR method). 

The error bars indicate the maximum and minimum values obtained in 3 independent 

experiments. 

2) Mathematical expression using variables selected by ANNs 

As discussed in the previous section, without any prior knowledge, the ANN study 

including both the combinatorial search and the 'PaD'/'CW' method, suggests that ΔHvb 

can be successfully predicted by using Tb, and the model constructed by Tb, Tc and Pc 

results in higher accuracy and better generalization capability. Though not all the 

equations intelligently generated by SR appear to offer advantages over Equation 6-8 to 

Equation 6-11, Equation 6-12 and Equation 6-13 are the ones the author obtained that 

are at least as accurate as the well-known equations mentioned in Section 6.3.3.  

Table 6-2 and Table 6-3 compare the predicted and experimental values of ΔHvb by 

applying these two equations (Equation 6-12 and Equation 6-13) to the same 175 

compounds used in constructing the ANNs and the SR models. As shown in Table 6-2, 

the average error percentage decrease from 7.45% to 6.33% by using the new SR 

equation utilizing only one variable, i.e. Tb. More than 20% data have predicted values 

fall within ±5% of the experiment values compared to the results calculated by the 

Kistiakowsky's equation. The SR equation obtained using three input variables, i.e. Tb, 
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Tc and Pc, is generally simpler than any other equations readily available in literature. In 

addition, it produces more accurate predictions than the Riedel's equation, and yields the 

same error (~ 3.8%) as the remaining equations do. 

Nevertheless, SR has limitations in finding the optimal constant in the expression [192]. 

Especially for Equation 6-13, it is hard to attribute real world meaning to interpret the 

constant of power assigned to each variable. It might be resolved by specifying constant 

form at the beginning of SR modelling, for example, only integers can be assigned to 

the power operator. Another concern about SR model is its complexity and its analytic 

form. Due to the uncertainty of the evolution, the 'perfect' mathematical equations to be 

distinguished from a large number of equivalent models still need human effort [28, 

452]. However, there is no doubt that SR will show superiority in deriving the 

corresponding mathematical equations to describe the observed phenomena that not yet 

accessible for physical modelling. 

𝑐𝑐𝑛𝑛 ∆𝐻𝐻𝑣𝑣𝑜𝑜 = 1.11 𝑐𝑐𝑛𝑛 𝑇𝑇𝑜𝑜 + 3.82    Equation 6-12 

∆𝐻𝐻𝑣𝑣𝑜𝑜 = 1.056𝑇𝑇𝑣𝑣3.152𝑃𝑃𝑐𝑐0.342

𝑇𝑇𝑐𝑐2.131     Equation 6-13 

Table 6-2 Comparison of the calculation accuracy of the Kistiakowsky's equation 

and the equation obtained by SR (indicated by *) using one input variable (Tb) for 175 

compounds. 

Equation formula Average 
error 

Number of compounds 

Error%<5% Error% 
∈(5%, 10%] Error%>10% 

∆𝐻𝐻𝑣𝑣𝑜𝑜
𝑇𝑇𝑜𝑜

= 36.6 + 𝑅𝑅 ln𝑇𝑇𝑜𝑜 7.45% 90 38 47 

ln∆𝐻𝐻𝑣𝑣𝑜𝑜 = 1.11 ln𝑇𝑇𝑜𝑜 + 3.82* 6.33% 112 26 37 
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Table 6-3 Comparison of the various equations available in literature and the 

equation obtained by SR (indicated by *) using three input variables, i.e. Tb, Tc and Pc. 

Equation Formula Average 
error 

Giacalone's 
equation [449] ∆𝐻𝐻𝑣𝑣𝑜𝑜 = 𝑅𝑅𝑇𝑇𝑐𝑐𝑇𝑇𝑜𝑜𝑟𝑟 �

ln(𝑃𝑃𝑐𝑐/1.01325)
1 − 𝑇𝑇𝑜𝑜𝑟𝑟

� 3.80% 

Riedel's 
equation [208] ∆𝐻𝐻𝑣𝑣𝑜𝑜 = 1.093𝑅𝑅𝑇𝑇𝑐𝑐𝑇𝑇𝑜𝑜𝑟𝑟 �

ln𝑃𝑃𝑐𝑐 − 1.013
0.93 − 𝑇𝑇𝑜𝑜𝑟𝑟

� 5.65% 

Chen's equation 
[450] ∆𝐻𝐻𝑣𝑣𝑜𝑜 = 𝑅𝑅𝑇𝑇𝑐𝑐𝑇𝑇𝑜𝑜𝑟𝑟 �

1.555ln𝑃𝑃𝑐𝑐 + 3.978𝑇𝑇𝑜𝑜𝑟𝑟 − 3.958
1.07 − 𝑇𝑇𝑜𝑜𝑟𝑟

� 3.54% 

Vetere's 
equation [211] ∆𝐻𝐻𝑣𝑣𝑜𝑜 = 𝑅𝑅𝑇𝑇𝑐𝑐𝑇𝑇𝑜𝑜𝑟𝑟 �

0.4343ln𝑃𝑃𝑐𝑐 + 0.89584𝑇𝑇𝑜𝑜𝑟𝑟 − 0.69431
0.37691 − 0.37306𝑇𝑇𝑜𝑜𝑟𝑟 + 0.15075𝑃𝑃𝑐𝑐−1𝑇𝑇𝑜𝑜𝑟𝑟−2

� 3.50% 

New SR 
equation* ∆𝐻𝐻𝑣𝑣𝑜𝑜 =

1.056𝑇𝑇𝑜𝑜3.152𝑃𝑃𝑐𝑐0.342

𝑇𝑇𝑐𝑐2.131  3.78% 

6.4 Conclusion 

This chapter discussed a method of determining materials property correlations by the 

use of the combination of artificial neural networks and symbolic regression. ANNs are 

applied to determine the smallest number of important input variables that are sufficient 

to represent the correlation hidden in the data. Then SR is employed to derive the 

mathematical equations that represent these relationships using the variables selected by 

ANNs. As an example, the determination of the enthalpy of vaporization at boiling 

point is presented. By applying both ANNs and SR, ΔHvb was successfully predicted 

through the application of both approaches: in the case of 175 compounds tested, the 

present method gives an average error of ~3% and ~4% respectively. 

To provide an explanatory insight of the ANN 'black-boxes', a comparison study of the 

'PaD' method and the 'CW' method is performed on the contribution-evaluation of five 

input variables, namely, Mw, Tb, Tc, Pc and Dm. Though the 'CW' method is more stable, 

the variable contribution difference based on the 'PaD' method is more visible. The two 

methods reach similar conclusions that Tb is the variable that has the largest 

contribution, and then followed by Tc, Pc, Mw and Dm. As the total number of input 
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variables (5) is much smaller than the example data points (175), it is appropaite to 

conduct a combinatorial search that gurantte the optimal solution. Results of 

combinatorial search are in good agreement with the 'CW' method and the 'PaD' method, 

that Tb is the most important variable among the five input candiadates. A combination 

of input varibles Tb, Tc and Pc produces the best performance for the prediction of ΔHvb, 

followed by a combination of input varibles Mw, Tb and Tc.  

Meanwhile, the contribution of each input variable is also accessed based on the SR 

approach using all the five variables. Results indicate that without the feature selection 

in advance, SR tends to use all the input variables to build the model regardless how 

much they contribute. Though it is possible for SR to identify the primary variables that 

have the largest impacts, SR has rendered ability to identify the secondary important 

variables. As a result, ANNs act as an additional yet automatic method to determine 

necessary input variables to feed into SR models. In this experiment, the SR models are 

thus constructed utilizing Tb and a combination of input varibles Tb, Tc and Pc. 

Compared to previously reported models, the equations obtained by SR are simpler and 

are at least as accurate as other models in providing a rapid estimation of ΔHvb.  

In conclusion, the ultimate goal of the combinatorial application of ANNs and SR is to 

accelerate the human's pace to discover new materials and physical laws. This study 

demonstrates that ANNs are capable of exploring correlations that might exist between 

different properties in materials without needing the knowledge of the direct structure-

property relationships. By employing SR, the corresponding mathematical equations 

can be derived to explicate the prior phenomena observed by ANNs.  
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7. General conclusion and future work 

7.1 General conclusion 

To summarise, the applications of ANNs in exploring materials property-property 

correlations are demonstrated by four distinct examples, where no prior knowledge of 

the form of the relationship is required:  

1) In Chapter 3, binary, ternary and quaternary order correlations are mined from 

the database that contains 24 properties for 37 pure metals through a 

combinatorial search. 

2) In Chapter 4, the ternary order correlations between Young's modulus, shear 

modulus, bulk modulus and Poisson's ratio are captured from the database that 

contains 68 pure metals. 

3) In Chapter 5, the relationships between the hardness increment due to HPT and 

13 physical, mechanical, and electronic properties are investigated for 17 pure 

metals. 

4) In Chapter 6, the relationships between the enthalpies of vaporization of 175 

compounds and five other properties, namely, Mw, Tb, Tc, Pc and Dm are 

determined. 

In order to assess the correlation importance (i.e. how strong the correlation is), two 

criteria are introduced to identify meaningful and nontrivial property correlations. They 

are: model generalization ability (δ) and correlation error (Ec). In particular, as ~5% 

data are considered contaminated in most databases, error calculations excluded 5% 

data with the highest error. For a correlation-group constituted by N correlations, the 

group performance (𝝍𝝍𝑵𝑵) can be evaluated according to a quadratic superposition rule. 

The correlations captured by ANNs provide a way of illuminating the facts hidden in 

the data, and can be applied to:  

1) The materials properties prediction. For example, shear modulus, melting 

temperature and Burgers vector can be used to predict the ∆HV due to HPT at an 
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accuracy of ~92%. The error to predict ΔHvb using the values of Tb, Tc and Pc is 

less than 3%. 

2) The errors correction in materials properties databases. For example, ANNs are 

successfully employed to resolve the large discrepancies existing in the elastic 

property data, which are recorded in prestigious handbooks and databases.  

3)  The identification of important input variables. Input variables need to be 

determined for the establishing of physical models (as described in Chapter 5) 

and the construction of explicit correlating equations (as illustrated in Chapter 6). 

The variable contribution can be accessed through the ANN combinatorial 

search, the forward selection method, and the methods utilizing the weight 

vectors of ANNs, such as the 'PaD' method and the 'CW' method. 

For a discrete, irregularly distributed database that is subject to unknown error, 

performing ANN combinatorial searches is the only method that evaluates all of the 

possible correlations. By utilizing the evaluation criterion to rank the correlation based 

on its model performance, the combinatorial search using ANNs is guaranteed to 

determine the optimal set of input variables. Because ANNs can be performed in 

parallel, the combinatorial approach can be high-throughput and effective 

simultaneously. When the workload cannot be aligned with parallel processing, the 

forward selection method is suitable to find the most important input parameters that 

have maximum influence on the predicted results. The forward selection is particularly 

effective when the database is relatively small but the search space of inputs is quite 

large. For a database that is large enough compared to the relatively small search space 

of inputs, variables' contributions can be analysed by utilizing the weight vectors of 

ANNs through the 'PaD' method and the 'CW' method. 

The ANN method can not only be used for complex system modelling with a large input 

dataset, but is also feasible in a situation where the size of dataset has an inherent 

limitation. As can be seen, the datasets that are used in the construction of ANNs vary 

from a few data points (17 data points in Chapter 5) to hundreds of data points (175 data 

points in Chapter 6). As long as the amount of data is enough to determine the number 

of fitting parameters in the networks, and the generalization ability of ANN models is 

tested, researchers can still benefit from ANNs when dealing with a small dataset. 
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7.2 Original contribution of the thesis 

1) ANNs have been used extensively in materials science for predicting a target 

property from materials’ composition or processing parameters. Studies in 

exploring materials property-property correlations (excluding compositional 

information or processing parameters) are relatively rare. The work presented in 

this thesis employed ANNs to explore the correlations of different materials 

properties. It has extended the application of ANNs in the fields of data 

corrections, property predictions and identifications of variables’ contributions.  

2) The traditional idea of combinatorial methods applied to materials science is the 

identification of the causal pathways that link composition and structure to 

properties. A combinatorial approach has seldom been applied to correlate 

materials' properties. In this thesis, ANNs combinatorial searches are employed 

as high-throughput screening methods to produce possible property- property 

correlations for analysis. Instead of creating composition or structure 'libraries', 

property 'libraries' are prepared and analysed. Because ANNs are capable of 

evaluating correlations in parallel, the advantages of combinatorial approach that 

guarantee to find the optimal correlations in the shortest possible time are 

retained. 

3) An evaluation criterion to rank correlations and correlation-groups accessed by 

ANNs, is proposed and demonstrated to be useful in identifying meaningful and 

nontrivial property-property correlations. The criterion utilises the parameters of 

model performance, ANNs generalization ability and correlation error. In 

addition, such evaluation criterion can be applied according to a quadratic 

superposition rule to justify the importance of an observed correlation-group. It 

is especially effective when the difficulty of correlations exploration is 

exacerbated with the increase of complexity that exists in the correlations and 

the growing data size.  

4) A large number of strong correlations are obtained through the ANN 

combinatorial search, among which the typical examples were discussed 

emphatically in Chapter 3. Some correlations have already been proposed in 

literature and used extensively in materials sciences, such as the relation 

between atomic weight and specific heat capacity. While, some correlations 

197 

 



Chapter 7 

have not been previously attended to, now are brought to researchers’ attention, 

for example, the relation between cohesive energy of solid and heat of 

vaporization. The correlations captured by ANNs indicate that the ANN 

combinatorial search without prior knowledge, as the work presented in this 

thesis, is a systematic and effective way of illuminating useful information. 

5) Because ANN combinatorial searches test all possible property combinations, 

the strong correlations obtained by ANNs may have redundant variables, 

especially for correlations of higher order. By comparing with the correlations of 

lower order, binary, ternary and quaternary order correlation-groups are 

summarized into different categories in Chapter 3. Such classifications could 

help to identify the fundamental materials property-property correlations. 

6) Young's modulus, shear modulus, bulk modulus and Poisson's ratio of pure 

metals are important mechanical properties in materials research, but the scatter 

of their measurement results has drawn very little attention. The situation is now 

changed by the work presented in Chapter 4, where the substantial discrepancies 

in several prestigious handbooks and databases are clarified for the first time. 

Meanwhile, a latest compilation of experimental elastic properties data for pure 

metals is provided, including a comprehensive review of single crystal elastic 

constants and polycrystalline elastic data. 

7) Extending the study using binary order correlations to correct suspect data, a 

systematic ANN protocol has been developed in Chapter 4 to capture and utilize 

ternary order correlations. The ANN method is tested against the known 

correlating equations, and is found to be reliable and effective in verifying 

suspect data. Because this method does not require any prior knowledge, it 

would also help to solve the problem of identifying outliers and correcting errors 

in a more general situation. 

8) In Chapter 5, the increments of Vickers hardness of pure metals due to HPT are 

quantitatively and accurately predicted from a limited set of properties, i.e. shear 

modulus, melting temperature and Burgers vector. The first two variables are 

identified to have the largest impacts on hardening, while the last variable has a 

minor contribution. The correlations obtained by ANNs shed a light on the 

construction of a physically based model by pointing out the input parameters of 

greatest importance. 
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9) ANNs are generally used for complex system modelling with a large input 

dataset, but scientists would also like to benefit from ANNs in a situation where 

the size of data has an inherent limitation. Because only 17 data on the hardness 

of HPT-processed pure metals are available, the question that whether fruitful 

ANN models can be obtained when dealing with a small dataset is addressed. 

The work presented in Chapter 5 suggests that effective ANNs can be 

established even with a limited supply of data. 

10) Without feature selection in advance, the equation model generated by SR tends 

to grow in complexity over the number of input variables. A combined ANN-SR 

method is proposed to yield more parsimonious model structures by ruling out 

redundant variables. An example to determine the enthalpies of vaporization of 

175 organic and inorganic compounds is presented in Chapter 6. Two simple 

equations obtained by the combined method are found to be at least as accurate 

as other models in providing a rapid estimation of ΔHvb. 

11) A comparison study of the 'PaD' method and the 'CW' method is also performed 

in Chapter 6 to evaluate the contributions of five input variables. Tb is identified 

to be the variable that has the largest contribution to the prediction of ΔHvb, and 

then followed by Tc, Pc, Mw and Dm. Though the result of the 'CW' method is 

more stable, the variable contribution difference based on the 'PaD' method is 

found to be more visible. 

7.3 Future work 

The following aspects are suggested: 

1) Comparison of ANNs and other data mining methods.  

Despite ANNs being probably the most well-known data driven method, other data 

mining techniques have become available for correlation modelling, property prediction 

and data forecasting, such as random forests [194], decision trees [195], support vector 

machines [196], and genetic programming (GP) [197]. It is interesting to perform 

comparative studies of these techniques and decide which would be most appropriate 

for future model applications over a range of experimental conditions. The comparative 

studies would be challenging but rewarding if a large number of modelling techniques 
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are evaluated, and conclusions are drawn based on a wide range of datasets that have 

unique characteristics. 

