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Abstract  

 

Background: Altered autonomic nervous system (ANS) function has been proposed as 

a mechanism in the development of central sensitisation (CS) and visceral pain 

hypersensitivity (VPH). The contribution of the parasympathetic nervous system (PNS) 

and the factors that mediate differences in sensitisation to acid are unclear and their 

study will clarify risk factors for oesophageal pain hypersensitivity (OPH) in gastro-

oesophageal reflux disease. 

Aims:  To investigate psychophysiological and pharmacological manipulation of PNS 

tone in the development of OPH, and to determine factors which predict the 

development of OPH to acid infusion in healthy volunteers in a validated model of acid 

induced OPH. 

Methods: Pain thresholds to electrical stimulation in the proximal oesophagus were 

determined before and after a 30-minute distal oesophageal infusion of 0.15 mol/L 

hydrochloric acid in subjects. Sympathetic (SNS) and PNS parameters were measured 

at baseline and continuously thereafter. Subjects underwent psychological profiling for 

anxiety, depression, attachment vulnerability and personality type. Using this model, five 

studies were undertaken: Study 1 a pilot study to trail modulation suitability for further 

study used. In Study 2, subjects who demonstrated secondary hyperalgesia in the 

proximal non-acid-exposed oesophagus performed deep or sham breathing. Study 3 

subjects, who did not sensitise to acid, underwent a validated stress test to induce OPH. 

With Study 4, deep breathing with IV saline (placebo) or atropine (PNS antagonist) was 

used to evaluate deep breathing’s induced PNS tone in OPH reduction. Study 5, a 

genetic pilot study, exploring the role of the GCH-1 haplotype in VPH.  

Results: ANS control’s key role in CS was clarified. Deep breathing increased PNS tone 

and prevented acid-induced OPH in comparison to sham breathing and confirmed 

increased PNS tone’s reversal of OPH. Psychological factors of anxiety, alexithymia and 

attachment status influence ANS modulation of CS. Individuals’ predisposition to VPH 

due to psychogenetic profiles were clarified and their biopsychosocial role illustrated.  

Conclusions and Inferences: A mechanistic explanation for the analgesic effect of 

deep breathing is provided with potential therapeutic implications in the treatment of 

VPH syndromes. Further clinical study is warranted to develop cost-effective treatments 

for chronic VPH syndromes.  

 



 

 

 

 

16 

 

About the Author 

The author was educated at Newcastle High School, Kwazulu-Natal and 
The University of Pretoria - School of Medicine & Dentistry, South Africa, 
where he was awarded the degree Bachelor of Medicine and Surgery in 
1995. He completed his basic postgraduate medical training in London 
and gained membership of the Royal College of Psychiatrists in 2003, 
and concluded his higher specialist training in Psychiatry in 2009. He has 
been working as Clinical Fellow in Liaison Psychiatry of Gastroenterology 
at St Bartholomew’s and The Princess Grace Hospitals since 2003. 

Acknowledgements 

The work described in this thesis would not have been possible without 
the help and support from a number of colleagues and family members. 

 

I am indebted to Professor Qasim Aziz for his inspiration, mentorship and 
infectious enthusiasm. His guidance and supportive critique helped foster 
my interest and research ideas. Secondly to Professor Charles Knowles for 
his understanding of research methodology and tirelessly providing 
statistical advice for the studies in this thesis. 

 

I would also like to express my gratitude to Professor Gerald Libby and Dr 
Jennifer Gomborone for their unfailing moral support. 

 

I am grateful to Dr Susan Surguy and Dr Adam Farmer for their time, 
wisdom and invaluable problem solving comments. I would like to thank 
Dr Andrew Hubble for his friendship and technical assistance during my 
studies. 

 

I am grateful to the staff of Aalborg Hospital, Denmark, particularly 
Matias Nilsson, Dr Christina Brock & Professor Asbjørn Drewe, for 
supporting the studies presented in chapter 5; and to Dr David Bulmer & 
Dr Charles Mein, for supporting the studies presented in chapter 6. 

 

I would like to say thank you to my mother and father who have 
supported and encouraged me throughout my career in medicine. 
Finally, I am most thankful to my wife Elsa, whose endless and 
unconditional patience, understanding and support, which I often took 
for granted, was instrumental in me being able to complete this 
research.  



 

 

 

 

17 

 

Statement of Originality 

 

I, Claude Andrew Botha, confirm that the research included within this 

thesis is my own work or that where it has been carried out in 

collaboration with, or supported by others, this is duly acknowledged 

below and my contribution indicated. Previously published material is 

also acknowledged below. 

 

I attest that I have exercised reasonable care to ensure that the work is 

original, and does not to the best of my knowledge break any UK law, 

infringe any third party’s copyright or other Intellectual Property Right, or 

contain any confidential material. 

 

I accept that the College has the right to use plagiarism detection 

software to check the electronic version of the thesis. 

 

I confirm that this thesis has not been previously submitted for the award 

of a degree by this or any other university. 

 

The copyright of this thesis rests with the author and no quotation from it 

or information derived from it may be published without the prior written 

consent of the author. 

 

Signature:  

Date:   01/11/2013 

Details of collaboration and publications: 

Two	  publications	  are	  at	  present	  under	  review,	  and	  collaborations	  are	  as	  stated	  below. 



 

 

 

 

18 

 

Declaration of Collaboration 

 

The following individuals contributed to data contained in this thesis as 
stated below: 

 

 

 

Study 4 (Chapter 5): 

 

Matias Nilsson, Christina Brock & Asbjørn Mohr Drewes 

Mech-Sense, Aalborg Hospital, Department of Gastroenterology, 
Aalborg, Denmark 

 

 

 

Study 5 (Chapter 6): 

 

David Bulmer  

Wingate Institute of Neurogastroenterology, Blizard Institute, Barts and 
The London School of Medicine and Dentistry, Queen Mary University 
of London, London UK 

 

Charles Mein 

Genomic Centre, Charterhouse Square, Barts and The London School 
of Medicine and Dentistry, Queen Mary University of London, London 
UK  

 

 

Word counts 

Abstract:…………………………………………...345 words 

With references & appendices: ………………74 000 words 

Without:…………………………………………….59 000 words 



 

 

 

 

19 

 

List of Abbreviations 

 

ACC –   Anterior cingulate cortex 

ACTH –  Adrenocorticotrophic hormone 

ANS –   Autonomic nervous system 

AVP –   Arginine vasopressin 

BFI –   Big five inventory 

BMI –   Body mass index 

BH4 –   Tetrahydrobiopterin 

BP –   Blood pressure 

CFS –   Chronic fatigue syndrome 

CGRP –   Calcitonin gene related peptide 

CNS –   Central nervous system 

CR –   Coefficient of reproducibility 

CRH –   Corticotrophic releasing hormone 

CS –   Central sensitisation 

CSB –   Cardiac sensitivity to the baroreflex 

CVC –   Cardiac vagal control 

CVT –   Cardiac vagal tone 

DAHP –  2,4-Diamino-6-hydroxypyrimidine 

DMNX –  Dorsal motor nucleus 

DNA –   Deoxyribose nucleic acid 

DNIC –  Diffuse noxious inhibitory control 

DRG –   Dorsal root ganglion 

ECG –   Electrocardiogram 

EDTA –   Ethylene-diamine-tetra-acetic acid 

ENS –   Enteric nervous system 

EMS –   Emotional motor system 

EO –   Erosive oesophagitis 

FCP –   Functional chest pain 

FD –   Functional dyspepsia 

FGID –   Functional gastrointestinal disorders 



 

 

 

 

20 

 

FH –    Functional heartburn 

FM –    Fibromyalgia 

fMRI –   Functional magnetic resonance imaging 

FSD –   Functional somatic disorders 

GABA –  Gamma-aminobutyric acid 

GCH-1 –  Guanosine triphosphate 

GI –   Gastrointestinal 

GORD –   Gastro-oesophageal reflux disease 

GSR –   Galvanic skin responses 

GTP –   Guanosine triphosphate cyclohydrolase-1 

5-HIAA –  5-hydroxyindoleacetic acid 

5-HT –   Serotonin (5-hydroxytryptamine) 

HADS –  Hospital Anxiety and Depression Scale 

HF –   High frequency 

HPA –   Hypothalamic pituitary adrenal 

HR –   Heart rate 

HRV –   Heart rate variability 

IASP –   International Association for the Study of Pain 

IBS –   Irritable bowel syndrome 

ICC –   Intra-class correlational coefficient 

IPANs –  Intrinsic primary afferent neurons 

LF –   Low frequency 

LOS –   Lower oesophageal sphincter 

LVS –   Linear vagal scale 

MAP –   Mean arterial blood pressure 

MP –   Myenteric plexus 

MBP –   Mean blood pressure 

MCC –  Mid-cingulate cortex 

MEG –   Magneto-encephalography 

NA –   Nucleus ambiguous 

NCCP –   Non-cardiac chest pain 

NERD –  Non-erosive reflux disorder 

NG –   Nodose ganglia 



 

 

 

 

21 

 

NMDA –   N-methyl D-aspartate 

NO –   Nitric oxide 

NTS –   Nucleus of the solitary tract 

OPH –   Oesophageal pain hypersensitivity 

PAG –   Periaqueductal grey 

PAR –   Protease activated receptors 

PB –   Parabrachial nucleus of the dorsolateral pons 

PET –   Positron emission tomography 

PFC –   Prefrontal cortex 

PGE2 –  Prostaglandin E2 

PI-IBS –   Post infectious irritable bowel syndrome 

PNS –   Parasympathetic nervous system 

PS –   Peripheral sensitisation 

PTT –   Pain tolerance threshold 

RBC –   Red blood cells 

RVM –   Rostral ventral medulla 

SA –   Sino-atrial node 

SI –   Primary somatosensory cortex 

SII –   Secondary somatosensory cortex 

SBP –   Systolic blood pressure 

SCR –   Skin conductance responses 

SEM –   Standard error of the mean 

SMP –   Submucosal plexus 

SNS –   Sympathetic nervous system 

SIDS –   Sudden infant death syndrome 

SUNDS –   Sudden unexpected death syndrome 

TAS-20 –   Toronto Alexithymia Scale 

UOS –   Upper oesophageal sphincter 

VASQ –  Vulnerable Attachment Style Questionnaire 

VPH –   Visceral pain hypersensitivity 

WAI –   Weinberger Adjustment Inventory 

 

 



 

 

 

 

22 

 

1 Introduction 

1.1 “One body-mind”: a brief history 

From the dawn of recorded history, emotions and the body were closely 

knit. To the ancient western and eastern cultures the body and the soul 

were one. Their literature bears witness to the antiquity of concepts, that 

the body in general and viscera in particular are core components of 

normal emotional life. (1) To the physician in the time of Hippocrates the 

‘medical model of the day’ made no distinction between emotional 

and physical wellbeing. (2) Physical and mental concepts were freely 

interchangeable and equally relevant at procuring a diagnosis and 

cure. Present exclamations in the common vernacular; “lump in my 

throat”, “heart skipped a beat” and “sick to the pit-of-my-stomach”, etc. 

still attest to this notion. The Descartes-ian dualism (3) with the separation 

of the roles of brain (body) and emotion (mind), is a recent accretion 

however that in its quest to find something that lies ‘beyond all doubt’, 

fostered the mistaken supposition of focusing on the physical body and 

consigning the mind (psyche) to a mere neglected epiphenomenon. (2, 

4) This then regrettably gave rise to an epoch of misguided 

estrangement.  

 

Further, extreme and persistent emotions/passions, in association with 

‘bodily-states’ presently referred to as “stressed”, “burn-out” or being 

“run-down” making specific individuals because of personal 

constitutional differences more vulnerable, has always been the 

received wisdom and can be traced in early written records ranging 

back to more than 4 thousand years ago.1 (5) Only recently with the 

inclusion of concepts like the brain/mind by cognitive-neuroscience as a 

plausible reality deserving of serious research consideration, have there 

                                                        
1 Galen in the 2nd Century BC 
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been early indications of the reparation of the ancient breach by 

modern scientific and clinical practice. It is with this mind-set, under the 

rubric of neurogastroenterology, that this thesis has been envisioned and 

pursued. 

 

1.2 Modern neuroscience: “A fresh unified perspective”  

From the 90’s, the start of the “Decade of the Brain” until now, the 

integration of objective findings of an array of sciences profoundly 

deepened our understanding of the role relationships play in our day-to-

day subjective lives. By exploring a wide range of sciences, from 

anthropology to neuroscience, and seeking the convergence of findings 

that emerges from their integration, one can arrive at a consilient2 view 

of the “unity of knowledge” (or “consilience, as E.O. Wilson has used the 

term, 1998 (6)). In other words, as in the old tale of the three blind men 

and the elephant, there is a “larger reality” that exists though any single 

perspective can only begin to describe one view of that reality. 

 

Through this present merger of several significant perspectives it has now 

been made possible and necessary for the field of neurophysiology to re-

examine with “better tools” and “fresh eyes” the problem presented with 

regard to the interactions between pain, emotion and autonomic 

regulation. The main contributing factors making this possible and now 

needed include: 

 

                                                        

2 In the Brittanica Dictionary, consilience is defined as “the concurrence of 

generalisations from separate classes of facts in logical inductions so that one set of 

inductive laws is found to be in accord with another set of distinct derivation.” 
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1) Great clinical need: Of late there is a significant increase of functional 

somatic syndromes that has placed a huge strain on an already over-

stretched national healthcare system. Together with the fact that the 

pharmaceutical and academic industries were unable, in spite of 

significant investment, to arrive at a satisfactory improvement in 

diagnosing or treating these conditions, there has never before been a 

greater need for more effective and cost-effective management 

strategies of these poorly understood, and under-treated conditions as 

now.  

 

2) Deeper understanding: This is made plausible due to novel 

conceptual heuristic frameworks, for example: (a) ‘Bud’ Craig (7) who 

has given the scientific community a clearer neurobiological basis from 

which to consider interactions between affect and pain, with the 

development of the concept of “homeostatic processing networks”, 

allowing for the inclusion of sensory or the ‘felt’ aspects of pain. (b) 

Stephen Porges’s (8) development of the “polyvagal theory” that has 

allowed us for the first time to truly understand the key 

psychophysiological responses of the motor outputs of pain/emotion 

responses in the brainstem vagal complex, and (c) “Interpersonal 

neurobiology” by Daniel Siegel (9), that combines a range of disciplines, 

from the interpersonal (communication, attachment theory and social 

psychology) to the neurobiological (psychobiology and the domains of 

affective, cognitive, and developmental neuroscience). 

 

 3) Improved Modern Technology: Technical developments in autonomic 

neuroscience with beat-to-beat (10) and breath-to-breath (11) selective 

cardiac vagal measures and beat-to-beat non-invasive blood pressure 

measures, has allowed for the real time analysis of the autonomic 

nervous system (ANS). This enables the analysis of live, in vivo, time 
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locked observations of physiological correlates that was hitherto 

obscured to previous investigators. 

 

1.3 Syndromes of medically unexplained symptoms 

1.3.1 Unexplained Medically Syndromes are common 

A medical clinic in the USA in 1989 reviewed 1000 of their internal 

patients’ case notes. (12) Kroenke and Mangelsdorff when recording the 

incidence of 10 commonly reported symptoms over a 3-year period 

found that the proportion of these symptoms attributed to “organic 

disease” compared to “unexplained”, was (contrary to expectation) 

mostly due to “unexplained” aetiology.  (White areas in each bar, figure 

1) 

 

 

Figure 1 A case note review of 1000 patients, over a 3-year period to determine what 
proportion of symptoms, was attributed to “organic disease” or “unexplained” causes. 
The majority, across a several systems were due to functional aetiology.      
            (Adapted from Kroenke and Mangelsdorff, 1989) (12) 

 

A similar finding was observed in a UK based study of secondary care 

cardiology, gastroenterology and neurology clinics, where only about 
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60% of patients attracted an “organic” diagnosis. (13) The remaining 40% 

were categorised as either “unexplained” or “functional”. These 

unexplained conditions and resulting deficit in patient expectation are 

cited as a cause of significantly reduced patient satisfaction (14) and 

estranged doctor-patient relationships. (15) Chronic unexplained 

symptoms further contribute to impaired health related quality of life and 

is a health care burden leading to escalating costs. (16) 

 

With regard to this, it is true that to a great extent patient culture 

determines the type of symptom and the severity that would warrant a 

medical consultation, with patho-physiology playing a secondary role. 

(17) But the reverse is also true, whereby physicians control the 

legitimisation of symptoms:  

“…although biological and clinical factors have set boundaries for 

which symptoms might plausibly be linked in a disease concept, 

social influences have largely determined which symptom clusters 

have become diseases.” (18)  

In defining the term diseases, the present medical model would deem 

an underlying clinico-pathological change in tissue, e.g. by an infective 

agent or neoplasm, as the “medical-standard” for example.  Symptoms 

that indicate an underlying disease state (as so defined) would therefore 

be acknowledged and distinguished from those that do not. (19)  

 

Clinically, so doing, any condition “short of the mark”, would consciously 

or unconsciously be deemed of less importance by the physician, and 

therefore stand a greater chance of being accompanied by an 

impudent clinical frustration, and attracting some negative stigma, with 

consequentially less validation and attention. In many instances, this 

would then evoke a counter response in the patients, where contrary to 
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being reassured by the medical consultation, they are left confused and 

frustrated, with an increased desire for validation, leading to increased 

consultation behaviour. The end result poses a picture where after 

several specialist referrals and countless costly special investigations, the 

“medical-standard” is still not met, and due to possible poly-pharmacy 

and poor inter-disciplinary communication, a lack of coherent case 

management leads to a further increase in health care costs (15) and a 

further decrease in the patient’s quality of life. (14) 

 

Academically however, varying combinations of symptoms, the so-

called “functional syndromes” as opposed to merely symptoms, have 

become the main focus of modern research study. (19) Also various 

medical sub-specialties have claimed “ownership” of particular 

symptom clusters (syndromes), and in so doing facilitated the possibility 

of clinical ‘tunnel-vision’ and the potential masking of significant overlap 

between them, inhibiting exploration of common mechanisms. (19-21) 

The resulting on-going debates between the “lumpers and splitters” (22) 

has created an arguable false-dichotomy, whereas a proposed two-

pronged combination of both levels of analysis may have greater 

practical applicability and clinical efficiency. 

