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ABSTRACT 

This research proposes a new dynamic energy management framework for a backbone 

Internet Protocol over Dense Wavelength Division Multiplexing (IP over DWDM) 

network. Maintaining the logical IP-layer topology is a key constraint of our architecture 

whilst saving energy by infrastructure sleeping and virtual router migration.  

The traffic demand in a Tier 2/3 network typically has a regular diurnal pattern based 

on people‟s activities, which is high in working hours and much lighter during hours 

associated with sleep. When the traffic demand is light, virtual router instances can be 

consolidated to a smaller set of physical platforms and the unneeded physical platforms 

can be put to sleep to save energy. As the traffic demand increases the sleeping physical 

platforms can be re-awoken in order to host virtual router instances and so maintain 

quality of service. 

Since the IP-layer topology remains unchanged throughout virtual router migration in 

our framework, there is no network disruption or discontinuities when the physical 

platforms enter or leave hibernation. However, this migration places extra demands on 

the optical layer as additional connections are needed to preserve the logical IP-layer 

topology whilst forwarding traffic to the new virtual router location. Consequently, 

dynamic optical connection management is needed for the new framework. 

Two important issues are considered in the framework, i.e. when to trigger the virtual 

router migration and where to move virtual router instances to? For the first issue, a 

reactive mechanism is used to trigger the virtual router migration by monitoring the 

network state. Then, a new evolutionary-based algorithm called VRM_MOEA is 

proposed for solving the destination physical platform selection problem, which chooses 

the appropriate location of virtual router instances as traffic demand varies. 
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A novel hybrid simulation platform is developed to measure the performance of new 

framework, which is able to capture the functionality of the optical layer, the IP layer 

data-path and the IP/optical control plane. Simulation results show that the performance 

of network energy saving depends on many factors, such as network topology, quiet and 

busy thresholds, and traffic load; however, savings of around 30% are possible with 

typical medium-sized network topologies. 
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CHAPTER 1 INTRODUCTION 

 

1.1 Motivation 

Energy efficiency has become an important topic in the last few years and received 

considerable attention from telecommunication operators, governments and the general 

public [1]-[6]. The energy consumption of the Internet accounts for approximately 1% 

of the world‟s total electricity usage [7]. It is anticipated that this will increase notably 

over the next few years [8] [9]. Without the adoption of new energy efficient approaches, 

energy consumption may become one of the main constraints for further growth of the 

Internet [10].  

The continuously rising trend of energy consumption essentially depends on the 

increasing Internet traffic volume. It is predicted that by the end of 2015, the annual 

global IP traffic will pass the zettabyte threshold. Global traffic has increased fourfold 

over the past 5 years and will increase at a rate of 23% over the next 5 years [8]. This 

trend is driven by the significant increase in the customer population as well as ongoing 

development of all forms of the Internet-based services, especially bandwidth-intensive 

applications (IPTV, P2P, etc.).  

The unprecedented growth of the Internet brings new challenges to Internet Service 

Providers (ISPs) and telecom companies. More capable and power-hungry network 

equipment is required to support these increasing traffic demands. For example, high-

end routers are designed in a multi-shelf architecture to provide more network 

functionalities in a scalable way [11]. Router capacity grows by a factor of 2.5 every 10 

months [12]. Meanwhile, the rate of improvement in energy efficiency of silicon 

technologies is currently about 1.65 every 18 month, which is lower than the factors for 

the increasing traffic volume or router capacity [13]. Thus, as the improvement in 
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silicon technologies are not enough to cope with the network energy efficiency issues, 

new energy efficient approaches need to be explored. 

The main motivations that drive the telecommunication network to become “greener” 

are as follows: 

1. Economical 

Due to the increasing energy prices, operational expenditure, particularly in terms of 

the electricity bill, is a significant factor encouraging ISPs and telecom companies to be 

greener [14]. For instance, British Telecom spent £274m on the electricity bill in 2013 

[15]. Even a small energy saving (e.g. 5%) is expected to lead to a significant £13.7m 

cost reduction. Thus, green networking can reduce ISPs and telecom companies energy 

costs. 

2.   Environmental 

Energy consumption is an environmental problem. Generally, the world‟s energy is 

mainly supplied by burning fossil fuels, which releases carbon dioxide into the 

atmosphere. It is well known that carbon dioxide is a major component of “Green House” 

that is a direct contributor of global warming and climate change. Global warming and 

climate change can result in many environmental problems [17][18]. Hence, reducing 

energy consumption and increasing energy efficiency is essential for environmental 

protection and has received considerable attention [16]. For example, a recent European 

Union (EU) report indicates that the EU needs to more climate-friendly and less energy-

consuming to cut most of its greenhouse gas emissions by 2050 [19]. 

3.   Technical 

Because of advances in semiconductor and server technologies, the load density of 

equipment increases, i.e. equipment with more processing and storage capacity can be 

packed into the same physical space. Meanwhile, the associated energy efficiency is not 

improved at the similar rate. As a result, the power/heat density increases significantly 

[20]. 
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The increasing power/heat density has brought many technical challenges to ISPs, 

especially in terms of cooling. Generally, the heat generated by the equipment must be 

removed to maintain the desirable operating temperature. However, with the increasing 

heat/power density, conventional air-cooling systems are reaching their limits [21]. 

Therefore, it is important to improve the energy efficiency of equipment in order to 

lower the power/heat density. 

1.2 Research Objectives 

The main research objective is to make a wired access or carrier network operate in a 

more energy-efficient manner whilst maintaining the same level of performance. Hence, 

a novel dynamic energy management framework is proposed employing a combination 

of infrastructure sleeping and virtual router migration. 

Within the telecommunications research area, energy/power management can be 

divided into two parts: wireless networks and wired (fixed) networks. Since the 

operations of nodes in many wireless networks are limited by the battery power, 

considerable effort has been devoted to devising new energy management frameworks. 

As a result, many energy-efficient frameworks have been identified for wireless ad-hoc 

sensor networks and wireless sensor networks. There is also significant ongoing 

research on energy saving within cellular networks including the use of low energy (and 

limited functionality) relay stations, beam steering and exploiting residential wired 

access points [22]. 

Conversely, wired networks are generally assumed to have access to abundant power, 

which implies there is no need to save energy. In reality, power consumption of wired 

networks is not efficient and has considerable room for improvement [23]. Moreover, 

technological advances, particularly in respect to the development of Dense Wavelength 

Division Multiplexing (DWDM), indicate that the bandwidth of physical devices is no 

longer a restriction on the capacity of the Internet; instead the achievable energy density 
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limits its development. Therefore, more attention is being given to the energy 

management within wired networks recently. 

Many energy efficient approaches to wired networking have been proposed [1]-[5]. 

These approaches can generally be divided into two types: network devices and the 

network itself. The aim of greening network devices is to design energy efficient 

network equipment by employing energy efficient hardware technologies or modifying 

the equipment functions, e.g. introducing a sleep/standby state. Green network 

approaches aim to reduce the amount of energy required to carry out a given task whilst 

maintaining the same level of performance, such as green network planning [27][33][34], 

green routing [35][36] and infrastructure sleeping [28]. 

The Internet can be generally divided into three parts: Tier-3 access networks, Tier-2 

Metropolitan Area Networks (MAN) and Tier-1 Wide Area Networks (WAN). Our 

primary focus is on Tier-2 core networks, which use an Internet Protocol over Dense 

Wavelength Division Multiplexing (IP-over-DWDM) architecture due to their 

prevalence and the transport technologies they employ [24]. In addition, although core 

networks consume a small fraction of the total energy consumption of telecom networks 

now, they are gradually dominating the energy consumption league because of the 

increasing popularity of bandwidth-intensive services [25]. The energy/power density 

issue is also an important driver to increase the energy efficiency of core networks [26].  

The network architecture in our study is effectively two conceptually separated 

networks, i.e. a substrate network and a virtualization network. The substrate network is 

composed by a group of nodes, each containing a physical platform (PP) and a 

Reconfigurable Optical Add-Drop Multiplexers (ROADM). The nodes are 

interconnected by physical fibre. In each node, PPs provide the hardware support for 

one or more Virtual Router (VR) instances whilst ROADMs offer optical switching and 

add/drop functions in the optical layer. Above the substrate network, a virtualization 

network exists, which is composed of a set of VR instances interconnected via virtual 
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links. A VR instance is an emulation of a physical router, enabling configuration and 

monitoring of the routing functionality.  

In the current core network architecture, routers consume the largest proportion of the 

energy consumed over the underlying Synchronous Digital Hierarchy (SDH) / 

Synchronous Optical NETworking (SONET) and Wavelength Division Multiplexing 

(WDM) layers [24]. Multi-layer models generally increase the complexity and cost of 

network management and operations. With increasing requirements of service flexibility, 

reliability and transmission efficiency, it is desirable to eliminate the intermediate 

SONET/SDH and Asynchronous Transfer Mode (ATM) layers and run IP directly over 

DWDM [37], i.e. an IP over DWDM network. As a result, routers are required to 

perform more IP packet processing and consequently consume more energy. Therefore, 

it is important to particularly improve the energy efficiency of core routers. 

One method to improve the energy efficiency is to put routers and interfaces to sleep 

during the off-peak hours, referred to as infrastructure sleeping. Infrastructure sleeping 

exploits the characteristics of network traffic. Typically, the traffic demand in a Tier-2/3 

network has a regular diurnal pattern based on people‟s activities, which is high during 

working hours and much lighter in hours associated with sleep [40] [41]. Moreover, the 

network architecture is generally over-provisioned and redundant in order to sustain the 

peak traffic loads and to provide resiliency and fault tolerance. In this case, the network 

is usually under-utilized in normal operations. For example, the minimum traffic level is 

typically about 20% to 30% of the peak traffic load [42]. Therefore, infrastructure 

sleeping has been regarded as a promising strategy and explored intensively in recent 

years [23][28]-[32].  

Despite the promise of infrastructure sleeping, a crucial problem needs to be noted. 

When a router or a link is in the sleep state, it loses its ability to exchange routing 

protocol signalling messages with other routers. Subsequently, the logical IP-layer 

topology changes with the disappearance/reappearance of router links. In consequence, 
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this change triggers a series of reconvergence events that can cause network 

discontinuities and disruption. 

In order to avoid this problem, we use Virtual Router Migration (VRM) [42][44] to 

hide the changes in the underlying layer whilst effectively putting some PPs to sleep. A 

live migration scheme called Virtual ROuters On the Move (VROOM) [44] allows VR 

instances to move amongst different PPs without causing network discontinuities and 

instabilities. Nevertheless, VROOM is proposed to reduce the impact of planned 

maintenance events rather than for energy saving. Furthermore, the decision concerning 

when to trigger migration and how to determine the appropriate destination PP(s) are not 

considered nor is the energy consumption is involved. In our study, we discuss how to 

combine virtual router migration and infrastructure sleeping approaches for energy 

saving. 

In our framework we use a reactive mechanism to determine the time to trigger 

migration. A centralized control unit is employed to monitor the condition of the 

network. When significant changes arise, some VRs may need to be moved to new PP 

locations. In order to limit instabilities due to short term stochastic variations in the load, 

two thresholds, i.e. Busy and Quiet, are defined to distinguish between three operational 

modes for a PP, i.e. Quiet, Normal and Busy. The network state is observed periodically 

(e.g. 15 minutes intervals) in order to determine the appropriate time to trigger VRM.  

Furthermore, an evolutionary-based algorithm called Virtual Router Migration Multi-

Objective Evolutionary Algorithm (VRM_MOEA) is developed to determine the 

appropriate destination PP if a threshold crossing arises. The outcome of VRM_MOEA 

is a group of good solutions generated in a relatively short time (e.g. less than 5 minutes) 

considering various constraints. 
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1.3 Novelty and Contributions 

Our research proposes a novel dynamic energy management framework combining 

the approaches of equipment sleeping and consolidating the functionality of suitable 

virtual router instances onto fewer platforms that can accommodate them during quiet 

periods. The research makes the following unique contributions: 

1. A new dynamic energy management framework based on an IP-over-DWDM core 

network architecture is proposed. The main concept is to combine virtual router 

migration and infrastructure sleeping together with automatic optical layer management 

to enable resources to be used in an efficient manner. This combination of techniques 

enables the network to operate in an energy-efficient manner despite large variations in 

the offered traffic load.  

2. A new automatic optical layer management scheme is also developed. The 

prerequisite for our research is to save energy whilst the logical IP-layer topology 

remains unaffected. In order to satisfy the requirement, some new optical connections 

are needed for forwarding the traffic to the remote virtual router instance responsible for 

processing the packets. Furthermore, these new optical connections also ensure the 

logical separation of the different virtual router instances that are co-exist on the same 

physical platform. 

3. This research creates a new evolutionary-based algorithm called VRM_MOEA for 

destination physical platform selection. Particularly, one key question that needs to be 

resolved within the framework is where to move the virtual router(s) to, based on 

changing operational circumstances. The approach needs to consolidating functionality 

of suitable virtual router instances onto fewer physical platforms during the off-peak 

hours and distribute co-existing virtual router instances away from busy physical 

platforms during the peak hours. To address this problem, we propose an evolutionary-

based algorithm. In the algorithm, a new individual representation is proposed that maps 

locations of virtual routers onto physical platforms. In addition, two objective functions 
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are described to evaluate the power consumption and the virtual router migration cost of 

candidate solutions. 

4. A new hybrid simulation platform is developed that is able to capture the 

functionality of the optical layer, the IP layer data-path and the IP/optical control plane. 

The optical layer represents channels via a discrete set of integers with associated state 

information. Meanwhile, a fluid-flow model represents the IP layer data-path and the 

IP/optical control plane models the signalling messages using discrete packets. The 

reason a hybrid environment is required is that it is not viable to model IP data-flows as 

discrete packet streams of packets on an optical infrastructure over many hours. 

1.4 Report Structure 

The rest of the thesis is organized as follows: 

Chapter 2 presents background information and a review of relevant literature. A 

typical IP-over-DWDM network scenario and network components are described in 

Section 2.2. Then, state-of-the-art related technologies are introduced in Section 2.3 

including energy efficiency approaches such as infrastructure sleeping and virtual router 

migration. Literature concerning the power consumption model and multi-objective 

evolutionary algorithms is also considered. 

Chapter 3 introduces the proposed novel dynamic energy management framework in 

detail. Initially, some features are required of the network architecture and its 

capabilities to enable dynamic energy management operations are described in Section 

3.2. Then, the overall energy management procedure is described in Section3.3. The 

related issues of the framework, such as destination physical platform selection, when to 

trigger virtual router migration and dynamic optical connection management are 

described in from Section 3.4 to Section 3.8. 

Chapter 4 provides a description of the new evolutionary-based algorithm, called 

Virtual Router Migration Multi-Objective Evolutionary Algorithm (VRM_MOEA) for 
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destination physical platform selection. The problem is first described in Section 4.2. 

Then, the motivations for using a MOEA approach are explained in Section 4.3. Finally, 

details of VRM_MOEA are presented in Section 4.4. 

Chapter 5 presents details of the simulation tool and associated network architecture 

models. We employ a stochastic and discrete-event simulation for driving state-changes 

within the system. The different functional modules such as the simulation framework, 

the network topology and traffic models are described in detail from Section 5.2 to 

Section 5.5. The parameter setting in VRM_MOEA is described in Section 5.6. Finally, 

the simulation tool is validated in Section 5.7. 

Chapter 6 presents the simulation results along with a critical appraisal of the salient 

features, which are discussed in order to assess the strengths and limitations of the 

proposed approach. 

Chapter 7 considers further work and provides a concise set of conclusions. 
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CHAPTER 2 BACKGROUND AND 

RELATED WORK 

 

2.1 Introduction 

The energy efficiency of wired network has been extensively investigated for several 

years. In Chapter 2, before we describe a novel dynamic energy management framework, 

appropriate technological background and related work is introduced. Section 2.2 

presents a typical network scenario including network architecture (Section 2.2.1), a 

physical platform architecture (Section 2.2.2) and a reconfigurable optical add-drop 

multiplexer infrastructure (Section 2.2.3). Next, related work is considered in Section 

2.3, this includes energy efficiency approaches (Section 2.3.1), infrastructure sleeping 

(Section 2.3.2) and virtual router migration (Section 2.3.3), as well as the power 

consumption model (Section 2.3.4) and the concepts of multi-objective evolutionary 

algorithms (Section 2.3.5) 

2.2 A Typical Network Scenario 

2.2.1 Network Architecture 

IP traffic today has become dominant as both traditional and new applications such 

as voice, video and peer-to-peer (P2P) file sharing are employing IP network 

infrastructure. It is predicted that by the end of 2015, the annual global IP traffic will 

exceed the zettabyte threshold. Global traffic has increased fourfold over the past five 

years and will increase at a rate of 23% in the next 5 years [8]. As such, Internet Service 
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Providers (ISPs) are becoming dissatisfied with the traditional network architecture. 

Thus ISPs have started to make a slow migration towards a simpler IP-based 

architecture to handle this unprecedented growth of IP traffic in a more efficient manner 

[45]. 

An Internet Protocol (IP) over Dense Wavelength Division Multiplexing (DWDM) 

network is a promising IP-based architecture because IP provides ubiquitous inter-

network transport and DWDM technology offers high and cheap bandwidth [46]. 

Therefore, the network environment (topology, traffic and routing) in our study is an IP 

over DWDM core network. 

An IP over DWDM network is able to transport the IP traffic over DWDM network 

with little complexity between these layers. All information and data, no matter it is 

voice, data or other types of media, is encapsulated into packets using IP. Meanwhile, 

many of the service functions are separated from the underlying transport technology. 

The underlying DWDM transport technology multiplexes several carrier optical signals 

into one fibre using different wavelengths. 

Traditional optical network typically contains a Synchronous Optical NETworking 

(SONET) / Synchronous Digital Hierarchy (SDH) layer [47] and an Asynchronous 

Transfer Mode (ATM) layer [48] as shown in Figure 1. The SONET/SDH layer 

provides high speed transmission by transporting voice and data in containers in an 

efficient time-division multiplexed manner over optical fibres and the ATM layer offers 

a flexible bandwidth allocation capability. Multi-layer models generally increase the 

complexity and cost in network management and operations. With increasing 

requirements of service flexibility, reliability and transmission efficiency, there has been 

a desire to eliminate the intermediate SONET/SDH and ATM layers and run IP directly 

over DWDM [49]. As such, compared to traditional optical network architecture, the IP 

over DWDM network simplifies the network architecture and hence reduces both 

network OPerational EXpenditure (OPEX) and CAPital EXpenditure (CAPEX).  
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Figure 1. Three Models 

A number of researchers extend this concept to effectively regard the architecture as 

comprising two networks: a substrate network and a virtualized IP network as shown in 

Figure 2. In our research, we assume that the substrate network is composed of a group 

of nodes, each node comprising a physical platform (PP) and a Reconfigurable Optical 

Add-Drop Multiplexers (ROADM). The nodes are interconnected by fibre. Furthermore, 

in each node, PPs provide the hardware support for one or more virtual router (VR) 

instances whilst ROADMs offer optical switching and add / drop functions in the optical 

layer. Meanwhile, the virtualization network exists above the substrate network, which 

is composed of a set of VR instances interconnected via virtual links. A VR is an 

emulation of a physical router enabling management, configuration and monitoring of 

the routing functionality.  

As the physical resource of a PP can be shared by several VRs, a substrate network 

can, in principle, support several virtualization networks. On the other hand, a 
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virtualization network can also use the resources from several substrate networks. As 

our study initially explores to combine virtual router migration and infrastructure 

sleeping for energy saving, for the sake of simplicity, we only consider dynamically 

distributing a single virtualization network over a substrate network.  

 

Figure 2. Substrate Network and Virtualization Network 

In terms of a layered model, an IP over DWDM network is composed of two 

principal layers: an IP layer and an optical layer as shown in Figure 3 [16]. In the IP 

layer, VRs hosted by PPs can process and forward the packets carried by virtual links. 

The DWDM transponders, which possess Optical-Electrical-Optical (O-E-O) 

capabilities, can be integrated into PPs [33]. On the other hand, the optical layer 

provides the inter-connection between PPs via ROADMs. ROADMs are inter-connected 

with physical fibre links and are responsible for adding and dropping virtual link traffic 

as well as allowing transit lightpaths/optical connections to bypass PPs in the optical 

layer. Furthermore, amplifiers can be deployed on the physical fibre links to enable 

optical signals to transit long distances. 
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Figure 3. IP Layer and Optical Layer Model 

It is important to note that a link in the IP-layer could be composed of several 

lightpaths in the optical layer. We assume the number of occupied optical channels 

depends on the actual traffic load dynamically based on an adaptation mechanism 

proposed in [38]. In the adaptation mechanism, the underlying optical connectivity is 

adapted by measuring the actual traffic load on lightpaths continuously (periodically 

based on a measurement period). One or more lightpaths can be established or released 

depending on the measurement results. Moreover, there is always an optical channel that 

is reserved for each link to be a control channel for transmitting the signalling messages. 

2.2.2 Physical Platform Architecture 

In our study, a Physical Platform (PP) is a physical router which provides the 

hardware support for virtual router instance(s). In this section, we use the terms PP and 

physical router interchangeably. 
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Figure 4. Considered Physical Platform Architecture 

A PP is primarily composed of a switch fabric, line-cards, a management system and 

a router processor (CPU). A typical PP architecture is illustrated in Figure 4. A line-card 

is responsible for processing and forwarding packets which uses its local processing 

subsystem (e.g. Forwarding Information Base (FIB)) and buffer space for 

accommodating the packets via an inbound/ingress interface and an outbound/egress 

interface. Meanwhile, the switch fabric provides sufficient bandwidth for transferring 

packets between the different line-cards interfaces. It receives data from line-card 

ingress interfaces and then switches it to the appropriate line-card egress interfaces. The 

function of router processor is to maintain the overall forwarding table and distributes 

relevant parts of the routing table to the line-cards. The management system includes 

multiple functions, such as cooling, power control and alarm handling. 

We assume that a PP has a “sleeping” function which allows the PP to enter a 

sleep/standby state which consumes low energy. Traditionally, a physical router is 

designed to remain operational “24/7” and does not possess sleeping capabilities. The 

trend now is to enable the router or other related equipment to operate with an additional 

“sleeping” state for energy conservation purposes [28]-[31]. When a router is idle, it can 

enter the sleep state. Moreover, to be more energy efficient, a line-card is assumed to 

have a sleep state which consumes energy only when it is working [92].  
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Of particular importance, we assume that part of the management system always 

works whether a PP is “awake” or in its sleep state. This part of the management system 

is responsible for receiving the signalling messages, e.g. enabling a sleeping PP to 

resume working when the traffic load increases to some pre-defined level requiring it to 

accommodate a VR instance. Hence, some residual energy is consumed by the 

management system when a PP is in its sleep state (as noted in the power model in 

Section 3.8).  

In addition, because virtual router migration(VRM) technology is used in our study, 

three features of the PP architecture need to be satisfied in order to support migration: 

independence of VR, separation of data plane (DP) and control planes (CP) functionality 

and the ability to dynamically binding router‟s DP to physical substrate interfaces [44]. 

Independence of VR implies that router instances are decoupled from the physical 

substrate (i.e. the PP in our framework). The resources of a physical substrate may be 

segmented across several VR instances. Each VR has its own CP and DP functionality 

that are isolated from each other. Based on the virtualization feature, the operations of 

other VR instances co-existing on the same PP are not affected when a VR instance 

moves to a PP or leaves a PP.  

DP and CP functionality separation also means the DP and CP functionality is 

running in different environment. The DP functionality is to decide how to handle 

ingress packets by looking up the FIB and then send them to the appropriate egress 

interfaces. On the other hand, the CP functionality includes generating the network 

topology, the way to treat packets according to the different service classifications and 

discarding certain packets. Separation of DP and CP functionality feature already exists 

in today‟s commercial routers. The DP can run on the line-cards and the CP operates on 

the router processor and main memory.  

Dynamic interface binding allows a PP to dynamically establish and change the 

binding between a VR and physical interfaces. A PP is able to allocate the available 

interfaces to the VR instance whilst hosting a VR instance. On the other hand, when a 
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VR instance moves away from a PP, the interfaces associated with the VR instance can 

be released and may be assigned to other VR instance(s) according to requirements.  

 

Figure 5. Functional Representation of a Physical Platform 

Figure 5 shows a PP from the perspective of its functions including the DP, CP and 

interface binding modules. Specifically, there is a migration-aware interface called 

“data-plane hypervisor” proposed in the VROOM system which allows a VR instance to 

move among several physical routers with different DP technologies. 

2.2.3 ROADM Architecture 

A Reconfigurable Optical Add-Drop Multiplexer (ROADM) is a form of optical add-

drop multiplexer which provides flexible bandwidth assignment and configuration of 

adding, dropping or switching any wavelength to any node at any time when required 

without affecting the traffic already passing. Meanwhile, an ROADM also offers remote 

configuration and re-configuration [51]. These functions can be achieved through the 

use of wavelength blocking, e.g. a Planer Lightwave Circuit (PLC), or Wavelength 

Selective Switching (WSS). WSS has become the dominant technique because it is cost-

effective and scalable [52] [53]. As all the processing of signals is performed in the 

optical domain eliminating O-E-O conversion, ROADMs induce little delay. ROADMs 
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have been widely deployed in optical networks to provide automated provisioning 

which can reduce cost - both OPEX and CAPEX, speed up provisioning time and 

eliminate manual reconfiguration errors [54].  

An example of ROADM functions is shown in Figure 6. A group of wavelengths is 

processed in the ROADM. The incoming red and purple wavelengths are dropped and 

new red and purple wavelengths are added in the output interface. The rest of 

wavelengths pass through the ROADM node. The presence of the ROADM makes the 

IP over DWDM architecture more flexible as not all packets need to be processed at 

every node. 

ROADMs are often described in terms of degree which usually associated with the 

number of transmission fibre pairs entering and exiting an ROADM. The degree usually 

ranges from two to eight. For instance, the directions of a four-degree ROADM are 

called North (N), East (E), West (W) and South (S). A conventional and typical four-

degree ROADM architecture [52] [55] is illustrated in Figure 7. 

 

Figure 6. Abstract Representation of an ROADM 

There are two main blocks in a conventional ROADM: an optical line switch and an 

add/drop section. Firstly, the optical line switch is used for routing the incoming 

wavelengths to their appropriate output ports. In this case, there are four directions on 

the optical line switch and each direction has a Power Splitter (PS) module and a WSS 

module. The function of a PS module is to distribute the group of incoming wavelengths 
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to the WSS modules in the remaining directions as well as the demultiplexer in the drop 

module for extracting some wavelengths. A WSS module receives groups of 

wavelengths from PSs in the rest of the directions and wavelengths from the multiplexer 

in the add module for inserting wavelengths. The WSS selects the wavelengths that 

should be further transmitted to the network whilst rejecting the remainder. Secondly, 

the functions of the add/drop section is to insert or extract local wavelengths to/from the 

network directions. Add/drop functions are achieved by connecting local transponders to 

the arrayed waveguide gratings (AWGs) that can combine and separate individual 

wavelength into different physical ports. A transponder is usually full-band tunable and 

can be provisioned to any wavelength. 

 

Figure 7. Conventional ROADM Architecture 

A conventional ROADM is sometimes referred to as coloured, directional and an 

ROADM-with-contentions because it is not fully flexible and has three main constraints 
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in the add/drop section. Firstly, add/drop transponders are required to be assigned fixed 

wavelengths in order to connect to specific AWG ports, which is known as a “colour” 

add/drop technology. For example, when a wavelength is selected to be added or 

dropped, a transponder is required to be adjusted to the wavelength and connected to the 

correct port of AWGs manually. The second constraint is that an ROADM is 

directionally dependent. It means that transponders which connect to a specific 

multiplexer/demultiplexer direction only work for that direction. Hence, it requires a 

technician to unplug a transponder from one direction to another if the direction of a 

particular transponder needs to be changed. Finally, because an AWG is not able to 

process several signals which have the same wavelength, add and drop structures 

(multiplexer/demultiplexer) are partitioned to avoid the wavelength contention. 

