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Abstract 

The objective of this thesis was to investigate the role of hydroxyapatite and 

silicate-substituted hydroxyapatite synthetic bone graft substitute (SBG) 

material properties in modulating the processes of protein adsorption and 

desorption, and their combined role in the subsequent regulation of cell 

attachment, proliferation and differentiation on the surfaces of these materials 

in vitro. 

As a result of their purported role in promoting osteogenic behaviour in vivo 

the materials parameters selected for investigation were chemistry 

(stoichiometric hydroxyapatite (HA) versus 0.8wt% silicate-substituted 

hydroxyapatite (SA)) and strut porosity (20% versus 30% strut porosity).  Cell 

attachment and response to different SBG was assessed to samples in the ‘as 

received’ condition as well as after a series of sequentially varied pre-

treatments with solutions of phosphate buffered saline or cell culture media 

either unsupplemented or in combination with mixed serum proteins and/or 

Fibronectin (Fn). This enabled investigation of the effect of sample chemistry 

and strut porosity on mixed serum protein interactions and Fn adsorption 

under both competitive and non-competitive conditions, and the study of 

subsequent regulation of cell attachment and response as a consequence of 

pre-treatment.  

Results showed that serum protein interactions were key to modulation of cell 

response to chemistry, and there was evidence that for Fn this may be related 

to conformational changes in the adsorbed protein rather than its level of 

enrichment in the protein interlayer.  

In terms of the materials properties investigated strut porosity was found to be 

the most dominant factor in the regulation of cell response, where SBG with 

30% strut porosity promoted human mesenchymal stem cell (hMSC) 

osteoblastic differentiation. Moreover hMSC response to SBG with 30% strut 

porosity seemed to be less sensitive to pre-treatment. 

In conclusion, the results of these experiments indicate that strut porosity more 

directly influences the cellular response to HA and SA BGS than chemistry in 

vitro. Moreover, the role that Fn and other serum proteins have in regulating 

this response is dependent on the physiological environment and BGS 

chemistry. 
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1 Literature Review 

1.1 Introduction 

When tissues or organs have been so severely diseased or lost by cancer, 

congenital anomaly, or trauma that conventional pharmaceutical treatments 

are no more applicable, artificial organs (including tissues) or organ 

transplantation are the first choice to reconstruct the devastated tissues or 

organs. However, these surgical treatments have been facing a number of 

challenges at the moment (shortage of donor organs, presence of infectious 

agents to further complicate the transplants, immune rejection, and lastly very 

high costs). The term ‘tissue engineering’ was created about three decades 

ago to represent a new concept that focuses on regeneration of neotissues 

from cells with the support of biomaterials and growth factors. It is a 

multidisciplinary field involving biology, medicine and engineering with the aim 

to improve the health and quality of life of people by restoring, maintaining or 

improving tissue and organ functions. 

It is raised from a dramatic improvement in the fields of biochemistry, 

molecular biology, genetics and material science and uses synthetic or 

naturally derived engineering biomaterials to replace damaged or defective 

tissues and organs such as bone and skin. 

Tissue engineering can have either a therapeutic or a diagnostic application: 

-therapeutic when the tissue is either grown in a patient or outside the patient 

and transplanted; 

-diagnostic when the tissue is made in vitro and used for testing drug 

metabolism, uptake, toxicity or pathogenicity. 

The specific tissue can be engineered in one of two ways: 

 In vivo: stimulating the body’s own regeneration response with the 

appropriate biomaterial 

 Ex vivo: cells are expanded in culture, attached to a scaffold and then 

re-implanted into the host. 

The way by which tissue engineering can reach its aim is by putting together 

several advanced technologies: large-scale culturing of human or animal cells 
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(like skin, bone, muscle, marrow, stem cells) may provide substitutes to 

replace damaged components in humans; natural or synthetic materials can 

be moulded into a “scaffold” that when implanted in the body allows the body’s 

own cells to grown and form new tissues while the scaffold is gradually 

adsorbed or removed; biomolecules as angiogenic factors, growth factors, 

differentiation factors and bone morphogenetic proteins to further stimulate the 

organ/tissue to growth. Biomedical engineering utilizes these basic three tools 

either simultaneously or not. 

Examples of early tissue engineering studies include Wakitani that reported 

the repair of rabbit articular surfaces with allograft chondrocytes embedded in 

collagen gel (Wakitani et al., 1989) and the ones from Vacanti, in which he 

studied the cell transplantation using bioabsorbable synthetic polymers as 

matrices (Vacanti et al., 1988).  

The reason why tissue engineering has become such a developed field is 

because it potentially reduces medical costs and offers great improvements in 

medical care for hundreds of thousands of patients annually. 

For example organ transplants alone present many opportunities because of 

the significant shortage of donor organs. More than 10,000 people have died 

during the past five years while waiting for an organ transplant. Infectious 

agents such as hepatitis C and HIV further complicate the organ transplants, 

and recipients generally must remain on costly immunosuppressive drugs for 

the balance of their lives. Outcome studies have shown that the survival rates 

for major organ transplants are poor despite their high cost. "Engineered" 

replacement organs could sidestep many of the hazards and problems 

associated with donor organs, and at lower cost. 

It is estimated that the cost of an implantable artificial liver, plus surgical 

procedures and follow-up could lead to a total saving of $720 million a year 

only in the US, with a higher survival rate and better quality of life for the 

patients. In fact, a tissue-engineered artificial liver is currently under 

development for temporary use (outside the body) until a permanent donor 

organ becomes available. Ultimately, it could become an implantable device 

totally replacing the need for donor organs if the remaining technical obstacles 

can be overcome. 
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Other equally promising applications include replacement of lost skin due to 

severe burns or chronic ulcers; replacement or repair of defective or damaged 

bones, cartilage, connective tissue, or intervertebral discs; replacement of 

worn and poorly functioning tissues such as aged muscles or corneas; 

replacement of damaged blood vessels; and restoration of cells that produce 

critical enzymes, hormones, and other metabolites. 

 

However, though artificial organs and tissues have been improved by 

remarkable advances in the biomedical engineering in the past decade, they 

still need better biocompatibility and biofunctionality. Tissue engineers are still 

working hard on some of the big current challenges in the field such as:  

 Making sure that immune acceptance is created. This problem is less 

pronounced with autologus cells, but allogenetic cells are needed when 

there is a need to make the engineered product widely available for 

routine use. It will be just as susceptible to immune response as 

allogeneic organ or tissue transplants and generally require 

immunosoppression 

 Large scale production of tissue engineered products 

 Preservation of the products so that it has a long shelf-life 

 Ability to generate large, vascularised tissues that can easily integrate 

into the host’s circulatory system.  
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1.2 Bone Tissue Engineering 

As previously said, one of the early promising applications of tissue 

engineering was within the replacement, or repair, of defective or damaged 

bones. Soon after was then born Bone Tissue Engineering: an emerging 

interdisciplinary field which seeks to apply the principles of biology and 

engineering to address the needs for the development of viable substitutes 

that restore and maintain the function of human bone tissues. This form of 

therapy differs from standard drug therapy or permanent implants in that the 

engineered product can be:  

-partially integrated within the patient, leading to a remodelling of the natural 

bone tissue; 

-completely integrated within the patient, leading instead to a complete 

replacement of the natural bone tissue. 

In both the cases, there is a potentially permanent and specific cure of the 

disease state. 

Bone is a remarkable organ playing key roles in critical functions in human 

physiology including protection, movement and support of other important 

organs, blood production, mineral storage and homeostasis, blood pH 

regulation, multiple progenitor cells housing and others. 

The importance of this tissue for the health of the whole body is highlighted by 

the presence of different and various bone-related diseases, like osteoarthritis, 

osteomyelitis and osteoporosis, and genetic abnormalities, like osteogenesis 

imperfecta. These represent only some of the cases in which the functional 

defect of the bone reflects pathological consequences in the body. If we also 

consider the relevance of traumatic injuries, orthopaedic surgeries and tumour 

resections it is clear how the clinical and economic impact of bone defects’ 

treatments is worldwide astounding. 

For example, the number of total joint arthroplasties and revision surgeries in 

the US has increased from 700,000 in 1998 to over 1.1 million in 2005. 

Medical expenses relating to fracture, reattachment, and replacement of hip 

and knee joint was estimated to be over $20 billion (USD) in 2003, and 

predicted to increase to over $74 (USD) billion by the year 2015 (Kurtz et al., 

2007). 
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The safest and best way bone can healis by self-regeneration, which can 

occur as bone has an intrinsic ability to physiologically regenerate itself. 

However, for several reasons, sometimes injured or diseased bone may not 

be capable of repairing itself. In these cases the reconstruction of bone 

defects resulting from trauma, tumour, infections, biochemical disorders, or 

abnormal skeletal development is a clinical situation in which surgical 

intervention is required. The types of graft materials available to treat such 

problems essentially include autologous bone (from the patient), allogeneic 

bone (from a donor), demineralised bone matrices, as well as a wide range of 

synthetic biomaterials such as metals, ceramics, polymers, and composites. 

Until recently, the use of autologous bone grafts has been the number one 

choice for bone repair and regeneration (Damien and Parsons, 

1991)(Yaszemski et al., 1996) (Coombes and Meikle, 1994). A patient’s own 

bone lacks immunogenicity and provides bone-forming cells, which are directly 

delivered at the implant site. Moreover, autologous bone grafts recruit 

mesenchymal cells and induce them to differentiate into osteogenic cells 

through exposure to osteoinductive growth factors (Lane et al., 1999). 

Although there are many advantages to using autologous bone, there are 

major drawbacks to the harvesting procedure, and for centuries there has 

been a search for alternatives. 
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1.3 Bone structure and composition 

Bone is a complex, highly organized and specialized connective tissue that is 

continuously being broken down and restructured in response to such 

influences as structural stress or the body’s requirement for calcium. 

It is characterized physically by the fact that it is a tissue hard, rigid and strong, 

and microscopically by the presence of relatively few cells and much 

intercellular substance formed of collagen fibers and inorganic stiffening 

substances. 

It is important to understand this complex structure in detail in order to 

comprehend how the complex process of bone healing occurs when fractures 

heal. Furthermore, only by understanding the biomechanical and biological 

properties of bone it’s then possible to develop bone grafts or bone substitutes 

able to reconstruct large defects of human bone. 

1.3.1 Macroscopic analysis 

The skeleton serves a variety of functions. The bones of the skeleton provide 

structural support for the rest of the body, permit movement and locomotion by 

providing levers for the muscles, protect vital internal organs and structures, 

provide maintenance of mineral homeostasis and acid-base balance, serve as 

a reservoir of growth factors and cytokines, and provide the environment for 

hematopoiesis within the marrow spaces (Taichman, 2005). 

Bones are divided into four types based on their shape: long, short, flat and 

irregular bones. In the present paragraph, I will focus on the anatomy and 

physiology of long bones. 

Long bones have various regions within them: we can identify two end regions 

called epiphyses, two corn-shaped metaphyses  below them and one middle 

region called diaphysis; the region where the epiphysis and the diaphysis 

meet is a disk-shaped region called epiphyseal disk (Figure 1-1). 

As the bone is a hard tissue, to make contact between other bones at the level 

of the joints it is coated at the end of each epiphysis with articular cartilage: 

this is a coating of hyaline cartilage which contains mostly collagen (primarily 

type II), glycosaminoglycans, water, glycoproteins and hyaluronic acid. 
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Except at joints, all bones are covered in a thin membrane called 

periosteumwhich is made up of dense connective tissue which contains a lot 

of collagenous fibers and also many cells (Figure 1-1). The periosteum is 

tightly attached to the outer cortical surface of bone by thick collagenous 

fibers, called Sharpeys’ fibers, which extend into underlying bone tissue.  

The endosteum is a membranous structure covering the inner surface of 

cortical bone, trabecular bone, and the blood vessel canals (Volkman’s canals) 

present in bone. The endosteum is in contact with the bone marrow space 

(which can be either red marrow where blood is made or yellow marrow where 

fat is deposited), trabecular bone, and blood vessel canals and contains blood 

vessels, osteoblasts, and osteoclasts. 

 

 

Figure 1-1: The different regions and characteristics of long bones (Glorieux, 2005) 

Macroscopically it is possible to identify two structurally different types of bone 

(Tortora and Derrickson, 2008): 

• Cortical (or compact) bone: it forms the hard outer, smooth layer of bones. It 

accounts for the 80% of the total bone mass of an adult skeleton and gives 

bones their white, solid appearance. This structure resists to tensile stresses 

(Figure 1-2). 
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• Cancellous (or spongy, or trabecular) bone: highly porous, it represents the 

inner part of mature bones and, even if accounts for the remaining 20% of total 

bone mass, has almost ten times the surface area of cortical bone. This 

structure resists compression stresses (Figure 1-2). 

 

 

 

Figure 1-2 Radiological appearance of cancellous and cortical bone 

 

The adult human skeleton is composed of 80% cortical bone and 20% 

cancellous bone on the overall mass, however the last one has nearly ten 

times the surface area of the cortical bone (Eriksen et al., 1994). The 

diaphysis is composed primarily of dense cortical bone, whereas the 

metaphysis and epiphysis are composed of trabecular meshwork bone 

surrounded by a relatively thin shell of dense cortical bone. 

Cortical or compact bone is dense and solid and surrounds the marrow space. 

Both cortical and cancellous bone are composed of osteons. Cortical osteons, 

also called Haversian systems (Tortora and Derrickson, 2008), represent the 

fundamental functional unit of much compact bone (Figure 1-3). Each 

Haversian System is cylindrical in shape, is approximately 400 mm long, 200 

mm wide and 0.2 mm in diameter. They form a branching network within the 

Cortical 

bone 

 

Cancellous 

bone 
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cortical bone running parallel to the long axis of the diaphysis. The walls of 

Haversian systems are formed of concentric lamellae, which in the centre 

present the Haversian canal. This contains blood vessels, nerves and loose 

connective tissue. Surrounding each canal are 4–20 concentric lamellae of 

collagen fibres. The Haversian canals are round or oval in cross-section. They 

generally run in a longitudinal direction (Figure 1-3). Between 

adjoining osteons, there are angular intervals that are occupied by interstitial 

lamellae. These lamellae are remnants of osteons that have been mostly 

destroyed. Near the surface of the compact bone, the lamellae are arranged 

parallel to the surface; these are called circumferential lamellae. 

Each osteon communicates with the marrow cavity, the periosteum and with 

each other through transverse or oblique canals: the Volkmann’s canals 

(Tortora and Derrickson, 2008) (Figure 1-3). The osteocytes are arranged 

circumferentially around the central canal in parallel with the lamellae and are 

interconnected by fine processes of osteocyte cytoplasm: the filopodia. The 

osteocytes are housed in lacunae interconnected by canaliculi containing 

these fine cytoplasmic processes. 

Irregular areas of compact bone are present between the Haversian Systems: 

interstitial lamellae. These are remnants of previous Haversian systems 

which have been remodelled. 

 Each osteon is separated from its neighbour and from interstial lamellae by a 

cement line which stains darkly with Haematoxtylin. The outermost and 

innermost layers of cortical bone contain no Haversian canals, and the 

lamellae are arranged parallel with the periosteal and endosteal surfaces to 

form the so-called circumferential lamellae (outer and inner circumferential 

lamellae).  

Cancellous or spongy bone consists of a series of interconnecting plates of 

bone: the trabeculae (Tortora and Derrickson, 2008) (Figure 1-3). Each bone 

trabecula contains collagen fibres arranged in parallel lamellae. Trabeculae 

are similar to osteons in that both have osteocytes in lacunae that lie between 

calcified lamellae. As in osteons, canaliculi present in trabeculae provide 

connections between osteocytes. However, since each trabecula is only a few 
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cell layers think, each osteocyte is able to exchange nutrients with nearby 

blood vessels. Thus, no central canal is necessary. 

 

 

 

 

 

Figure 1-3: Hierarchical structure of a long bone 
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1.3.2 Microscopic analysis 

 

At the microscopic level, bone consists of: 

 

 bone cells 

 extracellular matrix {  

 

The majority of bone is made of the bone matrix which has inorganic and 

organic parts. The inorganic part is composed of poorly crystalline salts and 

bone mineral crystals. The organic part is composed of collagen fibrils and 

non-collagenous proteins.  

The rest of the bone is made up of bone cells, which are classified in three 

different types: osteoblasts, osteoclasts and osteocytes ( 

Figure 1-4). 

 

 

 

Figure 1-4: Microscopic composition of normal bone 

 

organic 

inorganic 
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1.3.3 Bone cells 

Bone is a type of tissue in constant remodeling. To be able to do this, it needs 

different kind of cells finely regulated to give the right ratio of building 

up/breaking down of bone.  

The primary source of bone cells is the Bone Marrow, which contains 

mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs) that 

take part in important physiological processes.  

Mesenchymal stem cells: The main source of MSCs, as said, is the bone 

marrow. They are progenitors of different cells type, which also 

give rise to and maintain:  

 the osteoblasts that synthesize new bone matrix on bone forming 

surfaces;  

 the osteocytes within bone matrix that support bone structure; 

 cartilaginous cells (chondrocytes), fat, muscle and fibrous 

connective tissues 

They reside in the loose connective tissue between trabeculae, 

along vascular channels, and in the condensed fibrous tissue 

covering the outside of the bone (Pittenger et al., 1999)  

 

Osteoblasts: being the bone forming cells, they directly participate to the new 

bone formation. The bone is essentially enveloped by the 

osteoblasts, since the cells are in close contact with one another 

and tight junctions and gap junctions have been observed. Thus, 

the osteoblastic layer controls the transport of materials from the 

extracellular space to the osteoid seam and mineralization front. 

When quiescent they present a flattered morphology, while when 

active they present a cubical one. Ultra structurally, osteoblasts 

feature a complement of organelles which is characteristic of 

cells actively involved in protein synthesis. They have abundant 

endoplasmic reticulum and numerous ribosomes, and the Golgi 

apparatus and mitochondria are quite prominent. Procollagen 

molecules are produced by the ribosomes and extruded into the 

extracellular space, but only along the surface that faces bone. 
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Their proteolysis and polymerization within the extracellular 

space result in the formation of collagen fibrils. The combination 

of these intracellular and extracellular events leads to the 

production of the osteoid seam. As previously mentioned, 

proteoglycans are also present in the extracellular matrix: they 

are packaged in the Golgi apparatus, and vesicles containing 

these products migrate to the surface of the cell and release their 

contents by exocytosis. The combination of proteoglycans and 

collagen fibers results in the production of a mineralizable matrix 

for which these cells are responsible (Young, 1963). 

When active, osteoblasts show high alkaline phosphatase 

activity. Alkaline phosphatase is thought to act as a 

pyrophosphatase and may be involved in the initiation of the 

mineralization process.  

 

Osteocytes: Approximately 10% of the osteoblastic population becomes 

enclosed in the developing matrix: when this happen, cells are 

then referred to as osteocytes. They have structural features very 

similar to when they were osteoblasts, but the endoplasmic 

reticulum may not be so profuse. As the cells become more 

deeply embedded in the mineralized bone matrix, their 

cytoplasmic volume reduces, as does their complement of 

cytoplasmic organelles. They occupy the lacunae in the bone 

matrix and possess long, thin cytoplasmic processes (the 

filopodia) located in thin, cylindrical spaces or canals in the bone 

matrix (the canaliculi). Tight gap junctions are present at this 

level: both from the osteocytes deeper towards the inside of the 

bone, and from the osteoblasts more superficially towards the 

external part of the bone. These junctions are present in order to 

regulate the flow of mineral ions from the extracellular fluid to the 

osteocytes passing through the osteoblasts, from the osteocytes 

to the extracellular fluid surrounding them, and finally from this 

fluid to the mineralized bone matrix. Thus, the large surface area 

provided by the osteocytic population results in a regulatory 
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mechanism for the exchange of mineral ions between the 

extracellular fluid and bone, by means of the canalicular system 

(Bonewald, 1999). 

Osteocytes do not normally express alkaline phosphatise but do 

express osteocalcin, cell adhesion receptor for hyaluronate, and 

several matrix proteins that support intercellular adhesion and 

regulate the exchange of mineral in the bone fluid within lacunae.  

The primary function of the osteocyte-osteoblast lining cell 

syncytium is mechanosensation (Rubin and Lanyon, 1987). 

Osteocytes transducer stress signals from bending of bone into 

biologic activity. Following stimuli from external forces, the flow of 

canalicular fluid induces a variety of responses within osteocytes. 

Rapid fluxes of bone calcium across filipodial gap junctions, for 

example, are believed to stimulate transmission of information 

between osteoblasts on the bone surface and osteocytes within 

the bone (Jørgensen et al., 2003). Moreover, it has been 

evaluated the possibility that osteocytes could remove and 

replace bone, process known as “osteocytic osteolysis”, which 

assumes that also this cell type, together with osteoclasts, could 

participate in the remodelling process (Liu et al., 2012)(Qing et 

al., 2012).  

 

Chondrocytes: They are the only cells found in cartilage. They produce and 

maintain the cartilaginous matrix, which consists mainly of 

collagen (type II) and proteoglycans. They also are 

fundamental for a number of functions within the cartilage, for 

example facilitating the exchange of fluids through the gelatinous 

layers which make up cartilage. Because cartilage lacks 

vascularisation, it relies on this exchange to receive nutrients and 

eliminate waste materials (Culav et al., 1999). 

These cells are risen from the bone marrow: after stem cells 

differentiate into cartilage cells, they start out as chondroblasts 

that actively produce chondrin (primary substance in cartilage) to 
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build up and repair cartilage. Once a chondroblast becomes 

totally surrounded, it is a mature chondrocyte.  

Fully mature chondrocytes tend to be round, and they may 

cluster together in small groups within the network of the 

cartilage. They are not capable of cell division (DeLise et al., 

2000). 

 

Bone marrow contains not only mesechymal stem cells but also 

hematopoietic stem cell population that gives rise to osteoclast cells and blood 

cell lineages. 

The function of these precursor cells is of fundamental importance for the 

proper differentiation in each specific cell lineage in the bone.  

 

Osteoclasts: Osteoclasts are found in sites where bone has been remodelled. 

They are large, multi-nucleated cells formed by fusion of 

monocytes that lie on, or near, bone surface in shallow 

depressions called the Howship’s lacunae.  

The size and number of nuclei in osteoclasts vary, but each 

nucleus usually is associated with a perinuclear Golgi apparatus, 

in which Golgi vesicles are found in all stages of development. 

The cytoplasm is filled with vacuoles and small vesicles. There is 

little endoplasmic reticulum and few ribosomes, and mitochondria 

are present in much greater number than in osteoblasts. The 

zone of contact of the plasma membrane with the bone surface 

consists of two areas: the ruffled border and the sealing area. 

The ruffled border comprises finger-like membranous folds that 

extend varying distances into the cytoplasm, while the sealing 

area is characterized by a very dense homogeneous cytoplasm 

that surrounds the site of active bone resorption, namely, the 

ruffled border (Vaananen et al., 2000). 

Bone resorption depends on osteoclast secretion of hydrogen 

ions and cathepsin K enzyme. H+ ions acidify the resorption 

compartment beneath osteoclasts to dissolve the mineral 

component of bone matrix, whereas cathepsin K digests the 
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proteinaceous matrix, which is mostly composed of type I 

collagen. 

Binding of osteoclasts to bone matrix peptides (via β1 family of 

integrin receptors in the osteoclast membrane) causes them to 

become polarized. During this event the osteoclast resorbing 

surface develops a ruffled border that, when acidified, forms 

vesicles which contain matrix metalloproteinases and cathepsin 

K. These vesicles, transported via microtubules, are then fused 

with the membrane. The cell’s ruffled border secretes H+ ions via 

H+-ATPase and chloride channels, and causes exocytosis of 

cathepsin K and other enzymes in extracellular matrix 

(Teitelbaum et al., 1995).  

Upon contact with bone matrix, the fibrillar actin cytoskeleton of 

the osteoclast organizes into an actin ring, which promotes 

formation of the sealing zone around the periphery of osteoclast 

attachment to the matrix. The sealing zone surrounds and 

isolates the acidified resorption compartment from the 

surrounding bone surface (Vaananen et al., 2000). Disruption of 

either the ruffled border or actin ring blocks bone resorption.  
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1.3.4 Bone matrix 

As previously mentioned, osteoblasts synthesize the bone matrix, which is the 

material located between the cells. This intercellular substance contains large 

quantities of both proteins (around 30%) and inorganic components (around 

70%) (Tortora and Derrickson, 2008). Their presence and combination 

provides the bone with its typical mechanical properties such as elasticity, 

toughness, hardness. 

 

Organic matter: its weight is composed by 85% to 90% of collagenous 

proteins (Brodsky and Persikov, 2005), which consist of type I 

collagen fibers embedded in the ground substance containing 

proteoglycans and glycoproteins. There are also trace amounts 

of collagen type III, V and FACIT at certain stages of bone 

formation. FACIT collagen is a member of the family of Fibril-

Associated Collagens with Interrupted Triple Helices, a non-

fibrillar collagen which serves as molecular bridge important for 

the organization and stability of extracellular matrices. Members 

of this family include collagens IX, XII, XIV, XIX, XX, and XXI. 

The collagen fibers are made up of bundles of fibrils to resist 

pulling forces: it’s thanks to these fibers that bone presents its 

typical characteristics of flexibility, bending resistance, elasticity 

and resistance to tension stress (Van Apeldoorn et al., 2005). 

The remaining 10% to 15% of organic matter consists of non-

collagenous proteins. Osteoblasts synthesize and secrete as 

much non-collagenous proteins as collagen on a molar basis. 

The non-collagenous proteins are divided broadly into several 

categories, including proteoglycans, glycosylated proteins, 

glycosylated proteins with potential cell-attachment activities, and 

γ-carboxylated (gla) proteins. The roles of each of the bone 

proteins are not well defined at present, and many seem to serve 

multiple functions, including regulation of bone mineral deposition 

and turnover and regulation of bone cell activity. The most 

prevalent non-collagenous protein in bone is osteonectin, 

accounting for approximately 2% of total protein in normal bone. 
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Osteonectin is thought to affect osteoblasts growth and/or 

proliferation, and matrix mineralization (Tortora and Derrickson, 

2008). 

 

Inorganic matter: The mineral content of bone is a Calcium/Phosphate with 

structure similar to hydroxyapatite [Ca10(PO4)6(OH)2], with trace 

amounts of different ions like carbonate, magnesium, sodium, or 

potassium. Compared with geologic hydroxyapatite crystals, 

bone hydroxyapatite crystals are smaller, measuring only 

approximately 200 Å in their largest dimension. These small, 

poorly crystalline crystals are more soluble than geologic 

hydroxyapatite crystals, characteristic which allows them to more 

easily support mineral metabolism (Robinson, 1952). The 

inorganic components give to the bone essential characteristics 

like hardness, rigidity, load-bearing strength and resistance in 

compression stress (Van Apeldoorn et al., 2005). 

Inorganic matrix maturation is associated with expression of 

alkaline phosphatase and several non-collagenous proteins, 

including osteocalcin, osteopontin, and bone sialoprotein. It is 

thought that these calcium- and phosphate-binding proteins help 

regulate ordered deposition of mineral by regulating the amount 

and size of hydroxyapatite crystals formed.  

The process of matrix formation is facilitated by the presence of 

extracellular matrix vesicles secreted by osteoblasts: these 

vesicles serve as protected microenvironments in which calcium 

and phosphate ions can reach a sufficiently high concentration in 

order to promote crystal’s precipitation and consequently bone 

formation. In the extracellular fluid this wouldn’t normally happen 

because this environment is not normally supersaturated with 

calcium phosphate ions. These extracellular matrix vesicles 

contain a nucleational core that is composed of proteins and a 

complex of acidic phospholipids, calcium, and inorganic 

phosphate, which promote hydroxyapatite crystals’ precipitation. 
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As bone matures, hydroxyapatite crystals enlarge and reduce 

their level of impurities. Crystal enlargement occurs by both 

crystal growth and aggregation. Bone matrix macromolecules 

may facilitate initial crystal nucleation by sequestering mineral 

ions to increase local concentrations of calcium and/or 

phosphorus, or by facilitating heterogeneous nucleation. 

Macromolecules also bind to growing crystals’ surfaces to 

influence the size, shape, and number of crystals formed (Landis, 

1995). 

 

 

1.4 Pattern of growth, modeling and remodeling 

To understand in which way a bone-graft could be of help in the case of 

severe bone injury is necessary to understand which are the physiological 

processes for grow and remodeling of normal bone. 

It is therefore important to underline the different aspects between bone 

growth and bone modeling and remodeling.  

 

Even before bone growth, precisely during the fetal development of the 

skeletal system, two types of bone histogenesis namely intra-membranous 

ossification and endochondral ossification occur (Palastanga et al., 2006). 

Intra-Membranous Ossification occurs in flat bones such as the skull or the 

scapula. In this process, the bone is developed from a condensation of 

mesenchymal tissue: the ossification centre. The cells within this tissue 

differentiate directly into osteoblasts which spontaneously synthesize osteoids 

which then undergo mineralization. 

Endochondral Ossification occurs in long bones and short bones. This 

process involves initial formation of cartilage and later replacement by bone. A 

part for the fetal development of the skeletal system, this process is also 

essential for the elongation of long bones and the natural healing of bone 

fractures. 

During endochondral ossification, some transcription factors (Sox9, Sox5 

and/or Sox6) are expressed and are involved in the induction of chondrocytes 

in the growth plate (de Crombrugghe et al., 2001). The pre-hypertrophic 
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chondrocytes mature into hypertrophic chondrocytes, which lay down a matrix 

rich in Collagen X and secrete VEGF (Gerber et al., 1999). VEGF promotes 

the invasion of blood vessels from the perichondrium, bringing in both the 

bone forming osteoblasts and the bone resorbing osteoclasts. The 

hypertrophic chondrocytes then undergo apoptosis, and are replaced by 

trabecular bone and bone marrow. 

 

Bone growth occurs during childhood and adolescence, and it is both 

longitudinal and radial. Longitudinal growth occurs at the growth plates, where 

cartilage proliferates in the epiphyseal and metaphyseal areas of long bones, 

before subsequently undergoing mineralization to form primary new bone. 

 

Bone modelling is the process in which bones change their shape, letting the 

skeleton being gradually adjusted in response to biological or mechanical 

forces. Wolff’s law describes the observation that long bones change shape to 

accommodate stresses placed on them (Wolff, 1870). These biological and/or 

mechanical stresses basically activate the simultaneous action of osteoblasts 

and osteoclasts which, by not-coupled bone formation and resorption 

processes, will cause a change in bone axis. Bone modelling is less frequent 

than remodelling in adults, and may be increased during some pathologies 

such as hypoparathyroidism (Ubara et al., 2003), renal osteodystrophy (Ubara 

et al., 2005), or treatment with anabolic agents (Lindsay et al., 2006). 

 

Bone remodelling is the process by which bone is renewed to maintain its 

strength and mineral homeostasis. Remodelling involves removal of discrete 

packets of old bone, replacement of these packets with newly synthesized 

proteinaceous matrix, and subsequent mineralization of the matrix to form new 

bone. The remodelling process resorbs old bone and forms new bone in order 

to prevent accumulation of bone micro damage. Remodelling begins before 

birth and continues until death. The bone remodelling unit is composed of a 

tightly coupled group of osteoclasts and osteoblasts that sequentially carry out 

the processes of resorption and bone formation (Burr, 2002)(Parfitt, 2002). 

The remodelling process is essentially the same in cortical and trabecular 

bone, and is composed of four steps: activation, resorption, reversal and 
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formation. Remodelling sites may develop randomly but are also targeted to 

areas that require repair.  

 

Activation involves recruitment and activation of mononuclear monocyte-

macrophage osteoclast precursors from the circulation (Roodman, 1999), 

lifting of the endosteum that contains the lining cells off the bone surface, and 

fusion of multiple mononuclear cells to form multinucleated preosteoclasts. 

Preosteoclasts bind to bone matrix via interactions between integrin receptors 

on their cell membranes and RGD-containing peptides in matrix proteins, to 

form annular sealing zones around bone-resorbing compartments beneath 

multinucleated osteoclasts. 

 

Osteoclast-mediated bone resorption takes only approximately 2 to 4 weeks 

for each remodeling cycle. Resorbing osteoclasts secrete hydrogen ions via 

H+-ATPase proton pumps and chloride channels on their cell membranes. 

These ions are pumped into the resorbing compartment in order to lower the 

pH to a level as low as 4.5, which will help mobilize bone mineral (Silver et al., 

1988). A part for acting via a chemical attack, osteoclasts also secrete 

biological molecules like tartrate-resistant acid phosphatase, cathepsin K, 

matrix metalloproteinase 9, and gelatinase in order to digest the organic matrix 

(Delaissé et al., 2003). These molecules are secreted from cytoplasmic 

lysosomes. The resorption phase is completed by mononuclear cells after the 

multinucleated osteoclasts undergo apoptosis (Eriksen, 1986).  

 

The reversal phase represents the transition from bone resorption to bone 

formation. At the completion of bone resorption, resorption cavities contain a 

variety of mononuclear cells, including monocytes, osteocytes released from 

bone matrix, and preosteoblasts recruited to begin new bone formation. The 

coupling signals linking the end of bone resorption to the beginning of bone 

formation are as yet unknown. Proposed coupling signal candidates include 

bone matrix-derived factors such as TGF, IGF-1, IGF-2, bone morphogenetic 

proteins, PDGF, and fibroblast growth factor (Bonewald and Mundy, 

1990)(Hock et al., 1988) (Locklin et al., 1999). The reversal phase has also 
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been proposed to be mediated by the strain gradient in the lacunae (Smit et 

al., 2002) and by the osteoclasts themselves (Martin and Sims, 2005). 

 

Bone formation takes approximately 4 to 6 months to complete. Osteoblasts 

synthesize new collagenous organic matrix and regulate mineralization of 

matrix by releasing small, membrane-bound matrix vesicles that concentrate 

calcium and phosphate, and enzymatically destroy mineralization inhibitors 

such as pyrophosphate or proteoglycans (Anderson, 2003). Osteoblasts 

surrounded by and buried within matrix become osteocytes with an extensive 

canalicular network connecting them to bone surface lining cells, osteoblasts, 

and other osteocytes. The osteocyte network within bone serves as a 

functional syncytium. At the completion of bone formation, approximately 50 to 

70% of osteoblasts undergo apoptosis, with the rest becoming osteocytes or 

bone-lining cells. 

 

The final result of each bone remodeling cycle is the production of a new 

osteon with the aimed preservation of bone mechanical strength and biological 

functions and ions homeostasis. The relatively low adult cortical bone turnover 

rate of 2% to 3% per year is adequate to maintain biomechanical strength of 

bone. The rate of trabecular bone turnover is higher, more than required for 

maintenance of mechanical strength, indicating that trabecular bone turnover 

is more important for mineral metabolism. Increased demand for calcium or 

phosphorus may require increased bone remodelling units, but, in many 

cases, this demand may be met by increased activity of existing osteoclasts. 

Ongoing bone remodeling activity ensures a continuous supply of newly 

formed bone that has relatively low mineral content and is able to exchange 

ions more easily with the extracellular fluid. 

 

During fracture healing a modified version of endochondral ossification often 

occurs, which is characterised by a 5-step process: 

-Firstly, the injury to the periosteum and to local soft tissue promotes the 

formation of an haematoma (blood clot). The periosteum is the fibrous 

membrane that covers most bone surfaces containing blood vessels which 
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nourish the bone and also act as an attachment point for tendons and 

muscles. 

-As a consequence of this disruption in the blood supply, osteocytes nearest to 

the fracture die, resulting in local necrosis of the bone around the fracture. 

Simultaneously, there is a demand for the repair of the bone, the stabilization 

of the damaged area and the removal of the dead tissue. 

-To remove tissue debris and to rapidly express extracellular matrix, the bone 

requires the activity of macrophages and fibroblasts, and osteoblast and 

chondrocytes respectively.  

In addition, mesenchymal stem cells are recruited to differentiate into 

osteoprogenitor cells and periosteum. 

-This leads to an apparent thickening of the periosteum and the production of 

a callus around the fracture site. The callus is a bony and cartilaginous 

formation across a bone fracture which happens during bone repair. Those 

osteoprogenitor cells that lie close to undamaged bone (and are thus within 

reach of a ready supply of oxygen) differentiate into osteoblasts and form an 

osteoid which is rapidly mineralized into bone, while those farther away 

become chondroblasts and form cartilage. Angiogenesis is induced 

concurrently, capillaries are formed, and osteoclasts and osteoprogenitor cells 

invade now the cartilaginous callus. 

-The cartilaginous material is resorbed and new bone is deposited. The woven 

bone (immature bone, in which collagen fibers are arranged in irregular 

random arrays and contains smaller amounts of mineral substance) is then 

remodelled into lamellar bone (in which the tubular lamellae are formed, 

characterized by parallel spirally arranged collagen fibers) and the process is 

completed by the return of normal bone marrow within cancellous regions 

(Mackie et al., 2008). 
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1.5 The importance of calcium in bone homeostasis 

Calcium is one of the most important ions present in the body and the most 

abundant (Intakes and others, 1997). It plays fundamental roles in many 

different cellular functions and is essential for the activity of different proteins, 

enzymes, pumps. Some examples are its role in blood clotting, in stabilizing 

blood pressure, in the contribution to the normal brain functions, or for the 

communications between cells. Because of its vital role in many different 

activities, the body has its own calcium “reservoir” which is represented by 

bones: here is where calcium intake is stored, and from where it is collected 

when the body is in need, all of this in the processes of old bone resorption 

and new bone formation.  To mediate this events there are specific hormones, 

which finely regulate the levels of calcium in the blood to be readily available 

for the cells to help them to perform various fundamental activities such as: the 

regulation of the amount of glucose entering inside the cells, the release of 

chemicals needed for the signal transmissions between nerves and target 

cells, the process of muscle cell contraction, or the support to the movement of 

sperm into an egg to fertilize it. The body can do this in three different ways: 

by decreasing the urinary excretion of calcium from the kidneys, by adjusting 

the absorption of calcium from the diet, and by withdrawing calcium from 

bones (Intakes and others, 1997). These hormones are: Parathyroid Hormone 

(PTH), Calcitriol and Calcitonin. Seen the major role that calcium plays in the 

body and that bone represent its main calcium “reservoir”, it’s clear how the 

presence of this ion can affect processes like bone formation and resorption. 

Therefore, different studies have been looking at how calcium affects the cell 

response during bone formation. It has been extensively shown that the 

presence of calcium supports cell proliferation and differentiation in bone 

remodelling, and that this could be an effect both direct and indirect through 

the activity of monocytes. Moreover, the presence of bone graft substitutes to 

support the bone formation process is thought to help bone remodelling 

through ionic exchange between the graft’s surface and the physiological 

environment. 
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1.6  Key proteins involved in bone remodelling The 

biological bone-markers 

In the physiological bone environment different proteins and enzymes have 

been identified to have a fundamental role in various bone development 

processes, such as bone formation, modelling, remodelling, and bone 

resoprtion. These molecules have been extensively studied in order to 

understand their correlation with bone physiological processes, and nowadays 

represent fundamental biological markers used to gather new insights into the 

biological response to bone graft materials used for bone regeneration. 

This paragraph introduces the bone markers which have been used during the 

experiments presented in this thesis and focuses on their biological functions. 

 

1.6.1 Alkaline phosphatase 

Alkaline phosphatise (ALP) is a protein of the proteoglycan membrane 

bounded enzymes group, found in different tissues, such as placenta, kidneys, 

intestines, and most importantly liver and bone (Weiss et al., 1986). Bone 

specific ALP is localized in the outer plasma membrane connected to 

membrane inositol phosphate by a phosphatidyl-glycan bridge. It is 

synthesized by osteoblasts in specific vesicles which also contain high 

amounts of inorganic phosphate and is then anchored in the areas of bone 

growth (Anderson, 2003). ALP is considered an early differentiation marker for 

bone formation, as it has been confirmed its essential role in co-operating 

inorganic phosphate and calcium ions in order to form apatite crystals (van 

Straalen et al., 1991).  

 

1.6.2 Osteocalcin 

Osteocalcin (OCN) is a non-collagenous protein synthesized from the 

osteoblasts and it is a widely used biomarker for bone turnover. Its 

transcription is regulated by 1,25-dihydroxy-Vitamin D3 (which makes this 
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vitamin essential for healthy bones) and after transcription its mRNA is 

translated in pre-proosteocalcin. Then, through a γ-carboxylation in 3 different 

points by vitamin K1, it reaches its final and stable structure (Lee et al., 2000).  

OCN is an essential protein involved in the mineralization of bone and calcium 

homeostasis. Moreover, it has also been shown to act as a hormone in the 

body, causing pancreatic beta cells to release more insulin, and at the same 

time to stimulate the release of the hormone adiponectin from adipose cells 

which increases sensitivity to insulin (Lee et al., 2007).  

In bones, even if its precise function remains elusive, it has been proven that 

higher serum levels of osteocalcin are well related with increase in bone 

mineral density (BMD), or with pathologies which present increased bone or 

osteoid formation. For this reason it has been used as a preliminary marker to 

test the effectiveness of drugs for bone formation (Teriparatide, (Chen et al., 

2005)) or of antiresorptive agents (bisphosphonates or hormone replacement 

therapies, (Chen et al., 1996)). The link between OCN and BMD is thought to 

be related to the fact that this protein presents, on its negatively charged 

surface, five calcium ions in a complementary position with those in 

hydroxyapatite. Using this recognition mechanism OCN could potentially 

modulate the crystal morphology and formation of hydroxyapatite (Hoang et 

al., 2003).  For the same reasons OCN is nowadays widely used also to study 

BGS effect on bone formation. 

 

1.6.3 Osteoprotegerin 

Osteoprotegerin (OPG) is a cytokine receptor for the RANKL (Receptor 

activator of nuclear factor kappa-B ligand) and is often used as a marker for 

bone turnover. RANKL is a transmembrane ligand expressed on 

osteoblasts/stromal cells that binds to RANK, a transmembrane receptor on 

hemopoietic osteoclast precursor cells. The interaction of RANK and RANKL 

initiates a signaling and gene expression cascade that results in the 

differentiation and maturation of osteoclast precursor cells to active 

osteoclasts capable of resorbing bone (Wada et al., 2006). OPG was found to 

be able to bind to RANKL and blocks its interaction with RANK, therefore 

inhibiting the development of osteoclasts and indirectly the bone resorption 
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process. In general, upregulation of RANKL is associated with downregulation 

of OPG, or at least lower induction of OPG, so that the ratio of RANKL to OPG 

changes in favour of osteoclastogenesis. Many reports have supported the 

assertion that the RANKL/OPG ratio is a major determinant of bone mass (LC 

and M, 2004).  

 

1.6.4 C-terminal propeptide of the type-1 collagen 

CICP represents the C-terminal propeptide of type-1 collagen, which is related 

to the final Collagen production. Collagen type-I is indicative for the collagen 

production in vivo. As the primary organic constituent of bone, type-I collagen 

levels have been linked to bone growth and formation. Elevated levels of CICP 

have been shown in diseases associated with high levels of bone turnover 

including Paget’s disease (Simon et al., 1984), hyperthyroidism, primary 

hyperparathyroidism and renal osteodystrophia. Slightly elevated levels of 

CICP have also been documented in some women in early menopause 

(Ebeling et al., 1996). For its correlation with type-1 collagen levels it is also 

widely used as a marker for studies of BGS-mediated osteogenesis (Guth et 

al., 2006a, Feng et al., 2013). 

 

1.6.5 Vascular endothelial growth factor 

Vascular endothelial growth factor (VEGF) is a key regulator in the process of 

angiogenesis. It is a specific mitogen for vascular endothelial cells and its 

biological effects are mediated by specific tyrosine kinase receptors. The 

VEGF family consists of seven members, of which VEGF-A is the most 

abundant and the most used in investigational studies (Thomas, 1996). During 

bone growth, development, remodeling and repair, the process of  

angiogenesis is closely correlated to the one of osteogenesis (Rabie, 1997) in 

both intramembranous and endochondral ossification (Emad et al., 

2006)(Rabie et al., 2007). In these events the hypoxia-inducible factor, 

induced by decrease of oxygen tension, is one of the key upstream regulators 

of VEGF.  
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The mechanism how VEGF regulates endochondrial ossification is by 

regulating blood vessel invasion (neovascularisation): these vessels can bring 

to the wound site progenitor mesenchymal stem cells which can later 

differentiate into osteoblasts and start the osteogenetic process ((Rabie and 

Hägg, 2002). Actually, different studies have shown the effect that growth 

factors have in regulating osteoblast differentiation and bone formation, and 

their expression of VEGF. Some examples are vitamin D3, TGF-β, BMP-4, 

BMP-6, BMP-7 (Wang et al., 1996) (Saadeh et al., 1999) (Deckers et al., 

2002). Moreover, the presence of a blood supply confers to the wound site 

also the essential delivery of oxygen and nutrients essential for cells to 

develop and tissue formation. Apart for physiological remodelling processes, 

VEGF was found to be involved also in fracture healing: its activity was found 

to be essential for the conversion of soft cartilaginous callus to a hard bony 

callus and mineralisation in response to bone injury (Geiger et al., 2005).  

Different studies report the important role of VEGF also in chondrocytes 

differentiation and survival, osteoclasts recruitment and osteoblasts cell 

proliferation and differentiation. Gerber for example reports a decrease in 

formation of trabecular bone, slower blood vessels development and massive 

expansion of hypertrophic zones in growth plates after VEGF inhibition 

(Gerber et al., 1999). Other reports show the role of VEGF not only in 

osteoclasts recruitment but also in their differentiation (Nakagawa et al., 2000) 

and stimulation of their activity (Carano and Filvaroff, 2003).  

For all of these reasons, VEGF is nowadays considered a marker for 

angiogenesis and it is used to evaluate improved new bone formation. 
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1.7 Bone grafting 

This chapter will explain why it is necessary to focus and invest in the 

development of advanced bone grafting materials, why synthetic bone 

scaffolds are needed and the advantages of their uses.  