 

1.3.2 Functional Disorders in Gastroenterology 

Specifically concerning gastroenterology, clusters of gut-focussed 

symptoms have similarly been designated as syndromes. (23) Progressive 

thinkers like for instance Drossman et al. (24) have given us the ability to 

consider multi-factorial aetiologies concerning these syndromes within a 

frame work like the “biopsychosocial model”, which has successfully 

previously been applied to conditions e.g. peptic ulcer disease and 

ulcerative colitis. (25-31)  
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Unfortunately, this ‘wide-berth’ approach has given us an abundance of 

aetiological possibilities to consolidate, and hence initial intentions of 

unifying and integrating common mechanisms were waylaid. Further 

exacerbation of the aetiological diversity occurs when multiplied by 

subsequent organ-centric anatomical sub-divisions of functional 

syndromes, e.g. oesophagus: non-cardiac chest pain; stomach: 

functional dyspepsia and post-prandial distress syndrome etc., to name 

but a few. The underlining heterogeneity of these clinical divisions is 

reflected generally in their poor treatment response; with the only 

possible unifying indicator being the similarities regarding their high 

placebo response rates when compared to conditions like inflammatory 

disease. (32-34)  

 

This highlights the psychological aspects, that when fully considered, 

potentially further ‘muddies’ the proverbial ‘aetiological waters’ 

regarding functional gastrointestinal disorders (FGID). For instance 

heritability-twin studies in irritable bowel syndrome (IBS), found that social 

learning contributed an equal or even greater influence than genetic 

heredity alone. (17) Similarly there is strong evidence increasingly 

suggesting daily environmental “life-stress” effecting IBS symptoms 

significantly. (35) The effective amelioration of some of these 

psychosocial contributors by means of psychotherapeutic interventions 

along with the previous findings has hence encouraged an increasing 

cognitive emphasis (and greater stigma) in their present FGID 

conceptualisation. (36, 37) 
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1.3.3 Functional Gastrointestinal Disorders – the need for further 

study 

Concerning FGID, the most common presenting complaint is chronic 

episodic pain. These are conditions, such as Functional Dyspepsia, 

Irritable Bowel Syndrome (IBS) and Non-Cardiac Chest Pain (NCCP), 

being responsible for up to 40% of patients seen in secondary care 

gastrointestinal (GI) practice. These symptoms are the cause of 

significant morbidity. Health care costs related to them are 

approximately £21.5 billion3 in the 7 largest western economies. (38, 39)  

 

A third of patients with IBS give a previous history of gut inflammation or 

injury in the form of gastroenteritis or surgery. (40) The majority will recover 

with no further consequences however a proportion may develop 

chronic unexplained pain. Furthermore, patients are more likely to 

develop chronic symptoms if they have increased psychosocial stress at 

the time of injury/inflammation. (41) Similarly, 25-60% of patients with 

NCCP have evidence of gastro-oesophageal reflux disease, with the 

remainder being classified as having Functional Chest Pain of presumed 

oesophageal origin. (42) Although no acid exposure can be 

documented in these latter subjects, it is possible that previous chemical 

exposure has resulted in heightened pain sensitivity, and significantly 

contributes to persistent poor treatment outcomes.  

 

In patients with FGID, visceral pain hypersensitivity (VPH) is thought to be 

an important mechanism in the development of chronic pain, (43) 

however the factors that predict the development of chronic pain or 

VPH in these patients after inflammation or injury to the GI tract are not 

well understood. For instance the precise mechanisms for inter-individual 

                                                        
3  $34 billion: Study done for the costs in the year 2000. 
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differences in the tendency to develop VPH after gut inflammation or 

injury are often difficult to identify. In addition to the severity of the 

external stressor (e.g. bacterial virulence, degree of inflammation and 

magnitude of injury), hosts of factors such as psychological state and 

trait, genotype, early life experiences and physiological factors such as 

bio-mechanical properties of the gut are also likely to be important. 

 

As the pathophysiology is multifactorial there is evidence to suggest that 

psychological processes have a role in these disorders (44) as 60% of 

patients with FGID have tended to have a history of psychosocial stress, 

anxiety or mood disorders. Studies have shown that patients with the 

highest levels of psychosocial disturbance tended to suffer from the most 

FGID syndromes. (45) This information indicates the importance and 

emphasises the need for more accurate psychological profiling, as bio-

psychosocial elements are integral in influencing predisposition to these 

disorders.  

 

1.3.4 “Functional Neural Disturbance” - Time for a new focus 

“Functional neural disturbance” is not a new idea. As a concept, 

Charcot, Willis and Beard have postulated it already in the 20th century. 

An increasingly dualistic biomedical model in the intervening century 

discriminated between the physical and the psychological (24), so that 

the “purely psychological illness” was  firmly imbedded in later literature 

by figures such as Babinski and Freud. (19) This gradually acquired a 

pejorative stigma in which the description of physical symptoms being 

“all in the mind” was unacceptable, offensive and behaviourally 

rejected by patients. (46) For the physician and researcher alike, this was 

also not satisfactory as: 



 

 

 

 

31 

 

 “Traditional psychosomatic models had less predictive value and 

less therapeutic importance than what was hoped for. The main 

problem with these models was the lack of a pathophysiological 

explanation for why psychological problems could be related to 

somatic disease…” (47) 

According to “symptom researchers” Sharpe and Carson, what is now 

required in research and clinical practice is greater integration by means 

of a shift in focus (the so-called “paradigm shift” (19)), whereby 

“functional disturbance of the nervous system” becomes the main 

investigative focus of unexplained medical symptoms, as: 

 “The combination of cognitive psychology and neurophysiology 

offers a model… for the understanding of subjective complaints 

and illness.” (47) 

  

The conception of functional neural disturbances allows a less 

stigmatised “all in the brain” approach that also facilitates more 

biologically based research. Similarly a 

 “…new intellectual framework for psychiatry” has emphasised 

that “there can be no changes in behaviour that are not reflected 

in the nervous system and no persistent changes in the nervous 

system that are not reflected in structural changes on some level 

of resolution… …all mental processes are biological, and therefore 

any alteration in those processes is necessarily organic.” (48, 49)  

 

Although in terms of originality the notion of a functional neural 

disturbance is by no means novel, nonetheless there have been several 

conceptual and technological developments since the time of Charcot, 

which allow for a more sophisticated integrative approach. (50) In 

particular the discovery of genes, neurotransmitters and functional 
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imaging; a deepened understanding of the basic science of 

nociceptors, the autonomic, neuroendocrine and central nervous 

systems; and epidemiological evidence for modulation by psychiatric 

illness and the neurodevelopmental effects of abuse have all converged 

to make this a timely opportunity to revisit the notion of functional neural 

disturbance; especially pain hypersensitivity, as it is one of the most 

commonly cited reasons for patient presentation. 

 

 

1.4 Visceral pain hypersensitivity 

Related to the idea of a “functional neural disturbance” is “visceral pain 

hypersensitivity”. This is based on a proposed mechanism underlying 

unexplained visceral pain by means of spinal, dorsal-horn mediated 

“central  & peripheral nervous system sensitisation”, which has recently 

become the most likely and preferred explanation for observed data. 

(51-54) It displaces the previous out-dated incumbent descriptions of 

visceral motoric disturbances such as “gastric spasm”. (55) 

 

1.4.1 Mechanisms of pain hypersensitivity 

 Research in somatic pain hypersensitivity has suggested that both 

peripheral and central mechanisms can increase nociceptive 

transmission following inflammation or injury to tissues. (Figure 2) 

Peripheral mechanisms include peripheral sensitisation (PS), which is an 

inflammatory mediator-induced reduction in the transduction threshold 

of nociceptor primary afferents. PS causes pain hypersensitivity at the site 

of injury or inflammation, also known as primary hyperalgesia. (56, 57) 

Pain hypersensitivity that occurs in the surrounding healthy tissues 

(secondary hyperalgesia) and is related to an increase in excitability of 

spinal dorsal horn neurones due to upregulation of N-Methyl-D-Aspartate 
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(NMDA) receptors, a phenomena termed central sensitisation (CS). Both 

PS and CS are the major mechanisms in the development of 

inflammatory and neuropathic pain.  

 

 

Figure 2 Schematic depiction of the mechanisms and interactions of peripheral and 
central sensitisation contributing to oesophageal hypersensitivity.      
                                        (Adapted from Aziz, 2000) (58) 

 

1.4.2 Peripheral and central sensitisation in the GI tract 

In the peripheral nociceptive nerve terminals, sequential activation of 

receptors leads to an increased membrane potential which increases 

peripheral axonal firing (Figure 3). This has an effect on the peripheral 

nociceptor sensitisation at a molecular level. This is brought about by 

means of several mechanisms, including a decreased transduction 

threshold, upregulation of ion channel expression and bidirectional 

neuroimmune interactions. Repetitive firing of action potentials from the 
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periphery also activates intracellular signalling cascades within the spinal 

dorsal horn neurons. This leads to amplified responses to both noxious – 

hyperalgesia and innocuous stimuli – allodynia. In figure 1.3 and 1.4, 

Knowles and Aziz (59) give an apt illustration and description of the 

mechanisms of PS and CS at the molecular level. 

        

Figure 3 A: Schematic demonstration of action potential generation in nociceptors in 
response to acid stimulus. Cations are caused to leak from a variety of acid-sensitive 
ion channels—for example, the transient receptor potential channel 1 (TRPV1)— leading 
in turn to an increased (less negative) membrane potential. This causes sequential 
activation of nociceptive (selectively expressed by nociceptors) sodium channels 
NaV1.7–1.9 and axonal firing. B: Mechanisms of nociceptor sensitisation (including to 
acid): (1) decreased transduction threshold by phosphorylation of ion channels 
(mediated by intracellular activation of protein kinases in response to G-protein-
coupled release of cAMP); (2) upregulation of ion channel expression—for example, 
TRPV1 in response to trophins—for example, to nerve growth factor (NGF) with 
retrograde transport from the cell body to nerve terminals; (3) bidirectional 
neuroimmune interactions, especially in respect of neuronal substance-P (SP) release 
acting on mast cells to release NGF. GPCR. G-protein-coupled receptor; 5-HT, 5-
hydroxytryptamine; NK1, neurokinin 1; PAR, protease-acivated receptor; PKA, protein 
kinase A; PKC, protein kinase C; TrkA, tyrosine kinase receptor A.                      
      (Figure and text from Knowles and Aziz, 2008) (59) 
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Direct evidence for PS as a mechanism for VPH is mainly obtained from 

animal studies where inflammation involving primary nerves leads to a 

reduction in their transduction threshold. In humans the evidence is more 

indirect. For instance, patients with post-infectious  - irritable bowel 

syndrome (PI-IBS) and non-erosive reflux disorder (NERD) demonstrate 

VPH and evidence of microscopic inflammation in the colonic and 

oesophageal mucosa respectively, despite absence of macroscopic 

changes. In the oesophagus at least these changes appear to more 

prominent when psychological stress is concomitantly present. 

 

 

Figure 4 Molecular mechanisms of central sensitisation. Incoming action potentials lead 
to release of various neurotransmitters and neuromodulators that act via G-protein-
coupled receptors (GPCRs) (prostaglandins (PGs), 5- hydroxytryptamine (5-HT)), 
neurokinin recptors (substance-P) and tyrosine kinase (brain-derived neurotrophic 
factor (BDNF)) as well as ligand-gated ion channels (glutamate). Subsequent 
intracellular messaging systems (predominantly via increased intracellular calcium and 
activation of protein kinases A and C lead to phosphorylation of N-methyl-Daspartate 
(NMDA) receptors with a reduction in voltage-dependent magnesium block. This 
potentiates its responsiveness to glutamate and leads to central sensitisation in the 
neuron concerned and those adjacent to it (secondary hyperalgesia). AMPA, a-amino-
5-hydroxy-3-methyl-4-isoxazole proprionic acid; PKA, protein kinase A; PKC, protein 
kinase C.                  (Figure and text from Knowles and Aziz, 2008) (59) 
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Evidence for a role of CS as a mechanism for the development and 

maintenance of visceral pain hypersensitivity comes from both animal 

and human studies. (60) Animal studies have demonstrated that 

following somatic inflammation a positive correlation exists between 

visceral pain thresholds and increased afferent discharge of dorsal horn 

neurones demonstrating viscerosomatic convergence. Spinal cFOS 

expression, used as a marker of dorsal horn activity, has also been shown 

to be increased following noxious colorectal distension and this is 

prevented by NMDA receptor antagonism. (59, 60) 

 

It is clear from the above description that peripheral inflammation or 

injury can indeed cause PS and CS. However, it is not clear why chronic 

pain and hypersensitivity only develops in a relatively small proportion of 

patients exposed to such influences. It also seems that there is an 

interaction between the psychological state and the development of 

chronic pain hypersensitivity. How and why this interaction occurs is not 

clear. It is however possible that this interaction is mediated via the 

autonomic nervous system (ANS). (61) 

 

1.4.3 Visceral Pain Hypersensitivity as biomarker 

Although individual variability of visceral hypersensitivity of pain 

thresholds exists at a group level, however it has little clinical utility as a 

discriminatory biomarker. The sensitisation concept is not confined to IBS 

research, nor even to the field of pain, and as such could turn out to be 

but a subset of medically unexplained symptoms. The limiting narrow 

definition of the spinal dorsal horn mechanism of sensitisation could in 

time give way to a broader concept of generalised 

neural/psychological sensitisation, which may have more widespread 

relevance and applicability. (22, 47, 50, 62) An example of this is for 
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instance the recent emphasis of inhibitory and disinhibitory mechanisms 

of hierarchical neural control over sensitisation. (63) Recently individual 

variation in the modulation of activating and inhibitory neural systems 

have been proposed as the fundamental basis of inter-individual 

differences in sensitisation, and so may have greater promise for the 

development of discriminatory biomarkers. (64-66) A more detailed 

understanding of the biological underpinnings of emotion and its 

interactive control thus becomes necessary. 

 

1.5 Homeostasis 

Barnard & Cannon (67) proposed the concept of homeostasis or 

“maintenance of the ‘interieur milieu’”, which is a fundamental 

organising principle in understanding any physiological process. This is of 

particular importance when considering the complex physiological 

processes such as somatic and visceral perception giving rise to 

symptoms. This original idea has been developed to include regulatory 

concepts like “homeodynamic regulation”, “allostasis” and presently 

“allodynamic regulation”. They are dynamic systems without fixed points 

or fixed operating characteristics and with individual differences in 

expression. (68) They include the notion that:  

“Physiological changes associated with behavioural states may 

reflect the active inhibition of set-point regulation – and not 

adoption of an altered regulatory level”. (69)  

However, homeostasis remains the instantly recognisable key-concept of 

fundamental physiological self-regulation.  

 

Craig et al. (68, 69) describes homeostasis as comprising of 3 

fundamental processes:  

1) Detecting the inner needs of the organism (interoception),  



 

 

 

 

38 

 

2) Detecting external environmental sources of supply or threat to 

those inner needs (exteroception) and,  

3) Moving towards or away from the external source appropriately.  

 

For simpler organisms, chemical or chemico-humeral mechanisms are 

sufficient to form the basic response mechanism. The next phylogenetic 

stage utilises the immune system and finally develops a neural system 

that increasingly becomes more elaborate and sophisticated. (70) 

 

As the 3rd step consists of reflex tropisms in the simplest organisms, 

unsophisticated response apparatus are sufficient for steps 1 and 2. As 

organisms differentiate in increasing complexity, greater amounts of 

appraisal occur in steps 1 and 2, and step 3 requires more executive 

control. Consequently the sensory, motor and motivational apparatus 

increases in sophistication. Finally, as individual survival becomes more 

contingent on survival within-and-of the group, the neuro-endocrine and 

immune systems become increasingly orientated towards social 

homeostatic requirements. (70) Inter personal psychology, in the making 

and maintaining of inter group relationships etc., then starts to play a role 

of growing importance in the homeostatic maintenance of the 

individual. 

 

Comparative functional anatomy studies indicate that across the 

phylogenetic spectrum, all vertebrates share the same basic 

homeostatic mechanisms; only the complexity increases and reaches its 

peak in man. As these mechanisms increase in complexity, it becomes 

less obvious that the basic function of these systems is survival of the 

individual through homeostasis.  
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This is particularly the case when considering processes such as emotion, 

memory, social behaviour and even consciousness. These can seem 

distant from basic homeostatic physiological processes such as digestion 

(71) and yet they are based on and developed from these fundamental 

physiological processes and serve the function of homeostasis, as they 

are still intrinsically connected and dependent on them. To 

acknowledge this fundamental function and these simple mechanisms is 

not to depreciate emotion, attention, social behaviour and 

consciousness as in man they do not solely or directly serve only the 

process of homeostasis. As it became increasingly true that 

“…to survive, mankind was not only dependent on ‘survival of the 

fittest’, but rather ‘survival of the [best] nurtured’”. (9) 

To recognise that they share similar physiological “circuitry” derived from 

homeostatic necessity, aids in explaining experimental data and 

facilitates further exploratory research as these seemingly transient 

processes have some knowable and measurable physiological substrate. 

 

1.6. Emotion and Pain 

1.6.1 Definitions and Dimensions of Emotion and Pain  

In philosophy and cognitive-neuroscience, emotion is defined as:  

“…a subjective, conscious experience that is characterised 

primarily by psychophysiological expressions, biological reactions, 

and mental states. Emotion is often associated and considered 

reciprocally influential with mood, temperament, personality, 

disposition, and motivation, as well as influenced by hormones and 

neurotransmitters such as dopamine, noradrenaline, serotonin, 

oxytocin, cortisol and GABA.” (72)  
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Emotion is often the driving force behind motivation, positive or negative. 

(73) Definitions of emotion abound but most include a (i) felt/sensory 

(affect) component, which is significantly neurotransmitter mediated 

(e.g. Lövheim’s cube, see figure 5) and (ii) 

motor/motivational/behavioural components. Emotions are usually 

arranged along the dimensions of hedonic valence (approach/avoid) 

and levels of physiological arousal. (74)  

 

 

 

Figure 5 Lövheim’s cube of emotion; a three-dimensional model of emotion and 
monoamine neurotransmitters. Lövheim proposed a direct relation between specific 
combinations of the levels of the signal substances dopamine, noradrenaline and 
serotonin and eight basic emotions. A model was presented where the signal 
substances form the axes of a coordinate system, and the eight basic emotions 
according to Silvan Tomkins are placed in the eight corners. So joy/enjoyment is, 
according to the model, for example produced by the combination of high serotonin, 
high dopamine and low noradrenaline.             (Adapted from Lövheim, 2012) (75) 
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The International Association for the Study of Pain (IASP) defines pain as  

“...an unpleasant sensory and emotional experience associated 

with actual or potential tissue damage, or described in terms of 

such damage.”(76) 

 

Pain is a complex multidimensional psychophysiological phenomenon 

comprising of sensory-discriminative, motivational-affective and 

cognitive-evaluative dimensions together with behavioural and 

physiological responses, and is conceptualised within the pain 

neuromatrix as proposed by Melzac et al. (77, 78) (Figure 6).  