2) Exploration of property correlations hidden in various data 

It has been demonstrated that noises and errors exist in many databases, which 

sometimes are even considered as a fundamental dimension of data [235]. However, 

with the ever-increasing drive for accurate data, it is recommended to compile different 

databases and employ ANNs to detect outliers and correct errors for properties that have 

not been verified in this study. 

It is evident that the property correlations captured by ANNs strongly depend on the 

characteristic of available data. This study mainly focused on the properties of pure 

metals, it would be interesting to apply the ANNs combinatorial method to explore the 

property correlations of alloys and functional ceramic materials. 

3) Modification of the ANN architecture. 

A relatively simple but sufficient enough three-layer feed-forward neural network with 

the back-propagation learning method is devised to explore correlations in this study. It 

is interesting to investigate the influence of different ANN architectures in order to 

enhance the performance of ANNs. This is can be done by adding one or more hidden 

layers, changing the training function/transfer function, and utilizing different learning 

rules. 

4) Development of an integrated ANN-SR programme. 

In this study, a commercial software package (Discipulus) is used for implementing the 

standard symbolic regression method. Though Discipulus shows several advantages in 

terms of execution time [447], prediction accuracy [214] and user-friendly interface, 

essentially, it is a program-based GP that executes machine code directly. Thus it is 

difficult to derive explicit equations from Discipulus due to the absence of adjustable 

parameters such as tree size restriction [205]. As the ANN models in this study are 

constructed based on Matlab, and GPLAB [453], a GP toolbox for Matlab that provides 

the evolved equation in the tree form, has become available, it is desirable to have an 

integrated ANN-SR programme developed in Matlab environment to capture 

correlations and obtain explicit correlating equations simultaneously. 
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Appendix 

Appendix I 

Table 1 The dataset of 37 elements with 24 properties used in the ANN 

combinatorial search 

Property Melting 
point 

Specific 
heat 

capacity 

Heat of 
fusion 

Thermal 
conductivity 

at 300K 

Thermal 
expansion 
coefficient 

at 300K 

Bulk 
modulus 
at 300K 

Abbreviation MP SHC HF TC TEC BM 

Symbol Tm Cp Hfus λ αL K 

Unit °C J/kg·°C kJ/mol W/m·°C µstrain/°C GPa 

Li 181 3600 3 84.7 56 11.6 

Be 1280 1820 12.2 202 11.5 100 

Na 97.8 1230 2.6 141 70.6 6.81 

Mg 649 1020 8.95 156 26.1 35.4 

Al 660 900 10.8 237 23 72.2 

K 63.7 750 2.33 102 83 3.18 

Ca 839 630 8.54 200 22 15.2 

Ti 1660 520 15.5 21.9 8.35 105 

Cr 1860 450 16.9 93.7 6.2 190 

Cu 1080 380 13.1 401 16.5 131 

Zn 420 390 7.32 116 25 59.8 

Rb 39.1 363 2.19 58.2 90 3.14 

Zr 1850 270 16.9 22.7 5.78 83.3 

Nb 2470 260 26.4 53.7 7.07 170 

Mo 2620 250 32 138 5.43 273 

Ru 2310 238 24 117 9.1 348 

Rh 1970 242 21.5 150 8.4 271 

Pd 1550 240 17.6 71.8 11.2 181 

Ag 962 235 11.3 429 19.2 101 

Cd 321 230 6.19 96.8 29.8 46.7 

In 156 230 3.26 81.6 33 41.1 

Sb 631 210 19.9 24.3 8.5 38.3 

Cs 28.4 240 2.09 35.9 97 2.03 

Ba 729 204 7.75 18.4 18.1 10.3 

La 921 190 6.2 13.5 4.9 24.3 
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Property Melting 
point 

Specific 
heat 

capacity 

Heat of 
fusion 

Thermal 
conductivity 

at 300K 

Thermal 
expansion 
coefficient 

at 300K 

Bulk 
modulus 
at 300K 

Abbreviation MP SHC HF TC TEC BM 

Symbol Tm Cp Hfus λ αL K 

Unit °C J/kg·°C kJ/mol W/m·°C µstrain/°C GPa 

Hf 2230 140 24.1 23 5.9 109 

Ta 3000 140 31.6 57.5 6.6 200 

W 3410 130 35.4 174 4.59 323 

Re 3180 130 33.2 47.9 6.63 372 

Os 3050 130 31.8 87.6 5.55 462 

Ir 2410 130 26.1 147 6.4 383 

Pt 1770 130 19.6 71.6 9 278 

Au 1060 128 12.6 317 14.2 173 

Hg -38.9 139 2.3 8.34 49 38.2 

Tl 304 130 4.14 46.1 28 35.9 

Pb 328 130 4.8 35.5 29.1 42.9 

Bi 271 120 11.3 7.87 13.4 31.5 

 

Property 
Electrical 
resistivity 
at 300K 

Young's 
modulus 
at 300K 

Atomic 
radius 

Shear 
modulus 
at 300K 

Cohesive 
energy 

Lattice 
parameter a 

Abbreviation ER YM AR SM CE LPA 

Symbol ρe E r G Ecoh a 

Unit µohm·cm GPa nm GPa kJ/mol nm 

Li 8.55 10 0.152 4.31 160 0.349 

Be 4 301 0.113 146 322 0.227 

Na 4.2 5 0.154 3.5 109 0.423 

Mg 4.38 44.4 0.16 17.7 148 0.321 

Al 2.65 70.5 0.143 27.1 322 0.405 

K 6.15 2.4 0.227 1.3 90.9 0.523 

Ca 3.43 21 0.197 7.5 176 0.558 

Ti 42 110 0.145 40.1 470 0.295 

Cr 12.7 259 0.125 119 396 0.288 

Cu 1.67 124 0.128 46 339 0.361 

Zn 5.92 95 0.133 37.9 130 0.266 

Rb 12.5 2 0.248 1.02 84.6 0.559 

Zr 42.1 94 0.16 34.8 610 0.323 
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Property 
Electrical 
resistivity 
at 300K 

Young's 
modulus 
at 300K 

Atomic 
radius 

Shear 
modulus 
at 300K 

Cohesive 
energy 

Lattice 
parameter a 

Abbreviation ER YM AR SM CE LPA 

Symbol ρe E r G Ecoh a 

Unit µohm·cm GPa nm GPa kJ/mol nm 

Nb 12.5 104 0.143 38.2 730 0.33 

Mo 5.2 322 0.136 118 658 0.315 

Ru 7.6 430 0.134 163 645 0.271 

Rh 4.51 330 0.134 150 557 0.38 

Pd 10.8 127 0.138 52.1 377 0.389 

Ag 1.59 80 0.144 29.2 286 0.409 

Cd 6.83 62 0.149 24.6 112 0.298 

In 8.37 14 0.163 3.8 241 0.325 

Sb 39 67 0.182 20.4 261 0.431 

Cs 20 1.8 0.265 0.66 80.5 0.605 

Ba 50 13 0.217 5 179 0.502 

La 57 50 0.188 15.2 427 0.377 

Hf 35.1 139 0.156 54 610 0.319 

Ta 12.5 183 0.143 70 782 0.33 

W 5.65 401 0.137 156 837 0.316 

Re 19.3 461 0.137 182 780 0.276 

Os 8.12 550 0.135 214 784 0.274 

Ir 5.3 533 0.136 214 666 0.384 

Pt 10.6 175 0.138 62.2 565 0.392 

Au 2.35 78.3 0.144 28.1 367 0.408 

Hg 94.1 22 0.16 10.2 64.6 0.299 

Tl 18 12 0.17 2.8 182 0.346 

Pb 20.6 20 0.175 5.5 197 0.495 

Bi 107 34 0.155 13.1 210 0.455 
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Property Poisson's 
ratio 

Magnetic 
susceptibility 

Debye 
temperature 

T 
dependence 

of 
resistivity 

Surface 
energy 
(liquid) 

Work 
function 

Abbreviation PR MS DT TDR SE WF 

Symbol ν χm θD Tr ϒ W 

Unit   °C Ω/°C J/m2 eV 

Li 0.362 0.0000137 70.9 0.00437 0.395 2.9 

Be 0.08 -0.0000232 1170 0.0075 1.39 4.98 

Na 0.315 0.0000085 -115 0.0055 0.195 2.75 

Mg 0.3 0.0000118 127 0.0042 0.559 3.7 

Al 0.34 0.0000208 155 0.00429 0.914 4.28 

K 0.35 0.00000574 -182 0.0054 0.111 2.3 

Ca 0.31 0.0000193 -43.2 0.004 0.361 2.87 

Ti 0.34 0.000181 147 0.0055 1.65 4.33 

Cr 0.209 0.000313 357 0.003 1.7 4.5 

Cu 0.35 -9.63E-06 69.9 0.00433 1.29 4.65 

Zn 0.35 -0.0000156 53.9 0.0042 0.782 4.33 

Rb 0.356 0.0000038 -217 0.0053 0.083 2.16 

Zr 0.34 0.000109 17.9 0.004 1.48 4.05 

Nb 0.38 0.000226 1.85 0.00228 1.9 4.3 

Mo 0.3 0.000119 177 0.0047 2.25 4.6 

Ru 0.286 0.0000661 327 0.0045 2.25 4.71 

Rh 0.27 0.000168 207 0.00457 2 4.98 

Pd 0.375 0.000802 0.85 0.0038 1.5 5.12 

Ag 0.37 -0.0000238 -48.2 0.0041 0.903 4.26 

Cd 0.3 -0.0000191 -64.2 0.00426 0.57 4.22 

In 0.46 -0.0000511 -165 0.0051 0.556 4.12 

Sb 0.31 -0.0000683 -62.2 0.0051 0.367 4.55 

Cs 0.356 0.00000515 -235 0.005 0.069 2.14 

Ba 0.28 0.00000662 -163 0.0061 0.224 2.7 

La 0.288 0.0000661 -131 0.0022 0.72 3.5 

Hf 0.3 0.0000703 -21.2 0.0038 1.63 3.9 

Ta 0.35 0.000178 -33.2 0.0036 2.15 4.25 

W 0.284 0.000078 127 0.00483 2.5 4.55 

Re 0.293 0.0000937 157 0.0031 2.7 4.96 

Os 0.285 0.0000147 227 0.0042 2.5 4.83 

Ir 0.26 0.0000375 147 0.00433 2.25 5.27 

Pt 0.39 0.000279 -33.2 0.00392 1.8 5.65 
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Property Poisson's 
ratio 

Magnetic 
susceptibility 

Debye 
temperature 

T 
dependence 

of 
resistivity 

Surface 
energy 
(liquid) 

Work 
function 

Abbreviation PR MS DT TDR SE WF 

Symbol ν χm θD Tr ϒ W 

Unit   °C Ω/°C J/m2 eV 

Au 0.425 -0.0000345 -108 0.00398 1.14 5.1 

Hg 0.364 -0.0000285 -201 0.00099 0.498 4.49 

Tl 0.46 -0.000371 -195 0.0052 0.464 3.84 

Pb 0.44 -0.0000158 -168 0.00422 0.468 4.25 

Bi 0.33 -0.0000165 -154 0.00445 0.378 4.22 

 

Property 

Neutron 
absorption 

cross section 
(0.025 eV) 

Molar 
volume 

Neutron 
scattering 

cross 
section 
(0.025 

eV) 

Atomic 
weight 

Heat of 
vaporizatio

n at the 
normal 
boiling 
point 

Boiling 
point 

Abbreviatio
n NACS MV NSCS AW HV BP 

Symbol σA Vm σS Ar ΔHvb Tb 

Unit Barns m3/kmol Barns kg/kmol kJ/mol °C 

Li 70.7 0.013 1.4 6.94 146 1350 

Be 0.0092 0.00488 6.14 9.01 292 2970 

Na 0.53 0.0237 3.2 23 97 883 

Mg 0.063 0.014 3.42 24.3 127 1090 

Al 0.23 0.01 1.49 27 293 2470 

K 2.1 0.0454 1.5 39.1 79.9 774 

Ca 0.43 0.0259 3 40.1 154 1480 

Ti 6.1 0.0106 4 47.9 421 3290 

Cr 3.1 0.00723 3.8 52 344 2670 

Cu 3.79 0.00709 7.9 63.5 300 2570 

Zn 1.1 0.00917 4.2 65.4 115 907 

Rb 0.37 0.0558 6.2 85.5 72.2 688 

Zr 0.185 0.014 6.4 91.2 611 4380 

Nb 1.15 0.0108 5 92.9 682 4740 

Mo 2.65 0.00939 5.8 95.9 598 4610 

Ru 2.56 0.00814 6 101 595 3900 

Rh 150 0.00829 5 103 493 3730 
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Property 

Neutron 
absorption 

cross section 
(0.025 eV) 

Molar 
volume 

Neutron 
scattering 

cross 
section 
(0.025 

eV) 

Atomic 
weight 

Heat of 
vaporizatio

n at the 
normal 
boiling 
point 

Boiling 
point 

Abbreviatio
n NACS MV NSCS AW HV BP 

Symbol σA Vm σS Ar ΔHvb Tb 

Unit Barns m3/kmol Barns kg/kmol kJ/mol °C 

Pd 6.9 0.00885 5 106 357 3140 

Ag 63.6 0.0103 6 108 251 2210 

Cd 2450 0.013 5.6 112 99.6 765 

In 194 0.0157 2 115 232 2080 

Sb 5.4 0.0182 4.2 122 262 1630 

Cs 29 0.071 20 133 67.7 678 

Ba 1.2 0.0382 8 137 142 1640 

La 9 0.0226 9.3 139 414 3460 

Hf 102 0.0134 8 178 575 5200 

Ta 21 0.0109 6.2 181 743 5420 

W 18.5 0.00953 5 184 824 5660 

Re 88 0.00886 11.3 186 715 5630 

Os 15.3 0.00843 11 190 746 5030 

Ir 426 0.00857 14 192 604 4130 

Pt 10 0.0091 11.2 195 510 3830 

Au 98.8 0.0102 9.3 197 334 2810 

Hg 375 0.0148 20 201 59.2 357 

Tl 3.4 0.0172 9.7 204 164 1460 

Pb 0.17 0.0183 11.4 207 178 1740 

Bi 0.033 0.0214 9 209 209 1610 
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Appendix II 

Table 2 The top 50 binary order correlations obtained from the ANN 

combinatorial search. Abbreviations are listed in Appendix I. 

Rank 
ANNs evaluation parameters Conditions 

ψ δ Ec Predicted 
property 

Input 
property 

1 0.000 0.001 2.2% HV CE 

2 0.001 0.003 2.5% CE HV 

3 0.002 0.04 1.6% AR MV 

4 0.002 0.013 4.3% AW SHC 

5 0.004 0.024 5.6% MV AR 

6 0.005 0.024 6.9% BP HV 

7 0.005 0.024 6.9% CE BP 

8 0.005 0.026 6.9% BP CE 

9 0.006 0.024 7.5% HV BP 

10 0.009 0.009 9.3% SM YM 

11 0.010 0.028 9.4% TC ER 

12 0.010 0.004 9.9% YM SM 

13 0.013 0.104 4.7% SHC AW 

14 0.019 0.007 13.8% ER TC 

15 0.019 0.044 13.2% SE MP 

16 0.021 0.058 13.3% CE MP 

17 0.025 0.148 5.1% WF BM 

18 0.025 0.083 13.3% BP MP 

19 0.027 0.081 14.3% MV SE 

20 0.029 0.049 16.4% TEC HF 

21 0.031 0.079 15.8% HV MP 

22 0.032 0.078 16.1% HF MP 

23 0.033 0.175 5.2% AR WF 

24 0.033 0.109 14.7% CE HF 

25 0.034 0.085 16.5% HV HF 

26 0.035 0.134 13.1% MV BM 

27 0.041 0.078 18.6% TEC MP 

28 0.042 0.116 16.9% CE SE 

29 0.044 0.087 19.1% BM SE 

30 0.044 0.088 19.1% SE BM 
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Rank 
ANNs evaluation parameters Conditions 

ψ δ Ec Predicted 
property 

Input 
property 

31 0.045 0.141 15.9% MV SM 

32 0.046 0.092 19.3% MV WF 

33 0.053 0.139 18.3% MV LPA 

34 0.053 0.169 15.6% BP SE 

35 0.053 0.138 18.4% MV YM 

36 0.053 0.225 5.0% WF MV 

37 0.055 0.227 6.3% AR LPA 

38 0.056 0.063 22.9% MP HF 

39 0.060 0.048 24.1% MP CE 

40 0.061 0.081 23.3% SE YM 

41 0.061 0.24 5.8% AR AW 

42 0.065 0.106 23.1% SE SM 

43 0.066 0.097 23.8% SE AW 

44 0.067 0.185 18.1% BP HF 

45 0.067 0.254 5.2% AR SE 

46 0.069 0.12 23.4% CE AW 

47 0.073 0.097 25.2% SE CE 

48 0.074 0.186 19.8% HV SE 

49 0.077 0.145 23.7% HF HV 

50 0.078 0.145 23.9% HF CE 
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Appendix III 

Table 3 The top 25 binary order correlation-groups obtained from the ANN 

combinatorial search. Abbreviations are listed in Appendix I. 