Worldwide, an osteoporotic fracture is estimated to occur every 3 seconds 

(Johnell and Kanis, 2006). Osteoporosis is estimated to affect 200 million 

women worldwide: one-tenth of women aged 60, one-fifth of women aged 70, 

two-fifth of women aged 80 and two-thirds of women aged 90 (Kanis et al., 

2007). By 2050, the worldwide incidence of hip fracture in men is estimated to 

increase by 310% and 240% in women (Gullberg et al., 1997). In white 

women, the lifetime risk of hip fracture is 1 in 6 compared with a 1 in 9 risk of a 

diagnosis of breast cancer (Cummings and Melton, 2002). Furthermore, only 

in Europe the total direct costs were estimated at €31.7 billion (£21 billion) 

which are expected to increase to €76.7 billion (£51 billion) in 2050 based on 

the expected changes in the demography (Kanis et al., 2007). In UK, 1 in 2 

women and 1 in 5 men will suffer a fracture after the age of 50 (Van Staa et 

al., 2001) and the cost of treating all osteoporotic fractures in postmenopausal 

women has been predicted to increase to more than £2 billion by 2020 (Burge 

et al., 2001). These statistics highlight how much osteoporosis and bone 

fractures represent a worldwide economic clinical issue with extremely high 

estimated growth rates. 

 

It is well known that bone is a remarkable living tissue capable of maintaining 

optimal shape and structure throughout life via a continual process of renewal. 

This ability makes bone able to respond to changes in its bio-mechanical 

environment through the process of remodelling, enabling to maintain an 

optimal balance between form and function. However, bone requires a 

constant supply of oxygen and nutrients; can suffer from pathological 

conditions; and is subject to degeneration as a result of age and/or diseases. 

In most of these cases, patient comfort and bone function can only be restored 

by surgical reconstruction.  
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1.8 History of bone grafting 

Bone grafting is the procedure of replacing missing bone with material from 

either the patient’s own body (autografting) or that of a donor (allografting), 

and was first established in the 1800s (Meeder and Eggers, 1994) (Sanan and 

Haines, 1997). As well as replacing missing bone, the grafts are being used to 

augment the defect site by encouraging new bone growth into the actual 

defective site. This new bone should eventually replace the graft material 

within the site and maintain an optimal balance between its form and function. 

 

The first documented attempt at bone tissue engineering was made in 1668 by 

the Dutch surgeon Job van Meek’ren, who described the filling of a bony 

defect in a soldier’s cranium with a piece of skull from a dog (De LongJr et al., 

2007). Interestingly, this bone graft was removed 2 years later at the patient’s 

request so that he could be allowed back into his church, which had 

excommunicated him because of the xenotransplant.  

Regarding autografting, even though the first described autologous bone 

grafting procedure was performed by Fred Albee in 1915 using part of the tibia 

for spinal fusion, the first demonstration of actual osteoinduction was shown by 

the Swedish surgeon Levander in 1930. He prepared alcohol extracts of bone 

and then injected them into muscle, noting bone production (Desai, 2007).  

 

1.9 Biomaterials used in bone grafting 

Synthetic bone scaffolds are used to fuse joints to prevent excessive 

movement, to repair broken bones that present too much bone loss, or to 

repair injured bone that has not healed by itself. The advantages of using bone 

scaffolds compared to either auto- or allograft are different, for example 

elimination of disease transmission risk; fewer surgical procedures; reduced 

risk of infection or immunogenicity; and abundant availability of synthetic 

scaffold materials. 

Bone graft substitutes are made of biomaterials, for which different definitions 

have been proposed: a biomaterial is used to make a device to replace a part 

or function of the body (Hench, 1998), or is any natural or synthetic material 

that has an interface with living tissue or is in contact with biological fluids 
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(Buck et al., 1989). Biomaterials can be classified in many different ways. 

Error! Reference source not found. lists the most used biomaterials for bone 

grafting comparing their advantages and disadvantages, and giving examples 

of real life applications. 

 

Table 1-1: Biomaterials used in the body 

Materials Advantages Disadvantages Examples 

Metals (Ti and its 

alloys, Co-Cr alloys, 

stainless steel) 

Strong, tough, 

ductile 

May corrode, 

dense, difficult to 

make 

Joint 

replacements, 

bone plates and 

screws, dental 

root implants 

Polymers (nylon, 

silicone rubber, 

polyethylene 

polyester, poly 

methyl 

methacrylates) 

Easy to 

fabricate, 

resilient 

Not strong, 

deforms with time, 

may wear or 

degrade 

Sutures, blood 

vessels, hip 

socket, bone 

cement, ear, 

nose, soft tissues 

Ceramics (calcium 

phosphates and 

glasses, carbon, 

alumina, zirconia) 

Biocompatible, 

strong in 

compression 

Brittle, low 

toughness (except 

alumina and 

zirconia), difficult 

to make 

Dental, femoral 

head of hip 

replacement, 

coating of dental 

and orthopaedic 

implants 

Composites (HA 

with polyethylene, 

wire or fibre 

reinforced bone 

cement) 

Tailor-made, 

strong 

Difficult to make Ossicles, heart 

valves 

 

Material properties and characteristics of biomaterials make them more 

appropriate for specific biological applications rather than others. For example, 

materials used for bone replacement need to exhibit first of all important 



49 

 

factors like toughness and compressive strength, while a ligament 

replacement material must possess primarily flexibility and tensile strength 

characteristics.  

 

1.9.1 Biomaterial properties 

The first characteristic that a material for biological applications should 

possess is biocompatibility. For a material to be biocompatible, it needs to 

have the ability to be implanted in a living tissue without being toxic, cause 

injury or immunological rejection. Another characteristic that needs to be 

considered is its bioactivity. A bioactive material stimulates a biological effect 

when in contact with the surrounding tissue. Larry Hench defines materials as 

bioactive when they illicit a certain biological response at their interface, which 

results in the formation of a bond between the tissue and the material (Hench, 

1998). Hench et al. developed Bioglass™ in 1969. This was the first type of 

man-made material which could bond with bone and connective tissue for 

bone repair. Biocompatibility of the material, and in many cases bioactivity of 

the material, will determine most of the success of the new bone graft. 

 

Other important material properties for bone grafting are osteoconductivity, 

osteoinductivity and osteointegration.   

Osteoconduction occurs when new bone apposition is supported by a scaffold 

structure on whose surface cells can adhere and grow.  

Osteoinduction is the process by which osteogenesis is induced. It occurs 

when bone is produced in an ectopic site, such as muscle or skin, and is given 

by the stimulatory effect of the implant on the local host tissue, causing 

differentiation of uncommitted stem cells into bone forming cells. 

Osteointegration is the stable anchorage of an implant, achieved by direct 

bone-to-implant contact (Albrektsson and Johansson, 2001). 

Bone graft materials can be defined as “any material alone or in combination 

with other materials, which promotes bone healing by providing 

osteoconductive and osteoinductive activity to the repair site” (Bauer and 

Muschler, 2000). 
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A number of approaches have been used to treat osseous defects by 

attempting to stimulate bone via the use of bone grafts. From the materials 

perspective it can be broadly categorised into two main groups: natural and 

synthetic biomaterials. 

 

 

1.9.2 Natural bone grafts 

There are three types of natural bone grafts that are being currently used. 

These include autografts, allografts and xenografts. 

 

The current accepted gold standard in bone grafting is autografts (Olkarinen 

and Korhonen, 1979)(Burchardt, 1987). One of the primary reasons is the fact 

that it is osteoinductive and osteoconductive. It is the bone tissue harvested 

from and implanted in the same individual, it contains the patient’s own cells 

and growth factors and therefore transmission of infections and immunogenic 

reactions are minimal. Moreover, autologous bone grafts recruit mesenchymal 

stem cells and induce them to differentiate into osteogenic cells through 

exposure to osteoinductive growth factors (Giannoudis et al., 2005). 

Despite these advantages and many others related to the use of autologous 

bone grafts, there are also major drawbacks. Their use has been limited to the 

treatment of small osseous defects. The extra surgery involved in harvesting 

autologous bone causes morbidity at the donor site (Brown and Cruess, 1982) 

(Koole, 1994), post-operative continuous pain (Arrington et al., 1996) and can 

cause also hypersensitivity, pelvic instability (Coventry and Tapper, 1972), 

infections and paresthesia (Cowley and Anderson, 1983). These complications 

affect 10% to 30% of the patients. Moreover, the amount of bone that can be 

collected is limited. 

 

In cases of large osseous defects, allografts and xenografts have been used 

as bone substitutes: they are both osteoconductive and provide the necessary 

mechanical support.  

Allograft is the bone tissue harvested from a donor and implanted in another 

patient. The use of Xenografts is a method by which the graft is taken from 

another species for the insertion into a patient. 
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The use of allografts increased dramatically from 5,000-10,000 cases in 1985 

to almost 150,000 cases in 1996 (Boyce et al., 1999), and nowadays, they are 

the most commonly used bone grafts in cases of large defects. However, both 

allografts and xenografts, unlike autografts, lack in osteoinductive properties, 

are associated with incidence of disease transmission (both within and across 

species barriers) and can potentially trigger a host immune response (Buck et 

al., 1989). 

Nevertheless, the quality of allografts is worse than that of autologous grafts. 

Allografts have a poor degree of cellularity, less revascularisation, and a 

higher resorption rate compared to autologous grafts (Yaszemski et al., 1996), 

resulting in a slower rate of new bone tissue formation, as observed in several 

studies (Oklund et al., 1986) (Oikarinen and Korhonen, 1979). In addition, the 

immunogenic potential of these allografts and the risks of virus transmission to 

the recipient are serious disadvantages (Strong et al., 1996). Although 

processing techniques such as demineralisation, freeze-drying, and irradiation 

have been shown to reduce the patient’s immune response, processing also 

alters the structure of the graft and reduces its potential to induce bone healing 

(osteoinductivity). A number of cases have in fact been cited in which the 

human immunodeficiency virus and hepatitis C were transmitted through the 

transplantation (Tomford et al., 1995). In another study it was reported the 

higher rate of fracture after implantation which could be due to the structural 

change in the cross linking of the collagen after the irradiation of the allograft 

(Lietman et al., 2000). 

 

1.9.3 Synthetic bone grafts 

All the above grafting procedures have their limitations and therefore a number 

of synthetic bone graft biomaterials have been developed and are in use 

clinically with mixed success. Synthetic bone grafts form a credible alternative 

in the treatment of osseous defects, particularly in cases where the autografts 

are in limited supply or the defects are particularly large. Bone grafts are 

widely used in different areas of rehabilitation surgery, as dentistry or 

orthopedics. All of these materials are biocompatible, most are 

osteoconductive and some claim to be osteoinductive. Furthermore, synthetic 
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bone graft substitutes offer structural reproducibility and consistency, and 

unlike allografts and xenografts, present no threat of disease transmission 

(Moore et al., 2001). 

Many studies show that bioactive materials, such as calcium phosphate 

ceramics, form direct bonds with the surrounding bone tissue (process known 

as “bioactive fixation”) and that bone-graft composition and surface 

characteristics impact on osteoblasts metabolism and affect tissue healing 

(Jarcho, 1981). 

Ideally, the main characteristics that a bone graft biomaterial should have are: 

 Biocompatibility 

 Absence of immune rejections 

 Osteoconductive properties 

 Inductive effect through superficial endogenous protein 

adsorption 

 The capacity to speed up the physiological healing processes 

 The capacity to prevent or modulate inflammation and infection 

reactions 

 Be totally resorbable 

 Complement bone mechanical and physiological functions 

 

Moreover, the graft should not only replace the missing tissue, but encourage 

new bone ingrowth into the grafted area, thereby reinforcing the repaired area 

and forming a living bridge between the existing bone and the graft material 

with the newly formed tissue. 

With time, this new tissue should penetrate and replace much of the graft 

thanks to the resorbable properties of some of the currently used bone graft 

substitutes. 
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1.9.3.1 Bioceramics: Calcium Phosphate 

Considering the limited utility of non-degrading synthetic bone scaffolds or 

fixation devices, the only realistic options for bulk biomaterial selection are 

ceramics and polymers.  

Ceramics that have found a use in biological systems are referred as 

bioceramics. They are inorganic, non-metallic compounds which can either be 

bioactive or bioinert. Although, there are uncertainities about their 

osteoinductive capacity, they certainly possess osteoconductive abilities as 

well as a remarkable ability to bind directly to bone (Hollinger and Battistone, 

1986) (Hämmerle et al., 1997). 

Biodegradable polymers and ceramics, however, generally lack in their 

mechanical properties. Ceramics fail mechanically due to their brittleness, 

tensile and compressive strengths (ceramics are hard materials with small 

elongation to failure), whereas in polymers there is a deficiency in the 

compressive strengths and Young’s modulus compared with native bone 

tissue (polymers are typically too ‘‘soft’’) (Murugan and Ramakrishna, 2005). 

 

The primary constituent (60%) of bone is calcium–phosphate (CaP) minerals, 

specifically non-stoichiometric hydroxyapatite (LeGeros, 1994). Dozens of 

calcium–phosphate formulations have been developed and investigated for 

their bioactivity (i.e., tricalcium-phosphate (TCP), biphasic calcium phosphate 

(BCP), hydroxyapatite (HA), and bioglass ceramics (BGC)).  

CaP biomaterials offer outstanding properties: similarity in composition to bone 

mineral; bioactivity (ability to form bone apatite-like material or carbonate 

hydroxyapatite on their surfaces) (Manjubala et al., 2002); ability to promote 

cellular function and expression leading to formation of a uniquely strong 

bone-CaP biomaterial interface (Ducheyne and Qiu, 1999); and 

osteoconductivity (ability to provide the appropriate scaffold or template for 

bone formation).  

In addition, CaP biomaterials with appropriate three-dimensional geometry are 

able to bind and concentrate endogenous bone morphogenetic proteins in 

circulation, and may become osteoinductive (capable of osteogenesis) (Fellah 

et al., 2008).   
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The most common types of calcium–phosphate (CaP) materials investigated 

for synthetic bone scaffold development are: hydroxyapatite (HA), tricalcium 

phosphate (TCP), biphasic calcium phosphates (BCP), and bio-glasses. On 

the basis of the composition and stoichiometry of a calcium–phosphate 

ceramic, important physical properties such as degradation rate, modulus, 

dissolution and fracture strength can be obtained (Klein et al., 1983) (Gauthier 

et al., 1999)(Ducheyne, 1987) (Royer et al., 1993).  

Research on TCP materials, however, has revealed that their degradation rate 

is too rapid in vivo, while synthetic versions of HA degrade too slowly to allow 

native tissue integration. This phenomenon motivated the development of BCP 

and bio-glasses which have tuneable (to some degree) degradation rates 

based on the relative magnitude of TCP (more commonly β-TCP) and HA in a 

composite ceramic (Kohri et al., 1993)(Kwon et al., 2002)(Kwon et al., 2003).  

 

Wtihin the range of CaP biomaterials, particular attention was paid to 

stoichiometric synthetic Hydroxyapatite (HA), which has been widely used as a 

bone grafting substitute due to its chemical similarity to the mineral component 

found in bone and teeth and to the absence of immune-reaction.  

It is the most commonly used CaP within the fields of dentistry and 

orthopaedic surgery, and was firstly commercialised in the mid-seventies 

independently by Jarcho, Groot and Aoki (Hench and Wilson, 1993).  

 

Nowadays hydroxyapatite has several uses, not only as a replacement 

material but also as a coating for the metallic acetabular cups and hip stems.  

HA coatings have been shown, in fact, to improve the initial biological fixation 

of the metal implants, and to promote bone remodelling and early osseous 

integration at the bone-prosthesis interface (Zheng et al., 2000) (Oonishi, 

1991). 

 

 

1.9.3.1.1 HA properties 

HA belongs to a group of compounds called “apatite”, all of which have a 

similar crystal structure but different compositions. In particular, crystalline HA 

has a hexagonal structure unit cell as shown in Error! Reference source not 
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found. with a space group, P63/m, made up of PO3-
4 tetrahedra, and CaO6 and 

CaO7 polyhedra with channels containing the hydroxyl anions running parallel 

to the c-axis, where its general empirical formula is Ca10(PO4)6(OH)2.  

 

Figure 1-5: Crystal Structure of Hydroxyapatite (Cazalbou et al., 2004) 

Hydroxyapatite is a hydrated calcium phosphate that is similar to the mineral 

component of bone (Cazalbou et al., 2004). HA has been shown to be 

biocompatible and to promote adsorption of serum proteins, and osteoblast 

adhesion and migration/infiltration in vitro (Kilpadi et al., 2001)(Hott et al., 

1997). Moreover, it has a unique capability of binding to natural bone through 

biochemical bonding, which promotes the interaction between host bone and 

grafted material (Tracy and Doremus, 1984). 

Unfortunately, HA is scarcely bioresorbable, and it fails in terms of mechanical 

properties. It shows a relatively higher Young’s Modulus than cortical bone, 

therefore making it stiffer. Additionally, HA has a very low tensile and 

compressive strength, which make this material more susceptible to breaks as 

compared to bone (seeError! Reference source not found.).  

Table 1-2: Mechanical properties of Cortical Bone and synthetic HA (Murugan and 

Ramakrishna, 2005) 
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 Young’s 

modulus 

(GPa) 

Tensile 

Strength 

(MPa) 

Compressive 

Strength 

(MPa) 

Fracture 

Toughness 

(MPa m1/2) 

Density 

(g/cm3) 

Cortical 

Bone 

14-20 50-150 170-193 2-12 18-22 

HA 80-100 0.05 0.4-0.9 0.7-1.2 3.16 

 

 

Furthermore the resorption rate of HA compared to other CaP materials is very 

low, thus making its remodelling potential weaker, the rehabilitation time 

longer and the probability for the implant to fail higher (Murugan and 

Ramakrishna, 2005).  

 

HA has a long history of use as a bone graft substitute. Since early ‘50s many 

studies and investigations were carried out testing HA in either animals or 

humans models (Ray and Ward Jr., 1951). However, its use in clinic started 

only in the 70s (Jarcho et al., 1976), and since then a different number of 

fabrication methodologies, and synthetic forms of HA, have been reported. 

Nowadays HA covers a wide range of clinical applications such as repair of 

long bone defects; spinal fusions; cranioplasty; vertebral fusions; non union 

bone fractures; but also dental surgery, as a coating agent on biometallic 

implants and for drug delivery. The low compressive strength and fracture 

toughness, however, make HA use limited in orthopaedic applications with a 

low load-bearing implantation. 

Even though HA presents some unique characteristics, research is still 

devoting a lot of effort trying to develop a material with better mechanical 

properties and bioresorbable characteristics. In order to improve HA fracture 

toughness, for example, researchers are studying the incorporation of 

biocompatible reinforcement agents or of matrix materials, incorporated within 

the HA structure. One matrix material widely studied is collagen, which would 

not interfere with the biocompatibility of HA (Kikuchi et al., 2004).  

 

The other direction where research is looking is the fabrication of HA 

combined with another ceramic in order to increase its low resorption rate. 
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Some ceramic composites examples are HA/TCP alone (with different ratios) 

or combined with autogenous bone. These modifications have the potential to 

provide a ceramic biomaterial with improved functionality and faster resorption 

without losing its osteoconductive properties (Sulaiman et al., 2013a)(Jalota et 

al., 2006). 

 

 

1.9.3.1.2 The biological relevance of silicon 

As previously mentioned, bone mineral is mainly composed of non-

stoichiometric HA. However, the inorganic part of bone is also enriched with a 

few trace elements, which include carbonate, citrate, sodium, magnesium, and 

trace amounts of silicate, fluoride, chloride, and potassium (see Error! 

Reference source not found.). The prime role of minerals is to provide 

toughness, rigidity, and sustain bone’s metabolic functions (LeGeros, 1994).  

 

Table 1-3: Inorganic composition of bone 

Inorganic 

phase 

HA Carbonate Citrate Sodium Magnesium 

Wt% ~60 ~4 ~0.9 ~0.7 0.5 

 

Numerous studies have identified biomaterial surface chemistry as crucial in 

directing subsequent bioactivity at the implant interface (Best et al., 

1997)(Hing, 2008). Therefore, in order to enhance HA behaviour, researchers 

have devoted efforts in trying to reproduce as closely as possible the bone’s 

mineral phase in the HA structure (Jha et al., 1997)(Gibson and Bonfield, 

2002) (Ikeuchi et al., 2003). Depending on which substitution takes place, 

there can be an effect on different material properties like surface structure, 

crystal morphology, crystallinity, thermal stability,  solubility and charge of HA, 

which could either positively or negatively influence its biological response.  

 

In this sense, an interesting way to improve the bioactivity of HA is the addition 

of silicon to the apatite structure, taken into account the influence of this 
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element on the bioactivity of bioactive glasses and glass-ceramics (Hench and 

Wilson, 1993) (Ohura et al., 1991). 

In addition, several studies have proposed the considerable importance of 

silicon on bone formation and growth (Carlisle, 1970)(Carlisle, 1981) at in vitro 

and in vivo conditions. 

 

Silicate ions are of particular interest as it is believed to have a physiological 

role in bone formation with evidence of its influence on bone mineralisation, 

and found to be crucial to bone development since the 1970s, when Carlisle 

showed the detection of silicon ions in vivo (up to 0.5wt%) in the young bone 

of mice and rats, suggesting that these ions have an important role in the bone 

calcification process (Carlisle, 1972). 

In 1972, Schwarz and Milne demonstrated that a silicon deficient diet in rats 

retarded the growth and disturbed the development of bone structures 

(Schwarz and Milne, 1972). They particularly saw a change in the skull size 

and also the architecture of the bone within these rats. The authors, therefore, 

suggested that silicon plays an important role in the binding of bone structures 

due to the stability of the Si-O-Si bonds present.  

One of the most important findings of Schwarz was in 1977, when he 

discovered an enzyme, which had the capability to remove silicic acid from a 

synthetic bond form, silicase (Schwarz, 1978). The enzyme is membrane 

bound and is found in the pancreas, stomach and in the kidneys but at a lower 

concentration. The enzyme is stable and can be heated to temperatures of 

100oC without losing activity for at least 10 minutes.  Schwarz also proposed a 

correlation between the effects of silicon and bone disease along with wound 

healing and atherosclerosis 

 

Later on Carlisle presented a study on chicks that further concluded the 

importance of silicon in the mineralisation of bone. She also was successful in 

showing that silicon plays a role in the growth and development of bone, 

connective tissue metabolism and bone calcification process (Carlisle, 1978). 

She showed that the chicks, with a silicon deficiency, had distorted skeletal 

development, less flexible legs, smaller skull and also flatter bones.  
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Using electron microprobe, Carlisle also demonstrated that silicon was 

concentrated in the cytoplasm of osteoblast cells in young bones. Therefore, 

there is a direct relation between the concentration of silicon and the amount 

of calcification taking place. The study showed that after an increase in 

calcium, there was a decrease in silicon, especially when the levels of calcium 

reached the values that are seen in bone mineral.  

The maximum amount of silicon was shown when the Ca/P ratio was 0.7, 

however the amount decreased very quickly when the Ca/P ratio increased to 

1.67.  

Moreover, the detection of new apatite layers formed on the surface of many 

glasses and glass ceramics after only a few hours in simulated body fluids 

further supported the idea of incorporating Si into the HA structure (Arcos et 

al., 2002). 

Therefore, the incorporation of silicate ions (silicon as an element) in the 

apatite structure was suggested, studied, and confirmed as an improvement to 

the bioactivity of these biomaterials. 

 

1.9.3.1.3 Silicate substituted Hydroxyapatite (SA) 

Since the bioactive process is regarded as a surface process between the 

implant and the surrounding living tissue, the chemical changes that the HA 

surface undergoes due to the incorporation of silicon must be highlighted.   

 

Therefore many groups focused on X-ray photoelectron spectroscopy (XPS) 

and zeta potential (ZP) measurements in order to clarify the rate of 

incorporation of silicon in the HA structure. If it was either incorporated as 

SiO4
4- by the substitution of PO4

3- or retained at the grain boundaries as 

polymeric SiO2 species. 

Botelho et al confirmed, by using XPS, that in the HA structure silicon exists as 

a tetrahedral silicate SiO4 group rather than in a polymeric form of SiO2 for 

silicon amounts of up to 1.2wt% (Botelho et al., 2002).  

Balas et al achieved similar results and reported the polymerisation of the 

silicate species at the surface for silicon contents higher than 1.6wt%. The ZP 

measurements showed that at physiological pH, surface charge was 



60 

 

significantly lowered by the presence of silicate groups; therefore a faster 

apatite layer formation would follow (Balas et al., 2003a).  

Also, Botelho reported that the incorporation of silicon into the HA lattice 

induced a more negative surface charge (Botelho et al., 2002).  

In vitro studies by Gibson et al. demonstrated that the incorporation of Si into 

the phase-pure HA stimulates the osteoblast-like cell activity compared with 

stoichiometric HA; and enhances the formation of a surface apatite layer in an 

artificial physiological solution (Gibson et al., 2009).  

An in vivo study by Patel et al., comparing bone apposition to HA and Si-HA 

ceramic implants, demonstrated bone apposition to be significantly increased 

at the surface of Si-HA ceramics (Patel et al., 2002).  

 

Other studies focused instead on the optimal silicon substitution rate in the HA 

lattice. A study conducted by Hing et al investigated the influence of varying 

levels of silicon content (0, 0.2, 0.4, 0.8 and 1.5wt %) on the rate, quality and 

volume of bone apposition within porous SA scaffolds in vivo (Hing et al., 

2006a). These results showed an optimal biological response achieved with 

the 0.8wt% group.  

The enhanced biological activity of silicate-substitute HA bone grafts materials 

is constantly confirmed by different studies, performed both in vitro and in vivo, 

which makes this biomaterial to be considered one of the best substituted HA 

grafts used in orthopaedics (Botelho et al., 2005, (Guth et al., 2006a) (Gibson 

et al., 2002a) (Balas et al., 2003a)(Guth et al., 2006a).   

Despite the relevant biological effect, the mechanisms by which Si increases 

the in vitro and in vivo bioactivity of calcium phosphate bone grafts are still 

unresolved. However, several hypotheses have been proposed. 

When passive mechanisms are involved, it is supposed not to be the chemical 

nature of Si in itself responsible for the effect, but rather the influence of 

physio-chemical changes due to the presence of Si; some of these can be, for 

example, changes in grain size (Porter et al., 2004), or surface charge and 

hydrophobicity that may lead to changes in protein conformation at the 

material surface. Otherwise, active mechanisms, i.e. Si release could be 

responsible for these changes; if Si is not included in the crystallographic 
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structure of Si-substituted HA, but is present as a soluble compound, Si ions 

can be released and “seen” by cells in a bioavailable form which may interact 

directly with cell metabolism or osteogenic proteins, peptides or enzymes. 

Cells metabolism will be, therefore, directly affected (Balas et al., 

2003a)(Botelho et al., 2005a) . 

 

1.9.3.2 Porous CaP biomaterials 

Bone cells and matrix proteins are sensitive not only to chemical changes, but 

also to other properties of the material such as bulk geometry, surface 

geometry and topography.  

The elaborate hierarchical geometric structure of bone, in fact, is critical not 

only for the macroscopic mechanical properties of bone, but also for progenitor 

and bone cells survival and functionality at the micro and nano-scale. Because 

of the direct apposition and binding of the ECM proteins and cell cytoskeleton 

through cell receptors, cells sense and respond to the physical properties of 

the matrix by converting mechanical cues into intracellular chemical signals 

which drive activities such as gene expression, protein production, and 

general phenotypic behaviour (Lutolf and Hubbell, 2005)(Galbraith et al., 

2002). Therefore, a primary goal in bone scaffold design is to mimic the unique 

micro and nano-scale characteristics of bone.  

 

In recent years, it has been well established by the literature, the relevant role 

that material porosity plays on bone cells behaviour (Bruijn et al., 1999)(Desai, 

2000). 

  

Different studies have shown that porous hydroxyapatite grafts are able to 

massively enhance the biological response compared to non-porous HA 

(Klawitter and Hulbert, 1971)(Campion et al., 2011) (Patel et al., 2002).  

These studies showed that the level of porosity in the bulk structure of a CaP 

graft is able to differently influence the biological response. In particular, the in 

vivo studies from Hing and Campion demonstrated an increased level of 

microporosity may improve the bioactivity of porous HA scaffolds and 

accelerate osteointegration (Campion et al., 2011)(Hing et al., 2004). 



62 

 

Another study by Hing, investigating the in vivo influence of microporosity on 

early osseointegration and final bone volume within porous HA, showed that in 

the longer term the dominating factor effecting osseointegration was the 

influence of strut porosity rather than only total porosity (Hing et al., 2005).  

These results indicate that manipulation of the levels of microporosity within a 

bone graft substitute can be used to accelerate osseointegration and elevate 

the equilibrium volume of bone. Researchers have also demonstrated that in 

phase pure porous hydroxyapatite scaffolds, with equivalent levels of total-

porosity, the presence of microporosity altered the pattern and dynamics of 

osteointegration: HA bone grafts with increased levels of microporosity 

promoted the apposition of greater volumes of new bone in a more dense 

morphology and at earlier time points (Hing et al., 2004). 

It is believed that this improved bioactivity is due to the ability of porous 

materials to permit effective vascularization within the graft, nutrient delivery 

and bone ingrowth. These events are all fundamental for the development of 

any new tissue in the body, thus are essential for the induced bone formation 

of any synthetic bone implant. These events are shown in different studies 

where capillary penetration in scaffolds with different strut porosity grades was 

detected, suggesting that the rate of development of the vascular network is 

linked to the strut porosity variation (Karageorgiou and Kaplan, 2005). 

 

1.9.3.3 Roughness of CaP biomaterials 

Together with surface charge, surface chemistry, topography and porosity, 

another parameter that has been proved to be “sensed” by cells, therefore, 

affecting their response is surface roughness. A number of studies have 

demonstrated that cell attachment is highly dependent on surface roughness, 

and it seems there is some evidence that this mechanism is synergic to the 

surface physiochemistry mechanism. Therefore, there is evidence that the 

bioactivity of the implant can be affected by both morphology (the roughness 

of the surface) and chemistry (the presence or not of Si) and, furthermore, that 

these parameters can have a synergic effect.  
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Surface roughness and its effect on cell response have been therefore long 

studied. The roughness of a material can generally be obtained by either 

chemical treatments (acid etching) or mechanical treatments (by polishing).  

The first studied looked at surface roughness effect on relatively inert 

materials like titanium (Ti), both in vitro (Martin et al., 1995)(Olivares-Navarrete 

et al., 2012) and in vivo (Buser et al., 2004)(Klokkevold et al., 1997). However, 

there have been few systematic studies on hydroxyapatite and its derivatives 

(Rouahi et al., 2006) (Dos Santos et al., 2008).  

  

On Ti implants, studies demonstrated that surface roughness affects the rate 

of bone contact with the material, and that the synthesis of extracellular matrix 

and subsequent mineralization were enhanced by an increase in surface 

roughness (Groessner-Schreiber and Tuan, 1992). In another study, however, 

higher surface roughness decreased osteocalcin and ALP activity as 

compared to smooth surfaces, suggesting that bone cells phenotype can be 

differently controlled by surface pre-treatments (Stanford et al., 1994).  

Because of the different responses obtained by the various studies on surface 

roughness of Ti implants, other works looked at the effect of surface 

roughness on the response of variably differentiated cells. These studies 

showed that this response could be dependent on the cell maturation state, 

which is an interesting concept in terms of wound healing, where the first cells 

to interact with a material are likely to be undifferentiated mesenchymal cells, 

rather than differentiated osteoblasts (Martin et al., 1995)(Schwartz et al., 

1996).   

 

Regarding the effect that surface roughness has on cell response from HA 

bone grafts, fewer studies have been done. What they show is a milder effect 

of surface roughness on cell proliferation and not a significant effect on cell 

differentiation as compared to titanium implants. In particular, ALP activity 

seemed to not being affected by changes in roughness ((Missirlis, 2000) 

(Korovessis and Deligianni, 2002)), which instead affected significantly protein 

adsorption (especially Fn and BSA (Rouahi et al., 2006)), cell attachment 

(Missirlis, 2000) and cell proliferation ((Missirlis, 2000) (Korovessis and 

Deligianni, 2002)).   
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For either Ti implants or HA bone grafts, the reason why surface topography 

may affect cell responses is that the cells can consequently assume a variety 

of morphologies upon attachment. These differences in morphologies, 

mediated by different arrangements of the cytoskeleton, serve as an 

intracellular signal that provides information for new gene transcription and 

translation (Pockwinse et al., 1992)(Owen et al., 1991). 

1.10 The biological response to biomaterials 

The replacement of injured or diseased tissues with devices made from 

materials that are not of biologic origin is the central approach in current 

biomaterials science and clinical practice. The prevalence of this approach is 

due largely to the fact that these materials are not attacked by the immune 

system, unlike donor tissues or organs. This fundamental difference arises 

from the presence of immunologically recognizable biologic motifs on donor 

tissue and their absence on synthetic materials. The basis for these reactions 

is the adsorption of adhesion proteins to the surface of the biomaterials that 

are recognized by various cell-adhesion receptors, the most important of 

which are the integrins, present on most cells. Conversely, the favourable 

adsorption of adhesion proteins to the biomaterial can convert it into a 

biologically recognizable material. The interaction of adhesion receptors on the 

cells with adhesion proteins on the materials surface thus constitutes a major 

cellular recognition system for biomaterials. Therefore, the role of adsorbed 

adhesion proteins in mediating cellular interactions with biomaterials is of 

primary importance regarding the biological response to biomaterials.  

 

 

1.10.1 Cell-Biomaterial Interface 

When a biomaterial is in contact with a living tissue, proteins from the 

surrounding body fluids will be spontaneously adsorbed onto its surfaces 

within few seconds; in seconds to minutes, a protein monolayer is formed well 

before cells finally arrive at the material surface (Anselme, 2000).  

It is through this adsorbed layer that cells sense foreign surfaces through the 

cellular trans-membranous receptors such as integrins. 
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The adsorbed protein layer is then able to influence the cellular development 

by determining cell attachment (Rouahi et al., 2006)(McFarland et al., 

2000)(Thomas et al., 1997)(van Wachem et al., 1987) (Yang et al., 2003), 

morphology (Kilpadi et al., 2001) (Gugala and Gogolewski, 2004), proliferation  

and laterly differentiation (Sogo et al., 2007) (Wilson et al., 2005). 

These cell-biomaterial interactions are considered to be significant towards the 

osteointegration event, which is also dependent by the sensitivity to the 

surface physiochemistry of the biomaterials (including features such as 

topography, surface charge, surface energy, and wetability) (Wilson et al., 

2005) (Bagambisa et al., 1994).  

The cellular behaviour (thus cellular response) can therefore be controlled by 

affecting the protein layer, which in turn can be controlled by “playing” with the 

material surface characteristics.  

 

In particular, molecules including collagen (Hennessy et al., 2009), cell 

adhesive proteins such as fibronectin (Grinnell and Feld, 1982), laminin 

(Dennis et al., 1992), vitronectin (Thomas et al., 1997), and peptide sequences 

like the RGD motif (Itoh et al., 2002) have been shown to be adsorbed onto 

the surface of CaP bone grafts and to mediate cell attachment. However, the 

extent to which each of these factors contributes to the control of this layer of 

surface-bound proteins is not fully understood, although clearly being of major 

importance to biocompatibility. 

 

Data from many studies suggest that one of the reasons calcium phosphates, 

such as hydroxyapatite, promote better bone formation in vivo compared to 

many other materials (Geesink, 2002), is because HA is more efficient in 

adsorbing adhesive proteins from the patient’s body fluids (Kilpadi et al., 

2001)(Matsuura et al., 2000). 

Moreover these adhesion proteins are adsorbed on the materials surface in 

conformations that support the binding of human mesenchymal stem cells 

(Kilpadi et al., 2001), a type of pluripotent cell that is then encourage to 

differentiate into osteoblasts (Conget and Minguell, 1999). 
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1.10.1.1 Fibronectin 

One of the most important proteins involved in the cell-biomaterial interaction 

is fibronectin (Fn). Fn is a high-molecular weight extracellular matrix 

glycoprotein that binds to membrane receptor proteins called integrins, a 

group of transmembrane glycoproteins widespread especially in osteoblasts 

cells (Hynes, 1990). 

Fibronectin is one of the most important adhesion proteins of the extracellular 

matrix (ECM) and osteoblastic cells, in different in vitro studies, have shown to 

depend on adsorbed fibronectin for the initial adhesion and spreading on 

various materials (Howlett et al., 1994), including HA (Kilpadi et al., 

2001)(Hynes, 1990)(Anselme, 2000).  

 

Fibronectin's structure is rod-like and composed of three different types of 

homologous, repeating modules, Types I, II, and III. These modules, though all 

part of the same amino acid chain, can be envisioned as "beads on a string," 

each one joined to its neighbours by short linkers (Potts and Campbell, 1994). 

Twelve type I modules make up the amino-terminal and carboxy-terminal 

region of the molecule, and are involved mainly in fibrin and collagen binding. 

Only two type II modules are found in FN. They are instrumental in binding 

collagen. The most abundant module in fibronectin is Type III, which contains 

the RGD recognition sequence for Fn-receptor integrins, along with binding 

sites for heparin. Depending on the tissue type and/or cellular conditions, the 

fibronectin molecule is made up of 15-17 type III modules (Baron et al., 1992). 

Fibronectin exists in two main forms: 1) as an insoluble glycoprotein dimer that 

serves as a linker in the ECM, and 2) as a soluble disulphide-linked dimer 

found in the plasma (plasma Fn). The plasma form is synthesized by 

hepatocytes, and the ECM form is made by fibroblasts, chondrocytes, 

endothelial cells, macrophages, as well as certain epithelial cells (Paolella et 

al., 1993).  

Fn is involved in many cellular processes, such as tissue repair, 

embryogenesis, blood clotting, and cell migration/adhesion (Hynes, 1990). The 

importance of fibronectin in cell migration events during embryogenesis has 

been documented in several contexts (George et al., 1993), e.g.: 1) 
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mesodermal cell migration during gastrulation (an early phase of animal 

embryo development) can be blocked by injection of Arg-Gly-Asp (RGD) 

tripeptides that block cellular FN receptors (integrins); 2) injection of anti-FN 

antibodies into chick embryos blocks migration of precardiac cells to the 

embryonic midline, and 3) the patterns of FN deposition in developing 

vertebrate limbs determines the patterns of precartilage cell adhesion to the 

ECM, thereby specifying limb-specific patterns of chondrogenesis. 

Furthermore, Fibronectin can act as a general cell adhesion molecule by 

anchoring cells to collagen or proteoglycan substrates. But most importantly 

Fn can also serve to mediate cellular interactions by acting as a bridge 

between different components of the extracellular matrix and membrane-

bound Fn receptors on cell surfaces (Carsons, 1989).  

Due to its role in mediating intercellular interactions, it has been proved that Fn 

plays an active role also in the processes that modulate the interactions 

between bone graft biomaterials and cells. This modulation makes it possible 

the translation from the biomaterial’s surface properties to consequent cell 

response in terms of cell attachment, spreading, proliferation and 

differentiation (Grinnell and Feld, 1982)(Schönmeyr et al., 2008a)(Sogo et al., 

2007)(El-Ghannam et al., 1999)(García et al., 1999) (Deligianni et al., 2005).  

Moreover, ample evidence exists that Fn undergoes conformational changes 

upon adsorption on the biomaterial’s surface, and that its cell binding domain 

is sensitive to this conformation, therefore sensitive to surface’s characteristics 

(Iuliano et al., 1993) (Michael et al., 2003)(Garcıá et al., 1999a). 

 

1.10.1.2 Assessment of Fibronectin Adsorption 

There are relatively few studies published regarding the adsorption of pure 

fibronectin onto HA and SA scaffolds. 

An interesting study conducted by Guth et al. in 2010 (Guth et al., 2010a) 

showed that Fn adsorption was significantly greater on SA discs compared to 

HA only under specific conditions. In the experiment that investigated the Fn 

adsorption in C-MEM with increasing concentrations of FCS (10–50%), on the 

SA and HA discs Fn adsorption did not increase with increasing concentration 
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of FCS and the quantity of Fn on the SA discs was lower in the medium 

containing 50% FCS than in the medium containing 20% FCS. This suggests 

that, as the solution’s protein concentration increases to supra-physiological 

levels, either the relatively large molecular weight of the Fn may lead to a 

reduction in Fn adsorption through a decrease in its mobility, or the Fn is more 

susceptible to displacement because of the higher protein concentration. 

A number of other studies have looked directly to the importance of the Fn 

protein layer regarding general cellular attachment, spreading, development. 

Schonmeyr et al. demonstrated that the attachment and proliferation of bone-

forming cells on HA is significantly increased when pre-treated with Fn+fetal 

calf serum. Though, this difference is less profound and not significant in vivo 

(Schönmeyr et al., 2008b). The Deligianni group in 2005 showed that Fn pre-

adsorption on smooth and rough HA substratum increases the number of 

attached osteoblasts at 40% and 62% respectively (Deligianni et al., 2005). 

None of these works, however, had previously evaluated the true protein 

behaviour on different biomaterials, to then be able to associate it with the 

cellular response. 

Previously to any cell work; it thus appears to be fundamental to understand 

when, and in which way, the binding of fibronectin on the implant surface can 

be regulated by biomaterial characteristics such as chemistry, topography and 

porosity.
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2  Techniques for the quantification characterization 

of analytes 

The methods used to quantify proteins and cells, and to study protein’s 

conformational changes, were based on collection and analysis of quantitative 

data. In this section the principles of operation of these techniques are 

described. 

2.1.1  Fluorescence spectroscopy 

Fluorescence spectroscopy is a type of electromagnetic spectroscopy which 

analyzes fluorescence from a sample. 

Fluorescence can occur in certain molecules (generally polyaromatic 

hydrocarbons or heterocycles) called “fluorophores” or “fluorescent dyes”. This 

technique is an important investigational tool in many areas of analytical 

science, due to its extremely high sensitivity and selectivity. With many uses 

across a broad range of chemical, biochemical and medical research, it has 

become an essential investigational technique allowing detailed, real-time 

observation of the structure and dynamics of intact biological systems with 

extremely high resolution. 

The method consists in analysing the molecules of the analyte by exciting 

them with an irradiation of a specific wavelength, which excites the electrons 

of the molecule. This excitation causes these molecules to emit light, whose 

wavelength is unique of that specific molecule or compound. 

The advantages of using fluorescence techniques are intrinsic sensitivity, 

suitable time scale, non-invasive nature, and minimum perturbation (Lakowicz, 

2007)(Valeur and Berberan-Santos, 2013). In addition, the ability to 

incorporate fluorophores in a site-specific manner makes fluorescence 

approaches very powerful in biological research (Cohen et al., 2002). 

2.1.1.1 Principles 

Fluorescence is the result of a three-stage process that occurs in a fluorescent 

dye. 
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At room temperature most molecules occupy the lowest vibrational (energetic) 

level of the ground electronic state. When they are hit by a photon of a specific 

wavelength, they can absorb the energy of that photon and get into an excited 

state. Upon relaxation from that excited state, the same molecule releases a 

photon: this process is called fluorescence emission. The energy of the photon 

that is released is always lower than that one of the photon that was absorbed. 

Therefore the photon that excites the dye always has a smaller wavelength 

than the photon that gets emitted (Lakowicz, 2007). 

The process responsible for the fluorescence of a fluorophore is illustrated by 

the simple electronic-state diagram (Jablonski diagram) shown in Error! 

Reference source not found.Figure 2-1: 

 

Figure 2-1: Jablonski diagram illustrating the transitions between electronic energy 

levels. 

As previously said, the fluorescence process consists of three different steps: 

 Stage 1: Excitation 

 Stage 2: Excited-State Lifetime 

 Stage 3: Fluorescence emission 
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Stage 1: Excitation. A photon of certain energy is supplied by an external 

source (such as an incandescent lamp or a laser) and absorbed by the 

fluorophore, creating an excited electronic singlet state (S2). 

Stage 2: Excited-State Lifetime. The excited state exists for a finite time 

(usually 1-10 nanoseconds) during which the fluorophore undergoes 

conformational changes and is subject to a multitude of possible interactions 

with its molecular environment. These processes have two possible 

consequences. First, the energy of S2 is partially dissipated, yielding a relaxed 

singlet excited state from which fluorescence emission originates (S1). 

Second, not all the molecules initially excited by absorption, return to the 

ground state (S0) by fluorescence emission. Other processes such as 

collisional quenching, fluorescence resonance energy transfer (FRET) and 

intersystem crossing may also depopulate S1. The fluorescence quantum 

yield, which is the ratio of the number of fluorescence protons emitted to the 

number of photons absorbed, is a measure of the relative extent to which the 

process of fluorescence occurs. 

Stage 3: Fluorescence emission. A photon is emitted, enabling the 

fluorophore to return to its ground state S0. Due to the energy dissipation 

during the excited-state lifetime, the energy of this photon is lower, and 

therefore of longer wavelength, than the excitation photon. The difference in 

energy (or wavelength) is called the “Stokes shift”. The Stokes shift (Error! 

Reference source not found.), discovered by the Irish Sir George Gabriel 

Stokes (Error! Reference source not found.b) in 1852 (Stokes, 1852),  is 

fundamental to the sensitivity of fluorescence techniques because it allows 

emission photons to be detected against a low background, and isolated from 

excitation photons.  
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Figure 2-2: a) An idealized chart showing the processes of Fluorescence excitation, 

Fluorescence emission and the Stokes shift (Riddle, 2006) b) Sir George Gabriel Stokes. 

The entire fluorescence process is cyclical (unless the fluorophore is 

irreversibly destroyed in the excited state) and the same fluorophore can be 

repeatedly excited and detected. 

Furthermore, for polyatomic molecules in solution, the discrete electronic 

transitions represented in Figure 2-1are replaced by rather broad energy 

spectra. The fluorescence spectrum of a polyatomic dye, in fact, is 

characterized not by only one, but by a range of wavelengths around a peak, 

that will form the “excitation spectrum”. The same can be said for the 

emission, with a specific “emission spectrum”. Excitation and emission 

spectrum are characteristic for each fluorescent dye. 

2.1.1.2 Instrumentation 

The instrument that enables fluorescence analysis is the “Fluorescence 

detector”. The fluorescence detector is essentially made by four different 

elements: 

 A light source to provide excitation; 

 A fluorophore; 

 

a 

b 
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 Wavelengths filters to isolate emission photons from 

excitations photons; 

 A detector that registers emission photons and produce 

recordable output, usually as an electrical signal. 