 

 

Figure 6 The components of pain neuromatrix as proposed by Melzac et al.               
(Adapted from Melzack and Casey, 1968 & Melzack and Kat, 1999) (77, 78) 

 

1.6.2 Neural processing of Emotion and Pain  

Damasio (3) has recently contributed substantial evidence for the key 

role played by “somatic markers” in neural processing, including that of 

emotion and pain. He indicated that the mind depends on “brain-body 
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interactions” for a wide spectrum of cognitive functions ranging from 

unconscious/automatic maintenance of homeostasis, experienced 

sensation and emotion, and even the regulating of higher-order 

reasoning and decision-making. In all these interactions, unconscious 

automaticity is the main modus operandi in their regulation. This is true for 

emotional processing (79-82), facial processing (83) as well as visceral 

afferent and efferent activity. (67, 84) Consciousness, being volitional, is 

almost the single exclusion.4 (85) Figure 7 is derived from PET visceral pain 

studies showing that the majority of brain sites involved in emotion 

generation and processing are sub-cortical and generally associated 

with automatic processes.  

 

Hence when applied to the pain neuromatrix, processing is localised as 

follows: Sensory- discriminative component of the pain experience 

relates to the localisation and intensity rating of the sensation (Figure 7: 

S1 & S2), whereas the affective-motivational aspects relating to its 

unpleasantness gives rise to emotional aspects such as fear and the 

formation of implicit- “felt”(visceral) memories (Figure 7: insula cortex, 

limbic & subcortical structures). Cognitive evaluative aspects facilitate 

the interpretation and contextualisation of pain and are thus involved in 

attention, anticipation and formation of the explicit- “narrative” 

memories of the experience. (Figure 7: Pre-frontal and anterior cingulate 

cortices) (86)  

                                                        
4 Bargh et al. (1999) has estimated that only 5% of human behaviour is consciously 
determined, and coined the phrase “the unbearable automaticity of being!” as a 
result. 



 

 

 

 

43 

 

 

Figure 7 Shows the subcortical and cortical structures that have been shown to be 
activated in response to visceral pain. Abbreviations: PAG, periaqueductal gray; PB, 
parabrachial nucleus of the dorsolateral pons; VMpo, ventromedial part of the posterior 
thalamic nuclear complex; MDvc, ventrocaudal part of the medial thalamic dorsal 
nucleus; VPL, ventroposterior lateral thalamic nucleus; ACC, anterior cingulate cortex; 
PCC, posterior cingulate cortex; HT, hypothalamus; S1, S2, first and second 
somatosensory cortical areas, respectively; PPC, posterior parietal complex; SMA, 
supplementary motor area; AMYG, amygdala; PF, prefrontal cortex; M1, motor cortex.             
              (Adapted from Price, 2000) (87)  

 

1.6.3 Psychophysiological “over-lap” of Emotion and Pain  

Because pain overlaps and interacts with a diverse range of emotions, 

with a wide scope stretching from satiety to fear, (88) pain has recently 

been redefined as a “homeostatic emotion”. “Homeostatic emotions” 

share psychological, anatomical and physiological features including 

cortical and sub-cortical substrates. Clinically it is observed that pain is 

one of the most common presenting complaints, irrespective of it being 
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explained or unexplained. (89) But equally chronic visceral pain 

conditions, such as FGID’s, are frequently co-morbid with affective 

disorders such as anxiety and depression. (37, 90) 

 

Structures especially implicated, as discussed above, are the so-called 

“interoceptive” insula cortex and the “homeostatic motor” anterior 

cingulate cortex. (7) A common effector for homeostatic emotions is the 

“emotional motor system” (EMS), which includes the central autonomic 

structures, peripheral autonomic network, and the neuro-endocrine-

immune systems.  (88) Thayer and Lane (91) in reviewing the literature for 

these systems, concluded that the Central Autonomic Network (92, 93); 

the Anterior Executive Region also called the “rostral limbic system” 

involved in “assessing the motivational content of internal and external 

stimuli and regulating context-dependent behaviours”(94); and the 

“emotion circuit”(95), 

“…are one and the same functional network identified by different 

researchers from differing orientations. This network of CNS 

structures is associated with the processes of response organisation 

and selection and serves to modulate psychophysiological 

resources in attention and emotion”. (91)  

 Thus these frontal-subcortical structures, which were consistently 

activated during the PET visceral pain studies discussed in the previous 

section, consistently over-lap, or are the very structures regulating 

“executive, social and motivated behaviours”. (96-98) As such these 

represent key central structures in homeostatic functional neural 

networks, which are likely to be of fundamental importance for 

psychophysiological processes and its behavioural assessment. 
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1.6. Psycho Motivational Behaviour of Emotion and Pain  

Porges has provided compelling evidence for the central role of the 

ventral vagal nuclei within the right nucleus ambiguus in emotion and 

pain responses. He highlighted the special connection of the fifth and 

seventh cranial nerves in the homeostatic functional neural network. This 

has led some researchers to include facial expression as “visceral” in 

nature in distinction from other somatic responses. (99, 100) 

 

Charles Darwin was first to observe that facial expression is unique to 

mammals and especially the primates and proposed that together with 

language plays a key role in both the expression and perception of 

emotional and hence homeostatic processes. (101, 102) In simpler 

organisms the homeostatic process is binary and behaviourally obvious: 

the organism either moves towards (approach) external sources (e.g. 

food or a potential mate) which can meet homeostatic need, or moves 

away from (avoid) external sources (e.g. a predator or pain) which 

represent threat. This binary axis underpins the dimensions of emotion: 

valence (aversive vs. appetitive) and arousal (increased vs. decreased). 

The overt behavioural responses of approach or avoidance are thus 

determined by the relative blends of valence and arousal. (74, 103)  

 

The behavioural concomitants are less clear in humans, as social 

homeostatic requirements are much more complex, developing to the 

extent where they can override more basic physiological homeostatic 

functions (for example: courage, empathy, jealousy or spite). In this 

context where the responses are affective-motivational by nature and 

not behaviourally overt, the notions of approach-avoidance is less 

helpful, and should rather be considered in terms of engagement or 

disengagement. (99) Due to ambivalence, assessment of valence can 
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be further blurred, and also needs to be factored in when considering 

the physiological concomitance of human-environmental interactions.  

 

In response to this, the assessment of individual emotional and 

personality differences of pain/threat defence response systems have 

been explicitly incorporated in the neurobiologically revised version of 

personality by Gray and McNaughton. (64-66, 104-106) For this thesis this 

is therefore a particularly important model in tying together relating 

“surface traits”, with individual differences in underlying behavioural 

activation, inhibition and defence systems as well as the “emotional” 

valence dimensions of reward/safety and punishment/threat. The model 

also relates to conditioning, arousal and attention. 

 

According to them, the behavioural inhibition system has a superior 

position in the hierarchy influencing decision-making and conflict 

detection. In reviewing defensive behaviours, they distinguish between a 

variety of possible activation states ranging between (i) classic flight-

freeze behaviour (Figure 8 A) and  (ii) a repertoire of “defensive 

approach” or “risk assessment” behaviours (Figure 8 B). 
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Figure 8 The relationship between defensive distance and behaviour. A: For defensive 
avoidance, B: For defensive approach. The grey arrows represent a fixed change in 
defensive distance produced by anxiolytic drugs both increasing and decreasing risk 
assessment behaviour depending on the initial defensive distance.   
                        (Adapted from McNaughton, 2004) (66) 

 

The neural systems controlling defence is based on two behavioural 

dimensions: ‘defensive distance’ and ‘defensive direction’. Defensive 

direction is a categorical dimension with avoidance of threat 

corresponding to fear and approach to threat corresponding to anxiety. 

Depending on the gravity of threat assessment, and the perceived 

distance to the threat, different defence strategies will be enacted, with 

the appropriate accompanying degree of neural-activation deemed 

necessary to deal with the impending need. These two psychological 

dimensions are mapped to underlying neural dimensions: 

 “Defensive distance is mapped to neural level, with the shortest 

defensive distances involving the lowest neural level 

(periaqueductal grey (PAG)) and the largest defensive distances 

the highest neural level (prefrontal cortex). Defensive direction is 

mapped to separate parallel streams that run across these levels. 

A significant departure from prior models is the proposal that both 

fear and anxiety are represented at all levels.” (66) 
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In this schema, different behavioural and autonomic responses relate to 

“defensive distance” and in particular whether a threat is avoidable or 

unavoidable. (Figure 9) 

 

Figure 9 Categories of emotion and defensive response derived from defensive 
direction (avoid or approach the danger) and avoidability of the threat.          
            (Adapted from McNaughton, 2004) (66) 

 

 

Hence, ‘simple ‘ avoidable threats will be dealt with by straightforward 

behavioural responses, and only lower neural (i.e. PAG) activation. More 

complex inescapable chronic threats will involve the higher neural 

circuits (i.e. prefrontal cortex) where learnt/conditioned factors based on 

personality and prior experience play an ever increasing role, resulting in 

a more complicated portfolio of differing behaviours, associated with 

varying degrees of accompanying neuronal arousal. (Figure 10)  
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Figure 10 The two-dimensional defence system. On either side are defensive avoidance 
and defensive approach respectively (a categorical dimension). Each is divided, down 
the page, into a number of hierarchical levels. These are ordered from high to low (top 
to bottom) both with respect to neural level (and cytoarchitectonic complexity) and to 
functional level. Each level is associated with specific classes of behaviour and so 
symptom and syndrome. Syndromes are associated with hyper-reactivity of a structure 
and symptoms with high activity. Given the interconnections within the system (and 
effects of e.g. conditioning) symptoms will not be a good guide to syndromes.  [OCD: 
obsessive-compulsive disorder, GAD: generalised-anxiety disorder]  
                        (Adapted from McNaughton, 2004) (66) 

 

Finally, they thus relate the two types of defence response and defensive 

distance to a hierarchical neural (defence) response activation system, 

which is associated with specific classes of behaviour, neural 

involvement and resulting ANS activation, which is where we turn to next. 
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1.6.5 Pain, the Autonomic Nervous System, and Psychology 

Emotions during acute stress (e.g. during painful procedures) are 

associated with high heart rate and high pitch vocalisations and cries in 

animals and infants. When considering ANS responses in this context, 

both characteristics are determined by a withdrawal of vagal efferent 

outflow originating in the nucleus ambiguous (NA). This is because the 

branch of the vagus originating in the (right) NA is closely linked to the 

rapid expression and regulation of emotional states. (100) Cardiac vagal 

tone (CVT) can therefore be used as an “index of central-peripheral 

neural feedback and CNS-ANS integration” (107) and in addition to pain 

reactivity has been linked to psychological trait differences such as 

temperament, emotionality and the process of interoception. (70, 108)  

 

Life events, stress and physical strain are potential factors that interact 

with the “emotional motor system” (EMS), and represent the “highest 

neural level” as referred to in the previous section by Gray and 

McNaughton. This is made up by the insula, pre-frontal-and-anterior 

cingulate cortices and the amygdala, that has a regulatory effect on 

the ANS, via the ventral vagal nuclei within the right NA, to modulate 

and govern an individual's visceral pain sensitivity. (70) Stress, either 

exteroceptive (psychological/environmental) or interoceptive 

(somatic/visceral) activates the EMS and the resulting autonomic and 

neuroendocrine responses and so doing modulates the pain response 

sensitivity. (109) Dysfunction of these systems is hence relevant as 

modulators in the pathophysiology of the visceral pain hypersensitivity 

seen in FGID. (110) (Figure 11) 

 

 



 

 

 

 

51 

 

 

Figure 11 Shows the potential factors that interact with the Emotional Motor System 
(EMS) and has an effect on the ANS that governs an individual's visceral pain sensitivity.
                (Adapted from Drossman, 2004) (109) 

 

Traditionally pain researchers exploring the neuroendocrinal defence 

responses have emphasised the “fight-n-flight” pattern and its 

associated behavioural activation, sensitisation and sympathetic nervous 

system (SNS) reactivity. (60, 111)  Recent research has led to a growing 

appreciation and understanding of the hierarchical superiority of the 

inhibitory control over behavioural activation systems brought about by 

the SNS. This includes inhibition or conversely disinhibition especially from 

pre-frontal cortices, together with parasympathetic nervous system (PNS) 

activity in a broad variety of responses ranging from the “freeze” 

defence response to and also including the ‘bonding’ or affiliative 

“mend-n-befriend” behaviours.  (112-117) Describing this arm of the 

neuroendocrinal defence responses has led to a wide range of 

overlapping behaviours and a somewhat confusing nomenclature that 

includes freeze, vigilance, quiescence, cautious-approach, tonic-
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immobility, fright, faint, passiveness, submissiveness and mindful coping. 

(100, 118) 

 

1.8 The Psychosocial determinants of Pain and Attachment Theory 

John Bowlby first used the term "attachment" to describe the affective 

bond that develops between an infant and a primary caregiver.5 (119) 

He believed that the "attachment behavioural system" was one of four 

behavioural systems that are innate and evolutionarily functions to assure 

survival of the species. The quality of attachment evolves over time as 

the infant interacts with his/her caregivers, and is then internalised as 

implicit memories, regulating limbic reactivity. (Figure 12)  

 

 

Figure 12 Shows four behavioural systems of attachment that are innate and 
evolutionarily function to assure survival of the species.                               
         (Adapted from Bowlby, 1958)(119) 

 

                                                        
5 Bowlby’s departure from the traditional psychoanalytic theory at the time was 
considered heretical, and was ostracised by his peers for many years to come.  It 
wasn’t until after his death in 1990 that the British analytic community issued a formal 
apology to his family. 
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Attachment relationships evolve over the first two years of life and 

beyond, but most importantly these early attachment relationships 

overlap with a time of significant neurological development of the brain. 

(120) Experiences in those early relationships encode in the neural 

circuitry of our brains by 12-18 months of age, and because they are 

entirely in implicit memories, they are outside of conscious awareness, 

and hence are “known but not remembered”. Unconsciously they form 

the patterns of attachment, which become the “rules”, templates and 

schemas, for relating that operate lifelong, as the ‘givens’ of our 

interpersonal-relational lives. 

 

This is of significance as it has now been established that experience 

shapes the brain by the following sequence: Any experience causes 

neurons in our brains to fire. Repeated experiences cause neurons to fire 

repeatedly. Neurons that “fire together wire together,”6 (121) 

strengthening neural connections through long-term potentiation. Strong 

neural connections become neural pathways and neural networks, 

which activate genes, which then lead to the production of proteins that 

enable the formation of new synaptic connections. (48, 122) This 

experience-triggered neural firing is how all-neural pathways become 

patterns of response, and how all structures of the brain mature. This is 

how all patterns of attachment are laid down in the brain; it is also how 

they can change. It is likely, though not yet directly proven in human 

studies, that the experiences within attachment relationships shape the 

emerging neural circuitry of the child’s developing brain. This shaping 

process, for example, enables parent-child interactions to shape the 

genetically programmed maturation of the brain to alter the ways in 

                                                        
6 Hebbian theory: a scientific theory in biological neuroscience, which explains the 
adaptation of neurons in the brain during the learning process. It describes a basic 
mechanism for synaptic plasticity wherein an increase in synaptic efficacy arises from 
the presynaptic cell's repeated and persistent stimulation of the postsynaptic cell. 
Introduced by Donald Hebb, 1949. 
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which such fundamental processes as emotion regulation, response to 

stress, autobiographical memory and even theory of mind, which is 

central in assessing interpersonal intention and threat, develop. 

 

Daniel Siegel, expands on this and gives a neuro-scientific understanding 

to our internal subjective and interpersonal social lives, as:  

“…these findings show how the brain has evolved as a social 

organ of the body. Mammals are social creatures, with limbic 

structures that appear to serve the dual purpose of attuning to the 

social environment while regulating the internal state of the body. 

The limbic circuits help us understand the mammalian trait of 

needing the presence of caregivers to help regulate the 

physiology of the young infant.”(123) 

 

 As that infant mammal grows, its ability to regulate its own physiology in 

a balanced manner will develop a more autonomous capacity. Studies 

of maternal deprivation in rats have shown that permanent alterations in 

the behavioural and physiological response to stress occur and impact 

the social functioning and regulation of the maturing animal. (124, 125) 

Bremner states: 

“While infants can be seen in general as being adaptive, research 

clearly shows how early adverse experience can have negative 

effects on growing brains that have persistent effects on 

functioning.” (126)  

 

When differentiation is combined with integration, the complex 

homeostatic system of the brain is able to achieve highly adaptive, 

flexible and stable states of functioning. Such a state can be proposed 

to be synonymous with more mental resilience. (127) In this way secure 
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attachment relationships may promote well-being by supporting the 

integrative capacities of the child’s developing brain. (128) As it is well 

known that “the child is father to the man,”7 these integrative capacities 

associated with attachment and physiological activation become 

stable trait phenomena affecting stress responses on a global level, that 

influence regulatory processes throughout life. (127, 129) This research is 

still at a very early stage however, and further work is needed to assess 

the processes associated with attachment and physiological activation, 

and its eventual longitudinal impact on chronic pain conditions. 

 

1.9 The Neuronal Regulation of Pain 

1.9.1 Pain Regulation by the ANS 

Benarroch (100, 159) and Cortelli (160) have recently extensively 

reviewed neuroanatomical pain regulation of the ANS for both acute 

and chronic pain. They observed that nociceptive processes and the 

ANS interact at the level of the periphery, spinal cord, brainstem, and 

forebrain. (91, 130)  Spinal and visceral afferents provide converging 

ascending afferent information to spinothalamic neurons in the dorsal 

horn and to neurons of the nucleus of the solitary tract (NTS) and 

parabrachial nuclei. As previously discussed above, these structures 

project to sub-cortical areas involved in reflexive, homeostatic, and 

psycho-behavioural control of autonomic outflow, endocrine function, 

and nociception.  