Bearing in mind the constraints of a conventional ROADM architecture, extensive 

studies have been undertaken to enable an ROADM to be completely flexible focusing 

on architectural implementations and underlying component technologies [55]-[58]. 

Such an ROADM is called a Colorless-Directionless-Contentionless ROADM (CDC-

ROADM). The target of a CDC-ROADM is that any wavelength can be added/ dropped 

to/from any direction; a transponder can be changed to any wavelength and several 

signals with same wavelength can be freely added or dropped by any transponder in the 

add/drop section, without any manual intervention [58]. However, CDC-ROADMs also 

bring additional node cost and complexity. Although CDC-ROADMs have been 

discussed for several years, they still need some years to be realized and commercial 

because they suffers from some problems, such as the power equalization problems due 

to transients that can arise in a chain of cascaded optical amplifiers. 

Despite this, much research in the optical networking is based on a common ideal 

assumption that an ROADM has sufficient add/drop ports and each port possesses full 

add/drop capabilities [59]. We therefore assume ROADMs in our study to be CDC-

ROADM devices which can provide full flexibility adding, dropping or bypassing any 

wavelength to any direction at any time. 
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2.3 Related Work 

2.3.1 Energy Efficient Approaches 

Energy efficiency is not a new concept. In 1996, a power management standard - 

Advanced Configuration & Power Interface (ACPI) [60] was published for the Intel 

486-DW processor. Since then some energy management mechanisms and hardware 

enhancements were made but most attention was paid to increasing the efficiency of the 

Central Processing Unit (CPU). 

Around 2003, some pioneering work [23] [61] indicated that the energy efficiency 

had become an important issue for the further development of the Internet. Compared 

with the energy efficiency of wireless networks, wired networks have considerable 

space for improvement [23]. It is estimated that CAPEX and OPEX can be reduced, e.g. 

by 1 billion dollars every year, if network equipment is “power/energy aware” [61]. 

There was a relatively “quiet” period on this issue until 2008/2009 when the energy 

efficiency of the Internet became a hot topic [25] [26] [62] [64]. This was due to the 

unprecedented growth of the Internet, especially the significant increase in the customer 

population and the ongoing development of all forms of the Internet-based services. In 

order to support these increasing traffic demands, ISPs and telecom companies needed 

to increase network capacity and expand their reach by using more capable and power-

hungry network equipment. For example, high-end routers are designed as scalable 

multi-shelves architecture to provide more network functionalities. Associated with the 

use of more powerful and power-hungry equipment, the OPEX, particularly in terms of 

the electricity bill, is a significant factor due to the increasing energy prices. 

Furthermore, the carbon dioxide emissions, which are associated with electricity 

generation, cause global warming and have a considerable impact on the environment. 

As a result, the energy efficiency of the Internet has not only attracted considerable 

attention from industrial and academic communities, but has also aroused widespread 

public interest. It is important to note that it is not enough to depend on improvements in 
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the silicon technology alone to cope with the energy efficiency issues [12][13]. 

Therefore, in the last few years, various energy efficient approaches have been proposed 

for wired networks [1]-[3].  

These energy efficient approaches can be differentiated into various categories 

according to different standards. To simplify the taxonomy, we divide these approaches 

into two types: network devices and schemes that consider the network overall. The aim 

of network device approaches is to design energy efficient network equipment. On the 

other hand, overall network approaches focus on network level solutions which can be 

principally categorized into two subtypes: static and dynamic mechanisms. Static 

mechanisms consider power/energy consumption an important factor in the network 

planning and design stage. In contrast, dynamic mechanisms attempt to make better use 

of the existing network resources by traffic engineering in response to varying traffic 

loads, such as infrastructure sleeping and power-aware protocols. Note that network 

device and overall network approaches are not mutually exclusive and they can often be 

used together to improve the network energy efficiency. As our interest is in IP over 

DWDM core networks, we mainly focus on the related technologies in this area. The 

following sections summarize the state-of-the-art of energy efficient network device and 

network technologies. 

2.3.1.1 Green Network Devices 

Green network device approaches aim to design energy efficient network elements. 

This can be achieved by various mechanisms such as:  

1. Improve the energy-efficiency of silicon technologies such as Application Specific 

Integrated Circuits (ASICs), Field Programmable Gate Arrays (FPGAs) and 

network/packet processors and reduce the internal architectural complexity of 

equipment [62]-[65]; 

2. Enable the power consumption of devices to adapt with real traffic conditions or 

real utilization, such as proportional computing, link rate adaptation and sleep/standby 

mechanisms [66][67]; 
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3. Replace electrical based devices with pure optical based devices [68] [69]. 

Some attention has been given to routers to employ more energy efficient hardware 

technologies and reduce the internal architectural complexity whilst maintaining the 

same level of performance. One of the promising next generation router architecture is 

proposed by Roberts [63] suggests that routers should process traffic at the flow level 

instead of the packet level. If traffic is forwarded at the flow level, a router only need to 

route the first packet of a flow and the rest of the packets in the same flow can be 

dispatched quickly. This approach can lead to a simpler and more scalable architecture 

and thus improve the router energy efficiency. With a similar aim, a synchronous time-

based IP switching router is proposed [64], which reduces the router architecture 

complexity by synchronizing router operations and scheduling traffic demands in 

advance. The approach has a huge potential to decrease the equipment energy 

requirements whilst maintaining the same flexibility and performance.  

There are several mechanisms which enable the power consumption of a device to 

adapt to actual network traffic demands or work load such as proportional computing 

[67], sleep/standby state and link rate adaptation [72].  

Proportional Computing – This is when the power/energy consumption of a machine 

is in proportion to the amount of work performed. For example, a machine consumes 

nearly no power when it is idle. In addition, the power consumption increases gradually 

with the increasing workload. Proportional computing can be achieved by tuning the 

clock frequency (frequency scaling) [70] or/and the voltage of processors (e.g. Dynamic 

Voltage Scaling) [71]. Frequency scaling and Dynamic Voltage Scaling are able to 

provide a variable control of energy consumption and the techniques are now widely 

used in microprocessor design. 

Sleep/Standby State – Some sub-components of a device or the entire device can be 

put in a low power consumption state (i.e. a sleep/standby) rapidly when no activities 

need to be performed. Conversely, the device resumes working (is re-awoken) when 

new activities are received. For example, the sleep state is similar to a hibernation mode 
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of a Personal Computer (PC), which consumes low power when no user applications are 

running.  

In the early position paper [23], a scheme called uncoordinated sleeping is proposed 

which puts a device into a sleep state based on local information, e.g. during the inter-

arrival period between packet transmissions. Two uncoordinated sleeping schemes are 

discussed: a traditional “wake-on-arrival” approach and a proposed “buffer-and-burst” 

approach. In the traditional scheme, a sleeping device is wakened when a new packet 

arrives. Because a transition time is required between the sleep and active modes, 

energy saving is limited if the packet inter-arrival time is smaller than the transition time. 

On the other hand, in the “buffer-and-burst” scheme the traffic is shaped into burst-by-

burst units and stored in a buffer. The traffic is processed when the buffer is full. This 

scheme may provide a longer sleeping period whilst the traffic demand is light. The 

results indicate that the proposed scheme can obtain significant energy savings whilst 

having little impact on the packet loss and delay. Next, same authors apply the concept 

on Local Area Network (LAN) switches [73] and Ethernet interfaces [74]. Similarity, an 

approach is discussed in [75] in terms of grids and servers which improves opportunities 

to sleep by buffering or (re)scheduling bursts. 

Traditionally, network equipment does not possess a sleep function and is designed 

to keep running “24/7”. Due to energy conservation reasons, the trend in the research 

communities and the industry domain is now to enable routers or other related 

equipment to operate with an additional sleep/standby state.  

Recently, standardization effort has been put into enabling equipment to operate in a 

more energy-efficient manner. For instance, the IEEE 802.3az Energy-Efficient Ethernet 

(EEE) standard has been approved by the Institute of Electrical and Electronic Engineers 

(IEEE) in October, 2010 [76] [77]. EEE provides a hardware support in a physical layer 

protocol, which reduces the power consumption during times of low data activity. 

Furthermore, before EEE was approved, an energy efficient feature called Green 

Ethernet had already been introduced into Ethernet products by some companies [78]. In 
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addition to the IEEE, the International Telecommunication Union (ITU) has organized a 

series of symposia on ICT and climate change [79] and the Alliance for 

Telecommunications Industry Solutions (ATIS) also set up a specific committee to 

reduce the power consumption of equipment [80].Until now, ATIS has published three 

standards to determine telecommunication equipment‟s energy efficiency and suggested 

a performance measure called the Telecommunications Energy Efficiency Ratio (TEER) 

[81]. 

Link Rate Adaptation – The method applies the concept of proportional computing on 

network interfaces, which allows the capacity of packet processing engines or network 

interfaces to change dynamically to meet varying traffic demands [72]. Link rate 

adaptation and sleeping state are compared in terms of QoS such as end-to-end packet 

delays and losses and energy saving in [28]. The work concludes that both approaches 

are useful depending on the hardware capabilities of the device and network utilization. 

For example, an ISP can use link rate adaptation approach during the daytime and 

infrastructure sleeping at night to satisfy the different traffic requirements. 

Another solution for improving the energy efficiency is to replace the current 

electronic based devices with pure optical based devices, which has been under 

discussion for many years. Many reviews involve comparisons of energy efficiency 

among various electronic based and optical based technologies. For instance, several 

fabric switch technologies of optical and electronic packet switching are compared in 

[68]. The work summarizes that optical switch fabrics become more energy efficient as 

the data rate increases. However, the energy efficiency is limited by the optical-

electrical-optical (O-E-O) converters required for packet header recognition and header 

replacement. Similarly, several router architectures are discussed in terms of energy 

efficiency in [82]. The results indicate that an optical packet switching router which 

depends on all-optical contention resolution without a conventional store-and-forward 

mechanism can achieve high energy efficiency. Based on these comparisons, pure 

optical switching can provide terabits of bandwidth at much lower power dissipation. 

However, all optical network adoption still requires considerable development. For 
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example, there are many constraints with pure optical switching architectures such as 

the limited number of ports and the feasibility of suitable buffering schemes [1] [33].  

Although the solution sounds promising, some researchers doubt whether all-optical 

networking adoption is able to solve the looming “energy bottleneck”. For instance, in 

[10], the benefits of converting buffers and switching fabrics from electronic based to 

optical ones are discussed. Indeed, photonic buffers and switching fabrics consume 

much less power than that of electronic ones. However, the power consumption of 

electronic buffers and switching fabrics only consumes approximately 9% of the entire 

Internet power consumption. Even if all buffers and switching fabrics were replaced by 

photonic technologies, the achievable benefit might be less than 9% and hence photonic 

technologies may not be so desirable.  

2.3.1.2 Green Network 

In the context of green networks, schemes can be sub-divided into static and dynamic 

approaches. 

1. Static Mechanisms 

Static mechanisms take power consumption into account when planning, designing 

and configuring the network. 

One possible approach is to adjust the configuration of chassis and line-cards of core 

routers appropriately as core routers consume large amounts of energy. An investigation 

of the power consumption of two existing two generic router platforms is introduced in 

[33]. Based on measurements, a general router power consumption model is obtained 

which is composed of the chassis and line-cards. The results indicate that the power 

consumption varies with different chassis and line-card configurations. Meanwhile, a 

chassis with a higher fill level of line-cards is more energy efficient. As a result, it is 

better to reduce the number of chassis that are powered at a given point of presence and 

to maximize the number of line-cards per chassis from a power-aware perspective. 
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One paper which takes the lightpath bypass strategy into consideration is [25]. The 

work uses a Mixed-Integer Linear Programming (MILP) model to minimize the total 

energy consumption of network components, e.g. IP router ports, transponders and 

amplifiers. The results indicate that the bypass strategy can save 25% to 45% power 

consumption compared with the non-bypass design. However, the model is only a rough 

model focusing on the number of IP router ports used, which degrades the accuracy of 

the design. A more detailed model of a multi-shelf routing system based on existing 

commercial network equipment is explored in [27]. The results show that in terms of 

test networks and traffic matrices, up to 40% energy consumption can be saved.  

Aside designing the network infrastructure itself, locating the network equipment 

more towards strategic places can also reduce energy consumption. Consider a data 

centre as an example; cooling systems usually contribute a large portion of the overall 

energy usage. Hence, locating data centres in areas with cold weather or making use of 

natural resources (water and air) for cooling are prominent ways of cutting power 

consumption [84]. For example, Google has built their server farms around the 

Columbia River in the north-western United States in order to make use of local water 

resources as part of the cooling system [85].  

2. Dynamic Mechanisms 

Dynamic mechanisms use traffic-engineering methods to make better use of existing 

resources such as green routing and infrastructure sleeping. 

Green Routing – involves designing a new power-aware/energy-aware routing 

(protocol) which regards energy consumption reduction as an objective. The basic idea 

is to re-route traffic onto a small set of links during off-peak periods so the remaining 

links can be powered off. The pioneering work [23] [33] proposes the concepts of 

power-aware/energy-aware routing which puts components of a router to sleep such as 

portions of a line-card or an entire line-card during idle times. Later, some heuristic 

algorithms are proposed to obtain the minimum number of active links [30] [31]. 

However, the work does not take the routing protocol into account. A green routing 



 

29 

protocol called Energy-Aware Routing (EAR) based on current link-state routing 

protocols (such as OSPF) is introduced in [35]. EAR suggests only a subset of routers 

called “Exporter Router” (ER) compute the Shortest Path Tree (SPT) and the remaining 

routers called “Importer Router” can use ERs‟ SPT to decide the routing path. Hence, 

the number of active links is reduced. 

In addition, some standardization effort has been put into green routing. New OSPF 

extensions for MPLS green traffic engineering have been described in a draft for 

reducing energy consumption [87]. Extensions are used in an Interior Gateway Protocol 

(IGP)-based central controller framework. The IGP controller collects power 

consumption information of links and devices and stores it in the IGP extensions. Then, 

energy efficient paths are computed based on the power consumption information. Note 

that although green routing allows a network to act in a more energy efficient manner, it 

requires the support of energy-aware devices (e.g. a sleep function) and network design 

(e.g. enough path diversity) [86]. 

Infrastructure Sleeping – These approaches smartly and selectively place some 

unused network devices in a sleep/standby state and wake them up when necessary. 

Infrastructure sleeping is an important technology in our study and we therefore describe 

it in detail in Section 2.3.2.  

2.3.2 Infrastructure Sleeping 

Infrastructure sleeping enables the network equipment to enter a low power 

consumption state called a standby/sleep state when network activity is low and to re-

awaken it, as necessary. In the sleep state, the operational information is retained in 

order to resume working quickly. Similar to green routing, infrastructure sleeping also 

requires the support of energy-efficient hardware, e.g. some components or an entire 

device that has a sleeping capability. 

Traditionally, network architecture is designed with over-provisioning and 

redundancy features to sustain the peak hour traffic load and to provide resiliency and 
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fault tolerance. In this case, the network is frequently under-utilized in normal 

operations. Over-provisioned networks offer opportunities for reducing energy 

consumption. Moreover, due to well-known daily traffic variations [88] [89], typically 

where traffic varies in an sinusoid-like manner response to people‟s daily activities, it is 

possible to put some components or some network devices to sleep during off-peak 

hours. Thus, infrastructure sleeping appears promising and can achieve significant 

energy reductions [92] [93]. 

Despite this, a crucial problem needs to be noted. When a router or a link is in the 

sleep state (switched off), it loses the ability to exchange routing protocol signalling 

messages with other routers. This would usually trigger a series of reconvergence events. 

As a result, these reconvergence events may make the network unstable. Furthermore, 

the traffic would be re-routed along a longer path, which may be not acceptable due to 

the congestion, quality of service and the extra latency [90].  

As an example, consider the current implementation of Open Shortest Path First 

(OSPF) protocol [91]. OSPF is a link-state routing protocol and has been widely 

deployed for many years. The basic mechanisms of OSPF are introduced as follows. By 

exchanging network state information in the form of Link State Advertisements (LSAs), 

each router maintains a link state database for computing the local Shortest Path Tree 

(SPT) based on Shortest Path First (SPF) algorithm. Then, each router makes routing 

decisions according to its local SPT. Meanwhile, LSAs are exchanged both periodically 

as well as in response to network state changes in order to maintain the consistency 

across the network. Hence, if an interface of a router or an entire router enters the sleep 

state, it cannot exchange messages with its neighbours. Subsequently, its neighbours 

will generate LSAs to indicate a failed link(s). This is followed by a flood of LSA 

updates (messages) informing the active routers that the network state has changed. 

Next, every active router needs to re-computes the SPT. This is a CPU intensive task in 

a big network which could lead to network discontinuity and disruption. Therefore, how 

to handle network connectivity is important in infrastructure sleeping approach.  
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In [23], a coordinated sleeping scheme is introduced which takes a global network-

wide energy saving perspective. The basic idea is to re-route traffic via a smaller set of 

equipment and then some devices can enter a sleep state. In the case, coordinated 

sleeping collaborates with green routing to avoid the connectivity problem. Later, L. 

Chiaraviglio et al. propose several heuristic algorithms to improve the energy saving by 

switching off idle nodes and links [29] [30]. The results show that it is possible to switch 

off 30% of links and 50% of nodes during the off-peak hours. The same authors extend 

their work in a real-world scenario which employs the actual traffic profiles from the 

largest ISP in Italy [31]. The results show that an overall energy consumption reduction 

of around 23% can be achieved, amounting to 3GWh/year. However, as the work uses 

off-line algorithms with known traffic demand matrices, the connectively problem is not 

addressed. 

Another approach to avoiding the connectivity problem is to use a virtual machine 

migration which can maintain the IP-layer topology unaffected. For example, some 

researchers propose to put some line-cards of core routers to sleep during off-peak hours 

and wake them up as necessary [42]. In their work, a centralized Network Control Unit 

(NCU) is used to monitor the network conditions. If the traffic is lower than a certain 

threshold, the NCU activates a sleeping strategy which enables some idle line-cards to 

go to sleep. In addition, before a line-card enters a sleep state, all functionalities and 

resources are moved to another line-card within the same physical router to avoid 

connectivity problems. However, we argue that the base system of a router (a chassis, a 

router processor and a switching fabric) usually dominates the power consumption of 

the entire router. Therefore, from energy saving perspective, putting an entire physical 

router to sleep can conserve more energy. 

Based on network redundancy and overprovisioning features, Fisher et al. [94] 

propose a solution which shuts down the redundant cables and line-cards of routers 

instead of the entire link during periods of low utilization. They indicate that many links 

in the core networks are actually “bundles” of multiple physical cables and line-cards 

which can be switched off independently. Besides router cables and line-cards, some 
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optical devices, e.g. amplifiers and optical switches, are redundant which are installed 

for protection purposes only. Muhammad et al. [97] suggest that these redundant optical 

devices can be put in a sleep state to reduce energy consumption and they can be 

promptly reawoken (if necessary) upon a failure. 

In addition, the lightpath could be switched off for energy saving in the context of 

pure optical networks. The work [95] [96] proposes updating the virtual optical layer 

topology according to traffic demands variation dynamically by adding or deleting 

lightpaths. The traffic demand of each lightpath is monitored and a threshold-based 

scheme is applied. If the traffic demand is lower than a threshold, the lightpath can be 

removed from the virtual optical layer topology. In the opposite case, a new lightpath 

can be added into the virtual topology when the traffic becomes higher than the 

threshold. 

2.3.3 Virtual Router Migration 

Another field related to our research is network virtualization, more specifically, 

Virtual Router Migration (VRM). Since we want to avoid topology change as explained 

in Section 2.3.2, VRM is used for maintaining the layer-3 IP topology. When the traffic 

demand is low, Virtual Router instances (VRs) can be moved to a subset of Physical 

Platforms (PP) and the unused PPs can enter a sleep state to save energy. On the other 

hand, if the traffic demand increases, sleeping PPs can resume working and VRs are 

moved to appropriate PPs. In this section, some VRM related technologies are 

introduced from the concept of virtualization to live virtual router migration systems. 

Virtualization is an approach which regroups a set of mechanisms allowing more 

than one service to operate on the same piece of hardware [2]. Similarly, Network 

Virtualization(NV) means that multiple virtual networks to co-exist on the same 

substrate/physical network in order to save space, reduce hardware costs and increase 

resource utilization [98] [99]. For instance, several ISPs can operate their networks on 

the top of the same physical infrastructure using different virtual network instances 
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whilst not interrupting or interfering with each other. In reality, NV has been deployed 

successfully in the United States Postal Service system [103]. Another NV example is 

Virtual Private Network (VPN) [104] which allows a private network to go through a 

public network by establishing virtual channels for traffic isolation. 

An important question for NV is how to distribute several virtual network resources 

effectively on the same substrate network resources, which is called a Virtual Network 

Embedding (VNE) problem. VNE has been extensively studied for many years [100]-

[102]. In addition, NV can bring energy conservation benefits. For instance, in the 

current machine implementation (e.g. core routers and servers), a machine under high 

workload consumes less power than several lightly loaded ones. In this context, NV can 

improve the energy efficiency of devices by sharing the physical resources. 

A further benefit of NV technology is that it allows Virtual Machine Migration 

(VMM), e.g.Virtual Server Migration (VSM) and Virtual Router Migration (VRM) [105] 

[106]. VMM not only virtualizes the functionalities, but also provides a clean separation 

between software and hardware (virtualized machines from the underlying infrastructure) 

which enables a virtual machine to move among different physical hosts. Based on 

VMM technology, some studies have been done to explore the virtual network 

migration which is to distribute several virtual networks on the same physical 

infrastructure dynamically and effectively [107] [108]. 

In our study, we use VRM technology. In order to have a better understanding of 

VRM, the concept of a Virtual Router (VR) is introduced firstly. A VR instance is a 

logical router which separates behavioural functionality from the physical router that 

hosts the entity. Additionally, a VR includes mechanisms and tools for management, 

configuration, monitoring and maintenance. In reality, router virtualization is already 

supported in some commercial routers [112] [113]. Once router virtualization is 

introduced, it is possible to accommodate multiple VRs within the same physical host if 

the hardware supports it.  
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Generally, VRM is used for moving a VR instance amongst several physical hosts 

without impacting QoS. Hence, VRM is more complex than the router virtualization 

since it requires solving several problems such as how to minimize the outages during 

VRM and how to realize the link migration after the virtual router moves to the 

destination [44]. 

Some researchers have devoted effort to considering VRM for reducing the impact of 

planned maintenance since the downtime is a primary concern for ISPs. Typically, there 

are two types of VRM, i.e. regular (cold) and live (hot) VRM. Regular VRM moves a 

VR instance after it stops working in the initial (source) physical router. When a VR 

instance arrives at the new (destination) physical router, the VR instance is required to 

be re-started to commence work. An example of regular VRM called a Router Farm 

which is similar to a Server Farm, as proposed in [43]. In a Router Farm, customers are 

re-homed in the destination physical edge router when the source physical router needs 

to be upgraded. Because a Router Farm is realized by re-instantiating the destination 

physical router, it can lead to downtime for both the Date Plane (DP) and Control Plane 

(CP). On the other hand, in a live VRM, a VR instance continues to work on its initial 

host whilst all the state information is transmitted to the new physical host. That is to 

say, a dynamic approach is used for maintaining the packet forwarding whilst migration 

takes place to minimize the service downtime. For instance, a live VRM framework 

called Virtual ROuter On the Move (VROOM) is proposed [44]. VROOM allows VRs 

to move among different physical hosts without causing network discontinuities and 

instabilities. This migration is typically achieved in the following steps: 

1. Tunnel establish: A tunnel is established between source and destination physical 

routers. 

2. Control plane migration: An image of the VR‟s CP functionality is created and 

transmitted through the tunnel to the destination physical router. 

3. Data plane cloning: The CP functionality on the destination physical router 

repopulates the DP functionality by using the Forwarding Information Base (FIB) 

and Access Control Lists (ACLs). After new DP cloning finishes, both old and 
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new elements of DPrun concurrently on the two physical routers. The remote CP 

functionality on destination physical router is in charge of routing message 

exchanges and updating the FIB. 

4. Forwarding links duplication: Establish outgoing virtual links from the 

destination physical router to the VR‟s neighbours whilst all data traffic continues 

to flow through the source physical router. Then, re-direct the incoming links 

from neighbours to destination physical router asynchronously. During the 

asynchronous link migration, data traffic starts to flow through the destination 

physical router whilst the remaining traffic still flows through the source physical 

router. 

5. Old data plane and forwarding links elimination: once the traffic flows on the old 

forwarding links finish, as determined by a timer, the old DP functionality of VR 

on the old physical router, old forwarding links and established tunnel in Step 1 

are removed. 

However, because the purpose of VROOM is to reduce the impact of planned 

network maintenance, it focuses on minimizing the service down time during VRM and 

it does not include the mechanisms for energy saving, e.g. the events to trigger VRM 

and an algorithm to determine the appropriate destination physical router(s). That is to 

say, the issues of when to move the VRs and where to move the VRs to are not 

discussed in the paper. Therefore, although VROOM provides an important basic proof-

of-concept technology for our research, it lacks a number of key features for energy 

saving purposes. 

2.3.4 Power Consumption Model 

The power consumption model is important in energy efficient studies because it is a 

key input to measure the performance of the system. In this section, some power 

consumption models are reviewed. Generally, there are two types of power consumption 

model, i.e. component based power models and analytical power models.  



 

36 

Component based power models – These models use the power consumption of 

individual component/equipment to obtain the total power consumption by counting the 

occurrences of components/equipment [109]. These models have been widely employed 

in the research to evaluate specific energy efficiency approaches. An early position 

paper provides an investigation of the power consumption of two Cisco routers with 

different line card configurations and indicates that the power consumption of a router is 

composed of the chassis and some installed active line cards [33]. Based on the power 

consumption model, the proposed solution is to minimize the number of chassis that are 

powered and to maximize the number of line-cards per chassis. In the context of the 

optical network, Shen et al. [25] propose a model which considers IP router ports, 

transponders and optical amplifiers. They argue that the processing of an IP router port 

consumes high power due to O-E-O conversions, thus an optical bypass strategy is 

preferred in the network design that does not require the router port processing. 

Moreover, [27] proposes a model which is based on existing commercial multi-shelf 

CISCO CRS series routers.  

Analytical power models – These models estimate the total network power 

consumption by considering various factors, such as the average hop count, the energy 

efficiency of the equipment involved, traffic protection and cooling systems. For 

example, a traffic protection factor equal to 2 is applied on the power consumption of 

individual equipment when 1+1 protection is considered. The models are described in 

more detail in the studies [109]-[111]. 

2.3.5 Multi-Objective Evolutionary Algorithms 

A Multi-Objective Optimization Problem (MOOP) is common in the real world. For 

example, consider a production planning case; several objectives are typically required 

to be satisfied: (1) maximize the production rate;(2) maximize the machine utilization 

balance; (3) minimize the throughput time and (4) minimize the overall production time. 

If there is a solution that can satisfy all the objectives concurrently, the problem can be 
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transformed to be a single objective problem. However, since some objectives typically 

conflict, it is not possible to optimize all the objectives at the same time. We usually 

have to find a “trade – off” or compromise. 

An Evolutionary Algorithm (EA) is a popular way to solve MOOPs with conflicting 

objectives by evolving a group of solutions to approximate an optimal set in a single run. 

In the following sections, the basic principles of a MOOP and EA as well as EA key 

components are introduced from Section 2.3.5.1 to Section 2.3.5.3. Finally, a brief 

introduction to MOEA and its development are described. 

 

2.3.5.1 Multi-Objective Optimization Problem Concepts 

A Multi-Objective Optimization Problem (MOOP) is an optimization problem 

involving several objective functions. Mathematically, objective functions can be 

transformed into a minimization or a maximization problem, e.g. minimize an objective 

function is equivalent to maximize its negative or vice-versa. Without loss of generality, 

a MOOP can be formulated in a minimization context as follows [118]: 

Definition 1Multi-objective optimization problem: 

                                                                    

                                                                                  (2.7)                  

                            

                       

A MOOP generally includes a set of decision vectors or solutions, , which is 

composed of   decision variables                , a set of   objective functions 

                                , a set of objective vectors   that represents 

 objective variables                and a set of   constraints     .   is an n-

dimensional decision space and   is the m-dimensional objective space.    denotes a 

feasible set of decision vectors which is typically defined by constraint functions and    
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represents the corresponding feasible set of objective vectors. Figure 8 shows the 

relationship between the two spaces in a general MOOP. 