Fluorescence instruments can be divided, on the basis of their specific 

application, in four different types: 

 Spectrofluorometers and microplate readers measure the 

average properties of bulk samples; 

 Fluorescence microscopes resolve fluorescence as a function 

of spatial coordinates in two dimensions for microscopic objects; 

 Fluorescent scanners (including microarray readers) resolve 

fluorescence as a function of spatial coordinates in two 

dimension for macroscopic objects; 

 Flow cytometers measure fluorescence per cell in a flowing 

stream, allowing subpopulations within a large sample to be 

identified and quantificated. 

The instrument that has been used for the experiments of the following 

chapters is a microplate reader (FLUOstar OPTIMA, BMG Labtech,Figure 2-3) 

that, as a typical fluorometer, contains an excitation source, sample 

cell, excitation monochromator and fluorescence detector (Figure 2-4).  

Molecules in solution are usually excited by uv light and the excitation source 

is usually a deuterium or xenon lamp.  

Broad-band light from a lamp passes through a monochromator, which selects 

only the light of a specific wavelength. This excitation light is adsorbed from 

the fluorescent dye, and the fluorescence emission from the dye is dispersed 

by another monochromator. Finally it is detected by a photomultipler tube. 

Scanning the excitation monochromator gives the excitation spectrum and 

scanning the fluorescence monochromator gives the fluorescence spectrum. 
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Figure 2-3: FLUOstar OPTIMA, example of microplate reader used for fluorescence and 

optical density analysis. 

 

 

Figure 2-4: Fluorimeter schematic 

 

The outcome is measured in Intensity of Fluorescence.  

This technique is most accurate at very low concentrations, where the intensity 

of the fluorescence (If) is related to the intensity of the incident radiation (Io), 

expressed as follows: 
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Equation 2.1 

 

where c is the concentration of the fluorophore solution, d is the light path in 

cm, ελ is the molar extinction coefficient for the absorbing material at 

wavelength (λ) in dm3mol-1cm-1, and Q is the quantum yield. 

 

2.1.1.3 Fluorophores in biological sciences 

A fluorophore is a type of fluorescent dye that can be used to mark proteins, 

tissues or cells for examination by fluorescence spectroscopy or microscopy. 

As previously said, a fluorophore works by absorbing energy of a specific 

wavelength region (commonly referred as “Excitation Range”), and re-emitting 

that energy at another specific wavelength region (commonly referred as 

“Emission Range”). The Excitation and Emission Ranges are specific of each 

fluorophore, because are dictated by its chemical structure and influenced by 

its environment (Lakowicz, 2007). 

In general, a fluorophore will be excited by high energy light (wavelengths in 

the ultraviolet, violet, or blue region spectrum), and will emit fluorescence with 

slightly lower energy (wavelengths in the green, red, or near IR region of the 

spectrum, Figure 2-5).  
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Figure 2-5: Regions of the spectrum 

 

Each fluorophore has a wavelength at which it absorbs energy most efficiently, 

referred as the “Peak Excitation”, and a corresponding wavelength at which 

the maximum amount of adsorbed energy is re-emitted, referred as the “Peak 

Emission”. Selecting individual filters with the maximum amount of 

transmission at each of those wavelengths will ensure brilliant fluorescent 

images or great fluorescence analysis. 

A typical fluorophore widely used in biological research, and which was used 

in the experiments in Chapter4, is Sulforhodamine 101 (SR101) (Figure 2-7): 
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Figure 2-6: Sulforhodamine 101 structure 

SR101 is a water-soluble, solfonic-derivated red fluorescent dye, that shows 

excitation and emission peaks respectively at ≈586 and ≈605 nm (Figure 2-8): 

 

Figure 2-7 Excitation-Emission spectrum of SR101 

Another widely used fluorophore is Fluorescein isothiocyanate (FITC). It is a 

derivate of a fluorescein molecule, functionalised with an isothiocyanate 

reactive group replacing a hydrogen atom on the bottom ring of the structure 

(Figure 2-8).  
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Figure 2-8 Fluorescein isothiocyanate structure. 

FITC is used especially for protein labelling (e.g. antibodies), for fluorescence 

microscopy, flow cytometry and immunofluorescence-based assays such as 

Western Blotting and ELISA. It has an excitation and an emission wavelength 

at ≈495 nm at ≈520 nm respectively (Figure 2-9). 

 

Figure 2-9: Excitation-Emission spectrum of FITC and CMFDA 

 

A fluorophore which is commonly used for short and long term tracing of living 

cells is the green-fluorescent chloromethyl derivatives of Fluorescein 

diacetate (CMFDA) (Figure 2-10): 
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Figure 2-10: 5-chloromethylfluorescein diacetate structure 

Showing emission and excitation respectively at ≈493 nm and ≈517 nm, the 

spectrum of CMFDA is identical to the one of FITC (Figure 2-9).  

This fluorophore has the ability to freely diffuse through the membranes of live 

cells and, once inside, to be cleaved by an esterase into a fluorescent 

derivate. It can then react with thiol groups on proteins and peptides to form 

aldehyde-fixable conjugates (Figure 2-11). 

 

Figure 2-11 Intracellular reactions of CMDFA: firstly an esterase hydrolysis converts 

non-fluorescent CMFDA to fluorescent 5-chloromethylfluorescein, than it reacts with 

thiols on proteins and peptides 

 

2.1.2 Circular Dichroism  

Chirality is the property of some compounds to rotate the plane of polarisation 

of monochromatic light that passes through them. It is due to the particular 

disposition of the atoms in the molecule, which let the compound be non-

superimposable on its mirror image.  
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Circular dichroism (CD) is the different adsorption of right and left circular 

polarized lights through a chiral molecule. The chiral characteristic of some 

compounds, in fact, makes this subsequently difference in adsorption helpful 

to define their specific molecular structure, and to recognise the exact 

compound. 

CD is a spectroscopic technique which has applications in a variety of modern 

research fields, ranging from biochemistry to inorganic chemistry. Such 

widespread use of the technique arises from its essential property of providing 

structural information that cannot be acquired by other means. One other 

laudable feature of CD is its being a quick, easy technique that makes analysis 

a matter of minutes.  

Circular dichroism is widely used especially for studying protein and nucleic 

acid conformation. It represents the difference in their absorption of left and 

right circularly polarized light, and can be therefore considered as the their 

absorption spectrum measured with left circularly polarized light minus the 

absorption spectrum measured with right circularly polarized light (Nafie et al., 

1976). 

However, this difference is so minute that can’t be measured simply by 

difference with an ordinary UV spectrometer, but it is needed a specific 

instrument known as “CD Spectrometer”, “Spectropolarimeter”, or 

“Dichrograph”. 

 

2.1.3 CD Spectrometer 

A CD spectrometer is made up of different sections (Figure 2-12): 

-a source of light 

-a monochromator 

-a photoelastic modulator 

-a photomultipler detector 
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Light from an intense source passes through a polarization modulator to the 

photomultiplier detector. This light had been monochromaticly polarized by the 

monochromator.  

The polarization modulator induces a periodic variation in the polarization of 

the light beam through all ellipticities from left circular through elliptical, 

unchanged linear, and elliptical to right circular. During this cycle the intensity 

of the light beam does not vary.  

 

 

 

Figure 2-12: CD spectrometer 

 

When an optically active (or chiral) sample is analysed, if it absorbs at the 

specific wavelength used, it gives a preferential absorption during one of the 

polarization periods and the intensity of the transmitted light will now, 

therefore, vary during the modulation cycle.  
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This variation of intensity is directly related to the circular dichroism of the 

sample at the specific wavelength used. Successive detections at different 

wavelengths lead to the generation of the full CD spectrum of the sample. 

A picture of the instrument is given inFigure 2-13. 

 

 

Figure 2-13 A typical CD spectrometer 

 

2.1.3.1 Principle of operation 

In the CD spectrometer the sample is placed in a cuvette and a beam of light 

is passed through the sample. The light (electromagnetic waves) coming from 

the source is subjected to circular polarization, meaning that its plane of 

polarization is made to rotate either clockwise (right circular polarization) or 

anti-clockwise (left circular polarization) with time while propagating). 

The sample is firstly irradiated with left rotating polarized light, and the 

absorption is determined byEquation 2.2: 
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Equation 2.2 

where εl is the molar extinction coefficient for left circularly polarized light, c is 

the molar concentration of the analyte and l is the pathlength (the cuvette 

width in cm). 

A second irradiation is performed with right polarized light. The absorption 

then is determined byEquation 2.3: 

 

Equation 2.3 

Now, due to the intrinsic asymmetry of chiral molecules, they will interact with 

circularly polarized light differently according to the direction of rotation. There 

will be a tendency to absorb more from one of the two rotation directions. 

From the Beer’s law (Beer, 1852), the differential molar extinction coefficient 

Δε, which is the difference between absorption of left and right circularly 

polarized light, is then obtained fromEquation 2.4: 

 

Equation 2.4 

where ΔA is the differential absorbance between left circularly polarized (Al) 

and right circularly polarized light (Ar); c is the concentration in moles per litre; 

and l is the cuvette pathlength in centimetres.  

The difference in absorption can be related to difference in extinction, Δε, 

byEquation 2.5: 

 

Equation 2.5 
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Figure 2-14 Schematic representation of right circularly polarized (a) and left circularly 

polarized (b) light. 

Usually, due to historical reasons the CD is reported not only as difference in 

absorption or extinction coefficients, but also as degree of ellipticity, [θ].  

The relationship between [θ] and Δε is given byEquation 2.6: 

 

Equation 2.6 

Since the absorption is monitored in a range of wavelengths, the output is a 

plot of [θ] versus wavelength or Δε versus wavelength. 

 

2.1.3.2 Applications 

As previously said, in order to exhibit CD a sample must be optically active, 

which means that the molecule can’t be superimposable on its mirror image 

(Figure 2-15).  

The existence of such chiral molecules is critical to the chemical aspects of 

living systems.  
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As the chirality of each monomer in biological macrostructures (such as 

nucleic acids, peptides and proteins) is determinant for their functions and 

biological and biochemical processes, the determination of their 

stereochemistry is extremely important.  

Only X-ray crystallography offers means of achieving this with complete 

certainty. However, pure crystals of biological samples, fundamental to 

perform X-ray analysis, are often either difficult or not convenient to reproduce.  

Circular dichroism is an easy and fast alternative to X-ray crystallography. It is 

a direct consequence of the absolute spatial aspect of molecular shape. 

The CD spectra associated with the conformation (secondary structure) of a 

biological macromolecule is related to the optical activity imposed by the 

optically active monomer units. Therefore, the contribution of each optically 

active monomer will influence the final CD spectrum of the macromolecule. 

In principle, the sign and the magnitude of a CD band deriving from a 

particular transition needs to be correlated with the analyte structure. It 

involves theoretical calculations and the comparison of the CD of the 

compound under study with that of a well chosen compound of previously 

established stereochemistry. 

The far-UV (<240 nm) region of the CD spectrum can reveal important 

characteristics of the secondary structure of proteins. CD spectra can in fact 

be useful to estimate the fraction of a molecule that is in the alpha-helix, beta-

sheet, beta-turn, or any other (e.g. random coil) conformation (Whitmore and 

Wallace, 2008)(Greenfield, 2007).  

CD cannot, however, say where a particular conformation detected is located 

within the molecule, or even absolutely predict its amount in the molecule. 

Despite this, CD is a valuable tool, especially for showing changes in 

conformation. It can, for instance, be used to study how the secondary 

structure of a molecule changes as a function of temperature or of the 

concentration of denaturing agents. CD can therefore reveal important 

thermodynamic informations about the molecule that cannot otherwise be 

easily obtained (Sreerama et al., 2000).  
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The near-UV CD (>250 nm) region of the CD spectrum provides informations 

on the protein’s tertiary structure. The signals obtained in the 250–300 nm 

region are due to the absorption, dipole orientation and nature of the 

surrounding environment of the phenylalanine, tyrosine, cysteine (or S-S 

disulfide bridges) and tryptophan amino acids. Differently from the far-UV CD, 

the near-UV CD spectrum cannot determine any particular 3D structure. 

Rather, near-UV CD spectra provide structural informations on the nature of 

the prosthetic groups in proteins, e.g., the heme groups in hemoglobin and 

cytochrome c (Sreerama et al., 2001). 

Visible CD spectroscopy is a very powerful technique to study metal–protein 

interactions and can resolve individual d–d electronic transitions as separate 

bands. CD spectra in the visible light region are only produced when a metal 

ion is in a chiral state, thus, free metal ions in solution are not detected. This 

has the advantage of only observing the protein-bound metal, so pH 

dependence and stoichiometries are readily obtained (Rupp and Weser, 

1978). 

 

 

Figure 2-15: Example of (a) two achiral compounds and (b) two chiral compounds  

 

a 

b 
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2.1.3.3 Protein Secondary Structure analysis by CD 

When analyzing biological macromolecules by CD, the informations obtained 

refers to the chirality of the backbone of the molecule: this is related to the 

amide-amide (in proteins) or base-base (in nucleic acids) interactions. 

The simplest method of extracting secondary structure content from CD data 

is to assume that a spectrum is a linear combination of CD spectra of each 

contributing secondary structure type (e.g., "pure" alpha helix, "pure" beta 

strand etc.) weighted by its abundance in the polypeptide conformation. The 

major drawback of this approach is that there are no standard reference CD 

spectra for "pure" secondary structures. Synthetic homopolypeptides used to 

obtain reference spectra are in general poor models for the secondary 

structures found in proteins.  

For example, the CD of an alpha helix has been shown to be length 

dependent and no homopolypeptide system has been found that is a good 

example of the beta sheet structure found in proteins.  

 

In response to these shortcomings, several methods have been developed 

which analyze the experimental CD spectra using a database of reference 

protein CD spectra, containing known amounts of secondary structures 

(Provencher and Gloeckner, 1981)(Manavalan and Johnson Jr, 

1987)(Sreerama and Woody, 1994). 

 

The basic chromophore of the polypeptide backbone is the amide group that 

has two electron absorptions: a π-π* transition, giving a strong absorption 

around 190 nm, and an n-π* transition giving a weak absorption around 210 

nm (often masked by the π-π*). This defines the spectral range between 250-

170 nm for protein’s secondary structure analysis. These two transitions 

become optically active under the influence of the substituents on the 

asymmetric α-carbon atom in a free amino acid amide (Figure 2-16).   
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Figure 2-16: The monomer unit: optical activity induced by the groups attached at the 

centre of chirality 

The optical activity derived from coupling chromophores is related to the 

relative orientations of the transition moments, hence, the secondary structure 

(conformation) of the polypeptide chain.  

Unfortunately, a reliable calculation of the CD associated with a specific 

protein structure from first principles remains difficult. However, as different 

conformations have different amide-amide orientations, hence different CD 

spectra (Figure 2-17), X-ray of known proteins structures can be treated as 

fingerprints to correlate to the CD spectra of the compound of interest. 

 

Figure 2-17: Circular dichroism spectra of "pure" secondary structures (Brahms and 

Brahms, 1980). 
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2.1.3.4 Advantages and limitations 

As any other method, CD has its own advantages and limitations compared to 

related techniques. 

As previously said, another technique which helps to understand the exact 

secondary structure of peptides, proteins and nucleic acids is the X-ray 

spectroscopy: this analysis is very precise, giving an accurate understanding 

informations about compound’s structures. However it is an expensive 

technique, and has some limitations due to the preparation of the sample’s 

crystals. 

Another related technique is Nuclear Magnetic Resonance (NMR). 

Advantages of this technique are: ability to get informations for assigning a 

unique structure; very powerful technique for atomic level analysis, providing 

essential informations about chemical bonds; possibility to estimate chemical 

composition by performing quantitative data analysis. However, there are also 

some limitations: the size of the sample (it is need in the range of mg); the 

experiments are not as quick to perform as for the CD; special conditions are 

required to differentiate between different enantiomers; and there is also a limit 

to its sensitivity, whereas CD can work also with very small concentrations of 

the sample.  

 

2.1.4  Colourimetry 

Colourimetry involves the measurement of a compound or group of 

compounds present in a complex mixture by making use of the property that 

when light passes through a particular solution, some wavelengths are 

absorbed more than others (Mu and Plummer, 1988).  It is a method widely 

used for determining the concentration of compounds, and when the 

compounds themselves are not coloured, they can be made to absorb light in 

the visible region by reaction with suitable reagents (Gordon, 1995). These 

reactions can be very specific and sensitive.  

The depth of colour is proportional to the concentration of the compound being 

measured, while the amount of light absorbed is proportional to the intensity of 
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colour and hence the concentration (Mu and Plummer, 1988). This is 

expressed in terms of the Beer-Lambert law: 

 

Equation 2.7 

 

where A is the absorbance, Io is the incident beam and I is the emerging beam; 

ε is the molar extinction coefficient, c is the concentration of the compound in 

solution and l is the optical pathway in cm.   

There are several colourimetric assays available to analyse protein’s 

concentrations. The most common ones are: the “Lowry method”, also known 

as “Folin-Ciocalteau” method (which also includes the “Biuret reaction”), the 

“BCA reagent” (bicinchoninic acid) method and the “Coomassie brilliant blue” 

method, also known as the “Bradford” method (Gordon, 1995). Each one has 

a distinct working wavelength, which are 660, 562 and 595 nm, respectively. 

Figure 2-18shows a schematic principle of any colourimetric analysis. 

 

 

Figure 2-18: Schematic of the colourimetric analysis 

 

2.1.5 Enzyme-linked immunosorbent assay 

Enzyme-linked immunosorbent assay (ELISA) uses colourimetric analysis to 

quantify a specific analyte from a mixed solution. It is a plate-based assay 
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designed for detecting and quantifying molecules like peptides, proteins, 

antibodies and hormones.  

Despite the relatively high costs per analysis, this method presents the 

advantage to be able to quantify a specific compound (usually a protein) from 

a mixture solution. This capacity is due to the unique use of an enzyme linked 

to an antibody or antigen to detect the analyte.  

There are mainly three different types of ELISA assays: Direct, Indirect and 

Sandwich. In the present studies protein’s quantifications were analyzed by 

Sandwich ELISA assays: in this method, it is measured the amount of antigen 

between two layers of antibodies. The antigen needs to present two antigenic 

sites capable of binding antibodies (Figure 2-19).  

 

Figure 2-19: schematic of a sandwich ELISA assay 

In the present studies different proteins were quantified by sandwich ELISA: 

Osteocalcin, Osteoprotegerin, CICP and VEGF. 
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2.2  Techniques for the characterization of materials 

In this section, the characterisation techniques for calcium phosphate 

biomaterials will be briefly described in terms of principle, data expected and 

meaning to the information collected. 

2.2.1 Brunauer–Emmett–Teller (BET) 

The Brunauer-Emmett-Teller theory owns the name to its developers which, in 

1938, published the first article about the BET theory in the Journal of the 

American Chemical Society (Brunauer et al., 1938).  

The BET method is a very common technique used to determine the specific 

surface area of a material. Its theory is based on the Langmuir theory of 

Isotherms, and enables calculation of the surface area of powders or particles 

by analyzing the physical adsorption of a gas on the surface of the sample.  

During a surface area analysis by BET (Figure 2-20), the samples are firstly 

dried either by heat under vacuum or by nitrogen purging. Adsorption of 

nitrogen is then followed at a temperature of 77 K, which leads to the so-called 

adsorption isotherm. The consequent pressure changes due to the adsorption 

of the gas on the surface of the samples are then monitored with high 

precision and accurate transducers and then, using a software, related to the 

surface area of the materials, including open macro and micropores.  

The capacity of the BET method to determine the specific external surface 

area and also the open porosity of macroporous and microporous materials 

make this technique widely used not only in research for the study of artificial 

bone biomaterials, absorbents, sintering studies, gas filtration and others, but 

also in industrial applications like healthcare, pharmaceuticals, cosmetics, 

nanotechnology, medical devices, and many more. 
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Figure 2-20: Instrument for the determination of surface area by BET in the IRC centre 

at QMUL (Micromeritics, UK) 

 

2.2.2 X-ray Diffractomery (XRD) 

XRD involves the scattering of X-rays with λ ~ 1 Å by the repeating elements 

of a crystal lattice resulting in a diffraction from the crystal planes. It is used for 

determining the crystal structure of a specimen. 

Bragg’s Law indicates that diffraction is only observed when a set of planes 

make a very specific angle with the incoming X-ray beam (Balasubramaniam, 

2007)(Cantor, 1980) (Figure 2-21). This angle depends on the inter-plane 

spacing d, which itself depends on the size of the atoms which make up the 

structure. During XRD, diffraction is measured for a range of different angles 

theta (θ). Figure 2-22shows the schematic of a powder diffractometer. 

The amount of beam scattered depends also on the atomic number of the 

element present in the sample (specimen). The crystallographic directions and 

planes are expressed in Miller indices, where (x,y,z) indicates the location of 

an atom, and hkl indicates the direction from (0,0,0) to (x,y,z) (Park and Lakes, 

2007).  
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Figure 2-21: Schematic diagram of Bragg's Law 

 

 

Figure 2-22: Schematic of a Powder Diffractometer 

 

hklhklSindn  2  

Equation 2.8
 

This relationship is further explained via Bragg’s equation inEquation 2.8, 

where the path difference between coherently reflected beams is related to the 

d-spacing between the crystal planes, dhkl, and the particular Bragg angle, θhkl, 

at which reflections from these planes are observed, the latter is detected and 

recorded against intensity as a XRD pattern. 

 

2.2.3 Fourier Transform Infrared - Photoacoustic Spectroscopy 

(FITR-PAS) 

Photoacoustic spectroscopy (PAS) is commonly used in the analysis of a 

variety of materials. It is a non-destructive technique that is applicable to 

almost all types of samples, powders, films and polymers. It offers minimal or 
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no sample preparation and the possibility to perform depth-profiling 

experiments. PAS can be used for both qualitative and quantitative analysis.  

In PAS, the transformation of an optical event to an acoustic one occurs. 

Initially, modulated light is absorbed by the sample located in a sealed 

chamber. The non-radiative decay of this absorbed light produces a 

modulated transfer of heat to the surface of the sample. This modulated 

thermal gradient produces pressure waves in the gas (helium, He) inside the 

cell that can be detected by the attached microphone (Figure 2-23). This 

microphone signal, when plotted as a function of wavelength, will give a 

spectrum proportional to the absorption (or transmittance, or photo-acoustic 

unit) spectrum of the sample. 

 

 

Figure 2-23: Depiction of a Photoacoustic Spectrometer (PAS) signal 

 

For PAS experiment conditions, a FT-IR spectrometer capable of operating in 

both continuous scan mode and in step-scan mode is used. A photo-acoustic 

cell is used as an accessory for containing the sample within the sample 

chamber. Helium gas is used as the transfer medium in the cell and to purge 

water vapour and carbon dioxide. A 60 % carbon black-filled polymer is often 

used as a reference sample. 
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2.2.4 Scanning Electron Microscopy (SEM) 

SEM is a technique that uses electrons instead of light to form an image. A 

probe is used to scan the surface of the object under investigation. SEM has a 

large depth of field, which allows more of a specimen to be in focus at one 

time.  

It also has a high resolution with more control over the magnification due to 

the use of electromagnets rather than lenses, as a result, producing clear 

images. (Figure 2-24,Figure 2-25). 

The method is suitable for specimens with conductive surfaces. For imaging 

only of specimens, preparation of the surface needs to be made, where the 

specimen is coated with gold 

 

Figure 2-24: SEM Instrument in Nanovision Centre at QMUL (F.E.I., UK) 

Further experiments/analysis, such as energy dispersive spectroscopy (EDS) 

can be used in conjunction with SEM to obtain elemental composition of the 

material under investigation. EDS is a microanalysis technique that is 

performed by measuring the energy and intensity distribution of X-ray signals 

generated by a focused electron beam on the sample material (Goldstein et 

al., 2003).  
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Figure 2-25: Schematic of an SEM instrument (Rochow and Tucker, 1994) 

The surface of the object is scanned with the electron beam point by point, 

whereby the resultant signals are then fed to the amplifier. Various signals can 

be collected by the amplifier such as secondary electrons, back-scattered 

electrons, incident beam, visible light and X-rays. All can be monitored 

separately or simultaneously by the means of the appropriate detector. SEM 

thus constructs a pattern or map of the chosen resultant signals that can be 

interpreted as an image of the object under investigation. 

 

2.2.5 Laser Confocal Microscopy (LCM) 

LCM uses a laser beam to obtain high resolution images and 3-D 

reconstructions. This laser beam firstly passes through a light source aperture, 

and then is focused into a small focal volume on the surface of the specimen. 

A beam splitter separates portions of the light and, after passing a pinhole, the 

light intensity is detected by a photodetection device (like a photomultipler 

tube) transforming the light signal in electrical signal, recorded by a computer 

(Figure 2-26).    
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Figure 2-26: Schematic of a Laser Confocal Microscope 

Images are acquired point-by-point, and with the help of the software it is 

possible to obtain three-dimensional reconstructions of topographically 

complex specimens. Its key feature is the ability to reproduce in-focus images 

of thick specimens at various depths.  

 

Figure 2-27: LCM instrument at the Marcus Nanotechnology Centre at GeorgiaTech 

(Olympus, Japan) 
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This characteristic makes LCM particularly useful for the analysis of thick 

biological samples. Moreover, it also enables LCM to detect with high 

definition features, up to the nanometer level, of particular 3D features on 

inorganic specimens like acute-angled slopes, or differences in surface 

roughness. In the present studies, LCM was used to characterize the surface 

roughness of different specimens before and after chemical and mechanical 

treatments.  

 

2.2.6 X-ray Photoelectron Spectroscopy (XPS) 

XPS is a technique that enables the determination of the elemental 

composition of the surface of a material. It is widely used in different 

industries, like cosmetics, fabrics, biomedical or packaging, and it is routinely 

used to determine the type and the quantity of the elements present up to a 

depth of 1-12 nm of the material surface, any chemical contamination, the 

chemical state of the elements and their bonding.  

In XPS the sample is illuminated with soft (1.5kV) X-ray radiation in an 

ultrahigh vacuum. The photoelectric effect caused by the X-rays leads to the 

production of photoelectrons, the energy spectrum of which can be determined 

in a beta-ray spectrometer. This energy spectrum permits to determine the 

composition of the sample. The Einstein equation (Equation 2.9) is used to 

calculate the energies of the photoelectrons (Eb) knowing the photon energy 

(hv) and the energies of the emitted photoelectrons (Ek). 

 

Equation 2.9 

Because the binding energies of the electron orbitals in atoms are known, the 

position of the peaks in the spectrum allows identifying the atomic composition 

of the sample surface.  
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Figure 2-28: Sample chamber of the XPS instrument at the Marcus Nanotechnology 

Centre at GeorgiaTech (Thermo Scientific, USA) 

In the present studies, XPS was used to characterize semi-quantitatively the 

surface chemical composition of different specimens before and after chemical 

and mechanical treatments.  
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3 Synthesis and characterization of materials  

3.1 Background 

Several studies have shown the importance of materials surface 

physiochemical properties such as surface roughness (Missirlis, 2000), 

surface area (Campion et al., 2011), surface charge (Bodhak et al., 2009), 

porosity (Hing et al., 1999a) and chemistry (Gibson, et al. 2002; Hing 2005) in 

directing the biological response.  

These studies seem to suggest that each factor affects the bioactivity and thus 

biocompatibility of the material in vivo and in vitro in different ways (Ducheyne, 

1987). For example, a Ca/P ratio of 1.67 is the optimum ratio to which 

stoichiometric HA forms as a one phase product, which was also found to be 

true when forming Silicate-substituted hydroxyapatite (SA) (Hing et al., 

1998)(Gibson et al., 1999a) where enhanced bioactivity was achieved (Patel 

et al., 2002). Lower or higher ratios resulted in impurities, which often lead to 

poorly calcined or sintered samples (Gibson et al., 2001), that changed the 

biomaterials’ surface area and charge, the packing of the crystallites, the 

roughness, and the density, which subsequently have an effect on the 

adsorption property of the proteins to that surface (Rashid et al., 2008).  

Thus, it is of great importance to characterise HA and SA samples so that 

microstructure is similar and is therefore possible to compare results of protein 

and cell behaviours with defined material’s structural features. 

3.2 Experimental Methodology 

SA and stoichiometric hydroxyapatite (HA) powders were synthesised at 

ApatechTM Ltd. They were processed so as to achieve dense discs with 

matched densities and surface morphologies between the SA and HA 

specimens.  

Porous granules were received directly from ApatechTM Ltd in different 

granule’s sizes and strut porosity. 
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3.2.1 Material Synthesis 

3.2.1.1 Dense Disc (DD) Samples Preparation 

Phase-pure, stoichiometric HA and 2.6wt % silicate-substituted SA powder 

(containing 0.8wt % Si) were synthesized by Apatech Ltd. An aqueous 

precipitation route was used to synthesize HA and SA powders, as previously 

shown by Akao and Gibson respectively (Akao et al., 1981), (Gibson et al., 

1999a). However, in order to obtain exactly 0.8% Si substitution of 

stoichiometric HA, the exact number of moles used to synthesize the SA 

powder followed the protocol shown in the study of Hing et al. (Hing et al., 

2006a) 

Dense discs (DD) were prepared by pressing 1.00 g of either HA or SA 

powder in a 16 mm diameter steel die. The force used was 1.75 ton pressure, 

corresponding to powders pressed at loads of 18KN (around 90.9 MPa). 

The discs were then sintered in Carbolite Furnaces (RHF1600 or RHF1400, 

Carbolite, UK) at temperatures ranging from 1200°C to 1375°C for SA, and 

from 1150°C to 1300°C for HA. The ramp rate was 2.5°C per minute, dwell 

time of 120 minutes and cooling rate of 10 °C per minute to ambient 

temperature.  

3.3 Material Characterisation 

3.3.1 X-ray Diffractometry (XRD) 

XRD patterns were obtained using a Siemens Xpert-Pro diffractometer. The 

samples were required to be <1mm, they were placed in a sampling holder 

and scanned continuously by a graphite detector from 20° to 70° 2θ, at a 

scanning speed of 1°/min 2θ at a minimum step size of 0.02° 2θ and a count 

time of 2.5 seconds. The monochromatic Cu-K radiation was used at 

wavelengths of Ka1 = 1.540598 nm and Ka2 = 1.544426 nm with an intensity 

ratio of 0.5.  

Crystallography Parameters were obtained using the XRD patterns in 

conjunction with 3 programs. Xpert HighScore Plus software along with the 

ICDD database was used to obtain the crystallographic parameters, and peak 
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list with the Miller indices of known stoichiometric HA. Pickpx2 software 

(developed in-house, UK) enabled xrdml and uxd files of the XRD data to be 

converted into corresponding 2-theta values and their d-spacing along with 

peak intensities. And the UnitCellWin software (developed by T.J.B. Holland 

(Holland and Redfern 1997), UK) evaluated all information (Miller indices and 

2-theta data) and calculated the crystallographic parameters ( cba   and 

cell volume).  

 

3.3.2 Fourier Transform Infrared Spectroscopy (FTIR) 

FTIR-Photoacoustic spectroscopy (PAS) spectra were obtained using a 

Thermo Nicolet 8700 spectrometer in conjunction with a PA Cell-MTEC Model 

200 with KRS-5 sample chamber window. Spectra were obtained at a 

resolution of 4 cm−1, averaging 128 scans, operating from 4000 to 400 cm-1. 

The sample chamber of the PAS cell was purged with helium gas prior to 

analysis.  

 

3.3.3 Surface Area Analysis & Porosimetry 

A micromeritrics FlowPrep060 degaser (Gemini II 2370, Micromeritics, UK) 

multipoint analyser was used to measure the surface area of granular samples 

< 1 mm size via BET method.  

Surface area values were obtained using helium (He) at 15 psi with an 

evacuation rate of 300 mmHg/min. Prior to the analysis samples were dried at 

200 oC overnight with nitrogen (N2) at 15 psi.  

Strut porosity of the porous granules was confirmed by embedding porous 

specimens in resin mixture with a 5.2 resin/hardener ratio (EpoFix, Struers, 

UK) and left to slowly set for 8 hours. The specimens were then polished on 

diamond paper from P400 to P1600, and then imaged using SEM. The strut 

porosity was then determined using ImageJ 1.44i (National Institute of Health, 

USA). 
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3.3.4 Scanning Electron Microscopy (SEM) and Energy Dispersive 

Spectroscopy (EDS) 

Surface microstructure and morphology was qualitatively assessed by 

scanning electron microscopy (SEM) using an Ultra 60 field emission (FE) 

microscope (Carl Zeiss SMT Ltd., Cambridge, UK). The Hummer Sputtering 

System was used to prepare non-conductive samples by coating those with 

Au/Pd. Once coated, the samples were then mounted on aluminum studs and 

analyzed for their surface characteristics from the micro to the nano scale 

using the Zeiss Ultra60 FE-SEM, with an accelerating voltage of 5KeV and a 

working distance between 4.6 and 11.1 mm. 

A INSPECT F (FEI, UK) field emission gun scanning electron microscope (FE-

SEM) equipped with an energy dispersive X-ray spectrometer (EDS) was used 

to observe morphology and determine elemental distribution of silicon (Si) at a 

high resolution and accelerating voltage of 10 kV. 

 

3.3.5 Density and porosity ratio measurements  

Apparent density, real density and total porosity were obtained using a method 

based on the Archimedes principle of water displacement. 

The specimens were weighed in a dry condition (Wdry) in triplicate using an 

analytical plus electronic balance™ (Ohaus, Leicester, UK). The specimens 

were then placed in boiling deionised water for 30 minutes (60 minutes for 

porous samples) to ensure all open pores were filled with water and left to 

cool, still submerged in water. The specimens were then weighed using the 

density AP solids kit (Ohaus, Leicester, UK), three times submerged in 

deionised water (Wsub) of known temperature, and then three times in the wet 

state (Wsat). The apparent and real densities of specimens were calculated 

using Equation 3.1 and Equation 3.2 respectively. The former takes into 

account both the open and closed porosity of the material, while the latter only 

considers closed pores. 
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Equation 3.1 

                          

 

Equation 3.2 

                                                                            

Where H2O is the density of de-ionised water and W is weight. 

 

Equation 3.3 

Equation 3.3 was used to determine the total porosity. The apparent density 

includes both open and closed porosity in the volume of the material, whereas 

the real density includes only the closed porosity.  

3.3.6 Statistical Analysis 

For analysis of materials densities, surface area and total and strut porosities 

the sample size was n=3, and mean and standard deviation were calculated 

for each sample. 

 

3.4 Results 

3.4.1 Material chemistry 

3.4.1.1 X-ray Diffractometry (XRD) 

Phase purity and the presence of silicate and phosphate groups were 

confirmed using XRD and FTIR respectively. XRD (Figure 3-1) confirmed the 

phase purity of both the HA and SA samples. There was no presence of either 

β-TCP or CaO impurities, as they should be observed at around 31.2 o and 

37.8 o, respectively (Hing et al., 1998). These impurities may form within the 

samples as a result of decomposition during the sintering process which 

makes the Ca/P ratio either greater or lower than the stoichiometric molar ratio 

of 1.67 (Hing et al., 1998), (Gibson et al., 1999a). The peaks shown are 
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narrow and sharp which indicate a high level of crystallinity for all the 

compositions. 

 

 

Figure 3-1: XRD patterns of HA and SA porous granules 

 

3.4.1.2  FTIR analysis 

Following the XRD analysis, FTIR was performed to analyze the presence of 

phosphate and silicate groups (Figure 3-2). In both HA and SA samples there 

is a noticeable sharp peak present at 3570cm-1 which corresponds to the 

presence of OH groups. The band heights of the peak is found to be slightly 

higher at ~6PA (photoacoustic) in SA 80/30 than SA 80/20 and HA 80/20 

where it is found to be ~4PA.  

β-TCP 

HA 

CaO 
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Figure 3-2: FTIR spectra of HAG80/20, SAG80/20 and SAG80/30 between 1000 and 500 

cm
-1

 

All the spectra also show a broad peak ~1100cm-1, which indicates the 

presence of phosphate groups. The phosphate symmetric stretching vibration 

(3 and 1 bands) are characterised by 3 peaks present at 1089cm-1, 1032cm-1 

and 962cm-1, which again are more defined and intense in sample SA80/30. 

The phosphate bending vibration (4 bands) is again characterised by 3 peaks 

present at 631cm-1, 606cm-1 and 559cm-1. In the two SA samples spectrums 

two peaks present at ~880cm-1 determine the presence of SiO4
4- groups with 

the Si-O vibration. Finally the spectra for the HA and SA samples show broad 

peaks present between 2000cm-1 – 2200cm-1 these peaks may correspond to 

surface absorbed HPO4
2- groups (Gibson et al., 1999a) (Hing et al., 2006a). 

 

3.4.2 EDS analysis 

The EDS analysis showed the content of element present on the surface of 

the samples under investigation in terms of weight and atomic percentages. 

Table 3-1 shows the elemental distribution as a percentage on the surfaces of 

the two biomaterials. On SAG80/20 and SAG80/30 was detected a percentage 

of Si of 0.75 and 0.77 % respectively, while none for HAG80/20.  

PO4   & SiO4 

Hydroxyl group 

HPO4
2- 
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Table 3-1: Weight and atomic percentage of elements present in HA and SA PG 

analyzed by EDS 

 

 

 

Figure 3-3: EDS spectra of (a) SAG80/30, (b) SAG80/20, and (c) HAG80/20 

 HAG80/20 SAG80/20 SAG80/30 

Element Weight% Atomic% Weight% Atomic% Weight% Atomic% 

 
C 

9.74 16.57 10.08 17.25 10.35 18.96 

 
O 

45.84 58.52 44.42 57.09 34.89 48.00 

 
Si 

- - 0.75 0.40 0.77 0.53 

 
P 

15.15 9.99 14.34 9.65 17.20 12.29 

 
Ca 

29.27 14.92 30.41 15.60 36.80 20.21 

a 

b 

c 
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Figure 3-3 shows the EDS spectra of each sample, clearly showing the 

absence (c) and presence (a and b) of the silicon as an element in the 

biomaterials’ surface of HA80/20, SAG80/20 and SAG80/30 respectively. No 

other peaks appear other than Oxygen, Calcium and Phosphate. 

 

3.4.3 Sample morphology 

3.4.3.1 Density and Porosity measurements 

All the samples were investigated for their apparent and real densities and 

total porosity (TP) using the Archimedes’ principle (Table 3-2).  

On DD, results showed very similar apparent and real densities and also a 

very similar level of total porosity between HA and SA.  

On PG, the results showed lower both apparent and real densities from the 

two SA porous granules compared to HA. The TP was also lower on 

HAG80/20 compared to the two SAG. The apparent and real densities, as well 

as the TP % were, however, very similar between the two SA samples.  

 

Table 3-2: Table of densities and percentage of porosities using Archimede’s Principle 

of water displacement for HAG 80/20, SAG 80/20 and SAG 80/30 

Material Apparent Density  

(g/cm3) 

Real Density 

(g/cm3) 

TP % 

HAD 2.85±0.2 3.10±0.3 9.1±0.1 

SAD 2.81±0.4 3.09±0.2 9.2±0.08 

HAG 80/20 0.71±0.05 2.82±0.08 77.6±0.9 

SAG 80/20 0.56±0.06 2.72±0.1 79.3±0.7 

SAG 80/30 0.55±0.04 2.76±0.2 80.2±0.6 

 

 

3.4.3.2 Surface area analysis 

B.E.T. analysis was performed on porous granules of HA 80/20, SA 80/20 and 

SA 80/30. The results showed a grater surface area on the SA 80/30 sample 

compared to the others, probably due to the higher percentage of strut 
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porosity. HA and SA 80/20 showed a very similar surface area between each 

other shown from Table 3-3. 

Table 3-3: Table of surface area using B.E.T. 

Material Sample Weight (g) Surface area (m2/g) 

HAG 80/20 2.02 0.24±0.07 

SAG 80/20 2.52 0.24±0.09 

SAG 80/30 2.19 0.27±0.1 

 

 

3.4.3.3 SEM analysis 

SEM images were used to analyze the morphology and microstructure of the 

samples. Figure 3-4: SEM images of (a) HA and (b) SA dense discs, gold 

coated shows HA and SA dense discs analyzed at a 30,000X magnification, 

showing no signs of degradation, a crystalline structure and the presence of 

clear grain boundaries. Figure 3-5a, b and c shows the PG samples analyzed 

at a magnification of 24,000X: grain boundaries are still visible on the surface 

of the porous samples and similar to those seen on dense discs. 

 

Figure 3-4: SEM images of (a) HA and (b) SA dense discs, gold coated 
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Figure 3-5: SEM images of (a) HAG80/20, (b) SAG80/20 and (c) SAG80/30, gold coated 

Pore interconnectivity was determined via samples embedded in resin, 

polished and imaged by SEM. The strut porosity was observed as in Figure 

3-6, Figure 3-7 and Figure 3-8 respectively for HAG80/20, SAG80/20 and 

SAG80/30, and quantified as shown in Table 3-4. 

Table 3-4: Strut porosity of the samples analyzed via thresholds 

Sample Strut Porosity % 

HAG80/20 18.4 (±0.7) 

SAG80/20 19.8 (±0.3) 

SAG80/30 31.8 (±0.3) 
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Figure 3-6: SEM images of porous HAG80/20 embedded in resin and polished used to 

determine the strut porosity at (a) 100 and (b) 3000 magnification 

 

 

Figure 3-7: SEM images of porous SAG80/20 embedded in resin and polished used to 

determine the strut porosity at (a) 100 and (b) 3000 magnification 

 

 

Figure 3-8: SEM images of porous SAG80/30 embedded in resin and polished used to 

determine the strut porosity at (a) 100 and (b) 3000 magnification 
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3.5 Discussion 

The results of the analysis described in this chapter confirm the chemical, 

morphological and structural characteristics of the samples as they were 

expected to be found.  

XRD data was successful in showing no additional phases to HA (Figure 3-1)  

The differences in the intensity of the XRD pattern from HA to SA were known 

to be due to the presence of silicon (Si), as silicon is known to act as a 

sintering aid, which results in SA samples having lower crystallinity at the 

same calcination temperature than HA (Gibson et al., 2002, Kim et al., 2003). 

Hence, lower intensity was observed. Also, as indicated on the respective 

figure, no secondary phases such as CaO or β-TCP were detected. These 

phases would have risen from the impurities present on decomposition of SA 

whilst being sintered: in fact, if silicon was not entirely being incorporated in 

the HA structure, it would have led to an increase or decrease in the molar 

CaP ratio of 1.67 which would have given rise CaO or β-TCP within the 

diffraction patterns.  

FTIR analysis (Figure 3-2) was able to identify phosphate peaks of 3, 1 and 

4 in both HA and SA samples and the presence of silicon in the SA samples. 

There were no carbonate peaks detected therefore suggesting that the SA 

samples had silicate ions substituted for the phosphate ions. Results show a 

broader spectrum for the SA material, probably due to the loss of the hydroxyl 

through the substitution compared to HA, as shown at the full range of 4000 to 

400 cm-1, which was expected and agreed with by others.(Balas et al., 2003, 

Gibson et al., 1999, Hing et al., 2006, Thian et al., 2006) For the characteristic 

phosphate and silicate group peak position, the assignments made agreed 

with those found in the work of Gibson, Best et al. (Gibson et al., 1999), where 

the peak positions observed showed phosphate peaks at 950, 890 and 840 

cm-1 in SA compared to HA between 960 and 1100 cm-1, which have moved 

due to the presence of silicate. Further confirmed by peak assignment found in 

the work of Hing et al.(Hing et al., 2006) and Thian et al. (Thian et al., 2006).   

EDS analysis was conducted on SA80/20, SA80/30 and HA80/20 samples in 

order to verify the levels at which calcium, phosphate and silicon were present 

(Figure 3-3 and Table 3-1). It was reassuring to see that there were high wt% 

of calcium and phosphate present in all samples. The wt% of silicon that was 

detected in SA80/20 and SA80/30 was 0.75wt% and 0.77wt% respectively. 

The reason behind the lower wt% of silicon in both samples could be that after 

the sintering process, the silicon could be hidden behind the carbon that is 

present therefore not all of the silicon was able to be detected by EDS 

analysis.   
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Densities measurements (Table 3-2) showed the real density being higher 
compared to the apparent density and the density of the porous samples lower 
than the calculated density of the dense discs. This observed lower density 
was already expected, especially from the porous samples (PG) which present 
close porosity; moreover, was also found by others (Hing et al., 1999) for the 
porous specimens, which were cylindrical in shape with a length of 8.8 mm 
and a diameter of 4.6 mm.  
Using the Archimedes‟ principle also allowed for the total porosity of the 

samples to be determined at an average 80 % for all samples, which was as 

expected. This would represent the macroporosity of the samples via density 

and SEM (in mm), while the microporosity (the strut) can be visualised using 

SEM (in μm), but sometimes also measured using intrusion porosimetry 

(Rosengren et al., 2002)  

Surface area measurements by BET (Table 3-3) showed a slightly higher 

surface area on the SAG80/30 compared to the other two samples, probably 

due to its higher percentage of strut porosity. The introduction to porosity 

should not affect the surface chemistry of the samples compared to the 

powder or dense disc specimens, as in principle only the interconnectivity 

would have increased (Shors and Holmes, 1993) which was observed here 

also. 

Finally, strut porosity of the PG was analyzed and measured via ImageJ 

software of SEM images of the resin-embedded and polished samples (Table 

3-4). It was shown to be ~20% for HAG and one of the two SAG, and ~30% for 

the second SAG. 

These analyses confirmed the chemical and morphological characteristics of 

the samples, thus enabling the study of the effects that each of this features 

plays in regulating protein adsorption and cell attachment, proliferation and 

differentiation on bone graft substitutes. 
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4 Fn adsorption and desorption on HA and SA discs 

and porous granules in different conditions 

4.1 Introduction 

On contact with living tissue, the first event that takes place at an implant 

interface is the adsorption of a layer of proteins. 