 

The PNS and SNS have mainly reciprocal activities in the modulation of 

pain. Whilst the PNS (vagus) is broadly antinociceptive (131); the SNS is 

broadly pronociceptive. (132, 133) The implication of this is that a 

                                                        
7 William Wordsworth, 1888 
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balance between sympathetic and parasympathetic activities is 

required for normal pain perception. It is however only a “rule of thumb” 

as there remain some contradicting findings that are not fully 

understood, as for example the co-activation of the ANS during pain, 

mediated via the NTS, which includes the possibility of PNS facilitation 

during pain regulation. (134) 

1.9.2 Co-activation in pain and the NTS 

Boscan and Paton (134-137) experimentally confirmed while studying the 

rat’s autonomic control of pain, that there were unanticipated complex 

possibilities of non-reciprocal, co-activation of the ANS. When they 

applied noxious stimulation to the forelimb of rats, it evoked burst 

discharges not only in the inferior cardiac and lumbar sympathetic 

nerves, but surprisingly also in the cardiac branch of the vagal nerve. As 

the usual response was a tachycardia, the increased vagal activation 

was puzzling and unexpected, as it suggested that during nociception 

both sympathetic and parasympathetic cardiac outflows were co-

activated. This led them to propose a novel ‘paradoxical role’ for the 

PNS, which mediates tachycardia during nociception that is integrated 

by the NTS. (Figure 13)(134) 

 

Figure 13 Showing the proposed NTS integration of nociceptive and baroreflex afferent 
input with both sympathetic and ‘paradoxical’ cardiac vagal motor-neurone output.   
                             (Adapted from Pickering, 2003)(134) 
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Because of phenomena like the above mentioned ‘unanticipated 

complex non-reciprocal ANS co-activation’, attempts to come to a 

more coherent understanding of the finer nuances in ANS interaction, 

more sophisticated models of ANS regulation need to be mentioned. 

 

1.9.3 The “Dynamic Systems Approach” of ANS regulation 

Recordati, emphasising the ANS as a key player in any homeostatic 

functional neural network, stated:  

“The autonomic nervous system as a whole may be viewed as a 

dissipative structure progressively assembled in the course of 

evolution, plastically and rhythmically interfaced between 

forebrain, internal and external environments, to regulate energy, 

matter and information exchanges” (138) 

Hence in order to consider the ANS as a single functional unit, the 

interactive function of components of the ANS was conceptualised by 

Berntson et al. as being ‘shaped’ by “Autonomic Determinism”; which 

proposes that, 

“…the multiple modes of autonomic control do not lie along a 

single continuum extending from parasympathetic to sympathetic 

dominance but rather distributed within a 2-dimensional space”. 

(139) 

This concept of ‘2-D autonomic space’ becomes even more 

complicated as levels are included of reactive lability as a function of 

the direction of movement (mode of control) within ‘3-D autonomic 

space’. (Figure 14) These fluctuations in ANS regulation need now to be 

correlated and time locked with specific psychophysiological events in 

laboratory conditions, in order to become more practically applicable in 

aiding deeper understanding of syndromes seen clinically.  
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Figure 14 (A) 2-dimensional model of “autonomic space”, (B) 3-dimensional model of 
autonomic space and its associated functional surface. The functional surface 
represents the operational state of the target organ, expressed in relative units. The axes 
dimensions are in decline units of functional activation. Dotted lines represent iso-
functional contour lines projected on the autonomic space, illustrating loci within 
autonomic space that have equivalent functional outputs. The functional surface of 
autonomic space represents the operational state of the target organ, and depicts the 
gradients [sum of the partial derivatives] of the functional surface across autonomic 
space. Variations in the surface amplitude in these figures illustrate the instantaneous 
changes in organ state associated with the indicated movement from any point in 
autonomic space.               (Adapted from Berntson, 1991)  (139) 

 

1.9.4 The “Polyvagal Theory” of PNS regulation 

Recordati, quoted above with regard to the ‘dynamic systems 

approach’ to ANS regulation, continues to expand on the key-role of the 

PNS in maintaining stability in metabolic homeostatic regulation: 

“…for spontaneously stable states to occur, slowing of the 

metabolic rate, withdrawal of the sympathetic drive and 

reinforcement of the vagal tone to the heart and circulation are 

required, thus confirming that the parasympathetic division of the 

autonomic nervous system is the main controller of homeostasis” 

(138) 

A B 
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In order to comprehend how this is achieved, no other body of 

knowledge has been as influential in shaping our understanding, and 

influencing research in this field, as Porges’s ‘Polyvagal Theory’. (108, 118) 

It has emerged from a phylogenetic (and ontogenetic) study of 

physiological self-regulation with emphasis on the comparative 

functional anatomy of the autonomic nervous system and of the vagus 

in particular. (140) Figure 15 shows the results of this phylogenetic 

comparison of vertebrates.  

 

Figure 15 Showing the phylogenetic comparison of Cardio Vagal Control (CVC)    
               (Adapted from Porges, 1991) (70)  

The vagus nerve emerges from or converges onto four nuclei of the 

medulla. About 90% of the vagus is sensory and is represented by the 

solitary and spino-trigeminal nuclei. The nucleus of the solitary tract (NTS) 

receives afferent taste information and primary afferents from visceral 

organs, which carry information from the thoracic, oesophageal and 

abdominal viscera; including afferents from the aortic body and arch. 

It’s relevance is not only due to its role in oesophageal sensory 

conduction, but also in forming the afferent part of the 

cardiac/respiratory reflex which is a central part of PNS control. (see 

Figure 44, page 120) 

The remaining 10% of the vagus is motoric and has two brainstem nuclei. 

(Figure 16) The nucleus ambiguous (NA) gives rise to myelinated fast-

effector neurones, which innervate the heart; larynx and upper gut, 
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whilst the dorsal motor vagal nucleus (DMNX) gives rise to unmyelinated 

slow effector neurones innervating the heart and lower gut. Extreme 

DMNX output results in a profound bradycardia, occurring in 

immobilisation behaviours such as death feigning and passive 

avoidance in reptiles and lower mammals. It is a very primitive defence 

response and potentially fatal in higher mammals (possibly associated 

with ‘Sudden unexpected death syndrome’ (SUNDS)(141), and ‘Sudden 

infant death syndrome’ (SIDS) (142)), with high oxygen needy metabolic 

rates, although adaptive for organisms with low metabolic rates. (70) 

Recent research findings indicate however that more subtle activation of 

the DMNX occurs throughout day-to-day ANS regulation in environments 

of potential threat, (117) as posited by Gray and McNaughton with their 

hierarchical neural (defence) response activation system. (64-66, 104-

106) (See also table 9, chapter 4, page 201, for stages of ANS activation 

to stress.) 

 

Figure 16 Showing the two vagal brainstem motor nuclei and their extension in the 
viscera.                   (Based on Porges, 2009) (117) 

The$nucleus$
ambiguus$
(NA)$gives$
rise$to$
myelinated$
fast:effector$
neurones$
which$
innervate$
the$heart,$
larynx$and$
upper$gut.$$

The$dorsal$
motor$vagal$
nucleus$
(DMX)$gives$
rise$to$
unmyelinat
ed$slow$
effector$
neurones$
innervaDng$
the$heart$
and$lower$
gut.$$

‘New’&
mammalian&

‘Old’&
vegeta1ve&

Phylogene)c+origins:++

The$nucleus$
ambiguus$
(NA)$gives$
rise$to$
myelinated$
fast:effector$
neurones$
which$
innervate$
the$heart,$
larynx$and$
upper$gut.$$

The$dorsal$
motor$vagal$
nucleus$
(DMX)$gives$
rise$to$
unmyelinat
ed$slow$
effector$
neurones$
innervaDng$
the$heart$
and$lower$
gut.$$

‘New’&
mammalian&

‘Old’&
vegeta1ve&

Phylogene)c+origins:++



 

 

 

 

61 

 

In contrast the NA output (CVCNA) allows for subtler beat-to-beat heart 

rate modulation – increased CVCNA causes milder slowing of the heart 

rate which may be involved in behavioural inhibition and bonding whilst 

withdrawal of CVCNA reduces the external constraint on the intrinsic sino-

atrial node (SA) automaticity and therefore a faster heart-rate ensues to 

facilitate behavioural activation. This has been described as the “vagal 

brake”(143), which Recordati describes as the most efficient and neuro-

chemically “cost-effective” way of maintaining homeostatic control of 

the heart and circulation. (138) 

 

1.9.5 Adrenergic modulation of pain 

This occurs in the periphery, spinal and supra-spinal sites. In the periphery 

there is little baseline adrenergic modulation of pain. However, following 

tissue injury, nor-adrenalin induces novel noradrenergic receptors. It also 

induces sympathetic nerve sprouting and alters the ionic channel 

properties of primary afferent nociceptors (N-type Ca2+ channels) and 

all of these are pronociceptive activities leading to hyperalgesia. (144) 

 

1.9.6 Spinal adrenergic modulation of pain 

They are nearly all inhibitory. Pre-synaptic inhibition of the primary 

afferent nociceptor terminals in the dorsal horn of the spinal cord is 

mediated through alpha-adrenoreceptors. There is also evidence of a 

direct adrenergic action on pain relay interneurones through post-

synaptic inhibition mediated by alpha2-adrenoreceptors. Alpha1-

Adrenergic mediated activation of inhibitory interneurones is another 

mechanism of spinal adrenergic antinociception. (144) They are mostly 

peptidergic and contain first class neurones, which express peptide 

neurotransmitters such as substance P and CGRP (calcitonin gene 

related peptide). (Figure 17) (145) 
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Figure 17 Showing the spinal α1 and α2- adrenergic synapses in the dorsal horn. Post-
synaptic inhibition mediated by alpha2-adrenoreceptors, activation of inhibitory 
interneurones, which is another mechanism of spinal adrenergic antinociception, which 
express peptide neurotransmitters such as substance P, and calcitonin gene related 
peptide (CGRP).             (Adapted from Pertovaara, 2006) (144) 

 

1.9.7 Supra-spinal adrenergic modulation of pain 

The visceral projection from the spinal cord to subcortical and cortical 

structures consists of several pathways. The spinothalamic tract 

terminates in the medial and posterior thalamus. Thalamocortical fibres 

then project to the somatosensory cortex. The spinoreticular tract 

terminates in the reticular formation in the brainstem. The 

reticulothalamic tract projects from the dorsal and caudal medullary 

reticular formation to the medial thalamus. The spinomesencephalic 

tract projects to various regions in the brain stem, including the 

periaqueductal grey, locus coeruleus, and dorsal reticular nucleus in the 
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medulla. Thalamocortical projections from the medial thalamus project 

to the cingulate cortex and insula, which are involved in processing 

noxious visceral and somatic information. The brain regions innervated 

by these pathways that respond to painful visceral stimuli include the 

thalamus, insula, amygdala and anterior cingulate cortex (ACC). The 

ACC is comprised of two components, the perigenual ACC (pACC) 

involved in affect and midcingulate cortex (MCC) with behavioural 

response modification. (146)(Figure 18)  

 

Supra-spinal adrenergic modulation of pain varies depending on the site 

of activity, the type of adrenoceptors, the duration and pathophysiology 

of the pain. The general observation is that at baseline conditions there is 

little adrenergic effect on pain perception. However, during sustained 

pain there is supra-spinal noradrenergic feedback inhibition of pain. 

(144) In the brainstem, the ventrolateral medullar oblongata, brainstem 

reticular formation, parabrachial nucleus and periaquaductal grey 

matter all receive ascending nociceptive afferents. (Figure 18) The rostral 

ventrolateral medullar oblongata is the main area where pre-

sympathetic vasomotor neurones are situated together with other 

sympathetic driver neurones. (147) They are arranged here in 

organotopic manner and also occur in the dorsal vagal complex, in the 

bulbar reticular formation, in the ventrolateral pons, and in the Locus 

Coeruleus and others.  
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Figure 18 Shows the principal visceral projections from the spinal cord to subcortical 
and cortical structures (green lines). The spinothalamic tract terminates in the medial 
and posterior thalamus. Thalamocortical fibres then project to the somatosensory 
cortex. The spinoreticular tract terminates in the reticular formation in the brainstem. The 
reticulothalamic tract projects from the dorsal and caudal medullary reticular formation 
to the medial thalamus. The spinomesencephalic tract projects to various regions in the 
brain stem, including the periaqueductal grey, locus coeruleus, and dorsal reticular 
nucleus in the medulla. Thalamocortical projections from the medial thalamus project 
to the cingulate cortex and insula which are involved in processing noxious visceral 
and somatic information. The brain regions innervated by these pathways that respond 
to painful visceral stimuli include the thalamus, insula, amygdala and anterior cingulate 
cortex (ACC). The ACC is comprised of two components, the perigenual ACC (pACC) 
involved in affect and midcingulate cortex (MCC) with behavioral response 
modification. Other pathways for transmission of noxious visceral stimuli (such as the 
dorsal column pathway) exist, but are not shown.  (Adapted from Drossman, 2004) (109)  

 

1.9.8 Cholinergic modulation of pain: In the periphery 

Cholinergic efferent nerve fibres in the vagus are the main source of 

parasympathetic activity in most organs in the abdomen and the thorax. 

Vagotomy induces hyperalgesia in the area supplied by the severed 

part of the vagus nerve, which can be reversed by denervation of the 

sympathetic supply to the adrenal medulla. (148) These observations 
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suggest that in the modulation of gut pain, vagal parasympathetic 

activity is balanced by adrenergic activity. Moreover, alpha2-adrenergic 

antagonists can reduce vagotomy-induced hyperalgesia in the gut. 

(149) 

 

1.9.9 Spinal cholinergic modulation 

Cholinergic activity within the spinal cord modulates pain perception via 

M2-muscarinic receptors that also mediate parasympathetic activity in 

the heart, smooth muscle and lacrimal glands. It is postulated that 

activation of spinal M2-muscarinic receptors causes release of adrenal 

catecholamines and that the anti-inflammatory effects of the 

catecholamines reduce inflammatory pain. (150) 

 

1.9.10 Supra-spinal modulation 

 The autonomic centres relevant to supra-spinal modulation of pain are 

discussed above. However, in adults the consistent pattern emerging is 

that higher resting blood pressures are associated with relative 

hypoalgesia probably mediated by reflex PNS activation via 

baroreceptor stimulation. (151)  

 

1.9.11 The Autonomic Nervous System, pain and the viscera 

The principal components of descending pain modulatory pathways 

which are activated in response to painful visceral stimulus are the 

Ponto-medullary networks, including the periaqueductal grey (PAG), 

rostral ventral medulla (RVM) and the raphe nuclei, which are 

modulated by inputs from the anterior cingulate cortex (ACC), 

amygdala, and other cortical regions. (Figure 19)  
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Figure 19 Shows the principal components of descending pain modulatory pathways 
(yellow lines), which are activated in response to a painful visceral stimulus such as 
noxious balloon distension of the colon. Ponto-medullary networks including the 
periaqueductal grey (PAG), rostral ventral medulla (RVM) and the raphe nuclei are 
modulated by inputs from the anterior cingulate cortex (ACC), amygdala, and other 
cortical regions. The major descending pain inhibitory pathways are mediated via the 
opioidergic, serotonergic and noradrenergic systems. These pathways modulate pain 
transmission at the level of the dorsal horn of the spinal cord.                             
                                                                       (Adapted from Drossman, 2004) (109) 

 

The major descending pain inhibitory pathways are mediated via the 

opioidergic, serotonergic and noradrenergic systems. These pathways 

modulate pain transmission at the level of the dorsal horn of the spinal 

cord. There is mounting evidence to suggest that the interface between 

the gut lumen and sensorineural pathways is regulated closely by the 

ANS. (152) Increasing SNS activity has been shown to increase colonic 

sensitivity in healthy volunteers. (153) Enhanced sympathetic dominance 

to oesophageal acid infusion has been documented in patients with 

gastro-oesophageal reflux disease, (154) and reduced vagal activity has 

been reported in NCCP patients. (88, 155) 
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1.10 Modulation of pain by pharmacological modulation of the ANS 

1.10.1 Pharmacological modulation of the SNS 

There is evidence for both SNS and PNS influences on pain. Relationship 

between the SNS and pain has been repeatedly demonstrated in 

animals and humans and conditions such as ‘reflex sympathetic 

dystrophy’, sympathetically maintained pain’ and the all-encompassing 

‘complex regional pain syndrome’ which are well recognised 

sympathetically mediated clinical pain conditions. In these conditions 

sympathetic modulators such as alpha1 antagonist (phentolamine 

prazosin, terazosin) and ganglion blockers such as guanethidine are 

used as diagnostic tools. Efficacy of clonidine has been shown in these 

conditions as well as in numerous animal studies of sympathetically 

mediated pain. In animal studies, alpha 2 adrenergic agonists produce 

analgesia by actions in the periphery, supraspinal CNS, and in the spinal 

cord (156) Clonidine is believed to produce analgesia at the spinal level 

in part through stimulation of cholinergic interneurons in the spinal cord. 

Alpha 2 adrenergic agonists produce sedation and reduced blood 

pressure in addition to analgesia. Clonidine can be administered orally, 

transdermally (53) or spinally. When given orally it has 100% bioavailability 

and its peak concentration and maximal hypotensive effect is observed 

1-3 hours later, and its half-life is 6-24 hours. Its analgesic effect is evident 

even when used as a single dose and has such been extensively used in 

anaesthesiology. In specific reference to the viscera, clonidine has 

effects on visceral pain perception in dyspeptic patients (107, 157) and 

in the colon of volunteers. 

 

1.10.2 Pharmacological modulation of the PNS 

 This is effective in reducing pain in animal and human studies. 

Muscarinic agonists and antagonists (atropine) have been shown to 
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reduce and increase pain sensitivity respectively in rodents. This effect 

was associated with a corresponding increase or decrease in intraspinal 

release of acetylcholine depending on whether an agonist or antagonist 

was used. Furthermore there is evidence for the pro-algesic effects of 

atropine in humans. (158) During the 1990s, the discovery of the 

antinociceptive properties of the potent nAChR agonist epibatidine in 

rodents sparked interest in the analgesic potential of this class of 

compounds. A number of novel nAChR agonists with antinociceptive 

activity and improved safety profiles in preclinical models have now 

been identified, of these ABT-594 is the most advanced and is currently in 

Phase II clinical evaluation. 

 

1.10 The human oesophagus 

The main physiological function of the oesophagus is that of transporting 

nutrition and fluids to the rest of the digestive system. The human 

oesophagus is unique in its anatomical composition, as the proximal third 

is composed of striated muscle while the distal two thirds are composed 

of smooth muscle. (159) The proximal oesophagus has a dense spinal 

somatic-like innervation containing mostly myelinated visceral afferents. 