It is easy to compare two solutions in a Single Objective Optimization Problem 

(SOOP). If a solution has a better performance with regard to the objective function than 

the other solution, it is superior. The situation to compare two solutions in a MOOP is 

complex since there are many objectives that need to be considered. In order to compare 

different solutions, the concept of Pareto dominance is introduced. Pareto dominance is 

named after Vilfredo Pareto, an Italian economist who proposed the concept in his 

studies of economics. 

 

Figure 8. Illustration of Two Spaces in a General Multi-Objective Optimization 

Problem 

For any two decision vectors    and    in a minimization problem,    dominates    

if all components of the objective vector          are smaller than the corresponding 

components of         . Similarly,    weakly dominates    if    is smaller than    

for at least one component and not worse in the rest of corresponding components or if 

   equals   .    is indifferent or incomparable to    if neither    or    dominates the 

other, and they are not equal to one another. That is to say, a / some components of    is 
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smaller than the corresponding components of    whilst a / some components of    is 

smaller than the corresponding component(s) of   . The concept of Pareto dominance in 

a minimization problem is donated as follows:  

Definition 2Pareto dominance: 

                                                               

                                                                                                 

                                                                           

An example of Pareto dominance relationship is shown in Figure 9. Assume that two 

objective functions    and    are both required to be maximized and the points from   to 

  represent objective vectors in the objective space. The grey area stands for the feasible 

set     of objective vectors and it can be divided into 4 areas according to the value of 

two objective functions of  . 

 

Figure 9. Illustration of Pareto Dominance 
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of   . We can deduce that any decision vector whose corresponding objective vector is 

in Zone 2 dominates the corresponding decision vector of  . Similarly,   has better 

performance on both objective functions compared with objective vectors in Zone 3, so 

the decision vector represented by   dominates the decision vectors whose 

corresponding objective vector are in Zone 3. For points in Zone 1 and Zone 4, since the 

value of one objective function is better but the other is worse, decision vectors whose 

corresponding objective vectors are in Zone 1 and Zone 4 are indifferent to the decision 

vector represented by  . 

Based on the concepts of Pareto dominance, the optimality criterion of a MOOP can 

be described. Take Figure 9 as an example, the corresponding decision vector of   is 

optimal amongst all the points since no other decision vectors can improve an objective 

value without sacrificing the other objective value. Such a decision vector is called 

nondominated. 

Definition 3 Pareto optimality: 

                                                                

                                                                                                                              

                                                                  

Note that if all the objective functions get better or worse at the same time, a MOOP 

typically can be transformed to be a SOOP. For example, we assign weighted 

parameters to all objectives and then seek a single optimal solution. However, if the 

objectives are conflicting (most cases in the real world), e.g. several objectives cannot 

be optimized concurrently, the situation is complex. In this case, we are seeking a set of 

trade-offs or compromise solutions instead of a single optimal solution. The set is called 

a nondominated set: 

Definition 4 Nondominated set and Pareto-optimal set: 
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Moreover, the nondominated set of decision vectors‟ corresponding to the set of 

objective vectors is called a nondominated front    

Definition 5 Nondominated fronts and the Pareto-optimal fronts: 

                             

                                                                          

                                                                             

A Pareto-optimal front in different optimization problems with two objective 

functions is shown in Figure 10. 

 

Figure 10. Example Pareto Front in the Objective Space 
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Figure 11. Pareto Front Approximation and Pareto Set Approximation 

The goal of a MOOP is to find a true Pareto-optimal set. However, in most problems, 

it is NP-hard to find the true Pareto-optimal set, which is time consuming and 

computationally expensive [129]. Thus, the goal of a MOOP is usually to approximate a 

Pareto set called Pareto set approximation   . The corresponding set of     is called 

Pareto front approximation   .     and    are shown in  Figure 11. 

To solve a MOOP, two sub tasks need be considered: searching and decision-making. 

Searching is needed to seek the Pareto-optimal solutions. Decision-making involves 

choosing a suitable final solution from the Pareto-optimal set. Depending on how the 

search and decision-making processes are combined, three strategies are defined: 

 Priori: The method requires some preference information ahead of the search 

process. The goal is usually to find a Pareto-optimal solution.  

 Posterior: The method searches (or approximates) the Pareto-optimal solutions 

without any preference information. Then, a decision maker chooses a suitable 

final solution. 

 Interactive: The decision maker guides the search process by providing 

preference information interactively. During each iteration, some trade-offs are 

presented to the decision maker for selection. After the decision maker provides 

the preference information, the search continues in the preferred region. 
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The MOOP approaches we discuss in the report are Posterior, i.e. we find (or 

approximate) the Pareto-optimal solutions and then perform further operations in the 

decision making process. 

Many classical approaches have been proposed to solve a MOOP, such as the 

weighting method [115], the constraint method [115] and the goal programming method 

[116]. Classical approaches usually convert a MOOP to a SOOP. For example, in the 

weighting method, multiple objective functions are transformed into a linear 

combination of weighted objective functions. However, classical approaches are 

generally sensitive to the shape of the Pareto-optimal front or require specific 

information for adjusting the parameters that may not be available. Moreover, classical 

approaches usually require several optimization runs to obtain (or approximate) the 

Pareto-optimal solutions which consumes more computational resources [118] [119].  

Employing an Evolutionary Algorithm (EA) is one of the most popular approaches to 

solving MOOPs because it is able to search an otherwise intractably large and highly 

complex search space and probably obtain (or approximate) the Pareto-optimal solutions 

in a single optimization run. EAs are introduced in Section 2.3.5.2. 

2.3.5.2 Evolutionary Algorithms 

An Evolutionary Algorithm (EA) represents a class of stochastic optimization 

methods. EA mainly contains several variants such as genetic algorithms (GA), 

evolutionary programming (EP), Genetic Programming (GP) and Evolution Strategies 

(ES) [120]. The underlying common idea behind these EA variants is same: use biology-

inspired mechanisms such as mutation, crossover and natural selection to refine a set of 

candidate solutions iteratively. 

EAs typically work on a set of candidate solutions called a population. By employing 

two basic principles: selection and reproduction, the population is modified at each 

generation. The selection mechanism mimics the fierce competition for survival in the 

natural world. The fitter individuals have a greater chance of survival and thus to 

produce offspring. Reproduction includes mutation and crossover genetic operators, 
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which imitates the process of producing offspring, sharing the genetic information 

between parent‟s chromosomes and potentially modifying some genes. 

A general EA flow chart is shown in Figure 12. At the start, an initial population is 

generated by a random or a pre-defined method. Then, candidate solutions in the 

population are evaluated by the fitness function. Based on their fitness, some candidate 

solutions are selected to be placed in the mating pool to be parents for further 

reproduction. The selection process is called mating selection. Note that mating 

selection is stochastic. This means that fitter candidate solutions have a higher chance of 

being placed in the mating pool than the less fit ones. However, weak solutions still 

have a small chance of being selected. When mating selection completes, candidate 

solutions in the mating pool are used to produce offspring using crossover and mutation 

operators. When reproduction finishes, a new population (offspring) is generated. Since 

the offspring are generally created from the fitter candidate solutions, the average 

quality is normally better than the previous population. Then, in the environmental 

selection stage, the offspring typically compete with each other and the candidate 

solutions from the old population to survive through to the next generation. The 

selection – reproduction process repeats until the terminal condition is satisfied. This 

could be a previously defined computational limit (e.g. a maximum generation count) or 

when a solution with sufficient quality is found. 

EAs benefit from two mechanisms: exploration and exploitation. Exploration is the 

ability to create population diversity by exploring new solutions in the search space. 

Conversely, exploitation reduces population diversity by focusing on the candidate 

solutions with a higher fitness [121]. A common view is that exploration in EAs is 

performed by genetic operators (mutation, crossover), whilst exploitation is performed 

by selection [122]. Moreover, it is important to obtain an appropriate balance between 

exploration and exploitation. Many researchers believe that EAs are successful and 

effective only when a suitable ratio between exploration and exploitation is determined 

[123]. 
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Figure 12. Flowchart of Generalised EA Scheme 

EAs have many components and in the following Section 2.3.5.3, some important 

components are introduced. 

2.3.5.3 Key EA Components 

Some important EA components are introduced in this section. 

1. Individual Representation  

The first step in EAs is to link the original problem context to the problem solving 

space where evolution will take place. The link is achieved by designing an individual 

representation. A candidate solution in an EA is called an individual or a chromosome. 

A placeholder in an individual is called a variable, a locus (plural: loci) or gene. The 

value on such a place is called a value or an allele. The possible solutions in the original 

problem context are referred to as phenotypes. Mappings of phenotypes, onto 

individuals in the EAs, are called genotypes. The procedure to design a mapping 
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between phenotypes and genotypes is called representation. Individual representation is 

problem specific and encodings can vary, for example, between binary, float and integer. 

For instance, in the Travelling Salesman Problem (TSP), each city could be 

represented by an integer and a candidate solution is a set of integers that stands for the 

possible route of the salesman‟s visits [124]. Then one can decide to use a binary 

encoding to represent an individual, hence city 6 can be seen as a phenotype and “0110” 

is a genotype.  

2. Evaluation Function 

The evaluation function or fitness function is used for measuring the quality of 

individuals. The evaluation function varies depending on the problem context. It is 

important to note that the concept of an objective function in optimization problems is 

different from that of a fitness function. An objective function could be identical to an 

evaluation function if the problem requires maximization because fitness is usually 

associated with maximization. On the other hand, if the objective function requires 

minimization, it needs a fitness assignment process for the transformation between the 

objective function and the fitness function. 

3. Mating Selection 

Mating selection, or parent selection, aims to select individuals from the current 

generation to be parents for further reproduction. The structure holding the selected 

individuals is called a mating pool. Mating selection is typically probabilistic. A fitter 

individual has a higher chance of being selected than a less fit one but an individual with 

poor quality still has a small chance of being selected. Some common used mating 

selection schemes are proportional selection (roulette wheel selection), tournament 

selection and rank-based selection [125]. 

4. Reproduction Operator 

The role of reproduction is to generate new individuals. Reproduction includes two 

operators: mutation and crossover (recombination). The crossover operator produces 
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offspring by exchanging gene information from two parents. The benefit of crossover is 

that it permits the combination of the best part of each parent to generate offspring. 

Crossover is stochastic in regard to what parts of the parents‟ chromosomes are 

combined and the way these parts are combined typically rely on a series of random 

choices. The mutation operator maintains the population‟s genetic diversity by altering 

some gene values randomly. Similar to the crossover operator, the mutation operator is 

stochastic. The frequency with which these two operators are invoked is controlled by 

crossover and mutation rates. 

5. Environmental  Selection  

Environmental selection or the survivor selection mechanism is used to select 

individuals based their quality (fitness) which is similar to mating selection. As the size 

of a population is generally a constant, environmental selection is used to decide which 

individuals can survive through to the next generation depending on their fitness. 

Environmental selection is often deterministic. For instance, the current population and 

its offspring are merged and the top segment is selected according to their fitness.  

After the introduction of several EA components, some principles and the 

development of multi-objective evolutionary algorithms are presented inSection 2.3.5.4. 

2.3.5.4 Multi-Objective Evolutionary Algorithms 

A Multi-objective Evolutionary Algorithm (MOEA) employs evolutionary 

methodologies to solve problems involving multiple conflicting objectives. MOEAs 

have been applied in many real world areas, such as economics and finance [127] and 

engineering [128].   

The aim of MOEAs is to find a Pareto-optimal approximation set in a single 

simulation run. However, it is difficult to get all Pareto-optimal solutions because it is 

computationally expensive and sometimes it is even infeasible. For example, if the curve 

of Pareto-optimal front is continuous, the number of solutions is infinite. Hence, the 

more realistic objective is to find an approximate Pareto-optimal set which satisfies two 

sub-objectives: 1) the distance from resulting solutions to the Pareto-optimal front 
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should be minimized; 2) the resulting solutions should have a “good” distribution 

(usually uniform). In order to realize the above objectives, some important issues need 

to be considered such as fitness assignment, diversity preservation and elitism [144].  

Firstly, compared with SOOPs, where the objective function is sometimes identical 

to the fitness function, MOOPs need a fitness assignment process after objective values 

have been calculated for each individual. There are many strategies that can be used for 

fitness assignment, such as criterion-based and Pareto-based [145]. 

Secondly, the diversity preservation issue is to ensure that the resulting solutions 

have a good distribution. This is usually achieved by incorporating density information 

in the selection process [146]. For instance, an individual has less chance of being 

selected if it is a short distance from its neighbours. 

Thirdly, Elitism aims to avoid losing good solutions during the optimization 

procedure due to some random effects. There are two common strategies to realize the 

elitism. One is to merge the current population and its offspring after reproduction into a 

“temporary” population and then rank the individuals. The individuals in the top 

segment of the temporary population survive and become the next generation. The other 

is to establish a special population called the “archive” to hold the promising individuals 

[136]. The archive is separated from the optimization engine and is updated at each 

generation when reproduction completes. 

The development of MOEAs has seen a number of developments [132]. Initially, 

popular methods are converted a MOOP into a SOOP using an evolutionary 

methodology. These algorithms do not incorporate the concept of Pareto optimality. 

Later, in the mid-1980s, some algorithms started introducing Pareto optimality into the 

evolutionary algorithms. These algorithms include the Nondominated Sorting Genetic 

Algorithm (NSGA) [133], the Niched-Pareto Genetic Algorithm (NPGA) [134] and the 

Multi-Objective Genetic Algorithm (MOGA) [135].  

When elitism became a de facto standard mechanism in the late 1990s, the new stage 

of evolution MOEAs began. The landmark algorithm in the field is generally considered 
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to be the Strength Pareto Evolutionary Algorithm (SPEA), which introduces an external 

population called the “elite” archive to retain suitable nondominated solutions. This is 

an important feature as it guarantees that the final solutions are nondominated with 

respect to all other solutions across the total evolutionary process rather than the current 

population. After SPEA, many algorithms incorporating additional archive mechanisms 

have been proposed. The most representative of them are: Strength Pareto Evolutionary 

Algorithm 2 (SPEA2) [136], Pareto Archived Evolution Strategy (PAES) [137], 

Nondominated Sorting Genetic Algorithm II (NSGA – II) [138]. MOEAs, such as 

NSGA-II and SPEA2, have proven to be well-suited for complex MOOPs with two or 

three objectives [139].  

Current research into MOEAs has taken a number of directions. For example, 

developing new algorithms to deal with problems comprising “many” objectives [140], 

modifying existing algorithms or hybrids of existing algorithms[141]. These recent 

developments of MOEAs are covered more fully in [142]-[143]. 
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CHAPTER 3 NEW DYNAMIC ENERGY 

MANAGEMENT FRAMEWORK 

 

3.1 Introduction 

Chapter 3 describes a novel dynamic energy management framework including 

several key features. The main concept of the proposed framework is to combine Virtual 

Router Migration (VRM) together with selected sleeping of unneeded Physical 

Platforms (PPs) alongside automatic optical layer management to enable resources to be 

used in an efficient manner. The logical IP-layer topology remains unchanged because 

of the VRM. Hence, network disruption and discontinuities are avoided when PPs enter 

or leave their hibernation state. The remainder of the chapter is structured as follows. 

Firstly, Section 3.2 introduces several requirements of the network architecture and 

functionality, which are essential to operations of dynamic energy management. Next, 

the overall dynamic energy management procedure is described in Section 3.3. A single 

Virtual Router Migration (VRM) as well as multiple VRM procedures are then 

described in Section 3.4. Next, two important issues are considered, i.e. where to move 

the Virtual Router (VR) instance to and when to trigger VRM; these are discussed in 

Section 3.5 and Section 3.6, respectively. Section 3.7 describes the dynamic optical 

connection management. This is followed by the network power consumption model in 

Section 3.8. Finally, a chapter summary is presented in Section 3.9. 
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3.2 Requirements 

Our work is an initial exploration of how to reduce network energy consumption 

without adversely affecting network performance by infrastructure sleeping and virtual 

router migration. Hence, some features are required of the network architecture and its 

capabilities to enable dynamic energy management operations. These features are 

described as follows. 

3.2.1 Centralized Control Unit 

In the framework, a centralized control mechanism is used. Although all monitoring 

information needs to be brought to a single management unit which imposes a latency 

and communication overhead, the benefit is that the global knowledge can be obtained. 

Global knowledge is important in our framework as a single VR cannot make sensible 

migration decisions alone. Hence, a Centralized Control Unit (CCU) is proposed to 

supervise and coordinate various functions of dynamic energy management framework. 

Generally, Simple Network Management Protocol (SNMP) can be used to obtain the 

network state information. In our case, the CCU, which can be an adjunct to a Network 

Management Station (NMS), collects the network state information from VRs and PPs 

using a combination of SNMP get requests and trap messages. Through these messages, 

information concerning PPs and links can be ascertained. 

As we described in Section 2.2.1, an optical control channel is always maintained for 

every link. The signalling messages between the CCU and PPs / VR instances / 

ROADMs are transmitted on these control channels.  

The key functions of the CCU and theirassociated procedures are described from 

Section 3.2.1.1 to Section 3.2.1.4. 
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3.2.1.1 Network State Information Collection 

In the framework, the CCU needs to know the latest state of the network to determine 

whether to move VRs or not. Thus, network state information is collected periodically, 

e.g. at 15 minute intervals [95]. The procedure is described as follows. 

1. The CCU sends a “state enquiry” message to PPs to obtain the latest state 

information, e.g. PP state (sleep or active), PP utilization, VR workload, and 

availability of line-cards. The message is flooded.  

2. When a PP receives a “state enquiry” message, the PP collects the latest related 

data and places it in a “state” message. Then, the PPs send their “state” messages 

back to the CCU. If a PP is in its sleep state, part of its management module still 

runs in order to respond to state enquiry messages. In this case, the data related 

to VR instance is null in the “state” message. 

3. When the CCU receives all the “state” messages, it analyzes the data to 

determine if the network conditions warrant migration. 

3.2.1.2 Compute the Destination Physical Platform Selection Algorithm 

If the network conditions satisfy the migration condition, the CCU invokes the 

destination physical platform selection algorithm to choose the appropriate PPs for VR 

instances. The algorithm is described in detail in Chapter 4. 

3.2.1.3 Optical Resource Test 

When a group of solutions are obtained from the destination physical platform 

selection algorithm, the CCU initiates the optical resource test to examine whether the 

optical resources support a given candidate solution. In the test, the first-fit algorithm is 

used for wavelength assignment and the wavelength continuity constraint is also 

considered. The procedure is described as follows. 

1. The CCU sends a message to all ROADMs to obtain optical channel 

availability information.  
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2. When an ROADM receives the message, it sends a message with the optical 

channel availability information back to the CCU. 

3. When the CCU receives all messages, it computes the optical test to determine 

whether the optical resources support the candidate solution. 

3.2.1.4 Coordinate Virtual Router Migration Event 

When the candidate solution is identified, the CCU starts coordinating the VRM 

mechanism. This contains three stages as follows. 

1. Before the VRM starts, if a/some sleeping PPs are needed to host VR 

instance(s), the CCU sends a “wake” message to these PPs. When sleeping PPs 

receive a wake message, they resume working.  

2. During the VRM procedure, the CCU sends a message to the VR instances 

which are required to be moved to new locations. When these VR instances 

receive the message, they start preparing for the migration, such as creating an 

image of VR‟s CP functionality. Then, when CP functionality migration 

completes, the CCU sends a separate message to each VR instance; the 

message contains its neighbours‟ information. Further details are provided in 

Section3.4. 

3. When the VRM completes, the CCU sends a “sleep” message to PPs which do 

not host any VR instance(s). When these PPs receive the “sleep” message, they 

enter the sleep state. 

3.2.2 Virtual Router Migration 

Three features are needed to be satisfied in PP architecture: router virtualization, 

Control Plane (CP) and Data Plane (DP) functionality separation and dynamic 

interface binding, to make a VR migratable. These features are available to some extent 

in commercial routers [44].   

Router Virtualization – a router instance is separated from its physical substrate (i.e. the 

PP in our framework). The resources of a physical substrate can be segmented by 
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several VR instances. Each VR has its own CP functionality and DP functionality that 

are isolated from each other. Based on the virtualization feature, when a VR instance 

moves in or out of a PP, operations of the remaining VR instances co-existing on the 

same PP are not affected.  

CP and DP functionality Separation – the CP functionality and DP functionality of a 

VR instance run in different environments. For instance, the CP is runs on the CPU 

whilst the DP runs on the line-cards. This separation allows the CP functionality and DP 

functionality of a VR instance to be moved separately. 

Dynamic Interface Binding – this allows a PP to dynamically change the binding 

between PP interfaces and a VR. A PP is able to allocate available interfaces to a VR 

instance whilst the PP hosts it. On the other hand, when a VR instance moves away from 

a PP, the interfaces associated with the VR instance can be released and may be 

assigned to other VR instance(s) according to requirements.  

3.2.3 PP Sleep Function 

An entire PP need to have power management primitives at the hardware level which 

have the ability to enter asleep state with lower power consumption. Additionally, PPs 

should be able to enter the sleep state and resume working (active state) in a short period 

of time (e.g. few seconds or less). 

The sleep function is not supported in existing commercial routers. However, due to 

the “green” networking, the trend in the research and industry domains is to enable 

routers or other network equipment to operate with an additional sleep state. For 

example, the IEEE standard 802.3az Energy Efficient Ethernet (EEE) was approved in 

2010. A transition mechanism between active and sleep states of the EEE scheme is 

shown in Figure 13. The mechanism contains two periods: time to sleep (  ) and time to 

wake (  ). Typically, the default    is aimed to be similar to the delay of a maximum 

length packet at the target link speed [160]. For instance, values of    and    for a 

10Gb/s interface are 4.48    and 2.88   , respectively [77]. By analogy, we also apply 
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the transition mechanism between two states based on the EEE scheme. The overhead is 

the time to put a PP into a sleep state and the time to wake it up, returning them to the 

active state. 

 

Figure 13. Transitions between Active and Sleep States 

3.3 Novel Dynamic Energy Management Framework 

In this section some terms used in the framework are first defined in order to describe 

conditions to trigger VRM. Then, the overall dynamic energy management procedure is 

described. 

Firstly, we define that a Physical Platform (PP) has two states: Active and Sleep. An 

Active state means that components of a PP are working normally. On the other hand, 

when a PP is in a Sleep state, all components are put into hibernation except a small 

management module, which is used for maintaining and exchanging signalling messages. 

Next, an active PP has three operating modes: Quiet, Normal and Busy to indicate how 

busy the machine is. In order to provide hysteresis to prevent unnecessary frequent 

transitionsdue to short-term stochastic variations in the load, two thresholds, i.e. Busy 

and Quiet, are defined. These two thresholds are also used as a condition to trigger 

VRM. If some PPs are effectively underutilized crossing their Quiet threshold, it is 

preferable to consolidate their VRs on fewer remaining PPs to save energy. In contrast, 

when a / some working PP(s) cross the Busy threshold and enter Busy mode, sleeping 

PP(s) are then selectively reawakened and some VRs are moved away from PPs where 
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the traffic load is increasing to an unsustainable level. A further situation is when all 

active PPs are in their Normal mode so no VRM is triggered. 

 

Figure 14. Overall Framework Operational Procedure 

Secondly, in order to describe a VR location in the network, three terms:          , 

      and        are defined.           indicates the original location of a VR and 

every VR has its own         . If VRM does not happen, each VR runs on its          . 

We assume the traffic that arrives from an access network is always processed by a 

particular VR (irrespective of the hosting PP). Hence, if a VR moves away from its 

default PP, some additional optical connections are needed to re-direct the traffic to the 
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remotely located VR instance. A       is where the VR is presently accommodated and 

a        is the location selected to host the VR after a migration. 

The overall operational procedure of the dynamic energy management framework is 

presented in Figure 14 and the steps are described as follows. 

1. Collect and analyze network conditions.  

A centralized operating model and a reactive mechanismare used in the framework. 

At first, a centralized operating model is required because an individual VR is not best 

placed to decide when to move since it does not know the global network conditions. 

The dynamic energy management framework also needs to coordinate the functioning of 

PPs and VRs, e.g. sleeping and VRM. Hence, a Centralized Control Unit (CCU, as 

described in Section 3.2.1) is used for collecting the related network conditions. 

Typically, the network state is monitored at 15-minute intervals. The information 

includes VR traffic load, PP utilization and optical resource availability, etc. Secondly, a 

reactive mechanism is employed to trigger VRM. A reactive mechanism is one where a 

system performs operations in response to some significant changes in the network. For 

example, the CCU starts computing the destination PP selection algorithm (as explained 

in Chapter 4) when it receives a message that a Busy or Quiet threshold has been crossed.  

2. If the system satisfies migration conditions, then it selects appropriate 

destination PPs for accommodating VRs.  

The migration conditions include that some PPs are effectively underutilized crossing 

their Quiet threshold or a / some working PP(s) cross the Busy threshold and enter Busy 

mode. Under the circumstances, the destination PP selection algorithm is computed. The 

aim of the algorithm is to maximize the consolidation of VRs onto as few PPs as 

possible given various constraints. It is necessary to determine which VRs are viable 

candidates to be migrated so that PP(s) can be placed in a sleep state or to determine 

when PP(s) need to be re-awoken to accommodate VR(s). The details of destination PP 

selection algorithm are described in Chapter 4. The output of the algorithm is a solution 

describing the appropriate locations of VRs. 
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3. Switch on PP(s) if appropriate.  

After obtaining a solution from the destination PP selection algorithm, the CCU 

sends “wake” messages to a / some PP(s) in the sleep state to prepare them for 

accommodating VR instance(s). It takes a short time (as explained in Section 3.2.3) to 

wake appropriate PPs up, returning them to the active state. 

4. VR(s) are moved to their appropriate destination(s). 

Based on the identified solution, some VRs are moved to their destination PP 

locations. VRM procedure is described in detail in Section 3.4. 

5. Switch off PP(s) if appropriate.  

When (multiple) VRM completes, a PP / some PPs do host any VR. Such PP(s) is 

unneeded PP(s) and can be put into the sleep state to save energy.  

6. Return to step 1 to recheck the network conditions. 

The process repeats indefinitely or within the simulation environment, until a 

terminal condition is reached. The terminal condition can be predefined simulation 

duration.  

Figure 15 shows two scenarios (a) a normal network configuration and (b) a 

proposed energy efficient configuration. In this case, 4 VR instances are accommodated 

by their           in scenario (a). Assume that VR3 has a low workload and its 

          PP3 is in Quiet mode so the destination PP selection algorithm is computed in 

order to search for an appropriate location for VR3. The algorithm result shows that 

VR3 can be hosted by PP4 without detrimentally impacting the performance of VR4. 

Then, VR3 is moved toPP4. When VRM is complete, both VR3 and VR4 are running 

on PP4. Finally, PP3 is put into sleep state for energy saving purposes as shown in 

scenario (b). 
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Figure 15. (A) Normal Network Configuration. (B) Energy Efficient Configuration 

where PP3 is in a Sleep State and VR3 and VR4 are running on PP4. 

3.4 Virtual Router Migration 

Our dynamic energy management framework leverages a recent advance in live 

virtual router migration called Virtual ROuter On the Move (VROOM) [44], which 
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allows a VR instance to freely move between PPs avoiding unnecessary changes to the 

logical topology. VROOM is transparent to routing protocols and results in no 

performance impact on the data traffic. Thanks to VROOM, our framework can improve 

the network energy efficiency without introducing traffic disruption or protocol 

reconvergence events. 

In our work, we are not interested in accelerating or improving the VROOM scheme. 