This layer will act as an intermediary to promote subsequent cell attachment, 

proliferation and differentiation, and thus in bone graft substitutes is associated 

with new bone formation and bone healing (Sawyer et al., 2005), (Fujisawa et 

al., 1997), (Hersel et al., 2003) (Roessler et al., 2001), (El-Ghannam et al., 

1999) (Itoh et al., 2002).  

Therefore the surface properties of the material such as wettability (Bodhak et 

al., 2009), surface charge (MacDonald et al., 2002a), surface roughness 

(Missirlis, 2000), (Hayashi et al., 1994), material porosity (Bignon et al., 2003), 

(Karageorgiou and Kaplan, 2005) (Annaz et al., 2004) and surface chemistry 

(Scotchford et al., 1998), (Zreiqat et al., 2005) (Zreiqat et al., 1999a) through 

their ability to regulate the quantity, speciation and conformation of the protein 

layer, have been increasingly recognised as important for promoting bone 

growth. 

Cell-biomaterial interactions are therefore mediated by, and dependent on, this 

protein layer, which consequently becomes fundamental in terms of controlling 

and regulating the process of osteointegration through the bone graft implant. 

Despite the recognised significance, there are still controversies in the 

behaviour of extracellular adhesion proteins regarding the adsorption, 

dynamics and protein layer composition on HA and SA implants. It is still not 

clear how the differences in material properties influence this behaviour, and 

also how a physiological environment (presence of proteins, peptides and 

growth factors) can affect, positively or negatively, the formation of the protein 

layer and its characteristics.  
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The work presented in this chapter is concerned with the investigation of the 

absorption/desorption processes of Fn on dense and porous stoichiometric 

hydroxyapatite and silicate-substituted hydroxyapatite (containing 0.8wt% Si) 

samples, under physiological (with the presence of competitive proteins) and 

non physiological (without competitive proteins) conditions. 

The physiological level of Fn in Fetal Bovine Serum (FCS) has been estimated 

to be ~300 µg ml-1 (Grinnell and Phan, 1983, Mosher, 1984) .  In the present 

study, two different levels of Fn (one close to the physiological, and one lower 

than this) were tested on HA and SA dense discs and porous granules with 

different strut porosity. Being the mechanisms of action of Fn still unclear in 

certain settings, these two speficic Fn levels were used in order to: 

 investigate if changes from the physiological concentration influence its 

activity, and  

 to determine if the specific quantity of this protein at the site of action is 

fundamental in promoting its function.  

Experiments were carried out in Eagle Minimal Essential Medium (MEM) with 

and without the addition of 10% of (FCS). 

The other purpose of this study was to investigate the effects of material 

porosity and chemical composition and the presence of competitive serum 

proteins on the adsorption pattern of Fn to bone graft biomaterials. 

 

4.2 Materials and Methods 

4.2.1 Materials 

Both dense discs (DD, 1 gram) and porous granules samples (PG, 0.5 grams) 

were used in these adsorption experiments. Two chemistries, stoichiometric 

hydroxyapatite (HA) and 0.8wt% Si silicate-substituted hydroxyapatite (SA) 

were used. All porous granules had a total porosity of 80% and strut porosity 

of either 20% or 30% (Chapter 3). 
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4.2.2 Scanning Electron Microscopy analysis 

Analysis of the samples surface after Fn adsorption was performed using a 

scanning electron microscope. Dense Discs and Porous Granules were 

mounted on aluminium studs and carbon coated. The images were taken 

using a magnitude range of 50,000X-60,000X for DD and 14,000X-16,000X, 

20.00 KeV and 9.4 to 15.9 mm working distance.  

4.2.3 Protein staining 

The protein fibronectin was supplied from Calbiochem, in aliquots of 5 mg at a 

concentration of 1.01 mg/ml. Aliquots of 1.0 ml were stored in 1.5 ml 

eppendorf tubes, labelled and frozen.  

Fibronectin was labelled with the fluorophore Sulphorodamine 101 (SR101, 

Figure 2-6, from Acros Organics) following the procedure described by Mafina 

et al.  (Mafina et al., 2013). SR101 shows optimal fluorescence excitation at 

576 nm and emission at 620 nm (Figure 2-7). 

The fluorophore was diluted in Minimum Essential Medium Eagle Modified 

(MEM, Sigma-Aldrich) to achieve a final concentration of 1.048 mg/ml. This 

solution (SR101, 1 ml in MEM, 1.727 × 10-6 M) and Dicyclohexylcarbodiimid 

solution (DCC, 1 ml, 30 mg/ml) were mixed and incubated for 5 minutes at 37 

°C. The pH was checked during activation and maintained at 5 adding NaOH 

(1M) drop wise. 

Fibronectin solution (1 ml, 1 mg/ml, 2.2 × 10-9 moles) was added to the 

reaction mixture and incubated at 37 °C for 4 hours in darkness. The reaction 

was stopped by adding sodium acetate (AcONa, 24.6 mg, 0.1 M) and 

incubated for at 37 °C 1 hour (Figure 4-1). 



118 

 

Figure 4-1: Coupling reaction scheme of the FN with SR101 

Fluorophore-protein conjugate was separated from free fluorophore by dialysis 

directly against MEM, for 24 hours (Harlow and Lane, 1988) using dialysis 

tubes (SpectrumLabs, UK).  

Dilutions with MEM stock resulted in final Fn-SR101 concentrations of 0.250 

mg/ml (Fn2) and 0.100 mg/ml (Fn1) (Figure 4-2). Verification of the exact 

protein concentration in the two solutions was made by weighting the freeze-

dried samples of the MEM solution and of the two Fn-SR101 solutions.  

The same procedure was followed for the preparation of the Fn-SR101 

solution in MEM with 10 % of Fetal Bovine Serum (FCS, Sigma-Aldrich) which 

was added to the MEM stock solution that has then been used to make all the 

dilutions.  

The medium was without phenol red to avoid interference with the protein-

SR101 fluorescence analysis. 
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Figure 4-2: Fn-SR101 solution at the concentration of 0.250 mg/ml 

4.2.4 Protein Adsorption/Desorption 

Protein adsorption experiments were performed on dense discs (HA and SA) 

and porous granules (HAG80/20, SAG80/20 and SAG80/30). Each sample 

was incubated in a vial at 37 °C, and 1.5 ml of fibronectin-SR101 solution of 

each of the 2 different concentrations was added (Fn2: 0.250 mg/ml and Fn1: 

0.100 mg/ml). 

Within a total incubation time of 1 hour, 0.1 ml aliquots were taken for analysis 

after 1, 5, 10, 15, 30 and 60 minutes to access fibronectin adsorption via 

depletion (Figure 4-3). 

Samples were washed (with MEM) and re-suspended in 1.5 ml of fresh MEM 

(or MEM + 10 % FCS) and 0.1 ml aliquots were then taken after 1, 10, 60 

minutes, 4 and 24 hours to access fibronectin desorption from the graft. 

 

4.2.5 Fluorescence analysis 

Quadruplicate samples (n=4) of the supernatant were transferred into a 96-

well plate filled with 200 µl of MEM and 20 µl of sample aliquot in each well. 

Fluorescence intensity of the solutions was measured at an excitation 

wavelength of 544 nm and an emission wavelength of 590 nm, using 



120 

 

FLUOstar galaxyTM and its associated software (BMG Labtech Ltd., Aylesbury, 

UK). 

Moreover, additional experiments were performed in which the fluorescence 

intensity of known concentrations of labelled fibronectin were analysed, to 

provide calibration curves in both the MEM  and the MEM + 10 % FCS  

solutions (from 0 µg/ml to 16.65 µg/ml) protein concentrations.  

This calibration was then used to calculate the amount of protein present in 

the unknown samples, in order to determine the amount of protein adsorbed 

on each sample at different time points. 

 

Figure 4-3: Collecting of aliquots for Fn adsorption analysis 

4.2.6 Circular Dichroism 

Circular dichroism analysis was performed on Fn solutions in MEM, at a 

concentration of 0.1 mg/ml (2.27x10-7 M). Three samples of 1 ml were 

prepared: one placed in contact with HA for 15 minutes, one with SA for 15 

minutes and one as prepared. Circular dichroism was also performed on a 

solution of pure MEM, to be used as a blank. The cuvette path length was 0.1 

cm.  

The analysis of the data was performed using the Dichroweb application 

(Whitmore and Wallace, 2004) (Whitmore and Wallace, 2008), available on-

line for analysis of Circular Dichroism spectra. This application enables 
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collection of structural information about the protein sample by comparing its 

spectra with a library of standard spectra (whom secondary structure is gained 

from X-ray crystallography) available in the server.  

The software used for the analysis of the structural changes of Fn was 

CDSSTR (reference set 7). 

4.2.7 Statistical Analisys 

The sample size for each DD and PG material was n=3. Variations in 

responses of Fn adsorption and desorption between chemistries (HA vs SA), 

morphologies (DD vs PG), strut porosities (20% vs 30%), or Fn concentrations 

(Fn1 vs Fn2) were assessed statistically by using a one-way analysis of 

variance. Differences were evaluated by using Bonferroni post testing. All 

statistical tests were run by using KaleidaGraph statistical software (v 4.0, 

Synergy Software, Reading, PA, USA) at a significance level of α=0.05.  
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4.3 Results 

4.3.1 Material’s characterization 

The characterization of the materials is shown in Chapter 3. 

 

4.3.2 Scanning Electron Microscopy analysis 
    

SEM images show Fn adsorption on DD and PG of HA and SA samples after 

60 min of Fn solution incubation and 24 hrs of desorption. In Figure 4-4 it is 

possible to detect the lower amount of protein adsorbed on DD (a, b) 

compared to the PG (c, d, e). Whereas in Figure 4-5 are shown the images of 

two PG with different strut porosity: (a) 80/30 and (b) 80/20. 

 

4.3.3 Fibronectin adsorption 

The calibration curves showed a good correlation between fluorescence 

intensity and protein concentration (Appendix, Figure 9-1 for the experiment in 

MEM and Figure 9-2 for the experiment in MEM+10% FCS). 

Both the calibrations showed a quite linear relationship between the two 

variables, giving further support to the technique that has been used. The 

calibration in MEM+10% FCS, furthermore, showed a higher fluorescence 

intensity compared to the one obtained from experiments in MEM.  
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Figure 4-4: Scanning electron image showing Fn adsorbed on the surface of (a) HA and 

(b) SA DD, and (c) HA 80/20, (d) SA 80/20 and (e) SA 80/30 PG. 

e 
e 
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Figure 4-5: Scanning electron image showing the differences in strut porosity between 

(a) SAG 80/30 and (b)SAG 80/20. 

 

 

4.3.3.1 Adsorption on dense discs 

The amount of Fn adsorbed on the samples was calculated subtracting the 

amount detected in the solution analyzed at each time point from the amount 

in the original solution. Results of Fn adsorption on DD are shown from Figure 

4-6 to Figure 4-14 

Hydroxyapatite dense discs (HAD) and Silicate-substituted hydroxyapatite 

dense discs (SAD) showed a similar pattern of Fn adsorption in the MEM 

solution (Figure 4-6a, b for the two concentrations used). In this condition SA 

showed more Fn adsorption compared to HA, however significantly different 

only after 15 minutes of adsorption at the lower concentration of Fn used (Fn1) 

(Figure 4-6b)  
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Figure 4-6 SR101-Fn adsorption on HAD and SAD in MEM at concentrations of (a) 0.250 

mg/ml Fn, and (b) 0.100 mg/ml Fn (*p<0.05 SAD vs HAD after 15 min) 

However, with the addition of FCS to the environment and so the introduction 

of competitive protein species (Figure 4-7a,b), it can be seen that at high Fn 

concentration the protein adsorption is very similar between the two samples 

but at low concentration HA adsorbed more protein than SA, significantly 

different at almost all the time points, reversing the observations without FCS 

(Figure 4-6b). This suggests that both Fn concentration and the presence of 

competitive species have a significant effect on the relative adsorption profiles 

of HA and SA. 

 

a 

b 

Fn2 - MEM 

Fn1 - MEM 
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Figure 4-7: SR101-Fn adsorption on HAD and SAD in MEM+10% of FCS at 

concentrations of (a) 0.250 mg/ml Fn, and (b) 0.100 mg/ml Fn (*p<0.05 HAD vs SAD after 

1, 5, 10, 15 and 30 min) 

Focusing on the effect of the introduction of competitive species for each 

sample chemistry, Figure 4-8 shows that at high concentrations, HA is not 

influenced by competitive species, while at low concentrations the presence of 

serum proteins significantly enhances Fn adsorption on HA (Figure 4-8b). 

a 

b 

Fn2 – MEM+FCS 

Fn1 – MEM+FCS 
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Figure 4-8: SR101-Fn adsorption on HAD in MEM and MEM+10% of FCS at 

concentrations of (a) 0.250 mg/ml Fn, and (b) 0.100 mg/ml Fn (*p<0.05 HAD in MEM+FCS 

vs HAD in MEM after 1, 5, 10, 15 and 30 min) 

In contrast, Figure 4-9 demonstrates that at high and low concentrations Fn 

adsorption on SA is reduced by serum proteins. This effect is particularly 

enhanced at low concentrations where the presence of competitive species 

almost blocks Fn adsorption on SA (significant only after 15 min using low Fn 

concentrations) (Figure 4-9Figure 4-8b).  

These results clearly suggest that the presence of the serum is critical to the 

adsorption of Fn on the samples. 

After the analysis of this data it was decided that the adsorption/desorption 

experiments on the porous granule samples should be continued only in the 

MEM+10% FCS solution as this most closely resembled the physiological 

environment. 

 

a 

b 

 

Fn2  

Fn1 
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Figure 4-9: SR101-Fn adsorption on SAD in MEM and MEM+10% of FCS at 

concentrations of (a) 0.250 mg/ml Fn, and (b) 0.100 mg/ml Fn (*p<0.05 SAD in MEM vs 

SAD in MEM+FCS) 

4.3.3.2 Fn adsorption on granules 

Following the same method, the adsorption of Fn was analyzed on three 

different porous granules (PG) samples: HAG80/20, SAG80/20 and SAG80/30 

(see Chapter 3 for full details of the materials) using only the solution 

MEM+10% of FCS. 

Results of Fn adsorption on PG are shown in Figure 4-10: with the higher 

(physiological) concentration of Fn (Fn2), SA was observed to adsorb more Fn 

than HA after 60min, while there was significant fluctuation in Fn adsorbed to 

HA at earlier time points. Moreover, the difference in strut porosity in the two 

SA samples (20% and 30%) did not appear to significantly influence the 

quantity of protein adsorbed. 

Statistical analysis of the data is shown in Figure 4-11.   

a 

b 

Fn2  

Fn1 
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Figure 4-10: SR101-Fn adsorption on HAG 80/20, SAG 80/20 and SAG 80/30 in 

MEM+10% of FCS at concentrations of (a) 0.250 mg/ml Fn, and (b) 0.100 mg/ml Fn 

Both SAG80/20 and SAG80/30 adsorbed significantly more Fn than 

HAG80/20 after 1, 10 and 30 minutes (Figure 4-11a, c, e), SAG80/20 only 

adsorbed more Fn than HAG80/20 also after 60 min (Figure 4-11f) and 

HAG80/20 and SAG08/20 more than SAG80/30 after 15 min (Figure 4-11d).  

The quantity of Fn adsorbed at lower concentration (Figure 4-10b) did not vary 

significantly with either granule chemistry or porosity. 

a 

b 

Fn2  

Fn1  
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Figure 4-11: Amount (µg) of Fn adsorbed on HAG 80/20, SAG 80/20 and SAG 80/30 at 

0.250 mg/ml Fn concentration after (a)1, (b)5, (c)10, (d)15, (e)30, and (f) 60 minutes 

(*p<0.05, **p<0.005) 

In Figure 4-12a-d are shown the adsorption profiles of the samples with the 

same chemical composition and in the same solutions but with different 

topography (dense discs (DD) vs porous granules (PG)). For the HA 

chemistry, the porous granules showed a higher amount of Fn adsorbed at 

both the Fn concentration solutions, with significant differences found after 5 

and 15 min from 0.250m mg/ml of Fn (Figure 4-12a) and after 10, 15 and 60 

min from 0.100 mg/ml of Fn solution (Figure 4-12b). For the SA chemistry, this 

difference in adsorption between DD and PG was more emphasized, and 

significantly different after 1, 5 and 10 min only from SAG80/30, and after 15 

min from SAG80/20, with the higher Fn concentration solution (0.250 mg/ml, 

Figure 4-12c). While for the lower Fn concentration solution (Fn1) there was 

significantly less Fn adsorbed to SA DD at all time points as compared to 

SAG80/20 and SAG80/30 (Figure 4-12d). 

a b 

c d 

e f 

* 
* 

* 

** 
* 

* 

* 

* 
** 

* 

Fn2  
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Figure 4-12: SR101-Fn adsorption in MEM+10% FCS on (a) HAD and HAG 80/20 at (a) 

0.250 mg/ml, (b) HAD and HAG 80/20 at 0.100 mg/ml, (c) SAD, SAG 80/20 and SAG 80/30 

at 0.250 mg/ml and (d) SAD, SAG 80/20 and SAG 80/30 at 0.100 mg/ml. (*p<0.05) 

Another interesting interpretation of the data would also be to look at it in 

terms of % of Fn adsorbed relative to the initial concentration used, which is 

either 0.250 (Fn2) or 0.100 (Fn1) mg/ml. This would enable to see how Fn 

adsorption changes as a function of its concentration. Figure 4-13 shows the 

percentage of Fn adsorbed to the samples from MEM and MEM+10%FCS 

solutions for the DD, and from the MEM+10%FCS solution for the granules, 

with the two Fn concentration solutions, 0.250 mg/ml and 0.100 mg/ml after 1, 

5 and 10 minutes. Figure 4-14 shows the same results after 15, 30 and 60 

minutes. 

a b 

c d 

* * 

* * * 

* 
* * 

* 

* * * * * * 

Fn2  

Fn2  

Fn1  

Fn1  
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Figure 4-13: percentage of Fn adsorbed on DD in MEM in physiological (0.250 mg/ml) 

and sub-physiological (0.100 mg/ml) concentrations of Fn solutions after (a)1, (c) 5, 

(e)10 minutes, and PG in MEM+10% FCS in physiological (0.250 mg/ml) and sub-

physiological (0.100 mg/ml) concentrations of Fn solutions after (b)1, (d)5, (f)10 minutes 

a b 

c d 

e f 
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Figure 4-14: percentage of Fn adsorbed on DD in MEM in physiological (0.250 mg/ml) 

and sub-physiological (0.100 mg/ml) concentrations of Fn solutions after (a)15, (c)30, 

and (e) 60 minutes, and percentages of Fn adsorbed on DD and PG in MEM+10% FCS in 

physiological (0.250 mg/ml) and sub-physiological (0.100 mg/ml) concentrations of Fn 

solutions after(b)15, (d)30, and (f) 60 minutes. 

This evaluation suggests that for DD the adsorption of Fn was relatively higher 

in the 0.250 mg/ml solution at all the time points compared to the 0.100 mg/ml 

solution in both MEM (Figure 4-13a, c, e and Figure 4-14a, c, e) and 

MEM+10% FCS (Figure 4-13b, d, f and Figure 4-14b, d, f). However, for PG a 

relatively higher amount of Fn was adsorbed from the lower concentration 

solution apart from the 5 min time point, and for HAG80/20 after 15 min and 

SAG80/20 after 60 min (Figure 4-13b, d, f and Figure 4-14b, d, f). 

a b 

d 

e f 

c 
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4.3.3.3 Fn desorption from dense discs 

Also the desorption studies have been performed in MEM on DD, and in 

MEM+10% FCS on DD and PG. The same two Fn concentration solutions 

(Fn1 and Fn2) were used for all the samples. The data was generated by 

quantification of the protein amount analyzed in the aliquots (taken after the 

re-suspension in fresh MEM or MEM+10% FCS), at each desorption time 

points, which were: 1 min, 10 min, 60 min, 4 hr and 24hr. 

In MEM (Figure 4-15a, b) the trends between HAD and SAD were the same at 

both higher and lower concentration of Fn, with the protein being more readily 

desorbed from HA compared to SA. Furthermore Fn desorption showed to be 

significantly higher on HA than on SA after 24 hours, from Fn2 (Figure 4-15a) 

and after 60 minutes from Fn1 (Figure 4-15b).  

Figure 4-16a, b shows Fn desorption from the MEM+10% FCS solution. Data 

shows that at both higher and lower Fn concentration solutions, Fn desorption 

was very similar for both HA and SA, showing a high Fn release peaking after 

only 1 min (significantly higher from HAD in Fn2), and then finding a lower and 

steady equilibrium level after 10 min. No more desorption was found after this 

time point. 
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Figure 4-15: SR101-Fn desorption on HAD and SAD in MEM at concentration of (a) 0.250 

mg/ml Fn, and (b) 0.100 mg/ml Fn (*p<0.05). 

a 

b 

Fn2 - MEM 

Fn1 - MEM 

* 
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Figure 4-16: SR101-Fn desorption on HAD and SAD in MEM+10% FCS at concentration 

of (a) 0.250 mg/ml Fn, and (b) 0.100 mg/ml Fn (*p<0.05). 

The analysis of the desorption comparing the same chemistry in the MEM and 

MEM+10% FCS solutions are shown in Figure 4-17  and Figure 4-18. This 

data shows that, for both HA and SA DD, the presence of FCS during 

adsorption/desorption increases the desorption of Fn from HAD and SAD, with 

a peak after just one minute. After the first minute, however, in either MEM or 

MEM+FCS there isn’t any further release of Fn.  

This difference was statistically significant from both HAD and SAD using 

either higher (Figure 4-17a and Figure 4-18a respectively), or lower (Figure 

4-17b and Figure 4-18b respectively) Fn concentration solutions. The 

presence of an early peak and a subsequent lower level of desorption 

suggests that Fn is readily and quickly released at first in the new fresh 

solution, and that after 10 min could be re-adsorbed again on the graft surface. 

a 

b 

Fn2 – MEM+FCS 

Fn1 – MEM+FCS 

* 
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Figure 4-17: SR101-Fn desorption on HAD in MEM and MEM+10% of FCS at 

concentration of (a) 0.250 mg/ml Fn and (b) 0.100 mg/ml Fn (HAD in MEM p<0.0001 vs 

HAD in MEM+FCS at all the time points) 

a 

b 

Fn2  

Fn1  
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Figure 4-18: SR101-Fn desorption on SAD in MEM and MEM+10% of FCS at 

concentration of (a) 0.250 mg/ml Fn and (b) 0.100 mg/ml Fn (SAD in MEM p<0.0001 vs 

SAD in MEM+FCS at all the time points) 

 

4.3.3.4 Fn desorption from granules 

Figure 4-19a, b shows the data obtained from the study of Fn desorption from 

porous HA and SA granules. The three samples showed a very similar 

desorption trend at both the two Fn concentration solutions.  

As for the DD, PG showed an early peak of desorption after only 1 min, and 

then a lower and steady equilibrium level and no more Fn desorption. Fn 

desorption was slightly higher from SAG80/20 compared to SAG80/30 and 

HAG80/20 at both the Fn concentration solutions.  

a 

b 

Fn2  

Fn1  
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Evaluating the influence that sample topography has on Fn desorption, Figure 

4-20a-d shows levels of protein desorbed between HAD and HAG80/20, and 

between SAD, SAG80/20 and SAG80/30. The results show a significant 

higher amount of Fn desorbed from the PG compared to the DD, for both HA 

and SA, and at both the two Fn solutions. 

 

 

Figure 4-19: SR101-Fn desorption on HAG 80/20, SAG 80/20 and SAG 80/30 in 

MEM+10% of FCS at concentration of (a) 0.250 mg/ml Fn and (b) 0.100 mg/ml 

a 

b 

Fn2  

Fn1  
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Figure 4-20: SR101-Fn desorption in MEM+10% FCS on (a) HAD and HAG 80/20 at 0.250 

mg/ml FN, (b) HAD and HAG 80/20 at 0.100 mg/ml Fn, (c) SAD, SAG 80/20 and SAG 80/30 

at 0.250 mg/ml Fn and (d) SAD, SAG 80/20 and SAG 80/30 at 0.100 mg/ml Fn (HAD 

p<0.0001 vs HAG and SAD p<0.0001 vs SAG80/20 and SAG80/30 at both the Fn 

concentration solutions) 

Figure 4-21a-j shows the percentage of Fn desorbed relatively to the amount 

adsorbed at each time point. 

Comparing the two Fn concentration solutions, it is showed that from DD Fn 

was desorbed more from the lower concentration solution than the higher one, 

except for HA after 60min, were the desorption was higher from the 0.250 

mg/ml Fn solution (Figure 4-21e).  

From PG, while the two materials with 20% strut porosity showed the same 

trend, the SAG80/30 sample showed a relatively higher desorption of Fn from 

the 0.250 mg/ml Fn concentration solution, at all the time points. 

b 

Fn2 - HA 

Fn2 - SA 

Fn1 - HA 

Fn1 - SA 

a 

c d 
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Figure 4-21: Percentage of desorption of Fn from the samples as a function of the 

amount adsorbed for the higher (0.250 mg/ml Fn) and lower (0.100 mg/m Fn) Fn 

concentration on DD in MEM after (a) 1, (c) 10, (e) 60, (g) 240, and (i) 1440 minutes and 

on DD and PG in MEM+10% FCS after (b) 1, (d) 10, (f) 60, (h) 240 and (j) 1440 minutes 

 

 

a, b 

c, d 

e ,f 

g, h 

i, j 
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4.3.1 Circular Dichroism 

The CD spectra of Fn solutions in Figure 4-22a shows the differences in the 

ellipticity (Δε) between the three samples, in function of the wavelength. The 

details of the differences in the secondary structure can be more easily seen 

between 205 and 260 nm in Figure 4-22b. 

 

Figure 4-22: (a) CD spectra of the three Fn solutions in MEM and (b) details of the 

different Δε relevant for the secondary structure for the three solutions of Fn  

Figure 4-23a,b shows the spectra of HA-Fn (Fn solution after contact with 

HAD for 15 min) and SA-Fn (Fn solution after contact with SAD for 15 min) in 

MEM after subtraction of Fn spectra. It is clear that there are differences in the 

adsorption of left and right circular polarised light between the three samples, 

therefore in their secondary structure. 

a 

b 
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Figure 4-23: (a)CD spectra of the three Fn solutions after subtraction of Fn-MEM 

to the HA-Fn and SA-Fn spectra and (b) details of the differences 

The analysis of the data, using the programme CDSSTR of Dichroweb, 

showed a NRMSD (Normalized Residual Mean Square Difference) of 0.058, 

0.064 and 0.056 respectively for Fn in MEM (Fn), Fn in MEM after contact with 

HAD (HA-Fn), and Fn in MEM after contact with SAD (SA-Fn). NRMSD 

characterizes the performances of secondary structure calculations, and 

represents the root mean square deviations between the crystal and CD 

estimates of the secondary structure content. The overall NRMSD is 

determined by considering all secondary fractions collectively. Lower values of 

NRMSD indicate less discrepancy between the calculated and crystallographic 

data. Therefore it is generally accepted that NRMSD measures the reliability of 

the method. 

The relative secondary structure content (α-helix, β-strand, turns and 

unordered) of each sample solution was then predicted. The results are shown 

a 

b 
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in Table 4-1, and suggest that there is some structural change in Fn on 

contact with both HA and SA: 

Table 4-1: relative secondary structure of the three Fn solutions 

 α-helix β-sheet Turns Unordered Strand 

segments 

% 

NRMSD 

Fn 0 0.56 0.16 0.3 8.518% 0.058 

HA-Fn 0 0.54 0.22 0.25 9.825% 0.064 

SA-Fn 0 0.64 0.11 0.26 9.385% 0.056 
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4.4 Discussion 

4.4.1 The effect of Fn concentration 

In the study of protein adsorption the use of different protein concentration 

solutions can help to understand the nature of any dominant protein-

biomaterial interaction. If the same adsorption of protein from solutions of 

different concentrations is observed, it suggests that the mechanism of action 

is not dependent on the concentration (i.e. there can be a saturation of the 

binding sites on the surface of the implants so that the adsorption doesn’t 

increase above a certain level, even with a higher protein concentration 

solution). Equally, if from different concentration solutions different adsorption 

trends are observed, it can indicate that affinity to a surface for a particular 

protein is concentration dependent. This level of understanding provides 

insight into: firstly, what may happen in the dynamic physiological environment 

as compared to in well controlled static conditions in the laboratory; secondly, 

what may be the optimal concentration to obtain maximum adsorption; thirdly, 

the possible mechanisms of actions behind protein adsorption to a specific 

material. 

The results from the study using dense discs (DD) showed that adsorption of 

Fn was always relatively higher in the higher (physiological) concentration 

solution (Fn2, Figure 4-13, Figure 4-14). This difference ranged between 8-

16% (% of the initial concentration of Fn in the solution) on HA in MEM but 

only 2-3% on HA in MEM+10% FCS; and between 5-15% on SA in MEM and 

9-11% on SA in MEM+10% FCS. 

The results obtained in the MEM solution on DD showed a correlation between 

Fn concentration and Fn adsorption. Furthermore, the higher percentage of 

adsorption from the 0.250 mg/ml solution suggested that Fn binding sites were 

not saturated. The presence of serum proteins did not change this pattern of 

behaviour: adsorption was still higher from the 0.250 mg/ml Fn solution, but 

the degree of difference between the two concentration solutions was reduced 

on both HA and SA DD, suggesting that when there are competitive species in 

the environment, they compete with Fn and have a greater inhibitory effect on 

Fn adsorption at higher concentrations.  
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In contrast, on porous granules (PG) a greater amount of Fn was adsorbed 

from the lower concentration solution than the higher one (Figure 4-13, Figure 

4-14). This difference, however, was more pronounced on HAG 80/20 (ranging 

between 6-13%) than SAG 80/20 (ranging between 1-9%) and SAG 80/30 

(ranging between 2.3-8%). These differences in relative Fn adsorption support 

the hypothesis, previously reported, that geometric/topographic characteristics 

of the implant influence the process of Fn adsorption (Bruijn et al., 1999). 

These results can be compared with a previous study by Guth et al. (Guth et 

al., 2010a) where an increasing amount of fetal calf serum (FCS) inhibited the 

total adsorption of Fn. This study was conducted on microporous HA and SA 

discs, and the amount of Fn adsorbed on the discs was evaluated after using 

concentrations of 10%, 20% and 50% FCS in the medium. Similarly to the 

results showed in the present study on the PG, increasing the amount of FCS 

from 20% to 50% in the medium resulted in a lower amount of Fn adsorbed on 

the surface of the implants. This could suggest that, as the concentration of Fn 

in the solution increased, the large molecular weight of Fn may have led to a 

reduction in its mobility, especially when exposed to a more intricate porous 

surface as compared to a more open and smoother surface as found on DD. 

Another hypothesis could be that Fn becomes more susceptible to 

displacement by the other proteins in the serum as its (Fn) concentration in 

solution increases.  

 

Regarding the desorption of Fn, results of the present study showed the same 

effect of Fn concentrations on DD and 80/20 PG (both HA and SA), but a 

different one on SAG80/30. In particular, a higher amount of Fn was found to 

be desorbed from the lower Fn concentration solution (Fn1) at all the time 

points from HA and SA DD, HAG 80/20, and SAG 80/20. Differently, 

desorption from SAG 80/30 was higher from the solution with the higher 

amount of Fn (Fn2, Figure 4-21). 
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The evidence of how important the concentration of Fn is in directing the 

adsorption to bioactive surfaces, points out how fundamental it is to develop 

adsorption/desorption experiments using concentration of the protein as close 

as possible to the physiological one at the implant interface. However, most of 

the Fn adsorption studies previously done on different surfaces were 

performed using either Fn already present in the serum (whom concentration 

can’t be exactly determined) or adding Fn to the solution in concentrations 

ranging between 1-20 μg/ml (Gugala and Gogolewski, 2004), (Kilpadi et al., 

2001), (Scotchford et al., 2002a), (McFarland et al., 2000), far from the 

physiological one of 300μg/ml (Mosher and Williams, 1978). 

Moreover, the evidence that Fn adsorption from a competitive environment is 

not a phenomenon driven by the amount of Fn in the surrounding media 

supports the hypothesis that a possible change of conformation of the protein 

occurs upon its adsorption on the implant. 

 

4.4.2 The effect of a competitive environment 

The interaction between a material’s surface and proteins is a multi step 

process, influenced by different factors. This event is the most rapid to occur 

after the implantation of the material, even faster than cellular attachment. 

Also, as different kinds of serum proteins compete for adsorption through 

available binding sites on the surface of the implant, protein adsorption is 

recognised to be a competitive process. Which proteins preferentially adsorb 

from the mixture of the serum to this limited number of binding sites will 

depend, at least, on their relative concentrations and on their surface affinities 

(Fabrizius-Homan and Cooper, 1991), (Horbett, 1996a). 

 

Which protein species drive the initial phase of protein adsorption probably 

depends on their relative concentration; over time, however, or after the 

coating approaches monolayer, the adsorption is then regulated by the so 

called “Vroman effect” (Vroman and Adams, 1986): in the absence of cellular 

interactions the composition of the adsorbed protein layer will change as faster 

and more abundant diffusing molecules (e.g. albumin) are displaced by 

proteins with a higher affinity for the surface.  
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Every time a study aims to clarify which are the possible events happening in 

the body in a particular condition or situation, it is fundamental to try and mimic 

the in vivo environment (in terms of temperature, conditions, etc) as closely as 

possible. In the present study therefore it was decided to perform 

adsorption/desorption experiments of Fn on bone graft surfaces in the 

presence of serum proteins, in order to investigate the mechanisms of Fn 

adsorption to different chemistry and morphology of hydroxyapatite surfaces in 

a competitive ( and most similar to the physiological) environment. 

 

Looking at the results in terms of absolute adsorption, under competitive 

conditions the adsorption of Fn was significantly higher on HA compared to SA 

DD from the 0.100mg/ml concentration solution (Figure 4-7b), while in contrast 

Fn adsorption was highest on SA DD (but not significantly) from the 

0.250mg/ml concentration solution (Figure 4-7a). Under non competitive 

conditions there was a trend towards greater levels of Fn adsorption on SAD 

with higher absolute levels of Fn adsorbed from the 0.250 mg/ml concentration 

solution (Figure 4-6). 

 

This indicates that the presence of competitive species in the environment 

significantly influences the biological response of bone graft substitutes in 

terms of protein adsorption, and that the precise nature of this effect depends 

on both the concentration of the protein and the chemistry of the bone graft.  

 

These observations suggest that from pure Fn solutions, Fn has a greater 

affinity to silicate substituted HA than stoichiometric hydroxyapatite surfaces 

from both Fn1 and Fn2 concentrations. However the presence of serum 

proteins changed this effect, resulting in greater affinity of Fn to HA from lower 

Fn1 concentration solution. This effect could be due to a relatively high affinity 

of serum proteins for SA as compared to HA, which would provide greater 

competition with Fn at the surface of SA DD and prevent its adsorption. 

This effect is abolished by increasing the relative concentration of Fn. 

 

These results show that Fn adsorption from a competitive environment is a 

complex process, dependent not only on bulk Fn concentration but also 
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relative surface affinities. Similar studies where Fn adsorption/desorption was 

evaluated with and without competitive species are limited (McFarland et al., 

2000), but many researchers have studied Fn adsorption to different materials 

from either FCS or from a pure solution. In one of these studies the adsorption 

of Fn from FCS was studied on different material surfaces, and Fn was shown 

to have a statistically relevant higher adsorption on HA than on titanium or on 

steel (Kilpadi et al., 2001).   

The behaviour of Fn in terms of adsorption on patterned surfaces was 

investigated by McFarland et al: they showed that Fn was able to adsorb on 

the surface from pure solution but not from FCS giving, as in this study, further 

evidence of the influence that the competitive environment has on Fn 

adsorption at the implant surface (McFarland et al., 2000). However, it must be 

taken into consideration that the concentration of Fn used in the McFarland 

study was very low, at 20 µg/ml.  

Another investigation of Fn in a competitive environment demonstrated how 

serum Fn, adsorbed on microporous HA and SA discs, was sensitive not only 

to the presence of other serum proteins but also to its total amount in the 

solution: in particular an increase in total concentration of serum proteins 

(therefore also Fn) from 20 to 50% had a detrimental effect of Fn adsorption 

(Guth et al., 2010a).   

 

In addition to these results, there is also some evidence that Fn, despite being 

recognised as the archetypal cell adhesive protein, may have a diminished 

role in situations of adsorption from complex mixtures due to its low 

competitive activity (Underwood and Bennett, 1989). 

Another relevant study involved adsorption of Fn on hydrophobic and 

hydrophilic tissue culture surfaces. When the relative amount of Fn adsorbed 

from serum solutions to these different surfaces was analysed at different 

serum concentrations, and interestingly the amount of Fn adsorbed increased 

with serum concentration up to 0.1% and then decreased progressively until, 

at 10% serum, there was little Fn adsorbed on the dishes (Grinnell and Feld, 

1982). Moreover, as most tissue culture is carried out with 10% of serum, 

looking at these results it seems unlikely that it is the amount of Fn adsorbed 
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from the serum that is responsible for promoting subsequent cell attachment 

and spreading. 

 

Regarding Fn desorption from dense discs the present results showed a fast 

release to both the MEM and MEM+10% FCS solutions at very early time 

points, which rapidly slows to minimal net release by 10 minutes (Figure 4-17, 

Figure 4-18). Interestingly, desorption from MEM+10% FCS was always 

significantly higher than from MEM on both HA and SA DD.  

Looking at the percentage of Fn desorption relatively to the amount adsorbed, 

from MEM+10% FCS it was always higher than from MEM for HA and SA DD 

at all the time points with the exception of 60 minutes on HA (Figure 4-21). 

These results suggest that competitive proteins promote a faster and more 

abundant release of Fn from the binding sites, independently of the chemistry 

of the samples.  

  

4.4.3 The effect of chemistry 

The chemistry of the material implanted has been recognised to be of 

fundamental importance in directing cell behaviour on bone graft materials 

(Guth et al., 2010b) (Sulaiman et al., 2013), (Ghanaati et al., 2012a) (Zreiqat 

et al., 1999b). There have been many theories proposed to explain this, 

including the influence that variation in charge density has directly on the cell 

population or the influence that surface charge has on the quality and quantity 

of proteins adsorbed on its surface, which then will appropriately mediate cell 

behaviour and biological activity.   

Moreover it has been proposed that a relevant role is also played by the 

dissolution or exchange of ions from the material to the surrounding 

environment which can also influence cell behaviour. For instance it has been 

proposed that Si has the ability to bind with oxygen when it is dissolved, 

forming a silicate network on the surface of an implant which can be capable 

of binding proteins more tightly and, in turn, promoting better cell attachment 

(Schwarz, 1974). 

Alternatively, in a study which investigated the dissolution of Silicon from 

microporous SA and its effect on osteoblasts behaviour, results showed that 
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cells were sensitive to the presence and the availability of Si ions in solution, 

which directly affected ALP expression and activity, (Guth et al., 2006b). 

 

One of the aim of the present experiment was to understand whether or not Fn 

has higher affinity for stoichiometric hydroxyapatite or silicate substituted 

hydroxyapatite, and if changes in the geometry and topography of the implants 

alters this affinity. 

 

On DD in MEM Fn showed higher affinity for SA than HA from both the Fn 

concentration solutions, and this effect was more pronounced from the 0.100 

mg/ml solution (Figure 4-13, Figure 4-14); In serum containing media, this 

trend continued with the 0.250 mg/ml Fn concentration solution (Figure 4-7a), 

However with the low Fn concentration solution, the adsorption trend changed, 

and HA showed a significantly higher Fn adsorption than SA (Figure 4-7b). 

The evidence that the higher affinity of the protein for SA is abolished with the 

presence of the serum suggests that the affinity of Fn and other serum 

proteins is higher for the silicate substituted rather than the stoichiometric HA, 

and also that the relative affinity of individual protein species is highly 

dependent on their individual concentrations when in the presence of 

competitive species. Therefore, it is possible to hypothesize either that the 

affinity of Fn for both the implant surfaces is lower than the one of the other 

competitive species in the serum, or that other serum proteins have higher 

affinity for SA than Fn, but non for HA, thus giving a relatively higher Fn 

adsorption affinity to HA. 

Moreover, the evidence that the effect of serum proteins did not significantly 

affect Fn affinity when using the 0.250 mg/ml Fn concentration solution (Figure 

4-7a), suggests that Fn concentration influences its own adsorption, and that 

the affinity of Fn and serum proteins for HA and SA is sensitive to their relative 

concentration. 

On the granules samples the experiment was carried out only in the 

MEM+10% FCS. Looking at the results using 0.100 mg/ml of Fn solution 

(Figure 4-10b), the absence of a significant difference between the two 

chemistries suggests, again, an effect of Fn concentration on regulation of its 

own affinity and adsorption to bone grafts.  
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In the high Fn concentration solution, however, the adsorption of the protein 

was generally higher on the two SAG samples (a part for the 5 and 15 minutes 

time points, Figure 4-11a), with the adsorption on HAG showing a more 

variable trend.  

 

The reason behind the apparent affinity of Fibronectin to SA (more 

hydrophobic and more negatively charged) compared to HA (more 

hydrophobic and less negatively charged), could be related to a combination 

of differences in the physic-chemical characteristics of the two materials, such 

as wettability, surface charge and indirect effects due to the presence of the 

silicate ions (Rashid et al., 2008).  

 

The wettability (hydrophobicity or hydrophilicity) of a material refers to its 

ability to bind with water molecules. Because water is the most abundant 

component in the human body, its properties, characteristics and especially its 

role in mediating cellular processes have to be taken into consideration while 

evaluating the interactions between proteins and implant surface. On 

hydrophobic surfaces, even if there is an entropic penalty when water 

molecules self-associate together to minimize contact with it (Vogler, 1998), at 

the same time they have the advantage to be more favourable to the process 

of dehydration, which is fundamental for a protein to absorb, as both the 

protein and the surface must partially dehydrate before being able to make 

contact (Norde, 1996), (Haynes and Norde, 1994). Conversely, the 

displacement of water from a hydrophilic surface presents an energy barrier 

that needs to be exceeded.  

 

In the light of these evaluations, protein adsorption on hydrophobic surfaces 

looks to be more thermodynamically favourable than on hydrophilic ones. 

However, there is some evidence that adsorption does occur on hydrophilic 

surfaces when charge interactions or protein conformation changes provide 

the driving force. 
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The role of surface charge in protein adsorption is complex and still not 

completely clear. It is believed that opposite charges will be mutually attracted, 

but this event is not the only one taking place at the implant surface, with 

different circumstances happening concomitantly.  

First of all the presence of water molecules shields the charge of the material 

surface (Hanein et al., 1993); furthermore, this charge is modulated by the pH 

and counterbalanced by small ions present in the close environment (Brash 

and Horbett, 1995). Finally, the charge on a surface is minimized at its 

isoelectric point: a pH below this creates a positive charge and a pH above a 

negative charge, resulting in the formation of an electrical layer, the 

composition of which is dependent on entropy and on opposing charge 

neutralisation (Israelachvili and Wennerström, 1996). For all of these reasons, 

it is hard to predict the precise effect that surface charge has on protein 

adsorption. 

Despite a number of different studies that have looked at the effect of material 

properties on protein adsorption and Fn adsorption on different surfaces (Dos 

Santos et al., 2008)(Guth et al., 2010a) (Zhu et al., 2009), it appears that the 

mechanisms that control this interaction are still not completely clear. For 

example some studies show enhanced adsorption of Fn on polarized or 

positively charged groups (Steele et al., 1995), while some others found more 

Fn adsorbed on negatively charged surfaces (Scotchford et al., 2002b). 

Conversely, in 2002 MacDonald et al. (MacDonald et al., 2002b), analysing 

the adsorption of human plasma Fn on modified titanium dioxide particles, 

suggested that hydrophobicity plays a major role in enhancing Fn adsorption 

on the substrates, supported probably by an increased change in conformation 

compared to hydrophilic surfaces. 

 

In the light of all of these evaluations it is possible to hypothesize that the 

higher adsorption of Fn showed in this study for the silicon substituted implant, 

can be related to the presence of the Si, which changes the surface charge 

and the wettability, to support a more thermodynamically favourable protein 

adsorption.  
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The higher Fn adsorption seen on HA in MEM+10% FCS using low Fn 

concentration solutions, could have been supported by a greater relative 

affinity that Fn could have for this chemistry compared to other serum proteins, 

which was not detected from the higher Fn concentration solution because of 

steric constraints.  

 

One event that it is widely hypothesized to act as a driving force in promoting 

protein adsorption on more hydrophilic surfaces is its possible change of 

conformation. This is because a change in conformation can indeed help to 

increase the entropy of the system (Horbett, 1996b) (Norde and Giacomelli, 

2000). These structural changes in the adsorbed protein help to increase the 

bond mobility and thus potentially increase the contact with the surface. Many 

studies have reported structural changes in different proteins upon adsorption 

to surfaces, and they demonstrated that the adsorbed proteins, upon 

conformational change, retain their ordered secondary structure which gives 

them their specific function (Norde and Giacomelli, 2000) (Norde and 

Giacomelli, 1999) (Giacomelli and Norde, 2001).  

However, even if the secondary structure is retained, its rearrangement and 

changes in its orientation can still modulate the activity of the protein. Some 

studies for example reported that impaired or enhanced activity of proteins as 

Fn, upon adsorption, can be related to conformational changes (Horbett, 1994) 

(Horbett, 1999). Furthermore, some studies showed the reduced cell binding 

functionality of Fn in soluble form, which can suggest that its increase in 

binding activity can only happen after a surface-mediated conformational 

change (Klebe et al., 1981a) (Schwarz and Juliano, 1984). These findings can 

also be compared to some other studies which showed that Fn coatings on 

hydrophilic tissue culture polystyrene enhanced bone-derived cell adhesion 

(Steele et al., 1993) and osteoblastic differentiation (Stephansson et al., 2002) 

compared with identical amounts on hydrophobic polystyrene. The higher cell 

adhesion and differentiation are possibly due to either a conformational 

change of the protein towards a more active state, or to a higher amount of 

protein adsorbed, which is possible because of the more active conformation.  
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These observations can be correlated to the results obtained from the 

MEM+10% FCS solution (using 0.100 mg/ml Fn solutions) in the present 

study: a higher amount of Fn was adsorbed on the more hydrophilic surface 

(HA) and, as showed by the circular dichroism analysis, a change of 

conformation happened after contact with these surfaces. This change of 

conformation could support the higher protein adsorption on HA compared to 

the more hydrophobic SA. The results of the circular dichroism analysis in fact 

show changes in the secondary structure of Fn in the 3 different solutions of 

the protein dissolved in MEM: before and after contact with HA or SA surfaces. 