On the other hand the distal oesophagus contains mostly unmyelinated 

C-fibres with a comparatively less dense spinal innervation as would be 

found in other gut structures. 

 

1.11 Sensory Innervation of the oesophagus 

1.11.1 Sensory innervation at mucosal level 

The alimentary canal is innervated by four populations of sensory neurons 

(Figure 20), - two intrinsic and two extrinsic.  
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Figure 20 Innervation of the GI tract by intrinsic and extrinsic sensory neurons. The two 
populations of intrinsic primary afferent neurons originate in the submucosal plexus 
(SMP) and myenteric plexus (MP), respectively. The two populations of extrinsic sensory 
neurons are vagal afferents originating from the nodose ganglia (NG) and spinal 
afferents originating from the dorsal root ganglia (DRG). CM, circular muscle; LM, 
longitudinal muscle.                   (Adapted from Holzer, 2001) (160) 

 

The populations of intrinsic primary afferent neurons (IPANs) have their 

cell bodies either in the myenteric plexus (Auerbach plexus) or in the 

submucosal plexus (Meissner plexus) and innervate both mucosal and 

muscular layers of the gut. (Figure 20 & 21)  (146) Being part of the 

enteric nervous system (ENS), they comprise mucosal chemosensors, 

mucosal mechanosensors and muscular tension receptors. In addition, 

IPANs synapse with each other and in this way form self-reinforcing 

networks that issue outputs to interneurons, motor neurons, secretomotor 

neurons and vasodilator neurons. (161, 162) 
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Figure 21 The arrangement of the enteric plexuses, depicted for the small intestine. A: 
appearance in separated layers. The myenteric plexus (Auerbach plexus), consisting of 
numerous ganglia and connecting nerve fibre bundles, lies between the longitudinal 
and circular muscle layers. A second ganglionated plexus (Meissner plexus) is in the 
submucosa. These plexuses provide nerve fibre plexuses in the muscle, in the mucosa 
and around arterioles. B: The enteric plexuses shown in a cross section of the intestine.
                       (Adapted from Furness, 2007) (163) 

 

The two populations of extrinsic sensory neurons (ESN) are vagal afferents 

with cell bodies in the nodose ganglia and spinal afferents with cell 

bodies in the dorsal root ganglia, and also contribute to the innervation 

of the circular muscle and the longitudinal muscle. Both the IPANs and 

the ESNs provide the ENS with the kind of information that is known as the 

“brain in the gut”, and enables the requirements for autonomic control 

of digestion. 

 

1.11.2 Sensory innervation at spinal level 

As mentioned above the oesophagus receives innervation from both 

vagal and spinal nerves (Figure 22), however the majority of the 

oesophageal pain pathways are probably located in the spinal nerves. 

Dorsal root ganglia of cardiac and splanchnic nerves provide 
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craniocaudal innervation to the oesophagus. Afferent fibres then ascend 

centrally via spinothalamic tracts and dorsal columns to the thalamus 

and then on to the primary somatosensory cortex, insula, and anterior 

cingulate gyrus. (164) The spinal nerves enter the central nervous system 

through the dorsal root ganglion of the spinal cord from C1 to L2. 

 

 

Figure 22 Schematic diagram of vagal and spinal nerve supply to the oesophagus.
                (Adapted from Sengupta, 1989) (113) 

 

1.11.3 Sensory innervation at cranial nerve level 

The vagal afferents travel with the main branch of the vagus nerve, 

primarily entering the central nervous system (CNS) via the nodose and 

Insula	 
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jugular ganglia and synapsing in the nucleus of the solitary tract. Most of 

these afferents (70-90%) are unmyelinated C fibres. (Figure 22) (164) 

 

1.11.4 Sensory innervation at supra-spinal level 

Positron electron tomography (PET) and functional magnetic resonance 

imaging (fMRI) have demonstrated that non-painful oesophageal 

sensation results in an increased regional blood flow bilaterally in the 

primary somatosensory cortex, bilaterally in the insular cortex, and 

frontal/parietal operculum. (165) Hobson et al. (166) found that painful 

oesophageal stimulation also activates the same regions but at an 

increased level as well as the involvement of the right anterior insular 

cortex and the anterior cingulate gyrus, further supporting and 

establishing the functional anatomical basis for the central component 

of pain processing in what is known as the "brain-gut axis".  

 

When looking at the efferent functions, the division of the SNS and the 

PNS is true. However when one is looking at the afferent functional 

representation of the ANS, a division into the vagal and spinal afferent 

fibres is made. (167) (Figure 23) The vagal afferents nerves are composed 

mostly of unmyelinated C-fibres with few A-delta fibres terminating in 

bare nerve endings in each layer of the gut wall including serosa and 

mesentery. The spinal afferents have a greater role in visceral 

nociception. (168) Spinal afferents nerves can be further divided into 

splanchnic and pelvic afferents, which follow the actions of sympathetic 

and parasympathetic systems respectively. Spinal afferents may be 

divided into two nociceptive sensory receptor types, which innervate the 

viscera. (145) 
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Figure 23 Showing the reciprocal actions of the para-and-sympathetic nervous systems.
               (Adapted from Wikipedia, 2013) (169) 

 

Low threshold receptors have an encoding function (the relation 

between stimulus intensity to nerve activity) response, which is activated 

by innocuous and noxious stimuli.  These receptors encode intensity and 

have been found in the oesophagus, heart, colon, bladder and testes. 

(48) High threshold mechano-receptors, these are activated entirely from 

a noxious stimulus to generate nerve activity. Silent nociceptors are a 

third group of receptors involved in nociceptor pain but they only 

become active after exposure to inflammatory mediators. 

 

1.12 Oesophageal Pain Hypersensitivity  

As mentioned above functional oesophageal pain or non-cardiac chest 

pain (which affects up to one third of those who undergo arteriograms 

for chest pain) (170) are also chronic functional symptoms which mimic 
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oesophageal disease yet do not have the same organic aetiology (171). 

As such they form part of the FGID group of disorders. VPH has been 

attributed as a factor underlying the pathophysiology in functional 

oesophageal disorders, as demonstrated in figure 24, (below) but the 

aetiology remains poorly understood. Gastro-oesophageal reflux disease 

(GORD) is common, with estimates of 20–44% of Western populations 

having symptoms of GORD at least once a month and 20% weekly.  

 

 

Figure 24 Oesophageal Pain with Balloon distension indicating clearly that there is 
hypersensitivity in the patient group. The graph indicates that their pain scores are 
much higher or lower volumes of balloon distension.                   
           (Adapted from Paterson, Wang, & Vanner, 1995) (172) 

 

In GORD there exists interplay between visceral hypersensitivity and acid 

exposure, leading to a spectrum of conditions (Figure 25, below), 

whereby moving from the right to the left there is an increase in acid 

exposure. Likewise moving from left to right there would be an increase 

in the role of hypersensitivity. In so doing one would then have a 

spectrum of conditions starting with erosive oesophagitis (EO) on the left 

side, where there is a clear emphasis on the acid exposure as the main 

aetiological factor and where ulceration or erosions are evident. On the 

right side the present evidence would support that the main aetiological 
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factor is VPH, presenting in conditions like functional heartburn (FH). This 

leaves us with the interaction of both acid exposure and visceral 

hypersensitivity in conditions like non-erosive reflux disease (NERD) in the 

middle.  

 

 

Figure 25 Shows the relationship that exists between acid exposure and visceral 
hypersensitivity in the aetiological role of gastro-oesophageal reflux disease (GORD). 
From left to right we have erosive oesophagitis (EO) where there is a high exposure to 
oesophageal acid. Then we have non-erosive reflux disease (NERD), where there is a 
combination of both acid exposure and visceral hypersensitivity and finally on the right-
hand side we have functional heartburn (FH), where visceral hypersensitivity is clearly 
cited as the main aetiological cause.      (Adapted from Knowles & Aziz, 2009)(167) 

 

The proportion of patients with NERD is estimated to be between 50–70% 

of the GORD population. In these conditions it would be probable to 

expect that both the acid exposure and visceral hypersensitivity are 

contributing to the overall symptom profile observed, producing a 

perpetuating, mutually exacerbating course. What is presently still not 

clearly understood is the exact relationship that exists between the acid 

exposure and the visceral hypersensitivity and its interplay. This 

understanding would contribute significantly to the development of a 

more appropriate approach to treatment resulting in possible 



 

 

 

 

76 

 

substantially improved outcomes in the treatment resistant NERD patient 

group. Although VPH contributes to the clinical presentation in both EO & 

NERD, the fact that established responses to standard acid suppressive 

treatments are 20–30% lower in patients with NERD than those with EO, 

understanding the interaction between acid and VPH specifically in the 

NERD group remains a priority, and is thus the main concern of this thesis. 

 

1.13 The need for a change in focus 

Current management of pain in FGID involves the use of either 

antispasmodics or antidepressants. (173) Meta-analysis suggests that the 

former approach is no better than placebo while the latter approach 

produces global improvement without improving pain directly. (173) 

Pharmaceutical companies have invested heavily in the last two 

decades to develop the ‘magic bullet’ for managing pain in FGID, 

however their efforts have not met with success. Most medications 

developed on the basis of promising pre-clinical studies have either 

shown no effect or only a modest effect in clinical trials. (174) Part of the 

problem is that FGID is diagnosed on the basis of symptom-based criteria 

and hence there are considerable inter-individual differences in 

pathophysiology leading to heterogeneity in study populations. 

Furthermore, as discussed previously, there is a lack of disease biomarkers 

and good models of disease that can be used to test proof of 

mechanism for pharmacological preparations before large-scale clinical 

drug trials are performed. With the above considerations in mind what is 

proposed in this thesis is a mechanism-based approach to identify 

reasons for inter-individual differences in the development of VPH. This 

approach is based on a model of VPH previously developed and 

validated by several researchers in the field. 
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1.14 Work conducted on Human oesophageal model of peripheral and 

central sensitisation 

 

 To address the question whether inflammation/injury can induce PS and 

CS in the human GI tract, a model was developed which demonstrated 

that infusion of 0.15M hydrochloric acid into the healthy oesophagus 

reduced pain threshold reproducibly not only in the acid exposed region 

(peripheral sensitisation), but also in the adjacent unexposed region 

(central sensitisation). This effect was prolonged lasting up to 5 hours 

after 30 minutes of acid exposure (Figure 26) although a shorter 5 minute 

acid infusion also produced a transient hypersensitivity lasting for 2 hours. 

(175) Evidence of facilitated afferent pathways in the model has been 

obtained by a cortical evoked potential study demonstrating a 

decrease in latency and increase in amplitude of the response after 

acid infusion in comparison to saline. 

 

 

Figure 26 Mean change in pain threshold in upper oesophagus after 30 min infusion of 
acid or saline into the lower oesophagus in healthy volunteers, administered 2 h apart. 
Error bars=SE. Shaded area=95% CI calculated from change in pain threshold in upper 
oesophagus when no infusion was administered.                      
          (Figure adappted from Sarkar, Aziz, Woolf, Hobson, & Thompson, 2000)(175) 
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Pharmacological studies have been used to block receptors involved in 

CS in this oesophageal model. It has been demonstrated that 

administration of prostaglandin receptor antagonist (EP1) prior to acid 

infusion blocks the subsequent development of oesophageal 

hypersensitivity suggesting that prostaglandins play an important role in 

mediating PS and CS. (176) Furthermore it was recently demonstrated 

that ketamine, an NMDA receptor antagonist, not only prevents 

development of oesophageal hypersensitivity in response to acid infusion 

but that it also reverses established hypersensitivity in healthy volunteers. 

(51) In contrast cox2 inhibitors and Neurokinin 1 receptor antagonists did 

not reverse the hypersensitivity in the model. 

 

1.15 Variability in the development of oesophageal sensitisation 

Despite the fact that it has repeatedly been shown that acid infusion 

causes oesophageal pain hypersensitivity, (175) around 15-35% of 

subjects do not sensitise to acid at all. (177) (Figure 27)  

 

Figure 27 Shows the inter-individual differences in change in pain threshold (PT) after 
saline and acid infusions. The factors that mediate post-injury gut sensitisation are 
poorly understood.         
        (Adappted from Sarkar, Aziz, Woolf, Hobson, & Thompson, 2000) (175) 

Figure 
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Among those who do sensitise, the mean reduction in pain threshold 

from baseline for n=24, is -7.4mA (-8.4 to 16.3 CI, p<0.001) (177) at 30 

minutes post acid infusion. This is reproducible in those sensitisers who 

have had more than one study. Pain thresholds remain reduced up to 

120 minutes after the infusion, and there are no statistically significant 

differences between the pain thresholds at different time points between 

30-120 minutes. The factors that mediate post-injury visceral sensitisation 

are poorly understood, however recent studies have shown that in 

healthy subjects there is variability in oesophageal pain thresholds 

depending on their level of state anxiety. Higher levels of anxiety are 

associated with lower oesophageal pain thresholds. (178) It is likely 

therefore that a number of psychological and physiological factors are 

responsible for inter-individual differences in pain hypersensitivity in this 

model.  

 

Figure 28 A: showing that there is an inverse correlation (r=-0.66) between the change in 
an individual’s pain threshold (PT) and the change in heart rate, i.e. the bigger the 
change in heart rate, the more the drop in pain threshold. B: Correlation between 
baseline Spielberger State Anxiety Inventory (SSAI) score and degree of sensitisation 
[maximum change in proximal oesophageal pain threshold (PT) post-infusion (n=14)]. A 
statistically significant relationship was apparent such that as the SSAI score increased, 
the degree of sensitisation (fall in proximal oesophageal PT) to acid increased.         
                                       (Adapted from Sharma, 2008) (179) 

 

A B
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A study (180) of the selective activation of these systems in the human 

model of acid-induced oesophageal sensitisation (as described above) 

in 25 healthy volunteers, using novel real-time techniques for measuring 

the parasympathetic and sympathetic tone, has indicated the ANS may 

have a modulatory role on visceral pain transmission with the SNS and 

PNS proposed as being facilitatory and inhibitory respectively. (153, 181) 

Oesophageal acidification was also associated with an increase in 

unpleasantness and anxiety scores in conjunction with a rise in 

sympathetic and a fall in parasympathetic activity. Nine subjects did not 

sensitise to acid at all. (Figure 28(A), above) Amongst those who 

sensitised, subjects who showed a greater increase in heart rate during 

acid infusion also sensitised more. (Figure 28(B), above) Individuals who 

withdrew vagal (parasympathetic) tone during acid infusion the most 

also developed the greatest oesophageal sensitisation and resultant 

pain hypersensitivity. (Figure 29, below) In addition, higher state anxiety 

scores at baseline were associated with a greater likelihood of 

withdrawing vagal tone to oesophageal acidification, suggesting that 

these individuals may have been predisposed to greater sensitisation by 

their psychological state.  

 

Figure 29 Showing the correlation between pain threshold (PT) and cardio vagal tone 
(CVT) measured on a linear vagal scale (LVS).           (Adapted from Sharma, 2008) (179) 
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This data suggests that the parasympathetic nervous system may have 

anti-hyperalgesic properties in the human viscera, and that anxiety may 

predispose to greater post-injury gastric sensitisation through the 

withdrawal of vagal tone. The rationale then for this thesis is to take this 

concept one step further: 

“If visceral pain hypersensitivity correlates with a decrease in cardio 

vagal tone; then what would the effect of a deliberate increase in cardio 

vagal tone be on visceral hypersensitivity?” 

The plan of investigation described below is therefore based on the 

concept that physiological and pharmacological modulation of the ANS 

will lead to modulation of the oesophageal pain hypersensitivity. 

1.16 Research Questions/Objectives 

1.16.1 Principal research questions/objectives (Hypotheses testing) 

 In a model of human oesophageal pain hypersensitivity in healthy 

subjects: 

I. Does physiological modulation of the ANS influence the degree of 

oesophageal pain hypersensitivity? 

II. Does the increase of PNS by means of physiological methods 

decrease oesophageal pain hypersensitivity?  

III. Does the increase of SNS by stress induction cause an increase in 

oesophageal pain hypersensitivity? 

IV. Does inhibition of PNS by atropine cause an increase in 

oesophageal pain hypersensitivity due to the unopposed effect of the 

SNS? 
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1.16.2 Secondary research questions/objectives (Hypotheses 

generating) 

In a model of acid induced human oesophageal pain hypersensitivity 

in healthy subjects:   

I. What are the psychological predisposing factors that would 

predict vulnerability to VPH? 

II. What is the difference in ANS response of subjects vulnerable to 

acid exposure compared to those that are not? 

III. What is the role of psychosocial, environmental and genetic 

factors in ANS activation in context of VPH aetiology? 

 

 

 

 

1.17 Aims 

1.17.1 Hypothesis Testing 

1.17.1.1	  General	  hypothesis	  

The autonomic nervous system modulates the development of human 
VPH. 

 

1.17.1.2	  Specific	  hypotheses	  

Physiological modulation that will increase the parasympathetic tone of 

the ANS will decrease the degree of central sensitisation in the human 

healthy volunteer model of acid induced oesophageal VPH. 
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1.17.2 Hypothesis Generating 

1.17.2.1	  General	  hypothesis	  

Individual psychophysiological factors will correlate with autonomic 

nervous system activation that will affect the degree of central 

sensitisation in the human healthy volunteer model of acid induced 

oesophageal VPH.  

 

1.17.2.2	  Specific	  hypotheses	  

Individual psychophysiological factors that will correlate with the 

sympathetic & parasympathetic activation of the ANS across differing 

stress environments will affect the degree of central sensitisation in the 

human healthy volunteer model of acid induced oesophageal VPH. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

84 

 

2 Methods and Materials  

 

2.1 Ethics Committee Approval and Funding 

All protocols within this thesis were submitted and approved by the 

University Senate Ethics Committee, ‘East London and The City Research 

Ethics Committee - Alpha’ (ref: 09/H0704/71) and, where appropriate, 

protocols, were also approved by the Research Ethics Committee of 

North Jutland, Denmark (ref: N-20120065vII).  Written informed consent 

was obtained from all subjects prior to their entry into the studies.  ‘Data 

& Identity Protection Protocols’ were strictly maintained. All studies 

adhered to the guidelines of the World Medical Association Declaration 

of Helsinki (revised edition: Seoul, South Korea, 2008), the guidelines of 

the International Conference on Harmonization (ICH) Guidelines for 

Good Clinical Practice (CPMP/ICH/135/95), and the ‘Amendment 

Regulations of 2006’ concerning ‘Clinical Trials in Humans’. This project 

was funded by a Medical Research Council project grant (ref: 

G0701706). 