Rank 
/Property 

group 

ANNs evaluation parameters Conditions 

ψ2 ψ δ Ec Predicted 
property 

Input 
property 

1 0.001 0.000 0.001 2.2% HV CE 

HV,CE 0.001 0.001 0.003 2.5% CE HV 

2 0.003 0.002 0.040 1.6% AR MV 

AR,MV 0.003 0.004 0.024 5.6% MV AR 

3 0.005 0.005 0.024 6.9% CE BP 

CE,BP 0.005 0.005 0.026 6.9% BP CE 

4 0.006 0.005 0.024 6.9% BP HV 

BP,HV 0.006 0.006 0.024 7.5% HV BP 

5 0.009 0.009 0.009 9.3% SM YM 

SM,YM 0.009 0.010 0.004 9.9% YM SM 

6 0.011 0.002 0.013 4.3% AW SHC 

AW,SHC 0.011 0.013 0.104 4.7% SHC AW 

7 0.016 0.010 0.028 9.4% TC ER 

TC,ER 0.016 0.019 0.007 13.8% ER TC 

8 0.044 0.044 0.087 19.1% BM SE 

BM,SE 0.044 0.044 0.088 19.1% SE BM 

9 0.047 0.032 0.078 16.1% HF MP 

HF,MP 0.047 0.056 0.063 22.9% MP HF 

10 0.049 0.021 0.058 13.3% CE MP 

CE,MP 0.049 0.060 0.048 24.1% MP CE 

11 0.050 0.053 0.225 5.0% WF MV 

WF,MV 0.050 0.046 0.092 19.3% MV WF 

12 0.061 0.042 0.116 16.9% CE SE 

CE,SE 0.061 0.073 0.097 25.2% SE CE 

13 0.063 0.034 0.085 16.5% HV HF 

HV,HF 0.063 0.077 0.145 23.7% HF HV 

14 0.064 0.033 0.109 14.7% CE HF 

CE,HF 0.064 0.078 0.145 23.9% HF CE 

15 0.077 0.019 0.044 13.2% SE MP 
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Rank 
/Property 

group 

ANNs evaluation parameters Conditions 

ψ2 ψ δ Ec Predicted 
property 

Input 
property 

SE,MP 0.077 0.094 0.088 29.3% MP SE 

16 0.078 0.033 0.175 5.2% AR WF 

AR,WF 0.078 0.095 0.303 5.7% WF AR 

17 0.078 0.074 0.186 19.8% HV SE 

HV,SE 0.078 0.081 0.160 23.6% SE HV 

18 0.089 0.031 0.079 15.8% HV MP 

HV,MP 0.089 0.109 0.077 32.1% MP HV 

19 0.094 0.053 0.169 15.6% BP SE 

BP,SE 0.094 0.114 0.131 31.1% SE BP 

20 0.096 0.080 0.160 23.4% HF SE 

HF,SE 0.096 0.107 0.148 29.2% SE HF 

21 0.099 0.084 0.222 18.7% BP TEC 

BP,TEC 0.099 0.110 0.229 24.0% TEC BP 

22 0.101 0.053 0.139 18.3% MV LPA 

MV,LPA 0.101 0.123 0.336 10.1% LPA MV 

23 0.111 0.108 0.249 21.5% HV TEC 

HV,TEC 0.111 0.114 0.202 27.0% TEC HV 

24 0.117 0.067 0.185 18.1% BP HF 

BP,HF 0.117 0.142 0.186 32.7% HF BP 

25 0.119 0.055 0.227 6.3% AR LPA 

AR,LPA 0.119 0.145 0.361 12.2% LPA AR 
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Appendix IV 

Table 4 The top 50 ternary order correlations obtained from the ANN 

combinatorial search. Abbreviations are listed in Appendix I. 

Rank 
ANNs evaluation parameters Conditions 

ψ δ Ec Predicted 
property Input property 

1 0.000 0.001 1.1% SHC CE,AW 

2 0.000 0.003 1.2% AW SHC,DT 

3 0.000 0.000 1.3% SHC SE,AW 

4 0.000 0.007 1.3% AR MP,MV 

5 0.000 0.000 1.5% SHC SM,AW 

6 0.000 0.002 1.7% CE ER,HV 

7 0.000 0.000 1.8% SHC MV,AW 

8 0.000 0.003 1.9% AW SHC,YM 

9 0.000 0.003 1.9% CE HF,HV 

10 0.000 0.003 1.9% HV CE,MV 

11 0.000 0.003 1.9% HV HF,CE 

12 0.000 0.003 2.0% AW SHC,HF 

13 0.000 0.001 2.1% AW SHC,SE 

14 0.000 0.002 2.1% CE MP,HV 

15 0.000 0.001 2.2% CE MV,HV 

16 0.000 0.002 2.2% CE DT,HV 

17 0.000 0.002 2.2% CE SE,HV 

18 0.000 0.002 2.2% SHC AR,AW 

19 0.000 0.003 2.2% AW SHC,TEC 

20 0.001 0.000 2.3% SHC HF,AW 

21 0.001 0.003 2.3% AW MP,SHC 

22 0.001 0.003 2.3% CE BM,HV 

23 0.001 0.004 2.3% HV MP,CE 

24 0.001 0.004 2.3% HV YM,CE 

25 0.001 0.005 2.3% AW SHC,CE 

26 0.001 0.006 2.3% HV CE,SE 

27 0.001 0.006 2.4% CE SM,HV 

28 0.001 0.003 2.5% HV AR,CE 

29 0.001 0.004 2.5% CE NACS,HV 

30 0.001 0.004 2.5% HV BM,CE 
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Rank 
ANNs evaluation parameters Conditions 

ψ δ Ec Predicted 
property Input property 

31 0.001 0.005 2.5% SHC NSCS,AW 

32 0.001 0.006 2.5% HV CE,TDR 

33 0.001 0.010 2.4% HV SM,CE 

34 0.001 0.003 2.6% CE NSCS,HV 

35 0.001 0.003 2.6% HV ER,CE 

36 0.001 0.003 2.7% CE WF,HV 

37 0.001 0.004 2.7% CE HV,BP 

38 0.001 0.005 2.7% AW SHC,SM 

39 0.001 0.009 2.6% CE TC,HV 

40 0.001 0.002 2.8% CE AR,HV 

41 0.001 0.002 2.8% CE YM,HV 

42 0.001 0.003 2.8% CE LPA,HV 

43 0.001 0.013 2.5% AW SHC,LPA 

44 0.001 0.005 2.8% CE TDR,HV 

45 0.001 0.006 2.8% HV CE,NSCS 

46 0.001 0.002 2.9% SHC AW,HV 

47 0.001 0.008 2.8% HV CE,BP 

48 0.001 0.005 2.9% HV CE,NACS 

49 0.001 0.006 2.9% CE TEC,HV 

50 0.001 0.001 3.0% HV CE,WF 
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Table 5 The top 25 ternary order correlation-groups obtained by ANN 

combinatorial search. Abbreviations are listed in Appendix I. 

Rank 
/Property group 

ANNs evaluation parameters Conditions 

ψ3 ψ δ Ec Predicted 
property 

Input 
property 

1 0.004 0.001 0.004 2.7% CE HV,BP 

CE,HV,BP 0.004 0.001 0.008 2.8% HV CE,BP 

 
0.004 0.006 0.037 6.9% BP CE,HV 

2 0.009 0.007 0.040 7.1% BP TEC,CE 

BP,TEC,CE 0.009 0.013 0.006 11.3% TEC CE,BP 

 
0.009 0.005 0.040 5.8% CE TEC,BP 

3 0.014 0.005 0.016 6.8% SE CE,MV 

SE,CE,MV 0.014 0.020 0.053 13.2% CE SE,MV 

 
0.014 0.007 0.027 7.8% MV CE,SE 

4 0.015 0.018 0.051 12.4% HV SE,MV 

HV,SE,MV 0.015 0.014 0.017 11.6% SE MV,HV 

 
0.015 0.014 0.039 11.1% MV SE,HV 

5 0.016 0.006 0.072 3.6% WF BM,SE 

WF,BM,SE 0.016 0.024 0.042 14.9% BM SE,WF 

 
0.016 0.009 0.020 9.4% SE BM,WF 

6 0.016 0.011 0.035 10.0% MV SE,BP 

MV,SE,BP 0.016 0.011 0.049 9.4% SE MV,BP 

 
0.016 0.023 0.085 12.4% BP SE,MV 

7 0.019 0.015 0.029 11.9% SE AR,HV 

SE,AR,HV 0.019 0.021 0.140 3.0% AR SE,HV 

 
0.019 0.020 0.066 12.7% HV AR,SE 

8 0.021 0.006 0.009 7.5% BM SM,PR 

BM,SM,PR 0.021 0.032 0.008 18.0% SM BM,PR 

 
0.021 0.007 0.078 2.1% PR BM,SM 

9 0.027 0.008 0.021 8.8% SE MP,MV 

SE,MP,MV 0.027 0.040 0.047 19.5% MP SE,MV 

 
0.027 0.011 0.025 10.0% MV MP,SE 

10 0.028 0.003 0.014 5.1% CE HF,BP 

CE,HF,BP 0.028 0.042 0.096 18.1% HF CE,BP 

 
0.028 0.005 0.043 6.0% BP HF,CE 
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Rank 
/Property group 

ANNs evaluation parameters Conditions 

ψ3 ψ δ Ec Predicted 
property 

Input 
property 

11 0.028 0.006 0.029 7.0% HV TEC,BP 

HV,TEC,BP 0.028 0.043 0.078 19.3% TEC HV,BP 

 
0.028 0.007 0.040 7.4% BP TEC,HV 

12 0.032 0.016 0.057 11.2% MV TEC,SE 

MV,TEC,SE 0.032 0.045 0.120 17.6% TEC SE,MV 

 
0.032 0.023 0.068 13.4% SE TEC,MV 

13 0.035 0.011 0.003 10.5% SM YM,SE 

SM,YM,SE 0.035 0.012 0.006 11.1% YM SM,SE 

 
0.035 0.053 0.104 20.5% SE YM,SM 

14 0.040 0.009 0.033 8.9% SE TEC,AR 

SE,TEC,AR 0.040 0.060 0.136 20.3% TEC AR,SE 

 
0.040 0.019 0.132 3.9% AR TEC,SE 

15 0.040 0.008 0.007 8.8% YM TEC,SM 

YM,TEC,SM 0.040 0.061 0.089 23.0% TEC YM,SM 

 
0.040 0.013 0.017 11.4% SM TEC,YM 

16 0.044 0.012 0.007 10.8% BM YM,PR 

BM,YM,PR 0.044 0.034 0.009 18.3% YM BM,PR 

 
0.044 0.062 0.243 5.4% PR BM,YM 

17 0.044 0.022 0.083 12.2% HF MP,TEC 

HF,MP,TEC 0.044 0.065 0.088 24.0% MP HF,TEC 

 0.044 0.005 0.004 6.7% TEC MP,HF 

18 0.044 0.025 0.051 14.8% MP HF,BP 

MP,HF,BP 0.044 0.039 0.113 16.3% HF MP,BP 

 0.044 0.058 0.159 18.2% BP MP,HF 

19 0.044 0.046 0.012 21.4% DT YM,AW 

DT,YM,AW 0.044 0.047 0.015 21.6% YM DT,AW 

 0.044 0.039 0.159 11.9% AW YM,DT 

20 0.045 0.005 0.032 6.1% CE MV,BP 

CE,MV,BP 0.045 0.068 0.128 22.7% MV CE,BP 

 0.045 0.007 0.042 7.1% BP CE,MV 

21 0.046 0.014 0.109 4.8% WF BM,CE 

WF,BM,CE 0.046 0.041 0.041 19.9% BM CE,WF 

 0.046 0.063 0.166 18.8% CE BM,WF 

22 0.047 0.040 0.118 16.3% TEC HF,HV 

TEC,HF,HV 0.047 0.050 0.137 17.7% HF TEC,HV 
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Rank 
/Property group 

ANNs evaluation parameters Conditions 

ψ3 ψ δ Ec Predicted 
property 

Input 
property 

 0.047 0.049 0.125 18.3% HV HF,TEC 

23 0.047 0.030 0.089 15.0% HF TEC,CE 

HF,TEC,CE 0.047 0.055 0.145 18.4% TEC HF,CE 

 0.047 0.050 0.140 17.5% CE HF,TEC 

24 0.047 0.022 0.073 13.0% BP AR,SE 

BP,AR,SE 0.047 0.071 0.264 3.5% AR SE,BP 

 0.047 0.018 0.028 13.2% SE AR,BP 

25 0.048 0.000 0.002 2.1% CE MP,HV 

CE,MP,HV 0.048 0.072 0.038 26.6% MP CE,HV 

 0.048 0.001 0.004 2.3% HV MP,CE 
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Table 6 The top 50 quaternary order correlations obtained from the ANN 

combinatorial search. Abbreviations are listed in Appendix I. 

Rank 
ANNs evaluation parameters Conditions 

ψ δ Ec Predicted 
property Input property 

1 0.000 0.000 0.6% SHC HF,YM,AW 

2 0.000 0.001 0.6% SHC ER,CE,AW 

3 0.000 0.000 0.7% SHC BM,MV,AW 

4 0.000 0.000 0.7% SHC CE,DT,AW 

5 0.000 0.000 0.7% SHC DT,AW,HV 

6 0.000 0.000 0.7% SHC SM,CE,AW 

7 0.000 0.000 0.7% SHC YM,AW,BP 

8 0.000 0.005 0.6% AR MP,LPA,MV 

9 0.000 0.000 0.8% SHC BM,AW,HV 

10 0.000 0.000 0.8% SHC BM,LPA,AW 

11 0.000 0.000 0.8% SHC CE,MV,AW 

12 0.000 0.000 0.8% SHC SE,WF,AW 

13 0.000 0.000 0.8% SHC TEC,ER,AW 

14 0.000 0.000 0.8% SHC YM,LPA,AW 

15 0.000 0.001 0.8% SHC YM,SE,AW 

16 0.000 0.007 0.5% AR HF,LPA,MV 

17 0.000 0.000 0.9% SHC DT,MV,AW 

18 0.000 0.000 0.9% SHC HF,AW,BP 

19 0.000 0.000 0.9% SHC TEC,SE,AW 

20 0.000 0.006 0.8% AR MP,MV,AW 

21 0.000 0.000 1.0% SHC HF,CE,AW 

22 0.000 0.000 1.0% SHC MP,TEC,AW 

23 0.000 0.000 1.0% SHC MV,AW,HV 

24 0.000 0.000 1.0% SHC SM,WF,AW 

25 0.000 0.000 1.0% SHC TDR,NSCS,AW 

26 0.000 0.000 1.0% SHC TEC,DT,AW 

27 0.000 0.000 1.0% SHC YM,CE,AW 

28 0.000 0.000 1.0% SHC YM,NSCS,AW 

29 0.000 0.001 1.0% CE TDR,SE,HV 

30 0.000 0.001 1.0% SHC NSCS,AW,BP 
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Rank 
ANNs evaluation parameters Conditions 

ψ δ Ec Predicted 
property Input property 

31 0.000 0.001 1.0% SHC PR,WF,AW 

32 0.000 0.002 1.0% AW SHC,YM,PR 

33 0.000 0.009 0.5% AR ER,LPA,MV 

34 0.000 0.009 0.5% AR HF,TEC,MV 

35 0.000 0.000 1.1% SHC AR,AW,HV 

36 0.000 0.000 1.1% SHC MS,WF,AW 

37 0.000 0.000 1.1% SHC MV,NSCS,AW 

38 0.000 0.000 1.1% SHC SE,MV,AW 

39 0.000 0.000 1.1% SHC TEC,SM,AW 

40 0.000 0.001 1.1% CE ER,MS,HV 

41 0.000 0.001 1.1% SHC AR,CE,AW 

42 0.000 0.001 1.1% SHC SM,DT,AW 

43 0.000 0.005 1.0% MV TEC,ER,AR 

44 0.000 0.003 1.1% AW SHC,SE,HV 

45 0.000 0.007 0.9% AR HF,ER,MV 

46 0.000 0.006 1.0% AR ER,LPA,SE 

47 0.000 0.000 1.2% HV CE,PR,SE 

48 0.000 0.000 1.2% SHC BM,SE,AW 

49 0.000 0.000 1.2% SHC TEC,YM,AW 

50 0.000 0.000 1.2% SHC YM,DT,AW 
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Table 7 The top 25 quaternary order correlation-groups obtained from the ANN 

combinatorial search. Abbreviations are listed in Appendix I. 