Instead, VROOM is treated as a subroutine when moving multiple VRs to their 

appropriate PP locations in a single VRM. In this section, a single VRM is described 

briefly and subsequently a multiple VRM procedure is presented. The single VRM 

procedure is based on the VROOM system in an optical core network environment. The 

purpose of exploring a single VRM scenario is to examine the procedures used in the 

multiple VRM scenario. Finally, the migration time is discussed. 

3.4.1 Single VRM Procedure 

The live virtual router migration technology VROOM [44] has been introduced in 

Section 2.3.3. Based on VROOM, a single VRM procedure for our network architecture 

is shown as follows: 

1. Set up a temporary tunnel between       and       . The tunnel is used to transmit 

the VR‟s Control Plane (CP) state information to the new location and re-direct 

routing messages during the link migration process (as described in Step 4). 

2. The CP state is copied and transmitted from       to         via the established 

temporary tunnel. When CP state transmission finished, the migrated CP 

functionality starts exchanging routing messages via the tunnel established in Step 

1to the original DP entity with its neighbours and the old / original CP functionality 

ceases operation. 

3. Then, instead of transmitting the original DP state from       to       , the DP 

functionality is re-instantiated by the migrated CP entity on        . It takes a short 

period of time (e.g. 20 seconds) to install the new DP functions on       . During 
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this time, traffic is still forwarded by the old DP entity on       . The CP entity on 

        still acts as a remote CP entity. 

4. After the new DP state information repopulation is complete, links can be moved 

from       to       . This procedure is called link migration. In the optical layer, 

this can be achieved efficiently by dynamically reserving and releasing optical 

channels. When new optical links are established from a migrated VR and its 

neighbours, the data traffic starts being transported along the new links. During this 

period, some traffic is still transmitted on the old links. Hence, the old links are not 

released immediately. Instead, a timer is set for these old links, which is slightly 

larger than the time needs to transport the traffic through the longest path in the 

network. When the timer expires, the old links are released and the old PP may be 

put into the sleep state (if there is no VR running on it). The penalty of this 

mechanism is that the energy is not saved during the hold-down period of timer. 

5. Finally, data traffic via the old links are complete, the original DP entity on the old 

location and the temporary tunnel as well as the old links themselves can be 

removed. 

In summary, a single VRM can be divided into two stages: CP migration and link 

migration. The CP migration stage includes migrating CP operations and new DP 

repopulation. On the other hand, the link migration stage consists of establishing new 

links for the migrated VR and data traffic flows through the new links, waiting for the 

traffic on old links to complete and removing the old links, the tunnels and the old DP 

state/functions. 

3.4.2 Multiple VRM Procedure 

In our framework, one or multiple VR(s) need to be migrated if VRM conditions are 

satisfied. The number of migrated VRs is decided by the output of the destination 

physical platform selection algorithm (as discussed in Section 3.5 and Chapter 4) and 

the underlying optical resource availability (as discussed in Section 3.7). 
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Based on the single VRM procedure described in Section 3.4.1, there are two main 

methods of moving multiple VRs in our framework. Firstly, this can be achieved by 

repeating the single VRM mechanism several times according to the number of VR 

instances to be migrated. This means that a VR starts moving when the previous VRM 

has finished. However, this method has two drawbacks. Firstly, it is wasteful to set up 

and remove links several times during the consecutive VRM procedures. For example, a 

migrated VR needs to re-establish links to its neighbours from the new location. 

Assuming one of the migrated VR neighbours also needs to be moved to a new location, 

then some newly established links in previous migration may need to be removed and 

some new links need to be set up between the migrated VR and its migrated neighbour‟s 

new location. The establish-remove link process may repeat many times until multiple 

VRM completes, which is wasteful and unnecessary. Secondly, moving several VRs one 

by one takes a long time, which is not efficient. Hence, it is not desirable to move VR 

instances in a succession of VRM events. 

The second method to realize multiple VRM is to movie VR instances concurrently, 

which is more efficient. According to the two stages, i.e.CP state migration and link 

migration, in the single VRM procedure, it is not difficult to execute the CP migration 

for all migrated VR instances at the same time. This means that some temporary tunnels 

are established between source PPs and destination PPs. Then, all CPs of migrated VRs 

can be moved to their new locations to repopulate DP entities. However, the challenging 

part is how to set up new links for migrated VRs and their neighbours if some 

neighbours also move to new locations during the link migration stage. In this case, 

migrated VRs need to know their neighbours‟ updated location information (no matter 

whether they remain at their old locations or move to new locations). Fortunately, since 

a CCU is used in the framework and contains all the migration information, it can 

inform the migrated VRs of their neighbours‟ updated location information. For instance, 

when the CP functionality of a migrated VR is copied to a new location, it can establish 

new links to its neighbours based on the CCU messages. When the migrated VRs finish 
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establishing new links with their neighbours, data traffic can start flowing through the 

new links and the old links can be removed. 

The latter approach requires sharing more information with VRs during the link 

migration process compared to the VROOM mechanism. Thus, whilst it is generally 

advantageous to move multiple VR instances concurrently, the increasing system 

complexity for coordinating link migration may offset the benefits. 

3.5 Destination Physical Platform Selection 

An important question with a dynamic energy management framework is where to 

move VR instances to. We call it a Destination Physical Platform Selection (DPPS) 

problem. As network traffic demand has a well-known regular daily pattern caused by 

human activities [40] [41], the physical network composed of active physical platforms 

(PPs) can be expanded and contracted according to the varying traffic demand. Some 

VRs can be moved to a smaller set of PPs when the traffic demand is light. Much of the 

functionality in the unused PPs can then be put to sleep to save energy. As traffic 

demand increases some sleeping PPs can be re-awoken and the VR functionality 

returned to these PPs close to where the traffic load is rising. There are multiple 

constraints that need to be considered in a DPPS problem as follows: 

1. A source PP and a destination PP must be compatible with each other. If two PPs are 

not compatible, a VR may not be able to run on the destination PP. PPs (physical 

routers) produced by various vendors generally employ their own operating systems. 

If PPs come from different vendors, a “translator” or shim layer would be needed to 

enable a VR to work on dissimilar PPs, which is beyond the scope of this thesis. We 

assume that all PPs use same operating system and are compatible, though they need 

not be identical. 

2. A destination PP must have sufficient capacity to accommodate a new VR instance 

without detrimentally impacting on the performance of any VR instances it is 
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currently hosting. For example, a destination PP must have enough bandwidth to 

handle the traffic load associated with the new VR instance as well as the sufficient 

processing power. 

Fortunately, these two constraints are not difficult to be satisfied based on some 

current ISP network features. Firstly, most ISPs generally use physical routers from one 

or two vendors in order to simplify the network maintenance and decrease operational 

costs. Hence, this provides plenty of opportunities that a large number of physical 

routers can be selected as a destination PP. Then, ISPs typically design their network 

with over-provisioning in order to sustain the maximum traffic demand or some 

unexpected events. This feature may enable a PP to accommodate several VR instances. 

In summary, DPPS is a complex challenge which can be formulated as an 

optimization problem whose objectives are to maximize the energy saving and minimize 

the migration cost whilst considering two constraints above. This problem is discussed 

in detail in Chapter 4. 

3.6 Triggering Virtual Router Migration 

Another important question to be answered is when to trigger the VRM. The question 

is also about whether the traffic can be predicted. If network traffic can be predicted, a 

proactive mechanism can be used which allows a slow and complex algorithm to obtain 

the optimal result for maximizing the energy saving and minimizing the migration cost. 

Otherwise, a reactive and fast mechanism needs to be used. 

In order to explore the network traffic characteristics, a traffic analysis study has 

been undertaken as described in Appendix A using historical traffic data from the 

Abilene network. According to the data provided, results show that the traffic between 

some source-destination pairs can be predicted relatively well whilst this may not be the 

case in other instances. The traffic prediction problem is more complex than might be 
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initially assumed. Therefore, given traffic forecasting limitations a reactive mechanism 

was used in our framework. 

3.7 Dynamic Optical Connection Management 

A key constraint of the framework is to maintain the logical IP-layer topology 

unchanged whilst consolidating VRs onto smaller set of PPs to save energy when 

appropriate. According to the discussion in Section 3.4, it is possible to use VROOM to 

avoid unnecessary changes to the logical topology as well as avoid a performance 

impact on the data traffic. However, the VROOM system does not describe events in the 

optical layer. In this section, a dynamic optical connection management scheme is 

discussed in detail. 

In the optical layer, the routing of optical connections is typically based on a shortest 

path routing algorithm in order to minimize the usage of optical resources. Three types 

of optical connections are established and released dynamically in our framework.  

1. New optical connections are established between           and        to transmit 

the CP state of VR instances. These optical connections are then released when 

VRM completes.  

2. New optical connections are established between           and       if a VR is 

moved away from its default PP location. These optical connections are used for 

forwarding the traffic to the remotely located VR instance that performs the packet 

processing and exchange of signalling messages. 

3. New optical connections are established between the migrated VRs with their 

neighbours. The original optical connections between the migrated VRs‟ original 

location and their neighbours are released when VRM completes. 

Figure 16 provides a simple example illustrating how and why the architecture 

places additional demands on the optical connectivity resources. Figure 16(a) shows the 

path taken by traffic from host A to host B before VRM which passes through VR 1, 2, 
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3, 4 on PP A, B, C, D, respectively. Assuming the traffic volume of PP A is relatively 

low, VR 1 is moved to PP C and then PP A is allowed to sleep. Consequently, VR 1 and 

VR 3 are hosted in the same PP. To ensure VR 1 and VR 3 remain logically separated 

from each other, extra optical connections are added. Conversely, if this was not the 

case, and VR 1 and VR 3 were made visibly adjacent to each other at the IP layer, the 

logical topology would be affected. By permitting information to flow directly between 

them, they would exchange routing information and thus result in a change leading to a 

reconvergence event.  

 

Figure 16. Example Scenario (a) Before and (b) After Virtual Router Migration 

showing the Need for Additional Optical Connections 

Figure 16(b) shows that one optical connection now forwards traffic from the 

customer (Host A) directly to the new location of VR 3 without passing through the 

Layer-3 functionality of PP B. A new connection is then used to send traffic from VR 1 

to VR 2. The location and number of optical connections that must be created is 
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determined by the location of where the VR migrates to and the number of Layer-3 

interconnections that the VR possesses. Therefore, a migration to a remote location 

imposes an associated cost by requiring additional optical connections when the VR is 

moved to the destination PP. This is a multi-commodity problem as although it is 

beneficial to pack multiple VR instances onto the same PP, the additional optical 

resources it consumes offsets this benefit. 

3.8 Network Power Consumption Model 

In this section, a component-based power consumption model is introduced with 

reference to the network architecture described in Section 2.2.1. The power consumption 

models of important devices: Physical Platforms (PPs), Reconfigurable Optical Add 

Drop Multiplexers (ROADMs) and Optical Line Amplifiers (OLAs) are firstly 

introduced in Section 3.8.1 and then the total network power consumption model is 

summarized in Section 3.8.2.Finally, a cumulative energy consumption model is 

described in Section 3.8.3. 

In theory, optical lasers could be switched on/off based on the channel requirements. 

However, every time when one/more lasers are switched on / off, power equalization is 

required which consumes energy and takes time. Hence, in our study, we do not 

consider switching optical lasers and assume that ROADMs as well as OLAs remain 

working throughout the whole day. 

3.8.1 Individual Equipment Power Consumption Model 

It is important to note that some functions of PPs and ROADMs have not been fully 

realized in existing commercial products (as explained in Section 2.2.2 and 2.2.3), e.g. 

sleep function. Thus, publicly available product data-sheets are not able to provide 

suitable energy consumption values because these functions are not considered. When 

we build a power consumption model, we consider both the ideal architecture,which 
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contains equipment possessing a complete set of the required functionalities, and an 

existing commercial product architecture which provides some estimated values of 

power consumption. Note that the unit of power consumption of all components and 

devices is Watts. 

1. Physical Platform  

The power consumption model of a PP is based on publicly available data sheets of 

one of major commercial core routers: the Cisco Carrier Routing System (CRS) series 

[163]. Besides the conventional single-shelf router architecture, the Cisco CRS series 

also support a multi-shelf routing system which employs modular and distributed 

architectures to provide very high capacity, e.g. up to 92Tbps in CRS-1 series and up to 

322Tbps in CRS-3 series [164]. The power consumption models of single-shelf and 

multi-shelf routing systems are introduced as follows. 

Firstly, a single-shelf PP is basically made up of a base system and a line-card block. 

The base system includes a router processor, a switch fabric and some functional 

modules, e.g. power, alarm and cooling. In a single-shelf CRS, the base system is called 

a Line Card Chassis (LCC). Specifically, we do not consider power consumption to 

depend upon traffic utilization in the base system. This is because the power variation 

related to traffic utilization is only about 10% of the total in existing commercial 

products, which is less significant than the power consumption of the line-cards [25]. 

Meanwhile, the line-card block includes multiple line-card slots. In the CRS system, a 

single LCC can support up to 16 line-cards. Thus, the power consumption of a single-

shelf physical router / PP is simplified to being a sum of a base system,      , and a 

number of installed line-cards [22]. 

                                                                     (3.1) 

where      is the number of installed line-cards on the PP.    represents the power 

consumption of a line-card. The base system is called a LCC in a Cisco single-shelf 

router. Thus, Equation 3.1 can be re-written as: 
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                         (3.1a) 

where     is the power consumption of a LCC. 

Generally, a single-shelf routing system cannot support high-capacity core networks 

because the number of line-card slots is limited. Thus, router manufacturers have 

developed multi-shelf routing systems that employ modular and distributed architectures 

in order to provide high capacity in a single system. For example, a Cisco multi-shelf 

routing system uses a component called a Fabric Card Chassis (FCC) to interconnect 

multiple LCCs. Meanwhile, a FCC can connect up to 9 LCCs. Note that a LCC and a 

FCC both belong to the base system. 

In the power consumption model of a multi-shelf routing system, both the number of 

LCCs and FCCs needs to be considered. The number of LCCs,       is determined by the 

total number of installed line-cards,    , and the maximum number of line-cards each 

LCC supports    . Thus, the number of LCCs is represents as: 

        
   

   
                                                             (3.2) 

Similarly, the number of FCCs is determined by the total number of installed 

LCCs,     , and the maximum number of LCCs that each FCC can support     , as 

follows: 

       
    

    
                                                     (3.3) 

Thus, the power consumption of a multi-shelf PP is represented as: 

                      

                                                                 (3.4)    

Where    is the power consumption of a FCC. Then, we obtain     and      from 

Equation 3.2 and 3.3, so Equation 3.4 can be re-written as follows: 

                      
   

   
        

 
   
   

 

    
                      (3.4a) 
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      Based on Equation 3.1 and 3.4, the power consumption of an active PP,     , is as 

follows: 

 

                                                                              

               
   

   
        

 
   
   

 

    
                            

                 (3.5) 

Moreover, we assume that an entire PP can be put into sleep or active states 

dynamically depending on the network requirements. For instance, the entire PP can be 

put into a sleep state provided it is not hosting any VR instances. Thus, when a PP is in 

the sleep state, the base system and line-cards stop working except for part of the 

management module within the base system. The management module is maintained for 

exchanging the signalling messages, which consumes a small fraction   of the active 

base system power consumption. As a result, the power consumption of a sleeping PP 

     is: 

                                                                         

According to Equation 3.5 and 3.6, the total power consumption of PPs,      , in an 

 -node network is: 

                                                                 

Where   is the number of active PPs. 

2. Reconfigurable Optical Add Drop Multiplexer  

An ideal ROADM can provide a flexible way to add, drop or switch any wavelength 

to any direction. However, the current ROADM generation is not fully flexible (as 

explained in Section 2.2.3). In practice, the power consumption of an ROADM is 

determined by a node degree and an add / drop degree [109]. Meanwhile, the add / drop 

degree can be smaller than the node degree if some directions do not require the add / 

drop function. For example, the power consumption of an ROADM with 40 

channels,       
  , is represented as follows [109]: 
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where    is the node degree and    is the add / drop degree. 

As we require any wavelength to be added or dropped at any direction, the node 

degree needs to equal the add / drop degree. The equation can therefore be re-written as 

follows: 

      
                 

where  is the node degree. Thus, the power consumption of an ROADM can be 

expressed as          . In addition, we assume that all ROADMs remain active in 

order to support traffic transmission in the optical layer. 

The total power consumption of ROADMs,         , in an  -node network is: 

                      
 
                                       (3.8) 

3. Optical Line Amplifier  

An OLA is a device that is used for amplifying an optical signal directly without the 

need for O-E-O conversion. An OLA is typically unidirectional and a bidirectional OLA 

is composed by two unidirectional OLAs in practice. The total power consumption of 

OLAs,       , in an  -nodes network is: 

          
    

    
  

                                                  (3.9) 

where      represents the physical link length between node   and node   and     is the 

powerconsumption of a bidirectional OLA.      is the maximum allowed link length 

without the need of amplification. A typical value of      is 80km. Additionally, we 

assume that the power consumption of an OLA does not depend on the traffic and each 

OA amplifies the entire C-band. 

4. Centralized Control Unit 

We assume that the CCU can be a computer that operates the functionality as 

described in Section 3.2.1. In the simulation, a desktop computer is used and the 
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configuration of the computer is described in Section 6.2. As the simulation results show 

in Section 5.6, the computer is able to compute the destination physical platform 

selection algorithm in tens of seconds which is satisfactory, given the monitoring 

interval. The desktop computer typically consumes around 50 Watts [192], which is 

trivial compared with a physical router or ROADM. Hence, we neglect the energy 

consumption of the CCU. 

3.8.2 Total Power Consumption Model 

In the framework, every node in the substrate network is composed of a PP and an 

ROADM. Based on the Equation 3.7 -3.9, the total power consumption        of an N-

nodes network is thus: 

                                                            (3.10) 

3.8.3 Cumulative Energy Consumption Model and Energy Efficiency 

In this section, two cumulative energy models are described, i.e. a Base-line scenario 

without VRM and an Energy-efficient scenario with VRM. Based on these two models, 

the energy efficiency of the framework can be computed. 

Firstly, we assume that the overall duration is   and there are N nodes in the network 

labelled from 1 to N. Meanwhile, the initial power consumption of a node   is   
 . In the 

base-line scenario without VRM, the cumulative energy consumption is as follows: 

              
   

 

   

                                                                 

Then, in an energy efficient scenario, we assume that there are K VRM events and 

the time of  th VRM event is denoted as   
 

. At the same time, after the  thVRM, the 

power consumption of the node   may change and it is denoted by    
 
. The relationship 
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between the migration time and the node power consumption after the migration is 

shown in Figure 17. 

 

Figure 17. Relationship between Migration Event Time and the Node Power 

Consumption after Migration 

The cumulative energy consumption for a node   can be represented as: 

    
    

     
    

     
     

    
        

       
    

       
       

   

                 
   

    
 

   
   

  

 

   

  
       

                                                                  

Thus, the total cumulative energy consumption,     , in an N-nodes network is: 

           
   

    
 

   
   

  

 

   

  
       

  

 

   

                                              

According to Equation 3.11 and 3.13, the percentage energy saving of the framework 

is presented as follows: 
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3.9 Summary 

In this chapter, a novel dynamic energy management framework is proposed. A key 

constraint of the framework is to maintain the logical IP-layer topology unchanged 

whilst consolidating VRs onto a smaller set of PPs to save energy, when possible. Hence, 

Virtual Router Migration (VRM) and the turning off of some unneeded Physical 

Platforms (PPs) are combined with an automatic optical layer management scheme to 

enable resources to be used in an efficient manner. In order to realise this new energy 

management framework, some requirements of the network architecture and associated 

functionalities are firstly described such as a centralized control unit for collecting the 

network state information and a PP and its components to possess a sleep function. Then, 

the overall dynamic energy management procedure is illustrated followed by an 

examination of several important issues such as the VRM procedure, where to move VR 

instances to and when to move VR instances. 
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CHAPTER 4 DESTINATION PHYSICAL 

PLATFORM SELECTION ALGORITHM 

 

4.1 Introduction 

In Chapter 3, the crucial issue of where to move virtual router instances to in a 

dynamic energy management framework (i.e. destination physical platform selection) is 

introduced. In order to solve this problem, we develop an evolutionary-based algorithm 

called Virtual Router Migration Multi-Objective Evolutionary Algorithm 

(VRM_MOEA) in Chapter 4. The remainder of Chapter 4 is organized as follows. 

Initially, Section 4.2 describes the destination physical platform selection problem. 

Then, some reasons why we use an evolutionary-based algorithm are given in Section 

4.3. Next, the proposed algorithm VRM_MOEA is detailed in Section 4.4. Finally, a 

chapter summary is given in Section 4.5. 

4.2 Problem Description 

An important consideration in the dynamic energy management framework is how to 

select appropriate Physical Platforms (PPs) to move Virtual Router (VR) instances to, 

given various constraints. We call a Destination Physical Platform Selection (DPPS). 

DPPS is used to determine which VR instances are viable candidates to be migrated so 

that some PPs can be placed in their sleep state during off-peak hours, or to determine 

which PPs need to be re-awoken ready to accommodate VR instances during busy 

periods. 
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DPPS can be represented as follows. Let          be a substrate network 

where   is a set of PPs,                 and   is a set of physical links. Let 

        be a virtualized network where    is a set of VR instances,  

                and   is a set of virtual links. Let           be a function 

that maps the set of VRs onto the set of PPs. For instance,              represents 

that     is running on    . 

An initial mapping            represents each VR instance is running on its 

default PP. For a Virtual Router Migration (VRM) event, the current mapping (before 

the migration) is             and the destination mapping (after the migration) 

is          . The aim of DPPS is to determine an efficient method to assign VR 

instances onto appropriate PPs. The mapping of the virtualized network and the 

substrate network is changed from       to      . When the network condition 

satisfies any migration conditions, VR instances are assigned to PPs appropriately, 

satisfying objective functions and various constraints. Migration conditions, objective 

functions and constraints of DPPS are described as follows. 

 Migration Conditions 

In order to determine the appropriate migration conditions, relevant terms are 

defined in Section3.3. A brief review is provided as follows. A PP has two states: Active 

and Sleep. An active PP has three operating modes: Quiet, Normal and Busy. Two 

thresholds: Quiet and Busy are defined to distinguish between the three modes. Quiet 

and Busy thresholds are used as a condition to trigger a VRM event; they also provide 

hysteresis to prevent unnecessary frequent transitions. Based on these concepts, a VRM 

event is triggered in the following conditions: 

1. If some PPs are in the Quiet mode, and are effectively underutilized, it is 

preferable to consolidate their VR instances on fewer remaining PPs. The 

unneeded PPs can be then put into their Sleep state to save energy. 
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2. Some sleeping PPs are selectively re-awoken when working PP(s) cross their 

Busy threshold. Then, VR instances are selectively moved away from PPs where 

traffic load is increasing to an unsustainable level. 

 

 Objective Functions 

In DPPS, the two objective functions that need to be optimized are described below. 

1. The overall network power consumption is required to be minimized. 

Maximizing the consolidation of VR instances onto as few PPs as possible for a 

given traffic demand without degrading the network performance is preferred. 

Consequently, surplus PPs can be placed in the Sleep state to save energy. 

2. The cost associated with VRM is required to be minimized. We also define three 

terms: a default PP (          ), a current PP (      ) and a destination 

PP          in Section3.3. They are used to represent different PP locations of 

VR instances in the network. In DPPS, we focus on two types of migration cost. 

The first type considers the additional optical resources from a          to its 

      . The longer the distance between            and       , the larger is the 

associated cost. The second type of the cost takes into account the distance from 

      to       . If      and      are far away from each other, it requires using 

a longer optical channel to transmit the VR instance. 

 

 Constraints 

Some constraints need to be considered in DPPS as follows. 

1. A      and a        must be compatible with each other. If two PPs are not 

compatible, a VR instance may not be able to run on the       . In our study, we 

assume that all PPs are compatible. 

2. A        should be able to accommodate new VR instance(s) without 

detrimentally impacting the performance of any VR instances it is currently 

hosting. 
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3. The optical resources must be able to support the new network configuration. For 

the wavelength assignment task, although all-optic wavelength conversion has 

been discussed for 20 years, it has not yet led to practical products that could be 

deployed in commercial networks [193]. Hence, the wavelength continuity 

constraint is considered in our scheme so O-E-O conversion is not permitted for 

pass-through optical connections. This requires sufficient optical channels of the 

same wavelength to transit traffic flows to remote VR(s); if not, the migration 

cannot take place. In addition, if all-optic wavelength conversion is possible, it is 

beneficial for the scheme as it removes a constraint on the optical layer. 

Finally, based on the concepts of a MOOP in Section 2.3.5, a decision vector (a 

solution) is               , where    represents a PP location of the     in DPPS. An 

objective vector is                , where                           and 

                 , given various constraints. 

4.3 Why MOEA 

According to the problem description in Section 4.2, an algorithm is required to meet 

the following conditions: 

1. The algorithm is able to obtain reasonable solutions across different scenarios, i.e. 

during off-peak hours and peak hours. Generally, the two objectives of a 

potential solution are conflicting. For example, a solution that saves large amount 

of energy may also have a large VRM cost. This is due to that the consolidation 

of VR instances onto fewer PPs may explicitly increase VRM cost. 

2. The algorithm is able to provide a reasonable solution in a relatively short time, 

such as 5 minutes or less. If the computation is slow, the network conditions may 

change significantly whilst a solution is being sought. In addition to the 

algorithm computation time, another period of time is also needed to complete 

the VRM procedure. Hence, a quick algorithm is preferred. 
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3. The algorithm can generate a group of solutions that provides more opportunities 

for VRM. The optical resource availability is not considered in the DPPS 

algorithm due to the computational complexity. However, the optical resource 

availability limits the possibility of VRM. Hence, having a group of solutions 

may provide more chances for a viable VRM. 

4. The algorithm is able to search a large potential solution space efficiently. 

Although the number of candidate solutions is finite if the size of network is 

known, the search space can be large. The number of candidate solutions is 

  without considering constraints in an N-node network. For instance, a 

solution space of a 10-node network can consist of      individuals. It is time-

consuming work to examine all candidate solutions. Hence, it is preferential to 

find algorithm that can search efficiently. 

Considering the four requirements above, an algorithm based on Multi-Objective 

Evolutionary Algorithms (MOEAs) called Virtual Router Migration – MOEA 

(VRM_MOEA) is developed. The definitions and principles of Evolutionary 

Algorithms (EAs) and MOEAs are addressed in Section 2.3.5. A brief introduction is 

also provided as follows.  

EAs typically start with a set (population) of candidate solutions generated by a 

random method or a predefined scheme. A candidate solution is also called an 

individual or a chromosome. In this chapter, we use the term candidate solution, 

individual and chromosome interchangeably. The population is then refined iteratively 

by employing two basic principles: selection and reproduction. The selection 

mechanism mimics the fierce competition for survival in the natural world. The fitter 

individuals survive and have a higher chance of producing offspring. The poor quality 

individuals are usually eliminated from the population. A reproduction mechanism, 

including mutation and crossover genetic operators, imitates the process of producing 

offspring, in the hope of producing individuals with better fitness (quality). The 

selection and reproduction operations repeat until a stopping criterion is reached, such 



 

80 

as the maximum number of iterations (generations) has been reached or the quality of 

solutions stops increasing. 

MOEAs are typically used for solving problems involving multiple conflicting 

objectives by EA mechanisms. As several objectives are conflicting, there is no single 

solution which is able to simultaneously optimize all objectives. Hence, the outcome of 

multi objective optimization problem (MOOP) is a set of “trade-offs” or compromises. 

As we described in Section 2.3.5.1, there are many methods to solve MOOPs. 

Compared with other methods, MOEAs are able to find a diverse set of solutions for 

difficult problems with non-convex, discontinuous solution-spaces as MOEAs are 

population-based methods. MOEAs can probably obtain (or approximate) Pareto-

optimal solutions in a single optimization run instead of obtaining one solution each run 

[147]. In addition, MOEAs usually do not require weight, scale or prioritized objectives 

[147]. Therefore, MOEAs are one of the most powerful mechanisms to solve the multi-

objective problems (often with conflicting goals) and have been successful applied to a 

wide range of practical problems [148]. Note that MOEAs provide a generic 

methodology and they need to be customized to the particular problem. 