 

2.2 Subjects 

Healthy asymptomatic adult male and female volunteers, aged 18 to 50, 

were recruited by advertisement. All subjects were naïve to the 

experimental protocol and had never previously been subjected to the 

model of acid perfusion used in my studies. All had normal medical 

assessments including detailed medical interview and examination, and 

were non-smokers, not taking any regular medication (excluding 

acceptable forms of contraception). According to the “best practice” 

guidelines for pain research with respect to sex and gender, females 

were all studied in the follicular phase of their menstrual cycle. (182) Urine 



 

 

 

 

85 

 

tests were performed at all visits to exclude drugs of abuse (Triage 8™, 

Biosite San Diego USA) and pregnancy for females (First Step™ FS208 

Euromed Limited, UK). Written informed consent was obtained from all 

after the study had been explained and only after the volunteers had in 

excess of 48 hours to consider the information provided. All volunteers 

were allowed to withdraw at any time should they wish to for any reason, 

or if the investigator judged that it was necessary due to any medical 

reasons or if non-compliance to the protocol occurred.  

 

2.3 Oesophageal Manometry 

Standardised oesophageal manometry (183) was performed in the first 

five subjects to determine the positions of the upper and lower 

oesophageal sphincter (UOS and LOS) from the nostril. A stationary pull 

through manometric technique was performed by a research assistant 

accredited in the procedure. Intraluminal pressures were measured via 4 

channels (0.9mm diameter) incorporated into the solid state catheter, 

the ends of which opened as side holes 5, 10, 15 and 20cm from the 

distal tip of the catheter (Polygram™ for Windows® 1995, Synectics 

Medical, Enfield, Middlesex, EN1 3BT, UK). This measurement was then 

compared with the measurement obtained using a stationary pull 

through ‘pH change technique’. A 1mm diameter twin channel pH 

catheter (Synectics Medical, Enfield, Middlesex, EN1 3BT, UK) was used to 

measure the relative LOS position indicated by the pH change as the pH 

catheter was slowly withdrawn from the stomach. The LOS positions on 

these first five subjects were found to be identified accurately enough by 

the pH change technique for the purpose of this study, and only the ‘pH 

change’ pull through technique was used for the remainder of the 

subjects. (Specific corrections in possible case of hiatus hernia were not 

made.) Determination of LOS position was essential for later positioning 

of the stimulation and infusion catheter assembly. 
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2.4 Catheter Assembly 

All experiments were conducted with subjects having fasted for a 

minimum of 8 hours. A bespoke naso-oesophageal catheter consisting of 

two electrical stimulation electrodes 15cm apart with a infusion port 1cm 

above the lower electrical stimulation electrode, (UniTip™-Katheter 6F, 

UNISENSOR AG, Attikon, Switzerland) were taped together with a 

disposable 15cm twin channel pH catheter (VersaFlex® Sierra Scientific 

Instruments, LA, CA, USA). The catheter-pH probe assembly was passed 

nasally into the oesophagus until the distal infusion site and the proximal 

stimulating electrodes were 4cm and 18cm above the lower 

oesophageal sphincter respectively, with the pH sensors sited adjacent 

to the infusion and stimulation sites (Figure 30; and Figure 38(f)). Local 

anaesthetic spray was not used to avoid contamination of the proximal 

oesophagus, which in turn may have affected the sensory 

measurements, but passage was eased through the naso-pharynx with a 

water-based lubricant jelly (KY jelly™, Johnson & Johnson).  

 

To ensure correct placement, a ‘Flush through-test’ was performed, 

whereby 10ml sterile water was injected via the infusion port into the 

oesophagus. The subject was then closely observed to ensure that the 

cough reflex was not triggered, and was asked to respond to a few 

questions to ensure that they could speak with unobstructed vocal 

chords. The reusable infusion-simulation catheter was sterilised (Pera 

safe™, Antec International- a DuPont company, Suffolk, UK) at the end 

of every experimental session. 

 



 

 

 

 

87 

 

 

Figure 30 The naso-oesophageal catheter assembly, consisting of a pH probe (blue 
label) and an infusion-stimulation catheter (green label) strapped together.  Illustrated 
is (a) the positioning in the oesophagus, (b) its schematic proportions, and (c) a 
photograph of the actual assembly.  

 

2.5 Oesophageal acid infusion 

Four 60ml disposable syringes were pre-loaded with 0.15M hydrochloric 

acid (HCl) (Stockport Pharmaceuticals, Stockport, UK) which was 

warmed to body temperature in a water bucket priority to the infusion 

and then infused via an infusion pump (Omni fuse™, Graseby Smiths 

Medical Inc. MN, USA; see Figure 38(i)) into the distal oesophagus, 4cm 

above the LOS, through the infusion port of the infusion-stimulation 

catheter at a constant rate of 8ml/min for 30 minutes (Figure 31) to a 

total infusion volume of 240mls. The proximal oesophagus remained acid- 

free (pH >4) while the distal oesophagus was exposed to acid (pH < 2).  

 

The$Catheter$Assembly:$

(a)$Placement$ (b)$Schema/cs$ (c)$Infusion$Func/on$

(c)$Photograph$
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2.6 Oesophageal pH monitoring 

A 1mm diameter twin channel pH catheter (VersaFlex® Sierra Scientific 

Instruments, LA, CA, USA; see Figure 30 and Figure 38(f)) continuously 

measured pH in the proximal and distal oesophagus (at the sites of acid 

infusion and electrical stimulation respectively) for the duration of each 

study. Recordings were made using a twin channel pH box (Synectics 

Medical™, Enfield, Middlesex, EN1 3BT, UK; see Figure 38(l)). 

 

2.7 Visceral Pain Hypersensitivity Model 

Sarkar et al. (175) have developed a robust healthy volunteer model of 

human oesophageal sensitisation as illustrated by Figure 31. In this model, 

to explore mechanisms of visceral hypersensitivity in the oesophagus, 

acid is infused in the distal oesophagus. Subsequent pain hypersensitivity 

to electrical stimulation has been demonstrated in the distal acid-

exposed region (primary hyperalgesia), the proximal non-acid-exposed 

oesophagus and the area of somatic referral on the anterior chest wall 

(secondary hyperalgesia). (175) Oesophageal pain hypersensitivity has 

been repeatedly shown to occur following acid infusion using this model 

in several studies. (184-190) A significant variability in developing this 

sensitisation has been recorded, with around 15-35% of healthy 

volunteers not being sensitive to acid infusion. (51) This model provides a 

validated reproducible basis for standardised comparative study into the 

underlining mechanisms and modulators of acid sensitisation; and as 

such, was ideally suited for use in this study.  
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Figure 31 The naso-oesophageal catheter assembly, illustrating with actual pH-metry 
that the distal pH drops during acid infusion while simultaneously maintaining an acid 
free environment 15cm proximal in the oesophagus in a fasting volunteer, where the 
pain tolerance threshold changes are measured.   

 

2.8 Sensory and Pain Threshold Measurements 

Sensory and pain thresholds to electrical stimulation were determined in 

the proximal oesophagus (18cm above the lower oesophageal 

sphincter), the distal oesophagus (3cm above the lower oesophageal 

sphincter), and foot (somatic control). Oesophageal sensory testing was 

performed via a pair of silver-silver chloride bipolar ring electrodes (inter-

electrode distance 1cm) sited proximal to the tip of a 3mm diameter 

catheter (UniTip™-Katheter 6F, UNISENSOR AG, Attikon, Switzerland). 

Stimulation consisted of electrical impulses of increasing strength 

delivered using a constant current stimulator (Digitimer™, model DS7A, 

Digitimer Ltd, Hertfordshire, England; see figure 30(j)). An established 

stimulation protocol was used based on previous studies. (53, 175, 191) 

The intensity of the stimulus was increased in a step-wise manner by 2mA 
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(at 200V) intervals, beginning at an intensity of 0mA up to a maximum of 

98mA. Stimuli were delivered at a frequency of 0.5Hz (i.e. 

1pulse/2second), using square wave pulses 500µs8 in duration. At each 

site, three measurements of sensory and pain tolerance were recorded, 

60 seconds apart, and the mean value calculated (Figure 30).  

 

For each stimulus set, the sensory threshold at which the subject felt the 

sensation, as well as the pain tolerance, was recorded. Subjects were 

instructed that this should be the level beyond first pain sensation at 

which they could not tolerate further increase. Hence this is most 

accurately described as a pain “intolerance” threshold, i.e. that at which 

they become intolerant of pain, rather than a pain “tolerance” 

threshold, i.e. the last level at which they can still tolerate it. This level was 

equivalent to a rating of 7 on a Visual Analogue Scale (VAS) (192) (Figure 

32) ranging from 0 (no sensation) to 10 (unbearable pain). This scale 

shows a linear relationship with that of the pain descriptor and stimulus 

intensity. (193)  

 

Figure 32 The 11-point VAS for the quantification and measurement of the pain and 
unpleasantness. This was used after every sensory and pain threshold measurement.    
                       (Adapted from Drewes, 2003) (192) 

                                                        
8 For a more detailed description see appendix one (2).  

Visual'Analogy'Scale:'
'

0='no'percep5on'of'sensa5on'
1'='vague'percep5on'of'sensa5on'
2'='definite'percep5on'of'mild'sensa5on'
3'='vague'percep5on'of'moderate'sensa5on''

4'='definite'percep5on'of'moderate'percep5on'

5'='pain'detec5on'threshold''
6'='slight'pain''

7'='Moderate'pain'&'tolerance'threshold''

8'='medium'pain'intensity''
9'='intense'pain''

10'='unbearable'pain'
.'
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Electrical stimulation was immediately stopped when pain intolerance 

threshold was indicated. Control (somatic) pain thresholds were taken in 

an identical manner using a pair of disposable surface electrodes 

(Oxford Instruments, Medical Systems Division, Woking, Surrey, GU22 9JU, 

England; see Figure 38(e)) that were placed on the dorsum of the right 

foot 2cms above the 4th metatarsophalangeal joint. 

 

2.9 Pain Tolerance Threshold Calculation  

Using measurements taken in the proximal oesophagus at each time 

point, baseline, prior to acid infusion (T0), then 60 minutes (T60), 90 

minutes (T90) and 120 minutes (T120) post acid infusion, pain tolerance 

threshold (PT) was used to characterise subjects as either sensitisers or 

non-sensitisers. The change in PT (∆) was determined by calculating the 

mean of the three pain tolerance threshold measures at each post 

infusion time point (T60, T90 & T120) and then subtracting this value from 

the mean of the three pain threshold values, prior to acid infusion (T0). 

(185, 194) (Figure 33) 

 

The three values thus obtained were then averaged to obtain the PT. 

Subjects were classified as  sensitisers if there was a fall in the proximal 

oesophageal pain threshold (PT) of ≥ 6mA after distal oesophageal 

acidification during a non- modulation visit (i.e. screening- or sham 

breathing protocols only; see section 2.20), as compared with the pre-

infusion threshold. They were classified as non-sensitisers if the decrease 

of proximal oesophageal PT was < 6mA during a non-modulation visit. 

(185, 194) 
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Figure 33 This diagram shows the calculation of the ∆Pain Tolerance Threshold (PT). A 
represents the mean of the three-baseline pain threshold measures at T0. B, C & D 
represent the average at T60, T90 and T120. The difference between A-B is represented 
by a’ and A-C as b’ & A-D as c’. The PT therefore represents the mean of the values for 
a’+b’+c’.  

 

2.10 Cannula insertion and blood sample 

An 18 gauge (green) intravenous cannula was inserted into the right 

antecubital fossa prior to the nasogastric intubation, where appropriate 

(Figure 38(d)). This was used to administer the atropine or placebo, 5 

minutes prior to starting the acid infusion. The cannula was also used at 

the end of the study when a 5ml blood sample was obtained and frozen 

at -80°C. This sample was later used to prepare an assay for genomic 

DNA extraction and genotyping.  

 

2.11 Psychological assessment  

During the first visit, subjects completed a set of computer-administered 

profiling, state and trait questionnaires. (Figure 38(k)) For all subsequent 

T0       T60        T90    T120 

Pain%Tolerance%Threshold%(PT)%=!average(a’+%b’%+%c’);!
where:!a’!=!A(avr).B(avr);!b’%=!A(avr).C(avr);!c’%=!A(avr).D(avr)!!
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visits, only a state questionnaire was completed. The questionnaires 

included the:9 

 

2.11.1 Big Five Inventory (BFI)  

The 44-item questionnaire (195) allows efficient and flexible assessment of 

the 5 dimensions of personality, i.e. extraversion, agreeableness, 

conscientiousness, neuroticism and openness to experience. Essentially, 

the big five inventory is used to explore the broad factors of personality 

traits developed through factor analysis of a large population through 

empirical research. As previously demonstrated in preliminary studies, the 

personality of traits of extraversion and neuroticism have an association 

with autonomic nerves system (ANS) responses to visceral pain. (196, 197) 

 

2.11.2 The Weinberger Adjustment Inventory (WAI) 

This is a well-validated trait measure of repression of negative affect. It 

measures the way in which an individual reacts to conflict and stressful 

situations through three dimensions; distress (anxiety, depression, low self-

esteem, low well-being), restraint (suppression of aggression, impulse 

control, consideration of others and responsibility), and defensiveness 

(repressiveness, denial of distress). (198) 

 

2.11.3 Toronto Alexithymia Scale (TAS- 20)  

The TAS is a 20-item instrument that is one of the most commonly used 

measure of alexithymia. Alexithymia refers to people who have trouble 

identifying and describing emotions and who tend to minimise emotional 

experience and focus attention externally. Research using the TAS-20 

                                                        
9 For the questioners see appendix two. 



 

 

 

 

94 

 

demonstrates adequate levels of convergent and concurrent validity. 

(199) 

2.11.4 Hospital Anxiety and Depression Scale (HADS)  

The 14-item questionnaire was designed as a screening tool to detect 

depression and anxiety. It consists of 14 questions with seven related to 

anxiety and seven related to depression. It was originally designed for 

use in general hospital outpatients but has been extensively used and 

validated in primary care. (200) 

 

2.11.5 Spielberger State (SSAI) and Trait (STAI) anxiety 

Questionnaire 

The Spielberger state and trait anxiety questionnaire is a widely used self-

report questionnaire. As one may expect, the state questionnaire asks 

how the subject feels at the present moment, whereas the trait 

questionnaire enquires about long-term feelings of anxiety. Some 

authorities suggest that trait anxiety and neuroticism are mutually 

exclusive. (201) 

 

2.11.6 Vulnerable Attachment Style Questionnaire (VASQ) 

The Vulnerable Attachment Style Questionnaire was developed to 

provide a brief self-report research tool to assess adult attachment style 

in relation to depression and validated against an existing investigator-

based interview (Attachment Style Interview – ASI). (202) It is based on 

Attachment theory (119), which describes the dynamics of long-term 

relationships between humans. It explains how the parents' relationship 

with the child influences development and becomes the basis for later 

attachment behaviour known as the adult attachment style. 
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2.12 Measurement of the Autonomic Nervous System 

 

The role of the ANS in the pathophysiology of a number of disorders 

including cardiovascular mortality and chronic pain has only been 

recognised and fully appreciated in the last three decades. (203) Partly 

the problem has to do with the lack of suitably sophisticated technology 

to measure and study the ANS and its systemic impact. Using an inserted 

needle recording of the peroneal nerve the ANS function can be 

measured directly. Similarly the vagus nerve can be facilitated through 

subcutaneous pacemakers-like stimulators. These methods are 

unfortunately very invasive and impractical for experimental studies. The 

need has arisen to develop accurate indirect measures by which ANS 

function can be monitored. The most popular method has been the 

heart rate variability (HRV). In the following section is a critique of the 

theory underlying HRV, and a description of more novel non-invasive, 

beat-to-beat measures of autonomic tone used in this thesis. 

 

2.12.1 Heart Rate Variability (HRV) 

Early studies related HRV to physiological mechanisms, and only a few 

historical studies highlighted the emergence of HRV as a physiologically 

meaningful measure. An example of this is Wundt (204), who used HRV to 

study repertory sinus arrhythmia (RSA). As interest in HRV increased, it was 

used both as an individual difference variable in obstetrics, paediatrics, 

developmental psychology, psychiatry, and health psychology and as a 

response variable in ergonomics, human factors engineering, and 

cognitive sciences. 

 

Almost all the studies investigating HRV have occurred during the past 40 

years. Clinical interpretations and applications have an even shorter 
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history. The linking and integration of central nervous system structures to 

autonomic functions, as seen in theories like the Polyvagal Theory (100, 

108), have only emerged during the past few decades. (91, 93, 98, 205-

207) Presently a non-physiological “operational” model still dominates 

the literature and still influences how HRV is quantified and interpreted in 

the literature. For example, various strategies to quantify RSA have 

focused on phenomenological features (e.g. relation to respiration) and 

not on neurophysiological (e.g. medullary interneurons, neuropeptides, 

neurotransmitters) or neuroanatomical features (e.g. source nuclei of 

vagal efferent pathways). In 1965 Hon at al. (208) demonstrated that 

foetal distress was predicted by alterations in the inter-beat intervals 

between successive R waves in the electrocardiograph (ECG), before 

detecting any changes in the heart rate (HR). This highlighted the direct 

clinical relevance of HRV for the first time, and since then the majority of 

research in autonomic nervous system has preferred using the HRV rather 

than the crude HR. HRV analysis has mostly been done by means of two 

methods; the time domain analysis and the frequency domain analysis 

with its emphasis on the power spectrum density (PSD). 

 

2.12.2 Time Domain Analysis 

In a continuous ECG recording, the interval between consecutive normal 

QRS complexes on the ECG is known as the normal-to-normal (NN) 

interval. Two statistical classes are derived from the normal-to-normal 

interval. The first class uses direct measurement of the NN intervals, while 

the second focuses on the differences between the NN intervals. The 

simplest variable is the SDNN (standard deviation of normal-to-normal RR 

intervals). (209) This value reflects the variability of the cyclic components 

in an ECG recording. Other commonly used measures are detailed in 

Table 1. This method’s major disadvantage is its statistical power 
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limitations, as it only allows for short-term recordings (less than five 

minutes) to be evaluated. (118, 210) 

 

Table 1 Commonly used domain analysis variables. (From Farmer, 2010) (211) 

 

 

2.12.3 Spectral Domain Analysis 

The sympathetic and parasympathetic components of the autonomic 

nervous system oscillate at different frequencies, and hence can be 

distinguished by means of the quantitative breakdown (power) of the 

different frequencies influencing the HRV. This is known as the power 

spectral density (PSD) and has become one of the preferred methods of 

analysing the autonomic nervous system to date. (212) When 

considering short-term recordings claimed in resting conditions (3 to 5 

minutes) the PSD is subdivided into three main frequency bands: high-

frequency (HF: 0.15-0.4Hz), low-frequency (LF: 0.08-0.14Hz) and very low 

frequency (VLF: 0.003-0.07Hz). (Figure 34) Some researchers also 

distinguish a fourth band known as the ultralow frequency (ULF: 

<0.003Hz). These rhythms can be divided further and are considered to 

reflect as demonstrated in Figure 34, below. (210, 212, 213) 

 

Variable!
(units)!!