Furthermore, some other studies demonstrated that Fn adsorbed on 

hydrophobic surfaces shows a reduction in cell-adhesive functions compared 

to when it is adsorbed on hydrophilic ones, where instead it shows its highest 

functionality (Jönsson et al., 1982) (Lewandowska et al., 1989). 

 

Regarding the desorption of Fn from the DD or PG, results showed a higher 

protein desorption from HA than SA in the MEM solution and in MEM+10% 

FCS in Fn2 solution, while no significant difference was observed in the 

MEM+10% FCS in Fn1 solution (Figure 4-15, Figure 4-16).  Though, the 

trends were still similar in all of them: a peak of release within the first ten 

minutes, which suggests that Fn may be re-adsorbed on the surface of the 

materials, and then a dynamic equilibrium maintained.  

Desorption studies from PG results showed a non-significant difference in Fn 

desorption between HA and SA PG (Figure 4-19), giving further evidence to 

the fact that the presence of serum proteins tends to abolish the preferential 

behaviour that Fn showed towards HA or SA when using the MEM solution.  

4.4.4 The effect of sample morphology 

Many studies have investigated the influence of porosity of calcium phosphate 

substrates on cell proliferation, differentiation, protein expression and 

synthesis in vitro (Bignon et al., 2003) and osteoinduction in vivo (Yuan et al., 

1998) (Toth et al., 1993) (Klein et al., 1994).  

Other authors reported how differences in the material topography can 

influence serum proteins adsorption  and indirectly also the biological 

response of the bone graft (Zhu et al., 2009) (El-Ghannam et al., 1999). 
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The results of this study enabled us to compare Fn adsorption and desorption 

between materials with different topography (dense discs and porous 

granules) but with the same chemical composition (HA or SA), media used 

(MEM+10% FCS) and Fn concentration used (0.250 mg/ml or 0.100 mg/ml). 

 

At first sight it appears clear that porous granules show more protein adsorbed 

compared to dense discs, for both HA and SA. In particular a and b shows that 

on the HA the PG adsorbed significantly more Fn than the DD (after 5 and 15 

min for the high Fn concentration solution and after 10, 15 and 30 min for the 

lower Fn concentration solution). On SA the results are similar, as shown from 

Figure 4-12c and d, where the PGs adsorbed significantly more Fn than the 

DD (after 1, 5, 10 and 15 min using the high Fn concentration solution, and 

after all the time points analyzed using the lower Fn concentration solution). 

 

The higher levels of Fn adsorbed on the porous samples, for both HA and SA, 

is probably due to a combination of factors: firstly, the presence of the micro 

porosity increases the surface area of the implant, giving the protein more 

space to assume its favourable conformation and more surface on which to be 

adsorbed, as well as increasing the roughness, the presence of a microporous 

structure through which offers Fn a three-dimensional surface which may also 

facilitate the adsorption of the protein.  

 

Similar observations have already been made by of Zhu et al. where two 

biphasic calcium-phosphate ceramics (one dense and one porous) exhibited 

different abilities to bind serum proteins: the porous material adsorbed a lot 

more serum proteins compared to the dense one, in both in vitro and in vivo 

studies (Zhu et al., 2009). However, as these studies were concerned with the 

effect of pore size, no tests were performed to measure the percentage of 

porosity in the samples, which makes it difficult to understand the effect of 

porosity, and also to directly compare those results with the present study. 

Similarly Rouahi et al. worked directly on HA substrates, studying the influence 

of microporosity on protein adsorption to bone scaffolds: the amount of BSA 

and Fn adsorbed on microporous HA was more than three times (analyzed by 
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SDS-PAGE) and more than 10-times higher (analyzed by temperature-

programmed desorption) than adsorption to non-microporous HA (Rouahi et 

al., 2006). 

 

Regarding the desorption of Fn from samples with different morphologies, the 

granules showed an absolute higher level of protein desorbed compared to the 

discs at both the concentrations, on both HA and SA. In particular, the release 

from the granules was not only higher in value but also more rapid compared 

to discs (Figure 4-20). Furthermore the difference was more pronounced in the 

physiological solution (Fn2, 0.250mg/ml) than the sub-physiological (Fn1, 

0.100mg/ml) Fn concentration.  

To obtain a clear understanding of the influence of morphology in protein 

desorption relative to the amount of the protein adsorbed, is useful to look at 

the results in terms of percentages of relative desorption of Fn from the 

samples. All the samples exhibited a higher release of protein from the PG 

compared to the DD (Figure 4-21). Using high Fn concentrations, SAG 80/30 

showed the highest release but using the lower Fn concentration this sample 

showed the lowest Fn desorption within the three PG samples, whereas HAG 

80/20 exhibited the highest. 

Some in vivo studies demonstrated the higher osteogenetic potential of silicon-

substituted HA with a high strut porosity percentage (Hing et al., 2004) 

(Campion et al., 2011) (Coathup et al., 2012)(Patel et al., 2002).   

The work from Campion et al. showed how important the regulation of the strut 

porosity is, more than total porosity, for a bone graft for osteointegration, 

especially through an early process of neovascularisation.  

Another  work from Hing et al. reported that the distribution of porosity volume 

between the macro and the micro structure of the implant influences the 

process of osteointegration through permeability and angiogenesis processes, 

and that in long term, it is more the strut than the total porosity that influences 

this mechanism (Hing et al., 2005). 

 

Considering Fn adsorption on Silicate substituted HA PGs SAG80/20 and 

SAG80/30 as a function of strut porosity, where strut porosity is the fraction of 

porosity within the scaffold struts, the present results of protein adsorption 
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don’t show a significant difference in Fn adsorption between the two different 

strut porosity percentages (20% and 30%). The desorption however was found 

to be relatively higher from the 30% strut porosity rather than the 20% (Figure 

4-21), suggesting that the 20% retains Fn more tightly than the 30% sample, 

perhaps indicating a conformational variation. 

Moreover these results suggest also that the greater biological activity with 

higher percentages of strut porosity observed in vivo, are unlikely to be due to 

a higher amount of Fn adsorbed on the surface of the biomaterials. One 

possible explanation could be a change of conformation of Fn to a more active 

state once adsorbed on biomaterials with higher strut porosity, supporting the 

higher relevance of protein conformation rather than protein amount for the 

biological response. 

 

4.5 Conclusions  

This study was performed to assess Fn behaviour on bone scaffolds. To test 

how Fn adsorption and desorption processes are influenced by selected 

factors and features of the test environment and presentation of the 

morphology of the material which have been previously hypothesised to affect 

Fn protein adsorption to bone graft substitutes. These features include the 

chemistry of the material, the presence of a competitive environment, different 

concentrations of the protein studied and differences in morphology of the 

material. 

The chemistry of the material was found to affect protein adsorption only 

relatively: the presence of silicate in the hydroxyapatite crystal lattice was 

found to enhance Fn adsorption, either without the presence of competitive 

species or when Fn concentration was higher. However, in the presence of 

competitive species and when Fn concentration was lower, Fn adsorption was 

found to be higher on HA. Also, without serum proteins Fn desorption was 

lower in the silicon substituted HA, which suggests that SA binds proteins 

more tightly than HA. However the presence of serum proteins was found to 

make the Fn desorption very similar between HA and SA after the first 10 

minutes. 
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 The presence of the competitive species is confirmed to influence protein 

adsorption and desorption: Fn always presented a lower adsorption in the 

presence of serum proteins, which confirms the previous findings that Fn may 

have a lower affinity for HA and SA compared to the other serum proteins. 

The concentration of Fn in the local environment site is relevant to influencing 

its behaviour. The differences in its adsorption using the two different 

concentrations suggest that the binding sites are not saturated at low 

concentration and when performing in vitro studies, it is important to use 

physiological concentrations of the protein if the data is to be correlated with 

behaviour in vivo. 

Specimen morphology is a feature of the material that has been recognised to 

influence protein adsorption and desorption. These results confirm that the 

presence of strut or micro porosity enhances Fn adsorption compared to 

dense surfaces; however a higher percentage of strut porosity did not appear 

to significantly enhance any further adsorption. Also, the preference of Fn to 

bind to Silicate substituted hydroxyapatite is preserved in porous granules 

samples. 

Finally, Circular Dichroism experiments confirmed that Fn undergoes a change 

of conformation after contact with both HA and SA biomaterials. 
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5 Investigtion of Osteoblast attachment to 

hydroxyapatite and silicate-substituted 

hydroxyapatite dense discs and porous granules 

with and without pre-conditioning with Fn 

 

In light of the findings of Chapter 4, where Fibronectin (Fn) adsorption and 

desorption to HA and SA was found to be influenced by the presence of a 

competitive environment, the morphology and chemistry of the material, and to 

be dependent on its own concentration, the next series of experiments was 

focused on the study of cell adhesion to HA and SA discs and porous 

scaffolds with and without pre-conditioning with Fn. The rationale behind these 

experiments being to investigate whether or not it was possible to correlate 

cell adhesion with Fn adsorption and to clarify if, and to what extent, the 

chemical properties and morphological features of bone graft substitute 

scaffolds promote osteoblast attachment through their influence on the 

quantity or quality of Fn adsorbed. 

5.1 Experimental methodology 

The experiment was divided in two parts: 

 Analysis of cell adhesion with no pre-treatment and with pre-treatment 

with either serum containing media (SCM) or sub-physiological 

concentration of Fn in SCM (Fn1), at three different time points on 

porous granules (PG) 

 Analysis of cell adhesion with no pre-treatment and with pre-treatment 

with either SCM, sub-physiological concentration of Fn in Phosphate 

Buffer Saline (Fn1 PBS) and SCM (Fn1 SCM), and physiological 

concentration of Fn in PBS (Fn2 PBS) and SCM (Fn2 SCM), at 60 

minutes and on dense discs (DD) and PG 

 

5.1.1 Cell culture media and test specimens 

A human osteosarcoma cell-line (MG63) was used for this experiment. Cells 

were expanded in vitro using MEM containing 10% of Foetal Calf Serum 
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(FCS), 1% Penicillin /Streptomycin (PEN/STREP), 1% L-Glutamine (L-Glu) 

(SCM) (Sigma Aldrich, UK).   

The samples tested possessed 3 different morphological forms as follows 

(See Chapter 3 for full specimen details):  

 12mm diameter (1g) dense discs of phase pure stoichiometric 

hydroxyapatite (HAD) or silicate-substituted hydroxyapatite (with 

0.8wt% Si) (SAD),  

 0.5g porous granules, 1-2mm in size, with 80% total porosity and 20% 

strut porosity of phase pure stoichiometric hydroxyapatite (HAG 80/20) 

or silicate-substituted hydroxyapatite (with 0.8wt% Si) (SAG 80/20) 

 0.5g porous granules, 1-2mm in size, with 80% total porosity and 30% 

strut porosity of phase pure silicate-substituted hydroxyapatite (with 

0.8wt% Si) (SAG 80/30).  

Prior to experiments all samples were sterilized under UV light, discs were 

transferred to a 24-well plate, granules to a 48-well plate.  

5.1.2 Quantification of cell attachment  

In order to quantify the amount of cells on the samples, a cell tracker dye (the 

green CMFDA, Figure 2-10) was used to stain and then analyze the cells via 

fluorescence analysis. Calibrations curves were obtained using known 

numbers of labelled cells. Cells were labelled using a 2µM cell tracker dye 

solution (10 ml for a T75 flask) which, along with PBS (Sigma) and SCM 

(Lonza), was warmed up to 37°C in a water bath. The SCM from a T75 flask of 

confluent MG63 was then removed and replaced with 10ml of warm cell 

tracker solution which was then incubated for 40 minutes to allow the dye to 

pass through the cell membrane., The cell tracker solution was then removed, 

and replaced with 10ml of SCM and incubated for a further 40 mins to enable 

serum proteins to activate the dye through modification of the chloromethyl 

group. After incubation the SCM was removed, the cell layer washed with 

fresh, sterile PBS and the labelled cells trypsinized to enable cell counting. 

The trypsinization process involved a 3 minute incubation at 37°C with a 1.5ml 

solution of Trypsin-EDTA (Sigma-Aldrich) after which cells were checked for 

detachment under a microscope prior to addition of 1.5ml fresh SCM to the 
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flask and transfer of the resultant cells/trypsin/SCM solution to a conical 

centrifuge tube which was then spun down for 5 minutes at 1800 rpm.  

After centrifugation and removal of supernatant, the cell pellet was diluted in 

fresh SCM and appropriate dilutions were made to make up a known, 1:2 

dilution series of labelled MG63 cells in SCM.  

Table 5-1 shows the dilutions and relative cell concentrations used to generate 

cell tracker dye calibration curves. Basically, serial dilutions were made from a 

106 cell/ml solution, then the same volume of 0.1% Triton X-100 was added to 

each concentration, allowed to sit at 37°C for 20 minutes and then sonicated 

for 60 seconds/well. Then 0.3ml of this solution was added, in triplicates, to a 

white 96-well plate for fluorescence reading. A line of best fit was obtained 

between fluorescence intensity and cell number, and the equation used to 

calculate the number of cells in unknown samples from fluorescence intensity 

readings.   

 

Table 5-1: Cell concentrations and cell number in the suspensions made to calibrate the 

cell tracker dye 

No Initial cell concentration 

(cell/ml) 

Cell concentration after 

Triton X-100 addition 

(cell/ml) 

Known Cell 

number 

1 1000000 500000 150000 

2 500000 250000 75000 

3 250000 125000 37500 

4 125000 62500 18750 

5 62500 31250 9375 

6 31250 15600 4680 

7 15600 7800 2340 

8 0 0 0 
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5.1.3 Investigation of cell attachment to pre-conditioned porous 

granules with time 

The aim of this experiment was to monitor cell adhesion over time to 

HAG80/30, SAG80/20 and SAG80/30, under various different conditions, as 

outlined in Table 5-2, in order to select an appropriate time point for the full 

study.  

After sterilization under UV light, samples were randomly selected to either the 

BARE, SCM, or Fn1 treatment groups (Table 5-2). Samples were run in 

triplicate at each of the three different time points (30, 60 and 90 minutes). 

 

Table 5-2: Pre-conditioning treatment, sample type and study time-points 

Pre-conditioning Treatment Sample Cell exposure 

BARE (No Conditioning)  

HAG80/20 

SAG80/20 

SAG80/30 

30, 60 or 90 min 

at 37°C, 95% 

Humidity, 5% 

CO2 

SCM (60 min at 37°C in  MEM 

supplemented with 10% Bovine 

Serum) 

Fn1 (60 min at 37°C in SCM 

supplemented with 0.10mg/ml Fn) 

 

After one hour, conditioning solutions were aspirated and samples washed 

with PBS before addition of the cell suspension (1ml of a 5x105 cell/ml 

suspension); then they were left in an incubator for the specific set incubation 

time. 

At the end of each experiment the cell suspension was removed from the 

samples and discarded, samples were washed twice (to remove non adherent 

cells which may have been trapped in open porosity) with fresh sterile PBS. A 

solution of SCM/Triton X-100 in a 70/30 ratio was added to permeabilize cells 

for 20 minutes at room temperature.  

The solution from each well was then transferred into an eppendorf tube, 

vortexed and 0.3ml of it transferred in triplicate into a white 96-well plate for 

fluorescence analysis using the FLOStar OPTIMA fluorometer (Figure 2-3). 
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5.1.4  Investigation of cell attachment following pre-conditioning with Fn 

supplemented in PBS or SCM  

Based on the results of the time course study, a 60 minutes incubation period 

was selected for analysis of cell attachment from suspension. DD and PG 

were subjected to a range of pre-conditioning treatments using either SCM or 

PBS as substrate media supplemented with either 0.10 mg/ml Fn (Fn1) or 

0.25 mg/ml Fn (Fn2) (Table 5-3). The aim being to determine whether the 

simultaneous presence of serum proteins and amino acids found in SCM 

altered Fn adsorption and any subsequent influence on cell attachment. 

Additionally HA and SA dense discs were analysed: HAD and SAD. The 

experimental plan was as shown in Table 5-3. 

 

Table 5-3: Pre-conditioning treatment and sample details. 

Pre-Conditioning Treatment Sample Cell 

exposure 

BARE (No Conditioning)  

 

 

HAD 

SAD 

HAG80/20 

SAG80/20 

SAG80/30 

60 min at 

37°C 

95% 

Humidity, 5% 

CO2 

SCM (60 min at 37°C in MEM 

supplemented with 10% Bovine Serum) 

Fn1 PBS (60 min at 37°C in PBS 

supplemented with 0.10mg/ml Fn) 

Fn2 PBS (60 min at 37°C in PBS 

supplemented with 0.25mg/ml Fn) 

Fn1 SCM (60 min at 37°C in SCM 

supplemented with 0.10mg/ml Fn) 

Fn2 SCM (60 min at 37°C in SCM 

supplemented with 0.25mg/ml Fn) 

 

After conditioning, samples were incubated with 1ml of a 5x105 cell/ml cell 

suspension and then analysed following the same protocol described in 

section 5.1.3. 
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5.1.5 Statistical Analisys 

The sample size for each DD and PG material was n=3. Variations in 

responses of cell attachment between chemistries (HA vs SA), strut porosities 

(20% vs 30%), or pre-treatments (SCM, Fn1 PBS, Fn2 PBS, Fn1 SCM, Fn2 

SCM) were assessed statistically by using a one-way analysis of variance. 

Differences were evaluated by using Bonferroni post testing. All statistical 

tests were run by using KaleidaGraph statistical software (v 4.0, Synergy 

Software, Reading, PA, USA) at a significance level of α=0.05.  

5.2 Results 

5.2.1 Investigation of cell attachment to pre-conditioned porous 

granules with time 

Figure 5-1 shows the number of cells attached to HAG80/20 samples from the 

BARE, SCM and Fn1 treatment groups after incubation for periods of 30, 60 

and 90 minutes. There were significantly less cells attached to SCM 

conditioned samples as compared to BARE samples, irrespective of 

incubation time. At 30 min the conditioning with Fn1 promoted the highest cell 

attachment compared to BARE and SCM, however this effect diminished at 

later time points showing instead BARE samples to have significantly more 

cells attached compared to both SCM and Fn1 at 60 min and 90 min. 

 In all the figures the colour refers to the group with the significantly higher 

value, and the symbols represent: p<0.05 vs * BARE, ^ SCM, $ Fn1, p<0.005 

vs ** BARE, ^^ SCM, $$ Fn1, p<0.0001 vs ^^^ SCM 
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Figure 5-1: number of cells attached to HAG80/20 after 30, 60 and 90 minutes incubation 

from BARE, SCM and Fn1 treatment groups. 

 

HAG80/20 
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Figure 5-2 shows the number of cells attached to SAG80/20 samples from the 

BARE, SCM and Fn1 treatment groups after incubation for periods of 30, 60 

and 90 minutes. As for HAG80/20, also on SAG80/20 there were less cells 

attached to the SCM treatment group irrespective of incubation time, but for 

this sample this difference was only significant after 30 and 60 minutes of 

incubation. There was no significant difference in cell attachment number 

between the BARE and Fn1 treatment groups at any time point. Significantly 

more cells were attached to samples from the Fn1 treatment group as 

compared to the SCM treatment group after incubation for 30 and 60 minutes. 

 

 

Figure 5-2: number of cells attached to SAG80/20 after 30, 60 and 90 minutes incubation 

from BARE, SCM and Fn1 treatment groups. 

Figure 5-3 shows the number of cells attached to SAG80/30 samples from the 

BARE, SCM and Fn1 treatment groups after incubation for periods of 30, 60  

and 90 minutes. In contrast to samples with a low strut porosity (SAG80/20, 

Figure 5-2  

Figure 5-2: number of cells attached to SAG80/20 after 30, 60 and 90 minutes incubation 

from BARE, SCM and Fn1 treatment groups. 

SAG80/20 
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) and low strut porosity and different chemistry (HAG80/20, Figure 5-1) SCM 

didn’t result in a significant lower cell attachment as compared to BARE and 

Fn1 pre-conditioned samples, but was actually significantly higher compared 

to BARE after both 30 and 60 minutes. Moreover, after 60 minutes cell 

attachment on SCM treated samples was significantly higher also compared to 

Fn1. After 90 minutes there was no significant difference in number of 

attached cells between the samples. After 30 minutes cell attachment to Fn1 

treated samples was significantly higher than those attached to BARE 

samples, but by 60 minutes there was no significant difference. 

 

 

Figure 5-3: number of cells attached to SAG80/30 after 30, 60 and 90 minutes incubation 

from BARE, SCM and Fn1 treatment groups 

 

Figure 5-4: number of cells attached to HAG80/20, SAG80/20 and SAG80/30 

after 30, 60 and 90 minutes incubation from BARE 

 shows the number of cells attached to BARE HAG80/20, SAG80/20 and 

SAG80/30 samples after incubation for periods of 30, 60 and 90 minutes. At 

each time point analyzed the HAG80/20 showed a significantly higher number 

SAG80/30 
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of cells attached as compared to SAG80/20 and SAG80/30 at all the time 

points. The only other significant difference was shown by SAG80/20 vs 

SAG80/30 at 30 minutes.  

In all the figures the colour refers to the group with the significantly higher 

value, and the symbols represent: p<0.05 vs * HAG80/20, ^ SAG80/20, $ 

SAG80/30, p<0.005 vs ** HAG80/20, ^^ SAG80/20, $$ SAG80/30. 

 

 

Figure 5-4: number of cells attached to HAG80/20, SAG80/20 and SAG80/30 after 30, 60 

and 90 minutes incubation from BARE 

Figure 5-5 shows the number of cells attached to SCM pre-conditioned 

HAG80/20, SAG80/20 and SAG80/30 samples after incubation for periods of 

30, 60 and 90 minutes. At all the time points SAG80/30 showed to attach 

significantly more cells than HAG80/20 (p<0.05) and SAG80/20 (p<0.005). 

 

BARE 
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Figure 5-5: number of cells attached to HAG80/20, SAG80/20 and SAG80/30 after 30, 60 

and 90 minutes incubation from SCM 

Figure 5-6 shows the number of cells attached to HAG80/20, SAG80/20 and 

SAG80/30 samples from the Fn1 pre-treatment group after incubation for 

periods of 30, 60 and 90 minutes. With this pre-treatment, HAG80/20 

supported a significantly higher number of cells attached at 30 min (as 

compared to both SAG80/20 and SAG80/30) and 90 minutes (as compared to 

SAG80/20), while after 60 minutes was significantly lower than SAG80/20. 

Moreover, SAG80/30 showed to attach significantly more cells than SAG80/20 

after 90 minutes, but also significantly lower than this sample after 60 minutes. 

These results basically show fluctuations in cell attachment after pre-treatment 

of the samples with Fn1 solution.  

 

SCM 
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Figure 5-6: number of cells attached to HAG80/20, SAG80/20 and SAG80/30 after 30, 60 

and 90 minutes incubation from Fn1

Fn1 
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5.2.2 Investigation of cell attachment following pre-conditioning with Fn 

supplemented in PBS or SCM  

In the second part of experiments cell adhesion was analyzed on dense discs 

and porous granules. As can be seen in Figure 5-7, the cell attached on HAD, 

even if higher on BARE, Fn1 and Fn2 in PBS treatments was not significantly 

different between the groups. 

 

 

Figure 5-7: number of cells attached to HAD after 60 minutes using BARE, SCM, Fn1 

and Fn2 in PBS, and Fn1 and Fn2 in SCM pre-treatments. 
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Figure 5-8shows the number of cells attached to SAD after SCM, Fn1 or Fn2 

in PBS, Fn1 or Fn2 in SCM pre-treatments, or on BARE samples. The trend 

was similar to the one on HAD (Figure 5-7Error! Reference source not 

found.) however, on SAD the number of cells attached was significantly 

higher (p<0.05) on Fn2 in PBS compared to Fn2 in SCM.   

 

 

Figure 5-8: number of cells attached to SAD after 60 minutes using BARE, SCM, Fn1 

and Fn2 in PBS, and Fn1 and Fn2 in SCM pre-treatments.
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Figure 5-9 shows the number of cells attached on HAG80/20 after SCM, Fn1 

or Fn2 in PBS, Fn1 or Fn2 in SCM pre-treatments, or on BARE samples. The 

results show that the cell number didn’t change substantially between 

conditions, however there was a significant difference (p<0.05) between BARE 

and Fn2 in SCM pre-treatments.  

 

 

Figure 5-9: number of cells attached to HAG80/20 after 60 minutes using BARE, SCM, 

Fn1 and Fn2 in PBS, and Fn1 and Fn2 in SCM pre-treatments.
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Figure 5-10 shows the results of cell attachment on SAG80/20. The Fn1 in 

SCM pre-treatment showed the highest number of cell attached, significantly 

higher compared to BARE, SCM and Fn2 in SCM. Moreover, also Fn2 in PBS 

showed a significantly higher number of cells attached to SAG80/20 compared 

to Fn2 SCM.  

 

 

Figure 5-10: number of cells attached to SAG80/20 after 60 minutes using BARE, SCM, 

Fn1 and Fn2 in PBS, and Fn1 and Fn2 in SCM pre-treatments.
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 Figure 5-11 shows the number of cells attached on SAG80/30 after SCM, Fn1 

or Fn2 in PBS, Fn1 or Fn2 in SCM pre-treatments, or on BARE samples. On 

this sample both the pre-treatments of Fn in SCM showed a lower cell 

attachment compared to the other treatments. In contrast to the SAG80/20 

sample in fact (Figure 5-10), SAG80/30 showed a significantly higher number 

of cells on BARE, Fn1 PBS and Fn2 PBS compared to Fn1 SCM, and a 

significantly lower number of cells on Fn2 SCM compared to all the other 

treatment groups (p<0.005 and p<0.0001 respectively). 

 

 

Figure 5-11: number of cells attached to SAG80/30 after 60 minutes using BARE, SCM, 

Fn1 and Fn2 in PBS, and Fn1 and Fn2 in SCM pre-treatments (*p<0.05, **p<0.005). 
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Moreover, to be able to compare the effect that chemistry has in mediating cell 

attachment in the different conditions studied, the number of cells attached 

was compared between HAG80/20 and SAG80/20 for each pre-treatment. 

Figure 5-12 shows that the presence of Fn, in any solution (PBS or SCM) and 

at any concentration (Fn1 or Fn2), increased the number of cells attached on 

SAG80/20 compared to HAG80/20, while cell attachment to HAG80/20 was 

higher as compared to SAG80/20 only on BARE and on SCM treated 

samples. These differences were statistically significant only on SA after Fn2 

PBS and Fn1 SCM pre-treatment groups. 

 

 

Figure 5-12: number of cells attached to HAG80/20 and SAG80/20 after 60 minutes 

using BARE, SCM, Fn1 and Fn2 in PBS and Fn1 and Fn2 in SCM pre-treatments.
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Figure 5-13 shows the number of cells attached to SAG80/20 and SAG80/30 

with each pre-treatment and compares the 20% strut porosity with the 30% 

strut porosity of SA granules. Interestingly, the 30% strut porosity supported 

significant higher cell attachment to BARE, SCM and Fn1 PBS treated 

samples, while a solution of Fn in SCM (no matter the Fn concentration) 

resulted in a  significant increase in the number of cells on the 20% strut 

porosity sample compared to the 30% one. 

 

 

Figure 5-13: number of cells attached to SAG80/20 and SAG80/30 after 60 minutes using 

BARE, SCM, Fn1 and Fn2 in PBS and Fn1 and Fn2 in SCM pre-treatments (*p<0.05, 

***p<0.0001).
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5.3 Discussion 

The relevance of the role of extracellular matrix/cell adhesion proteins in many 

tissues, including bone, is well established (Seitz et al., 1982)(Albelda and 

Buck, 1990)(Wilson et al., 2005). In particular Fn, thanks to its high 

concentration in serum, can serve as an immediate adhesion molecule to 

attach cells to ceramics. After this first step, however, cells can start 

synthesizing their own attachment machinery that may include Fn and/or other 

adhesion molecules. This mechanism is part of a complex system of events at 

the material-cell interface, which is due to the truly dynamic characteristic of 

the in vivo environment: this means that cells can not only start synthesizing 

their own adhesion molecules (Bagambisa et al., 1994), (Chou et al., 1995) 

but that they can also alter the density and the distribution of adhesion 

molecules receptors on the cell membrane (Singer et al., 1988)(Hormia and 

Könönen, 1994), change the differentiation state of the cell (Clover et al., 

1992), (Siebers et al., 2005), and change the protein composition over time 

due to fibrin clot formation, remodelling, desorption of existing proteins and 

synthesis of new ones.  

For all of these reasons detailed prediction of the events happening at the cell-

material interface in vivo is difficult. Many studies report the importance of 

Fibronectin in mediating the attachment process (Kilpadi et al., 2001), (Seitz et 

al., 1982), (Yamada and Olden, 1978).  However, it is still unclear how Fn is 

able to mediate this process, and also how material properties can affect its 

function, and subsequently influence the cell response. Other groups have 

tried to analyze the role that Fn has in modulating cell adhesion on these 

materials. A study from Schonmeyr (Schönmeyr et al., 2008a) reported 

significantly higher osteoblast adhesion on hydroxyapatite discs if these were 

pre-coated with a solution of Fn in fetal calf serum (FCS) compared to Fn only 

pre-coating or FCS alone. However, the Fn solutions were prepared at a 

concentration of only 0.04 mg/ml, and cell attachment was tested after 48 

hours from incubation. These parameters, especially Fn concentration, are 

believed to be critical in determining Fn behaviour and can be hypothesized 
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that in such a lower concentration compared to the one used in this study, Fn 

was more able to change its conformation to an active state, and therefore 

increase cell adhesion compared to a solution with a higher concentration of 

the protein. 0.04 mg/ml of Fn in FCS could potentially be, therefore, the right 

concentration to use in order to have an increased cell adhesion promoted by 

Fn and at the same time no steric constraint in the solution could act as an 

obstacle to Fn conformational change.  

Another work by Pendegrass (Pendegrass et al., 2012) investigated the 

attachment of dermal fibroblasts on titanium alloy, hydroxyapatite and Fn-

coated hydroxyapatite (HA-Fn). The results showed a significant increase in 

cell attachment on HA-Fn substrate compared with the other materials at all 

time points: 1, 4 and 24 hours. In this study Fn was diluted in PBS, and each 

surface was treated with 0.02mg/ml of Fn. Furthermore, it should be taken into 

account that dermal fibroblasts could respond differently from human 

osteoblasts, and also that the conditioning temperature was not specified, 

which has been shown to be important in regulating protein adsorption (Mafina 

et al., 2013).  

A work from Sawyer (Sawyer et al., 2005) demonstrates that, covering HA 

surfaces with an increasing number of RGD peptides (typical tri-peptide 

present in Fn), did not result in a linear increase in Mesenchymal Stem Cells 

adhesion, even if an increase in Fn was following the increase in RGD 

concentration. This proves that cell attachment is attenuated by mechanisms 

different to lack of Fn at the surface, therefore Fn alone is not able to directly 

influence cell adhesion.  

Another work that points out the non-correlation between Fn concentration and 

cell adhesion is the one by El-Ghannam (El-Ghannam et al., 1999) which 

highlights how HA, even if showed to be able to adsorb more serum proteins 

compared to bioglass, showed a lower capacity to attach osteoblasts 

compared to the other surface after covering it with a calcium phosphate-rich 

layer.  

 

The aim of the present study was to further understand the interactions 

between Fn adsorption, material chemistry and material strut porosity through 

comparison between the response of cell attachment to BARE, SCM, Fn1 and 
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Fn2 in PBS or SCM treatment groups:  in this way it is possible to investigate 

the role that serum proteins and Fn have in modulating cell adhesion. As a first 

step however the effect of time on cell attachment was studied, primarily to 

identify an appropriate incubation period for the full study. 

5.3.1 Investigation of incubation time 

The number of cells attached to the samples was partially influenced by the 

incubation time. More specifically, for samples in the BARE and SCM 

treatment groups the cell attachment was constant during the three time 

points. However, with the presence of Fn1, the cell attachment was found to 

fluctuate with time. In particular, the conditioning with Fn1 pushed the cell 

attachment to peak at the earliest time point on HAG80/20, showing a 

significantly higher cell attachment compared to BARE and SCM, which then 

became significantly lower than BARE and similar to SCM treatments at the 

other two time points (Figure 5-1). On SAG80/20 cell adhesion showed a 

similar trend, where cell attachment to BARE and SCM treatments didn’t 

substantially change with time while Fn1 treatment, after reaching a peak at 30 

and 60 minutes, significantly lowered at 90 minutes ( 

Figure 5-2: number of cells attached to SAG80/20 after 30, 60 and 90 minutes 

incubation from BARE, SCM and Fn1 treatment groups. 

). Interestingly, SAG80/30 didn’t show a similar trend but the number of cells 

attached didn’t significantly change over time for any of the three treatments 

(Figure 5-3), suggesting that a cell attachment to 30% strut porosity is more 

stable.  

 

The finding that with BARE and with SCM pre-treatments there is no relevant 

change in number of cells attached to the samples at different time points 

suggests that this kind of system is able to rapidly reach an equilibrium, where 

cells can easily stay adhered to their substrate with no major changes at least 

until 90 minutes past seeding. Conversely the addition of Fn to SCM appeared 

to make this environment more dynamic, where the specific presence of Fn, 

together with serum proteins, was able to initially significantly increase cell 

attachment to samples with 20% strut porosity a more rapid (30 minutes for 

HAG80/20 and 30 and 60 minutes for SAG80/20). But with time this effect 
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appeared to be diminished or even reversed. This evaluation suggests that the 

pre-conditioning of the samples with Fn creates a more dynamic environment 

than no preconditioning (BARE) or pre-conditioning with SCM (SCM), 

environment which is sensed by the cells who then are able to respond in 

accordance. This suggests that Fn has a major role in influencing the 

adhesion of cells on the surface of BGS, as already showed by other studies 

(Klebe et al., 1981b), but also that, given the dynamic environment, there is a 

temporal element and that the quality (conformation) rather than the quantity 

of the protein could influence this behaviour (hypothesis further supported by 

the results in Chapter 4).  

 

To summarize, these results show differences in the stability of cell attachment 

with time, as a function of pre-conditioning treatment, material chemistry and 

material porosity.  

On BARE, SAG80/20 showed a greater fluctuation over time, with cell 

attachment dropping at later time points as compared to the other samples. 

The strut porosity didn’t seem to influence significantly cell attachment on 

BARE, while greater attachment was supported by the HA chemistry as 

compared to SA (Figure 5-4).  

On SCM treated samples, cell attachment didn’t show any difference over 

time, The HA chemistry showed again a greater cell attachment than SA, and 

the 30% was better than the 20% strut porosity (Figure 5-5).  

On Fn1 pre-conditioning there was a significant fluctuation of cell attachment, 

especially on HA (Figure 5-6). This finding can be correlated with the results of 

the previous chapter, were HA showed a greater Fn desorption as compared 

to SA (Figure 4-19b). In general, HA chemistry showed to be much more 

sensitive to fluctuation than SA. 

5.3.2 The role of serum proteins and Fn on cell attachment 

Having selected an incubation period of 60 minutes a series of experiments 

were performed to further investigate the relative influence of substrate 

chemistry, morphology and preconditioning environment on cell attachment. 

While HAD didn’t show any significant difference in cell adhesion between the 

treatments (Figure 5-7), SAD showed a significantly higher number of cells 
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attached after pre-treatment with Fn2 PBS compared to Fn2 SCM (Figure 

5-8). It is therefore possible to hypothesize that the presence of Si promotes 

sensitivity to pre-conditioning with Fn; however two relevant acknowledgments 

have to be made: the presence of Fn doesn’t improve cell adhesion 

significantly (BARE vs Fn pre-treatments are not significantly different), and 

also that when there are serum proteins involved in the pre-conditionings 

(SCM and Fn1 and Fn2 in SCM) the number of cells attached was significantly 

reduced compared to the Fn2 PBS or BARE (in which there is no presence of 

competitive species) (Figure 5-8). Results of Fn adsorption experiments in 

Chapter 4 showed that Fn adsorption on SAD was inhibited by the presence of 

the serum proteins, (MEM vs MEM+FCS experiments), suggesting therefore 

that it is likely that this effect has led to the different cell attachment behaviour 

between Fn in PBS and Fn in SCM. 

A critical discussion about how the chemistry of SA can affect differently the 

biological response as compared to HA can be found in Chapter 4.4.3. 

 

 Looking at the results on HAG80/20 (Figure 5-9), the only significant 

difference in cell adhesion was seen on BARE samples compared to the Fn2 

SCM pre-treatment suggesting, again, that when Fn pre-coat the substrate in 

the competitive presence of serum the cell adhesion drops and lowers 

compared to a non pre-treated substrate. 

 

 Also for the granules, as seen for the dense discs, the presence of the Si 

increases the sensitivity of the material to pre-treatments. The SAG80/20 in 

fact (Figure 5-10) showed that Fn1 SCM has higher cell attachment not only 

compared to Fn2 SCM but also compared to BARE and SCM, suggesting that 

the presence of Fn is indeed fundamental at the material-cell interface in order 

to support cell attachment, and also that its concentration is also relevant. The 

finding that the pre-conditioning with Fn2 SCM significantly lowers the number 

of cells attached compared to Fn1 SCM, suggests that a higher amount of Fn 

doesn’t relate to an higher amount of cells attached. Moreover, another 

interesting finding is that Fn2 PBS showed a significantly higher number of 

cells attached compared to Fn2 SCM: this result further support the hypothesis 

that Fn, especially at higher concentration (Fn2) is subject to physical 
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constraints and the further presence of competitive species in the solution 

(SCM) makes it harder for the protein to assume the exact conformation in 

order to support cell attachment. 

The same observations can be made for SAG80/30 (Figure 5-11) which, 

similarly to SAG80/20, showed that the pre-treatment with Fn in PBS supports 

greater cell attachment than same pre-treatment with Fn in SCM: however on 

SAG80/20 this difference is found between the two Fn2 concentration 

solutions, while on SAG80/30 it is found between the two Fn1 concentration 

solutions. On SAG80/30, moreover, the cell attachment on BARE granules 

was significantly greater than on Fn1 and Fn2 SCM which, together with the 

evidence that Fn2 SCM showed a significantly lower cell attachment 

compared to all the other groups in the study, suggests a negative effect that 

SCM and a higher concentration of Fn has in the presence of an SA porous 

granules with a higher (30%) percentage of strut porosity. 

 

All these results support the hypothesis that Fn could be affected by a 

conformational change which influence its effect on cell attachment. This 

hypothesis was already mentioned in the discussions of Chapter 4. The results 

of the previous set of experiments on PG in fact, showed a relatively higher 

amount of Fn adsorbed form the lower Fn concentration solution (Fn1) as 

compared to the higher, which could suggest that the presence of higher 

amount of Fn in the solution, or of other serum proteins, makes it harder for Fn 

to assume a specific conformational change needed for its adsorption on the 

surface of the biomaterials, probably for a physical constrain. 

 

To summarize, pre-conditionings had the following general effects on cell 

attachment: 

 On HAD: no statistically significant differences but a definite trend 

where pre-treatment with any SCM inhibited attachment, whereas Fn 

supplemented PBS rescued attachment to same as BARE. 

 On SAD: similarly to HA, a definite trend where pre-treatment with any 

SCM inhibited attachment, but Fn2 supplemented PBS rescued 

attachment to same as Bare and significantly better than SCM Fn2. 
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 On HAG80/20: no statistically significant differences but a definite trend 

where any pre-treatment inhibited cell attachment, this time Fn2 

supplemented PBS and Fn1 supplemented SCM rescued attachment 

slightly. 

 On SAG80/20: very different behaviour – this time only pre-treatment 

with Fn2SCM inhibited attachment, trend to pre-treatment with ‘low total 

protein concentration’ solutions that contained Fn (Fn1 PBS, Fn2PBS 

and Fn1SCM) to support greater attachment.   

 On SAG80/30: pre-treatment with any SCM inhibited attachment, Fn 

supplemented PBS rescued attachment to same as Bare 

 

These effects seem to suggest that in general pre-conditioning with SCM 

inhibits cell attachment and serum proteins compete more strongly with Fn to 

dominate the character of the protein interlayer. 

 

5.3.3 The influence of chemistry on cell adhesion 

The presence of the Si has been shown to be relevant for the biological 

activity of BGS (Gibson et al., 2002a) (Rashid et al., 2008), (Botelho et al., 

2006), (Guth et al., 2006b), (Campion et al., 2011), (Coathup et al., 2012) 

(Coathup et al., 2011)(Chan et al., 2012a)). However, it has not been identified 

yet through which mechanisms the substitution of phosphate ions for silicate 

ions in the crystal structure of hydroxyapatite influences the cell response.  

 

Looking at the results of this set of experiments, it’s possible to identify a role 

that silicate substitution has in its influence on cell attachment to the 

substrates.  A previous study from Guth (Guth et al., 2010c), looking at the 

effect of Si substitution in HA on cells attachment, showed a non significant 

difference in human osteoblast-like cells attachment (HOS-TE85, suspended 

in a SCM) between HA and SA microporous discs. This result is in accordance 

with the present BARE treatment group results, where HA and SA supported 

the same level of cell attachment (Figure 5-4).  

In Guth’s study was also analyzed the effect of the pre-treatment of the discs 

with SCM at different time points. Her results this time showed a significant 



186 

 

difference in cell attachment between HA and SA microporous discs (with SA 

showing higher level of attachment) after one hour of SCM pre-treatment and 

60 minutes of incubation from cell seeding. However, the cell solution this time 

was a serum-free media instead of a SCM, which can indeed influence cell 

attachment and could explain this discrepancy of results. 

Given that the cell attachment on both BARE and on SCM pre-treatment group 

is the same between HA and SA in both studies, but that it changes between 

HA and SA if the cells are seeded in a serum-free media, then it is possible 

that greater cell attachment on SA compared to HA is favored by the pre-

treatment with proteins on the surface of the material (in either the amount, 

conformation or both), but then further opportunity for dynamic modification of 

the protein interlayer through interaction with serum proteins in the media 

abolishes this preference making the final number of cells attached the same 

between HA and SA; whereas when cells are seeded in a serum-free media 

the initial favorable presence of the pre-treatment proteins on the SA is directly 

translated into a greater number of cells attached. Given the greater biological 

activity of SA compared to HA in in vivo studies, these results could suggest 

that the serum proteins act as “intermediary” only at a step before cells arrive 

at the implant site and start to attach, and that these two events don’t happen 

simultaneously.  

Similar results to the BARE pre-treatment group are shown in Figure 5-5 from 

the SCM pre-treatment group (slightly higher cell attachment on HA, even 

though not significant).  

 

As for the effect that Fn has in mediating cell attachment between HA and SA, 

this protein appears to play a relevant role in translating differences in 

chemistry into differences in attached cell number. More specifically, cell 

attachment was significantly higher on SA as compared to HA from the Fn2 

PBS and Fn1 SCM groups (Figure 5-12). As previous results showed that the 

amount of Fn adsorbed on the SAG was significantly higher than the amount 

adsorbed on HA from Fn2 SCM concentration solution but not from Fn1 SCM 

(Figure 4-7), it is then hypothesized that it is not the amount of Fn adsorbed on 

the surface of the material to influence the cell attachment. Moreover, the 

opposite evidence comes from the Fn in PBS pre-conditionings: higher 
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number of cells attached to SA with Fn2 PBS, but no significant difference 

between HA and SA with Fn1 PBS pre-treatment.  The evidence that Fn2 PBS 

showed a stronger effect as compared to Fn1 PBS on cell attachment, and 

that Fn1 and Fn2 in SCM showed exactly the opposite behavior, suggests that 

the role of Fn in directing cell adhesion can be influenced not only by its 

concentration level in the pre-treatment solution but also by the presence of 

competitive serum proteins in this solution.  

 

It has already been shown that Fn has a weaker character in competitive 

conditions (Grinnell and Feld, 1982) and the present study highlights a 

particular aspect of this competition: the hypothesis is that Fn has a “physical 

constraint” which results in its inability to move freely in the environment to 

assume the specific, active conformation required by cells for attachment, 

when in the presence of other proteins or its greater concentrations. This could 

explain why, with the presence of serum proteins in the environment, Fn1 

showed a better response in terms of cell attached than Fn2.  Conversely, in a 

solution of PBS (free from competitive, sterically hindranced environment) Fn2 

PBS was able to give a better cell response than the respective lower 

concentration (Fn1 PBS).  

A study from (Rashid et al., 2008) shows that the presence of Si in the HA 

structure influences the biological response probably through the effect that 

surface charge and surface energy have on the interaction with serum 

proteins. Their study in fact showed that SA was able to absorb more Fn and 

to bind more cells than HA, however the amount of total proteins was 

interestingly similar between the samples, suggesting that it was not the 

quantity of adsorbed proteins that enhanced the greater cell attachment. Once 

again, it is possible to hypothesize that Fn could undergo different 

conformational changes which then would drive differently the cell behavior: a 

number of previous studies have demonstrated that parameters such as 

chemical species available at binding sites, polarity, surface charge, and their 

combined influence, are able to influence the conformation rather than the 

quantity of Fn at the binding sites (García et al., 1999)(Grinnell and Feld, 

1982). Moreover, the findings of Grinnell and Feld demonstrated that, when Fn 

is in contact with two different surfaces, it is possible that it can assume 
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different conformations of which the more active is promoted on the more 

hydrophilic surface: in our study, this is represented by SA. 

5.3.4 The influence of strut porosity on cell adhesion 

The relevant influence that ceramic strut porosity (microporosity) has in 

influencing in vitro (Bignon et al., 2003) (Annaz et al., 2004) and in vivo (Hing 

et al., 2005) (Hing et al., 2004), (Yuan et al., 1999) bone formation is well 

established. Some studies demonstrated that it is the precise shape and 

geometrical structure of the micropores to influence in vivo osteoinductivity 

(Magan and Ripamonti, 1996), (Campion et al., 2011) (Coathup et al., 2011) 

(Chan et al., 2012b) (Coathup et al., 2012) and some others showed that the 

faster in vivo bone apposition rate is linked to the rate of development of the 

new vascular network (Hing et al., 2005) (Campion et al., 2011)(Hing et al., 

2004).  