Rank/Property 
group 

ANNs evaluation parameters Conditions 

ψ4 ψ δ Ec Predicted 
property 

Input 
property 

1 0.001 0.000 0.006 1.4% AW SHC,CE,HV 

AW,SHC,CE,HV 0.001 0.001 0.004 2.9% HV SHC,CE,AW 

 
0.001 0.001 0.005 3.1% CE SHC,AW,HV 

 
0.001 0.002 0.001 4.6% SHC CE,AW,HV 

2 0.002 0.000 0.000 1.7% SHC AR,MV,AW 

SHC,AR,MV,AW 0.002 0.001 0.005 2.4% AW SHC,AR,MV 

 
0.002 0.001 0.034 1.0% AR SHC,MV,AW 

 
0.002 0.004 0.029 5.4% MV SHC,AR,AW 

3 0.004 0.001 0.003 2.6% HV AR,CE,MV 

HV,AR,CE,MV 0.004 0.001 0.002 3.3% CE AR,MV,HV 

 
0.004 0.002 0.046 1.7% AR CE,MV,HV 

 
0.004 0.007 0.040 7.3% MV AR,CE,HV 

4 0.004 0.000 0.002 2.1% HV YM,SM,CE 

HV,YM,SM,CE 0.004 0.001 0.004 2.9% CE YM,SM,HV 

 
0.004 0.005 0.002 6.8% YM SM,CE,HV 

 
0.004 0.006 0.008 8.0% SM YM,CE,HV 

5 0.004 0.001 0.002 3.5% SHC CE,AW,BP 

SHC,CE,AW,BP 0.004 0.001 0.003 3.5% AW SHC,CE,BP 

 
0.004 0.006 0.020 7.5% CE SHC,AW,BP 

 
0.004 0.006 0.038 6.6% BP SHC,CE,AW 

6 0.006 0.003 0.051 1.9% AR CE,MV,BP 

AR,CE,MV,BP 0.006 0.005 0.024 6.4% CE AR,MV,BP 

 
0.006 0.005 0.027 6.8% BP AR,CE,MV 

 
0.006 0.008 0.024 8.5% MV AR,CE,BP 

7 0.006 0.001 0.003 2.4% AW SHC,HV,BP 

AW,SHC,HV,BP 0.006 0.001 0.002 3.8% SHC AW,HV,BP 

 
0.006 0.006 0.033 6.9% BP SHC,AW,HV 

 
0.006 0.009 0.043 8.4% HV SHC,AW,BP 

8 0.006 0.001 0.003 2.4% HV CE,SE,MV 

HV,CE,SE,MV 0.006 0.001 0.004 2.4% CE SE,MV,HV 
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Input 
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0.006 0.007 0.027 7.6% MV CE,SE,HV 

 
0.006 0.009 0.014 9.3% SE CE,MV,HV 

9 0.006 0.003 0.019 5.2% BP YM,SM,CE 

BP,YM,SM,CE 0.006 0.003 0.027 5.2% CE YM,SM,BP 

 
0.006 0.006 0.006 7.8% SM YM,CE,BP 

 
0.006 0.010 0.004 9.9% YM SM,CE,BP 

10 0.006 0.003 0.050 1.7% AR MV,HV,BP 

AR,MV,HV,BP 0.006 0.006 0.041 6.7% HV AR,MV,BP 

 
0.006 0.008 0.031 8.3% BP AR,MV,HV 

 
0.006 0.007 0.042 7.5% MV AR,HV,BP 

11 0.007 0.006 0.005 7.9% SM YM,HV,BP 

SM,YM,HV,BP 0.007 0.004 0.024 6.1% BP YM,SM,HV 

 
0.007 0.005 0.026 6.6% HV YM,SM,BP 

 
0.007 0.009 0.007 9.6% YM SM,HV,BP 

12 0.007 0.003 0.014 5.0% CE SE,MV,BP 

CE,SE,MV,BP 0.007 0.006 0.032 6.7% BP CE,SE,MV 

 
0.007 0.007 0.019 8.0% SE CE,MV,BP 

 
0.007 0.010 0.026 9.4% MV CE,SE,BP 

13 0.007 0.005 0.026 6.5% HV SE,MV,BP 

HV,SE,MV,BP 0.007 0.007 0.019 8.2% SE MV,HV,BP 

 0.007 0.008 0.028 8.5% MV SE,HV,BP 

 0.007 0.009 0.041 8.4% BP SE,MV,HV 

14 0.008 0.006 0.024 7.1% CE TC,ER,BP 

CE,TC,ER,BP 0.008 0.006 0.038 6.8% BP TC,ER,CE 

 0.008 0.009 0.018 9.5% ER TC,CE,BP 

 0.008 0.009 0.020 9.5% TC ER,CE,BP 

15 0.008 0.002 0.037 1.5% PR BM,YM,SM 

PR,BM,YM,SM 0.008 0.004 0.005 6.6% SM BM,YM,PR 

 0.008 0.010 0.004 9.8% YM BM,SM,PR 

 0.008 0.011 0.012 10.6% BM YM,SM,PR 

16 0.008 0.002 0.016 4.6% SE TEC,CE,MV 

SE,TEC,CE,MV 0.008 0.005 0.010 6.8% MV TEC,CE,SE 

 0.008 0.006 0.010 7.9% TEC CE,SE,MV 

 0.008 0.014 0.034 11.2% CE TEC,SE,MV 

17 0.011 0.002 0.016 4.6% MV AR,CE,SE 
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MV,AR,CE,SE 0.011 0.002 0.045 1.8% AR CE,SE,MV 

 0.011 0.012 0.030 10.5% SE AR,CE,MV 

 0.011 0.018 0.064 11.7% CE AR,SE,MV 

18 0.012 0.004 0.031 5.6% CE TEC,MV,BP 

CE,TEC,MV,BP 0.012 0.005 0.034 6.1% BP TEC,CE,MV 

 0.012 0.011 0.007 10.4% TEC CE,MV,BP 

 0.012 0.019 0.040 13.0% MV TEC,CE,BP 

19 0.012 0.005 0.019 6.9% HV TC,ER,BP 

HV,TC,ER,BP 0.012 0.007 0.035 7.3% BP TC,ER,HV 

 0.012 0.010 0.012 9.9% TC ER,HV,BP 

 0.012 0.020 0.009 14.2% ER TC,HV,BP 

20 0.013 0.002 0.009 3.9% MV TEC,SE,HV 

MV,TEC,SE,HV 0.013 0.007 0.002 8.4% TEC SE,MV,HV 

 0.013 0.006 0.021 7.6% SE TEC,MV,HV 

 0.013 0.023 0.082 12.6% HV TEC,SE,MV 

21 0.013 0.003 0.018 5.2% CE HF,TEC,BP 

CE,HF,TEC,BP 0.013 0.005 0.014 7.0% BP HF,TEC,CE 

 0.013 0.011 0.010 10.2% TEC HF,CE,BP 

 0.013 0.022 0.055 13.8% HF TEC,CE,BP 

22 0.013 0.010 0.008 10.0% TEC HF,SE,MV 

TEC,HF,SE,MV 0.013 0.010 0.016 9.7% MV HF,TEC,SE 

 0.013 0.016 0.033 12.1% SE HF,TEC,MV 

 0.013 0.016 0.049 11.7% HF TEC,SE,MV 

23 0.014 0.000 0.002 2.2% CE SE,WF,HV 

CE,SE,WF,HV 0.014 0.001 0.004 2.5% HV CE,SE,WF 

 0.014 0.007 0.036 7.4% SE CE,WF,HV 

 0.014 0.024 0.146 5.0% WF CE,SE,HV 

24 0.014 0.004 0.055 3.4% AR TEC,SE,HV 

AR,TEC,SE,HV 0.014 0.012 0.015 10.9% TEC AR,SE,HV 

 0.014 0.013 0.043 10.6% SE TEC,AR,HV 

 0.014 0.020 0.057 12.9% HV TEC,AR,SE 

25 0.014 0.000 0.003 2.0% CE TEC,SE,HV 

CE,TEC,SE,HV 0.014 0.001 0.004 2.4% HV TEC,CE,SE 

 0.014 0.020 0.031 13.9% TEC CE,SE,HV 

 0.014 0.017 0.067 11.2% SE TEC,CE,HV 

250 

 



Appendix 

 

Appendix VIII 

Table 8 Poisson's ratio of the 68 elements in the source pool. 

Symbol [328] [229] [454] [455] [251] [456] [228] [348] [279] [143] [115] Vmax Vmin Vmean Vmedian Vvar Vmode Dminmaxp 

Ac 

      

0.269 

    

0.269 0.269 0.269 0.269 0.0000 0.269 0.00% 

Ag 0.37 

 

0.37 0.367 0.367 0.37 0.37 0.37 0.37 0.367 0.37 0.370 0.367 0.369 0.370 0.0000 0.370 0.82% 

Al 0.35 

 

0.35 0.345 0.345 

 

0.34 0.33 0.34 0.345 0.346 0.350 0.330 0.343 0.345 0.0000 0.345 6.06% 

Au 0.44 

 

0.44 0.44 0.42 0.42 0.425 0.42 0.42 0.42 0.42 0.440 0.420 0.427 0.420 0.0001 0.420 4.76% 

Ba 

    

0.28 

 

0.28 

  

0.28 0.229 0.280 0.229 0.267 0.280 0.0007 0.280 22.27% 

Be 0.032 

 

0.032 

 

0.02 

 

0.08 

 

0.032 0.02 0.118 0.118 0.020 0.048 0.032 0.0014 0.032 490.00% 

Bi 0.33 

 

0.33 0.33 0.33 

 

0.33 

 

0.33 0.33 0.335 0.335 0.330 0.331 0.330 0.0000 0.330 1.52% 

Ca 0.31 

 

0.31 

 

0.31 

 

0.31 

 

0.31 0.31 0.307 0.310 0.307 0.310 0.310 0.0000 0.310 0.98% 

Cd 0.3 

 

0.3 0.3 0.3 

 

0.3 

 

0.39 0.3 0.303 0.390 0.300 0.312 0.300 0.0010 0.300 30.00% 

Ce 0.24 0.24 0.24 

 

0.248 

 

0.248 

 

0.248 0.248 0.242 0.248 0.240 0.244 0.245 0.0000 0.248 3.33% 

Co 0.31 

 

0.31 

 

0.32 

 

0.31 

 

0.31 0.32 0.311 0.320 0.310 0.313 0.310 0.0000 0.310 3.23% 

Cr 0.21 

 

0.21 0.21 0.21 

 

0.209 

  

0.21 0.213 0.213 0.209 0.210 0.210 0.0000 0.210 1.91% 

Cs 

    

0.295 

 

0.356 

  

0.295 0.295 0.356 0.295 0.310 0.295 0.0009 0.295 20.68% 

Cu 0.34 

 

0.34 0.343 0.343 

 

0.35 0.36 0.35 0.343 0.344 0.360 0.340 0.346 0.343 0.0000 0.343 5.88% 

Dy 0.247 0.247 0.25 

 

0.247 

 

0.243 

 

0.243 

 

0.23 0.250 0.230 0.244 0.247 0.0000 0.247 8.70% 

Er 0.237 0.237 0.24 

 

0.237 

 

0.238 

 

0.238 

 

0.233 0.240 0.233 0.237 0.237 0.0000 0.237 3.00% 

Eu 0.152 0.152 0.15 

 

0.152 

 

0.286 

   

0.152 0.286 0.150 0.174 0.152 0.0030 0.152 90.67% 

Fe 0.29 

 

0.29 0.293 0.27 

 

0.28 

 

0.28 0.293 0.288 0.293 0.270 0.286 0.289 0.0001 0.280 8.52% 

Fr 

      

0.356 

    

0.356 0.356 0.356 0.356 0.0000 0.356 0.00% 
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Symbol [328] [229] [454] [455] [251] [456] [228] [348] [279] [143] [115] Vmax Vmin Vmean Vmedian Vvar Vmode Dminmaxp 

Ga 0.47 

   

0.47 

 

0.235 

  

0.47 0.233 0.470 0.233 0.376 0.470 0.0167 0.470 101.72% 

Gd 0.259 0.259 0.26 

 

0.259 

 

0.259 

 

0.259 

 

0.256 0.260 0.256 0.259 0.259 0.0000 0.259 1.56% 

Hf 0.37 

 

0.37 

 

0.26 

 

0.3 

 

0.37 0.26 0.282 0.370 0.260 0.316 0.300 0.0027 0.370 42.31% 

Ho 0.231 0.231 0.23 

 

0.231 

 

0.255 

 

0.255 

 

0.272 0.272 0.230 0.244 0.231 0.0003 0.231 18.26% 

In 

    

0.45 

 

0.46 

  

0.45 0.445 0.460 0.445 0.451 0.450 0.0000 0.450 3.37% 

Ir 0.26 

 

0.26 

 

0.26 

 

0.26 

 

0.26 0.26 0.26 0.260 0.260 0.260 0.260 0.0000 0.260 0.00% 

K 

    

0.35 

 

0.35 

   

0.375 0.375 0.350 0.358 0.350 0.0002 0.350 7.14% 

La 0.28 0.28 0.28 

 

0.28 

 

0.288 

 

0.288 0.28 0.173 0.288 0.173 0.269 0.280 0.0015 0.280 66.47% 

Li 

    

0.36 

 

0.362 

  

0.36 0.356 0.362 0.356 0.360 0.360 0.0000 0.360 1.69% 

Lu 0.261 0.261 0.26 

 

0.261 

 

0.233 

   

0.26 0.261 0.233 0.256 0.261 0.0001 0.261 12.02% 

Mg 0.29 

 

0.29 0.291 0.291 0.35 0.3 0.35 0.28 0.291 0.29 0.350 0.280 0.302 0.291 0.0007 0.290 25.00% 

Mn 

  

0.24 

 

0.24 

 

0.24 

  

0.24 0.156 0.240 0.156 0.223 0.240 0.0014 0.240 53.85% 

Mo 0.31 

 

0.31 

 

0.293 

 

0.3 0.32 0.31 0.293 0.295 0.320 0.293 0.304 0.305 0.0001 0.310 9.22% 

Na 

    

0.34 

 

0.315 

  

0.34 0.366 0.366 0.315 0.340 0.340 0.0004 0.340 16.19% 

Nb 0.4 

 

0.4 0.397 0.397 

 

0.38 

 

0.39 0.397 0.397 0.400 0.380 0.395 0.397 0.0000 0.397 5.26% 

Nd 0.281 0.281 0.28 

 

0.281 

 

0.306 

 

0.306 

 

0.288 0.306 0.280 0.289 0.281 0.0001 0.281 9.29% 

Ni 0.31 

 

0.31 0.312 0.312 

 

0.31 0.31 0.32 0.312 0.297 0.320 0.297 0.310 0.310 0.0000 0.310 7.74% 

Np 

      

0.255 

    

0.255 0.255 0.255 0.255 0.0000 0.255 0.00% 

Os 0.25 

 

0.25 

 

0.25 

 

0.285 

 

0.25 0.25 0.255 0.285 0.250 0.256 0.250 0.0002 0.250 14.00% 

Pa 

      

0.282 

    

0.282 0.282 0.282 0.282 0.0000 0.282 0.00% 

Pb 0.44 

 

0.44 0.44 0.44 

 

0.44 

 

0.44 0.44 0.409 0.440 0.409 0.436 0.440 0.0001 0.440 7.58% 

Pd 0.39 

 

0.39 

 

0.39 

 

0.375 

 

0.39 0.39 0.39 0.390 0.375 0.388 0.390 0.0000 0.390 4.00% 

Pm 0.28 0.28 0.28 

 

0.28 

 

0.278 

    

0.280 0.278 0.280 0.280 0.0000 0.280 0.72% 

Pr 0.281 0.281 0.28 

 

0.281 

 

0.305 

 

0.305 

 

0.289 0.305 0.280 0.289 0.281 0.0001 0.281 8.93% 
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Symbol [328] [229] [454] [455] [251] [456] [228] [348] [279] [143] [115] Vmax Vmin Vmean Vmedian Vvar Vmode Dminmaxp 

Pt 0.38 

 

0.38 0.377 0.39 0.39 0.39 0.39 0.44 0.39 0.39 0.440 0.377 0.392 0.390 0.0003 0.390 16.71% 

Pu 0.21 

 

0.21 

 

0.18 

 

0.15 

 

0.21 0.18 

 

0.210 0.150 0.190 0.195 0.0006 0.210 40.00% 

Ra 

      

0.304 

    

0.304 0.304 0.304 0.304 0.0000 0.304 0.00% 

Rb 

    

0.3 

 

0.356 

  

0.3 0.374 0.374 0.300 0.333 0.328 0.0015 0.300 24.67% 

Re 0.3 

 

0.3 

 

0.26 

 

0.293 

 

0.296 0.26 0.289 0.300 0.260 0.285 0.293 0.0003 0.260 15.38% 

Rh 0.26 

 

0.26 

 

0.26 

 

0.27 

 

0.26 0.26 0.26 0.270 0.260 0.261 0.260 0.0000 0.260 3.85% 

Ru 0.3 

 

0.3 

 

0.25 

 

0.286 

 

0.296 0.25 0.269 0.300 0.250 0.279 0.286 0.0005 0.250 20.00% 

Sc 0.279 0.279 0.28 

 

0.279 

 

0.269 

 

0.309 

 

0.258 0.309 0.258 0.279 0.279 0.0002 0.279 19.77% 

Sm 0.274 0.274 0.27 

 

0.274 

 

0.352 

 

0.352 

 

0.268 0.352 0.268 0.295 0.274 0.0015 0.274 31.34% 

Sn 0.36 

 

0.36 0.357 0.357 0.33 0.33 0.33 0.33 0.357 0.354 0.360 0.330 0.347 0.356 0.0002 0.330 9.09% 

Sr 0.28 

 

0.28 

 

0.28 

 

0.304 

 