Based on the advantages of MOEAs, we develop an algorithm called VRM_MOEA 

using a MOEA methodology. The VRM_MOEA algorithm is described in detail in 

Section 4.4.  

4.4 Destination Physical Platform Selection Algorithm-

VRM_MOEA 

In this section, the details of the destination physical platform selection algorithm – 

VRM_MOEA are presented. Initially, the parameter design is described in Section 4.4.1, 

which provides the notations for variables and counters in the algorithm. Next, two 

important issues, i.e. a chromosome encoding and a viability test are introduced in 
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Section 4.4.2 and Section 4.4.3, respectively. Finally, the steps of VRM_MOEA are 

described in Section 4.4.4. 

4.4.1 Parameter Design 

The VRM_MOEA parameter design is described as follows. 

1.  : The number of nodes in a network.  

2. Let          be a substrate network where    is a set of PPs, 

                 and   is a set of physical links. 

3. Let          be a virtualized network where    is a set of VRs,  

                 and   is a set of virtual links. 

4.       the maximum number of line-cards of a PP. 

5.  : the percentage number of the number of line-cards, which is used for reserving 

line-card resources in a migration constraint. 

6.    : the required number of line-cards of a VR. 

7.      : the capacity of a PP. 

8.      : the traffic load of a VR. 

9.       : a PP location where a VR is running on.  

10.       : a PP location where is a (potential) destination of a VR after a VRM event. 

11.          : a PP location where is the initial location of a VR. 

12.   : the length of a candidate solution/ a chromosome / an individual. 

13. PP state: Active and Sleep state. 

14. PP operating modes: Quiet, Normal and Busy. 

15. Two thresholds of a PP: Busy threshold      and Quiet threshold       . They are 

the percentage number of a PP capacity. 

16.   : the initial primary population. 

17.   : the primary population at generation  .  

18.      : the size of a primary population. 

19.   : an initial secondary population. 
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20.   : the secondary population at generation   . 

21.      : the size of a secondary population. 

22.   : the mating pool at generation  . 

23.      : the size of a mating pool. 

24.   : the mutation rate.         . 

25.   : the crossover rate.         . 

26.  : a generation counter. 

27.      : the maximum number of generations. 

4.4.2 Chromosome Encoding 

In VRM_MOEA, a chromosome/an individual/a candidate solution is a string 

representation which indicates a possible mapping of VR instances onto PPs. There are 

several encoding choices in EAs, e.g. bit-string, floating points and integer 

representations. Because both VRs and PPs are labelled with a unique decimal 

number         in an N-node network, it is natural and straightforward to use an 

integer representation in VRM_MOEA. 

In a chromosome, the particular position or locus is called a gene. The gene 

represents the index of a VR instance. For example, the first gene represents    . The 

length of a chromosome is also determined by the number of VR instances. Moreover, 

the numeric value of a gene is referred to as allele value or allele which represents the 

index of a PP which hosts the corresponding VR instance. 

An example of a chromosome is shown in Figure 18. The allele values of the 

chromosome are “121421”. Firstly, the chromosome length indicates there are six VR 

instances and PPs in the network, assuming the default sate is for one VR to reside on 

one PP. However, in this case we can also see that these six VR instances are assigned 

onto three PPs, i.e.    ,    and     because the allele values are 1, 2 and 4.    ,     

and     are assigned onto    because the 1st, 3rd and 6th genes have allele value 1. 

Similarly,     and     are assigned onto    and     is assigned to   . On the other 
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hand, as there is no 3, 5 and 6 appear in the chromosome, this means that    ,      and 

     can be put to sleep if the chromosome is selected as a new network configuration. 

 

 

Figure 18. An Example Individual / Chromosome 

Generally, a random method is used for generating chromosomes in the initial 

population so each allele value is randomly selected from the (i.e. 1 to N). However, 

this random method has a drawback that it does not consider migration constraints (as 

explained in Section 4.4.3). For example, a PP may be assigned several VR instances in 

the random method even if it does not have enough physical resource. Hence, in order 

to make sure that a chromosome satisfies various constraints, a viability test is applied 

to the chromosome. If a chromosome is not able to pass the test, it is eliminated from 

the population. The migration constraints and the viability test are explained in Section 

4.4.3. 

4.4.3 Viability Test 

In VRM_MOEA, a viability test is required when a chromosome is created in order 

to satisfy two migration constraints, i.e. PP capacity and the number of PP line-cards. 

The details of these two constraints are described as follows. 

 PP capacity  

A destination PP should have enough resource to accommodate (potential) allocated 

VR instances. A PP cannot be considered as a destination PP if it will be in Busy mode 

Chromosome length set to sum of VRs

1 2 2 141

Allele gives PP location

Gene, VR index
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after accommodating several VR instances. Thus, a busy threshold,      , is used to 

guarantee this constraint. 

Let    
 

 be the number of VR instances which are assigned to a specific PP 

called   and              
   

   be the set of these VR instances. Meanwhile, 

     
  denotes the traffic load of a VR instance in     and      

 
 represents the 

capacity of    . Hence, the PP constraint for    is represented as: 

      
 

   
 

   

            
 

                                                         

 Number of PP line-cards 

The number of line-cards in a PP is another important constraint that needs to be 

considered in the viability test. The maximum line-card number of a specific PP 

called    is denoted as   
 

. When several VR instances are assigned to the same PP, the 

sum of the required number of line-cards must not be larger than    
 

. However, in order 

to reserve some line-card resources to handle the traffic (if it increases), a safety margin, 

which is a percentage of the number of line-cards in a PP,  , is introduced. 

Similar with the PP capacity constraint, let    
 

 be the number of VR instances which 

are allocated to    . The maximum number of line-cards of    is    
 

. Hence, this 

constraint can be represented as follows: 

    
 

   
 

   

      
 
                                                                   

where    
  is the required number of line-cards of    .Note that both Equation 4.1 and 

4.2 are applied for all PPs which need remain working in a candidate solution. 

The viability test is invoked when a new candidate solution is created, i.e. in the 

initial population generation and in the reproduction process for offspring at each 
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generation (as explained in Section 4.4.4 Step 1 and Step 6, respectively). A candidate 

solution can be put into the corresponding population only if it passes the viability test. 

Otherwise, it is eliminated. The create- eliminate process repeats until the 

corresponding population is full.  

4.4.4 VRM_MOEA Steps 

In this section, the steps of VRM_MOEA are described. Three populations: a 

primary population   , a secondary population   and a mating pool   are used in 

VRM_MOEA. The primary population is a regular population which is replaced by 

offspring every generation. The function of the secondary population is to archive 

nondominated solutions so no matter how many generations are iterated, the best 

nondominated solutions are retained. The mating pool is used for accommodating 

parents‟ chromosomes that produce offspring. The size of the three populations is 

constant in VRM_MOEA.  

The algorithm flowchart is shown in Figure 19 and each step is described in detail 

from Step 1 to Step 7. The evolution of three populations at each generation is 

illustrated in Figure 20. The step number (i.e. from Step 2 to Step 6) along with the 

arrows indicates the sequence of the corresponding operation(s) amongst three 

populations. Step 1 works on the initial primary population and the secondary 

population and the output of VRM_MOEA is generated in Step 7. 
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Figure 19. VRM_MOEA Flowchart 

 

Figure 20. Population Evolution 

Step 1: Initialization 

At generation  = 0, an initial primary population    and an empty secondary 
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is generated randomly so it needs to be examined by the viability test (as explained in 

Section 4.4.3). If the new candidate solution passes the viability test, it is put into  . 

Otherwise, it is eliminated and the generation process repeats until    is full. 

Step 2: Evaluation 

In the evaluation stage, each candidate solution in the primary population is 

evaluated and then assigned two objective values. These two objective functions are 

described as follows. 

 Power Consumption 

The first objective function considers the power consumption of a candidate solution. 

The objective value is calculated by the power consumption model in Section 3.8. 

Because all ROADMs and OLAs remain working throughout the day, the function 

focuses on the PP power consumption. 

 VRM Cost 

The second objective function is the VRM cost. In this investigation, the VRM cost 

is considered in terms of the additional optical resources consumed that is associated 

with the cost during the VRM process and after VRM. For simplicity, VRM cost is 

measured in terms of hop-distance. In order to describe the hop-distance clearly, a 

function          is used for representing the hop-distance between two PPs, i.e. PP a 

and PP b. 

The VRM cost comprises two components. The first VRM cost component takes into 

account the additional optical resources from           to       . When a VR instance 

is not running on its          , some additional optical connections are required to 

transmit traffic (as explained in Section3.7). Hence, the first migration cost component, 

      , of an individual,  , is: 
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where         
 

 is           and      is a potential        for    . 

The second component considers the cost within the VRM procedure. Because a 

temporary tunnel needs to be built to transmit the CP state of a VR instance, the second 

cost component calculates hop-distance from       to       . The second VRM cost 

component,       , of an individual,  , is: 

                        
 

    

 

   

                                             

where         
 

 is       and     is a potential        of     . 

We use a linear weighted method to compute the total VRM cost. According to 

Equation 4.3 and 4.4, the total VRM cost of an individual,  , is represented as: 

                                                                           

where       is a weighted coefficient of two migration cost components. 

Step 3: Fitness Assignment 

When the evaluation step completes, the primary population and the secondary 

population are merged into a “temporary” population for fitness assignment. The size of 

this temporary population is the sum of       and        except at the first generation as 

the initial secondary population is empty. We apply a fitness assignment as in SPEA2 

[136] on the basis of Pareto dominance. SPEA2 considers both the number of 

dominating and dominated solutions of each solution using two methods: dominance 

rank and dominance count.  

Firstly, dominance rank records the number of candidate solutions by which a 

solution is dominated. A strength value is assigned to each solution according to the 

number of solutions it is dominated by. Let      be a strength value of a solution . 

Hence,      is represented as: 

                                                                                         (4.5) 
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where    represents the primary population at the t-th generation and    is the secondary 

population at the t-th generation.  stands for multi-set union so       represents the 

temporary population.   is any individual in the temporary population.      denotes the 

cardinality of a set which measures the number of elements in the set.   is a Pareto 

dominance symbol which is defined in Section 2.3.5.1.    represents that 

solution  dominates solution  . According to Equation 4.5, every solution in the 

temporary population has a strength value.  

 

Figure 21. Example of Strength Values of Candidate Solutions 

An example of strength values is shown in Figure 21. Assume that both functions 

need to be maximized and the Pareto front is represented by the dotted grey line. For 

points            , their strength values (labelled under the points) are determined by 

the number of solutions they dominate. For example,   dominates  and  , so its 

strength value is 2. 

This example also describes why dominance rank information is not enough to 

determine the fitness value of solutions. Although both   and   have the same strength 

value,   is better than   because there is no solution that can dominate d whilst   is 

dominated by  . Hence, for a given solution, the number of solutions it is dominated by 

needs to be considered. This is considered in the dominance count method. 
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Then, after obtaining the strength value of solutions, a dominance count method is 

used for determining the fitness value. The fitness value of a certain solution is 

calculated by summing up the strength values of its dominators (solutions which 

dominate this solution). The fitness value,       of a solution   is represented as follows: 

                                                                 

           

 

where   is any solution in the temporary population.  

 

Figure 22. Example of Fitness Values of Solutions 

An example of the fitness value of solutions is shown in Figure 22. For example,   is 

dominated by  ,   and  , its fitness value is the sum of strength values of  ,   and   

(according to Figure 21). Based on the example, we can see a large fitness value means 

the solution is dominated by many solutions and conversely the fitness value of 

nondominated solutions is zero, e.g.   and  . Hence, it is important to note that a higher 

fitness value actually corresponds to the solution being less fit in SPEA2 fitness 

assignment. Furthermore, the fitness value of a solution may not be fixed. A solution 

(assuming it survives over several generations) can have different fitness values 

depending on its relationship with other solutions at each generation. 

Step 4: Environmental Selection 
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Environmental selection determines which solutions in the primary and secondary 

populations (referred as the temporary population) form the next generation secondary 

population. We apply a truncation method [136] in environment selection to select a 

constant number of solutions to update the secondary population.  

Firstly, all the nondominated solutions in the temporary population are copied into 

the next generation secondary population. The size of this nondominated solution set is 

denoted as      . Secondly, one of three actions is taken depending on the secondary 

population size        and       , namely: 

 If                , the secondary population update completes. 

 If             , the remaining places in the secondary population are occupied 

by the best dominated solutions from the temporary population, as necessary.  

 If            , excess nondominated solutions are eliminated from the 

secondary population based on their density information given by the K-nearest 

measurements [146]. This means the solution with the minimum distance to 

another solution is iteratively eliminated until              . If two solutions 

have same distance with their nearest neighbours, the distance to the second 

nearest neighbour is compared. The solution with smaller distance to the second 

nearest neighbour is then eliminated. An example of this elimination process is 

given in Figure 23. Assume that two functions need to be maximized and dotted 

grey line stands for the Pareto front. If        is five, two solutions in Figure 23(b) 

of the seven potential solutions in Figure 23(a) are eliminated according to their 

distance to their nearest neighbours. 
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Figure 23. Example K-nearest Method 

Step 5: Mating Selection 

After the secondary population update completes in Step 4, mating selection is 

performed to determine which solutions are chosen from the secondary population to 

form the mating pool to reproduce offspring. The mating pool is cleared before the 

mating selection at every generation.  

The selection mechanism we use is a tournament selection with replacement. It 

means that two solutions are randomly selected from the secondary population. After 

comparing their fitness, the better solution is copied into the mating pool. If both 

solutions have the same fitness value, one of them is randomly selected. The process 

repeats until the mating pool is full. It should be noted that no matter whether or not 

solutions are copied into the mating pool, they remain in the secondary population 

subject to the constraints (truncation method) given in Step 4. This is to ensure that 

good nondominated solutions persist between generations. 

Step 6: Reproduction 

In the reproduction stage, offspring is created by two operations: crossover and 

mutation, controlled by a crossover rate and a mutation rate. Before reproduction, the 

primary population is emptied ready for holding offspring. 
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Initially, two chromosomes from the mating pool are selected randomly to be the two 

parent chromosomes. Then, according to crossover and mutation operators, two children‟ 

chromosomes are generated. Next, two children are tested by the viability test (as 

explained in Section 4.4.3). The offspring that passes the test can be put in the primary 

population. Otherwise, the unqualified offspring is eliminated. Then, two chromosomes 

from the mating pool are selected randomly again to be two parent chromosomes. This 

process repeats until the primary population is full. Finally, increment generation 

counter       and go to Step 2. 

Crossover and mutation operators are described in detail as follows. 

Crossover produces offspring by exchanging gene information from the two parent 

chromosomes. The power of crossover is that it permits the combination of the best part 

of each parent to generate better offspring. In the binary representation, there are many 

kinds of crossover such as: one-point crossover, two-point crossover and uniform 

crossover. For real coded algorithms (such as integer and floating point representations), 

the performance of traditional crossover methods may be poor. Some real-coded 

crossover operators, such as arithmetical crossover, geometrical crossover and Blend 

crossover [149][150] have been proposed.  

In this section, two crossover operator mechanisms that are used in the simulation 

are described. Their performance in the framework is shown in Section 5.6. Let 

      
    

     
   and       

    
     

  be the two parent chromosomes which are 

selected to perform crossover and a child is denoted as  . Two crossover operators are 

described as follows. 

1. Simple one-point crossover [159] 

In simple one-point crossover, the position of crossover point is firstly randomly 

selected. Then, the two parent chromosomes are broken into two parts according to the 

crossover point. Finally, the first part of parent 1 and the second part of parent 2 are 

combined to be the first offspring. By analogy, the second offspring is generated by 

combining the second part of parent 1 and the first part of parent 2. 
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Let a randomly selected crossover point position be               and two 

childrenbe    and    . After one-point crossover,    and     are represented as: 

  = (  
    

      
      

      
 ) 

  = (  
    

      
      

      
 ) 

An example is illustrated in Figure 24. It shows that the randomly selected position is 

3. After crossover, the first and the second parts of the two parent chromosomes are 

swapped to form two child chromosomes.  

 

Figure 24. Example Simple One Point Crossover 

2. Blend crossover 

Blend crossover (     ) is a popular real-coded crossover operators [151]. Let a 

child be            . The allele value of each gene    in a child is a randomly 

(uniformly) selected number of the interval    
    

  , where  

            
    

   

            
    

   

            

  
            

Parent 1

Parent 2

< 1  ¦ 3 ¦ 5 ¦ 2 ¦ 2 ¦ 6 >

< 3 ¦ 2 ¦ 4 ¦ 4 ¦ 5 ¦ 6 >

1      2       3      4      5

Child 1

Child 2

< 1     3     5     4     5     6 >

< 3     2     4     2     2     6 >

¦

¦

l index

l = 3
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and  is a positive parameter. Typically,   is equal to 0.5 [151]. 

The interval of random generation for a gene with a blend crossover operator is 

shown in Figure 25. An example of 6-node network is shown in Figure 26. Note that the 

values in the interval    
    

   are not all feasible. Take a 6-node network as an example; 

the feasible allele values are from 1 to 6. However, according to crossover definition, 

the selected interval can exceed the feasible interval ([1, 6]). If this happens, the allele 

value of the gene is selected from the feasible interval. 

 

Figure 25. Interval of Random Generation for a Gene with Blend Crossover 

 

Figure 26. Example Blend Crossover 

Mutation is used for maintaining the genetic diversity from one generation to another 

by altering some gene values randomly. For each gene in a chromosome, a uniform 

random variable is firstly generated in the interval [0, 1]. If the random variable is 

smaller than the user-defined mutation rate, the gene can be modified to any feasible 

value by a random method. Mutation operators may alter one or more gene values in a 

chromosome. An example of mutation operator is shown in Figure 27.  

Parent 1

Parent 2

<  3     2     4     3     4     3  >

<  6     6     2     1     5     6  >

Offspring < 2      3       4       4      4       2  >

Selected 
Interval

[2,6]  [1,6] [1,5]  [1,4]  [4,5]  [2,6]

Randomly selected
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Figure 27. Example Mutation Operator on the 4
th

Gene 

Step 7: Final Solutions 

When a terminal condition, which is the maximum number of generations in our case, 

is reached, the simulation stops. Then, the secondary population in the final generation 

is the outcome. 

4.5 Summary 

An important consideration in the dynamic energy management framework is how to 

select appropriate physical platforms to move virtual router instances to, given various 

constraints. Chapter 4 describes a novel evolutionary-based algorithm called 

VRM_MOEA to solve the problem. 

Firstly, this problem is described in Section 4.2and some conditions are required to 

be satisfied in a potential algorithm in Section 4.3. Then, an evolutionary-based 

algorithm called VRM_MOEA is developed to solve the problem in Section 4.4. We 

use an integer encoding to represent an individual since PPs and VRs are labelled with 

decimal numbers. In order to make sure every individual satisfies the migration 

constraints, a viability test is used for filtering out the unqualified solutions.  

Finally, the steps of VRM_MOEA are described in detail in Section 4.4.4. There are 

three populations in the algorithm, i.e. the primary population, the secondary population 

and the mating pool. The primary population is a regular population that is replaced by 

offspring every generation. The secondary population is used to archive nondominated 

solutions so no matter how many generations are iterated, the best nondominated 

<  3     2     4     3     4     3  >Individual

Mutation happens

New Individual <  3     2     4     6     4     3  >
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solutions are retained. The mating pool is used for accommodating parent chromosomes 

that are used to produces offspring. By selection and reproduction mechanisms, these 

three populations are updated at each generation until the terminal condition is reached, 

i.e. the maximum number of generations in our case. The output of the algorithm is a 

group of solutions, which are stored in the secondary population. 
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CHAPTER 5 SIMULATION MODELLING 

AND PARAMETER SETTING 

 

5.1 Introduction 

A dynamic energy management framework is proposed in Chapter 3 and an 

evolutionary-based algorithm VRM_MOEA is developed to address the destination 

physical platform selection problem in Chapter 4. The next step is to build a valid, 

credible and appropriately detailed simulation model in order to evaluate the performance 

of the framework. Hence, a stochastic and discrete-event simulation tool was created and 

is described in this chapter. 

The remainder of Chapter 5 is organized as follows. Initially, various components of 

the simulation tool are introduced in Section 5.2, including simulation entities, the 

components of discrete-event driven simulation, the simulation events, the event graph 

and the simulation flow chart. Then, several functional simulation modules are described 

from Section 5.3 to Section 5.5, e.g. the network topology and traffic models. Next, we 

explore the appropriate parameter values to be used in VRM_MOEA, e.g. the mutation 

rate, crossover rate and the number of offspring in Section 5.6. Next, the validation of 

simulation model is described in Section 5.7. Finally, Section 5.8 presents a chapter 

summary. 

5.2 Simulation Tool 

There are various means by which the framework could be simulated including the use 

of existing software (e.g. some commercial software or open source programs) or 



 

99 

building a new bespoke simulator. Generally, existing software can provide an extensive 

library of models and sometimes it is easier to debug. However, as our framework is new, 

no suitable protocols or architectural models are present in existing software; these would 

have to be created. Furthermore, we also need a means of simulating packet flows over 

high-speed optical links over many hours. This is not feasible with a traditional packet-

level simulator. Instead we constructed a new hybrid fluid flow / packet simulator that 

can achieve this and possess all the features we required.  

This simulation tool was built using C/C++ with Microsoft Visual Studio 2012 and 

enabled us to evaluate the performance of the dynamic energy management framework 

over many hours of simulated time. The data traffic is modelled as time-varying flows 

and signalling information is modelled as discrete packets. The optical channel resources 

are also modelled as finite countable entities (e.g. the number of wavelengths per channel) 

and the wavelength continuity constraint is applied when new optical connections are 

constructed in response to VRM events, i.e. establishing optical connections to remotely 

located VR instances. 

The simulation tool was also created based on a stochastic and discrete-event driven 

simulation. Firstly, a stochastic simulation means that there is at least one random input 

component in the system which results in a random output [155]. Thus, the output of a 

simulation trial (or run) is regarded as an estimate of the true characteristics of the model. 

In order to get close estimate of the true characteristics, multiple simulation runs with 

different random number seeds are required. Secondly, a discrete-event simulation 

indicates that system operations are composed of a series of events. An event is defined 

as an instantaneous occurrence which changes the state of the system [154]. The order of 

events is controlled by a simulation clock and chronological sequencing of the event-list. 

When the leading event is removed from the event-list, the simulation clock moves to the 

time stamp of this event and the period between the old event and the new event is 

skipped. As the discrete-event simulation is driven by a sequence of events instead of 

fixed time increments, it can greatly accelerate the simulation. 
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5.2.1 Simulation Entities 

Simulation entities are objects, which request resources or communicate with other 

entities in a simulation. Simulation entities and a brief description are shown in Table 1. 

Table 1. Simulation Entities 

Entity Name Description 

Source An object that generates the traffic. The traffic contains 

information such as source and destination. 

Destination The final object that receives the traffic. 

Physical 

Platform 

An object that hosts one or more VR instances. It has finite 

resource such as switch (fabric) capacity and the number of 

line-cards. 

Virtual Router An object that processes and forwards the traffic. 

ROADM An object that adds, drops and switches optical signals in the 

optical domain. 

Fiber An object that contains a group of finite optical channel 

resources. 

Channel An object which is used for transmitting the traffic in the 

optical domain 

Centralized 

Control Unit  

An management unit which collects the network condition 

information, computes VRM_MOEA, coordinates VRM 

events, etc. 

Population An object that holds a group of candidate solutions in 

VRM_MOEA. It can be modified to be a primary population, 

a secondary population and a mating pool. 

Individual An object which contains the mapping information of VRs 

and PPs. 

 

5.2.2 Components of Discrete-Event Driven Simulation 

A discrete-event driven simulation is used to create an imitation of a system with a 

computer program. Computer programs generally have a clear structure. Likewise, 
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discrete-event driven simulations use some common components [155]. The components 

of our simulation are described as follows. 

Simulation clock: a variable which presents the current value of simulation time. 

When the earliest (leading) event is extracted from the event list, the simulation clock 

moves to the time stamp of this event and the period between the event and the previous 

executed event is skipped. As an event occurs instantaneously, no simulation time elapses 

whilst the event occurs. Note that the unit of the simulation clock can be any suitable 

period of time in the real world. In our simulation, the unit of the simulation clock is one 

second. 

System state:  a group of variables which describe the system at a specific moment. At 

least one of these state variables changes when an event occurs. An example of system 

state in our simulation is the state of a PP (active or sleep). If a PP does not host any VR 

instances, the state of PP can be changed to “sleep”. 

Event list: a “to do” list that controls the timing of the occurrence of events. The event 

list is effectively an event schedule, which ranks the events based on their occurrence 

time. The event list may be composed of many entries and each entry contains the event 

information, e.g. event time, event type and some variables need to be the input of an 

event. Typically, events are added or removed dynamically during the simulation. An 

event is usually generated by another event and then is inserted in the list according to its 

intended event occurrence time. On the other hand, an event is eliminated from the event 

list when the event is complete. The types of events in our simulation are explained in 

Section 5.2.3. 

Statistics: a set of variables that are used for storing the statistical information of 

interest to track the performance of the system. For instance, the accumulated energy 

consumption of the network and the number of occupied optical channels in our case are 

tracked during the simulation. 
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Initialization routine: a subprogram which initializes the simulation model, e.g. 

simulation clock, system state and statistics and initial events. The initialization routine is 

invoked when the simulation clock is equal to zero. 

Timing routine: a subprogram that obtains the next event from the event list and the 

simulation clock moves to the time stamp of next event. 

Event routine: a subprogram that updates the system state and statistics when an event 

occurs. Note that each type of event has its own event routine. Each event routine is 

described in detail in Appendix B, Part 1.  

Random number generator: a subprogram or a set of subprograms to generate random 

numbers. The random number generator in the simulation is introduced in Section 5.5. 

Terminal condition: a predefined condition to end the simulation. Generally, the 

triggering of events may result in the creation of other events. Hence, a discrete event 

simulation theoretically can run indefinitely. Thus, a terminal condition is required to 

stop the simulation. Typical conditions include that setting the maximum number of 

events or defining a maximum value of a statistical measure. In our case, the maximum 

simulation clock time is used because we are interested in the network operations over a 

specific period of time (e.g. one day or one week). 

Report generation: a subprogram which collects and computes system statistics. When 

the terminal condition is achieved, a report is generated as the output of the simulation. In 

our simulation, the report contains information such as the results of VRM_MOEA 

algorithm, the total energy saving and the time of VRM events. 

The relationships between these components are described in the simulation flow chart 

in Section 5.2.5. 

5.2.3 Simulation Events 

The basic element of a discrete-event driven simulation is an event, which is defined 

as an instantaneous occurrence that changes the system state. In this section, we identify 
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nine types of events based on the network operations in Table 2. The event routine of a 

particular event is described in detail in appendix B, Part 1. The logical relationship 

amongst events is described in Section 5.2.4. 

Table 2. Types of Events 

Event Type Event Description 

Src_gen The change in flow rate is generated at a source. 

Arrival The traffic arrives at a VR instance. 

Departure The traffic leaves a VR instance. 

Reach_destination The traffic reaches a destination. 

Collect The CCU collects the network condition information. 

VRM_MOEA The VRM_MOEA algorithm is computed. 

Optical_test Used for examining whether a candidate solution can be 

supported by the optical resources. 

VRM Virtual router instance(s) move to their destination 

physical platform(s). 

End_simulation End of simulation. 

 

5.2.4 Event Graph 

In this section, we use a simplified event graph to present the relationships amongst 

different types of event. An event graph [156] is a popular method of graphically 

representing the logical relationships within discrete-event driven simulations. In the 

event graph, an event is represented by a node (vertex) and nodes are connected by arcs 

(edges). Arcs indicate the relationship between events. The event graph of our network 

system is shown in Figure 28. 