It is in fact supposed that the presence of microporosity helps events 

fundamental to achieve osteointegration and osteoregeneration to happen: 

these events are for example the penetration of bone tissue, bone marrow and 

blood vessels inside the scaffold (as autografts and allografts already do).   

 

The results of the present study showed that on the 20% strut porosity 

granules cell attachment is higher than the 30% with both Fn1 and Fn2 SCM, 

while the opposite (30% strut porosity showing higher cell attachment than 

20%) was found from BARE, SCM and Fn1 and Fn2 PBS treatment groups, 

even if on the latter the difference was not statistically significant (Figure 5-13).  

Moreover, looking at the results from the time-course study, the sample with 

20% strut porosity showed a fluctuating trend of cell attachment, differently 

from the 30% strut porosity sample which instead showed a more stable trend 

(Figure 5-2, Figure 5-3).  

Furthermore, results of Fn adsorption from the previous chapter didn’t show a 

significant difference of protein adsorbed when using Fn1 concentration 

(Figure 4-10d), and a significantly higher Fn adsorption on the 20% strut 

porosity sample only after 15 minutes of incubation using the Fn2 

concentration solution (Figure 4-11). 
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Taking these results together, the evidence that there is a higher cell 

attachment on the 20% strut porosity sample after 60 minutes only with Fn1 

and Fn2 SCM pre-treatments, and on the same sample a more fluctuating cell 

attachment over time, suggest that serum proteins together with Fn influence 

the cell attachment, and that this event is probably dependent on these 

proteins adsorption/desorption behaviours over time, but only when the 

material presents a relatively low percentage of strut porosity.  

 

The results of these experiments suggest that features of the material which 

showed to be relevant and significantly improve the biological response in vivo 

and in clinic (like the presence of the Si and the increase in strut porosity from 

20 to 30%), are able to make these materials more sensitive to Fn and serum 

proteins modulation of cell attachment 

 

5.4 Conclusions 

To summarize, the results of this chapter show that: 

Firstly, there were differences in the stability of cell attachment with time, as a 

function of pre-conditioning treatment, material chemistry and material 

porosity. On SCM treated samples, cell attachment didn’t show any difference 

over time. However cell attachment on BARE showed a greater fluctuation 

over time, especially on SAG80/20. On Fn1 pre-conditioning there was the 

greatest fluctuation of cell attachment over time, especially on HA. In general, 

HA chemistry showed to be much more sensitive to fluctuation than SA. 

 

The presence of a competitive environment influenced also cell attachment, 

and material properties mediated differently this effect. In general, while on 

HAD, SAD and HAG80/20 there was a trend where pre-treatment with any 

SCM inhibited attachment (even if not statistically significant), the presence of 

the silicon together with a porous morphology (SAG) affected the role of the 

competitive environment: on SAG80/20 the pre-treatment with ‘low total 

protein concentration’ solutions that contained Fn (Fn1 PBS, Fn2PBS and 

Fn1SCM) supported greater attachment, and on SAG80/30 the pre-treatment 
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with Fn supplemented PBS rescued the lower cell attachment due to the SCM 

to same as Bare. 

 

The chemistry appeared to play a relative role in mediating cell attachment: a 

higher number of cells on SA compared to HA was found only after pre-

treatment with either Fn2 PBS or Fn1 SCM, suggesting that Fn and serum 

proteins mediate the effect of chemistry, where generally the presence of the 

silicon seems to positively influence cell behaviour. 

 

Finally, the strut porosity looked to play a relevant role in mediating cell 

attachment, and this effect was differently influenced by Fn and serum 

proteins: in general, a lower strut porosity looked to be more influenced by the 

adsorption/desorption of Fn and serum proteins over time, while attachment 

on a higher strut porosity was positively supported by pre-conditioning of Fn 

without competitive species, only serum proteins and BARE. 
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6 HMSC Proliferation and Differentiation on SA, HA 

and HA-TCP Dense Discs and the role of chemical 

and mechanical treatments in modulating surface 

roughness and consequent cell response  

6.1 Experimental background 

In this chapter HMSCs cell proliferation and differentiation were analyzed on 

three chemically different ceramics discs: a biphasic calcium phosphate 

composed of hydroxyapatite/tri-calcium phosphate in a 60/40 ratio (HA/TCP), 

phase pure stoichiometric hydroxyapatite (HA), and silicate-substituted 

hydroxyapatite (SA). Furthermore, to test HMSCs’ sensitivity to surface 

roughness, each disc was subject to one of three different treatments (one 

chemical and two mechanical) in order to increase or decrease significantly 

the surfaces roughness on each disc.  The chemical treatment consisted of 

acid-etching the samples with a solution of phosphoric acid for a specific 

length of time, whereas the two mechanical treatments comprised hand 

grinding of the disc surfaces with two different grades of silicon carbide paper.  

Mechanical interlock has long been recognized as important to implant 

performance in both orthopedics and dentistry, particularly in the use of inert 

materials such as Titanium, PEEK and PMMA,  and many studies have looked 

at the effect that either acid etching of metal implants surfaces (both in vitro 

(Martin et al., 1995) (Olivares-Navarrete et al., 2012) and in vivo (Buser et al., 

2004), (Klokkevold et al., 1997)) or mechanically roughening a surface, has in 

directing bone regeneration (Boyan et al., 1996) (Lampin et al., 1997) 

(Anselme, 2000). However, there have been few systematic studies on 

hydroxyapatite and its derivatives (Rouahi et al., 2006) (Dos Santos et al., 

2008). The hypothesis behind the set of experiments described in this chapter 

was to test whether roughening a material surface would aid cell attachment 

and development independently of the underlying disc chemistry, and whether 

or not any textural variation in roughness as a result of the different 

mechanisms selected for the two treatment processes (acid etching or 

mechanical grinding) played a role in cell response. 
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6.2 Experimental methodology 

6.2.1 Materials  

Phase pure, stoichiometric hydroxyapatite (HA) and silicate-substituted 

hydroxyapatite (SA) dense discs were prepared as previously described 

(Chapter 3, Section 3.2.1.1).  

HA/TCP discs were purchased from Strauman (MA, United States) and were 

nominally composed of 60% HA and 40% Tricalcium-phosphate (TCP).  

6.2.1.1 Disc treatments 

All three discs were subject to 3 different treatments: acid etching, hand 

grinding with an 80Grit Silicon Carbide (SiC) paper and hand grinding with a 

1000Grit SiC paper (Figure 6-1) (Struers UK). The treatments were carried out 

as described below: 

 

Acid Etching (AE) 

Initially the as pressed and sintered HA and SA discs and the as received 

HA/TCP discs were treated with a 2.5 v/v % of phosphoric acid for 30 

seconds. However, results showed that this procedure was not aggressive 

enough and a higher percentage of phosphoric acid was subsequently used. 

Discs were therefore treated with a 37 wt/v % aqueous solution of phosphoric 

acid for 30 seconds, and after etching the discs were flooded with 100ml of 

cold double distilled (dd) H2O to stop the reaction, washed twice with 10 ml 

ddH2O and finally air dried. 

 

80 Grit Hand Grinding (80Grit)  

Discs were hand ground for one minute per surface using 80 grit silicon 

carbide paper, Figure 6-1, (ROTAR 40400059, Struers, UK) with ddH2O as a 

lubricant, washed with ddH2O and air dried. 

 

1000 Grit Hand Grinding (1000Grit) 

Discs were hand ground for one minute per surface using 1000 grit silicon 

carbide paper, Figure 6-1, (ROTAR 40400021, Struers, UK) with ddH2O as a 

lubricant, washed with ddH2O and air dried. 
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Figure 6-1: Silicon carbide papers for wet grinding: 1000 and 80 grit 

 

6.2.2 Materials characterization 

6.2.2.1 Wettability measurements 

Hydrophilic/hydrophobic properties of the materials were tested by contact 

angle measurements using the Ramé-Hart goniometer (Figure 6-2) (model 

250-F1, NJ, USA). Images were analyzed with DROPimage CA software 

package (Ramé-Hart Instrument Co., Netcong, NJ).  

 

 

 Figure 6-2: Contact Angle measurement instrument in the Marcus Nanotechnology 

Centre at GeorgiaTech (Ramé-Hart, USA) 
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A single 4 micron drop of distilled water was added to the samples surface and 

contact angle was measured every 5 seconds for 20 seconds. Samples were 

run in triplicates, and five drops were tested on each sample. 

 

6.2.2.2 Surface Roughness Analysis 

Roughness of the discs was assessed using the material confocal microscope 

Olympus LEXT 3DV (Olympus America Inc., PA). The microscope uses a fixed 

wavelength of 405nm and has different magnification ranges. The 

magnifications used to characterize the samples were 20X and 100X, making 

possible to analyze an area of 0.413 cm2 and 0.017 cm2 respectively. 

Roughness results were evaluated using the LEXT OLS4000 software 

(Olympus).  

To assess surfaces characteristics, it was decided to test not only surface 

roughness (Sa, average roughness), but also 3 other different parameters:  

 Ra (average roughness profile),  

 Ssk (Skewness of the 3D surface) and  

 Sku (Kurtosis of the 3D surface).  

Ssk is the “Skewness of the 3D surface”: an Ssk value <0 indicates a 

predominance of valleys; an Ssk value >0 indicates a predominance of peaks 

on the surface of the specimen. 

Sku is called “Kurtosis of the 3D surface” and is a parameter which measures 

how regular/irregular the distribution of peaks and valleys on the surface is. A 

Sku value <3 indicates normally distributed heights; an Sku value >3 indicates 

irregularly distributed peaks/valleys on the surface.  

Ten different points were analyzed on each sample and analysis were run in 

triplicates (n=3). 
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6.2.2.3 Chemical Analysis 

X-ray Photoelectron Spectroscopy (XPS) was used to determine semi-

quantitative chemical characterization of the samples. XPS is an analytical 

technique that directs a monochromatic beam of X-rays onto a sample and 

detects the characteristic electrons that are ejected: energies and number of 

these electrons can be used to determine the elements present on the 

surface. XPS measurements were performed on a Thermo K-Alpha (Thermo 

Fisher Scientific Inc., MA).   

Three points were analyzed for their chemical characterization on each 

sample and analysis were run in triplicates (n=3).  

XPS results were evaluated using the Thermo Advantage 4.43 software 

package provided by Thermo Fisher Scientific, Inc. 

6.2.2.4 Surface Morphology Analysis 

Discs surface morphology was qualitatively assessed by scanning electron 

microscopy (SEM) using an Ultra 60 field emission (FE) microscope (Carl 

Zeiss SMT Ltd., Cambridge, UK). The Hummer Sputtering System was used 

to prepare non-conductive samples by coating those with Au/Pd. Once coated, 

the samples were then mounted on aluminium stubs and analyzed for their 

surface characteristics from the micro to the nano scale using the Zeiss 

Ultra60 FE-SEM at magnifications ranging from 500X to 30,000X, with an 

accelerating voltage of 5KeV and a working distance between 4.6 and 11.1 

mm. 

 

6.2.1 Human Mesenchymal Stem Cell Incubation and Response 

6.2.1.1 Culture of HMSCs and discs seeding 

Bone marrow HMSCs (Lonza, Walkersville, MD) were used for this 

experiment. Basal MSC growth media (MSCGM, Lonza) was used to seed 

and expand them in sterile plastic flasks to passage 3 or 4. The media is 

designed to support mesenchymal stem cell growth without inducing 
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differentiation and is composed of basal stem cell media supplemented with 

10% mesenchymal growth serum, 5% L-Glutamine and 1% Gentamicin 

sulphate/Amphotericin-B. At passage 3 or 4 cells were then seeded on the 

different samples. 

Cells were cultured in a 5% CO2 humidified atmosphere at 37˚C. HMSCs at 

passage number 3 or 4 were trypsinized, counted and then plated at 5000 

cells/cm2 on TCPS, HA-TCP, HA and SA surfaces in a 24 well plate (n=6). 

Basal growth media was changed after 24 hours and then every 48 hours until 

day 7. At day 7 media was changed and then collected after 24hours to be 

assayed for production of Osteoprotegerin (OPG), Vascular Endothelial 

Growth Factor (VEGF) and Osteocalcin (OCN). Adherent cells on the disc 

surfaces were twice rinsed with 1ml PBS prior to being lysed in 0.05% of 

Triton X-100 and sonicated at amplitude 60 for 60 seconds. Lysates were then 

assayed for total DNA, total protein and ALP activity.  

6.2.1.2 Protocol for the determination of DNA content 

DNA content from the samples was calculated using the Quant-iT PicoGreen 

dsDNA Assay Kit (Life Technologies, UK). Its reagent, the PicoGreen dye, is 

able to bind with high sensitivity to double-stranded DNA in solution and, due 

to its highly fluorescence emission when compared to the free dye in solution, 

enables quantification of DNA content in samples discriminating from RNA of 

single-strand DNA contaminations (see Chapter 2.1.1 for the theory behind 

Fluorescence Spectroscopy). For the analysis, standards were prepared using 

serial dilutions of the 2mg/ml DNA stock solution in TE buffer giving an 8-point 

fold calibration from 1 to 0.0078125mg/ml of DNA (Table 6-1). 100µl of each 

sample (from the lysed solution, n=6) and standards (n=3) were added into a 

96-well black fluorescence plate and 100µl of PicoGreen reagent in Tris-EDTA 

buffer were added to each well. Plates were protected from light and incubated 

for 2 minutes at room temperature. Fluorescence intensity was then analyzed 

(excitation at 485nm, emission at 538nm) using the FLUOstar OPTIMA 

fluorometer (Figure 2-3) and unknown sample DNA content determined using 

the calibration curve. (For calibration curves see Appendix, Figure 9-8) 
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Table 6-1: DNA concentration in standard calibration samples 

No STD Concentration (µg/ml) 

1 1 

2 0.5 

3 0.25 

4 0.125 

5 0.0625 

6 0.03125 

7 0.015625 

8 0.0078125 

 

6.2.1.3 Protocol for the determination of Total Protein 

Total protein content was assessed using the colorimetric Marco BCA Protein 

Assay Kit (Thermo Scientific, UK). Total protein amount in each well was then 

used to normalize Alkaline Phosphatase specific activity. The presence of 

proteins in solution causes the reduction of Cu2+ to Cu+, which then is able to 

chelate with two molecules of bicinchoninic acid (BCA) in the working solution 

giving a water soluble, purple solution which exhibits a strong absorbance at 

562nm. The absorbance is linear to the protein concentration over a broad 

working range (20-2000µg/ml), enabling calculation of protein concentration by 

absorbance intensity analysis. The kit contains two reagents (A and B) and 

Bovine Serum Albumin (BSA), which was used as a control to prepare 

standard protein solutions. Firstly, Reagent A (containing sodium carbonate, 

sodium bicarbonate, bicinchoninic acid and sodium tartrate) was mixed with 

Reagent B (containing 4% cupric sulphate) in a 50/1 ratio to make up the 

necessary volume of working solution (0.2ml needed for each sample). Then, 

standard solutions were prepared adding sample diluent (0.05% of Triton X-

100) to Albumin Standard solution (2mg/ml) as shown in Table 6-2. 
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Table 6-2: preparation of BSA standard solutions for the calibration of the total protein 

assay 

No Sample Diluent 

(µl) 

Albumin Standard (µl) Concentration (µg/ml) 

1 200 0 0 

2 195 5 50 

3 190 10 100 

4 180 20 200 

5 160 40 400 

6 140 60 600 

7 120 80 800 

8 100 100 1000 

9 80 120 1200 

 

Then, 25µl of standard (n=3) and samples (n=6) were added to a clear 96-well 

plate after vortexing. 200µl of the already-prepared working solution were then 

added to each well and the plate left to incubate at 37°C for 30 minutes. After 

incubation, the plate was allowed to cool down to room temperature and any 

bubbles in the wells of the plate were popped using a needle. Samples and 

standards were then analysed for their absorbance at 570nm using the 

FLUOstar OPTIMA fluorometer (Figure 2-3). 

6.2.1.4 Protocol for the determination of ALP specific activity 

ALP specific activity was assessed using a colorimetric assay (Abcam, UK) 

which enables the quantification of the activity of the enzyme by indirect 

measurement of an ALP product. A small volume of each sample (50µl) was 

added to each well of a clear 96-well plate, and the final volume was brought 

to 80µl with assay buffer. After adding 50µl of para-nitrophenyl phosphate 
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(pNPP) to each well, the reaction was incubated for 60 minutes at 25 degrees, 

protected from light. During this time, the ALP present in the samples 

dephosphorylates the pNPP which then turns yellow with an absorbance 

wavelength of 405 nm. To prepare the standard calibration curves, a 6-point 

serial dilution of 1mM pNPP standard solution was prepared, transferred in 

triplicates to the plate and then was added a standard volume of the standard 

ALP enzyme provided by the manufacturer (Table 6-3). The solutions were 

incubated for 60 minutes at 25 °C, protected from light and all the reactions 

were then stopped by adding 20µl of stop solution.   At this point the optical 

density (OD) was measured at 405 nm using a microplate reader (FLUOstar 

OPTIMA fluorometer Figure 2-3). 

Table 6-3: preparation of ALP standard solutions for the calibration of ALP specific 

activity assay 

No 1 2 3 4 5 6 

pNPP (µl) 0 4 8 12 16 20 

Assay buffer 

(µl) 

20 16 12 8 4 0 

ALP solution 

(µl) 

10 10 10 10 10 10 

Concentration 

(µmol/ml) 

0 4 8 12 16 20 

 

6.2.1.5 Protocol for the determination of OPG and VEGF in media 

Human OPG and Human VEGF were quantified, at each time point from the 

media collected from each sample, using an enzyme-linked immunosorbent 

assay (ELISA) kit (R&D Systems, UK) (see Chapter 2.1.5 for the theory behind 

ELISA). The whole assay consists of two steps: a plate preparation step and 

an assay procedure step. The plate preparation was done the night before the 

assay procedure, and consists of coating the 96-well microplate with 100µl per 

well of the diluted capture antibody provided by the manufacturer. Leaving the 
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plate overnight at room temperature allows the capture antibody to be linked to 

the bottom of each well of the plate. The day after, three washes with the wash 

buffer provided (400µl) are required in order to eliminate any residual non-

linked capture antibody, and a reagent diluent (300µl) 1-hour step is required 

to block any free residual binding site in each well. Then, after repeating the 

wash step again to eliminate any residual non-linked reagent diluent, the plate 

was ready to pass to the second step of assay procedure. The assay 

procedure step consists of adding the samples to the plate and, using a 

detection antibody and a conjugate detector, to quantify the amount of OPG or 

VEGF using calibration curves prepared with standards provided by the 

manufacturer. The standard curve was made using a 7-point calibration from 

62.5 to 4000 pg/ml for OPG (see Appendix, Figure 9-3) and from 31.25 to 

2000 pg/ml for VEGF (see Appendix, Figure 9-4).  

Firstly, 100µl of samples (or standards for the calibration) diluted in reagent 

diluent (1:1 ratio) are added to each well and left at room temperature for two 

hours: this allows the OPG (or VEGF) present in the samples and in the 

standards to be recognised and captured by the capture antibody. After 

another wash step, 100µl of reagent containing the biotinylated detection 

antibody was added to each well and incubated for two hours at room 

temperature to allow it to recognise the protein of interest and bind to it. Then, 

100µl of a conjugate of streptavidin and horseradish-peroxidase (HRP) was 

added to each well after the usual wash step. Streptavidin is a protein with 

extraordinary affinity for biotin: being one of the strongest non-covalent 

interactions known in nature. This property is used in many biotechnology 

assays to detect or purify biomolecules. In the ELISA assays the streptavidin 

binds with high affinity to the biotin linked to the detection antibody and, after 

the addition of the substrate solution (made of hydrogen peroxide that acts as 

oxidizing agent on HRP), it was possible to quantify the characteristic colour 

change which is detectable by spectrophotometric methods. Optical density 

(OD) in each well is immediately measured using a microplate reader (Figure 

2-3: FLUOstar OPTIMA, example of microplate reader used for fluorescence 

and optical density analysis.Figure 2-3) set at 405 nm. (For calibration curves 

see Appendix, Figure 9-3 and Figure 9-4). 
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6.2.1.6 Protocol for the determination of OCN in media 

See Chapter 7, Section 7.1.2 

6.2.2 Statistical Analisys 

For material characterization analysis (wettability, surface roughness, and 

chemical analysis) the sample size was n=3, and mean and standard error 

were calculated for each sample. For cellular response analysis, the sample 

size was n=6. Variations in responses of cell behavior were assessed 

statistically by using a one-way analysis of variance. Differences were 

evaluated by using Bonferroni post testing. All statistical tests were run by 

using KaleidaGraph statistical software (v 4.0, Synergy Software, Reading, 

PA, USA) at a significance level of α=0.05. 

 

6.1 Results 

6.1.1 Wettability measurements 

Wettability of the discs, as measured by analysis of the water drop contact 

angle, found HA/TCP discs to be the most hydrophobic, and HA discs to be 

the most hydrophilic. The acid etching treatment made all disc surfaces more 

hydrophilic than in the as received/as sintered condition, as also did the 

treatment with 80Grit SiC paper. The treatment with 1000Grit SiC paper, 

conversely, increased hydrophobicity on the HA and SA discs but not on 

HA/TCP discs. Overall, HA/TCP as received and 1000Grit SiC treated discs 

were the most hydrophobic, while HA and SA acid etched and 80Grit SiC 

treated discs were the most hydrophilic (Table 6-4). The appearance of typical 

water drops on as sintered HA and SA discs and as received HA/TCP discs 

are shown in Figure 6-3 a-c, respectively. 

Table 6-4: contact angle values for HA, SA and HA-TCP before and after each treatment 

 
HA SA HA-TCP 

Original 45.11±0.75 58.23±0.09 82.72±0.52 
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Acid Etched 29.06±0.75 34.24±2.97 41.12±4.28 

80 Grit 39.53±0.83 11.9±1.84 52.97±1.25 

1000 Grit 69.95±2.23 64.87±2.48 74.05±3.28 

 

 

Figure 6-3: Appearance of water drops during contact angle measurement on as 

sintered HA and SA discs and HA/TCP as received discs. 

                                           

6.1.2 Surface roughness 

Acid etching with a 2.5% solution of phosphoric acid did not significantly 

increase the surface roughness of all the discs (Figure 6-4). Moreover, it was 

found to significantly reduced surface roughness of SA discs as assessed at 

20X magnification and only significantly increased surface roughness of 

HA/TCP discs as assessed at both 20X and 100X. However, as can be seen 

in Figure 6-5A, acid etching with a 37% solution of phosphoric acid resulted in 

significant increases in surface roughness for all disc chemistry types as 

assessed at a magnification of 20x, although at a magnification of 100x 

(Figure 6-5B) only the surface roughness of HA/TCP was significantly 

increased. 

In contrast, hand grinding with 80Grit SiC paper significantly increased the 

surface roughness for all disc chemistry types, as assessed at magnifications 

of both 20x and 100x (Figure 6-5), while the treatment with 1000Grit 

decreased the surface roughness for all disc chemistry types as assessed at 

both magnifications, but only significantly so for HA and SA discs.  

HA SA HA/TCP 
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Of particular interest was the disparity seen between assessment at the low 

magnification of 20X (area of 640X640µm, Figure 6-5A), and the higher 

magnification (130X130µm area, Figure 6-5B): this may be a result of the fact 

that at the higher magnification the size of the roughness ‘features’ may be 

approaching the size of the assessment area.  

 

Figure 6-4: Surface roughness (Sa) values before and after acid etching with 2.5% of 

phosphoric acid at 20X and 100X magnification 

 

 

Figure 6-5: Sa values for all the discs before and after the three treatments at a 

magnification of 20X (A) and 100X (B) (*p<0.05 vs its original, #p<0.05 vs 80Grit). 
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Figure 6-6A, B shows the results of the average roughness profile (Ra) for all 

the discs. Ra increased as Sa increased at 20X (Figure 6-6A), however at 

100X it decreased on all the discs apart from HA/TCP AE, which showed a 

statistically significant increase at 100X (Figure 6-6B). 

 

Figure 6-6: Ra values for all the discs before and after the three treatments at a 

magnification of 20X (A) and 100X (B) (*p<0.05 vs its original, $p<0.05 vs 80Grit). 

Figure 6-7 shows the Ssk values of the discs. Almost all the discs showed a 

predominance of valleys, apart for HA/TCP 80Grit as assessed at both 20X 

and 100X magnifications and the HA original disc at 100X, which instead 

showed a slightly higher presence of peaks. Furthermore, discs after AE and 

80Grit treatments exhibited a lower presence of valleys compared to the other 

groups (statistically significant different at 20X). 
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Figure 6-7: Ssk values for all the samples before and after the three treatments at a 

magnification of 20X (A) and 100X (B) (*p<0.05 vs its original). 

Figure 6-8 shows the Sku values of the discs. All the discs showed a 

prevalence of unordered peaks and valleys, with the 1000Grit discs at both 

the magnifications presenting the highest amount compared to the rest of 

the discs (statistically significant different at 100X).  

 

Figure 6-8: Sku values for all the discs before and after the three treatments at a 

magnification of 20X (A) and 100X (B) (*p<0.05 vs its original, $p<0.05 vs 80Grit). 

In order to show how these different surfaces look and how the differences 

found in Sa, Ra, Ssk and Sku are translated into the surface’s cues, Figure 
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6-9, Figure 6-10 and Figure 6-11 show 3D representations at the confocal 

microscope of the surfaces for HA, SA, and HA/TCP respectively before and 

after each treatment at a magnification of 100X. From the images it is possible 

to note the similarity in roughness between HA and SA as sintered discs 

(Figure 6-9a and Figure 6-10a) and the respective AE (Figure 6-9b and Figure 

6-10b). The as-received, AE HA/TCP discs surface (Figure 6-11b) showed 

conversely many, relatively small troughs and peaks which were more 

regularly distributed compared to HA and SA AE. Moreover, in all the discs 

there was a distinct difference between the originals, the 80Grit and 1000Grit 

surfaces: the 80Grit showed a very irregular surface, with few, irregular but 

relatively high peaks mixed with valleys. The 1000Grit showed a more smooth 

and regular surface. 

 

Figure 6-9: 3D images of the surfaces of HA original (a), AE (b), 80Grit (c) and 1000Grit 

(d) respectively at 100X magnification. 

 

a b 

c d 
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Figure 6-10: 3D images of the surfaces of SA original (a), AE (b), 80Grit (c) and 1000Grit 

(d) respectively at 100X magnification. 

 

Figure 6-11: 3D images of the surfaces of HA-TCP original (a), AE (b), 80Grit (c), and 

1000Grit (d) at 100X magnification. 

a b 

c d 

a b 

c d 
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6.1.3 Surface Morphology 

Scanning electron microscopy was used to characterize qualitatively the discs 

surfaces microstructure, before and after both the chemical and mechanical 

treatments.  

Micrographs of HA taken at a magnification of 1,000X (Figure 6-12) and 

10,000X (Figure 6-13) show a more homogeneous and even surface structure 

after acid etching (Figure 6-12b and Figure 6-13b) and after treatment with the 

1000Grit SiC paper (Figure 6-12d and Figure 6-13d) treatments; the surface 

structure instead appears more un-even and disordered after the treatment 

with the 80Grit SiC paper (Figure 6-12c and Figure 6-13c), on which it is also 

possible to identify grooves and scratches due to the mechanical forces.  

SA discs showed similar characteristics to the HA discs (Figure 6-14, Figure 

6-15), moreover, at the higher magnification it is possible to identify grain 

boundaries on both the as sintered HA and SA discs (Figure 6-13a, Figure 

6-15a).  The grain boundaries were even more pronounced after the AE 

treatment (Figure 6-13b and Figure 6-15b).  

HA/TCP discs also demonstrated similar trends after the different treatments, 

with more clearly defined grain boundaries after AE (Figure 6-16b and Figure 

6-17b); un-even grooves and structures were present after treatment with 

80Grit SiC paper (Figure 6-16c and Figure 6-17c) and a relatively ordered and 

even surface after treatment with 1000Grit SiC paper (Figure 6-16d and Figure 

6-17d). Differently from HA and SA discs, the grain boundaries couldn’t be 

clearly seen on the original as-received discs of HA/TCP (Figure 6-16a and 

Figure 6-17a).  
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Figure 6-12: SEM images of the HA original as sintered (a), AE (b), 80Grit (c) and 

1000Grit (d) disc surfaces at 1K 

magnification

Figure 6-13: SEM images of the HA original as sintered (a), AE (b), 80Grit (c) and 

1000Grit (d) disc surfaces at 10K magnification 

a b 

c d 

c 
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Figure 6-14: SEM images of the SA original as sintered (a), AE (b), 80Grit (c) and 

1000Grit (d) disc surfaces at 1K 

magnification

Figure 6-15: SEM images of the SA original as sintered (a), AE (b), 80Grit (c) and 

1000Grit (d) disc surfaces at 10K 

magnification

b 

d 

a b 

c d 

a b 

c d 

a 

a 
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Figure 6-16: SEM images of the HA-TCP original as received (a), AE (b), 80Grit (c) and 

1000Grit (d) disc surfaces at 1K 

magnification

Figure 6-17: SEM images of the HA-TCP original as received (a), AE (b), 80Grit (c) and 

1000Grit (d) disc surfaces at 10K magnification 

 

b 

c d 

a 

b 

c d 

a b 

a 

c d 

a 
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6.1.4 X-Ray Photoelectron Spectroscopy 

Semi-quantitative chemical analysis of disc surfaces before and after 

treatments, as evaluated by XPS, was expressed in terms of atomic 

percentage.  

On HA and SA discs after all treatments (apart from hand grinding of HA discs 

with 80Grit SiC paper) there were marginally lower levels of oxygen, carbon, 

and phosphorus as compared to the as-sintered surfaces, whereas higher 

levels of carbon were observed on all HA and SA disc surfaces after all 

treatments (Table 6-5, Table 6-6). Analysis of silicon levels at the surfaces of 

SA discs demonstrated higher levels of silicon at SA disc surfaces after all 

treatments as compared to the as-sintered discs.  

A different behaviour was observed on HA/TCP discs where an increase in the 

level of oxygen, carbon and phosphorus was detected while the level of 

carbon at the disc surfaces appeared to decreased after all treatments as 

compared to the as-received HA/TCP discs (Table 6-7).  

Table 6-5: atomic percentage of oxygen, carbon, phosphorus and calcium on the 

surface of HA discs before and after treatments 

 O1s Ca2p P2p C1s 

HA 48.3±1.47 21.47±0.63 14.47±0.45 11.27±0.06 

HA-AE 42.68±2.71 16.82±1.69 13.35±0.70 26.35±4.55 

HA-80Grit 47.05±0.33 20.05±0.50 14.39±0.35 17.93±0.95 

HA-1000Grit 40.17±2.55 15.59±1.48 11.87±0.88 30.11±4.37 

 

Table 6-6: atomic percentage of oxygen, carbon, phosphorus, calcium and silicon on 

the surface of SA discs before and after treatments 

 O1s Ca2p P2p C1s Si2p 

SA 48.2±1.50 20.77±0.07 14.52±0.42 14.52±2.69 0.095±0.06 

SA-AE 41.29±2.36 15.27±0.89 12.56±0.77 28.51±3.82 0.47±0.33 

SA-80Grit 33.42±8.7 12.27±3.61 7.97±1.71 43.78±13.7 0.90±0.64 
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SA-

1000Grit 

33.65±0.62 12.67±0.47 9.02±0.17 42.47±0.27 1.55±0.76 

 

Table 6-7: atomic percentage of oxygen, carbon, phosphorus and calcium on the 

surface of HA-TCP discs before and after treatments 

 O1s Ca2p P2p C1s 

HA-TCP 29.51±1.22 8.7±0.59 6.97±0.52 52.17±1.33 

HA-TCP-AE 37.64±2.52 14.02±1.56 10.45±1.25 36.77±4.83 

HA-TCP-

80Grit 

45.75±0.55 18.15±1.02 13.17±3.06 22.55±2.86 

HA-TCP-

1000Grit 

39.97±0.20 15.73±0.23 14.70±1.40 28.50±2.31 

 

 

6.1.5 Human Mesenchymal Stem Cell Incubation and Response 

Human Mesenchymal stem cells were incubated on all as received HA/TCP, 

as sintered HA and SA and treated (AE, 80Grit and 1000Grit) discs surfaces 

and assayed for various markers for cell proliferation and differentiation over a 

period of 7 days.  

In order to assess the effects of surface treatment and roughness, statistics 

were performed between the four different surfaces for each single chemistry. 

In order to compare the effects of disc chemistry statistics were performed 

between the 1000Grit treated HA/TCP, HA and SA discs as, from surface 

morphological analysis by SEM (Figure 6-13d, Figure 6-15d and Figure 

6-17d), this treatment resulted in the most similar surface characteristics within 

the chemistries, as compared to the other two surface treatments and the as 

received/ as sintered discs. 
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6.1.5.1 Total DNA  

Total DNA was generally found to increase on HA and HA/TCP discs with a 

greater surface roughness (Figure 6-18), indicating that higher surface 

roughness has a positive effect on cell proliferation for these disc chemistries.  

This effect, however, was abolished on SA discs where no significant 

difference in total DNA was observed between the different surface 

treatments. 

Moreover, there was no significant difference observed between the HA, SA 

and TCP/HA discs treated with 1000grit SiC paper, suggesting no significant 

effect of chemistry on cell proliferation on these relatively smooth surfaces.  

 

Figure 6-18: µg of DNA per well on different surfaces 

6.1.5.2 ALP activity 

Alkaline phosphatase is an early marker of osteoblast maturation which peaks 

just before the mineralization phase. Its activity, normalized by total DNA 

amount, was significantly higher on the as-sintered HA discs as compared to 

the 1000Grit sample. There was no significant difference between surfaces on 
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either HA-TCP and SA, and also no significant effect of chemistry between the 

three different chemistries, 1000Grit treated discs (Figure 6-19).  

 

Figure 6-19: ALP specific activity normalized by Total DNA 

6.1.5.3 Osteocalcin Production 

Figure 6-20 shows OCN amount, normalized by DNA, analyzed from the 

treated and un-treated discs. HA/TCP and SA supported significantly higher 

OCN production from the untreated disc surfaces compared to all the other 

three treated. As sintered HA discs and 1000Grit treated HA discs supported 

similar levels of OCN production, both of them significantly higher than the AE 

treated HA discs. In general, acid etching seemed always to show a significant 

decrease in OCN amount, while 80Grit and 1000Grit treatments showed a 

significant decrease only on HA/TCP and SA compared to their original 

surfaces. 

Comparing discs chemistry,  HA supported significantly higher OCN 

production as compared to SA, but there was no significant difference 

between HA and HA/TCP or between HA/TCP and SA. 

.  
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Figure 6-20: Osteocalcin amount normalized by Total DNA 

6.1.5.4 Osteoprotegerin Production 

Osteoprotegerin is an important protein involved in the balance between bone 

formation and resorption, by regulating osteoclast activity. In the present 

study, the pattern of OPG production was similar between HA and SA discs: 

after 1000Grit SiC paper treatment supported significantly higher OPG 

production as compared to their respective untreated and AE surfaces.  

In contrast, as received HA/TCP discs supported significantly higher OPG 

production as compared to all three treatments.  

Disc chemistry was found to regulate OPG production, with significantly higher 

levels of protein production on both HA and SA as compared to HA/TCP 

(Figure 6-21). 
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Figure 6-21: Osteoprotegerin amount normalized by Total DNA 

6.1.5.5 VEGF Production 

VEGF production in response to the different disc treatments and chemistries 

is shown in Figure 6-22. VEGF is a growth factor key to the development of 

blood vessels, where adequate revascularization is a prerequisite to 

osteogenesis.  

Interestingly, variation in surface morphology appeared to only regulate VEGF 

production on HA discs, where 1000Grit treated HA supported higher VEGF 

production as compared to AE and 80Grit surfaces, suggesting a role of 

roughness in directing VEGF synthesis.  

Also chemistry appeared to have a significant effect on VEGF production. HA 

1000Grit discs supported significantly higher protein production as compared 

to both HA/TCP and SA 1000Grit discs, while SA 1000Grit treated discs 

supported significantly higher protein production as compared to HA/TCP 

1000Grit discs (Figure 6-22). 
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Figure 6-22: VEGF amount normalized by Total DNA 
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6.1 Discussion 

6.1.1 The effect of chemistry 

In this experiment the effect of the chemistries was analyzed by comparing 

HA-TCP, HA and SA after treatment with 1000Grit SiC papers, treatment 

which gave the smoothest roughness (Figure 6-5) and the most similar surface 

microstructure (Figure 6-13d, Figure 6-15d and Figure 6-17d).  

 

DNA amount 

Few studies have previously reported the analysis of differences in cell 

response between HA, SA and HA-TCP. When evaluating and comparing 

results from these different studies, however, it is important to note that 

differences in implants’ properties like shape, size, amount of micro or macro 

porosity (which all affect in one way or another cell response and which can be 

different from study to study) can confound the actual effect of chemistry. 

Keeping this in mind, some in vivo studies showed a better ability of HA-TCP 

to stimulate early bone formation than HA.  

In one of these (Sulaiman et al., 2013a) a 20/80 ratio of HA-TCP granules 

showed a higher osteogenic potential than pure HA after 8 weeks implantation 

in nude mice. Another work (Ng et al., 2008) using materials with the same 

granule size and HA-TCP ratio of Sulaiman’s study, showed similar results. 

However, in both the studies the materials were implanted only after the 

seeding of induced sheep marrow cells and human osteoprogenitor cells 

respectively.  

Another study by Hing et al. (Hing et al., 2007) compared instead dense 

calcium sulfate, ultra porous β-TCP and porous SA, and showed that both β-

TCP and SA supported early bone apposition (<1 week), with SA showing also 

to be more stable and to support better angiogenesis.  

Very few in vitro studies have been performed: in 2006 Jalota studied the cell 

viability (after 72 hours) and protein concentration (after 7 days) of osteoblasts 

on the surface of HA, β-TCP and HA-TCP, showing significant difference only 

in cell viability between HA and β-TCP, but not between HA and HA-TCP 

(Jalota et al., 2006).  
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In the present study, the HA-TCP ratio was 60/40, and the samples were all 

dense discs. The cell proliferation was not influenced by the chemistry, as 

seen by Figure 6-18, where all the samples showed very similar DNA amount. 

This is in accordance with the findings of Jalota et al. regarding HA and HA-

TCP comparison.  

 

ALP and OCN 

Osteogenic differentiation, as a mean of ALP specific activity, was also found 

to be similar between the three chemistries (Figure 6-19).  

The production of Osteocalcin, a protein fundamental for the process of new 

bone formation, therefore a marker for osteogenesis, was not seen to be 

significantly different between HA-TCP and either HA or SA, but it was 

significantly higher on HA compared to SA discs.  

A study from Botelho (Botelho et al., 2006) showed no significant difference in 

OCN production between HA and SA discs after 7 days, however the values of 

the protein were not normalized by total DNA, which makes it difficult to get an 

indication of the actual protein synthesized per cell, and thus to make a 

rigorous comparison between studies. A possible explanation of the higher 

OCN synthesis on HA compared to SA, in contrast to previous reports in 

literature which suggest that SA has a higher biological activity than HA, could 

be study limitations associated with the fact that the assays were performed at 

7 days, therefore missing a temporal shift in protein production. 

 

OPG 

OPG synthesis was found to be significantly higher on HA and SA compared 

to HA-TCP (Figure 6-21). This is in agreement with a recent study reporting 

the in vivo higher gene expression of both OCN and OPG from bovine HA in 

sinus lift of rabbits, as compared to autologus bone graft (Chaves et al., 2012). 

An interesting work from Wang et al., investigating any difference in cell 

proliferation and/or protein expression and protein production from HA, TCP 

and HA-TCP discs with different ratios, found that cell proliferation was not 

significantly different between samples, and that ALP and OCN mRNA 
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expression levels didn’t show significant differences, which is in line with the 

present results (Wang et al., 2004a). Moreover, another study from Wang 

(Wang et al., 2004b) showed not significantly different OPG gene expression 

between HA, TCP, and HA-TCP with a 70/30 and a 35/65 ratio. These findings 

are in agreement with the comparison between original (Untreated) surfaces in 

the present work, where no significant difference was shown between the 

three materials (Figure 6-21).  

Thus it is interesting to see how, by decreasing the roughness of the HA (or 

SA) surfaces, is possible to increase significantly the production of OPG, and 

that the inclusion of TCP abolishes the effect of the roughness showed by HA.  

 

VEGF 

VEGF synthesis was found to be significantly different between all the 

samples: HA-TCP showed a significantly lower synthesis compared to both 

HA and SA, and HA showed a significantly higher synthesis compared also to 

SA (Figure 6-22).  

Many studies describe the positive effect that the localized delivery of VEGF 

(Riva et al., 2010) or VEGF gene transfer techniques (Duan et al., 2012) or the 

incorporation of exogenous VEGF with cells and scaffolds (Lee et al., 2012, 

Sever et al., 2012) have in promoting bone formation. However, few studies 

have been done aiming to look at the in vitro VEGF synthesis from cells in 

contact with BGSs.  

A very interesting and recent work from Ghanaati (Ghanaati et al., 2012b),  

describes the differences of the in vivo tissue reactions between HA, TCP and 

a 60/40 ratio of HA-TCP granules: results show a significantly greater vessels 

area and vessels density with HA-TCP granules compared to HA after 3 days 

of subcutaneous implantation, while no significant difference between them at 

day 10. As the present study analyzed VEGF synthesis only at day 7, it is 

possible that an earlier and greater protein production by HA-TCP was missed 

by that time, but the improved HA synthesis was quite substantial. It is also 

possible that the implant topography (discs in the present study, granules in 

the Ghanaati study) strongly influenced the cell response, therefore changing 

the effect on vascularization.  
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Another work by Hing (Hing et al., 2007) looking at Capillary Index (CI) in 

rabbits femoral implantation of calcium sulfate, ultra porous β-TCP and porous 

SA, showed (at week 1) a higher CI from the SA implant compared to β-TCP, 

even if not statisticallysignificant.  

The complexity, however, of comparing and interpreting results from these 

different studies lays also in the difficulties of translating results between in 

vitro and in vivo studies.  

Some of the results in this study seem to be in contrast with different works 

demonstrating the higher in vivo biological activity of SA compared to HA. One 

possible reason to explain this discrepancy is that this could be due to the 

different dissolution behaviors which occurs in vivo between HA, SA and HA-

TCP, which are evidently influenced by the physiological environment, but that 

can hardly be exactly reproduced in in vitro studies. Another possible 

explanation can be that the form actually used in vivo is different by the dense 

disc form which is instead used for the present in vitro study: consequences 

are that this influences the cellular response more than how much chemistry 

does, therefore shifting the higher biological activity of SA compared to HA. 

6.1.2 The effect of surface roughness 

Surface roughness is considered one of the material characteristics that 

mostly influences the biological response. This happens because cells and 

proteins are able to “feel” differences in surface roughnesses, and thereafter 

respond consequently to them.  

In this study the cell behaviour (proliferation and differentiation) on four 

different surface roughness characteristics was analyzed: the one on the 

original samples (Untreated), the one given by the acid-etching treatment of 

the samples with an in 37% phosphoric acid for 30 seconds (AE), the one 

given by hand grinding the discs for one minute per surface on a grit 80 SiC 

paper (80Grit), and the one given by using the same method but on a grit 1000 

(1000Grit). Materials were then tested for their properties and ensured that the 

methods were reproducible. Statistics were performed in order to see any 

significant difference between the four roughness for each of the three 

chemistries.  
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Different studies looked at the material’s surface roughness and its effect on 

cell behaviour. However, while some of them looked at the osteoclasts 

response (Costa-Rodrigues et al., 2012, (Müller-Mai et al., 1990), many others 

studied the influence that roughness of the HA coating on titanium implants 

has on cell behaviour (Hayashi et al., 1994) (da Silva et al., 2003). Other 

studies look instead at differences in the influence of roughness between HA 

and Ti on cell response (Korovessis and Deligianni, 2002), (Borsari et al., 

2005).  

 

HA chemistry 

A study from Missirilis (Missirlis, 2000) showed human bone marrow stromal 

cells proliferation and differentiation on HA discs with three different surface 

roughness values. After 8 days in culture, cell proliferation was slightly higher 

on the roughest surface, while ALP didn’t show significant differences between 

samples. However, in the study it was not specified which was the area 

analyzed or the magnification used to assess roughness values, which makes 

it difficult to certainly estimate the results and compare them with the present 

or any other study. Moreover, cell proliferation was assessed by number of 

cells per unit of surface. This assessment makes the cell number subject to 

the surface area of the material as well, which can be differently influenced by 

the type of material, the methods used to change the roughness and the 

mechanical properties. 

The results from Deligianni study are in agreement with the ones in the 

present study. The cell proliferation, analyzed by total amount of DNA per well, 

was found to be significantly higher on the AE sample (which in the present 

study is the roughest) compared to both the Untreated and the 1000Grit ones 

(Figure 6-18).  

Stem cell differentiation was analysed through ALP specific activity and OCN 

production. The ALP specific activity, as in the Deligianni study, was not found 

to be significantly influenced by differences in surface roughness. Another 

work by Xia et al. looked at the in vitro and in vivo influence of differences in 

topography on HA macroporous scaffolds (Xia et al., 2013). Topographies 

were represented by either nanosheets, nanorods and micro-nano hybrids and 
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were compared to a control of dense HA discs. Even if roughness analyses 

was not performed, it is possible to assume that the presence of any of the 

three topographies represents an increase in surface roughness compared to 

the one of the dense discs. Results showed a greater cell proliferation on all 

the three topographies compared to control HA, which is in agreement with the 

results of the present study.  

Comparisons between these two studies, however, needs to take into 

consideration that there are some crucial differences in the experimental set 

up: first, the materials used for the present study were all discs, while in Xia’s 

study were macroporous scaffolds, and second that the cells used for Xia’s 

experiments were rat bone marrow stromal cells instead of Human 

mesenchymal stem cells.  