!!
Description! Physiological Relevance!

!
SDNN!

(ms)!!

!!
Standard deviation of the normal RR (NN)!
interval! reflecting! all! of! the! cyclic!
components! responsible! for! variability! in!
the period of recording.!!

!!
An! overall! estimate! of! HRV,! but!
does not indicate the contribution!
of any particular influence.!

SDANN!
(ms)!!

!!
Standard deviation of the averages of NN!
intervals calculated over a short period of!
time, usually less than five minutes.!!

!!
Reflects! the! influence! of! circadian!
rhythms on autonomic function.!

pNN50!
(%)!!

!!
The! proportion! of!NN! intervals! having!a!
difference of >50mSec.!!

!!
Reflects! predominant! vagal!
influence on variability.!

Triangular!
Index!

(ms)!!

!!
The integration of the density distribution!
of all the NN intervals as a function of the!
maximum density.!!

!!
Overall estimate of HRV similar to!
SDNN.!
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The term cardiac vagal control (CVC) refers to the vagal output to the 

heart and it is thought to correlate with respiratory sinus arrhythmia (RSA) 

that is represented by the HF band. A further interesting phenomenon of 

this is that when the respiratory rate is between 10 to 12 breaths per 

minute (0.16-0.2Hz), the RSA assumes semi-stationarity. Due to this 

phenomenon, experimenters need the co- operation of the subject, in 

controlling their breathing rate when recording for normal physiological 

analyses. When the respiratory rate reaches about 6 breaths per minute 

by means of ‘paced breathing’ techniques, it can be observed within 

the HF band (±0.1Hz) and is referred to by some authors as achieving 

‘resonance’, and maximises the CVC. (213) A central methodological 

criticism of this measure of CVC was highlighted by Denver, who 

commented that, “…techniques such as paced breathing artificially 

elevate the CVC making its measurements unreliable…” and is hence 

ambiguous with regard to normal physiological analyses. (208) Of note is 

that this also creates the ideal opportunity to stimulate the CVC and 

increase parasympathetic tone when breathing at a similar frequency of 

0.1Hz (i.e. 6 breaths per minute). (213) (See section 2.20.3, page 114) 

 

A further complicating factor in using the PSD is that the physiological 

mechanisms responsible for the modulation of LF and HF components 

cannot be considered to be stationary for long HRV recordings, in 

particular those over 24 hours, due to the aforementioned difficulties 

associated with ‘stationarity-assumptions’. Problems are not confined to 

respiratory frequency only, for example in the literature, spectral analyses 

recordings taken over such periods of time are often reported in a single 

time block, i.e. the whole 24-hour period, or in shorter segments, usually 

five minutes, with the results averaged over the whole time period. (212) 

Hence, spectral analyses performed in either of these periods provide 

averages of the modulations attributable to the LF and HF components, 
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but such averages obscure detail regarding specific autonomic 

modulation. 

 

 

Figure 34 Power Spectrum Density (PSD) frequency bands, with physiological 
correlations. Below is illustrated a 3D-PSD (change over time, z-axis) of a healthy young 
subject during supine rest. (213)       (Adapted from McCarty, 2009) (210, 213) 

 

Finally, spectral analysis provides a representation of modulatory 

influences rather than autonomic tone as such (see beat-to-beat 

measure in section 2.12.5), as it provides a degree of the autonomic 

modulation of HRV by its different components, rather than the level of 

autonomic tone per se. 
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2.12.4 LF:HF – The Sympathovagal Balance Controversy 

Many studies in the literature derive a measure of sympathovagal 

balance, through the examination of the ratio between LF and HF. This 

method is potentially unclear, due to the assumption of two factors: (i) 

that LF and HF purely represent the sympathetic and parasympathetic 

modulation of HRV, and (ii) that there is direct reciprocity between LF 

and HF. (203) 

 

 

Figure 35 This diagram illustrates the methodological short-comings of using the LF:HF 
ratio as sole measure of sympathovagal balance in HRF analysis.                 
                  (Adapted from McCarty, 2009) (213) 

 

For a number of reasons these assumptions are not totally scientifically 

sound. Eckberg and colleagues demonstrated that blocking the vagal 

component of the LF with atropine had little effect on LF, whereas the 

converse was evident with sympathetic blockade. (214) There is thus a 

greater parasympathetic influence in the LF in comparison to the 

sympathetic nervous system. (Figure 35) Based on similar findings, Porges 

et al. suggested that HF might reflect CVC from the nucleus ambiguous 

…but%it%remains%a%mixed%measure,%where%LF%has%both%
PNS%&%SNS%components.%

The%LF:HF%ra=on%is%a%commonly%used%measure%of%sympathovagal%balance…%
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(NA), whereas the LF may reflect CVC from the dorsal motor nucleus 

(DMNX). (215) Porges designed a moving polynomial filter in an attempt 

to redress these methodological issues. (216) It entails a complex 

statistical method that utilises a time domain approach (moving 

averages) and smoothing filters to evaluate dynamically the rhythmic 

oscillations of the varying RR frequencies.  

 

In spite of Porges’ technique having the added value of pre-existing sex 

and age normal values for humans, the filter is not easily practically 

applied. This technique’s temporal resolution is poor beyond one minute 

for LF and two minutes for HF. To be exact, it has been recommended 

that this method of analysis is not used for more than two minutes’ worth 

of data. Despite these drawbacks, the LF:HF ratio of the sympathovagal 

balance remains a commonly utilised method of measurement in 

autonomic neuroscience research. 

 

2.12.5 Overcoming ANS Measurement Difficulties 

In order to overcome the aforementioned difficulties beat-to-beat 

measures were developed, as they represent direct measures of 

autonomic tone, irrespective of time frame or assumptions of respiratory 

stationarity. Examples of beat-to-beat measures are cardiac vagal tone 

(CVT) and cardiac sensitivity to the baroreflex (CSB). 

 

2.12.6 Measuring Cardiac Vagal Tone (CVT) 

The measure of parasympathetic stimulation to the heart via the vagus 

nerve is known as CVT. The momentarily blood pressure (BP) increase 

during ventricular systole causes baroreceptor activation in the carotid 

sinus and pulmonary circulation to increase their rate of discharge. (217) 
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In turn, via medullary neurones in the nucleus of the solitary tract (NTS), a 

vago-vagal reflex is initiated, which then stimulates vagal preganglionic 

neurones to increase firing. This increased cardiac vagal activity causes 

a reduction in the rate of spontaneous depolarisation of the sino atrial 

node, and widens the RR interval and decreasing HR. As the vagal 

response to baroreceptor stimulation in humans takes about 240ms, it is 

fast enough to delay the subsequent systole, resulting in beat-to-beat 

changes, known as heart rate variability (HRV). (218) (Figure 44) (This 

physiology underpins the clinically used measure of carotid sinus 

massage as a “vagal manoeuvre” in the treatment of supra-ventricular 

tachycardia.) Thus, even though the SNS influences the HR, for example 

through changes in peripheral vascular resistance which takes place 

more slowly, it is possible to deduce vagal tone in a non-invasive manner 

by measuring of the beat-to-beat changes in RR intervals. 

 

Based on these principles, the NeuroScope™ (MediFit Diagnostics Ltd, 

London; see Figure 38(a)), is a novel piece of technology that analyses 

the RR interval to produce the real time index of parasympathetic 

activity known as CVT. (219) A standard 3 lead ECG is recorded and the 

Neuroscope samples this ECG waveform at 5kHz. The acquired QRS 

complexes are then compared to a QRS template generated from the 

initial stages of the recording. If there is sufficient similarity between the 

recorded complex and template, a 1mV pulse is generated by voltage 

oscillators. Thus, the time between 1mV pulses is equivalent to the RR 

interval on the ECG. The Neuroscope circuit sends this pattern of 1mV 

pulses into two circuit limbs known as the high pass limb and the low pass 

limb. The high pass limb tracks the incoming signal without transforming it, 

whereas the low pass limb produces a damped version of the signal. 
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The lower the rate of HRV, the slower the rate of change of the incoming 

signal, and the closer the output match between the high and low pass 

limbs, and the lower the CVT. Conversely, the higher the HRV, i.e. the 

faster the rate of change of the incoming signal, the more damped the 

low pass circuit output is in comparison to the high pass limb, resulting in 

a higher CVT reading (Figure 36). This process has been termed phase 

shift demodulation. 

  

 

Figure 36 The beat-to-beat measure of cardiac vagal tone (CVT) as measured by the 
Neuroscope, using voltage oscillators with high (non-damped) and low (damped) 
circuit limbs. CVT variability is calculated on a linear scale (Lvs).                     
        (Adapted from Farmer, 2010) (211) 

 

This methodology of measuring CVT has been validated in humans and 

animals. (10) CVT is measured on an experimentally derived linear vagal 
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scale (Lvs). Zero on the Lvs was derived from six fully atropinised healthy 

volunteers, and 10 units on the Lvs established in the same volunteers in 

the supine position in the fasting state (i.e. maximal vagal activity). (219) 

Thus, CVT can be considered a validated marker of efferent 

parasympathetic tone from the brainstem on the heart. 

 

2.12.7 Cardiac Sensitivity to the Baroreflex 

In addition to the derivation of CVT, the Neuroscope also measures CSB, 

a validated, non-invasive beat-to-beat measure of parasympathetic 

afferent activity. Incorporated in the Neuroscope system is a non-

invasive continuous BP measurement using the Portapress™ system 

(Finapress®, Amsterdam, Netherlands). From this, the Neuroscope uses 

the raw Nexfin® waveform to calculate the arithmetic mean of the 

blood pressure (MBP), as opposed to the mean arterial blood pressure 

(MAP) that is commonly used in the clinical setting (MAP = DBP + 1/3(SBP 

– DBP); where DBP & SBP is diastolic and systolic BP respectively). The MBP 

that is calculated by the Neuroscope is the true arithmetic mean of the 

BP, i.e. DBP, dicrotic notch and the SBP. By integrating the RR interval 

data with the BP data, the change in pulse interval per unit change in 

SBP over a 10-second period can be calculated; this is termed CSB, 

which is expressed as a ratio of mmHg/ RR interval (ms/mmHg). (219) 

 

From section 2.12, it is clear that the Neuroscope allows the beat-to-beat 

measures of both the efferent and afferent limbs of the parasympathetic 

tone on the heart, without the methodological difficulties that are 

associated with spectral analysis of HRV. 
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2.13 Selective Sympathetic Measures 

2.13.1 Vasomotor – arithmetic Mean of the Blood Pressure (MBP) 

Mean arterial pressure (MAP) has been shown to correlate with invasively 

recorded sympathetic activity, as assessed by photo-plesythymography. 

(220) Photo-plesythymography records MAP on a beat-to-beat basis and 

has been validated against invasive arterial pressure measurements in 

humans. (221) However, it must be noted that if the cuff is applied to a 

subject’s finger for a considerable period of time, a degree of 

vasoconstriction can ensue. Selecting the correct size cuff is of utmost 

importance, as selecting the wrong size can result in large fluctuations in 

BP readings. The BP cuff was placed on the subject’s left middle finger in 

this series of experiments. The analogue readings from the Nexfin® were 

transmitted to the Neuroscope, where they were digitised and 

integrated into the beat-to-beat data, as discussed. Blood pressure was 

measured continuously with a Finometermodel 2, Finapress® Medical 

Systems™, finger cuff and a Portapress™ non-invasive blood pressure 

monitor (Finapress™ Medical Systems, Amsterdam ZO, The Netherlands 

(Figure 38(g)). 

 

2.13.2 Sudomotor – Skin Conductance Response (SCR) 

The sudomotor, or skin conductance response (SCR), (222) measurement 

has been used for more than 100 years, and is a measure of selective 

central sympathetic control over sweat gland activity. It can be defined 

as the 

 “…momentary change of the electrical potential of the skin, [it] 

may be spontaneous or reflexively evoked by a variety of internal 

or by externally applied arousal stimuli.” (223)  
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This simple electro- physiological measure assesses sympathetic 

cholinergic sudomotor function, and represents a transient change in the 

electrical resistance of the skin that is associated with sweat gland 

activity elicited by a stimulus that evokes an arousal or orienting 

response. Although human neuroanatomical efferent sweat pathways 

have not been fully determined yet, animal studies have shown that 

efferent sweat fibres originate in the hypothalamic preoptic sweat 

centre and descend through the ipsilateral brainstem and medulla to 

synapse with the intermediolateral cell column neurons. Unmyelinated 

postganglionic sympathetic class C fibres arise from the sympathetic 

ganglia to join the major peripheral nerves and reach the sweat glands. 

(223) There are two interacting types of sweat response, namely thermal 

and emotional. Emotional (mental) sweating control has multiple 

interactions, with emotional, cognitive and neuroendocrine functions, 

and is controlled at multiple levels within the CNS, mainly at the ACC. 

 

There are two main methods of SCR acquisition, firstly to measure 

spontaneous impedance changes across digits (often referred to as 

galvanic skin responses or “GSR”), or secondly to pass a small, constant 

current across the digit and record impedance changes as it crosses the 

digit (usually called the SCR) – with the latter felt to be more reliable. 

(222) The Powerlab™  (AdInstruments, UK) biosignals acquisition (Figure 

38(b)&(c)) system can digitally record SCR, which were recorded at 

baseline and during acid infusion. The SCR electrodes were placed on 

the subject’s left index and ring finger in this series of experiments. (Figure 

38(h))(224) SCR is measured in micro-Siemens (mS), and is a measure of 

pure sympathetic sudomotor activity. (Figure 37) 
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Figure 37 A typical SCR tracing. The black vertically dashed lines represent the 
application of a noxious stimulus, and the red line represents the SCR trace.      
       (Adapted from Farmer, 2010) (211) 

 

2.14 Summery of Autonomic Measures and Recordings 

The Neuroscope was used to make all ANS recordings during the set of 

experiments described in this thesis, and CVT and CSB were taken as the 

main measures of parasympathetic activity in subjects. (225, 226) This 

facilitated the study of both temporal and causal relationships of 

brainstem responses to external stimuli, as mentioned above. The CVT is 

measured and quantified in units of a linear vagal scale (Lvs) (219), 

whereas CSB is defined as the increase in pulse interval per unit increase 

in systolic blood pressure and is expressed as R-R interval (ms/mmHg). The 

full complement of autonomic measures used in this series of studies 

covers mixed measures (HR), parasympathetic efferent tone from the 

brainstem (CVT), parasympathetic afferent tone (CSB), sympathetic 

vasomotor (MBP) and sympathetic sudomotor (SCR). 

 

During experimental recordings, participants were instructed to remain 

strictly motionless and quiet while seated in a fully supported 80° upright 

examination couch (not illustrated in Figure 38 below) to minimise 

artefacts on autonomic recordings. The first five-minute pre-intervention 

baseline recording was acquired before intubation or cannula insertion, 



 

 

 

 

108 

 

and was used for inter-group comparisons. After intubation and a 10-

minute rest period a second five-minute baseline recording was 

acquired and used to compare with a 30-minute recording performed 

during the infusion period. Figure 38 (below), demonstrates the 

equipment and their attachment layout. 

 

 

Figure 38 This photograph depicts an assistant demonstrating the equipment and its 
experimental attachment. The equipment is as follows: [a] NeuroScope™, [b] 
Powerlab™, [c] Laptop for Powerlab™ data acquisition, [d] Cannula in right antecubital 
fossa, [e] Foot electrodes, [f] Catheter assembly passed trans-nasally, [g] Finapress® 
blood pressure monitor, [h] skin conductance response electrodes, [i] Omni fuse™ 
infusion pump, [j] Digitimer™ electrical stimulator, [k] Computer-administered 
questionnaires, [l] Synectics Medical™ continuous pH recording device.                 
(Photo courtesy of Abhi Sharma.) 
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2.15 Electrocardiograph (ECG) 

 Skin was firstly prepared by light excoriation (Nuprep® gel; Weaver and 

Co, Aurora Co, USA) to reduce impedance, electrodes (Ambu® blue 

sensor-P, Ballerup, Denmark) were subsequently placed in 3 areas; below 

the lateral aspects of the right and left clavicles and the left mid-

clavicular line below the breast.  A modified Einthoven’s lead II 

electrocardiogram (ECG) was acquired at a rate of 2kHz using a 

commercial bio signals acquisition system (Powerlab™, AD instruments, 

Figure 38(a)) and monitored on the Neuroscope system. 

 

2.16 Respiratory Monitoring 

Respiration via a transducer (Braebon™ smart belt) placed around the 

lower chest recorded the in-line lung filling and chest inflation of the 

subject in real-time and was monitored on the Neuroscope system.  

 

2.17 Study Procedure and Design 

The specific study designs will be discussed in each chapter dealing with 

those results. What will be covered here is the experimental design and 

procedures, which were common to all studies performed. The five 

studies were performed over three years in three different locations in 

Denmark and the UK (Figure 39): 
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Figure 39 The time schedule of the five studies and there geographical locations. 

 

 

 

In order to conduct the experiment efficiently, three assistants were 

required (Figure 40):  

• The first assistant performed the administration of the acid infusion; 

pH observations, electrical pain stimulation and recorded pain 

threshold response in each subject, and were blinded to all other 

data during the experiment. 

• The second assistant was responsible for the ANS and skin 

conductance response (SCR) reading and recordings, as well as 

supervising the specific psychophysiological interventions, and was 

blinded to all other data during the experiment.  