There are several notations to indicate types of events in Figure 28. An event, which is 

at the end of a thin jagged arrow, is required to be scheduled when the simulation clock is 

zero as the event cannot be scheduled by other events. In our case, Src_gen, Collect and 

End_simulation events need to be scheduled initially. Meanwhile, an event, which is at 
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the end of a heavy, smooth straight arrow or a heavy curved arrow, can be scheduled by 

the event at the beginning of arrow after a time delay. For example, the Src_gen event 

can re-schedule itself and schedule an Arrival event.  

In addition, a label above a heavy straight arrow represents the condition needed to 

schedule the following event. If the condition is not satisfied, the following event is not 

scheduled. In Figure 28, the label “C1” represents that one of the migration conditions 

needs to be satisfied so a VRM_MOEA event can be scheduled. Similarly, “C2” means 

when a candidate solution is supported by the optical resource, the following VRM event 

can be scheduled.  

 

Figure 28. Simulation Event Graph 

5.2.5 Simulation Flow Chart 

The flow chart of the implemented discrete-event driven simulation is shown in Figure 

29. An initialization routine is firstly invoked. The initialization routine includes setting 

the simulation clock to 0, reading parameters and constants from input files (e.g. a 

network topology configuration file) to initialize the network architecture, and initializing 

the system states and statistics. An event list is also created which contains Src_gen, 

Collect and End_simulation events which cannot be scheduled by other events. 

Src_gen Arrival Departure Reach_dest

Collect VRM_MOEA Optical_test VRM

End_simulation

C1 C2
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Figure 29. Simulation Flow Chart 

When the initialization routine completes, the timing routine is then invoked to fetch 

the next event and the simulation clock is advanced to this event (simulated) time. 

According to the type of next event, the corresponding event subroutine is invoked. The 

event subroutine usually includes updating the network state and statistics, scheduling 

further events and inserting them into the event list.  

Then, the simulation terminal condition is examined. If the terminal condition is 

satisfied, the estimates are computed and then exported to output files. The simulation 

finally ends. Otherwise, the simulation continues, i.e. the timing routine is invoked again 

Start

End

Invoke the initialization routine

Invoke the timing routine

Invoke the event routine

Report generation

Terminal condition is 

satisfied?

No
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1. Set simulation clock = 0

2. Set terminal condition
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1. Determine the next event type 
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event time

Based on the event type, do the 

corresponding operations as follows:

1. Update system state

2. Update statistics
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1. Compute estimates
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to fetch the next event. In our case, the maximum value of simulated time is used as the 

terminal condition, which is contained in an End_simulation event. Hence, when the 

End_simulation event is fetched, a report is generated and the simulation then stops. 

5.3 Network Topology 

In this section, two types of network topology are introduced, i.e. three reference 

network topologies from previous work and a simple network topology generator that is 

used for investigating the relationship between the network node degree and the 

framework performance. 

5.3.1 Reference Network Topology 

Three reference networks are used, i.e. a 6-node-8-link small size network (6N8L) 

[27], the National Science Foundation NETwork (NSFNET) with 14 nodes and 21 links 

(14N21L) [27] and the Abilene network with 12 nodes and 15 links (12N15L) [169]. The 

numbers along the arcs are the span lengths between nodes and unit is kilometers. The 

topologies of these networks are shown from Figure 30 to Figure 32. 

5.3.2 Random Network Topology Generator 

One factor, which may affect the performance of the dynamic energy management 

framework, is the network topology. An important metric of the network topology is the 

average network node degree. In our scenario, the average node degree represents the 

ratio of the number of PPs to links.  

The network node degree may affect the performance of the framework. For example, 

a VR instance has more choice of destination PPs in a network with a higher node degree 

if the same migration cost is considered. Hence, besides the three reference network 

topologies described in Section 5.3.1, we also developed a simple Random Network 
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Topology Generator (RNTG) for exploring the relationship between the performance of 

framework and the average network node degree. 

 

Figure 30. 6-node-8-link Network Topology 

 

Figure 31. NSFNET Network Topology 

 

Figure 32. Network Topology of Core Abilene Network 
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Network Topology Generators (NTGs) are used typically to generate network 

topologies using some real Internet characteristics to test the performance of network 

protocols in the simulation. In theory, the network protocols are designed to be 

independent of the underlying network topology. However, network topologies can 

impact the performance of network protocols [170]. In order to test the performance of 

protocols, realistic network topologies need to be generated.  

How to generate network topologies with real Internet characteristics is an open 

question. Several generations of NTGs have been proposed. The first generation NTGs 

were developed based on the assumption that a network topology is totally random. A 

typical such NTG is Waxman [171], which generates uniform nodes in a plane and the 

link creation probabilities are determined by the Euclidean distance between the nodes. 

Later research revealed that real network topologies are not random, but they have a 

deliberately hierarchical structure [172]. Representative NTGs are Transit-Stub [173] and 

Tiers [174] in this generation. Then, the authors of [175] indicated the degree distribution 

to follow a power-law in the Internet. This discovery makes the beginning of the third 

generation of NTG [176]-[179].  

However, the NTGs above are usually developed for generating the large-scale 

structure of the Internet, which can consists of thousands of nodes. In our study, the 

objective networks are the Tier-2 networks which usually have dozens of nodes, such as 

14-node-21-link NSFNET and 12-node-15-link core Abilene network. Thus, these 

existing NTGs may not suitable for our study and we developed a simple RNTG instead.  

The RNTG generates the network topologies randomly for a given number of nodes 

and links. All links are bidirectional. The main concept is to first connect two nodes 

together. A third node is then connected to a randomly selected node from the first two. 

The remaining nodes are linked with a randomly selected node from the previously 

introduced nodes. After all nodes are linked into the network, the remaining links are 

used for connecting any two randomly chosen nodes. The algorithm is described in Table 

3 and the RNTG verification is shown in Appendix B, Part 4. 
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Table 3. RNTG Algorithm 

 Algorithm: RNTG  

Input: NUM_NODE; //the number of nodes in the network 

Input: NUM_LINK; //the number of links in the network 

Data:  i; //counter 

Data: Nodei; //the i th node in the network 

Data: Node_A, Node_B; // any node in the network 

Output: Degree [NUM_NODE]; // array of degree number of each node 

Output: Connection_Matrix [NUM_NODE][NUM_NODE-1]; // network connection of each node  

Begin 

1 Connect(Node1, Node2) 

2 For i = 3 to NUM_NODE  

3 Choose a Node_A  randomly from the existing network  

4 Connect  (Node_A, Nodei) , Node i is added into the network 

5 End for 

6 For i = NUM_NODE -1  to NUM_LINK 

7     Choose any Node_A and Node_B satisfying Node_A!=Node_B and no link between Node_A 

and Node_B 

8 Connect(Node_A, Node_B) 

9 End for 

End 

5.4 Traffic Model 

The data traffic is modelled as time-varying flows. Although data traffic is stochastic 

in nature giving rise to significant variation about the average flow rate, in our case, we 

are dealing with aggregated flows over relatively long timeframe. Under these 

circumstances, it is common to represent the traffic using a fluid approximation [161] 

[162]. In the simulation, we used two types of traffic, i.e. a sinusoidal traffic model and 

an historical traffic demand matrix taken from the Abilene network.  

Typically, the traffic in a Tier-2/3 network has a regular diurnal pattern based on 

people‟s activities, which is high during working hours and much lighter in hours 
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associated with sleep [40] [41]. In order to explore the effect of traffic variation with time, 

a sinusoidal function is used for modelling the traffic with a daily periodicity [30]. We 

also assume that for each pair of peering nodes in the network, they have a similar daily 

traffic pattern. 

Given an N-node network, let     be the traffic demand from a source node   

        to a destination node          , then     at simulated time   is: 

              
   

 
                                             (5.1) 

where     is the amount of traffic going from node   to   and   is a random noise variable. 

In addition,   is a parameter to control the percentage of the peak traffic that is used to 

represent the off-peak traffic. For example, if the amount of off-peak traffic is equal to 20% 

of the peak traffic,   is equal to 0.2. Meanwhile,   is a parameter related to the simulation 

time unit. For instance, if the unit is 1 minute in the real world, then  
  

    
 . 

We also used a historical traffic demand dataset in order to investigate the 

performance of framework over the real network data. In research community, it is not 

difficult to find a dataset of single or several capture traffic traces [182] [183] or BGP 

routing data [184] [185]. However, the traffic demand matrix of a network is rare. This is 

because for ISPs, the traffic demand information is usually protected and not published 

for security reasons. Till now, as far as we know, the available publicly network traffic 

dataset are from the GEANT [40] and the Abilene network [186]. 

 In our study, we used the Abilene network dataset. The Abilene network is a 

backbone network created by the Internet2 community. The clients of Abilene network 

are mostly universities and affiliate institutions in the United States [187]. The core 

network has 12 nodes and 15 links. The traffic demands of 144 pairs of sources and 

destination are collected every five minutes over a discontinuous 24 weeks. The unit of 

traffic is kbps. The traffic demand over the 1
st
week, the 13

th
 week and the 24

th
 are shown 

in Appendix B, Part 2.  
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5.5 Random Number Generator 

The random number generator we used in the simulation is a combined Multiple 

Recursive Generator (MRG) [155], which supports up to 10,000 streams with seed 

vectors spaced 10
16

 apart. Details are given in Appendix B, Part 3. 

5.6 VRM_MOEA Parameter Setting 

An essential issue in MOEAs is to determine appropriate parameter values, e.g. the 

mutation and crossover rate and the number of offspring. This is because parameter 

values usually have influence on the performance of a MOEA, i.e. whether the algorithm 

can find a Pareto set approximation and whether it can find such a group of solutions 

efficiently. 

Traditionally, these parameter values can be selected based on some conventions. For 

example, the mutation rate is usually low (e.g. 0.01 or 0.1) and crossover rate is usually 

high (e.g. 0.95) [188]. However, because a given application usually has its own features, 

these conventional values may not always be good. Under these circumstances, 

experimental comparisons are usually required in order to determine the appropriate 

parameter values.  

Generally, determining appropriate parameter values (i.e. parameter setting) in 

MOEAs is not a trivial problem; sometimes it is a time-consuming task. Much effort has 

been spent to develop good heuristics for parameter setting. These parameter setting 

methods are commonly divided into two types: parameter tuning and parameter control 

[189]. In the case of parameter tuning, the aim is to find good parameter values before 

running the algorithm. During the run, each parameter is configured with a fixed value. 

Alternatively, the parameter control method starts a run with initial parameter values and 

suitable control strategies; and then the parameter values are modified automatically 

based on control strategies during the run-time of the algorithm. Compared with 
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parameter tuning, parameter control is more complex. Nevertheless, for a specific 

application, even parameter tuning can be difficult because of limited knowledge 

concerning the relationship between parameters and the performance of the algorithm as 

well as the large number of parameter options [190]. For example, it is not easy to select 

a good mutation rate          as its domain contains infinite options. One solution is to 

run the experiments with several sample values (           ) and then to select a good 

mutation rate value based on the algorithm performance. 

Given this background, we explore how to select appropriate parameter values of 

VRM_MOEA. The remainder of the section is organized as follows. Initially, Section 

5.6.1 introduces the objective of parameter setting and two measurement metrics. Then, 

Section 5.6.2 describes the impact of various parameters on the performance of 

VRM_MOEA with associated discussions. Finally, some appropriate parameter values 

are summarized in Section 5.6.3. 

5.6.1 Objective and Performance Metrics 

In our study, we use a parameter tuning method to find the appropriate parameter 

values based on experimental comparisons. There is a two-fold objective for tuning the 

parameter values in VRM_MOEA as follows: 

1. Complete VRM_MOEA in a limited period of time.   

2. Obtain a group of reasonable solutions.  

In summary, the objective is to find a group of good solutions efficiently in a limited 

time. Typically, the network state information is collected every 15 minutes to examine 

whether the network conditions satisfy the need for VRM. If this is the case, 

VRM_MOEA is computed. Hence, VRM_MOEA is an online algorithm that needs to 

obtain a group of reasonable solutions quickly.  

In order to measure the performance of VRM_MOEA with various parameter values, 

two measurement metrics are used, i.e. the computational effort and the quality of 

solutions.  
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Firstly, there are several ways to measure the computational effort of MOEAs, e.g. the 

number of fitness evaluations and the CPU computational time. As we focus on 

completing the algorithm in a limited period of time, we use CPU computational time to 

represent the computational effort. Secondly, comparisons of different simulations with 

various parameters are not easy in MOOPs. Hence, several performance metrics have 

been proposed [152] [153]. We selected a popular performance metric called 

Hypervolume [152] to measure the quality of solutions. Hypervolume is a performance 

metric considering the size of the objective space covered by the solutions. A higher 

value of Hypervolume indicates a group of solutions possess better quality as they cover 

the bigger share of the objective space. 

 In order to calculate the size of the objective space covered by the solutions, a point 

called the reference point is needed. Hence, setting a suitable reference is important for 

calculating the value of the Hypervolume. Generally, the reference point    is set to be the 

original point in maximization problems, e.g. (0,0) in a two dimensional objective space. 

On the other hand, in minimization problems,  is usually set to exceed the maximum 

values of each objective. 

Formally, let                  be a set of   decision vectors. The function 

      gives the Hypervolume enclosed by the union of the polytopes           , 

where each    is formed by the intersections of the following hyperplanes arising out of 

   , along with the axes: for each axis in the objective space, there exists a hyperplane 

perpendicular to the axis and passing through the point                               . 

For example, in a two dimensional (2-D) objective space, each    of a solution   

  represents a rectangle defined by the reference point             and              . 

The size of the union of all such rectangles covered by the solutions is used as the 

measure: 
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where     is the standard Lebesgue measure. 

The graphical representation of Hypervolume in a 2-D maximization problem and a 2-

D minimization problem are shown in Figure 33(a) and Figure 33(b), respectively. The 

blue dots stand for the solutions in the objective space and the black dot is the reference 

point. The grey area represents the Hypervolume which is the union of the rectangles that 

are defined by the solutions and the reference point. 

 

Figure 33. Graphical Representation of Hypervolume 

5.6.2 Parameter Impact 

In this section, the impact of different parameters in VRM_MOEA is investigated. 

Firstly, the appropriate values of mutation and crossover rate are explored in Section 

5.6.2.1. Then, the impact of the maximum number of generations, the number of 

offspring and mating pool size are described from Section 5.6.2.2 to Section 5.6.2.3, 

respectively. Next, the impact of traffic load and number of nodes are investigated in 

Section 5.6.2.5 and Section .5.6.2.6. 

5.6.2.1 Mutation and Crossover 

(a) (b)
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In this section, we explore the appropriate values of mutation and crossover rate in 

VRM_MOEA. In VRM_MOEA, the mutation rate is the probability of a mutation 

happening per gene per generation. Hence, the range of the mutation rate is [0, 1].For 

example, if the mutation rate is 0.5, there is 50% chance that the mutation occurs on a 

gene per generation. Similarly, the crossover rate indicates the probability that two parent 

chromosomes experience a crossover. The range of the crossover rate is [0, 1]. 

In order to measure the performance of VRM_MOEA with various mutation and 

crossover rate values, two measurement metrics are used as explained in Section 5.6.1, i.e. 

the computational time and the quality of solutions. 

Note that from Figure 34 to Figure 36, the step interval of the mutation rate and 

crossover rate is 0.1 and the maximum number of generations is 5000. The mutation 

mechanism used is “point mutation” and the crossover mechanism is “one point 

crossover” (as described in Section 4.4.4, Step 6). For the sake of simplicity, the average 

values of 10 simulation runs with random seeds are shown. 

Firstly, some experiments are conducted on the computational time with different 

settings of mutation and crossover rate as shown in Figure 34. 

It is clear that for a certain crossover rate, the computational time increases with the 

mutation rate. This is because a high mutation rate leads to a random search which 

increases the probability of failure in the viability test. That is to say, with increasing 

mutation rate, more genes are mutated in a chromosome and the offspring may be 

effectively generated randomly. As the viability test (as described in Section 4.4.3) is 

used to examine if the offspring satisfies the migration constraints, the randomly 

generated offspring may not be able to pass the test. If an offspring cannot pass the test, it 

is eliminated from the offspring population and then the reproduction procedure 

(including the mutation mechanism) repeats until the required number of viable offspring 

is achieved. 
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Figure 34. Computational Time of Various Mutation and Crossover Rates 

 

Figure 35. The Accumulated Number of Failures of the Viability Test with Various 

Mutation and Crossover Rates 

In order to observe the effect of the viability test, the accumulated number of failures 

of the viability test is explored with various mutation and crossover rates. Figure 35 

shows the accumulated number of failures when the maximum generation count is set to 

5000. It is clear the number of failures has a similar trend to the computational time in 

Figure 34. It indicates that with a higher mutation rate, more individuals need to be 
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generated in order to have a certain number of qualified individuals (offspring that passes 

the viability test), which result in a longer computational time. 

Furthermore, when the mutation rate is from 0 to 0.3 and from 0.8 to 1, the increasing 

rate of the computational time is smaller than the rate in the range from 0.3 to 0.8. This 

means that changes of mutation rate have a larger impact in the range [0.3, 0.8]. On the 

other hand, for a certain mutation rate, the computational time of the cross rate has little 

variation. The crossover mechanism has only a small impact on the computational time. 

Secondly, the impact of different mutation and crossover rates on the quality of 

solutions is shown in Figure 36 using the Hypervolume metric. Based on the 

Hypervolume definition in Section 5.6.1, a population with better quality has a higher 

value of Hypervolume. In Figure 36, we compare the values of Hypervolume when the 

maximum generation count is set to 5000. 

On the one hand, for a certain crossover rate, the values of Hypervolume are lowest 

when the mutation rate is 0 (no mutation); when mutation rate is from 0.1 to 0.4, the 

values of Hypervolume are highest. This means that configuring the algorithm with a 

small mutation rate has good performance. Then, with an increasing mutation rate from 

0.4 to 1, the values of Hypervolume quickly reduce. This is because a high mutation rate 

leads to a random search which does not help to improve the quality of solutions. Thus, in 

this case a small mutation rate [0.1, 0.4] is preferred. 

Nevertheless, for a certain mutation rate, the values of Hypervolume have little 

variation with various crossover rates. The crossover mechanism has little impact on the 

performance of VRM_MOEA. This result is similar with the computational time result 

shown in Figure 34. 
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Figure 36. Hypervolume with Various Mutation and Crossover Rates 

Figure 36 indicates that the mutation mechanism is necessary and important within 

VRM_MOEA as the algorithm performance is the worst when no mutation is 

performed. In contrast, without one point crossover, VRM_MOEA still shows good 

performance with a low mutation rate. Two possible explanations are as follows: 

1. It indicates that the single-point crossover may not be an appropriate crossover 

mechanism in VRM_MOEA as it seems do not help to improve the quality of 

the solutions. More effort may be needed to search for an appropriate crossover 

mechanism. Hence, another popular crossover mechanism, called BLX-a (as 

explained in Section 4.4.4), is used in the experiments (the results are shown in 

Appendix C, Part 1). The trend in the results of computational time and the 

quality of solutions with BLX-a crossover are similar to that of the single-point 

crossover. This leads to the second explanation. 

2. According to the results of two crossover mechanisms, the crossover mechanism 

may have limited impact on the performance of VRM_MOEA. This may come 

from the nature of destination physical platform selection problem. Swapping 

parts of the parent chromosomes usually does not bring benefit and sometimes 

even produce offspring of worse quality. In order to describe it more clearly, an 

example is shown in Figure 37.   
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Assume that there are two candidate solutions that try to consolidate VR 

instances onto fewer PPs to save energy. These two solutions are good in the 

population and selected as parent chromosomes. As we can see in Figure 37, one 

parent chromosome allocates VR instances onto PP1, PP2 and PP3 whilst the 

other assigns VRs onto PP4, PP5 and PP6. These two parent chromosomes 

consolidate 6 VRs onto 3 PPs. However, when the crossover happens using the 

single-point crossover, 4 PPs are needed to host VRs in two children 

chromosomes. If the migration cost is not considered as the network topology is 

unknown, from the perspective of power consumption, the two children 

chromosomes have worse performance than that of parent chromosomes. Thus, 

the crossover mechanism does not improve the quality of solutions in this 

example.  

 

Figure 37. Example Crossover Function 

In summary, when considering the computational time and quality of solutions, a low 

mutation rate is preferred, e.g. 0.1. The crossover mechanisms, i.e. a single-point 

crossover and BLX-a crossover, have little impact on the performance of VRM_MOEA. 

Future work could explore either searching for an appropriate crossover mechanism or 

determining the reasons why the crossover mechanism has limited impact on the 

destination physical platform selection problem. 

5.6.2.2 Maximum Generation 

Parent 1

Parent 2

< 1  ¦ 1 ¦ 2 ¦ 2 ¦ 3 ¦ 3 >

< 4 ¦ 4 ¦ 5 ¦ 5 ¦ 6 ¦ 6 >

1      2       3      4      5

Child 1

Child 2

< 1     1     2     5    6     6 >

< 4     4     5     2     3     3 >

¦

¦

l index

l  = 3



 

120 

 

Figure 38. Impact of Topology on Computational Time of 10N15L Networks 

 

Figure 39. Impact of Average Node Degree on Computational Time of 10-node 

Networks 

In this section, the impact of the maximum number of generations in VRM_MOEA is 

investigated based on the computational time and the quality of solutions.  

Firstly, we explore the computational time with 5 topologies in 10-node networks in 

Figure 38. For each topology, 30 trials are carried out each with a randomly selected seed. 

The error bars show the 95% confidence interval of the average computational time. 

It is clear that the computational time is similar across the 5 networks with different 

topologies if the maximum generation value is the same. It means that the network 
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topology has little impact on the computational time. The computational time also 

increases linearly with the maximum number of generations.  

Secondary, we explore the impact of various network degrees (i.e. average node 

degrees), i.e. 1.5, 2 and 2.5, on the computational time in Figure 39. For networks with a 

particular average node degree, three different topologies are used. For each topology, 10 

simulation runs with different random number seeds are used. The error bars presents the 

95% confidence interval of the average computational time. We can see for a given 

number of maximum generations, the computational time increases with the average node 

degree. This is because with a higher network degree, it is possible that more candidate 

solutions with “good” fitness exist. However, as the size of the secondary population is 

fixed, not all candidate solutions with “good” fitness can survive. The truncation method 

in the environmental selection is used to retain a certain number of solutions in the 

population (as explained in Section 4.4.4, Step 4). Thus, a longer time is needed to do the 

truncation when more solutions with “good” fitness exist in the secondary population. 

 

Figure 40. Impact of Random Number Seeds on Hypervolume of 10N20L Networks 

 

We also investigate the impact of the number of generations on the value of 

Hypervolume. Firstly, five random number seeds are used in a 10N20L network in Figure 

40 and the maximum number of generations is set to 5000. We can see the values of 
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Hypervolume increase with increasing generations and all of them reach the same value 

at around 1700 generations, which means the quality of the populations is the same. We 

call it a “temporary” stable value, as we cannot guarantee that Hypervolume has reached 

its maximum possible value. The “temporary” stable value is the maximum value within 

5000 generations.  

Then, the results with five 10N20L networks with different topologies are shown in 

Figure 41. For each topology, 30 separate trials with different random number seeds are 

used. The trend in Hypervolume is similar and the “temporary” stable value is around 

2000 iterations. However, for different topologies, the “temporary” stable value is 

different, though the values are close. This means that with the same average node degree, 

the network topology has a limited impact on the quality of solutions. 

 

 

Figure 41. Impact of Network Topology on Hypervolume of 10N20L Networks 

 

5.6.2.3 Number of Offspring 

The number of offspring indicates the number of qualified individuals generated per 

generation. In this section, the impact of the number of offspring on VRM_MOEA is 

investigated. Figure 42 and Figure 43 show the impact of network topology and network 
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degree in 10-node networks, respectively. The number of trials is 30, each using a 

randomly generated seed.  

 

Figure 42. Impact of Network Topology on Computational Time of 10N20L 

Networks 

 

Figure 43. Impact of Network Degree on Computational Time of 10-node Networks 

The results show that the network topology and degree have little impact on the 

computational time. Meanwhile, the computational time increases linearly with the 

number of offspring. Compared with the computational time of the maximum generation 

in Figure 38 and Figure 39, the increasing rate associated with the number of offspring is 
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smaller. For example, when the maximum generation is equal to 10000, the 

computational time is approximately ten times larger than that of the case when the 

number of generations is 1000. In the number of offspring case, when the size is 20, the 

time is around 4 times larger than that of the case when the size equals 2. 

We then explore the impact of the number of offspring on the quality of solutions in 

three 10-node networks with different average node degree; the results are shown in 

Figure 44. As these three networks may have different groups of good solutions due to 

the network topology and average node degree, it is not possible to compare their values 

of Hypervolume directly. Hence, we need a new method to compare the impact of 

different the number of offspring. 

As we can see from Figure 40 and Figure 41, when the generation count reaches a 

certain number, the value of Hypervolume becomes “meta-stable”. The generation count 

is denoted as    . Although such a meta-stable value cannot guarantee that the value is 

the optimal one, we can use it as a benchmark. The meta-stable value of Hypervolume is 

donated as   . Then, we can explore how many generations it takes for the value of 

Hypervolume to reach    with different numbers of offspring. In addition, in order to 

avoid infinite computation if the value of Hypervolume never reaches  in a trial, a 

generation counter,     , is used as a terminal condition. If the value of Hypervolume 

cannot reach   within    , the simulation stops and    is recorded as     . 

Thus, the method is described as follows: 

1. Set the maximum number of generations,     , to be a very large number in 

order to obtain a meta-stable value as a benchmark. For example,      is 100000 

in the 10-node networks case.  

2. Run a simulation to      and record   . 

3. Set the value of     . Note that     is smaller than       In the 10-node 

networks case shown in Figure 44,      is 5000. 

4. Run the simulations with different number of offspring. As there are two terminal 

conditions,     is recorded depending on the terminal conditions as follows. 
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Firstly, when the generation count is smaller than      and the value of 

Hypervolume is no smaller than   ,      is recorded as the current generation 

count. Secondary, when the generation reaches      butthe value of Hypervolume 

is smaller than   , record      as    . 

Figure 44. Impact of the Number of Offspring of 10-node Networks 

Figure 44 shows that     decreases with the increasing number of offspring and 

reaches a stable state when the number of offspring is larger than 22. This means a larger 

number of offspring can improve the quality of solutions in a given number of 

generations. From the point of view of network degree, on average, a network with lower 

network degree needs more generations to reach      with the same number of offspring. 

A network with degree 2 and the network with degree 2.5 have similar performance. 

Compared with these two cases, the network with degree 1.5 requires more generations. 

This is because a network with lower degree may have fewer solutions with good fitness 

than that of a network with a higher degree. Thus, the search for such solutions in a 

network with lower degree is more difficult so more generations are needed. 

5.6.2.4 Mating Pool Size 

Figure 45 and Figure 46 show that the mating pool size has little impact on the 
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related to the times required to select the candidate solution from the secondary 

population using tournament selection with replacement (as explained in Section 4.4.4, 

Step 5). Compared with the viability test and truncation method, the tournament selection 

mechanism is much simpler. Thus the computational time of the mating selection has 

little influence on the overall computational time of VRM_MOEA. 

Figure 45. Impact of Mating Pool Size of 10N25L Networks 

Figure 46. Impact of Mating Pool Size on Computational Time of 10-node Networks 
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Figure 47. Impact of Mating Pool Size of 10-node Networks 

In Figure 47, we used the same method as described in Section 6.2.2.4. The least 

required number of generations when the value of Hypervolume reaches    are compared. 

The results also show that the mating pool size has little impact on the quality of 

solutions. As we mentioned in Section 6.2.2.1, the one point crossover mechanism has 

little impact on the algorithm performance and the candidate solutions of the mating pool 

are mainly used as parent chromosomes in the crossover (remember that the mutation rate 

should be low). Hence, the crossover mechanism may affect the impact of the mating 

pool size on the quality of solutions. In addition, similar to the number of offspring in 

Section 6.2.2.3, a network with low degree may need more generations to approach     . 