Nonetheless, these results show the influence that topography plays in 

directing stem cells proliferation and differentiation on these ceramics.  

In the present study, cell differentiation was also assessed through analysis of 

OCN production. The results on the HA samples show an OCN content 

significantly lower on the AE compared to all the other samples, and 

significantly higher from 1000Grit compared to 80Grit. These results suggest 

that the roughness definitely has a strong effect on the protein’s production. 

The smoothest surface was able to increase its production significantly 

compared to rough surfaces, while the roughest between all of them 

consistently showed the lowest amount (Figure 6-20).  

Osteoprotegerin production was also analysed on the samples to check their 

osteogenic capacity. On HA discs its amount was, like for OCN, highest on the 

1000Grit sample, with significance compared to the Untreated and the AE, but 

not with 80Grit, which has a roughness higher than the Untreated but lower 

than the AE (Figure 6-21).  This result could be due to the fact that the 

mechanical treatment which was used to create the 1000 and the 80Grit 

roughnesses produced a different surface microstructure compared to the 

chemical treatment and the original surfaces, as clearly seen by the SEM 

images (Figure 6-13). It is possible to hypothesise therefore that OPG 
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production is more sensitive to the surface microstructure than how much it is 

for the surface roughness. 

VEGF production was also analyzed from the samples. Its content was as well 

significantly higher on the HA 1000Grit than on the AE and 80Grit. For VEGF 

the synthesis seems to be positively influenced by smoother surfaces (Figure 

6-22).  

These results suggest that stem cell proliferation and differentiation into the 

osteoblast lineage are not influenced in the same way by differences in HA 

surface roughness: while cells seem to proliferate better on rougher surfaces, 

they also look to synthesize more osteoblastic markers like OPG and OCN 

and new tissue formation markers like VEGF on smoother surfaces.   

 

SA chemistry 

The Silicate-substituted HA showed to be the chemistry that was influenced 

the least by surface roughness.  

Looking at the effect on cell proliferation, the DNA content was not significantly 

influenced by changes in surface roughness. Furthermore, what is possible to 

point out comparing HA and SA chemistries, is that the presence of the Si in 

the HA structure doesn’t influence at all the DNA content on the Untreated, 80 

or 1000Grit samples, but only on the AE one (Figure 6-18), revealing a 

potential important role of Si ions in abolishing the effect of surface roughness.  

It is possible to hypothesize at least two different explanations for this 

behaviour. First, it is possible that the AE treatment increases DNA content on 

both HA and SA, and meanwhile that the presence of the silicon ions 

increases cell proliferation at earlier time-points than 7 days: in this case at 

day7 would be too late to see the higher DNA content from SA.  

Second, it is also possible that the acid etching treatment, uniquely changes 

either the quantity of silicate or the SA structure in a way that influences cell 

proliferation.  
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The ALP activity was analysed to study cell differentiation on SA samples. The 

results showed no significant difference between samples, which is the same 

effect shown on the HA samples. It is possible to hypothesize that, being ALP 

a recognised early marker for osteoblasts differentiation, it is promptly more 

active at earlier time points than 7 days, where the influence that topography 

may have on its activity is then vanished.  

 

OCN amount was also studied for cell differentiation. On SA discs it was found 

to be, as on HA, higher on the Untreated surface compared to all the other 

samples. However it is interesting to note that, while the SA and HA Untreated 

surfaces showed a very similar protein production, the 1000Grit SA surface 

showed an opposite behaviour compared to the same HA surface: which is a 

significant decrease compared to the Untreated surface, suggesting a possible 

negative influence of the Silicate only after smoothing the surface of SA.  

Similarities in OCN amount after 7 days of culture between HA and SA was 

found also from a study of Botelho (Botelho et al., 2006) in which dense discs 

of HA and 0.8wt% Silicate-substituted HA were seeded with human 

osteoblasts cells and OCN amount was detected by enzyme immunoassay.  

 

OPG amount showed to be significantly higher from the smoothest surface 

compared to Untreated and AE, and also from the 80Grit surface compared 

only to the Untreated. This result seems to suggest that rather than the 

roughness in itself, are more likely to influence OPG production the 

characteristics of the microstructure of the surface (dictated by the type of 

treatment used), as the smoothest (1000Grit) and the second roughest 

(80Grit) surfaces showed better protein amount on both HA and SA.  

 

Finally the VEGF amount was also analysed. Its production was higher on the 

smoothest surface 1000Grit, however this increase was not significantly 

different. On both the Untreated and the 1000Grit samples SA showed to 

promote a lower amount of VEGF compared to HA which, supposing a 

correlation between VEGF and bone ingrowths, is in contrast with different 
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studies showing a higher bone formation promoted by SA compared to HA. 

Again, a possible reason why this happened could be that HMSCs promoted a 

higher VEGF amount from the SA compared to HA at an earlier time-point 

than 7 days, which would be in line with in vivo studies showing an earlier 

bone formation promoted by SA.  

 

HA-TCP 

HA-TCP 60/40 was influenced by surface roughness more similarly to HA than 

to SA. Few studies have been done looking at the influence that the 

roughness of the surface has on in vitro cell proliferation and differentiation.  

In the present study, the DNA amount on HA-TCP increased after all the three 

treatments. However, this increase was significant only on the mechanically-

treated, rough surface 80Grit.  

 

ALP specific activity was analysed for cell differentiation potential. It was found 

to be influenced in a very similar manner to HA, however the effect showed a 

lower magnitude.  The results show a very similar ALP specific activity from 

the Untreated and the AE samples, and a much lower from the 80 and 

1000Grit samples. This difference, even though non statistically significant, 

could suggest that mechanical treatment, or the samples morphology after the 

mechanical treatment, negatively influence ALP activity (Figure 6-19).  As the 

fact that neither the chemistry (no differences between HA-TCP, HA or SA) 

nor the treatment (no differences between the different roughness) seemed to 

influence significantly ALP activity, it may be possible  that any effect  

happened earlier than 7 days. 

 

Regarding HMSCs’ proteins production, both OCN and OPG showed a 

significantly higher amount from the Untreated surface compared to all the 

other surfaces (Figure 6-20, Figure 6-21). However, OCN was also produced 

significantly more from the 1000Grit compared to the 80Grit surface: this could 

suggest that after 7 days of culture OCN production is not influenced only by 

roughness, but also by micro-structural characteristics of the surface or by 
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other material properties not analyzed in the present study. OPG production, 

as said, also showed to be lowered significantly from the three treated 

surfaces: the original showed to produce more OPG than the other samples.  

 

Finally, VEGF amount was seen to not be significantly influenced by the 

surface roughness (Figure 6-22), being very similar between samples.  

 

6.2 Summary 

The following is a summary of the effect that differences in chemistries and 

surface roughness between HA-TCP, HA and SA have on stem cell 

proliferation and differentiation. 

 

The results show that chemistry didn’t have a significant effect on cell 

proliferation and ALP activity. However, it significantly influenced OCN, OPG 

and VEGF production. The HA chemistry showed to be particularly good in 

enhancing proteins production, compared to SA for OCN and VEGF, and to 

HA-TCP for OPG and VEGF. SA showed to produce significantly higher level 

of proteins compared to HA-TCP for OPG and VEGF. 

Regarding the effect of roughness, results showed that its effect was not the 

same on the different chemistries. On HA, a very smooth surface was able to 

enhance significantly different cell markers for osteoblast differentiation, like 

OCN, OPG and VEGF.  

On SA, a smooth surface roughness influenced significantly OPG production.  

On HA-TCP, neither an increase nor a decrease of surface roughness 

(compared to the as-received material) significantly influenced the cell 

response. 

The increase in roughness in itself (which precludes the same effect given 

from both AE and 80Grit samples) didn’t seem to influence significantly cellular 

response. 

 

Taken together, the results of this experiment suggest that the effect of 

surface roughness is never the same comparing different materials, and that 

chemistry and surface roughness influence each other in their effect on 
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cellular response. Therefore, in vitro studies aimed to clarify the mechanisms 

of actions of the biological response to bone graft substitutes, should be 

performed on materials that resemble as close as possible the characteristics 

of the actual bone grafts used in the market, especially in terms of chemistry 

and surface properties. Moreover, a time-course study would be more useful 

to clarify differences in cell proliferation and differentiation between samples.
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7 HMSC Proliferation and Differentiation on SA and HA 

Microporous Bone Graft Substitute Granules and the role 

of Fibronectin in Modulating Response to Chemistry and 

Microporosity  

The influence of material properties on modulating stem cell response has 

been increasingly recognised as a key factor in directing subsequent cell 

mitogenesis and morphogenesis. Different material properties have been 

studied over the years, but substrate chemistry and porosity have been 

nominated as most fundamental in directing cell response. This study 

investigates HMSC response to two porous scaffolds with matched macro and 

micro porosity but varied chemistry and two porous scaffolds with matched 

chemistry and macro porosity but varied micro porosity, in order to clarify the 

direct effect of chemistry and microporosity on subsequent cellular proliferation 

and differentiation. Moreover, as the role of adsorbed Fn in cell attachment 

has previously been established (Chapter 5), the influence of sample pre-

conditioning was also investigated, in order to see how serum proteins and/or 

Fn interacted with these parameters. 

7.1 Experimental Methodology 

Human Mesenchymal Stem Cells (Lonza ltd, USA) were used for this 

experiment. Basal MSC growth media (MSCGM, Lonza ltd, USA) was used to 

seed and expand the cells in sterile plastic flasks to passage 3 or 4. The 

media is designed to support mesenchymal stem cell growth without inducing 

differentiation and is composed of basal stem cell media supplemented with 

10% mesenchymal growth serum, 5% L-Glutamine and 1% Gentamicin 

sulphate/Amphotericin-B. At passage 3 or 4 cells were then seeded on the 

different samples. 

Three different samples were used as described in Table 7-1 and four different 

groups (n=6 for each group) for each sample were prepared (see Table 7-2). 

Samples were either hydroxyapatite (HA) or 0.8wt% Silicate substituted HA 
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(SA), and were characterized as described in Chapter 3. Cells were also 

plated on Tissue Culture Polystyrene (TCPS) to be used as a control. 

 

Table 7-1: Types of granule samples used during this study 

Sample description Acronyms 

Hydroxyapatite porous granule 80% 

total and 20% strut porosity 

HAG80/20 

Silicate-substituted hydroxyapatite 

80% total and 20% strut porosity 

SAG80/20 

Silicate-substituted hydroxyapatite 

80% total and 30% strut porosity 

SAG80/30 

   

Table 7-2: Sample treatment groups used during this study 

Preparation of sample Acronyms 

No pre-conditioning BARE 

Pre-conditioning with Mesenchymal 

Stem Cell Growth Media (MSCGM, 

media supplemented with 10% FCS) 

MSCGM 

Pre-conditioning with 0.10mg/ml of 

Fibronectin in MSCGM 

Fn1 

Pre-conditioning with 0.25mg/ml of 

Fibronectin in MSCGM 

Fn2 

 

Apart from the control samples TCPS, in order to avoid unintended cell 

attachment to the well plate bases, Ultra-Low attachment 24-well plates 

(Sigma-Aldrich) were used for the experiment. 0.3g of porous granules (size 

between 1 and 2 mm) were added to each well in 6 replicates for each 
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treatment group, for each sample type, and sterilized under UV light. Then, 

various pre-conditioning solutions were added to selected wells and left to 

incubate for 60 minutes, at 37 °C in a CO2 controlled incubator. After the 

incubation time, pre-conditioning solutions were discarded and samples 

washed twice with fresh, sterile PBS. HMSC were plated on TCPS or samples 

surfaces at 10,000cells/cm2 (2x104cells/sample) density in 24well plates. One 

ml of fresh media was changed in each well after 24 hours, and then every 48 

hours. At 1, 2, 3, 4, 7, 10 and 14 days cells were incubated with fresh media 

for 24 hours and then media was collected to measure Osteocalcin (OCN), 

Osteoprotegerin (OPG), Vascular Endothelial Growth Factor (VEGF), Calcium 

release (Ca) and type I C-terminal collagen propeptide (CICP). Cells were 

harvested by washing the attached monolayer twice with fresh PBS, lysing 

them in 0.05% Triton X-100 and sonicating at amplitude 60 for 60 seconds. 

After collection samples were stored at -20 ˚C in 1ml aliquots to facilitate 

analysis of all time points simultaneously. Alkaline Phosphatase (ALP) specific 

activity was measured from cell lysates as was total protein and DNA content. 

The other cell markers were analysed from the collected media. 

7.1.1  Protocol for the determination of Calcium release 

Calcium release from the samples was assessed using a QuantiChrom 

Calcium Assay Kit (BioAssay Systems, USA) via analysis of the collected 

media. Aliquots of 5µl per sample (n=6) were added to a clear 96-well plate. 

5µl (n=3) of standard solution of calcium in water ranging in concentration from 

20 to 0 mg/dL (Table 7-3) was added to wells to determine calibration curves. 

The assay works using colorimetric principles (see Chapter 2.1.4 for the theory 

behind Colorimetry): a phenolsulphonephthalein dye in the working solution, 

subsequently added to standards and samples, forms a very stable blue 

colour when specifically bound to free calcium. The intensity of the colour, 

measured at 612 nm, is directly proportional to the amount of calcium in the 

sample. Samples and standards were left to incubate for 3 minutes at room 

temperature and the optical density was measured at 570-650nm  with the 

FLUOStar OPTIMA fluorometer (Figure 2-3). (For calibration curves see 

Appendix, Figure 9-7) 
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Table 7-3: Standard solution dilutions for calibration curves to determine Ca amount in 

the samples 

 

 

 

 

 

 

 

 

7.1.2 Protocol for the determination of DNA content 

See Chapter 6, Section 6.2.1.2 

7.1.3  Protocol for the determination of Total Protein 

See Chapter 6, Section 6.2.1.3 

7.1.4 Protocol for the determination of ALP specific activity 

See Chapter 6, Section 6.2.1.4 

7.1.1 Protocol for the determination of OPG and VEGF in media 

See Chapter 6, Section 6.2.1.5 

7.1.2 Protocol for the determination of OCN and CICP in media 

Quantification of OCN and CICP in the samples collected media was also 

performed using an enzyme-linked immunosorbent assay (ELISA) (Quidel, 

USA). These ELISA kit differs from the ones from R&D Systems in that these 

provide strip wells pre-coated with capture antibodies. 25µl of standards (6-

point standard curve from 0 to 74.5ng/ml for CICP, and 6-point standard curve 

from 0 to 29ng/ml for OCN) and 50µl of unknown samples were transferred to 

No STD+H2O Vol (µl) Ca (mg/dL) 

1 100µl + 0µl 100 20 

2 80µl + 20µl 100 16 

3 60µl + 40µl 100 12 

4 40µl +60µl 100 8 

5 30µl + 70µl 100 6 

6 20µl + 80µl 100 4 

7 10µl + 90µl 100 2 

8 0µl + 100µl 100 0 
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each well; after the addition of 125µl of OCN (or CICP) antibody the plate was 

left for 2 hours at 20-25 degree. After incubation, three washes with buffer 

were needed to eliminate any non-bound protein and/or antibody, and 150µl of 

enzymatic conjugate (antibody conjugated with alkaline phosphatase, ALP) 

was added to the wells. The plate was incubated for 60 minutes at 20-25 °C to 

allow the conjugated antibody to recognise the OCN or CICP antibody. After 

this incubation time and three additional washing steps, a 150µl solution of p-

nitrophenol (pNPP) was added to each well and left for 35-40 minutes at 20-25 

°C. During this time, the ALP conjugated with the antibody dephosphorilates 

the pNPP giving a characteristic coloration. The OD in the wells of the 

samples was analysed by a spectrophotometric microplate reader (Figure 

2-3), and the relative amount of OCN or CICP in the samples calculated from 

the appropriate calibration curve (see Appendix, Figure 9-6 and Figure 9-5 

respectively).  

Note: as seen from the graphs in Figure 9-5 and Figure 9-6 the calibration 

curves were not linear. However, the values of OD of the unknown samples 

were ranging always in a range between 0.3 and 1.1 for CICP and 0.2 and 0.4 

for OCN.  

7.1.3 Statistical Analisys 

The sample size for each sample material was n=6. Variations in cellular 

response between chemistries (HA vs SA), strut porosities (20% vs 30%), or 

pre-treatments (BARE, MSCGM, Fn1, Fn2) were assessed statistically by 

using a one-way analysis of variance. Differences were evaluated by using 

Bonferroni post testing. All statistical tests were run by using KaleidaGraph 

statistical software (v 4.0, Synergy Software, Reading, PA, USA) at a 

significance level of α=0.05.  

7.2 Results 

Human mesenchymal stem cells have been analyzed for their proliferation 

(DNA content), osteoblast differentiation and mineralization ability (ALP 

specific activity and OCN production), bone turnover ability (OPG), collagen 

synthesis (CICP) and blood vessel formation (VEGF). Moreover, samples 

were tested for their ability to release calcium in the surrounding media. These 

markers were then correlated to the different experimental conditions used 

and to the material properties tested in order to assess the influence of 
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chemistry, strut porosity and serum proteins (MSCGM group) or Fn (Fn1 or 

Fn2 groups) in a 14-days time course study. In the figures, the statistics were 

calculated between the four pre-treatment groups. In the tables, the statistics 

were calculated between HAG80/20 and SAG80/20 (to compare chemistry) 

and SAG80/20 and SAG80/30 (to compare strut porosity). In both figures and 

tables the colour represents the group with the significantly higher marker 

level, and in the figures the signs represent: p<0.05 vs * BARE, ^ MSCGM, % 

Fn1 or $ Fn2.  

7.2.1 Calcium release 

The release of calcium from the material is important in determining the 

relative amount of this ion in the biological environment, influencing the cells 

and therefore their response. The release of calcium from the samples 

showed to be influenced by the pre-treatments. On HAG80/20 its release was 

significantly higher on the BARE group compared to the other pre-treatment 

groups at day 1, 2, 4, and 10, and it showed a high peak at day4 (Figure 7-1a). 

Also on SAG80/20 the BARE group showed the highest calcium release, 

significant at day1, 2, and 7, but this time peaking at day1 Figure 7-1b). Finally 

on SAG80/30 calcium release showed to be significantly higher on BARE at 

day4 and day10 and on MSCGM pre-treatment group at day2 and day10 

Figure 7-1c). Table 7-7 shows the comparisons in calcium release between 

HAG80/20 and SAG80.20, and SAG80/20 and SAG80/30: this enables us to 

detect the effect that chemistry and strut porosity singularly have on calcium 

release. Results showed a late effect (day10 and day14) of chemistry on the 

BARE group where HAG80/20 released significantly higher calcium than 

SAG80/20; on the same treatment group the strut porosity had a significant 

effect only at day7 where the lower strut porosity percentage (20%) showed 

higher calcium release. The pre-treatment with MSCGM didn’t influence the 

effect of the chemistry which was the same of the BARE group, as was also 

the effect from the strut porosity with the addition of a significantly higher 

(p<0.0001) calcium release from the 30% strut porosity at day14.  The effect of 

the strut porosity in the presence of either Fn1 or Fn2 pre-treatment was the 

same, where again the 20% strut porosity sample showed significantly higher 

calcium release at day10 and day14. Finally the effect of chemistry didn’t 
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significantly influence calcium release after Fn1 pre-treatment while affected it 

after Fn2 pre-treatment where at day14 was higher from the SAG80/20. 

  

 

Figure 7-1: Effect of pre-treatment on HMSC Calcium release from (a) HAG80/20, (b) 

SAG80/20 and (c) SAG80/30 granules over a period of 14 days. 

Table 7-4: Significant differences between chemistry (HA80/20 vs SA80/20) and porosity 

(20% vs 30% strut porosity on SA) for Calcium amount (*p<0.05, **p<0.005, ***p<0.0001. 

The colour refers to the higher value). 

 Comparison Day1 Day2 Day3 Day4 Day7 Day 10 Day 14 

BARE 
HA vs SA - - - - - * ** 

20% vs 30% - - - - * - - 

MSCGM 
HA vs SA - - - - - ** * 

20% vs 30% - - - * - - *** 

Fn1 
HA vs SA - - - - - - - 

20% vs 30% - - - - - ** * 

Fn2 HA vs SA - - - - - - * 

a b 

c 
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20% vs 30% * - - - - ** * 

 

7.2.2 DNA content 

Figure 7-2 shows the DNA content from HAG80/20, SAG80/20 and SAG80/30. 

On HAG80/20 cell proliferation was significantly higher on the BARE group 

samples at day4 and 7, peaking high at day14 (Figure 7-2a). SAG80/20 

showed a similar trend, having the BARE treatment group with a significantly 

higher cell proliferation at day1, 7 and 10, and peaking at day10 (Figure 7-2b). 

SAG80/30 instead showed little significant difference between pre-treatments, 

with Fn1 (day1 and 3) and BARE (day10) promoting significantly higher cell 

proliferation compared to the other groups (Figure 7-2c). The DNA content in 

general peaked at late time points, between day 10 and day 14 on all the 

samples.  

    

  

Figure 7-2: Effect of pre-treatment on HMSC proliferation as measured by total DNA on 

(a) HAG80/20, (b) SAG80/20 and (c) SAG80/30 granules over a period of 14 days. 

Table 7-5 shows the specific effect of chemistry and strut porosity on DNA 

amount. On the BARE group the silicon-substituted HA (SAG) showed 

a b 

c 
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significantly higher cell proliferation at day1, but at day3 and day4 was HAG to 

promote higher proliferation. The effect that strut porosity has on cell 

proliferation was instead more pronounced: at all the time points analyzed a 

part for day4, DNA amount was significantly higher on the 20% strut porosity 

percentage. The same effect is seen after pre-treatment with MSCGM, even if 

just at day1, 3, 7 and 10. While the effect of chemistry in this treatment group 

was showing again a succession of HA and SA significantly higher values at 

different time points. The effect that chemistry and strut porosity had in the 

Fn1 and Fn2 pre-conditioned groups was the same: early HA and later (from 

day3) SA higher DNA amount for the effect of chemistry, while strut porosity 

promoted an early 30% and later (from day3 again) 20% higher cell 

proliferation. The key result seen is that the BARE samples, together with the 

Silicon substitution of HA and a 20% strut porosity showed to promote better 

cell proliferation. 

 

Table 7-5: Significant differences between chemistry (HA80/20 vs SA80/20) and porosity 

(20% vs 30% strut porosity on SA) for DNA (*p<0.05, **p<0.005, ***p<0.0001. The colour 

refers to the higher value). 

 
Comparison Day1 Day2 Day3 Day4 Day7 

Day 

10 

Day 

14 

BARE 
HA vs SA ** - ** ** - - - 

20% vs 30% *** * * - * * * 

MSCGM 
HA vs SA - ** * - ** - - 

20% vs 30% * - * - * * - 

Fn1 
HA vs SA * - - * - - ** 

20% vs 30% ** - * - ** - - 

Fn2 
HA vs SA - * ** ** - - ** 

20% vs 30% - * *** - * - - 
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7.2.3 Total protein 

Figure 7-3 shows the amount of total protein analyzed from the cell lysate over 

the whole time frame 1-14 days for each of the three different granules. On 

HAG80/20 the four different treatment groups didn’t show significant 

differences in values and/or trend apart for day3, where the BARE group 

showed significant higher amount of total protein compared to the other three 

pre-treatment groups (Figure 7-3a). SAG80/20 as well showed a similar trend 

of total protein production over the time frame between the treatment groups. 

However, showed also significantly higher values on BARE and MSCGM pre-

treatment groups compared to Fn1 and Fn2 groups at day2, and on Fn2 pre-

treatment group compared to BARE and MSCGM and BARE only at day3 and 

14, respectively (Figure 7-3b). SAG80/30 instead didn’t show any significant 

difference in total protein between treatments over the 14-days time course. 

Furthermore, the different pre-treatment groups followed a very similar trend 

between each other, where total protein peaked strongly at day3 (Figure 7-3c).  

 

 

Figure 7-3: Effect of pre-treatment on HMSC total protein production on (a) HAG80/20, 

(b) SAG80/20 and (c) SAG80/30 granules over a period of 14 days. 

a b 

c 
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Table 7-6 shows instead the influence of chemistry and strut porosity on total 

protein production for each treatment group. HAG80/20 promoted early (day2, 

3 or 4) significantly higher amount of total protein production, while SAG80/20 

did the same only at later time points (day7, 10 and/or 14). This effect was 

showed by all the pre-treatment groups apart for MSCGM, which instead 

showed only SAG80/20 supporting significantly higher protein production and 

only at day10 and 14.  Also the strut porosity did influence total protein 

production, however the effect seen did not show one of the two topographies 

to be exclusively better compared to the other: both the samples showed to 

support significantly higher protein production at different time points in all the 

four pre-treatment groups.   

 

Table 7-6: Significant differences between chemistry (HA80/20 vs SA80/20) and porosity 

(20% vs 30% strut porosity on SA) for total protein (*p<0.05, **p<0.005, ***p<0.0001. The 

colour refers to the higher value). 

 
Comparison Day1 Day2 Day3 Day4 Day7 

Day 

10 

Day 

14 

BARE 
HA vs SA - - ** ** - ** - 

20% vs 30% - - - - ** - ** 

MSCGM 
HA vs SA - - - - - ** *** 

20% vs 30% - ** - - - - - 

Fn1 
HA vs SA - ** * - - ** *** 

20% vs 30% - * - - * - - 

Fn2 
HA vs SA ** *** ** - * ** ** 

20% vs 30% - * * - - * - 

 

7.2.4 ALP specific activity 

Figure 7-4 shows ALP specific activity normalized by total DNA for each of the 

three samples. On HAG80/20 ALP activity was significantly higher after the 

pre-treatments with Fn2 only at day1, and the pre-treatments with MSCGM 

and Fn1 at day7 and 10, and day 1, 10 and 14 respectively. Highest peaks 
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were shown at day7 from MSCGM and day14 from Fn1 pre-treatment groups 

(Figure 7-4a). On SAG80/20 ALP activity was significantly higher from all the 

pre-treatment groups at different time points: on BARE at day3, on MSCGM 

pre-treatment group at day3 and 7, on Fn1 at day1 and 10 and on Fn2 at day1 

only. ALP activity peaked at day3 and day 7 from MSCGM and day10 from 

Fn1 pre-treatments (Figure 7-4b). Finally, on SAG80/30 ALP activity showed 

very high peaks at day3 and at day7. It was significantly higher from the 

MSCGM pre-treatment group at day1, 3 and 10 and from the BARE group at 

day3 (Figure 7-4c). In Table 7-7 are shown the comparisons of ALP specific 

activity between HAG80/20 and SAG80/20 to study the effect of chemistry, 

and between SAG80/20 and SAG80/30 to study the effect of strut porosity. 

With the exception of the BARE group, where both HAG (day1 and 2) and 

SAG (day3 and 14) showed significantly high peaks, all the pre-treatments 

showed a significantly higher ALP activity only on the HA chemistry compared 

to the SA one, and only on the 30% strut porosity compared to the 20%. 

These results show that SAG80/30 sample and the pre-treatment with 

MSCGM was the best combination to promote high ALP specific activity.   

 a b 
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Figure 7-4: Effect of pre-treatment on HMSC differentiation as measured by ALP 

specific activity on (a) HAG80/20, (b) SAG80/20 and (c) SAG80/30 granules over a period 

of 14 days.

c 
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Table 7-7: Significant differences between chemistry (HA80/20 vs SA80/20) and porosity 

(20% vs 30% strut porosity on SA) for ALP amount normalized by DNA (*p<0.05, 

**p<0.005, ***p<0.0001. The colour refers to the higher value). 

 
Comparison Day1 Day2 Day3 Day4 Day7 

Day 

10 

Day 

14 

BARE 
HA vs SA * *** ** - - - * 

20% vs 30% *** * * * * - - 

MSCGM 
HA vs SA ** ** - ** - - - 

20% vs 30% *** * ** ** * - * 

Fn1 
HA vs SA ** - - - * - ** 

20% vs 30% ** - ** - * - - 

Fn2 
HA vs SA - - ** - ** * ** 

20% vs 30% - - ** * * - * 

 

7.2.5 Osteocalcin content 

Figure 7-5 shows the amount of OCN product on each of the three samples. 

The content of OCN on HAG80/20 changed significantly on the different pre-

treatments during the time frame studied. At early time points the BARE (day3) 

and MSCGM (day2, day4, day7) samples showed significantly higher OCN 

than the other pre-treatment, while at late time points (day10 and day14) the 

pre-treatment with Fn1 increased the protein’s production. Moreover OCN 

content peaked at day3 on the BARE treatment group (Figure 7-5a). The 

presence of the silicon in the lattice structure changed this effect: on 

SAG80/20 OCN was shown to be significantly higher on samples pre-treated 

with Fn1 (at day1 and day10) and Fn2 (at day1 and day14), and OCN content 

peaked again at day3 but without significant difference between treatments 

(Figure 7-5b). Finally, the SAG80/30 showed significantly higher OCN amount 

on the BARE group at day2, 3 and 4, showing a peak again at day3 (Figure 

7-5c).  
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Figure 7-5: Effect of pre-treatment on HMSC differentiation and mineralization as 

measured by OCN production on (a) HAG80/20, (b) SAG80/20 and (c) SAG80/30 

granules over a period of 14 days. 

Table 7-8 shows the differences in OCN production between HAG80/20 and 

SAG80/20 (in order to compare chemistry) and SAG80/20 and SAG80/30 (in 

order to compare the effect of strut porosity). The results show that BARE and 

MSCGM treatment groups showed very similar results between each other, 

however opposed to Fn1 and Fn2 ones. In particular HA chemistry supported 

significantly higher OCN production than SA at day1, 2 and 10 for the BARE 

group and day2 and 7 for the MSCGM group. As soon as the pre-treatment 

change with either Fn1 or Fn2 however SA chemistry shows now significantly 

higher OCN production at day1 and 3 for Fn1 and day1, 3 and 4 for Fn2. HA 

kept showing the highest OCN amount only at day14 (for Fn1 group) and 

day14 (for the Fn2 group). Regarding the effect of strut porosity, on the BARE 

and MSCGM 30% strut porosity showed significantly higher OCN production 

at day1, 2, 4, 10 and 14 for BARE and day2, 4 and 7 for MSCGM. After the 

pre-treatment with Fn, however, the effect of the strut porosity, as the one of 

a b 

c 
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the chemistry, changes: in both the Fn1 and Fn2 pre-treatment groups the 

20% strut porosity promotes significantly higher production of OCN. These 

results together show that OCN production peaks at day3 on all the samples, 

and that the chemistry, strut porosity and presence of Fn significantly influence 

the production of this protein: while without Fn the HA chemiatry and the 30% 

strut porosity seem to support higher protein production, after Fn pre-treatment 

(irrespective of its concentration) the SA chemistry and 20% strut porosity 

become the best combination to promotes the protein production. 

 

Table 7-8: Significant differences between chemistry (HA80/20 vs SA80/20) and porosity 

(20% vs 30% strut porosity on SA) for OCN amount (*p<0.05, **p<0.005, ***p<0.0001. The 

colour refers to the higher value). 

 
Comparison Day1 Day2 Day3 Day4 Day7 

Day 

10 

Day 

14 

BARE 
HA vs SA ** ** - - - ** - 

20% vs 30% *** * - * - ** *** 

MSCGM 
HA vs SA - *** - - *** - - 

20% vs 30% - *** - * * - - 

Fn1 
HA vs SA ** - *** - - - ** 

20% vs 30% *** - *** - - ** ** 

Fn2 
HA vs SA * * ** * - - - 

20% vs 30% ** ** ** - - ** ** 

 

7.2.1 Osteoprotegerin content 

Figure 7-6 shows the OPG production from the samples after the different pre-

treatments. HAG80/20 and SAG80/20 showed a very similar trend, where 

OPG amount was significantly higher after Fn2 pre-conditionings at almost all 

the time points analysed, showing a peak at day4 (on HAG80/20) and at day7 

(on SAG80/20). Fn1 pre-treatment group also showed high OPG production 

(however lower than Fn2) which was significantly higher than the other two 

groups at day7 and 10 for HAG, and at day3 and 4 for SAG (Figure 7-6a and 
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b). On SAG80/30 OPG was significantly higher on the BARE group at day1 

and 4 and on MSCGM at day3 compared only to Fn1 group. The protein 

production peaked at day7 but there was not significant difference between 

pre-treatment groups (Figure 7-6c). These results suggest that Fn2 pre-

treatment is able to increase significantly OPG production only on the 20% 

strut porosity samples.  

 

 

Figure 7-6: Effect of pre-treatment on HMSC OPG production on HAG80/20 (a), 

SAG80/20 (b) and SAG80/30 (c) granules over a period of 14 days. 

Table 7-9 shows significant differences in OPG production affected by 

chemistry or strut porosity. The chemistry showed a significant influence in 

OPG amount only in the presence of Fn2 pre-treatment: in this case SAG 

promoted significantly higher OPG at 4 time points, and HAG did the same at 

the remaining 3. The strut porosity had a stronger influence in OPG 

production: in BARE conditions 30% strut porosity was significantly better in 

promoting the protein’s production, while on MSCGM and Fn2 there was an 

early positive effect from the 20% and a late one from 30%. Finally the Fn1 

pre-treatment showed only the 20% sample being better in supporting OPG 

a b 

c 
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production. These results taken together suggest that while the chemistry 

doesn’t have a significant influence, the 30% strut porosity is better in 

promoting OPG production; however the presence of Fn (especially Fn1) 

changes completely this scenario, showing the SA chemistry and the 20% 

strut porosity being the best to support OPG production. 

 

Table 7-9: Significant differences between chemistry (HA80/20 vs SA80/20) and porosity 

(20% vs 30% strut porosity on SA) for OPG amount (*p<0.05, **p<0.005, ***p<0.0001. The 

colour refers to the higher value). 

 
Comparison Day1 Day2 Day3 Day4 Day7 

Day 

10 

Day 

14 

BARE 
HA vs SA - * - - - * - 

20% vs 30% * - - * * ** - 

MSCG

M 

HA vs SA - - - - - - - 

20% vs 30% - *** * - * ** * 

Fn1 
HA vs SA - - - - ** - * 

20% vs 30% ** * * * - - - 

Fn2 
HA vs SA * ** ** * ** * ** 

20% vs 30% ** ** * *** - * * 

 

7.2.1 CICP content 

Figure 7-7 shows the CICP amount on each of the three groups of samples. 

On all the samples, the BARE and MSCGM pre-treatment groups showed 

significantly higher protein produced. In particular, on HAG80/20 at day1 

BARE showed significantly higher levels compared to the other groups, and 

MSCGM and Fn2 compared to Fn1; at day2 only from the BARE groups the 

level was significantly higher, while at day3 it was from both BARE and 

MSCGM groups compared to Fn2. At day4, however, this values dropped and 

Fn2 instead showed higher CICP production compared to BARE and MSCGM 

and at day7 compared only to MSCGM (Figure 7-7a). On SAG80/20 there is a 

very similar trend: BARE showed significantly higher levels of protein at day2, 
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3, 4 and 14; MSCGM group showed higher values at day3 and Fn2 at day7 

(Figure 7-7b). SAG80/30 showed similar effect of BARE and MSCGM pre-

treatments, which supported higher CICP amount at day1, 3, 4 and 7 (BARE) 

and day1 and 3 (MSCGM); no high later CICP amount was now found from 

Fn2 (Figure 7-7c). The CICP production peaked on all the three samples at 

day3.  

 

 

Figure 7-7: Effect of pre-treatment on HMSC extracellular matrix production as 

measured by CICP production on (a) HAG80/20, (b) SAG80/20 and (c) SAG80/30 

granules over a period of 14 days. 

Table 7-10 instead shows the effect of chemistry and strut porosity on CICP 

for each pre-treatment group. Regarding the effect of chemistry, on all the 

groups the samples seemed to produce the same amount of protein. Strut 

porosity on BARE and MSCGM was found to support higher protein synthesis 

on the higher strut porosity, while after Fn1 and Fn2 pre-treatments there was 

a similar effect between 20% and 30% strut porosity. Taken together these 

results show that the strut porosity significantly influence CICP production 

(30% higher than 20%), more than how much the chemistry does. However, 

a b 

c 
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the presence of Fn1 and Fn2 pre-treatments demolished the favourable effect 

of high strut porosity on CICP production. 

Table 7-10: Significant differences between chemistry (HA80/20 vs SA80/20) and 

porosity (20% vs 30% strut porosity on SA) for CICP amount (*p<0.05, **p<0.005, 

***p<0.0001. The colour refers to the higher value). 

 
Comparison Day1 Day2 Day3 Day4 Day7 

Day 

10 

Day 

14 

BARE 
HA vs SA * - - * - - - 

20% vs 30% ** ** ** ** ** - - 

MSCGM 
HA vs SA - - - * - - - 

20% vs 30% - ** ** * * - ** 

Fn1 
HA vs SA - - ** - ** - - 

20% vs 30% - - - - * - - 

Fn2 
HA vs SA - - - - ** ** - 

20% vs 30% - - - - * - - 

 

7.2.2 VEGF production 

Figure 7-8 shows VEGF production from HAG80/20, SAG80/20 and 

SAG80/30. On HAG80/20 it was significantly higher on the Fn2 pre-treatment 

group at day1 (compared to the other three groups), day4 (compared to 

MSCGM and BARE), day10 and day14 (compared only to BARE). At day14 

also Fn1 group showed significantly higher production than BARE (Figure 

7-8a). On SAG80/20 VEGF production differently influenced by the pre-

treatments, depending by the time: at day1 Fn2 pre-treatment showed 

significantly higher amount than the other groups, at day3 and 4 BARE 

showed higher amount (compared to Fn1 and Fn2 and to MSCGM 

respectively), and at day10 was significantly higher from MSCGM, Fn1 and 

Fn2 compared to BARE (Figure 7-8b). SAG80/30 showed less sensitivity to 

pre-treatments on VEGF production: there was a significantly higher amount of 

protein from the BARE, MSCGM and Fn2 compared to Fn1 at day1, and at 

day4 from the BARE compared to the other groups (Figure 7-8c). Furthermore 

VEGF production peaked at day3 on SAG80/20 and SAG80/30 but didn’t 
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show a particular peak at any time point on HAG80/20. Table 7-11 shows the 

effect of chemistry and strut porosity on VEGF production after each pre-

treatment. Chemistry showed to not influence significantly VEGF production, in 

any pre-treatment conditions. Strut porosity instead showed to significantly 

influence VEGF production and to be sensitive to the pre-treatments with Fn: 

results showed a significantly higher amount of protein from the 30% strut 

porosity sample in BARE and MSCGM conditions, but the opposite or not 

significant difference from Fn1 and Fn2 pre-treatment groups. These results 

together suggest that strut porosity and pre-treatment conditions significantly 

influence VEGF production.  

 

 

Figure 7-8: Effect of pre-treatment on HMSC angiognentic potential as measured by 

VEGF production on (a) HAG80/20, (b) SAG80/20 and (c) SAG80/30 granules over a 

period of 14 days. 

 

 

a b 

c 
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Table 7-11: Significant differences between chemistry (HA80/20 vs SA80/20) and 

porosity (20% vs 30% strut porosity on SA) for VEGF amount (*p<0.05, **p<0.005, 

***p<0.0001. The colour refers to the higher value). 

 Comparison Day1 Day2 Day3 Day4 Day7 
Day 

10 

Day 

14 

BARE 
HA vs SA * - * - - - - 

20% vs 30% *** * - ** - *** ** 

MSCGM 
HA vs SA - - - - - - - 

20% vs 30% ** - - * - - - 

Fn1 
HA vs SA - - - - - - * 

20% vs 30% - - * - - - - 

Fn2 
HA vs SA - * - - - - ** 

20% vs 30% - * * - - - - 
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7.1 Discussion 

7.1.1 The influence of chemistry 

Calcium release 

As previously discussed (Chapter 1, Section 1.5) calcium is the most abundant 

ion in the body, and bone represents the body’s calcium reservoir. Its 

presence affects bone modeling and remodeling processes and many studies 

have been focused on identifying the role that calcium ions released from BGS 

have in directing the bone remodeling process. A study from Matsuoka dated 

1999 (Matsuoka et al., 1999) for example showed that an increasing 

concentration of extracellular calcium ions promotes osteogenic differentiation 

in vitro by increasing ALP activity in a dose-dependent manner up to 1.6-fold, 

and ALP, OCN and TGF-β gene expression from osteoblastic cells. Similar 

results were shown also from other studies: extracellular calcium ions were 

found to positively stimulate DNA synthesis and ALP activity of osteoblasts via 

monocytes in bone remodelling and  osteoblasts proliferation, directly and 

indirectly via monocytes (Kanatani et al., 1991).   Regarding the effect that 

calcium ions released directly from the BGS have in influencing the material-

mediated bone formation, an interesting work from Guth (Guth et al., 2011) 

looked at the release of ions from HA and SA discs under static and semi-

dynamic (SD) conditions, and using serum-free media (SFM) or serum-

containing media (C-MEM). The work showed that calcium ions were released 

only with C-MEM, from SA under both static and SD conditions, while on HA 

there was calcium depletion from the media but only under SD conditions. This 

suggested that serum proteins support this ionic exchange, and that SA more 

easily facilitates ion exchange between the material and the physiological 

environment compared to HA.   Moreover, a net release of calcium from the 

materials was not seen, suggesting that the high bioactivity of these materials 

is not a result of significant Ca ion dissolution.  

The results of the present study showed that the chemistry did influence 

calcium release especially on BARE samples where the presence of the 

silicon shifted the release of this ion from day4 to day1 (Figure 7-1a, b). In 
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general, on BARE and on MSCGM HA showed significantly more release of 

Ca compared to SA, but only at late time points. Furthermore, while with Fn1 

pre-treatment there was no significant difference between HA and SA, with 

Fn2 pre-treatment SA showed significantly higher Ca release than HA (only at 

day14). These results suggest that: firstly, in normal conditions (BARE) HA is 

better able to release high amount of calcium than SA, even if this difference is 

seen only at late time points (day10 and day14); secondly, that serum proteins 

are not able to influence and/or change this effect of chemistry in influencing 

calcium release; thirdly, that high concentrations of Fn are able to invert the 

effect that chemistry has in modulating Ca release by promoting higher Ca 

release from SA rather than HA (Table 7-4). Moreover, Fn1 conditionings 

seem to cover any differential influence that chemistry has in modulating Ca 

release.  

Compared with the study from Guth, these results are in disagreement. 

However, while her study was conducted on microporous discs and over a 

period of 28 days, the present study was conducted on porous granules and 

over a 14-days period. It is possible that these differences, especially the discs 

rather then the porous granules, play a role in influencing calcium release. 

Another difference between the studies is that in the present study the 

experiment was run in conjunction with cell culture, which is very likely to have 

influenced the release of the ion from the samples and therefore influenced 

the final results. Some other studies have revealed a greater biomimetic 

precipitation of a bone-like apatite on Si-substituted CaP materials (where 

bone-like apatite is defined as a biologically equivalent carbonated HA) and 

the relative ability of a surface to support its nucleation has been associated 

with a greater biological activity. This greater biological activity is thought to be 

due to a more favorable adsorption and incorporation of biological species at 

the surface of the implant that helps the subsequent attachment of cells 

(Ducheyne and Qiu, 1999). Si-substituted calcium phosphate materials are 

thought to show an enhanced biomimetic precipitation through different 

mechanisms: by increasing the solubility of the material by the creation of 

defects in the lattice (Porter, 2006) (Reid et al., 2005), by generating a more 

electronegative surface (Vandiver et al., 2005), and by generating a smaller 
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grain size, facilitating an increased dissolution at the surface (Porter, 2006). 

Calcium release can be seen as a preliminary step for biomimetic precipitation 

and in the present study it was seen to be enhanced preferably on the HA, in 

disagreement with the mentioned studies. A possible explanation for this 

discordance can be that the presence of stem cells on the surface influenced 

the ionic release from the material, supporting a higher release of calcium from 

HA in BARE and MSCGM conditions, and a higher one from SA after pre-

treatment with Fn2 at late time points (day14).  

Cell proliferation: DNA content and Total Protein 

The positive effect that the presence of the silicon has on cell proliferation has 

previously been demonstrated (Rashid et al., 2008)(Botelho et al., 2006) (Guth 

et al., 2010c). Looking at the effect that chemistry seemed to have on DNA 

amount comparing HAG80/20 and SAG80/20, the present results are in fact in 

agreement with the previous studies (using dense discs instead of porous 

granules) which demonstrated higher cell number on SA compared to HA 

(Botelho et al., 2006). The reasons why the presence of silicon in the HA 

structure has a positive effect towards osteogenesis has long been debated, 

as discussed in Chapter 4 Section 4.4.3. In the present study, HA and SA 

porous granules were compared for their ability to stimulate cell proliferation 

by means of both DNA content and Total Protein production. In terms of 

variation with chemistry results of the two analyses are consistent. In both of 

them, chemistry did not appear to influence cell proliferation dramatically, 

affecting more the timing rather than the absolute amount of DNA or total 

protein produced. The DNA amount (Table 7-5) on BARE samples was 

significantly influenced by the presence of the silicon at a very early time point 

(day1) when SA showed greater cell proliferation than HA; after that HA also 

showed at two later time points higher DNA amount. The pattern of total 

protein production was very different to that of total DNA, peaking at day2 

rather than increasing with time, suggesting that it may not be a reliable 

indicator of cell proliferation. This difference could suggest that DNA and total 

protein are not 100% comparable, therefore that there could be some 

differences between the actual number of cells (given by the DNA amount) 

and their activity (given by the level of total protein).   
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The effect of pre-treatments on DNA amount and protein production didn’t 

show to change substantially the results. These results suggest that the 

chemistry was able to influence cell proliferation more in its time course than in 

its absolute value, with the presence of the silicon supporting a faster higher 

cell proliferation than HA, effect which was moreover independent by the 

presence of serum proteins or Fn.     

Cell differentiation: ALP specific activity and Osteocalcin 

production 

Alkaline Phosphatase is an enzyme whose activity is highly expressed in 

differentiated osteoblasts cells, and its role in bone mineralization has been 

extensively proved (Chapter 1, Section 1.6.1). For this reason, the specific 

activity of this enzyme has been extensively used as a marker for osteoblast 

differentiation. In the present experiments, ALP specific activity was 

normalized by DNA amount, analyzed and then statistically compared 

between samples with differences in chemistry, strut porosity or pre-

treatments.  