0.28 0.28 0.305 0.305 0.280 0.287 0.280 0.0001 0.280 8.93% 

Ta 0.34 

 

0.34 0.342 0.342 

 

0.35 0.35 0.35 0.342 0.34 0.350 0.340 0.344 0.342 0.0000 0.340 2.94% 

Tb 0.261 0.261 0.26 

 

0.261 

 

0.261 

 

0.261 

 

0.263 0.263 0.260 0.261 0.261 0.0000 0.261 1.15% 

Tc 

      

0.293 

   

0.309 0.309 0.293 0.301 0.301 0.0001 0.293 5.46% 

Th 0.27 

 

0.27 

 

0.26 

 

0.3 0.27 0.265 0.26 0.286 0.300 0.260 0.273 0.270 0.0002 0.270 15.38% 

Ti 0.32 

 

0.32 0.321 0.361 

 

0.34 0.3 0.36 0.361 0.321 0.361 0.300 0.334 0.321 0.0005 0.320 20.33% 

Tl 0.45 

 

0.45 

 

0.45 

 

0.46 

 

0.45 0.45 0.428 0.460 0.428 0.448 0.450 0.0001 0.450 7.48% 

Tm 0.213 0.213 0.21 

 

0.213 

 

0.235 

   

0.217 0.235 0.210 0.217 0.213 0.0001 0.213 11.90% 

U 0.23 

 

0.23 

 

0.2 

 

0.24 0.21 0.23 0.2 0.201 0.240 0.200 0.218 0.220 0.0003 0.230 20.00% 

V 0.37 

 

0.37 0.365 0.365 

 

0.36 

 

0.35 0.365 0.361 0.370 0.350 0.363 0.365 0.0000 0.365 5.71% 

W 0.28 

 

0.28 0.28 0.28 

 

0.284 0.28 0.3 0.28 0.28 0.300 0.280 0.283 0.280 0.0000 0.280 7.14% 

Y 0.243 0.243 0.24 

 

0.265 

 

0.258 

 

0.265 0.265 0.246 0.265 0.240 0.253 0.252 0.0001 0.265 10.42% 

Yb 0.207 0.207 0.21 

 

0.207 

 

0.284 

 

0.284 

 

0.199 0.284 0.199 0.228 0.207 0.0015 0.207 42.71% 

Zn 0.25 

 

0.25 0.249 0.249 

 

0.35 0.25 0.27 0.249 0.257 0.350 0.249 0.264 0.250 0.0011 0.249 40.56% 
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Symbol [328] [229] [454] [455] [251] [456] [228] [348] [279] [143] [115] Vmax Vmin Vmean Vmedian Vvar Vmode Dminmaxp 

Zr 0.34 

 

0.34 

 

0.38 

 

0.34 

  

0.38 0.332 0.380 0.332 0.352 0.340 0.0005 0.340 14.46% 
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Table 9 Bulk moduli (GPa) of the 68 elements in the source pool. 

Symbol [328] [229] [340] [322] [455] [251] [228] [279] [143] [115] Vmax Vmin Vmean Vmedian Vvar Vmode Dminmaxp 

Ac 

      

25 

   

25.00 25.00 25.00 25.00 0.00 25.00 0.00% 

Ag 100 

 

103.6 100 103.6 103.6 101 96.2 103.6 95.4 103.60 95.40 100.78 101.00 10.37 103.60 8.60% 

Al 76 

 

76 76 75.5 75.2 72.2 65.8 75.2 76 76.00 65.80 74.21 75.50 11.40 76.00 15.50% 

Au 180 

 

171 220 217 171 173 142.9 171 16.08 220.00 16.08 162.44 171.00 3591.59 171.00 1268.16% 

Ba 9.6 

 

9.6 9.6 

  

10.3 9.6 

 

9.57 10.30 9.57 9.71 9.60 0.08 9.60 7.63% 

Be 130 

 

110 130 

 

110 100 126.6 110 125.57 130.00 100.00 117.77 117.79 133.55 110.00 30.00% 

Bi 31 

 

31 31 31.3 

 

31.5 35 

 

33.6 35.00 31.00 32.06 31.30 2.55 31.00 12.90% 

Ca 17 

 

17 17 

 

17.2 15.2 16.9 17.2 16.7 17.20 15.20 16.78 17.00 0.43 17.00 13.16% 

Cd 42 

 

42 42 41.6 51 46.7 46.7 51 52.9 52.90 41.60 46.21 46.70 20.69 42.00 27.16% 

Ce 21.5 21.5 22 22 

  

26.2 19.8 

 

21.7 26.20 19.80 22.10 21.70 3.83 21.50 32.32% 

Co 180 

 

181.5 180 

 

181.5 191 181.8 181.5 190 191.00 180.00 183.41 181.50 19.69 181.50 6.11% 

Cr 160 

 

160.2 160 160.1 160.2 190 108.7 160.2 162 190.00 108.70 157.93 160.20 437.17 160.20 74.79% 

Cs 1.6 

 

1.6 1.6 

  

2.03 2.7 

 

1.4 2.70 1.40 1.82 1.60 0.23 1.60 92.86% 

Cu 140 

 

137.8 140 137.8 137.8 131 129.9 137.8 137 140.00 129.90 136.57 137.80 13.16 137.80 7.78% 

Dy 40.5 40.5 40.5 41 

 

40.5 38.4 41 

 

38.9 41.00 38.40 40.16 40.50 0.94 40.50 6.77% 

Er 44.4 44.4 44.4 44 

 

44.4 41.1 46.5 

 

45.5 46.50 41.10 44.34 44.40 2.38 44.40 13.14% 

Eu 8.3 8.3 8.3 8.3 

 

8.3 14.7 13.1 

 

8.7 14.70 8.30 9.75 8.30 6.76 8.30 77.11% 

Fe 170 

 

170 170 169.8 160 168 161.3 169.8 166 170.00 160.00 167.21 169.80 15.72 170.00 6.25% 

Fr 

      

2 

   

2.00 2.00 2.00 2.00 0.00 2.00 0.00% 

Ga 

      

35 42.6 

 

58.2 58.20 35.00 45.27 42.60 139.89 35.00 66.29% 

Gd 37.9 37.9 38 38 

 

37.9 38.3 38.9 

 

38 38.90 37.90 38.11 38.00 0.12 37.90 2.64% 
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Symbol [328] [229] [340] [322] [455] [251] [228] [279] [143] [115] Vmax Vmin Vmean Vmedian Vvar Vmode Dminmaxp 

Hf 110 

 

109 110 

 

109 109 108.7 109 109 110.00 108.70 109.21 109.00 0.25 109.00 1.20% 

Ho 40.2 40.2 40.2 40 

 

40.2 39.7 45.9 

 

48.9 48.90 39.70 41.91 40.20 12.14 40.20 23.17% 

In 

      

41.1 36.4 

 

42 42.00 36.40 39.83 41.10 9.04 36.40 15.38% 

Ir 320 

 

371 320 

 

371 383 322.6 371 359 383.00 320.00 352.20 365.00 715.01 371.00 19.69% 

K 3.1 

 

3.1 3.1 

  

3.18 4.2 

 

3.3 4.20 3.10 3.33 3.14 0.19 3.10 35.48% 

La 27.9 27.9 28 28 

  

24.3 30.3 

 

16.2 30.30 16.20 26.09 27.90 22.10 27.90 87.04% 

Li 11 

 

11 11 

  

11.6 11.4 

 

12.1 12.10 11.00 11.35 11.20 0.20 11.00 10.00% 

Lu 47.6 47.6 47.6 48 

 

47.6 41.1 42.6 

 

42.7 48.00 41.10 45.60 47.60 8.49 47.60 16.79% 

Mg 45 

 

35.6 45 35.6 35.6 35.4 33.8 35.6 35.4 45.00 33.80 37.44 35.60 18.68 35.60 33.14% 

Mn 120 

 

120 120 

  

59.6 116.3 

 

92.6 120.00 59.60 104.75 118.15 603.45 120.00 101.34% 

Mo 230 

 

261.2 230 

 

261.2 273 217.4 261.2 263 273.00 217.40 249.63 261.20 419.42 261.20 25.57% 

Na 6.3 

 

6.3 6.3 

  

6.81 6.9 

 

6.74 6.90 6.30 6.56 6.52 0.08 6.30 9.52% 

Nb 170 

 

170.3 170 170.3 170.3 170 172.4 170.3 171 172.40 170.00 170.51 170.30 0.60 170.30 1.41% 

Nd 31.8 31.8 31.8 32 

 

31.8 32.7 32.5 

 

32 32.70 31.80 32.05 31.90 0.13 31.80 2.83% 

Ni 180 

 

180 180 177.3 177.3 186 185.2 177.3 183 186.00 177.30 180.68 180.00 11.22 177.30 4.91% 

Np 

      

68 

   

68.00 68.00 68.00 68.00 0.00 68.00 0.00% 

Os 462 

 

373 

  

373 462 

 

373 379.9 462.00 373.00 403.82 376.45 2038.32 373.00 23.86% 

Pa 

      

76 

   

76.00 76.00 76.00 76.00 0.00 76.00 0.00% 

Pb 46 

 

46 46 45.8 45.8 42.9 41.5 45.8 44.7 46.00 41.50 44.94 45.80 2.71 45.80 10.84% 

Pd 180 

 

187 180 

 

187 181 185.2 187 174.5 187.00 174.50 182.71 183.10 20.92 187.00 7.16% 

Pm 33 33 33 33 

 

33 35 

   

35.00 33.00 33.33 33.00 0.67 33.00 6.06% 

Pr 28.8 28.8 28.8 29 

 

28.8 30.6 29.9 

 

28.4 30.60 28.40 29.14 28.80 0.53 28.80 7.75% 

Pt 230 

 

276 230 228 276 278 263.2 276 259.1 278.00 228.00 257.37 263.20 483.08 276.00 21.93% 

Pu 

      

54 

   

54.00 54.00 54.00 54.00 0.00 54.00 0.00% 
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Symbol [328] [229] [340] [322] [455] [251] [228] [279] [143] [115] Vmax Vmin Vmean Vmedian Vvar Vmode Dminmaxp 

Ra 

      

13.2 

   

13.20 13.20 13.20 13.20 0.00 13.20 0.00% 

Rb 2.5 

 

2.5 2.5 

  

3.14 3 

 

2.3 3.14 2.30 2.66 2.50 0.11 2.50 36.52% 

Re 370 

 

334 370 

 

334 372 370.4 334 365 372.00 334.00 356.18 367.50 341.16 334.00 11.38% 

Rh 275 

 

276 380 

 

276 271 270.3 276 221.2 380.00 221.20 280.69 275.50 1957.39 276.00 71.79% 

Ru 220 

 

286 220 

 

286 348 384.6 286 298.5 384.60 220.00 291.14 286.00 3174.72 286.00 74.82% 

Sc 56.6 56.6 56.6 57 

 

56.6 57.3 67.1 

 

55.1 67.10 55.10 57.86 56.60 14.34 56.60 21.78% 

Sm 37.8 37.8 37.8 38 

 

37.8 29.4 38.3 

 

35.7 38.30 29.40 36.58 37.80 9.04 37.80 30.27% 

Sn 58 

 

58.2 58 58.2 58.2 111 51.5 58.2 55.4 111.00 51.50 62.97 58.20 329.52 58.20 115.53% 

Sr 

  

12 

  

12 11.6 12 12 11.6 12.00 11.60 11.87 12.00 0.04 12.00 3.45% 

Ta 200 

 

196.3 200 196.3 196.3 200 188.7 196.3 193 200.00 188.70 196.32 196.30 13.71 196.30 5.99% 

Tb 38.7 38.7 38.7 38.7 

 

38.7 39.9 40 

 

40.7 40.70 38.70 39.26 38.70 0.66 38.70 5.17% 

Tc 

      

297 

  

281 297.00 281.00 289.00 289.00 128.00 281.00 5.69% 

Th 54 

 

54 54 

 

54 54.3 53.8 54 57.7 57.70 53.80 54.48 54.00 1.72 54.00 7.25% 

Ti 110 

 

108.4 110 107.7 108.4 105 123.5 108.4 107 123.50 105.00 109.82 108.40 28.62 108.40 17.62% 

Tl 43 

 

28.5 43 

 

28.5 35.9 44.6 28.5 35.7 44.60 28.50 35.96 35.80 48.69 28.50 56.49% 

Tm 44.5 44.5 44.5 45 

 

44.5 36.7 37.7 

 

43.6 45.00 36.70 42.63 44.50 11.43 44.50 22.62% 

U 100 

 

100 100 

 

97.9 98.7 101 97.9 113 113.00 97.90 101.06 100.00 24.50 100.00 15.42% 

V 160 

 

158 160 158 158 162 161.3 158 157 162.00 157.00 159.14 158.00 3.01 158.00 3.18% 

W 310 

 

311 310 311 311 323 333.3 311 310 333.30 310.00 314.48 311.00 66.93 311.00 7.52% 

Y 41.2 41.2 41 41 

  

36.6 46.9 

 

41.5 46.90 36.60 41.34 41.20 8.95 41.00 28.14% 

Yb 30.5 30.5 30.5 31 

 

30.5 13.3 13.8 

 

13.2 31.00 13.20 24.16 30.50 78.99 30.50 134.85% 

Zn 70 

 

69.4 70 72 69.4 59.8 57.8 69.4 68.3 72.00 57.80 67.34 69.40 24.67 69.40 24.57% 

Zr 91.1 

 

89.8 

  

89.8 83.3 89.3 89.8 95.3 95.30 83.30 89.77 89.80 12.41 89.80 14.41% 
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Appendix X 

Table 10 Young's moduli (GPa) of the 68 elements in the source pool. 

Symbol [328] [229] [340] [457] [455] [251] [456] [228] [348] [279] [143] [115] Vmax Vmin Vmean Vmedian Vvar Vmode Dminmaxp 

Ac 

       

34 

    

34.00 34.00 34.00 34.00 0.00 34.00 0.00% 

Ag 83 

 

82.7 83 82.7 82.7 

 

80 72.4 80 82.7 74.4 83.00 72.40 80.36 82.70 15.00 82.70 14.64% 

Al 70 

 

70 70 70.3 70.6 

 

70.5 68.9 70.8 70.6 70.3 70.80 68.90 70.20 70.30 0.29 70.00 2.76% 

Au 79 

 

78.5 78 78 78.5 80 78.3 74.5 77.5 78.5 77.2 80.00 74.50 78.00 78.30 1.90 78.50 7.38% 

Ba 13 

 

12.8 13 

 

12.8 

 

13 

 

12.6 12.8 15.58 15.58 12.60 13.20 12.90 0.95 12.80 23.65% 

Be 287 

 

318 287 

 

318 294 301 289.6 287 318 287.25 318.00 287.00 298.69 291.80 196.60 287.00 10.80% 

Bi 32 

 

32 32 31.9 34 

 

34 31.7 34.1 34 33.64 34.10 31.70 32.93 32.82 1.16 32.00 7.57% 

Ca 20 

 

20 20 

 

19.6 

 

21 

 

19.6 19.6 19.34 21.00 19.34 19.89 19.80 0.26 19.60 8.58% 

Cd 50 

 

50 50 49.9 62.6 

 

62 55.2 62.3 62.6 62.54 62.60 49.90 56.71 58.60 38.48 50.00 25.45% 

Ce 33.6 33.6 34 34 

 

33.5 

 

30 

 

30 33.5 33.6 34.00 30.00 32.87 33.60 2.68 33.60 13.33% 

Co 209 

 

211 209 

 

211 

 

208 206.8 209 211 215.2 215.20 206.80 210.00 209.00 5.91 209.00 4.06% 

Cr 279 

 

279 279 279.1 279 

 

259 248.2 245 279 279 279.10 245.00 270.53 279.00 198.58 279.00 13.92% 

Cs 1.7 

 

1.7 1.7 

 

1.7 

 

1.8 

 

1.7 1.7 1.72 1.80 1.70 1.72 1.70 0.00 1.70 5.88% 

Cu 

  

129.8 130 129.8 129.8 

 

124 117.2 129 129.8 128.2 130.00 117.20 127.51 129.80 18.56 129.80 10.92% 

Dy 61.4 61.4 61.4 61 

 

61.4 

 

63 

 

63.1 

 

63 63.10 61.00 61.96 61.40 0.81 61.40 3.44% 

Er 69.9 69.9 69.9 70 

 

69.9 

 

73 

 

73.3 

 

73 73.30 69.90 71.11 69.95 2.72 69.90 4.86% 

Eu 18.2 18.2 18 18 

 

18.2 

 

15 

   

18.2 18.20 15.00 17.69 18.20 1.41 18.20 21.33% 

Fe 211 

 

211 211 211.4 208 

 

211 196.5 211 211.4 211 211.40 196.50 209.33 211.00 21.30 211.00 7.58% 

Fr 

       

2 

    

2.00 2.00 2.00 2.00 0.00 2.00 0.00% 

Ga 9.8 

 

9.81 

  

9.81 

 

9.81 

  

9.81 93.2 93.20 9.80 23.71 9.81 1159.04 9.81 851.02% 

Gd 54.8 54.8 55 55 

 

54.8 

 

55 

 