5.6.2.5 Traffic Load 

In this section, the impact of traffic load on the computational time in 30-node 

networks with various topologies is explored in Figure 48. It is clear to see that the 

impact of the topology on computational time increases with the traffic load. Meanwhile, 

the computational time increases with the traffic load. This is because a busier network 

has less feasible candidate solutions, as the migration constraints are more difficult to be 

satisfied compared with that for a network with a light traffic load. Hence, a longer time 

is needed to search for good solutions. 

2 4 6 8 10 12 14 16 18 20
-300

0

300

600

900

Mating pool size

G
en

er
at

io
n

Mating pool size in 10-node networks

 

 

Degree = 1.5

Degree = 2

Degree = 2.5



 

128 

 

Figure 48. Impact of Traffic Load on Computational Time of 30-node Networks 

5.6.2.6 Number of Nodes 

 

Figure 49. Impact of Number of Nodes on Computational Time 
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As expected, the computational time increases linearly with the number of network 

nodes when the maximum number of generations is set to 5000 and 20000. For a given 

number of network nodes, the computational time also increases linearly with the 

generation count. Meanwhile, networks with a higher network degree need more time to 

perform truncation, which is similar to the results given in Figure 39. 

As VRM_MOEA is an online algorithm a group of reasonable solutions need to be 

obtained in a short period of time, e.g. 5 minutes. It is therefore important to estimate the 

computational time. Figure 49 provides a means to estimate the computational time of 

VRM_MOEA if some information is known, e.g. the maximum generation count and the 

number of nodes. For example, if the number of network nodes is 40 and the maximum 

generation count is 20000, the computational time will be around 65 seconds. When the 

maximum generation count is 100000, the time can be estimated as 65   5 = 325 seconds. 

5.6.3 Section Summary 

In Section 6.2, a series of experiments are conducted to investigate the impact of 

different parameter values on the computational time and the quality of the solutions in 

VRM_MOEA. Different parameters have different influences on the algorithm. For 

example, a small mutation rate is appropriate whilst the crossover rate and the mating 

pool size have little impact on the algorithm performance. In addition, we can see that a 

high maximum generation count and the number of offspring can help to obtain a group 

of solutions of good quality. However, based on the simulation results, we cannot 

summarize a generic method to configure appropriate values of these two parameters 

across any network. Future work would be needed to determine more precisely the 

relationship between these two parameters and the performance of VRM_MOEA. As the 

computational time is a limiting factor, one solution is to select a high maximum 

generation count and the number of offspring as long as the computational time is within 

the allowed period. 
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5.7 Validation of Simulation 

A simulation model is an approximate imitation of a real system, so validation of the 

simulation model is required. A simple 3-node-3-link network example is used to validate 

the entire dynamic energy management framework and details are given in Appendix B, 

Part 5. 

5.8 Summary 

In this chapter, a simulation model is developed to evaluate the performance of the 

dynamic energy management framework. The simulation is a stochastic and discrete 

event simulation using C/C++ with Microsoft Visual Studio 2012. The data traffic is 

modelled as time-varying flows and signalling information is modelled as discrete 

packets. 

Initially, the details of the simulation tool are described, e.g. entities, events and 

components. Then, several important functional modules are described such as the 

network topology, the traffic model and the random number generator. In the network 

topology section, three network topologies are presented as well as a simple network 

topology generator. The simple random network topology generator is developed for 

exploring the relationship between the performance of framework and the average node 

degree. Two types of traffic model are used in our study, i.e. (1) a sinusoid-like function 

with some random noise and (2) an historical traffic dataset of the Abilene network. The 

random number generator is then introduced. 

Next, we investigated the appropriate parameter settings within VRM_MOEA.  Based 

on simulation results, the mutation rate is recommended to be low, e.g. 0.1. Meanwhile, 

the size of mating pool and the crossover rate have little impact on VRM_MOEA 

performance. This may be due to the nature of destination physical platform selection 

problem or an inappropriate crossover mechanism. More investigations are needed in the 
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future. Furthermore, the number of offspring and the maximum generation count should 

be large as they can help to obtain a group of good quality solutions. However, based on 

the simulation results, we cannot generalise and provide a method to select appropriate 

values of these two parameters for any particular network. More effort is needed to 

examine the relationship between these two parameters and the performance of 

VRM_MOEA. Finally, the validation of simulation is described. 
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CHAPTER 6 SIMULATION RESULTS AND 

DISCUSSION 

 

6.1 Introduction 

Chapter 5 describes the simulation modelling of the dynamic energy management 

framework and parameter setting in VRM_MOEA. The next step is to measure the 

performance of the framework using the simulation tool. Hence, Chapter 6 presents an 

investigation of the performance of framework including simulation results with 

associated discussions. The remainder of Chapter 6 is organized as follows. Initially, 

some simulation parameters and assumptions are described in Section 6.2; then 

simulation results with various parameters are shown in Section 6.3, e.g. the weighted 

migration cost component parameters and the Quiet and Busy threshold settings. Finally, 

a chapter summary is presented in Section 6.4. 

6.2 Simulation Parameters and Assumptions 

The computing environment used for the simulations was a Microsoft Windows 7 

Enterprise, Intel® Core™ i5 CPU 661 @ 3.33GHz, with 4G of RAM. Note that in the 

simulations, “6N8L”, “14N21L” and “Abilene network” indicate the three reference 

network topologies described in Section 5.3.1. The remaining network topologies, e.g. 

networks with average network node degree of 1.5 or 10N25L, are generated by the 

simple Random Network Topology Generator (RNTG, as described in Section 5.3.2). 

Some simulation parameters and assumptions are described as follows. 
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1. Given an optical network of a graph         where V is the number of 

vertices and E is the number of edges in the network. Optical Line Amplifiers 

(OLAs) are placed on the network edges and regenerators are placed on the 

network node. In our framework, each node is composed of a PP and an 

ROADM. Thus, for a               network, it contains   PPs,   

ROADMs,   VRs and   links. 

2. We assume that all PPs are homogeneous. If PPs have different parameters, such 

as fabric switch capacity and the number of line-cards, these parameters are 

considered as restrictions in VRM_MOEA. For the sake of simplicity, all PPs 

have the same configuration. 

3. The capacity of a line-card is 40Gbps and each line-card comprises a single 

40Gbps bi-direction interface. The switch fabric capacity of a PP supports the 

packet switching amongst various line-cards. 

4. ROADMs are connected by a pair of transmission fibres. The number of 

wavelengths per optical fibre is       The transmission rate of each 

wavelength is 40Gbps. 

5. The degree of ROADMs is determined by the network topology. For example, if 

a ROADM has two neighbors, the degree is 2. This means that the ROADM can 

add, drop and bypass any wavelengths over these two directions. For each 

direction, ROADMs can deal with a transmission fibre pair with 40 wavelengths. 

6. In VROOM [44], the migration duration of a virtual router instance is about 33.9 

seconds with a software data plane entity, which has 15k routes. Hence, we 

assume that the duration of virtual router migration event is 34 seconds. 

7. The maximum length without the need of OLA is          . 

8. The scenario without VRM capacity is called the Baseline configuration. A 

scenario with VRM capability is called an Energy-Efficiency (EE) configuration. 

9. The network state information is collected every 15 minutes. This is because 15 

minutes is long enough to calculate VRM_MOEA and move the virtual router 
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instance to their destination physical platform, but short enough to capture the 

essential mid-term traffic dynamics [95]. 

10. The parameters associated with the power consumption model are shown in 

Table 4. 

Table 4. The Parameters Associated with Power Consumption Model 

Name Typical 

value 

Description Ref. 

    16 The maximum number of line cards 

each LCC supports 

[163] 

     9 The maximum number of LCCs each 

FCS supports 

[163] 

    500W The power consumption of a line-card [165][166] 

     1630 The power consumption of a LCC with 

16 line card slot  

[167] 

     7036W The power consumption of a FCC [168] 

  0.05 A small fraction of the active base 

system power consumption when a PP 

is in the sleep state 

Self-

defined 

      
            

     

The power consumption of an 

ROADM with 40 channels.  is the 

node degree. 

[109] 

    110W The power consumption of a long span 

optical line amplifier  

[109] 

11. The parameters associated with VRM_MOEA are shown in Table 5 for three 

reference networks. 

Table 5. The Parameters Associated with VRM_MOEA 

Parameter 6N8L 14N21L Abilene network 

Length of a solution 6 14 10 

Primary population size 20 30 25 

Secondary population size 10 10 10 

The number of offspring 20 30 30 
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Mating pool size 5 10 10 

Crossover rate 0.1 0.1 0.1 

Mutation rate 0.1 0.1 0.1 

Maximum generation  2000 20000 10000 

      0.5 0.5 0.5 

Simulation length 5 days 5 days 7 days 

Random number seeds 30 10 10 

Busy Threshold 0.8 0.8 0.8 

Quiet Threshold 0.3 0.3 0.3 

6.3 Numerical Simulations 

In this section, we explore the impact of various parameters, e.g. traffic load and 

thresholds on the performance of the framework.  

6.3.1 Impact of Traffic Load 

A set of experiments with varying traffic load between each node pair in the 6N8L 

network and the 14N21L network have been carried out to evaluate the impact of the 

traffic load on the dynamic energy management framework. The results are shown in 

Figure 50 and Figure 51, respectively. The simulation length is 5 days. A one-day “warm 

up” period is used to allow the simulation to reach a stable state, so the first day data is 

excluded from the results. As the results are similar from Day 2 to Day 5, the energy 

savings per hour during Day 5 are shown.  

Note that the traffic load in Figure 50 and Figure 51 is the maximum traffic demand in 

the fluid flow traffic model (as explained in Section 5.4). As we use PPs with same 

configuration in the two networks and the PPs need to be able to process the traffic 

demand in the Baseline configuration, the maximum traffic demand that the two 
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networks can sustain differ. Hence, the 6N8L network in Figure 50 can sustain a higher 

traffic demand than that of 14N21L network in Figure 51.  

Based on the traffic model (as explained in Section 5.4), the peak hours are around 

hour 14 to hour 20 and off-peak hours are hour 02 to hour 08. Then Baseline 

configuration provides an upper energy consumption limit per hour. Hence, the 

percentage energy saving per hour is calculated as follows: 

                
                          

         
                             (6.1) 

where                is the energy consumption of Baseline configuration within an 

hour and          is that of an EE configuration. For the sake of simplicity, the average 

energy saving value is shown in Figure 50 and Figure 51.  

In Figure 50 and Figure 51, it is clear to see the energy saving characteristics in the 

6N8L and 14N21L networks with various traffic loads follow a similar trend; the energy 

saving reaches a maximum value during off-peak hours and a minimum value during 

peak hours as the energy consumption per hour fluctuates with changes in the traffic load. 

Figure 52 and Figure 53 show the total energy saving with different traffic loads. As 

expected, the percentage energy saving decreases with increasing traffic load. It implies 

that in a busier network, it is more difficult to obtain energy savings because there are 

fewer opportunities to consolidate VR instances onto fewer PPs. 
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Figure 50. Energy Saving per Hour with Different Traffic Load in the 6N8L 

Network 

 

Figure 51. Energy Saving per Hour with Different Traffic Load in the 14N21L 

Network 
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Figure 52. Total Energy Saving with Different Traffic Load in the 6N8L Network 

 

Figure 53. Total Energy Saving with Different Traffic Load in the 14N21L Network 
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days are weekdays and Day 6 and Day 7 are weekends. From the view of energy saving, 

the energy saving varies with the traffic variation in the first five days. As the network is 

quieter in the Day 6 and Day 7, which are weekends, no VRM event happens and energy 

consumption remains the same. 

 

Figure 54. Total Energy Saving per Hour of Three Weeks in the Abilene Network 

It should be noted that the traffic load has some spikes, which are double or triple that 

of the peak traffic load the rest of the time. In order to handle these traffic spikes, we 
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framework, when the CCU collects the updated network state information, it still needs a 

period of time to compute VRM_MOEA and allow for the VR instances to be moved to 

their appropriate destinations. During such a time, some PPs cannot sustain the traffic and 

traffic loss may happen. Moreover, such a significant change may be unpredictable, so a 

proactive mechanism may not help in such a scenario. One possible solution is is to use a 

combination of  buffering and possibly lowering the Busy threshold. 

6.3.2 Impact of Busy and Quiet Thresholds 

We investigate the effect of adjusting the Quiet and Busy thresholds in the 6N8L 

network. The results are given in Figure 55. The range of the Quiet threshold is [0.1, 0.7] 

and the step interval is 0.1. The range of Busy threshold is [0.3, 0.9] and the step interval 

is 0.1. The Busy threshold cannot be 1 as a safety margin is required. There are two 

constraints when setting the two thresholds. Firstly, the Busy threshold is larger than the 

Quiet threshold. Then, if the difference between two thresholds is small, a PP may 

change its state frequently which may cause VR instances move around the network 

frequently. Hence, we assume that there is at least 20% difference between the Quiet and 

Busy thresholds. 

Figure 55 shows the energy saving with different Quiet and Busy thresholds. The 

different colours represent the different values. The crimson colour stands for a highest 

value in the figure. Hence, the largest energy saving value is around 30%. When the Busy 

threshold is larger than 0.6 and the Quiet threshold is larger than 0.4, the energy saving is 

largest. 

It is clear that with a given Busy threshold the energy saving initially goes up linearly 

with the increasing Quiet threshold and then reaches a stable state. For example, when the 

Busy threshold is equal to 0.9, the energy saving increases firstly. When the Quiet 

threshold is larger than 0.4, the energy saving remains constant. This is because at first, a 

configuration with higher Quiet threshold allows PPs to remain in their Quiet mode for 

longer periods which leads to greater energy saving. However, as PPs have limited switch 
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fabric capacity, they are not able to host more than a certain number of VR instances. 

When the PP capacity is reached (or the PP cannot host another VR instance), VR 

instances cannot be consolidated onto fewer PPs even if these PPs are in their Quiet state. 

Thus, the energy saving remains the same. A similar trend exists when observing the 

Busy threshold with a fixed Quiet threshold. 

Note that a higher Busy threshold brings with it a higher risk of traffic loss. If traffic is 

bursty and increases quickly before a PP enters the Busy state close to the switch fabric 

capacity, the PP switch may become overwhelmed and incur traffic loss before VRM can 

take place.  

Figure 56 shows the additional optical hop required in the 6N8L network with 

different Quiet and Busy thresholds. The average optical hop count of traffic in the 

Baseline configuration is 2.2778. By applying VRM approach, the logical IP-layer 

topology remains unchanged whilst the optical layer is adjusted to allow the traffic to be 

forwarded appropriately to each VR‟s current location. When the traffic goes through an 

ROADM, the hop count is incremented by one. In an EE configuration, the traffic is 

transmitted along a longer optical path if a VR instance is not running on its default PP 

location. Hence, it is clear to see that EE configurations with different Quiet and Busy 

thresholds result in additional optical hops. 

In order to select appropriate Quiet and Busy thresholds settings, both the energy 

saving and the additional optical hop count need to be considered. However, we can see 

that bigger energy savings usually require higher optical hop counts. This is because as 

more VR instances are consolidated onto fewer PPs, the traffic needs to be transmitted on 

a longer optical path to the remotely located VR. 
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Figure 55. Total Energy Saving of Different Threshold Settings 

 

Figure 56. Additional Optical Hop in the 6N8L Network with Different Threshold 

Settings 
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during the fifth day. For the sake of simplicity, only the average number of occupied 

channels is shown. 

The results include a Baseline configuration (Configuration 1) which yields the 

minimum number of optical channels used as no migration is permitted, and 5 EE 

configurations with the two-part cost weightings as given in Table 3. The migration cost 

function is expressed as Cost (      ,         ), where       stand for weighted 

coefficient of two migration cost components, i.e. Cost_a and Cost_b (as explained in 

Section 4.4.4 Step 2).  

The first term, Cost_a, is based on the hop-distance from default PP locations to 

destination PP locations; the second is the hop-distance from current PP locations to 

destination PP locations. In Configurations 2 and 6, only one cost component is 

considered in VRM_MOEA. In Configuration 2 and 3,       is smaller than           

indicating that the Cost_b term is more important than the Cost_a term. The two terms 

are equivalent in Configuration 4. The Cost_a term is more significant than Cost_b in 

Configuration 5 and 6. 

Table 6. Configurations 

Configuration number.  Configuration Setting 

1  Baseline, No VRM 

2  Cost (0.0,1.0) 

3  Cost (0.25,0.75) 

4  Cost (0.5,0.5) 

5  Cost (0.75,0.25) 

6  Cost (1.0,0.0) 

 

Figure 57 shows that the number of occupied optical channels in Configuration 1 

fluctuates with the daily traffic load as additional channels are required to transport traffic 

between specific ingress and egress points during peak times (i.e. each channel is limited 

to 40Gps and the traffic load can exceed this value). The number of occupied optical 

channels for all the remaining configurations is higher than that of Configuration 1. This 
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is because when VR instances are moved to remote PPs leaving their default PPs, more 

optical channels are needed for transmitting the traffic to the new locations. 

Amongst Configurations 2 to 6, those with a lower Cost_a value result in a higher 

number of occupied channels. The Cost_a term represents the hop distance from the 

default PP to the destination PP. When the weighting of Cost_a increases, the algorithm 

searches for solutions that are close to a VR‟s default location which reduces the number 

of additional optical channels from the default PPs to the destination PPs. Configuration 2 

is the worst because Cost_a term is zero and the hop-distance from a default PP and a 

destination PP is not considered in VRM_MOEA. 

Note that at peak times, the number of occupied optical channels reduces in Figure 57.  

This is because when the network is busy, VR instances are distributed across more PPs 

and some of them may go back to their default PP locations. Hence, some optical 

channels which are used to transmit the traffic to remotely located VR instances in 

previous configuration are no longer needed. These optical channels are released.  

Figure 58 shows the number of occupied optical channels in the Abilene network in 

the first week with different cost settings (the results of remaining two weeks are shown 

in Appendix C, Part 2). The results are similar to the 14N21L network. Based on this 

observation, in order to decrease the number of occupied optical channels, it can be 

deduced that it is necessary for the Cost_a weighting to be higher than that of the Cost_b 

term. 



 

145 

 

Figure 57. Number of Occupied Optical Channels of Different Configurations in the 

14N21L Network 

Figure 58. Number of Occupied Optical Channels of Different Configurations 

in the Abilene Network 
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6.4 Summary 

In this chapter, we have explored the impact of different parameters on the 

performance the dynamic energy management framework.  A series of experiments are 

conducted to investigate the impact of traffic load, Quiet and Busy thresholds, and the 

migration cost on the framework.  

Firstly, in the simulations with various traffic loads, the percentage of energy saving 

decreases with the increasing traffic load, as expected. It implies that in a busier network, 

it is more difficult to obtain the energy saving, as there are fewer opportunities to 

consolidate VR instances onto fewer PPs.  

In the 6N8L network case, when the Busy threshold is larger than 0.6 and the Quiet 

threshold is larger than 0.4, the energy saving is largest. However, at the same time, 

additional optical hops are required as the traffic must be transmitted to the remotely 

located VR instance(s) via longer paths.  

Finally, we investigated the impact of different migration cost parameter weightings. 

In order to decrease the number of occupied optical channels, it is necessary for the 

Cost_a weighting to be higher than that of the Cost_b term. 
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CHAPTER 7 CONCLUSIONS AND 

FURTHER WORK  

 

7.1 Conclusions 

Improving the energy efficiency of the Internet has become an important topic in 

recent years as energy consumption may become one of the main constraints for the 

further growth of the Internet.  

The energy consumption of the Internet is continuously rising which essentially 

depends on the increasing amount of traffic it supports. This increasing demand is driven 

by a significant increase in the customer population and ongoing development of various 

forms of Internet-based services. Meanwhile, the improvements in silicon technologies 

are not enough to cope with these network energy efficiency issues. Thus, in order to cut 

the operational costs of ISPs, reducing the carbon dioxide emissions associated with 

electricity generation and lowering the power/energy density of network equipment, new 

energy efficient approaches need to be developed.  

Given the above background, an evolutionary algorithm based dynamic energy 

management framework is proposed for IP over DWDM core networks in this thesis. 

Although core networks represent a small fraction of the total energy consumption of the 

Internet, they are gradually ascending the energy consumption “league” due to the 

increasing popularity of  bandwidth-intensive services.  

The main concept underpinning our framework is to combine infrastructure sleeping 

and virtual router migration to enable a network to operate in a more energy efficient 

manner. Infrastructure sleeping enables unneeded equipment to be switched off or put 

into a sleep state during off-peak periods. Typically, the traffic demand of core (Tier 2/3) 



 

148 

networks has a regular diurnal pattern based on people‟s activities. Infrastructure sleeping 

exploits the characteristics of the traffic and hence has become one of the most promising 

energy saving mechanisms.  

However, infrastructure sleeping suffers from a crucial problem. As routers or links 

are put to sleep, they lose the ability to exchange routing protocol signalling messages 

with other routers. Subsequently, the logical IP-layer topology is changed, which triggers 

a series of reconvergence events. Such events can cause network discontinuities and 

disruption. Hence, a key constraint of the framework is to maintain the logical IP-layer 

topology whilst routers are in the sleep state during off-peak hours. In order to avoid the 

topology change problem, Virtual Router Migration (VRM) is used in the framework. 

VRM allows a VR instance to freely move between Physical Platforms (PPs) avoiding 

unnecessary changes to the logical topology. As no logical topology changes happen 

when PPs enter or leave their sleep state, no network discontinuities or service disruption 

arises.  

In order to realise the new energy management framework, some additional 

requirements of the network architecture and associated functionality need to be satisfied. 

For example, a centralized control unit is needed to collect the network state information 

and a PP has to possess a sleep capability 

After two important approaches, i.e. infrastructure sleeping and VRM, and some 

requirements are described, two significant issues are considered given various 

constraints, namely: when to trigger VRM and where to move to VR instances to?  

For the first issue, a reactive mechanism is used to trigger VRM by monitoring the 

network state. Typically, the network state is monitored at 15-minute intervals. If the 

network state satisfies the migration condition, the destination physical platform selection 

algorithm is invoked for choosing the appropriate locations for VR instances. The 

destination physical platform selection algorithm is an evolutionary-based algorithm 

called VRM_MOEA. VRM_MOEA considers different constraints, e.g. the PP capacity 

and the migration cost. A new individual representation, two migration constraints and 
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dual objective functions are developed within the algorithm. VRM_MOEA needs to 

consolidate functionality of suitable VR instances onto fewer PPs during the off-peak 

hours and distribute co-existing VRs away from busy PPs during peak hours. 

Moreover, as VR instances are consolidated onto fewer PPs during off-peak hours for 

energy saving, some additional optical connections are needed for forwarding the traffic 

to the remote VRs responsible for processing the packets. These new optical connections 

also ensure logical separation of the different VR instances that co-exist on the same PP. 

Hence, a new automatic optical connection management scheme is also described in the 

framework.  

The overall dynamic energy management procedure is described as follows. The first 

step is to collect and analyze the network conditions. If the network state matches the 

migration conditions then VRM_MOEA is invoked to select the appropriate destination 

PPs for the VRs. Then, after a group of reasonable solutions are obtained in 

VRM_MOEA, the optical resource availability is tested. If the available optical resources 

can support the identified solution, new optical connections are established for VRM and 

the corresponding PP(s) are switched on in preparation for hosting the new VR instances. 

Next, the VR(s) are moved to their appropriate destination(s) based on the identified 

solution. Where appropriate, the corresponding PP(s) (i.e. no longer hosting VRs) are 

switched off and the unneeded optical connection(s) are released. Then, the cycle returns 

to the first step to check the network state. 

Once the dynamic energy framework is described, the next step is to measure the 

performance of the framework. Because of this, a new hybrid simulation platform is 

developed which is able to capture the functionality of the optical layer, the IP layer data-

path and the IP/Optical control plane. The optical layer represents optical channels via a 

discrete set of integers with associated state information. Meanwhile, a fluid-flow model 

represents the IP data-path and the IP/optical control plane models the signalling 

messages using discrete packets. The reason a hybrid environment is required is that it is 
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not viable to model IP data-flows as discrete streams of packets on an optical 

infrastructure over many hours. 

We then explore the performance of VRM_MOEA as well as the dynamic energy 

management framework for different parameter values. We tried to ascertain the 

appropriate parameter values in VRM_MOEA through experimental comparison. The 

VRM_MOEA results show that a low mutation rate is preferable, e.g. 0.1. Meanwhile, 

the size of the mating pool and the crossover rate has little impact on the performance of 

VRM_MOEA in medium-size networks (e.g. 10-node networks). In addition, we can see 

high values for the maximum generation count and the number of offspring can improve 

the quality of solutions and then when they reach a certain value, the quality of solutions 

stabilizes. However, further work is needed to predict the appropriate value of these two 

parameters for any given network. 

Simulation results of the whole framework show that the ability of the dynamic energy 

management scheme to save energy depends on many factors, such as Quiet and Busy 

thresholds and traffic load. In addition, more optical channel resources are needed in 

order to transmit the traffic to remotely located VRs. By adjusting the migration cost 

terms we can influence the selected migration location. We can influence the solution in 

order to keep migrations close to the default physical platform location and/or close to the 

site currently accommodating the virtual router(s). 

7.2 Further Work  

Several directions are worthy of further research, as described as follows: 

1. In the Section 5.6, we examine whether appropriate parameter settings can be 

predicted for VRM_MOEA for various network scenarios, but only limited 

success is achieved. There remain questions that need to be explored. For example, 

why do the one point crossover and Blend crossover mechanisms have little 

impact on the overall performance of VRM_MOEA. This could be due to the 
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nature of the destination physical platform selection problem or these two 

crossover mechanisms are particularly not suitable for VRM_MOEA. Another 

question is how to devise a suitable method to obtain appropriate values for the 

maximum generation count and the number of offspring for any given network.   

2. Another issue worth exploring is the scalability of VRM_MOEA, which affects 

the performance of the framework. As we can see in Section 5.6.2.6, the 

computational time of VRM_MOEA increases linearly with the size of network. 

We can predict that if the network size is large, i.e. 100 nodes, the computational 

time will be long, e.g. 5 minutes by extrapolating the results where the generation 

count is 20000 (as given in Figure 49). Hence, the algorithm efficiency may need 

to be improved. 

3. We used a VRM_MOEA to solve the destination physical platform selection 

problem considering two conflicting objectives. However, VRM_MOEA can be 

applied to other applications with similar features. For example, in a target-

tracking problem in wireless sensor networks [191], some sensors nodes are 

chosen to track the target based on collected information, e.g. proximity to the 

target, their existing workload and residual battery life. These factors can be 

considered as objectives and then the nodes with good quality can be identified by 

VRM_ MOEA mechanism in order to create a suitable self-organising cluster to 

perform the necessary task.  

4. In the traditional model, ISPs usually own the physical resource and provide the 

service. In the business and network virtualization model, the traditional single 

role of ISPs is divided into two different ones: that of an infrastructure provider 

and a service provider. Infrastructure providers manage the physical network 

resources whilst a service provider leases the physical resources from one or 

several infrastructure providers to create virtual networks providing customized 

services. The one to many, many to one and many to many relationship between 

infrastructure providers and service providers may bring challenges to our energy 

management scheme as some negotiation are required between them. For example, 
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the service provider may not agree with virtual router migration as they need 

virtual router instances to be located near to their customers in order to provide 

adequate real-time services. Hence, the energy management scheme could be 

customized to the preference of service providers in future work. 

5. One promising next generation network architecture to replace traditional IP-style 

packet-switch host-centric networking is Named Data Networking (NDN)/ 

Content–Centric Networking (CCN) which focuses on large-scale content 

distribution [194][195]. There are two main types of packet, i.e. data packets and 

interest packets. An interest packet contains the content that a customer is 

interested in and the router will send it to the data producer(s). Then, data packets 

with related information are sent back from the data producer(s) to the customer. 

One feature of NDN is that NDN routers can have massive-scale caches (e.g. 

terabyte-scale caching) which cache previously forwarded data packets [196][197]. 