Osteocalcin  is a protein present in the organic part of bone matrix, and plays 

an essential role the process of bone formation. Its synthesis is vitamin-K-

dependent and its activity is Ca-dependent. Because of its role in bone 

formation and because it is synthesized by osteoblasts, it is widely used as a 

marker for osteoblasts differentiation.  

 

The present results show that chemistry has a relevant effect on osteoblast 

differentiation. A significantly higher ALP activity was observed on HA at early 

time points, and on SA at later time points on BARE samples; however, this 

effect was abolished by the presence of serum proteins or Fn, which instead 

showed a significantly higher ALP activity only on HA (Table 7-7). Regarding 

OCN production, it was found to be significantly higher on HA on both BARE 

and MSCGM groups, but after Fn1 or Fn2 pre-treatments SA supported higher 

production of the protein at different time points (Table 7-8). These results are 

in relative discordance with previous studies showing instead the higher cell 

differentiation potential from SA rather than HA materials. A study from 

Botelho for example (Botelho et al., 2006), comparing the cell behavior of 
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human osteoblasts cells between HA, 0.8wt% and 1.5wt% silicon substituted 

HA,  showed higher ALP activity at day7 from 0.8wt% SA compared to HA, 

and higher OCN levels in the media from the same chemistry at day1 and 

day5. However, the materials used for the latter study were dense discs. Also, 

the cells used were human OBS and not mesenchymal stem cells: this detail 

could have played a fundamental role in the discrepancy of the results, as 

HOB cells were received from donors between 55 and 65 years of age, which 

makes the cultures of these cells more differentiated than HMSC at an 

equivalent passage. Furthermore, the media used was supplemented with 

30µg/ml of vitamin C, which definitely has an influence in bone formation and 

could have affected the influence of chemistry on cell behavior. Moreover, in 

Botelho’s study, ALP was normalized by Collagen I amount, which makes 

harder the comparison between the two studies.   

The present results therefore suggest that HA porous granules were a better 

candidate to stimulate cell differentiation on BARE samples (by means of ALP 

and OCN) in the present conditions and incubation in HMSCGM. Pre-

treatment with either Fn1 or Fn2 was able to shift the effect on SA for ALP, 

and support higher OCN production on SA compared to HA, irrespectively of 

Fn concentration. 

Bone turnover: Osteoprotegerin and CICP production 

Osteoprotegerin (OPG) is a protein involved in the regulation of the skeletal 

development and homeostasis. It is a cytokine receptor for the RANKL, and 

intervenes in the inhibition of the differentiation of ostoclast precursors into 

mature osteoclasts, thus altering the bone turnover. As a result of its role in 

regulating the bone turnover, OPG is often used as a marker for osteogenic 

differentiation. CICP represents the C-terminal propeptide of the type-1 

collagen, which is related to Collagen I production and thus to bone matrix 

production. In the present study, the media was analyzed for OPG and CICP 

production from HMSC and correlated to chemistry and strut porosity of the 

materials and different pre-treatment conditions. Regarding the effect of 

chemistry, results showed a significantly higher OPG production on the 

Silicon-substituted HA at day1, and on HA at the later time point of day7 on 

the BARE group (Table 7-9), suggesting that chemistry may have had a 
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temporal effect only temporal on OPG production. However, when pre-treating 

the samples with serum proteins (MSCGM group), the effect of chemistry 

disappeared and there was no significant difference between HA and SA 

chemistries on OPG production at any time point analyzed. The presence of 

Fn changed the results: while using Fn1 pre-treatment cells followed the same 

behavior as on BARE samples but slightly delayed, using Fn2 pre-treatment 

SA supported significantly increased OPG production as compared to HA.  

Regarding CICP production, the presence of the silicon significantly increased 

the protein production only at few time points on BARE and MSCGM as 

compared to HA; the pre-treatment with serum proteins instead normalizes 

this behavior so that SA showed the same amount of CICP compared to HA 

(Table 7-10).  

The effect of the chemistry on protein production of cells in contact with HA or 

SA has already been studied by different groups. Botelho et al. (Botelho et al., 

2006) reported higher CICP amount from cells (HOBS) in contact with SA 

compared to HA at all the time points analyzed up to 25 days; results which 

are in accordance also with another study from Reffitt et al. (Reffitt et al., 

2003a) which showed how orthosilicic acid stimulates collagen 1 synthesis in 

HOBS and enhances osteoblastic differentiation. The positive effect that 

Silicate ions have when incorporated in a CaP (this time TCP instead of HA), 

has also been shown already by other studies like Fielding et al. (Fielding and 

Bose, 2013) where Si-substituted TCP showed to promote higher OCN, COL I 

levels and blood vessels density compared to pure TCP in vivo. These results 

suggest that the presence of the silicon in the apatite lattice favorites an earlier 

OPG production from HMSC on un-treated samples, and that a high 

concentration of Fn on the implant surface supports a greater production of 

this protein from the SA chemistry. Moreover, while CICP is only slightly 

increased by the presence of the silicon in the apatite structure, the pre-

treatment with serum proteins and Fn slightly balances the sensitivity to 

chemistry of protein production in HA and SA. 
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Blood vessel formation: VEGF production 

VEGF is a key regulator in angiogenesis. High VEGF values are related to 

high blood vessel formation, which supports nutrients and oxygen supply, 

which in turn sustains new tissue formation. Its presence therefore is 

fundamental for the development of a new bone, and it is often used as a 

marker for new tissue vascularization, and therefore development. VEGF 

production was not significantly influenced by the chemistry of the materials: 

as shown in Table 7-11, its production was significantly higher on HA and SA 

respectively at day1 and day3 on BARE samples, and not significantly 

different at the other time points; after pre-treatment with either serum 

proteins, Fn1 or Fn2, there wasn’t any significant difference in VEGF 

production between the two chemistries. 

Summary 

To summarize the effect of chemistry in directing cell response to BGS, the 

present results showed that HA performed better than SA in terms of ALP 

specific activity, OCN production and calcium release (only at late time points); 

meanwhile the presence of the silicon instead supported more rapid cell 

proliferation and OPG production compared to HA. The pre-treatment which 

was found to influence most significantly the effect of chemistry was Fn2, 

which favored an increase in calcium release, OPG and OCN production from 

SA samples. 

 

 

7.1.2 The influence of strut porosity 

Calcium release 

There is little literature about the effect of microporosity on calcium release 

from HA and SA ceramics during cell culture. In the previous section we 

observed a positive effect that HA had on promoting significantly more calcium 

release than SA, and also that Fn2 pre-treatment can change this effect. Now 

we are looking at the effect of two different strut porosities (20% and 30%) on 

calcium release from silicon substituted hydroxyapatite samples: SAG80/20 
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and SAG80/30. Table 7-4 shows that the lower strut porosity (20%) promoted 

significantly higher calcium release compared to SA PG samples with 30% 

strut porosity, at one time point from the BARE pre-treatment group at day7, 

from MSCGM treated samples at day4 and from Fn1 and Fn2 pre-treatment 

groups at days 10 and 14; however, MSCGM and Fn2 pre-treatments also 

increased the calcium release significantly from the 30% microporosity sample 

at days 14 and 1 respectively. Analyzing these results it seems complex to get 

an idea of the effect of microporosity and pre-treatments on calcium release. It 

could be possible that the presence of serum proteins hasten the calcium 

release from both the samples compared to the BARE group. However, the 

presence of Fn looks to play a role in influencing calcium response in 

dependence of its concentration: at sub-physiological concentration it 

significantly influenced release from the samples only from the 20% 

microporosity at day10 and day14, while Fn2 pre-conditioning promoted 

significantly higher release of calcium from the 30% microporosity compared 

to the 20% as early as day1. This could suggest that high concentrations of Fn 

support an initial burst in release of calcium from 30% microporosity compared 

to 20%, and that at later time points promotes sustained Ca release from lower 

percentage (20%) strut porosity granules. In general, there was a trend 

towards greater Ca release from the 20% strut porosity granules.  

Cell proliferation: DNA amount and Total Protein 

It has been clearly demonstrated that microporosity significantly affects the 

post-implantation response of porous HA scaffolds (Hing et al., 2005). An in-

vitro study from Annaz (Annaz et al., 2004) showed that cells are able to 

sense the microporosity and respond to this with protrusion of filipodia oriented 

towards the micropores, a rounded cellular morphology and extension of 

lamellipodia with a subsequent and organized cytoskeletal arrangement. In an 

in vivo study Holmes demonstrated that HA microporous implants can act as a 

bone graft substitute successfully as autografts (Holmes and Hagler, 1988). 

Looking at differences in levels of microporosities, some in vivo studies have 

found that a higher level of microporosity enhances osteointegration (Hing et 

al., 2004) (Campion et al., 2011). In our in-vitro study, however, we found that 

the lower microporosity (20%) enhanced a better cell proliferation response 
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compared to the higher. DNA amount was significantly higher on the 20% than 

on the 30% for 6 and 4 out of 7 time points, on the BARE and MSCGM treated 

groups respectively (Table 7-5). The presence of Fn slightly changed the 

response, where the 30% strut porosity supported significantly higher DNA at 

early time points (day1 and day2) for Fn1 and Fn2 groups respectively, 

although the 20% still supported higher results at day3 and day7. These 

results suggest that the presence of Fn in some way could mediate the higher 

biological activity of the granules with increased strut porosity by enhancing 

the cell proliferation earlier than on those with a lower porosity.  

 

The effect of strut porosity on total protein production was marked with a 

stronger peak at day2, however no pre-treatment significantly enhanced the 

total protein production between one of the two samples (Table 7-6). This kind 

of pattern of total protein production, however, suggests that it may not be a 

reliable indicator of cell proliferation (as already mentioned in the previous 

section). Moreover, pre-conditioning the samples with either MSCGM or Fn1 

was only found to support higher levels of DNA on SAG80/30 at early time 

points, which could indicate the role of these proteins in cell attachment. 

 

The results of this study, which show that cell proliferation is inhibited by an 

increase in strut porosity, seem to contradict in vivo literature. However, it is 

possible that the post-implantation biological response can not be directly 

correlated to an isolated cell proliferation response in vitro. 

This contradictory behavior has previously been observed, for instance, from 

Cerroni et al., who measured osteoblast-like cells proliferation and ALP activity 

on three different HA granules: one with 30-40%, and one with 50-60% total 

porosity and a commercially available coralline derived porous HA, whose 

percentage of porosity was not specified (Cerroni et al., 2002). The latter 

material supported significantly lower cell proliferation than the other sample. 

These results suggest that there could be other additional events at the 

implant interface that we were not able to reproduce in vitro and that influence 

further the in vivo response.  
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In summary there was trend towards higher levels of cell proliferation on the 

20% strut porosity sample, but total protein did not show a significant 

sensitivity to strut porosity.  

 

Cell differentiation: ALP specific activity and Osteocalcin production 

In vivo studies previously demonstrated the higher osteogenic potential of a 

silicon-substituted HA with higher strut porosity (Hing et al., 2004) (Campion et 

al., 2011)(Coathup et al., 2011)(Coathup et al., 2012)(Chan et al., 2012a).  

The results of ALP activity and OCN production are not only in line with these 

previous observations, but also help elucidate a clear effect that Fn has in 

mediating cellular response. Looking at Table 7-7 it is clear that strut porosity 

has a significant effect on ALP specific activity: the SAG80/30 sample, with 

high strut porosity, always showed a significantly higher activity, irrespectively 

of pre-treatment and of time point.  

Regarding OCN production, on BARE and MSCGM pre-treatments the results 

again demonstrated that higher strut porosity supports significantly higher 

OCN production. However, the pre-treatment with Fn completely changed the 

effect: on Fn1 and Fn2 pre-treatments lower strut porosity SAG80/20 sample 

supported significantly higher OCN production than SAG80/30 sample (Table 

7-8). These results clearly support the hypothesis that Fn is involved in 

mediating the biological activity of CaP based BGS ceramics.  

 

In general it is possible to conclude that strut porosity has a relevant effect on 

cellular differentiation of HMSC, with higher strut porosity enhancing it and 

with Fn supporting a higher biological response from a lower microporosity, 

but not supporting further differentiation on HAG80/30. 

 

Bone turnover: Osteoprotegerin and CICP production 

Microporosity was found to significantly affect OPG production. In Table 7-9 it 

can be seen that OPG production was significantly higher on the 30% strut 

porosity sample in 4 out of 7 time points on both BARE and MSCGM pre-

treatments. The presence of Fn was observed to significantly influence this 

response: after Fn1 and Fn2 pre-treatments the 20% strut porosity supported 

a significantly greater OPG production at 4 and 5 time points respectively. 
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Table 7-10 shows the statistical analysis of the CICP production: here the 30% 

strut porosity sample supported significantly higher collagen production 

compared to the 20% on BARE and MSCGM groups; after pre-treatment with 

Fn1 and Fn2, however, CICP production was not found significantly different 

between 20 and 30% strut porosity samples.  

These results suggest that in normal conditions higher strut porosity enhances 

higher OPG and CICP production. Moreover, that the effect of microporosity is 

deeply influenced by the presence of Fn, which was determinant in improving 

the OPG production from the lower strut porosity sample (20%).  

The fact that Fn was able to increase protein production from the 20% strut 

porosity sample rather than from the 30%, effect which was already seen also 

for OCN production, suggests that the activity of this protein is influenced by 

the microtopography of the material, in particular by its strut porosity. This 

could be due to the fact that Fn, in the presence of a higher presence of 

porous interconnectivity, can’t easily assume its active (or more active) 

conformation which then mediate the response to the stem cells. The 

presence of a lower (20%) percentage of strut porosity would instead facilitate 

the change of conformation of Fn and, by that, indirectly stimulate a higher 

biological response from the cells. The hypothesis that Fn undergoes a 

change of conformation after contact with materials has been well reported by 

different studies (Grinnell and Feld, 1982) (Michael et al., 2003) (Garcıá et al., 

1999b) and previously investigated in the present thesis (Chapter 4). 

 

Blood vessel formation: VEGF production 

The same effect of strut porosity seen on the production of OPG and OCN is 

also seen for the production of VEGF. Table 7-11 shows that, also for VEGF, 

the amount of the protein was significantly higher on the 30% microporosity 

sample compared to the 20%, after BARE and MSCGM pre-treatments; 

however, after pre-treatment with either Fn1 or Fn2, the amount of protein 

produced decreased significantly. This inhibitory effect, however, was not seen 

from the 20% microporosity sample.  

These results suggest that, when there is no pre-treatment, a higher 

percentage of strut porosity supports a better cellular response than a lower 

strut porosity: this could be due to the fact that pores interconnectivity is 
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fundamental to help the formation of a vascular network, essential to support 

new bone formation. These results are in accordance with previous in vivo 

studies which demonstrated that faster bone apposition in microporous 

scaffolds with >20% strut porosity was linked to the rate of blood vessels 

development (Hing et al., 2005). The evidence that Fn was able to influence 

the cell response only from a specific material microporosity pattern (20% strut 

porosity) suggests that the mechanisms which undergo its activity are quite 

complex.  

The topography of the material surface can influence the adsorption of 

proteins (thus their effect on cell response) in different ways: it can either be 

that the higher surface area, due to an increase in interconnectivity between 

pores, influences the quantity of the proteins adsorbed, or it can be that the 

different topography of the materials influences the way proteins interact and 

are adsorbed on its surface. Fn could, for example, need a conformational 

change in order to mediate the cell response between materials and cells: it 

could be possible that this conformational change cannot easily happen if the 

percentage of microporosity is too high (due to steric constrains, for example), 

which would consequently lead to affect only the materials with a lower 

percentage of microporosity (20%).   

The cellular response to bioactive glass 

Bioactive glasses are an extensively studied group of biomaterials which 

contain the silicate group along with other ionic groups. The surface reactions 

of these materials in biological media is initiated by the rapid loss of sodium 

ions from the surface and this loss of ions leads to the localized breakdown of 

the silica network forming silianol groups, which repolymerizes into a silica-rich 

porous surface layer. The loss of soluble silica from the surface of these 

materials has been implicated in the proliferation of osteoblasts at the surface 

of the glass. Bioactive glasses are infact thought to be able to stimulate bone 

regeneration as much as bioactive ceramics do. A lot of research is therefore 

currently ongoing in order to make these materials reaching their commercial 

potential, and a number of available present a range of compositions with 

varying solubility. As for bioactive ceramics, also for bioactive glasses one of 

the main objectives of the current research is to identify how materials’ cues 
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and properties influence the cellular response, and the chemistry of the 

material is one of the most studied properties. In vitro studies indicate that 

their osteogenic properties are due to their dissolution products stimulating 

osteoprogenitor cells at the genetic level.  

Different studies have looked at the interaction of these materials with 

osteoblasts in vitro: Silver in 2001 demonstrated that neither osteoblastic cell 

proliferation nor cellular metabolic activity changed significantly between three 

different bioactive glasses (Silver et al., 2001); Human primary osteoblasts 

when cultured on foamed bioglass 58S exhibited attachment, proliferation and 

mineralised nodule formation (Gough et al., 2004); The ionic dissolution 

products of Bioglass™ 45S5 (solutions containing Na, Ca, P and Si ions) 

when mixed with culture medium resulted in a 155% increase in proliferation of 

osteoblast in comparison to the control (Xynos et al., 2000); Zeolite A (sodium 

aluminiumsilicate) was shown to increase proliferation and differentiation when 

normal adult human osteoblasts-like cells were cultured on these materials 

(Keeting et al., 1992). 

Reffitt et al (Reffitt et al., 2003b) studied the effects of soluble silicon on three 

forms of early osteoblastic cell lines (human osteosarcoma cell line MG63, 

primary osteoblast cells derived from human bone marrow stromal cells and 

osteoblast precursor HCCI cell line) . They demonstrated that with the addition 

of 5-20μM of orthosilicic acid (0.28- 0.56 μg.ml-1 Si) to the culture medium 

increased the production of type 1 procollagen liberated in all cell lines. The 

effect was highly significant in the MG-63 cell line (1.75 fold increase). 

However, addition of orthosilicic acid at supraphysiological levels of 50 μM (1.4 

μg.ml-1 Si) lead to a smaller increase in collagen type 1 synthesis in the MG-

63 and HCCI cell lines. Silicon addition to the culture at physiological levels 

also enhanced the production of bone formation markers such as alkaline 

phosphatase activity and osteocalcin synthesis. 

Summary 

To summarize the effect of strut porosity, from the results of this study it is 

clear that a lower strut porosity percentage (20%) supported better calcium 

release and cell proliferation, while a higher strut porosity (30%) positively 
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influenced cell differentiation, and synthesis of important proteins like OCN, 

OPG, CICP and VEGF.  

 

 

 

7.1.1 The influence of pre-treatment with proteins 

Calcium release 

Figure 7-1 shows the effect of pre-treatment on the release of calcium from 

each sample.  On HAG80/20 the BARE group showed significantly higher 

release of calcium compared to the other groups at 4 time points out of 7;  

SAG80/20 showed significantly higher Ca release from the BARE and also 

from the MSCGM pre-treatment group at early time points (day1 and day2). 

Similarly, SAG80/30 showed significantly higher Calcium release from the 

BARE and MSCGM groups, at day1, 4 and 10 and day1, 2 and 3 respectively. 

  

The evidence that BARE conditioning showed a better Ca release 

irrespectively of chemistry and microporosity, could suggest that the presence 

of species pre-adsorbed at the surface of the implant negatively influence the 

ion release): this could potentially be a mere physical interference of the 

adsorbed proteins that obstacle the release of ions from the implant surface. 

However, the MSCGM pre-conditioning supported higher levels released only 

from the two SAG samples, but non from the HAG. It is possible to 

hypothesize that the calcium release from a surface pre-treated with MSCGM 

is significantly relevant only Silicate substituted HA, because of the higher 

protein-binding character of the silicate substituted HA. 

In general it is possible to say that on HA the pre-treatment with proteins 

lowered calcium release, while on SA sample the pre-treatment with MSCGM 

equalized the effect of BARE in the release of calcium. Pre-treatments with Fn 

instead didn’t show to enhance significantly calcium release. 

 

Cell proliferation: DNA amount and Total Protein 
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Looking at the effect that pre-conditioning with proteins had on DNA amount, 

HAG80/20 and SAG80/20 showed a significantly higher cell proliferation only 

from the BARE pre-treatment group at day4 and 7 and at day1, 7 and 10 

respectively (Figure 7-2). Differently, on SAG80/30 the DNA amount was 

found to be very similar between treatment groups, with a significantly higher 

value only from the Fn1 pre-treatment group at day1 and 3 (Figure 7-2c). 

These results suggest that the presence of additional proteins on the surface 

of the materials prevents the proliferative effect present in BARE conditions. 

However, in the presence of a higher strut porosity, the pre-treatment with 

sub-physiological concentrations of Fn supports a greater cell proliferation. 

 

The total protein analyses, on the other hand, showed to be only slightly 

influenced by proteins. While SAG80/30 didn’t show any significant difference 

in total protein amount between pre-treatment groups (Figure 7-3c), HAG80/20 

and SAG80/20 showed a significantly higher peak from the BARE and BARE 

and MSCGM groups respectively (Figure 7-3a, b).  

These results suggest that the total protein doesn’t reflect properly the cell 

proliferation, as it is also suggested by the fact that the total protein peaked as 

early as day2 and then showed lower values until day14.  

 

In general, SAG80/30 was found to be sensitive to sub-physiological 

concentrations of Fn, while there was no influence of protein pre-conditioning 

on samples with a lower strut porosity (HAG80/20 and SAG80/20).  

 

 

Cell differentiation: ALP specific activity and Osteocalcin production 

Figure 7-4 shows the ALP specific activity: on both HA and SA granules 80/20 

it was significantly higher after pre-conditioning with MSCGM and Fn1  

solutions (Figure 7-4a, b), while on SAG80/30 was shown to be significantly 

higher from the MSCGM pre-treatment group (Figure 7-4c). Moreover, ALP 

activity peaked earlier on silicon-substituted samples (day3) than on HA 

(day7).  

These results support the ones of OCN production (Figure 7-5), which showed 

to be significantly higher after MSCGM and Fn1 pre-treatments on HAG08/20, 
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after Fn1 and Fn2 pre-treatments on SAG 80/20, and from BARE and 

MSCGM on SAG80/30. These results suggest that the pre-conditioning with 

Fn significantly increases ALP activity and OCN production from HAG80/20 

and SAG80/20, while SAG80/30 showed significantly higher cell differentiation 

in either BARE conditions or after the pre-treatment with serum proteins.  

 

 

Bone turnover: Osteoprotegerin and CICP production 

Figure 7-6 shows that on both HAG80/20 and SAG80/20 OPG amount was 

significantly higher after pre-treatments with either Fn1 or Fn2; however, on 

SAG80/30 Fn didn’t show any effect, but the BARE and the MSCGM pre-

treatments showed a significant higher production of the protein (Figure 7-6c). 

Fn seems to play a role in mediating the influence that strut porosity has 

towards OPG synthesis, in particular increasing cell response on the sample 

with the lower microporosity (20%). Conversely, when the strut porosity 

increases, the presence of Fn diminishes OPG production.  

 

Figure 7-7 shows the results for CICP production: SAG80/30 showed 

significantly higher protein production from the BARE and the MSCGM pre-

treatment groups. A similar effect was found from SAG80/20 sample, while the 

CICP production from the HAG80/20 was significantly higher from the BARE 

and Fn2 pre-treatment groups. Moreover, all the samples showed the same 

trend of collagen production over time, with peak of CICP production as early 

as day3 and after a slightly lower level of protein production. These results 

suggest, again, that Fn supports a better cell response only from granules with 

a lower strut porosity (20%), and that a strut porosity of 30% shows to perform 

better without the presence of either serum proteins or Fn pre-conditionings.  

 

Blood vessel formation: VEGF production 

Figure 7-8 shows that Fn played an important role in enhancing VEGF 

production from the HA and SA 80/20 granules compared to the other pre-

treatment groups. However, on SAG80/30 VEGF production was higher from 

the BARE group (Figure 7-8c), and also was found to be the highest VEGF 

amount between the three samples.  
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These results suggest that Fn plays a significant role in mediating the effect of 

material properties on cell response only on the lower strut porosity samples 

(20%). The fact that the highest VEGF production was still seen from the 

SAG80/30 sample, suggests that the strut porosity is the property of the 

material which plays a bigger role compared to chemistry.  

These results, moreover, reflect the same effect seen for the OPG, OCN and 

CICP production and ALP specific activity, suggesting that the presence of the 

silicon, together with a high strut porosity is able to mediate a higher biological 

activity in vitro.   

Summary 

The Error! Reference source not found. summarizes how material 

properties (chemistry and microporosity) and pre-treatments influenced the 

different cell markers analysed in the present study. These results show that 

the effect of proteins pre-treatments resulted following two different trends: in 

one, which was seen on calcium release and on cell proliferation, the serum 

proteins and Fn1 pre-treatments enhanced the cell response on the sample 

with the highest strut porosity SAG80/30. The second, which was seen for 

OCN, OPG, CICP and VEGF production, showed that Fn pre-treatments 

support greater cellular response on HA and SA 80/20 granules, while 

SAG80/30 shows a higher cell response in BARE conditions. 

Table 7-12: Summary of the effects of conditions and parameters that had a positive 

effect on cell behaviour 

 Pre-treatment Chemistry Microporosity 

Ca BARE HA 20% 

DNA BARE  20% 

ALP MSCGM HA 30% 

OCN MSCGM, Fn1, 

Fn2 

HA (BARE, 

MSCGM) 

SA (Fn1, Fn2) 

30% (BARE, 

MSCGM) 

20% (Fn1, Fn2) 
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OPG Fn2, BARE  30% (BARE, 

MSCGM) 

20% (Fn1, Fn2) 

CICP BARE, MSCGM, 

Fn2 

 30% (BARE, 

MSCGM) 

VEGF Fn2, BARE  30% (BARE, 

MSCGM) 

20% (Fn1, Fn2) 

 

These results therefore suggest that the presence of a protein layer of either 

serum proteins or serum proteins with Fn, is able to improve cell proliferation 

on SAG80/30 and cell differentiation on HA and SA 80/20 granules, while the 

higher biological activity shown by the SAG80/30 sample is not entirely 

mediated by the presence of this protein layer.  

7.2 Conclusions 

To summarize, the present results showed that chemistry plays a secondary 

role in influencing cell response, where a higher effect on ALP activity, OCN 

production and calcium release was found from the HA chemistry.The higher 

percentage of strut porosity responded better than the lower one, especially in 

terms of cell differentiation and proteins production.  Furthermore, Fn showed 

to be able to positively influence cell response only on granules with a 20% 

strut porosity, irrespectively by the chemistry. 
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8 Executive Summary and Future Work 

8.1 Executive Summary 

8.1.1  Material properties 

The effect of material chemistry, morphology and strut porosity influenced 

differently the response of Fn adsorption and cell attachment, proliferation and 

differentiation.  

The following tables (Table 8-1, Table 8-2) summarize how chemistry and 

microporosity influenced Fn adsorption, and cell attachment, proliferation and 

differentiation in dependence of different pre-treatments.  

Chemistry: 

Table 8-1: The effect of chemistry on Fn adsorption and cell response in dependence of 

pre-treatments 

 
Fn 

Adsorption 

Cell 

Attachment 

Cell 

Proliferation 

Cell 

Differentiation 

BARE - = = HA 

MSCGM - = = HA 

Fn1 
= SA = 

HA (ALP) SA 

(OCN) 

Fn2 
SA = SA 

HA (ALP) SA 

(OCN) 

  

Microporosity: 

Table 8-2: The effect of microporosity on Fn adsorption and cell response in 

dependence of pre-treatments 

 Fn 

Adsorption 

Cell 

Attachment 

Cell 

Proliferation 

Cell 

Differentiation 
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BARE - 30% 20% 30% 

MSCGM - 30% 20% 30% 

Fn1 
= 20% = 

30% (ALP) 

20% (OCN) 

Fn2 
= 20% = 

30% (ALP) 

20% (OCN) 

 

The presence of the silicon was found to favour Fn adsorption but only in non 

competitive conditions, and cell attachment only if Fn was present as a pre-

treatment in particular concentrations. The stoichiometric HA chemistry was 

actually found to promote a greater cell response in terms of differentiation. 

The morphology of the materials was found to influence strongly the 

responses: the PG always performed better in terms of Fn adsorption and cell 

attachment compared to DD, and, as the response between DD and PG and 

between samples with same chemistry but different surface roughness was 

found to be significantly different, it is suggested that in in vitro studies aimed 

to clarify the mechanisms of actions of the biological response to bone grafts 

biomaterials, should always use samples that resemble as closely as possible 

the actual bone grafts morphology/topography used in the market. The strut 

porosity showed to be a relevant factor in mediating the bone grafts biological 

response: a higher percentage of strut porosity seemed to promote a better 

cell attachment and stem cell differentiation towards the osteoblast lineage, 

without the use of any protein pre-treatment.  Differently, a lower strut porosity 

percentage supported a better cell attachment and cell response only after 

pre-treatment with Fn and serum proteins. 

 

8.1.2 The Role of Fn 

The role of Fn in mediating the effects of bone grafts material properties in the 

biological response in vitro, showed to be dependent by different factors. 
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Firstly, its adsorption on the surface of the materials showed to be dependent 

by its own concentration, suggesting that in in vitro studies aimed to clarify its 

mechanisms of actions should always be used physiological concentration of 

this protein. Secondly, its adsorption was also found to be dependent by the 

simultaneous presence of other protein species: its adsorption on the surface 

on the materials was diminished by their presence, suggesting a possible 

competition at the binding sites which should be taken into consideration when 

performing in vitro Fn assessment studies. Thirdly, even if its adsorption 

showed to be non dependent by material strut porosity, its pre-treatment on 20 

and 30% strut porosity bone grafts influenced differently the cellular response. 

This evidence, together with the confirmation of a change in the protein 

secondary structure after contact with either HA or SA samples, suggests that 

sterical effects can be involved in the Fn-mediated bone grafts cell response, 

and that it is possible to hypothesize that it’s the protein’s conformation 

(quality) rather than its quantity to affect bone grafts biological response. 

8.1.3 Study Limitations 

One of the limitations of the present study regards the protein conformation 

analysis done on Fn using Circular Dichroism technique. This analysis was 

performed on Fn solution after contact with the materials, but not on the 

protein actually adsorbed on their surfaces. Unfortunately this technique 

enables to analyse conformational properties only from proteins in clear 

solutions, and there are not alternative techniques that enable a quick and 

easy conformational change analysis like CD.  

Another study limitation is the fact that the effect of chemistry and roughness 

of the materials on cellular response, whose experiments are described in 

Chapter 6, was only analysed at one time point. This didn’t allow the analysis 

of any possible effect of chemistry, roughness, or their combined effect on the 

timing of the cellular response. Moreover there are possibilities that the 

highest expression of relevant cell markers were missed because didn’t 

necessarily happen at day 7. For this reason, and to enable a better 

understanding of material’s properties on cellular response, the next 

experimental studies (Chapter 7) were carried out on a period as long as 14-

days, enabling the analysis at seven different time-points.   
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Another study limitation regards the cell study set up. Experiments were 

carried out in static conditions, which could mislead the effect that the material 

properties analysed have in a real physiological environment to the cellular 

resonse. It has infact been established that mechanical stimuli, constant 

hoxygen and nutrient supply, and other physiological cues that can only be 

reproduced by dynamic cell culture conditions, are a more realistic 

representation of the real physiological environment. 

8.2 Future Work 

The results of this study further highlight the complex and intriguing 

dependence of the cellular response to both organic (proteins) and inorganic 

(bone grafts material properties) cues when in contact with BGS. The 

evidence of these findings opens the doors to the need to further analyze this 

dependence firstly, in vitro, and subsequently in vivo.  

 Further work is required to determine whether the cellular attachment of 

HMSC to SA and HA porous granules chemistry and strut porosity 

shows the same trends seen from the MG63 osteoblasts-like cells. 

 The role of serum proteins in mediating the cellular response to bone 

graft substitutes should be further investigated. For this purpose, cell 

culture in a serum-free media could help to define more precisely which 

proteins are involved in modulating the cellular response, and which are 

the mechanisms of actions of this modulation. 

 The study of the biological response could be further investigated by 

extending cell culture experiments to multiple time points. 

 Further cell morphology studies are required in order to elucidate how 

material properties influence the cells’ shape, and if and how this has 

an effect on the cellular response 

 Additional cellular markers could be analysed to clarify further the 

biological response to BGS. For example the analysis of markers 

involved in the physiological inflammatory response during bone 
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healing (such as IL-6, IL-8, TNF-α) could be useful to determine wether 

or not BSG are able to influence this process. 

 Finally, many studies show the increasing evidence of a need to 

reproduce in vitro an environment which resemble the in vivo conditions 

as close as possible: for this reason it is essential to try to develop any 

further in vitro work in dynamic (or at least, semi-dynamic) conditions 

 

9 Appendix 

 

 

Figure 9-1: Calibration curve of several dilutions of SR101-Fn in MEM solution, from 0 

to 16.65 µg/ml of protein concentration 
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Figure 9-2: Calibration curve of several dilutions of SR101-Fn in MEM+10% of FCS 

solution, from 0 to 16.6 µg/ml of protein concentration 

 

 

Figure 9-3: Calibration curve of OPG amount versus optical density at Day 2 
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Figure 9-4: Calibration curve of VEGF amount versus optical density  

 

 

 

Figure 9-5: Calibration curve of CICP amount versus optical density 
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Figure 9-6: Calibration curve of OCN amount versus optical density 

 

 

Figure 9-7: Calibration curve of Ca amount versus optical density 
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Figure 9-8: Calibration curve of DNA amount versus fluorescence intensity
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Stephansson, S.N., Byers, B.A., and Garcıá, A.J. (2002). Enhanced expression of the 

osteoblastic phenotype on substrates that modulate fibronectin conformation and integrin 

receptor binding. Biomaterials 23, 2527 – 2534. 

Stokes, G.G. (1852). On the change of refrangibility of light. Philosophical Transactions of 

the Royal Society of London 463–562. 

Van Straalen, J.P., Sanders, E., Prummel, M.F., and Sanders, G.T. (1991). Bone-alkaline 

phosphatase as indicator of bone formation. Clinica Chimica Acta 201, 27–33. 

Strong, D.M., Friedlaender, G.E., Tomford, W.W., Springfield, D.S., Shives, T.C., Burchardt, 

H., Enneking, W., and Mankin, H.J. (1996). Immunologic responses in human recipients of 

osseous and osteochondral allografts. Clinical Orthopaedics and Related Research 326, 

107–114. 

Sugimoto, T., Kanatani, M., Kano, J., Kaji, H., Tsukamoto, T., Yamaguchi, T., Fukase, M., 

and Chihara, K. (1993). Effects of high calcium concentration on the functions and 

interactions of osteoblastic cells and monocytes and on the formation of osteoclast-like 

cells. Journal of Bone and Mineral Research 8, 1445–1452. 

Sulaiman, S.B., Keong, T.K., Cheng, C.H., Saim, A.B., and Idrus, R.B.H. (2013). Tricalcium 

phosphate/hydroxyapatite (TCP-HA) bone scaffold as potential candidate for the formation 

of tissue engineered bone. The Indian Journal of Medical Research 137, 1093. 

Taichman, R.S. (2005). Blood and bone: two tissues whose fates are intertwined to create 

the hematopoietic stem-cell niche. Blood 105, 2631–2639. 

Teitelbaum, S.L., Abu-Amer, Y., and Ross, F.P. (1995). Molecular mechanisms of bone 

resorption. Journal of Cellular Biochemistry 59, 1–10. 

Thomas, K.A. (1996). Vascular endothelial growth factor, a potent and selective angiogenic 

agent. Journal of Biological Chemistry 271, 603–606. 

Thomas, C.H., McFarland, C.D., Jenkins, M.L., Rezania, A., Steele, J.G., and Healy, K.E. 

(1997). The role of vitronectin in the attachment and spatial distribution of bone-derived 

cells on materials with patterned surface chemistry. Journal of Biomedical Materials 

Research 37, 81–93. 



303 

 

Tomford, W., Malinin, T., Moore, T., Rodrigo, J., Strobos, J., and Woodcock, J. (1995). 

Symposium: Current concepts and controversies in tissue banking. Contemporary 

Orthopaedics 30, 349–361. 

Tortora, G.J., and Derrickson, B.H. (2008). Principles of anatomy and physiology (John 

Wiley & Sons). 

Toth, J., Lynch, K., and Hackbarth, D. (1993). Ceramic-induced osteogenesis following 

subcutaneous implantation of calcium phosphates. Bioceramics 6, 9–13. 

Tracy, B.M., and Doremus, R.H. (1984). Direct electron microscopy studies of the bone—

hydroxylapatite interface. Journal of Biomedical Materials Research 18, 719–726. 

Ubara, Y., Fushimi, T., Tagami, T., Sawa, N., Hoshino, J., Yokota, M., Katori, H., Takemoto, 

F., and Hara, S. (2003). Histomorphometric features of bone in patients with primary and 

secondary hypoparathyroidism. Kidney International 63, 1809–1816. 

Ubara, Y., Tagami, T., Nakanishi, S., Sawa, N., Hoshino, J., Suwabe, T., Katori, H., 

Takemoto, F., Hara, S., and Takaichi, K. (2005). Significance of minimodeling in dialysis 

patients with adynamic bone disease. Kidney International 68, 833–839. 

Underwood, P.A., and Bennett, F.A. (1989). A comparison of the biological activities of the 

cell-adhesive proteins vitronectin and fibronectin. Journal of Cell Science 93, 641–649. 

Urist, M.R. (1965). Bone: formation by autoinduction. Science 150, 893–899. 

Vaananen, H., Zhao, H., Mulari, M., and Halleen, J.M. (2000). The cell biology of osteoclast 

function. Journal of Cell Science 113, 377–381. 

Vacanti, J.P., Morse, M.A., Saltzman, W.M., Domb, A.J., Perez-Atayde, A., and Langer, R. 

(1988). Selective cell transplantation using bioabsorbable artificial polymers as matrices. 

Journal of Pediatric Surgery 23, 3–9. 

Valeur, B., and Berberan-Santos, M.N. (2013). Molecular fluorescence: principles and 

applications (John Wiley & Sons). 

Van Apeldoorn, A., Aksenov, Y., Stigter, M., Hofland, I., De Bruijn, J., Koerten, H., Otto, C., 

Greve, J., and Van Blitterswijk, C. (2005). Parallel high-resolution confocal Raman SEM 

analysis of inorganic and organic bone matrix constituents. Journal of The Royal Society 

Interface 2, 39–45. 

Vandiver, J., Dean, D., Patel, N., Bonfield, W., and Ortiz, C. (2005). Nanoscale variation in 

surface charge of synthetic hydroxyapatite detected by chemically and spatially specific 

high-resolution force spectroscopy. Biomaterials 26, 271 – 283. 

Vogler, E.A. (1998). Structure and reactivity of water at biomaterial surfaces. Advances in 

Colloid and Interface Science 74, 69–117. 



304 

 

Vroman, L., and Adams, A.L. (1986). Adsorption of proteins out of plasma and solutions in 

narrow spaces. Journal of Colloid and Interface Science 111, 391–402. 

Van Wachem, P.B., Vreriks, C.M., Beugeling, T., Feijen, J., Bantjes, A., Detmers, J.P., and 

van Aken, W.G. (1987). The influence of protein adsorption on interactions of cultured 

human endothelial cells with polymers. Journal of Biomedical Materials Research 21, 701–

718. 

Wada, T., Nakashima, T., Hiroshi, N., and Penninger, J.M. (2006). RANKL–RANK signaling 

in osteoclastogenesis and bone disease. Trends in Molecular Medicine 12, 17 – 25. 

Wakitani, S., Kimura, T., Hirooka, A., Ochi, T., Yoneda, M., Yasui, N., Owaki, H., and Ono, 

K. (1989). Repair of rabbit articular surfaces with allograft chondrocytes embedded in 

collagen gel. Journal of Bone & Joint Surgery, British Volume 71, 74–80. 

Wang, C., Duan, Y., Markovic, B., Barbara, J., Howlett, C.R., Zhang, X., and Zreiqat, H. 

(2004a). Phenotypic expression of bone-related genes in osteoblasts grown on calcium 

phosphate ceramics with different phase compositions. Biomaterials 25, 2507–2514. 

Wang, C.Y., Duan, Y.R., Markovic, B., Barbara, J., Rolfe Howlett, C., Zhang, X.D., and 

Zreiqat, H. (2004b). Quantitative analysis of osteoprotegerin and RANKL expression in 

osteoblast grown on different calcium phosphate ceramics. Key Engineering Materials 254, 

713–716. 

Wang, D.S., Yamazaki, K., Nohtomi, K., Shizume, K., Ohsumi, K., Shibuya, M., Demura, H., 

and Sato, K. (1996). Increase of vascular endothelial growth factor mRNA expression by 1, 

25-dihydroxyvitamin D3 in human osteoblast-like cells. Journal of Bone and Mineral 

Research 11, 472–479. 

Weiss, M.J., Henthorn, P.S., Lafferty, M.A., Slaughter, C., Raducha, M., and Harris, H. 

(1986). Isolation and characterization of a cDNA encoding a human liver/bone/kidney-type 

alkaline phosphatase. Proceedings of the National Academy of Sciences 83, 7182–7186. 

Whitmore, L., and Wallace, B. (2004). DICHROWEB, an online server for protein secondary 

structure analyses from circular dichroism spectroscopic data. Nucleic Acids Research 32, 

W668–W673. 

Whitmore, L., and Wallace, B.A. (2008). Protein secondary structure analyses from circular 

dichroism spectroscopy: methods and reference databases. Biopolymers 89, 392–400. 

Wilson, C.J., Clegg, R.E., Leavesley, D.I., and Pearcy, M.J. (2005). Mediation of 

biomaterial-cell interactions by adsorbed proteins: a review. Tissue Eng. 11, 1–18. 

Wise, D.L., Trantolo, D.J., Lewandrowski, K.-U., Gresser, J.D., Cattaneo, M.V., and 

Yaszemski, M.J. (2000). Biomaterials engineering and devices: human applications 

(Springer). 



305 

 

Wolff, J. (1870). Ueber die innere Architectur der Knochen und ihre Bedeutung für die 

Frage vom Knochenwachsthum. Archiv Für Pathologische Anatomie Und Physiologie Und 

Für Klinische Medicin 50, 389–450. 

Xia, L., Lin, K., Jiang, X., Xu, Y., Zhang, M., Chang, J., and Zhang, Z. (2013). Enhanced 

osteogenesis through nano-structured surface design of macroporous hydroxyapatite 

bioceramic scaffolds via activation of ERK and p38 MAPK signaling pathways. Journal of 

Materials Chemistry B 1, 5403–5416. 

Yamada, K.M., and Olden, K. (1978). Fibronectins—adhesive glycoproteins of cell surface 

and blood. Nature 275, 179–184. 

Yamagami, S., Kawashima, H., Tsuru, T., Yamagami, H., Kayagaki, N., Yagita, H., 

Okumura, K., and Gregerson, D. (1997). Role of Fas-Fas ligand interactions in the 

immunorejection of allogeneic mouse corneal transplants. TRANSPLANTATION 64, 1107–

1111. 

Yang, Y., Cavin, R., and Ong, J.L. (2003). Protein adsorption on titanium surfaces and their 

effect on osteoblast attachment. Journal of Biomedical Materials Research Part A 67, 344–

349. 

Yaszemski, M.J., Payne, R.G., Hayes, W.C., Langer, R., and Mikos, A.G. (1996). Evolution 

of bone transplantation: molecular, cellular and tissue strategies to engineer human bone. 

Biomaterials 17, 175–185. 

Yoshikawa, T., Ohgushi, H., Dohi, Y., and Davies, J.E. (1997). Viable bone formation in 

porous hydroxyapatite: marrow cell-derived in vitro bone on the surface of ceramics. Bio-

Medical Materials and Engineering 7, 49–58. 

Young, R.W. (1963). 14 Nucleic Acids, Protein Synthesis and Bone. Clinical Orthopaedics 

and Related Research 26, 147–160. 

Young, R.A., and Spooner, S. (1970). Neutron diffraction studies of human tooth enamel. 

Archives of Oral Biology 15, 47 – 63. 

Yuan, H., Yang, Z., Li, Y., Zhang, X., De Bruijn, J.D., and De Groot, K. (1998). 

Osteoinduction by calcium phosphate biomaterials. Journal of Materials Science: Materials 

in Medicine 9, 723–726. 

Yuan, H., Kurashina, K., Bruijn, J.D. de, Li, Y., Groot, K. de, and Zhang, X. (1999). A 

preliminary study on osteoinduction of two kinds of calcium phosphate ceramics. 

Biomaterials 20, 1799 – 1806. 

Zheng, X., Huang, M., and Ding, C. (2000). Bond strength of plasma-sprayed 

hydroxyapatite/Ti composite coatings. Biomaterials 21, 841 – 849. 



306 

 

Zhu, X.D., Fan, H.S., Xiao, Y.M., Li, D.X., Zhang, H.J., Luxbacher, T., and Zhang, X.D. 

(2009). Effect of surface structure on protein adsorption to biphasic calcium-phosphate 

ceramics in vitro and in vivo. Acta Biomaterialia 5, 1311 – 1318. 

Zreiqat, H., Evans, P., and Howlett, C.R. (1999). Effect of surface chemical modification of 

bioceramic on phenotype of human bone-derived cells. Journal of Biomedical Materials 

Research 44, 389–396. 

Zreiqat, H., Valenzuela, S.M., Nissan, B.B., Roest, R., Knabe, C., Radlanski, R.J., Renz, H., 

and Evans, P.J. (2005). The effect of surface chemistry modification of titanium alloy on 

signalling pathways in human osteoblasts. Biomaterials 26, 7579–7586. 

Zur Nieden, N.I., Kempka, G., and Ahr, H.J. (2003). In vitro differentiation of embryonic 

stem cells into mineralized osteoblasts. Differentiation 71, 18–27. 

 