56.2 

 

55.68 56.20 54.80 55.16 55.00 0.26 54.80 2.55% 

Hf 78 

 

141 78 

 

141 

 

139 

 

78.3 141 143 143.00 78.00 117.41 140.00 1060.90 141.00 83.33% 
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Symbol [328] [229] [340] [457] [455] [251] [456] [228] [348] [279] [143] [115] Vmax Vmin Vmean Vmedian Vvar Vmode Dminmaxp 

Ho 64.8 64.8 64.8 65 

 

64.8 

 

72 

   

66.9 72.00 64.80 66.16 64.80 7.23 64.80 11.11% 

In 11 

 

10.6 11 

 

10.6 

 

14 

 

10.5 10.6 13.8 14.00 10.50 11.51 10.80 2.21 10.60 33.33% 

Ir 528 

 

528 528 

 

528 

 

533 517.1 528 528 517.1 533.00 517.10 526.13 528.00 28.91 528.00 3.07% 

K 3.53 

 

3.53 

  

3.53 

 

2.4 

   

2.47 3.53 2.40 3.09 3.53 0.36 3.53 47.08% 

La 36.6 36.6 37.9 37 

 

37.9 

 

50 

 

37.5 37.9 31.9 50.00 31.90 38.14 37.50 23.28 37.90 56.74% 

Li 4.9 

 

4.91 4.9 

 

4.91 

 

10 

 

4.9 4.91 10.44 10.44 4.90 6.23 4.91 6.07 4.90 113.06% 

Lu 68.6 68.6 68.6 69 

 

68.6 

 

84 

   

61.5 84.00 61.50 69.84 68.60 46.15 68.60 36.59% 

Mg 45 

 

44.7 45 44.7 44.7 44.8 44.4 44.1 44.3 44.7 44.63 45.00 44.10 44.64 44.70 0.08 44.70 2.04% 

Mn 198 

 

191 198 

 

191 

 

198 158.6 198 191 191 198.00 158.60 190.51 191.00 155.45 191.00 24.84% 

Mo 329 

 

324.8 329 

 

324.8 340 322 275.8 329 324.8 323.7 340.00 275.80 322.29 324.80 292.33 324.80 23.28% 

Na 10 

 

6.8 10 

 

6.8 

 

5 

 

10 6.8 5.41 10.00 5.00 7.60 6.80 4.39 6.80 100.00% 

Nb 105 

 

104.9 105 104.9 104.9 

 

104 103.4 100 104.9 105 105.00 100.00 104.20 104.90 2.47 104.90 5.00% 

Nd 41.4 41.4 41.4 41 

 

41.4 

 

38 

 

37.9 

 

40.7 41.40 37.90 40.40 41.20 2.35 41.40 9.23% 

Ni 200 

 

200 200 199.5 199.5 

 

208 213.7 196 199.5 222.5 222.50 196.00 203.87 200.00 69.44 199.50 13.52% 

Np 

       

90 

    

90.00 90.00 90.00 90.00 0.00 90.00 0.00% 

Os 

  

559 

  

559 

 

550 551.6 

 

559 558.5 559.00 550.00 556.18 558.75 17.68 559.00 1.64% 

Pa 

       

100 

    

100.00 100.00 100.00 100.00 0.00 100.00 0.00% 

Pb 16 

 

16 16 16.1 16.1 

 

20 13.8 15.7 16.1 24.23 24.23 13.80 17.00 16.05 8.74 16.00 75.58% 

Pd 121 

 

121 121 

 

121 

 

127 

 

121 121 115.2 127.00 115.20 121.03 121.00 9.95 121.00 10.24% 

Pm 46 46 46 46 

 

46 

 

42 

    

46.00 42.00 45.33 46.00 2.67 46.00 9.52% 

Pr 37.3 37.3 37.3 37 

 

37.3 

 

50 

 

35.2 

 

36 50.00 35.20 38.43 37.30 22.48 37.30 42.05% 

Pt 168 

 

170 168 168 170 166.7 175 146.9 170 170 171 175.00 146.90 167.60 170.00 51.91 170.00 19.13% 

Pu 96 

 

96 96 

 

87.5 

 

97 96.5 96.1 87.5 

 

97.00 87.50 94.08 96.00 16.59 96.00 10.86% 

Ra 

       

16 

    

16.00 16.00 16.00 16.00 0.00 16.00 0.00% 

Rb 2.4 

 

2.35 2.4 

 

2.35 

 

2 

 

2.35 2.35 1.73 2.40 1.73 2.24 2.35 0.06 2.35 38.73% 

Re 463 

 

466 463 

 

466 

 

461 

 

463 466 461.4 466.00 461.00 463.68 463.00 4.27 463.00 1.08% 
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Symbol [328] [229] [340] [457] [455] [251] [456] [228] [348] [279] [143] [115] Vmax Vmin Vmean Vmedian Vvar Vmode Dminmaxp 

Rh 380 

 

379 275 

 

379 

 

330 289.6 275 379 318.5 380.00 275.00 333.90 330.00 2172.57 379.00 38.18% 

Ru 447 

 

432 447 

 

432 

 

430 

 

447 432 413.7 447.00 413.70 435.09 432.00 133.95 432.00 8.05% 

Sc 74.4 74.4 74.4 74 

 

74.4 

 

80 

 

77 

 

80 80.00 74.00 76.08 74.40 6.74 74.40 8.11% 

Sm 49.7 49.7 49.7 50 

 

49.7 

 

45 

 

34.1 

 

49.7 50.00 34.10 47.20 49.70 30.79 49.70 46.63% 

Sn 50 

 

49.9 50 49.9 49.9 

 

50 41.4 54 49.9 48.47 54.00 41.40 49.35 49.90 9.79 49.90 30.43% 

Sr 

  

15.7 

  

15.7 

 

15 

  

15.7 13.57 15.70 13.57 15.13 15.70 0.86 15.70 15.70% 

Ta 186 

 

185.7 186 185.7 185.7 

 

183 186.2 177 185.7 184.9 186.20 177.00 184.59 185.70 7.97 185.70 5.20% 

Tb 55.7 55.7 55.7 56 

 

55.7 

 

57 

 

57.5 

 

57.98 57.98 55.70 56.41 55.85 0.88 55.70 4.09% 

Tc 

       

380 

   

322 380.00 322.00 351.00 351.00 1682.00 322.00 18.01% 

Th 79 

 

78.3 79 

 

78.3 

 

73 58.6 79.2 78.3 73.81 79.20 58.60 75.28 78.30 44.50 78.30 35.15% 

Ti 116 

 

120.2 116 115.7 120.2 116 110 110.3 104 120.2 114.66 120.20 104.00 114.84 116.00 25.25 116.00 15.58% 

Tl 8 

 

7.9 8 

 

7.9 

 

12 

 

7.95 7.9 15.42 15.42 7.90 9.38 7.98 7.97 7.90 95.19% 

Tm 74 74 74 74 

 

74 

 

76 

   

74 76.00 74.00 74.29 74.00 0.57 74.00 2.70% 

U 208 

 

208 208 

 

175.8 

 

186 165.5 208 175.8 220.7 220.70 165.50 195.09 208.00 378.12 208.00 33.35% 

V 128 

 

127.6 128 127.6 127.6 

 

129 131 147 127.6 130.9 147.00 127.60 130.43 128.00 35.67 127.60 15.20% 

W 411 

 

411 411 411 411 340 401 344.7 407 411 409.6 411.00 340.00 397.12 411.00 743.49 411.00 20.88% 

Y 63.5 63.5 66.3 64 

 

66.3 

 

64.4 

 

66.4 66.3 63.29 66.40 63.29 64.89 64.40 1.96 66.30 4.91% 

Yb 23.9 23.9 23.9 24 

 

23.9 

 

18 

   

23.86 24.00 18.00 23.07 23.90 4.99 23.90 33.33% 

Zn 108 

 

104.5 108 108.4 104.5 

 

95 82.7 92.2 104.5 99.3 108.40 82.70 100.71 104.50 71.10 104.50 31.08% 

Zr 88 

 

98 68 

 

98 

 

94 

 

68.4 98 95.9 98.00 68.00 88.54 94.95 168.61 98.00 44.12% 
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Table 11  Shear moduli (GPa) of the 68 elements in the source pool. 

Symbol [328] [229] [340] [458] [455] [251] [456] [228] [279] [143] [115] Vmax Vmin Vmean Vmedian Vvar Vmode Dminmaxp 

Ac 
       

13.8 
   

13.80 13.80 13.80 13.80 0.00 13.80 0.00% 

Ag 30 
 

30.3 30 30.3 30.3 26 29.2 28.8 30.3 27.1 30.30 26.00 29.23 30.00 2.32 30.30 16.54% 

Al 26 
 

26 26 26.1 26.2 
 

27.1 26.7 26.2 26.1 27.10 26.00 26.27 26.10 0.15 26.00 4.23% 

Au 27 
 

26 27 27 26 
 

28.1 27.7 26 27.1 28.10 26.00 26.88 27.00 0.57 26.00 8.08% 

Ba 4.9 
 

4.86 4.9 
 

4.86 
 

5 4.9 4.86 6.34 6.34 4.86 5.08 4.90 0.26 4.86 30.45% 

Be 132 
 

156 132 
 

156 
 

146 132 156 128.4 156.00 128.40 142.30 139.00 155.46 132.00 21.50% 

Bi 12 
 

12 12 12 12.8 
 

13.1 12.4 12.8 12.6 13.10 12.00 12.41 12.40 0.19 12.00 9.17% 

Ca 7.4 
 

7.4 7.4 
 

7.9 
 

7.5 7.36 7.9 7.4 7.90 7.36 7.53 7.40 0.05 7.40 7.34% 

Cd 19 
 

19 19 19.2 24 
 

24.6 24 24 24 24.60 19.00 21.87 24.00 7.18 24.00 29.47% 

Ce 13.5 13.5 14 14 
 

13.5 
 

12.2 12 13.5 13.53 14.00 12.00 13.30 13.50 0.51 13.50 16.67% 

Co 75 
 

82 75 
 

82 
 

77.9 74.8 82 82.1 82.10 74.80 78.85 79.95 12.47 82.00 9.76% 

Cr 115 
 

115.3 115 115.4 115.3 
 

119 71.6 115.3 115 119.00 71.60 110.77 115.30 217.34 115.00 66.20% 

Cs 
  

0.65 
  

0.65 
 

0.66 
 

0.65 0.664 0.66 0.65 0.65 0.65 0.00 0.65 2.15% 

Cu 48 
 

48.3 48 48.3 48.3 
 

46 45.5 48.3 47.7 48.30 45.50 47.60 48.00 1.16 48.30 6.15% 

Dy 24.7 24.7 24.7 25 
 

24.7 
 

25.9 25.4 
 

25.6 25.90 24.70 25.09 24.85 0.23 24.70 4.86% 

Er 28.3 28.3 28.3 28 
 

28.3 
 

30.2 29.6 
 

29.6 30.20 28.00 28.83 28.30 0.70 28.30 7.86% 

Eu 7.9 7.9 7.9 7.9 
 

7.9 
 

6 
  

7.9 7.90 6.00 7.63 7.90 0.52 7.90 31.67% 

Fe 82 
 

82 82 81.6 81 
 

83.1 81.2 81.6 81.9 83.10 81.00 81.82 81.90 0.36 82.00 2.59% 

Fr 
       

0.63 
   

0.63 0.63 0.63 0.63 0.00 0.63 0.00% 

Ga 
  

6.67 
  

6.67 
 

6.67 
 

6.67 37.8 37.80 6.67 12.90 6.67 193.82 6.67 466.72% 
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Symbol [328] [229] [340] [458] [455] [251] [456] [228] [279] [143] [115] Vmax Vmin Vmean Vmedian Vvar Vmode Dminmaxp 

Gd 21.8 21.8 22 22 
 

21.8 
 

22.7 12.5 
 

22.17 22.70 12.50 20.85 21.90 11.46 21.80 81.60% 

Hf 30 
 

56 30 
 

56 
 

54 30.4 56 55.8 56.00 30.00 46.03 54.90 173.63 56.00 86.67% 

Ho 26.3 26.3 26.3 26 
 

26.3 
 

27.2 26.7 
 

26.31 27.20 26.00 26.43 26.30 0.13 26.30 4.62% 

In 
  

3.68 
  

3.68 
 

3.8 
 

3.68 4.78 4.78 3.68 3.92 3.68 0.23 3.68 29.89% 

Ir 210 
 

209 210 
 

209 
 

214 210 209 209.6 214.00 209.00 210.08 209.80 2.73 209.00 2.39% 

K 1.3 
 

1.3 1.3 
 

1.3 
 

1.3 1.27 
 

0.9 1.30 0.90 1.24 1.30 0.02 1.30 44.44% 

La 14.3 14.3 14.9 14 
 

14.9 
 

15.2 14.9 14.9 13.6 15.20 13.60 14.56 14.90 0.28 14.90 11.76% 

Li 4.2 
 

4.24 4.2 
 

4.24 
 

4.31 4.22 4.24 3.85 4.31 3.85 4.19 4.23 0.02 4.24 11.95% 

Lu 27.2 27.2 27.2 27 
 

27.2 
 

34.5 
  

24.41 34.50 24.41 27.82 27.20 9.74 27.20 41.34% 

Mg 17 
 

17.3 17 17.3 17.3 16.7 17.7 34.2 17.3 17.3 34.20 16.70 18.91 17.30 28.93 17.30 104.79% 

Mn 
  

79.5 
  

79.5 
 

78 
 

79.5 82.6 82.60 78.00 79.82 79.50 2.84 79.50 5.90% 

Mo 126 
 

125.6 20 
 

125.6 147 118 19.7 125.6 125 147.00 19.70 103.61 125.60 2316.35 125.60 646.19% 

Na 3.3 
 

2.53 3.3 
 

2.53 
 

3.5 3.34 2.53 1.98 3.50 1.98 2.88 2.92 0.30 2.53 76.77% 

Nb 38 
 

37.5 38 37.5 37.5 
 

38.2 58.9 37.5 37.6 58.90 37.50 40.08 37.60 49.89 37.50 57.07% 

Nd 16.3 16.3 16.3 16 
 

16.3 
 

14.8 14.5 
 

15.8 16.30 14.50 15.79 16.15 0.53 16.30 12.41% 

Ni 76 
 

76 76 76 76 
 

76.5 73.6 76 85.8 85.80 73.60 76.88 76.00 11.89 76.00 16.58% 

Np 
       

40.6 
   

40.60 40.60 40.60 40.60 0.00 40.60 0.00% 

Os 222 
 

223 222 
 

223 
 

214 222 223 222.5 223.00 214.00 221.44 222.25 9.25 222.00 4.21% 

Pa 
       

39.8 
   

39.80 39.80 39.80 39.80 0.00 39.80 0.00% 

Pb 5.6 
 

5.6 5.6 5.59 5.59 5.4 5.5 5.59 5.59 8.6 8.60 5.40 5.87 5.59 0.93 5.59 59.26% 

Pd 44 
 

43.6 44 
 

43.6 
 

52.1 43.7 43.6 44.8 52.10 43.60 44.93 43.85 8.57 43.60 19.50% 

Pm 18 18 18 18 
 

18 
 

17 
   

18.00 17.00 17.83 18.00 0.17 18.00 5.88% 

Pr 14.8 14.8 14.8 15 
 

14.8 
 

13.8 13.5 
 

13.96 15.00 13.50 14.43 14.80 0.34 14.80 11.11% 

Pt 61 
 

60.9 61 61 60.9 64.2 62.2 52 60.9 60.6 64.20 52.00 60.47 60.95 10.01 60.90 23.46% 
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Symbol [328] [229] [340] [458] [455] [251] [456] [228] [279] [143] [115] Vmax Vmin Vmean Vmedian Vvar Vmode Dminmaxp 

Pu 43 
 

43 43 
 

34.5 
 

44.6 43.4 34.5 
 

44.60 34.50 40.86 43.00 19.18 43.00 29.28% 

Ra 
       

6.1 
   

6.10 6.10 6.10 6.10 0.00 6.10 0.00% 

Rb 
  

0.91 
  

0.91 
 

1.02 
 

0.91 0.63 1.02 0.63 0.88 0.91 0.02 0.91 61.90% 

Re 178 
 

181 178 
 

181 
 

182 178 181 179 182.00 178.00 179.75 180.00 2.79 178.00 2.25% 

Rh 150 
 

147 150 
 

147 
 

150 150 147 148.9 150.00 147.00 148.74 149.45 2.21 150.00 2.04% 

Ru 173 
 

173 173 
 

173 
 

163 173 173 163 173.00 163.00 170.50 173.00 21.43 173.00 6.13% 

Sc 29.1 29.1 29.1 29 
 

29.1 
 

31.9 29.4 
 

31.8 31.90 29.00 29.81 29.10 1.60 29.10 10.00% 

Sm 19.5 19.5 19.5 20 
 

19.5 
 

12.9 12.6 
 

19.6 20.00 12.60 17.89 19.50 10.09 19.50 58.73% 

Sn 18 
 

18.4 18 18.4 18.4 16.7 20.8 16.7 18.4 17.9 20.80 16.70 18.17 18.20 1.29 18.40 24.55% 

Sr 6.1 
 

6.03 6.1 
 

6.03 
 

5.33 6.08 6.03 5.2 6.10 5.20 5.86 6.03 0.14 6.03 17.31% 

Ta 69 
 

69.2 69 69.2 69.2 
 

70 68.7 69.2 69 70.00 68.70 69.17 69.20 0.13 69.20 1.89% 

Tb 22.1 22.1 22.1 22 
 

22.1 
 

23.3 22.8 
 

22.96 23.30 22.00 22.43 22.10 0.26 22.10 5.91% 

Tc 
       

145 
  

123 145.00 123.00 134.00 134.00 242.00 123.00 17.89% 

Th 31 
 

30.8 31 
 

30.8 
 

28.4 31 30.8 28.7 31.00 28.40 30.31 30.80 1.20 30.80 9.15% 

Ti 44 
 

45.6 44 43.8 45.6 
 

40.1 38 45.6 43.4 45.60 38.00 43.34 44.00 6.93 45.60 20.00% 

Tl 2.8 
 

2.71 2.8 
 

2.71 
 

2.8 2.75 2.71 5.4 5.40 2.71 3.09 2.78 0.88 2.71 99.26% 

Tm 30.5 30.5 30.5 31 
 

30.5 
 

31 
  

30.4 31.00 30.40 30.63 30.50 0.07 30.50 1.97% 

U 111 
 

111 111 
 

73.1 
 

75 111 73.1 84.4 111.00 73.10 93.70 97.70 354.58 111.00 51.85% 

V 47 
 

46.7 47 46.7 46.7 
 

47.4 54 46.7 48.1 54.00 46.70 47.81 47.00 5.60 46.70 15.63% 

W 161 
 

160.5 161 160.6 160.6 135 156 149 160.6 160 161.00 135.00 156.43 160.55 70.88 160.60 19.26% 

Y 25.6 25.6 25.5 26 
 

25.5 
 

26.3 26.2 25.5 25.4 26.30 25.40 25.73 25.60 0.12 25.50 3.54% 

Yb 9.9 9.9 9.9 9.9 
 

9.9 
 

7.1 7.03 
 

9.95 9.95 7.03 9.20 9.90 1.73 9.90 41.54% 

Zn 43 
 

41.9 43 43.4 41.9 
 

37.9 37.2 41.9 39.5 43.40 37.20 41.08 41.90 5.30 41.90 16.67% 

Zr 33 
 

35 33 
 

35 
 

34.8 
 

35 36 36.00 33.00 34.54 35.00 1.26 35.00 9.09% 
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Table 12 The database to predict ∆HV from 13 different properties. 