These data packets can then be reused when a matching interest packet arrives, 

which provides a quick response to customer request(s). However, NDN 

architecture may bring challenges to our energy management scheme. For instance, 

if an NDN router instance is moved to another physical location, it may bring 

some delay when data packets in the cache of a remotely located VR instance are 

transmitted to customers. 
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APPENDIX A: TRAFFIC ANANLYSIS 

In this section, an analysis of publicly traffic data from the Abilene network is 

presented. Part 1 introduces the motivation for traffic analysis. Then some related work is 

described in Part 2. In Part 3, detailed information concerning the Abilene network is 

examined. Next, traffic modelling is described in Part 4 and finally Part 5 provides a brief 

summary. 

Part 1 Motivation 

The research objective is to propose an energy-efficient network by reconfiguring 

resources. The main concept of the framework is to combine infrastructure sleeping and 

Virtual Router Migration (VRM). One of the basic problems in the framework is to 

determine when to move the virtual router (VR) instances to remote destination physical 

platforms. This problem involves another problem – whether the network traffic load can 

be predicted. Hence, the characteristics of the traffic demand need to be explored. 

In this section, we want to solve the question as follows: whether the traffic demand 

matrix at a similar time from one day to the next is related or not. To put it another way, 

is the traffic that flows between a given ingress / egress point similar at roughly the same 

time (given a certain observation window) over successive days? If this is the case then 

prediction mechanisms can be used to anticipate the traffic demand and reconfigure the 

network based on this. Some offline optimization techniques can be used. Conversely, if 

there is no significant correlation in the traffic level then only reactive mechanisms are 

viable. 
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Part 2 Related Work 

 

Traffic prediction uses previous traffic demand to forecast future values. Traffic 

prediction techniques can be divided into two types: short range forecasting (several 

minutes or hours) or long range forecasting (several days or months). Traffic prediction is 

a useful tool in network management and can be applied in many areas, e.g. network 

performance evaluation, buffer management and network capacity planning [1] [2].  

In order to predict the network traffic, it is important to appreciate the natural 

behaviour of Internet traffic. Internet traffic was firstly treated as a Poisson process or a 

Poisson related process which is a memory-less system and the inter-arrival times are 

exponentially distributed [3]. A key feature of the “Poisson-like” traffic is that when it is 

aggregated, the traffic becomes smoother and less bursty.  

However, around 1993, researchers discovered that it is not suitable to use a Poisson 

process to represent the Internet traffic as the Internet traffic has different features from 

the traditional telephone traffic. Leland et.al. [4] found that the traffic showed self-

similarity. Self-similarity indicates that the structure of the data is similar across many 

time scales (observation intervals are from 100 seconds down to 0.01 seconds) [7]. The 

paper summarized that the aggregation of the traffic intensifies the burstiness instead of 

smoothing it, which is different from “Poisson-like” traffic. In addition, Internet traffic 

has another characteristic called Long-Range Dependence (LRD) [6]. LRD indicates that 

the value at any time is non-negligibly positive correlated with all future values. After 

self-similarity and LRD concepts were proposed, research interest has shifted from the 

traditional memory-less and Poisson based modelling systems to long memory and bursty 

systems.  
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In mathematics, the degree of LRD and self-similarity are measured in term of the 

Hurst parameter ( ) [8], which provides a good measure of traffic “burstiness”. However, 

identifying and estimating  is not easy. Many approaches have been proposed for 

estimating  , e.g. time domain, frequency and wavelet methods. However, the results of 

different methods are often inconsistent [9]. Therefore, more effort is needed to 

characterize Internet traffic.  

A common traffic prediction approach is to use time series models to fit the traffic, e.g. 

an Auto-Regressive Integrated Moving Average (ARIMA) [12] process. ARIMA 

encompasses several time series models: Auto-Regressive (AR), Moving Average (MA), 

and Auto-Regressive Moving Average (ARMA). An AR model uses the weighted sum of 

order q previous values (denoted by AR (p)) plus a random shock to predict the estimated 

value. On the other hand, an MA model uses the weighted sum of order q previous 

random shock values (denoted by MA(q)) plus a random shock to obtain the estimated 

value.  ARMA combines AR and MA models, which predicts a value by adding the 

weighted sum of p previous values and q previous shocks. AR, MA and ARMA models 

all require the input data to be stationary, which has the same average and variance 

regardless of the time period of the data. However, real world data do not always fit the 

stationary requirement. Hence, an ARIMA model was developed in order to handle non-

stationary time series. In ARIMA, the data are differenced in order to obtain a stationary 

data series.  

In the wavelet domain, some researchers use wavelet analysis to predict the traffic 

since wavelets are a natural way to describe the multi-scale characteristic of self-

similarity [13]. In addition, there exists a hybrid prediction method combining time 

domain and wavelet domain methods.  [9] used the Wavelet Multi-resolution Analysis 

(WMA) and linear time series models to develop a methodology for building a long-term 
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traffic prediction model for any two neighbouring nodes in the backbone network. 

Furthermore, machine-learning methods can be used for traffic prediction, e.g. neural 

networks [14] [15]. 

Part 3 Network Traffic Data 

In this section, we explore traffic modelling with the Abilene network data [16] using 

an ARIMA model. The remainder of the section is organised as follows. Initially, Part 3.1 

introduces how the data is collected. Then, Part 3.2 show the traffic data is modelled and 

used for predictions. Finally, Part 3.3 provides a discussion. 

 

Part 3.1 Data Description 

 

The Abilene network is a high-performance backbone network created by the 

Internet2 community [17]. The clients are mostly universities and some corporate and 

affiliate institutions in the United States. There are 12 nodes and 15 links. Data has been 

collected in terms of 144 pairs of source and destination nodes every 5 minutes for 

24discontinuous weeks. The traffic rate unit is kbps.  

A few data points are missing from the dataset. There are usually two methods to 

handle the missing data, i.e. ignoring or estimating the missing data. As we use a linear 

model whose estimated output is predicted by using the sum of previous weighted values, 

the data needs to be complete. Hence, the missing data are estimated by averaging the 

values of the same time between the previous day and the following day. 

Moreover, the data over 24 weeks is not continuous. The data were collected starting 

from Monday for most of weeks whilst some weekly data were collected starting from 

Saturday. This may have some impact on the model in terms of the weekly pattern. The 
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weekly pattern means that the traffic load is usually quieter on the weekends than that of 

weekdays. In order to avoid the impact of weekly pattern, we removed the data of 

weekend. The detail is described in Part 3.2. 

 

Part 3.2 Traffic Modelling 

 

There are 144 pairs of sources and destinations in the network. Four pairs of traffic 

are randomly selected to perform the analysis. These four pairs are called P1, P2, P3 and 

P4. The 24 weeks of traffic of 4 pairs are shown from Figure 3.1 to Figure 3.4. The first 

week data are shown from Figure 3.5 to Figure 3.8. 

 

Figure 3.1 P1 Traffic Data 
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Figure 3.2 P2 Traffic Data 

 

Figure 3.3 P3 Traffic Data
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Figure 3.4 P4 Traffic Data 

Figure 3.5 First Week Traffic Data of P1 
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Figure 3.6 First Week Traffic Data of P2 

 

 

Figure 3.7 First Week Traffic Data of P3 
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Figure 3.8 First Week Traffic Data of P4 

From Figure 3.5 to Figure 3.8, it is clear that different source-destination pairs have 

different traffic characteristics. For example, P1 has many seemingly random spikes 

whilst the rest traffic varies little. It seems P1 has a daily pattern. However, compared 

with the spikes, the remaining P1 traffic has little variation. P2 and P4 both have a 

noticeable daily pattern with a sinusoid-like waveform shape. In addition, P3 possesses 

an up / down tendency every day but it is not so significant. 

In the first week, the last two days have a lower traffic load than that of the first five 

days. It is suitable for the weekly pattern characterization that the traffic is high in 

weekdays and is low at weekends. However, as we are interested in exploring whether 

the traffic load can be predicted from at roughly the same time (given a certain 

observation window) over successive days, we removed the data of weekends as they 

follow a different pattern. 

Figure 3.9 - Figure 3.12provide the Sample Auto-Correlation Function (SACF) 

coefficient of the 4 pairs of weekdays. The data is collected every 5 minutes, so there are 

288 data points in a day and 1440 data points over five weekdays. As we want to know if 

the traffic at roughly the same time has a strong correlation, we used 1440 as the number 
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of lag and 288 as a step number in the SACF function. The range of SACF coefficient is 

[-1, 1]. In the range [0, 1], larger values indicate a stronger correlation.  

 

Figure 3.9 Sample ACF of P1 

 

 

Figure 3.10 Sample ACF of P2 
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Figure 3.11 Sample ACF of P3 

 

 

Figure 3.12 Sample ACF of P4 

 

The results of the SACF coefficient of the four pairs are different. P1 has small SACF 

coefficient when the lag values are 288 (1 day), 576 (2 days), etc. It means that little 

correlation is shown between the certain traffic and traffic at the same time in the 

previous day or two days. Thus, we cannot build a P1 model, as a correlation relationship 

is required in the ARIMA model. 
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In contrast, P2, P3 and P4 have a high positive correlation coefficient (around 0.4) 

when lags are equal to 288, 576, 864, 1152 and 1440. This means that for the same time 

during weekdays, there is a strong correlation. Hence, for a specific time of a day, the 

amount of traffic has a strong correlation with the values of previous days.  

As P2, P3 and P4 have similar characteristic, we selected P2 as an example to 

perform traffic modelling using MATLAB. As we want to know whether the traffic could 

be predicted based on the same time on previous days, we used 288 as the difference. 

Initially, the original data is denoted as xt and the series is Xt. As there are 119 weekdays 

and 288 data per day, Xt is represented as: 

Xt={x1, x2 … x34272} 

The difference between two values at the same time of two days is denoted as yt, 

where yt is represented as  

yt = xt - x(t-288) 

The series after the difference is denoted asYt  and Yt is shown in Figure 3.13. 
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Figure 3.13Daily Difference of P2 Weekday Data 

 

After we differenced the data, we have a series of stationary data. At this stage, we can 

use several linear models i.e. AR, MA or ARMA models to model the Yt series and then 

transfer the prediction of Yt back to Xt.. 

At first, different linear models are used to fit Yt.. A metric, called the best fit, is 

usually used to measure the performance of models. The best fit indicates that the 

percentage the values of the model that are the same as the raw data. For example, if the 

best fit is equal to 60, it means that 60% of the values of the model are the same as the 

raw data. The best fit results of different linear models are shown in Table 3.1. We can 

see that the best fit values of models are similar. As AR (1) is the simplest model, we 

selected AR(1) to model the traffic. 

Table 3.1TheBest Fit of Models 
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Model Best fit 

AR(1) 74.13 

AR(4) 74.62 

AR(10) 74.76 

ARMA(1,1) 74.14 

ARMA(2,1) 74.55 

ARMA(1,2) 74.55 

 

The AR (1) model is presented as follows: 

yt= A×yt-1 + et 

where yt is the value at time t, yt-1 is the value of the previous moment. et is the white-

noise disturbance and A is the coefficient of previous output value. The coefficient of AR 

(1) is  A= 0.9722 . Thus, the AR(1) model of Y series is as follows: 

yt = 0.9722×yt-1 + et 

Then, AR (1) model of Yt is used to transfer back to Xt. 

Since  

yt = 0.9722×yt-1 + et 

yt = xt- xt-288 

yt-1= xt-1- xt-289 

So, 
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xt = xt-288+0.9722×(xt-1- xt-289) + et 

After the model is built, we used half of the raw data as the input and the other half of 

the data as future traffic data for testing the model. The result shows the best fit is 58.76, 

which shows that the P2 traffic can be reasonably predicted by the AR (1) model.  

Part 3.3 Discussion and Summary 

Based on the traffic analysis and modelling in Part 3.1 and Part 3.2, the results show 

that for a given network, some source-destination pairs have a strong daily pattern and 

can be reasonably modelled for prediction whilst others display no clear pattern. This 

may be due to several reasons as follows: 

1. The Abilene network is an academic network rather than a commercial network. 

Thus, it may exhibit different traffic characteristics compared with commercial 

networks. For example, the traffic demand, the number of hosts and types of 

service may be different.  

2. The Abilene network was upgraded from 2.5 Gbps to 10 Gbps since 2004 and 

details of the migration strategy are not published. Thus, some influential factors 

may have impacted on the traffic appearance though this cannot be confirmed. 

3. The data of 24 weeks may be not large enough to obtain good estimates; 

especially, as it is not continuous.   

According to the traffic analysis and modelling in Part 3.1 and 3.2, we found that the 

traffic prediction is more complex than we firstly assumed. In the Abilene network, the 

traffic between some source-destination pairs can be predicted relatively well whilst this 

may not be the case in other instances. 
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APPENDIX B: SIMULATION MODELLING 

Part 1 Event Routines 

1. Src_gen Event 

a) Event Description 

A Src_gen event is used for generating the traffic flow in a source node. In the network, each node 

(VR instance) is connected with a “source” (Src) and a “destination” (Dest). A Src keeps sending 

traffic to all Dests. The traffic model is represented as a fluid flow instead of discrete packet level 

operations. Each traffic flow is labelled with some parameters, e.g. source and destination 

information. When a traffic flow is generated, the traffic is sent to the location of the connected VR 

instance. Then, periodically, e.g. at 5 minute intervals, the traffic flow can be updated 

A Src_gen event is required to be scheduled initially as the event cannot be scheduled by other events. 

In the initialization routine, N Src_gen events are created. Then, a Src_gen event can schedule 

another Src_gen event which will happen after a specific period of time. In addition, a Src_gen event 

schedules an Arrival event as the traffic is sent to the VR instance. Hence a Src_gen event can 

reschedule itself as well as an Arrival event. 

b) Event Procedure 

In the initialization routine, schedule N initial Src_gen events 

Begin  
For i = 1 to N 

       Begin 
Invoke a Src_gen( source name i ) event for Src i 

End 
End  

Function: Src_gen (source name i )//Generate a series of arrival events on Src i for next moment 

Begin  
For j = 1 to N 

       Begin 
Generate new traffic flow from source i to destination j including related parameters 
Schedule an Arrival event // arrive connected VR instance 

 End  
Schedule a Src_gen event(source name i ) 

End  
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2. Arrival Event 

a) Event Description 

An Arrival event stands for the operation when the traffic arrives at a VR instance. Then the VR 

processes and updates the related VR and PP states, e.g. the workload of the VR and the occupied 

number of line-cards of PP.  Next, an  Arrival event schedules a Departure event. 

b) Event Procedure 

Function:  Arrival( ) 

Begin  
Get parameters from the traffic flow. 
Update the related VR and PP states. 
Schedule a Departure event. 

End 

 

3. Departure Event 

a) Event Description 

After the related VR and PP states are updated in the Arrival event, the VR instance forwards the 

traffic to the next hop. The next hop can be another VR instance or “Dest”. If next hop is a VR 

instance, schedule an Arrival event. If it is a Dest, schedule a Reach_destination event. 

b) Event Procedure 

Function:  Departure( ) 

Begin  
 Figure out the next hop information 
If(next hop is a VR instance) 
          Schedule an Arrival event 
If (next hop is a Dest) 
          Schedule an Reach_destination event 
End 

 

4. Reach_destination 

a) Event Description 

When the next hop in a Departure event is a Dest, a Reach_destination event is invoked. The event 

updates the state of the Dest. 
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b) Event Procedure 

Function: Reach_destination( ) 

Begin 
Get traffic flow related parameters 
update the state of the destination  

End 

 

5. Collect Event 

a) Event Description 

A Collect event is used for collecting the network condition and sending it to the Central Control Unit 

(CCU). The collected parameters include current workload of PPs, the current workload of VRs, the 

number of VR line-cards, the state of PPs and the location of VRs. The CCU then examines if the network 

conditions satisfy the migration conditions. If they do, then schedule a VRM_MOEA event. Otherwise, do 

nothing.. 

b) Procedure 

In the initialization routine, schedule a initial Collect events 
Function: Collect() 

Begin  
Collect the parameter values from VRs and PPs and store them in CCU 
If  (the network condition satisfies migration conditions ) 

              Schedule a VRM_MOEA event 
End 

 

6. VRM_MOEA 

a) Event Description 

AVRM_MOEA event is used for computing VRM_MOEA algorithm to obtain a group of good 

solutions for virtual router migration (VRM). A VRM_MOEA event always schedules an Optical_test event. 

b) Procedure 

Function: VRM_MOEA() 
 Begin  
       Compute VRM_MOEA algorithm to obtain a group of good solutions. 
       Schedule an OPTICAL_TEST event. 
End  
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7. Optical_test 

a) Description  

An Optical_test event is used for testing whether the underlying optical layer can support the candidate 

solutions. If the optical resources can support the candidate solution, a VRM event is scheduled. Otherwise, 

no VRM will happen 

b) Procedure 

Function: Optical_test ( ) 
Begin 

Rank the optimal solutions according to energy saving 
for solution 1 to (size of secondary population) 

Test whether the optical layer supports this candidate solution 
if  (optical layer supports) 

{Schedule a VRM event, End the loop} 
End   

 

8. VRM  

a) Event description 

This event is to move VR instances to their appropriate destination PPs according to the identified 

candidate solution from the Optical_test event. If some sleeping PPs are needed to be destination PPs and 

host new VR instance(s), these PPs are re-awoken before the migration. Then, the VR instances are moved 

to their destination PPs. After the migration, surplus PPs can be put to sleep. Finally, the VR and PP states 

are updated.  

b) Procedure 

Function: VRM() 
 Begin 

Turn on the appropriate PPs if some sleeping PPs are needed to host new VR instance. 
Move VR instances to their destination PPs. 
Turn off the appropriate PPs and release the unneeded optical channels. 

End 

 

9. End_simulation 

a) Event Description 

The event is for terminating the simulation. We use the maximum simulation time as the termination 

condition. After this event, a report is generated for recording the parameters of interest. 

b) Procedure 
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In the initialization routine, schedule a initial End_simulation events 
Function: End_simulation( ) 

Begin  
Stop the event list simulation 

End 

Part 2 Samples of Traffic Demand from the Abilene Network 

In this section, the traffic load of three weeks of the Abilene network are shown from 

Figure 2.1 to Figure 2.3. 

 

Figure B.2.1 The 1
st
 week traffic load 
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Figure B.2.2. The 13
th

 week traffic load 

 

 

Figure B.2.3. The 24
th

 week traffic load 
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Part 3 Random Number Generator 

The header file 

/* Header file "mrand.h" to be included by programs using mrand.c */ 
 
double mrand(int stream); 
void mrandst(double* seed, int stream); 
void mrandgt(double* seed, int stream); 

The c file 

/* Combined MRG from Sec. 7.3.2, from L'Ecuyer (1999).  Multiple(10,000) streams are supported, with 
seed vectors spaced 10,000,000,000,000,000 apart.  Throughout, input argument "stream"must be an integer 
giving the desired stream number.  The header filemrand_seeds.h is included here, so must be available in the   
appropriate directory.  The header file mrand.h must be included inthe calling program (#include "mrand.h") 
before using thesefunctions. 

 
   Usage: (Three functions) 
 
   1. To obtain the next U(0,1) random number from stream "stream," 
executeu = mrand(stream);  
wheremrand is a double function.  The double variable u willcontain the next random number. 
 
   2. To set the seed vector for stream "stream" to a desired 6-vector,execute mrandst(zset, stream);      

where mrandst is a void function and zset must be a doublevector with positions 0 through 5 set to the desired      
stream 6-vector, as described in Sec. 7.3.2. 

 
   3. To get the current (most recently used) 6-vector of  integers inthe sequences (to use, e.g., as the seed for 

a subsequentindependent replication), into positions 0 through 5 of  thedouble vector zget, 
executemrandgt(zget, stream);   where mrandgt is void function.  */ 

 
#include "mrand_seeds.h" 
#define norm   2.328306549295728e-10  /* 1.0/(m1+1) */ 
#define norm2  2.328318825240738e-10  /* 1.0/(m2+1) */ 
#define m1     4294967087.0 
#define m2     4294944443.0 
 
/* Generate the next random number. */ 
double mrand(int stream) 
{ 
    long k; 
    double p, 
           s10 = drng[stream][0], s11 = drng[stream][1], s12 = drng[stream][2], 
           s20 = drng[stream][3], s21 = drng[stream][4], s22 = drng[stream][5]; 
 
    p = 1403580.0 * s11 - 810728.0 * s10; 
    k = p / m1;  p -= k*m1;  if  (p < 0.0) p += m1; 
    s10 = s11;   s11 = s12;  s12 = p; 
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    p = 527612.0 * s22 - 1370589.0 * s20; 
    k = p / m2;  p -= k*m2;  if  (p < 0.0) p += m2; 
    s20 = s21;   s21 = s22;  s22 = p;  
 
drng[stream][0] = s10;  drng[stream][1] = s11;  drng[stream][2] = s12; 
drng[stream][3] = s20;  drng[stream][4] = s21;  drng[stream][5] = s22; 
 
    if  (s12 <= s22) return ((s12 - s22 + m1) * norm); 
    else return ((s12 - s22) * norm); 
} 
 
/* Set seed vector for stream "stream". */ 
void mrandst(double* seed, int stream) 
{ 
inti; 
    for (i = 0; i<= 5; ++i) drng[stream][i] = seed[i]; 
} 
 
/* Get seed vector for stream "stream". */ 
void mrandgt(double* seed, int stream) 
{ 

inti; 
    for (i = 0; i<= 5; ++i) seed[i] = drng[stream][i]; 
} 

 

Part 4 Network Topology Generator Validation 

The degree of  each node :      2    4    4    2    1    3 
The connections:  
    2    6 
    1    3    4    6 
    2    4    5    6 
    3    2 
    3 
    1    3    2 

The degree of  each node :      4    1    3    3    2    3 
The connections:  
    2    3    4    6 
    1 
    1    5    6 
    1    5    6 
    4    3 
    4    1    3 

The degree of  each node :      4    3    2    3    3    1 
The connections:  
    2    3    4    5 
    1    4    3 
    1    2 
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    1    5    2 
    4    6    1 
    5 

Part 5 Simulation Tool Validation 

In this section, the simulation tool is validated by using a simple 3-node-3-linknetwork 

and a simple traffic model. The network topology is illustrated in Figure 5.1 and network 

parameters are shown in Table 5.1. 

 

Figure B.5.1 3-node-3-link Network Topology 

Table B.5.1 Parameter Values in the 3-node-3-link Network 
Parameter name value Parameter name value 

Number of PPs 3 Mating pool size 5 

Number of VRs 3 Maximum generation 20 

Number of ROADMs 3 Crossover rate 0.9 

Physical distance between PPs 100 km Mutation rate 0.1 

Number of line-cards  16 VRM time 30 s 

Quiet threshold  0.3 Migration cost weight 

parameter 

0.5 

Busy threshold 0.7 The fraction of a sleeping PP 

power consumption  

5% 

Primary population size 10 Maximum simulation length 1 day 

VR 1

VR 2 VR 3

PP 1

PP 2 PP 3
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Secondary population size 5 Optical test duration 20s 

A simple sinusoidal traffic modelwithout a random noise component is used. The 

traffic load is sampled every 5 minutes; the maximum traffic load is 30Gbps and  is 

equal to 0.2. The traffic equation is shown as follows: 

            
     

 
        

 

   
         

The power consumption values of each device are described in Section 6.3.1. We 

assume that a PP has 1 LCC and 16 line-cards and a line-card has 40Gbps capacity. 

Hence, the total switching capacity of a PP is                  . The power 

consumption of devices and the network overall are shown in Table 8.2. 

Table B.5.2 Power Consumption of Equipment  

Name Power consumption (W) 

PP 16*500 + 1630 = 9630  

ROADM 135*2+150 = 420 

OLA 110 

Overall Network  (9630 + 420+110)*3 = 30408 

The network state is collected every 15 minutes. When the simulation clock is equal to 

15 minutes from the start, three PPs are in quiet mode as the traffic load is light. Hence, 

the VRM_MOEA is computed to select the appropriate destination physical platform(s) 

for saving energy. The result of VRM_MOEA is shown in Figure 8.2. As we can see in 

Figure 8.2, there are three non-dominated solutions in the final secondary population 

based on their fitness values. Specifically, the candidate solution “1 2 3” is the same as 

current network configuration. As the migration cost of the solution “1 2 3” is 0 which is 

the smallest in the population, it survives. The power consumption and migration cost of 

the remaining two solutions are discussed as follows. Firstly, because all ROADMs and 

OLAs remain working during the simulation, we only consider the power consumption of 

PPs in the evaluation stage of VRM_MOEA. When three VRs are running on the same 

PP in the candidate solution “1 1 1” and PP 2 and PP 3 can be put into the sleep state for 

saving energy, the power consumption is                           . 

Similarly, power consumption of two working PPs and one sleeping PP in the candidate 

solution “1 2 1” is                               

Then, the VRM cost is composed of two components: the hop-distance from the 

default PP location to the destination PP location and current PP location to the 
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destination PP location. The migration cost of candidate solution “1 1 1” is calculated 

based on Equation 4.5 as follows: 

                                                       

Similarly, the candidate solution “1 2 1” has a migration cost 1.  

start VRM_MOEA at 900.5 second 

Secondary population at Generation = 20: 

The generation,20 

    8,    1,    1,    1,   9793.000,    2.000,    0.000 

    6,    1,    1,    1,   9793.000,    2.000,    0.000 

    5,    1,    2,    1,   19341.500,    1.000,    0.000 

    6,    1,    2,    3,   28890.000,    0.000,    0.000 

    9,    1,    2,    3,   28890.000,    0.000,    0.000 

Rank solutions based on power consumption: 

The generation,20 

    8,    1,    1,    1,   9793.000,    2.000,    0.000 

    6,    1,    1,    1,   9793.000,    2.000,    0.000 

    5,    1,    2,    1,   19341.500,    1.000,    0.000 

    6,    1,    2,    3,   28890.000,    0.000,    0.000 

    9,    1,    2,    3,   28890.000,    0.000,    0.000 

Eliminate duplicate solutions: 

The generation,20 

    8,    1,    1,    1,   9793.000,    2.000,    0.000 

    6,    1,    2,    1,   19341.500,    1.000,    0.000 

    5,    1,    2,    3,   28890.000,    0.000,    0.000 

    6,   -1,   -1,   -1,   -1.000,    -1.000,    -1.000 

    9,   -1,   -1,   -1,   -1.000,    -1.000,    -1.000 

The computational time of VRM_MOEA is  0.04 seconds 

Figure B.5.2 VRM_MOEA Result 



 

204 

After VRM_MOEA is complete, candidate solutions are sent to the optical resource 

test unit. The solutions are tested one by one based on their power consumption rank. The 

first one which passes the test will be executed as the appropriate destination arrangement 

for virtual router migration. In this case, candidate solution “1 1 1” is supported by the 

optical resource and VR 2 and VR 3 are moved to PP1.After VRM, 3 VRs are running on 

the same PP. In this case, because the VR traffic load is light throughout the day, 3 VRs 

remain on PP1 for the remaining time. 

The baseline scenario energy consumption of a day is thus: 

                            

The energy consumption of energy-efficient scenario is: 

                                                 
              = 1001574463 J 

The energy saving percentage is: 

                                   61.8% 

The simulation result is the same as the analytical result, indicating that the simulation 

model works as expected.  
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APPENDIX C: SIMULATION RESULTS 

Part 1 BLX-a Results 

As one single point crossover has little impact on the performance of VRM_MOEA, 

we repeat the simulations with a popular crossover mechanism, BLX-a. The results are 

shown from Figure c.1.1 to Figure c.1.3. The results have a similar trend to the 

corresponding figure of one point crossover mechanism. 

 

Figure c.1.1 Computational Time of Various Mutation and Crossover Rate 

 

Figure c.1.2 Accumulated Number of Failures of Viability Test 
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Figure c.1.3 Hypervolume with Various Mutation and Crossover Rate 

Part 2 Migration Cost Setting 

Figure c.2.1 and Figure c.2.2 shows the number of occupied optical channels in the 

Abilene network in the 13
th

 week and 24
th

 week with different cost settings, respectively. 

 

Figure c.2.1 The Number of Occupied Optical Channels in the Abilene Network 

in the 13
rd

 Week 
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Figure c.2.2 The Number of Occupied Optical Channels in the Abilene Network 

in the 24
th

 Week 
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The average occupied number of optical channels, Week 24
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