Symbol 
Hardness 
increment 
after HPT 

Burgers 
vector 

Atomic 
number 

Binding 
energy per 

nucleon 

Cohesive 
energy 

Density at 
300K 

Heat of 
fusion 

Unit GPa nm  keV kJ/mol kg/m3 kJ/mol 

Abb. ∆HV b An BE/A Ecoh ρ Hfus 

Mg 0.057 0.3197 12 8260 148 1740 8.95 

Al 0.146 0.2864 13 8330 322 2700 10.8 

Ti 1.628 0.2896 22 8720 470 4540 15.5 

V 1.726 0.2618 23 8740 511 6110 16 

Cr 3.696 0.2498 24 8780 396 7190 16.9 

Fe 2.412 0.2482 26 8790 416 7870 13.8 

Co 2.501 0.2506 27 8770 426 8900 16.2 

Ni 2.383 0.2492 28 8730 429 8900 17.5 

Cu 0.929 0.2556 29 8750 339 8960 13.1 

Zn 0.009 0.2665 30 8740 130 7130 7.32 

Zr 1.629 0.3179 40 8710 610 6510 16.9 

Nb 2.000 0.2864 41 8660 730 8570 26.4 

Pd 1.666 0.2751 46 8580 377 12000 17.6 

Ag 0.690 0.2889 47 8550 286 10500 11.3 

Hf 1.721 0.3127 72 8020 610 13300 24.1 

Ta 3.259 0.2856 73 8020 782 16700 31.6 

Pt 1.976 0.2775 78 7930 565 21500 19.6 

Au 0.588 0.2884 79 7920 367 19300 12.6 

 

 

Symbol 
Lattice 

parameter, 
a 

Melting 
temperature 

Molar 
volume 

Shear 
modulus at 

300K 

Specific 
heat 

capacity 

Thermal 
expansion 
coefficient 

at 300K 

Work 
function 

Unit nm K m3/kmol GPa J/kg°C µstrain/°C eV 

Abb. a Tm Vm G Cp αL W 

Mg 0.321 922.15 0.014 17.7 1020 26.1 3.7 

Al 0.405 933.15 0.01 27.1 900 23 4.28 

Ti 0.295 1933.15 0.0106 40.1 520 8.35 4.33 

V 0.303 2163.15 0.00834 47.4 490 8.3 4.3 

Cr 0.288 2133.15 0.00723 119 450 6.2 4.5 

Fe 0.287 1803.15 0.00709 83.1 440 12.3 4.5 

Co 0.251 1763.15 0.00662 77.9 420 13.4 5 

Ni 0.352 1723.15 0.00659 76.5 440 13.3 5.15 
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Symbol 
Lattice 

parameter, 
a 

Melting 
temperature 

Molar 
volume 

Shear 
modulus at 

300K 

Specific 
heat 

capacity 

Thermal 
expansion 
coefficient 

at 300K 

Work 
function 

Unit nm K m3/kmol GPa J/kg°C µstrain/°C eV 

Abb. a Tm Vm G Cp αL W 

Cu 0.361 1353.15 0.00709 46 380 16.5 4.65 

Zn 0.266 693.15 0.00917 37.9 390 25 4.33 

Zr 0.323 2123.15 0.014 34.8 270 5.78 4.05 

Nb 0.33 2743.15 0.0108 38.2 260 7.07 4.3 

Pd 0.389 1823.15 0.00885 52.1 240 11.2 5.12 

Ag 0.409 1235.15 0.0103 29.2 235 19.2 4.26 

Hf 0.319 2503.15 0.0134 54 140 5.9 3.9 

Ta 0.33 3273.15 0.0109 70 140 6.6 4.25 

Pt 0.392 2043.15 0.0091 62.2 130 9 5.65 

Au 0.408 1333.15 0.0102 28.1 128 14.2 5.1 
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Discussion on the shear modulus data of 17 elements used in Chapter 5 

Table 13 Comparison of shear modulus data (GPa) of 17 elements from different sources (* indicated data used in the 

ANN analysis). 

Symbol 
Database Handbook Journal 

*[228] [328] [340] [458] [455] [251] [456] [279] [185] 

Ag 29.2 30 30.3 30 30.3 30.3 26 28.8 27 

Al 27.1 26 26 26 26.1 26.2  26.7 26.2 

Au 28.1 27 26 27 27 26  27.7 27.7 

Co 77.9 75 82 75  82  74.8  

Cr 119 115 115.3 115 115.4 115.3  71.6 115 

Cu 46 48 48.3 48 48.3 48.3  45.5 48.3 

Fe 83.1 82 82 82 
81.6(soft); 
60(cast) 

60( cast iron); 
81 (steel) 

 81.2 81.6 

Mg 17.7 17 17.3 17 17.3 17.3 16.7 34.2 17.3 

Nb 38.2 38 37.5 38 37.5 37.5  58.9 37.5 

Ni 76.5 76 76 76 76 (soft); 83.9 
(hard) 76  73.6 75 

Pd 52.1 44 43.6 44  43.6  43.7 43.6 

Pt 62.2 61 60.9 61 61 60.9 64.2 52  

Ta 70 69 69.2 69 69.2 69.2  68.7 69 

Ti 40.1 44 45.6 44 43.8 45.6  38 45.6 

V 47.4 47 46.7 47 46.7 46.7  54 46.7 
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Symbol 
Database Handbook Journal 

*[228] [328] [340] [458] [455] [251] [456] [279] [185] 

Zn 37.9 43 41.9 43 43.4 41.9  37.2 41.9 

Zr 34.8 33 35 33  35  

36 (From 
magnesium 

thermal 
Reduction); 

32.7(Iodide, bar) 

35 

 

 

Table 14 The elastic constants Cij (GPa) in GPa of Cr, Nb, V, Pd, Pt, Co, Mg and Ti with Voigt-Reuss-Hill modulus. 

Symbol Structure C11 C12 C44 C13 C33 C66 GV GR GH G in CES Ref for Cij 

Cr bcc 355.37 75.37 100.00 
   

116.00 112.90 114.45 119 [459] 

Nb bcc 245.60 138.70 29.30 
   

38.96 35.76 37.36 38.2 [460] 

V bcc 230.06 119.71 42.81 
   

47.76 47.03 47.39 47.4 [298] 

Pd bcc 223.78 173.12 71.25 
   

52.88 41.30 47.09 52.1 [461] 

Pt fcc 346.70 250.70 76.50 
   

65.10 61.82 63.46 62.2 [462] 

Co hcp 307.10 165.00 75.50 102.70 358.10 71.05 84.54 80.18 82.36 77.9 [285] 

Mg hcp 59.18 25.68 16.34 21.52 61.47 16.75 17.29 17.18 17.23 17.7 [463] 

Ti hcp 162.40 92.00 46.70 69.00 180.70 35.20 44.09 42.62 43.36 40.1 [297] 
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The shear moduli of the 17 elements gathered from various sources are shown in Table 

13. Although most data are reasonably consistent, for Cr, Mg, Nb, V, Pd, Pt and Ti, 

their variations are larger than 15%. Most discrepancies can be found in the Handbook 

of the physicochemical properties of the elements [279]. CES data agree well with other 

sources except for Pd, which is about 20% larger. 

For a cubic single crystal [464]: 

5
3 441211 CCCGV

+−
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345
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For hexagonal symmetry [465]: 
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Most shear modulus measurements were carried out on anisotropic single crystals. The 

shear modulus of isotropic polycrystalline materials can be derived from elastic 

constants of the single crystal, but the relation between elastic constants and shear 

modulus is not unique. One of the widely used averaging methods is the Voigt-Reuss-

Hill approximation (VRH) [157], which is obtained by calculate the arithmetic mean of  

the Voigt average (GV) and Reuss average (GR) of the elasticity  based on the 
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assumption of a uniform strain field and uniform stress field respectively [158]. In 

literatures, the VRH average (GH) for cubic and hexagonal polycrystals can be 

determined from the single crystal elastic tensor Cij by explicit formulas as below, 

where the subscript letters H, V and R denote the Hill, Voigt and Reuss average values: 

Table 14 lists the literature values of single crystal elastic constants of 8 elements (Cr, 

Nb, V, Pd, Pt, Co, Mg and Ti), which are considered to have inconsistent shear modulus 

out of the 17 metals. The elastic property of a cubic crystal is characterized by three 

independent elastic constants C11, C12 and C44. While for hexagonal phase, there are two 

more independent elastic constants, i.e. C13 and C33. The VRH average (GH)  of the 8 

elements calculated from the corresponding single crystal elastic constants, are 

compared with data recorded in CES. The elastic moduli determined from VRH method 

are always in the general agreement with the ones collected from CES, which are used 

in our ANNs and physical models. The difference between GV and GR is about 5% for Pt, 

and even less for other elements, except for Pd, where GV and GR differs by more than 

20% (10 GPa). Because GV – GR approximation provides the lowest upper bounds and 

highest lower bounds, and GH is an empirical estimation, the true shear modulus of 

isotropic crystals may lie anywhere between GV and GR [160]. Thus, the large 

discrepancy in the VRH values for Pd is understandable. In this case, the data recorded 

in CES for Pd is closer to the calculated GV. The impact of changing this value is within 

the overall experimental error. 
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Appendix XIV 

Table 15 Property data of 175 compounds used in ANNs and SR. 

Name Molecular 
Form 

Mw Tb Tc Pc Dm ΔHvb 

 / K / K / Pa /D / J mol-1 

Hydrogen sulfide H2S 34.081 213.6 373.1 9000000 0.97833 18670 

Sulfur dioxide O2S 64.064 263.1 430.64 7884000 1.63305 24940 

Ethylbenzene C8H10 106.165 409.34 617.15 3609000 0.59 35570 

Styrene C8H8 104.15 418 635.2 3870000 0.123 38700 

Benzonitrile C7H5N 103.122 464.3 700 4200000 4.18 45900 

Benzyl alcohol C7H8O 108.138 478.46 715 4300000 1.71 50480 

Benzaldehyde C7H6O 106.122 452 695 4700000 3 42500 

Anisole C7H8O 108.138 426.9 646.5 4240000 1.38 38970 

Nitrous oxide N2O 44.012 184.67 309.52 7245000 0.16083 16530 

Hydrogen iodide HI 127.912 237.6 424 8310000 0.448 19760 

Tetrafluorohydrazine F4N2 104.007 199 309 3750000 0.257 13270 

Nitric oxide NO 30.006 121.41 180 6480000 0.15872 13830 

2-Ethylhexyl acetate C10H20O2 172.265 472 642 2090000 1.8 43500 

2-Ethyl-1-hexanol C8H18O 130.228 457.8 640.6 2800000 1.74 54200 

Ethyl propanoate C5H10O2 102.132 372.3 546.7 3450000 1.74 33880 

Ethyl butanoate C6H12O2 116.158 394.5 568.8 3100000 1.74 35470 

1,1-Diethoxyethane C6H14O2 118.174 375.4 540 3220000 1.38 36280 

p-Cresol C7H8O 108.138 475.13 704.6 4070000 1.48 47450 

4-Methylaniline C7H9N 107.153 473.6 667 2400000 1.52 44300 

1,2-Dibromoethane C2H4Br2 187.861 404.8 583 7200000 1.19 34770 

1-Butene C4H8 56.107 266.89 419.29 4005000 0.359 22070 

1-Butyne C4H6 54.091 281.23 440 4600000 0.782 24520 

1-Propanethiol C3H8S 76.161 341 537 4600000 1.6 29540 

1,2-Dichloroethane C2H4Cl2 98.959 356.7 561 5400000 1.83 31980 

Propylamine C3H9N 59.11 320.37 499.2 4740000 1.17 29550 

Propanenitrile C3H5N 55.079 370.29 561.3 4260000 4.05 31810 

Acrylonitrile C3H3N 53.063 350.5 540 4660000 3.92 32600 

1,2-Ethanediamine C2H8N2 60.098 390 613.1 6710000 1.99 37980 

Allyl alcohol C3H6O 58.079 370.5 547.1 5640000 1.6 40000 

1,2-Ethanediol C2H6O2 62.068 470.5 720 8000000 2.36 50500 

Methyl formate C2H4O2 60.052 304.9 487.2 6000000 1.77 27920 

2-Pentanone C5H10O 86.132 375.41 561.1 3683000 2.7 33440 

Vinyl acetate C4H6O2 86.09 346 519.2 4185000 1.79 34600 

Diisopropylamine C6H15N 101.19 357.1 523.1 3020000 1.15 30400 

Diisopropyl ether C6H14O 102.174 341.6 500.3 2832000 1.13 29100 
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Acetic anhydride C4H6O3 102.089 412.7 606 4000000 2.8 38200 

m-Cresol C7H8O 108.138 475.42 705.8 4360000 1.48 47400 

3-Methylaniline C7H9N 107.153 476.5 709 4200000 1.45 44900 

2,4-Dimethylpyridine C7H9N 107.153 431.53 647 3950000 2.3 38530 

2,6-Dimethylpyridine C7H9N 107.153 417.16 624 3850000 1.66 37460 

Toluene C7H8 92.139 383.78 591.8 4110000 0.375 33180 

4-Methylpyridine C6H7N 93.127 418.51 646 4670000 2.7 37510 

Chlorobenzene C6H5Cl 112.557 404.87 633.4 4520000 1.69 35190 

Phenol C6H6O 94.111 455.02 694.2 5930000 1.224 45690 

3-Methylpyridine C6H7N 93.127 417.29 644.6 4650000 2.4 37350 

2-Methylpyridine C6H7N 93.127 402.53 621 4620000 1.85 36170 

Pentanoic acid C5H10O2 102.132 459.3 637.2 3630000 1.61 44100 

Propyl acetate C5H10O2 102.132 374.69 549.7 3360000 1.78 33920 

1-Pentene C5H10 70.133 303.11 464.8 3560000 0.5 25200 

Butylamine C4H11N 73.137 350.15 531.9 4200000 1 31810 

Butanenitrile C4H7N 69.106 390.8 585.4 3880000 3.73 33680 

1-Butanethiol C4H10S 90.187 371.7 570 4000000 1.53 32230 

2-Methoxyethanol C3H8O2 76.095 397.3 597.6 5285000 2.36 37540 

Diethylamine C4H11N 73.137 328.7 499.7 3754000 0.92 29060 

Ethyl vinyl ether C4H8O 72.106 308.7 475 4070000 1.26 26200 

Ethyl formate C3H6O2 74.079 327.6 508.54 4740000 1.93 29910 

Pyrrole C4H5N 67.09 402.94 640 5700000 1.767 38750 

Tetrahydrofuran C4H8O 72.106 338 540.5 5190000 1.75 29810 

Furan C4H4O 68.074 304.7 490.2 5300000 0.66 27100 

Tetrahydrothiophene C4H8S 88.172 394.3 632 5400000 1.9 34660 

Thiophene C4H4S 84.14 357.2 580 5700000 0.55 31480 

Isobutyl acetate C6H12O2 116.158 389.7 561 2990000 1.86 35900 

Pentanenitrile C5H9N 83.132 414.5 610.3 3580000 4.12 36090 

Propyl formate C4H8O2 88.106 354.1 538 4060000 1.89 33610 

Pyridine C5H5N 79.101 388.38 620 5650000 2.215 35090 

2-Ethoxyethyl acetate C6H12O3 132.157 429.6 608 3170000 2.25 40760 

Butyl vinyl ether C6H12O 100.158 367 540 3200000 1.25 31580 

Dipropyl ether C6H14O 102.174 363.23 530.6 3028000 1.21 31310 

Diethylene glycol C4H10O3 106.12 519 750 4700000 2.31 52300 

Diethylene glycol 
monomethyl ether C5H12O3 120.147 466 672 3670000 1.6 46600 

Diethylene glycol 
monoethyl ether C6H14O3 134.173 469 670 3167000 1.6 47500 

Dibutylamine C8H19N 129.244 432.8 607.5 3110000 0.98 38440 

Propene C3H6 42.08 225.46 364.9 4600000 0.366 18420 

Dimethyl ether C2H6O 46.068 248.4 400.378 5356000 1.3 21510 

Cyclopentanone C5H8O 84.117 403.72 624 4600000 3.3 36350 
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Triethylamine C6H15N 101.19 362 535.6 3030000 0.66 31010 

Propanal C3H6O 58.079 321 505 5260000 2.72 28310 

Butanal C4H8O 72.106 348 537 4320000 2.72 31500 

Pyrrolidine C4H9N 71.121 359.71 569 5700000 1.57 33010 

Butyl acetate C6H12O2 116.158 399.3 575.6 3140000 1.87 36280 

Isopentyl acetate C7H14O2 130.185 415.7 586.1 2760000 1.86 37500 

Octanoic acid C8H16O2 144.212 512 693 2870000 1.15 58500 

Dimethylamine C2H7N 45.084 280.03 437.2 5340000 1.01 26400 

Chlorotrifluorosilane ClF3Si 120.534 203.2 307.7 3460000 0.636 18700 

Ethyl acetate C4H8O2 88.106 350.26 523.3 3870000 1.78 31940 

Mesityl oxide C6H10O 98.142 403 605 4000000 2.79 36100 

Tetrahydropyran C5H10O 86.132 361 572 4770000 1.58 31170 

Dipropylamine C6H15N 101.19 382.5 555.8 3630000 1.03 33470 

Dibutyl ether C8H18O 130.228 413.43 584 3000000 1.17 36490 

Methyloxirane C3H6O 58.079 308 485 5200000 2.01 27350 

Phosphorothioc trifluoride F3PS 120.034 220.9 346 3820000 0.64 19600 

Hydrazine H4N2 32.045 386.7 653 14700000 1.75 41800 

sec-Butylamine C4H11N 73.137 335.88 514 5000000 1.28 29920 

Diethyl sulfide C4H10S 90.187 365.3 557.8 3900000 1.645 31770 

2-Octanol C8H18O 130.228 452.5 629.6 2754000 1.71 44400 

1,1,1-Trifluoroethane C2H3F3 84.04 225.9 345.86 3764000 2.347 18990 

Fluorobenzene C6H5F 96.102 357.88 560.09 4551000 1.6 31190 

1,3-Propanediol C3H8O2 76.095 487.6 718.2 6550000 2.55 57900 

1-Chloropropane C3H7Cl 78.541 319.7 503 4580000 2.05 27180 

Isobutyl formate C5H10O2 102.132 371.4 551 3880000 1.88 33600 

Methyl propyl ether C4H10O 74.121 312.3 476.2 3801000 1.107 26750 

Glycerol C3H8O3 92.094 563 850 7500000 2.56 61000 

1,2-Propanediol C3H8O2 76.095 460.8 676.4 5941000 2.25 52400 

cis-2-Butene C4H8 56.107 276.86 435.75 4226000 0.253 23340 

Iodobenzene C6H5I 204.008 461.6 721 4520000 1.7 39500 

2-Hexanone C6H12O 100.158 400.8 587.1 3300000 2.66 36350 

Isopropyl methyl ether C4H10O 74.121 303.92 464.4 3762000 1.247 26050 

Diethyl ether C4H10O 74.121 307.7 466.7 3644000 1.098 26520 

2-Pentanol C5H12O 88.148 392.5 560.3 3675000 1.66 41400 

Aniline C6H7N 93.127 457.32 705 5630000 1.13 42440 

Ethyl methyl sulfide C3H8S 76.161 339.9 533 4250000 1.56 29530 

Dimethyl disulfide C2H6S2 94.199 382.89 607.8 5070000 1.85 33780 

Pentyl acetate C7H14O2 130.185 422.4 599 2730000 1.75 38420 

Carbon monoxide CO 28.01 81.7 132.86 3494000 0.1098 6040 

Ethanol C2H6O 46.068 351.44 514 6137000 1.69 38560 

Acetic acid C2H4O2 60.052 391.1 590.7 5780000 1.7 23700 
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Methanol CH4O 32.042 337.8 512.5 8084000 1.7 35210 

2-Propanol C3H8O 60.095 355.5 508.3 4764000 1.58 39850 

Acetone C3H6O 58.079 329.2 508.1 4700000 2.88 29100 

Trichloromethane CHCl3 119.378 334.32 536.4 5470000 1.04 29240 

1-Propanol C3H8O 60.095 370.4 536.8 5169000 1.55 41440 

1-Butanol C4H10O 74.121 390.88 563 4414000 1.66 43290 

1-Pentanol C5H12O 88.148 411.13 588.1 3897000 1.7 44360 

1,1,1-Trichloroethane C2H3Cl3 133.404 347.24 545 4300000 1.755 29860 

Chloromethane CH3Cl 50.488 249.06 416.25 6679000 1.8963 21400 

Methylamine CH5N 31.058 266.83 430.8 7620000 1.31 25600 

Bromoethane C2H5Br 108.965 311.7 503.9 6230000 2.04 27040 

Propane C3H8 44.096 231.1 369.83 4248000 0.084 19040 

Chloroethane C2H5Cl 64.514 285.5 460.4 5300000 2.05 24650 

Chloroethene C2H3Cl 62.498 259.4 432 5670000 1.45 20800 

Acetonitrile C2H3N 41.052 354.8 545.5 4850000 3.92519 29750 

Ethanethiol C2H6S 62.134 308.2 499 5490000 1.58 26790 

Dichloromethane CH2Cl2 84.933 313 510 6100000 1.6 28060 

Dimethyl sulfide C2H6S 62.134 310.48 503 5530000 1.554 27000 

Oxirane C2H4O 44.052 283.8 469 7200000 1.89 25540 

Isobutane C4H10 58.122 261.42 407.885 3639000 0.132 21300 

Isopropylamine C3H9N 59.11 304.91 472.2 4550000 1.19 27830 

1,1-Dichloroethane C2H4Cl2 98.959 330.5 523 5070000 2.06 28850 

1,1-Difluoroethane C2H4F2 66.05 249.1 386.7 4500000 2.27 21560 

Dichlorofluoromethane CHCl2F 102.923 282.1 451.58 5180000 1.29 25200 

Chlorodifluoromethane CHClF2 86.469 232.5 369.5 5035000 1.42 20200 

Trimethylamine C3H9N 59.11 276.02 433 4080000 0.612 22940 

Nitromethane CH3NO2 61.041 374.34 588 5870000 3.46 33990 

tert-Butylamine C4H11N 73.137 317.19 483.7 3850000 1.29 28270 

2-Methyl-2-propanol C4H10O 74.121 355.6 506.2 3972000 1.66 39070 

Trichlorofluoromethane CCl3F 137.368 296.9 471.1 4470000 0.46 25100 

Dichlorodifluoromethane CCl2F2 120.914 243.4 384.95 4136000 0.51 20100 

Chlorotrifluoromethane CClF3 104.459 191.8 302 3870000 0.5 15800 

2-Methyl-2-butanol C5H12O 88.148 375.6 543.7 3710000 1.82 39040 

Trifluoroacetic acid C2HF3O2 114.023 346 491.3 3258000 2.28 33300 

1,2-Dichloro-1,1,2,2-
tetrafluoroethane C2Cl2F4 170.921 276.7 418.78 3252000 0.5 23300 

Chloropentafluoroethane C2ClF5 154.466 234.1 353.2 3229000 0.52 19410 

Perchloryl fluoride ClFO3 102.449 226.4 368.4 5370000 0.023 19330 

Hydrogen chloride ClH 36.461 188 324.7 8310000 1.1086 16150 

Ammonia H3N 17.031 239.82 405.56 11357000 1.4718 23330 

Water H2O 18.015 373.2 647.14 22060000 1.8546 40650 
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Nitrogen trifluoride F3N 71.002 144.4 234 4460000 0.235 11560 

Phosphorus(III) fluoride F3P 87.969 171.4 271.2 4330000 1.03 16500 

Isopentane C5H12 72.149 301.03 460.4 3380000 0.13 24690 

Isobutylamine C4H11N 73.137 340.9 519 4070000 1.27 30610 

2-Methyl-1-propanol C4H10O 74.121 381.04 547.8 4295000 1.64 41820 

2-Butanone C4H8O 72.106 352.74 536.7 4207000 2.779 31300 

Phosphine H3P 33.998 185.4 324.5 6540000 0.574 14600 

1,1,2-Trichloroethane C2H3Cl3 133.404 387 602 4480000 1.4 34820 

Trichloroethene C2HCl3 131.388 360.36 544.2 5020000 0.8 31400 

Methyl acetate C3H6O2 74.079 330.02 506.5 4750000 1.72 30320 

Dibutyl phthalate C16H22O4 278.344 613 797 1660000 2.82 79200 

o-Xylene C8H10 106.165 417.7 630.3 3732000 0.64 36240 

o-Cresol C7H8O 108.138 464.19 697.6 4170000 1.45 45190 

2-Methylaniline C7H9N 107.153 473.5 717 4700000 1.6 44600 

Diethyl oxalate C6H10O4 146.141 458.9 645.8 3060000 2.49 42000 

3-Pentanone C5H10O 86.132 374.9 561.4 3729000 2.82 33450 

g-Butyrolactone C4H6O2 86.09 477 732.5 5100000 4.27 52200 

Furfural C5H4O2 96.085 434.9 670 5890000 3.54 43200 

Acetophenone C8H8O 120.149 475 709.6 4010000 3.02 43980 
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Table 16 The contribution of each input variable in ANN models, data are 

generated through the 'CW' method and the 'PaD' method. 

The 'CW' 
method Mw Tb Tc Pc Dm 

Experiment 
1 15.73% 31.10% 24.02% 22.84% 6.32% 

Experiment 
2 12.67% 29.42% 15.52% 25.90% 16.49% 

Experiment 
3 17.81% 32.89% 29.46% 6.35% 13.48% 

Mean 15.41% 31.13% 23.00% 18.36% 12.10% 

 

The 'PaD' 
method Mw Tb Tc Pc Dm 

Experiment 
1 4.79% 52.08% 40.28% 0.65% 2.21% 

Experiment 
2 2.11% 58.10% 17.96% 21.77% 0.06% 

Experiment 
3 10.17% 74.38% 15.03% 0.41% 0.00% 

Mean 5.69% 61.52% 24.43% 7.61% 0.76% 
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Table 17 The contribution of each input variable in SR models, data are generated 

through Discipulus. 

Frequency Mw Tb Tc Pc Dm 
Experiment 

1 97% 100% 93% 63% 77% 

Experiment 
2 100% 100% 90% 47% 90% 

Experiment 
3 100% 100% 90% 30% 97% 

Mean 99% 100% 91% 47% 88% 

 

Average 
impact Mw Tb Tc Pc Dm 

Experiment 
1 

2.20% 60.23% 15.34% 0.83% 0.30% 

Experiment 
2 

1.00% 70.93% 15.97% 2.05% 4.87% 

Experiment 
3 

4.67% 63.16% 7.36% 2.17% 0.51% 

Mean 2.62% 64.77% 12.89% 1.68% 1.90% 

 

Maximum 
impact Mw Tb Tc Pc Dm 

Experiment 
1 

8.97% 94.44% 62.22% 1.47% 1.30% 

Experiment 
2 

2.83% 92.04% 34.21% 4.01% 89.63% 

Experiment 
3 

61.21% 93.54% 26.93% 3.23% 5.22% 

Mean 24.34% 93.34% 41.12% 2.91% 32.05% 
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Appendix XVII 

Table 18 The 'best' experimental elastic property data for 36 elements. Underlined data indicate the property have 

inconsistent values in the source pool. 

Symbol 

Most common value in the source pool Best experimental value 

Ref. 
ν 

K E G 
ν 

K E G 

GPa GPa 

Gd 0.259 38 55 21.9 0.259 37.9 54.8 21.8 [328] 

Nd 0.281 31.9 41.2 16.15 0.281 31.8 41.8 16.3 [337] 

Er 0.237 44.4 69.95 28.3 0.237 44.3 69.9 28.3 [328] 

Ir 0.26 365 528 209.8 0.246 354.67 540.19 216.74 [140] 

Li 0.36 11.2 4.91 4.23 0.351 11.97 10.7 3.96 [348] 

Pr 0.281 28.8 37.3 14.8 0.281 28.8 37.9 14.8 [350] 

Tc 0.301 289 351 134 0.309 281 322 123 [352] 

Rh 0.26 275.5 330 149.45 0.264 266.53 377.84 149.49 [355] 

Cs 0.295 1.6 1.7 0.65 0.356 2.03 1.76 0.65 [161] 

Os 0.25 376.45 558.75 222.25 0.231 405.3 654 265.6 [362] 

Re 0.293 367.5 463 180 0.291 366.9 460.8 178.5 [370] 

Ru 0.286 286 432 173 0.245 310.7 475.2 190.8 [370] 

Sc 0.279 56.6 74.4 29.1 0.28 57.1 75.5 29.5 [374] 

Tm 0.213 44.5 74 30.5 0.213 44.5 74 30.5 [377] 

Y 0.252 41.2 64.4 25.6 0.246 41.5 63.3 25.4 [379] 

Th 0.27 54 78.3 30.8 0.3 59.59 71.94 27.7 [385] 

Ho 0.231 40.2 64.8 26.3 0.231 40.2 64.8 26.3 [320] 

277 

 



Appendix 

Symbol 

Most common value in the source pool Best experimental value 

Ref. 
ν 

K E G 
ν 

K E G 

GPa GPa 

Zr 0.34 89.8 94.95 35 0.333 95.7 96.1 36.1 [391] 

Hf 0.3 109 140 54.9 0.281 108.6 143 55.8 [329] 

Na 0.34 6.52 6.8 2.915 0.365 6.88 5.58 2.05 [394] 

Pu 0.195 54 96 43 0.186 54.72 103.09 43.46 [397] 

Ce 0.245 21.7 33.6 13.5 0.244 18.18 27.94 11.23 [404] 

In 0.45 41.1 10.8 3.68 0.447 42.4 13.6 4.7 [406] 

K 0.35 3.14 3.53 1.3 0.38 3.33 2.49 0.91 [412] 

Tl 0.45 35.8 7.975 2.775 0.429 35.6 15.3 5.3 [414] 

Be 0.032 117.785 291.8 139 0.05 116.8 315.2 150.1 [419] 

Cd 0.3 46.7 58.6 24 0.303 53 62.6 24 [424] 

Eu 0.152 8.3 18.2 7.9 0.155 8.85 18.2 7.9 [301, 389] 

Ga 0.47 42.6 9.81 6.67 0.23 48.1 90.99 38.4 [393, 395] 

La 0.28 27.9 37.5 14.9 0.28 27.9 36.6 14.3 [119, 303] 

Lu 0.2605 47.6 68.6 27.2 0.261 47.6 68.4 27.2 [433] 

Rb 0.328 2.5 2.35 0.91 0.372 2.32 1.78 0.65 [435]  

Sm 0.274 37.8 49.7 19.5 0.284 37.88 48 18.7 [301, 306] 

U 0.22 100 208 97.7 0.359 255.8 217.09 79.9 [402, 406-408] 

Yb 0.207 30.5 23.9 9.9 0.207 13.61 23.8 9.9 [301, 344] 
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Appendix XVIII 

The ANN modelling of elastic property correlations in 3D dimensions: 
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Figure A-1 Ternary order correlations between elastic properties are reflected in 3D 

dimensions. Young's modulus is denoted as YM, shear modulus is denoted as SM, bulk 

modulus is denoted as BM and Poisson's ratio is denoted as PR. The correlating equations, 

which are listed in Table 1-2, are indicated as mesh grids. While the correlations derived 

from ANNs are indicated as colourful surfaces. Yellow is for Young's modulus, blue is for 

shear modulus, green is for bulk modulus, and cyan is for Poisson's ratio. The values of 27 

elements (which are used to construct ANNs) are plotted as red data points. 
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