• ANS data analysis was conducted by the third person (analyser) 

who was not involved in the experiment, except for the 

administration of intravenous (IV) atropine or placebo. The third 

!Year! !!!!!!!!!!!!!!!!!!!!2010! !! !!!!!!!!!!!!!!!!!!!!2011! !! !!!!!!!!!!!!!!!!!!!!2012! !!
!Quarter! 1! 2! 3! 4! 1! 2! 3! 4! 1! 2! 3! 4!
!! !! !! !! !! !! !! !! !! !! !! !! !!
1.!Modula3on!Pilot!Study! !! !! !!
2.!Breathing!&!3.Stress>!Studies! !! !! !!
4.!Atropine!Study! !! !! !!
5.!GCH>1!Gene3c!Comparison!Study!
! !! !! !!

Study!Time!Schedule!&!Loca3ons:!!

Wingate!Ins3tute,!London!UK!
Aalborg!Hospital,!Aalborg,!Denmark!
Chapterhouse!Square,!London!UK!

Study!1!

Study!2!&!3!
Study!4!

Study!5!
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assistant was blinded to the subject experimental and sensitisation 

status. 

• Subjects were blinded to all data during the experiment and to 

their sensitisation status between studies. 

 

 

Figure 40 This photograph depicts the experimental setup, the healthy volunteer and the 
role of the three research assistants. 

 

The study design was a double blind, randomised, crossover, prospective 

study, as the same recruited subjects were followed up throughout the 

duration of each specific study. The cohorts formed their own controls on 

subsequent visits by means of the cross over design. For the atropine 

study (study 4), there was a placebo control. Subjects were required to 

complete two to three visits, depending on the type of study, their 

sensitisation status and randomisation. For the pilot (study 1) and the 
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atropine (study 4) studies, the subjects first completed a screening visit, 

before being randomised. During the ‘Breathing & Stress’ study (studies 2 

and 3), both sham (normal) and deep breathing protocols were 

randomly allocated directly after recruitment, and the non-sensitises 

(study 3) identified during the sham-breathing visit. All the subjects’ 

subsequent crossover visits were undertaken a minimum of two weeks 

after the preceding visit. The studies therefore produced "paired data 

sets" in the majority of cases. To randomise the subjects without bias, 

approved statistical software was used (www.randomisation.com) in 

advance, and subjects were randomised in a "2 x 5 - block 

randomisation" pattern. 

 

2.18 Experimental Design & Protocol 

Subjects were asked to fast from midnight prior to the experiment. All 

experiments were started at 9 AM in the morning to compensate for, and 

rule out, HPA-axis diurnal variation fluctuations. There was no external 

interference during the duration of the experiment.  

 

On the day urine pregnancy test and general health screening 

questionnaires and checks were completed prior to starting the 

experiment. This was to confirm that all inclusion and exclusion criteria 

were met. The same experimental design was used on all visits, with only 

the type of psychophysiological modulation altering (see Figure 41).  
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* IV atropine or placebo – study 4 
 

 

Figure 41 Detailed Time and Events (a) Diagram and (b) Table, showing the stages and 
approximate time durations in minutes of each part of the experimental protocol. The 
timing of the procedures is shown above the time line, and that of the measurements 
below. T0, illustrates the PT at baseline (i.e. pre acid infusion); T60, T90 & T120, illustrates 
the PT at 60, 90 & 120 minutes post acid infusion cessation, respectively.   

 

Studies were performed in healthy volunteers, as described in section 2.2, 

who contacted our department in response to a posted advertisement. 

Full informed consent was obtained. Subjects with any history of current 

or chronic gastrointestinal, neurological or psychiatric medical problems 

or taking any medication affecting GI, pain or neuropsychological 
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function were excluded. Subjects then completed a set of 

questionnaires answered directly on a computer specifically provided for 

this purpose. In female subjects experimental visits were arranged to 

coincide with the follicular phase of their menstrual cycle. Where this was 

not possible, visits were scheduled so that subsequent visits occurred 

during the same phase of their cycle as their initial visit.  

 

All studies were performed in a sound and temperature controlled 

laboratory. Temperature of the room was adjusted between 21-25 

degrees Celsius according to the subject’s preference. The subject was 

sitting upright in a comfortable couch throughout the study at an 80° 

angle with their head fully supported.  Patients were then attached to 

ECG electrodes to monitor autonomic parameters, blood pressure and a 

breathing belt. When a baseline recording of 5-minutes was completed, 

the nasogastric catheter assembly was placed into the oesophagus. 

After a further period of rest, a second "post intubation" baseline 

recording of 5-minutes was acquired. Where necessary, the intravenous 

cannula would now be placed. 

 

The subject’s baseline pain tolerance thresholds were then recorded for 

the proximal oesophagus, distal oesophagus and foot. Subjects were 

then connected to a syringe driver, which delivered the hydrochloric 

acid over a 30-minute period into the distal oesophagus. Subjects were 

asked to rate their subjective pain and unpleasantness on an 11 point 

visual analogue scale after completing the acid exposure. (Figure 32) 

 

Depending on the study type and random allocation, during the acid 

exposure each subject was asked to complete or was coached through 

a psychophysiological modulation protocol, for the duration of the acid 
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exposure phase. This could include: 1. Normal screening protocol, 2. 

Sham breathing protocol, 3. Deep breathing protocol, 4. Deep breathing 

protocol with atropine or placebo 5. Isometric “hand-grip” test protocol, 

and 6. A “dichotomous listening” stress test protocol (see section 2.20). 

Then followed a 30-minute-rest period, after which pain thresholds were 

once again recorded at 60, 90 and 120 min after the start of the acid 

infusion. The last procedure was to obtain a 5ml blood sample for 

genetic analysis (study 5), which was immediately labelled and frozen 

down. 

 

2.19 Use of Psychophysiological Modulation 

 

In the following section is an explanation of the neurobiology and 

underling theory of the psychophysiological modulations used in this 

thesis: 

 

2.19.1 Physiological role of Respiratory Sinus Arrhythmia 

Respiratory Sinus Arrhythmia (RSA) is an intrinsic resting function of the 

cardiopulmonary system. It is an active physiological function that has its 

own biological roles. By matching alveolar ventilation and capillary 

perfusion (V/Q matching, see figure 42) throughout the respiration cycle 

RSA improves respiratory gas exchange efficiency. With increase in 

alveolar ventilation during inspiration (V), there is an increase in capillary 

perfusion (Q) due to a SNS mediated increased HR in order to facilitate 

blood-gas transport. This is better understood when contrasted with the 

inverse effect of RSA, which gives rise to alveolar dead space (wasted 

ventilation) and increased intrapulmonary shunt (ineffective perfusion). 

Hence during expiration the PNS outflow-mediated drop in HR facilitates 

alveolar gas exchange. This function of RSA is useful as it saves cardiac 
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and respiratory energy in resting animals and humans. (227) In mammals, 

the effectiveness of certain cardiac reflexes is markedly modified by 

respiration. Reductions in heart rate are evoked by brief stimuli applied to 

the arterial baro- and chemoreceptors (Figure 44), but only if they are 

applied during expiration. (228) Stimuli given during inspiration are less 

effective or totally ineffective, as this will only enhance the “dead space 

or shunt” phenomena (Inverse RSA). It can be predicted that any 

cardiac reflex would be modulated by respiration, since the 

preganglionic neurons themselves are under respiratory control, which is 

mediated by these neurons. In contrast, stimulation of receptors in the 

airways and cardiac C-fiber receptors all evoke reflex excitation of 

cardiac vagal outflow, potentially resulting in a bradycardia, which is 

modified by respiratory drive and is evident as RSA.  

 

 

Figure 42 Schema showing the effects of RSA and its inversion (inverse RSA) on the 
relationship between alveolar gas volume and capillary blood flow during inspiration 
and expiration. Horizontal bows and vertical arrows indicate the volume of blood flow 
and the direction of gas flow, respectively. RSA improves respiratory gas exchange 
efficiency by matching alveolar ventilation and capillary perfusion throughout the 
respiratory cycle, while inverse RSA results in increased alveolar dead space (wasted 
ventilation) and increased intrapulmonary shunt.     (Adapted from Hayano, 2003)  (227) 

 

Even though evidence indicates that RSA magnitude and cardiac vagal 

tone seems to be regulated separately, RSA’s HF component of HRV is 
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ubiquitously used as an index of cardiac vagal function, and is 

intrinsically physiologically connected. (229) 

 

2.19.2 RSA as a component of HRV 

Short-term HRV measured as beat-to-beat variation of RR interval shows 

unique behaviours in response to stress and diseases. Most physiological 

parameters are kept constant around their own set points in the 

absence of external or internal turbulence/stressors. Hence states in 

which such constancy is lost could arguably be considered as indicative 

of disorders. Following this concept, RR interval is expected to be stable 

at rest (health) and to become unstable under distress (disease). 

However, the reverse is clinically observed. In Figure 43, RSA fluctuations 

of RR interval is most variable in healthy subjects at rest, and it reduces 

with mental and physical stresses, and is almost non-existent in patients 

with severe heart failure even at rest. This indicates that increased 

fluctuation of RR interval is a characteristic of health and is suppressed in 

distress and diseases. (227, 230, 231) 
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Figure 43 Trendgrams showing fluctuation of beat-to-beat RR interval in various 
conditions. (A) RR intervals were measured from 2-min ECG in healthy young subjects 
during supine rest, (B) mental arithmetic stress testing, (C) and ergometer exercise 
testing and (D) in a patient with severe congestive heart failure at rest.     
                      (Adapted from Hayano, 2003) (227) 

 

In short-term HRV such as those shown in Figure 43, RSA is the most 

prominent and consistent component. RSA is an oscillation of heart 

period in synchrony with respiration, which appears in power spectrum of 

RR interval as a peak within the so-called HF band (0.15–0.45 Hz, Figure 

34) or, more appropriately, as a peak at respiratory frequency. Due to 

the difference in frequency characteristics of signal transfer between 

sympathetic and vagal modulation of heart rate, it is believed that the 

NA branch of the vagus solely mediates RSA. (232) RSA has been 

proposed and widely used as a quantitative index of cardiac vagal 

function, because the magnitude of RSA is attenuated with progressive 

suppression of cardiac vagal activity and abolished by complete vagal 

blockage with atropine. (212, 233-235) This is now controversial since 

improved understanding brought by theories of the divergent influences 

of different parts of the vagus nerve. (70) 
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2.19.3 RSA and Cardiorespiratory Control 

Historically, the first references to RSA were made in the beginning of the 

1900s. Wundt (204) stated that "...respiratory movements are therefore 

regularly accompanied by fluctuations of the pulse, whose rapidity 

increases in inspiration and decreases in expiration." H.E. Hering (236) 

observed as early as 1910 that a functional relationship exists between 

the amplitude of RSA and the concept of vagal tone. He reported that, 

“…breathing provides a functional test of vagal control of the heart.” He 

when on to say "…it is known with breathing that a demonstrable 

lowering of heart rate ... is indicative of the function of the vagi."  

 

Presently it remains that central control of the cardiorespiratory system is 

complex and interactive. It is modulated by afferent inputs from areas in 

the mid- and forebrain such as the hypothalamus, amygdala and cortex, 

and is operated by means of a direct feed-forward control from the 

brainstem. (237) Emotional states and several routine behavioural 

responses like, for instance “the orientation” and “fight or flight” 

responses, causing marked variation in the HR. The amygdala receives 

projections from several nuclei involved in cardiovascular control that 

includes the hypothalamus, parabrachial nuclei, nucleus of the solitary 

tract (NTS), and dorsal motor column of the vagus. (238) The infralimbic 

and insular cortices are also linked and influence control. Consequently, 

it is a critical site for cardiovascular control and has the role of integrating 

the autonomic responses to emotional stimuli like fear, anger and stress. 

(237)  

 

In the control of the ANS function the hypothalamus is a further key area, 

since it integrates information from somatic motor areas, emotional state 

and also humeral efferent activity. (238) It has connections to both 

sympathetic and parasympathetic control, as the hypothalamic nuclei 
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connects directly with the ventrolateral areas in the brainstem and the 

intermediolateral neurons of the cervical and thoracic medulla. (237) As 

a result of these rich midbrain and brainstem neuronal connections, 

cardiorespiratory control overlaps and is also intrinsic to the 

neurophysiological control, which mediates between emotional and 

physical states. This overlap forms the anatomical and physiological basis 

for a two-way regulation, where cardiorespiratory changes can 

influence emotional and autonomic states, and vice versa.  

 

A physiological example of this is the observation that heart rate 

decreases during expiration. This occurs because HR is generated 

centrally by an inhibitory input from inspiratory neurons in the respiratory 

group projecting to the caudal ventral-posterior nucleus (CVPN) outside 

of the dorsal ventral nucleus (DVN) in the ventrolateral nucleus 

ambiguous (NA). (229)(Figure 44) As respiration-related fluctuations in the 

efferent pathway drives the inhibitory supply to the heart via the cardiac 

vagus, respiration is hence a physiological means of regulating RSA, and 

through its neurological connections gives a clear physiological window 

into modulating vagal outflow as reflected in the changes seen in PSD 

analysis. As such respiratory control effects cardio-autonomic regulation 

and has a psychophysiological effect, which proposes a mechanism for 

arbitrary modulation in laboratory conditions. 
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Figure 44 Diagram illustrating the pathways relating the interaction of cardiac and 
respiratory reflexes instrumental in producing RSA changes (illustrated by the red 
arrows). On expiration there is a lengthening in the RR interval, as seen on the ECG, due 
to reflexive vagal (CVT) inhibition.           (Adapted from Daly, 1997)  (228) 

 

Applying this practically, it is observed that during isometric exercise and 

psychological stress, there is an increase in heart rate (and HRV) which is 

associated with an increase in the VLF frequency band, suggesting an 

increase in sympathetic dominance, compared to the baseline of 

healthy young subjects during supine rest. (Figure 45, upper red arrow) 

On the other hand during paced deep breathing the HR indicates 

exaggeration of RSA as observed in the HR trendgram and an increase 

in the 0.10Hz frequency band (HF) suggestive of parasympathetic 

dominance. (Figure 45, lower green arrow)(227, 235, 239) This supplies 
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strong neurophysiological support and justifies the use of these specific 

psychophysiological states as modulators that can be used to increase 

and decrease brainstem autonomic outflow. 

 

 

Figure 45 This diagram illustrates the effect of three different psychophysiological 
modulated states (column on the right) as compared with regards to Heart Rate (HR) 
Trendgrams (column on the left) and Heart Rate Variability Power Spectrum Density 
(PSD) (centre column): Isometric exercise and psychological stress (top row) has a 
gradual increase in HR and a VLF peak on PSD, suggestive of sympathetic dominance. 
Baseline supine rest in young healthy volunteers (middle row) has a responsive HR with 
RSA fluctuation. The PSD is balanced across VLF, LF & HF, suggestive of autonomic 
equilibrium. With paced deep breathing (bottom row), the HR trendgram indicates an 
exaggerated RSA pattern with HF peak on PSD. This would indicate an enhanced 
parasympathetic response.                                       (Adapted from McCarthy, 2009) (213) 

 

2.20 Psychophysiological Modulation Protocols 

As discussed in section 2.19.3, the vasomotor centre (VMC) located in 

the medulla is vital to the maintenance of the autonomic tone and its 

activity is modulated by a number of psychological and physiological 

stimuli. As was seen (Figure 45), psychological distress and physical 

exercise increases the sympathetic tone while reciprocally decreasing 
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the parasympathetic tone. This increases the heart rate, cardiac output 

and blood pressure. In contrast, forced deep inspiration and expiration 

exaggerates the normal RSA regulated by the parasympathetic output 

of the brainstem vasomotor centre leading to a slowing of the heart rate. 

These physiological alterations in the autonomic tone therefore provide 

an excellent opportunity to modulate the ANS selectively and observe its 

effect on oesophageal sensitisation to acid. Hence the 

psychophysiological modulations that were used in this thesis were:  

 

2.20.1 Screening visit protocol 

 

Figure 46 Diagram illustrating the psychophysiological modulation protocol for the 
screening visit. As this visit during study 1 was to serve as a baseline visit, no 
psychophysiological modulation was performed during the 30minitus acid infusion 
period (red bar). Autonomic measurement (brown bars) was done before and during 
the acid infusion. Pain thresholds (blue bars) were done before and three times after 
acid infusion. PH-metry (green bar) was started 20mins before acid infusion, and 
stopped 30mins after acid infusion ended (see figure 41). 

 

This protocol has no psychophysiological modulation component (Figure 

46), and functioned primarily to provide a baseline for comparison, and 

to discriminate between sensitisers and non-sensitisers. Normal 

autonomic fluctuation patterns were observed, as illustrated in Figure 53 

(panel 1). 
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2.20.2 Sham breathing protocol 

This protocol was designed to simulate the cognitive distraction, 

interpersonal interaction and somatic focus components of the deep 

breathing protocol and in doing so, provide a psychological control 

intervention.  

 

 

Figure 47 Diagram illustrating the psychophysiological modulation protocol for the 
‘sham breathing’ visit. The subject was asked to count 6 breaths on six occasions 
(purple figures) during the 30minitus acid infusion period (red bar). Autonomic 
measurement (brown bars) was done before and during the acid infusion. Pain 
thresholds (blue bars) were done before and three times after acid infusion. PH-metry 
(green bar) was started 20mins before acid infusion, and stopped 30mins after acid 
infusion ended (see figure 41). 
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Figure 48 This diagram shows two actual healthy volunteer NeuroScope™ ‘screenshots’. 
The graphs in the upper half of each panel show the blood pressure labelled BP (upper 
red graph: systolic, lower red graph: diastolic and yellow graph: MAP), and the RR-
interval labelled RR (white graph). The graphs in the lower half of etch panel shows the 
CSB (green graph) and CVT (white graph) each labelled as such. In panel 1.DB (left) the 
yellow oval highlights the RSA changes in the BP & RR, brought about by six consecutive 
breaths of the ‘deep breathing protocol’. The red box below highlights the coinciding 
increase in CSB & CVT from baseline. Compared to this the yellow oval in panel 2.SB 
(right) highlights the normal RSA fluctuations in the BP & RR, brought about by six 
consecutive breathes of the ‘sham breathing protocol’. Highlighted in the red box 
below, is normal CSB & CVT similar to that which is observed at baseline. 

 

Here the subject was asked to periodically focus and count six normal 

consecutive breaths, every five minutes, throughout the 30-minute acid 

infusion period. The subject was not given any specific instructions with 

regard to respiratory rate, depth or type (Figure 47). The intervention was 

not associated with any RSA changes and the respiration component of 

this intervention had thus no physiological effect, as illustrated in Figure 

48 (panel 2). 
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2.20.3 Deep breathing protocol 

The deep breathing protocol used in this study was based and modified 

from a procedure described by Roland D. Thijs et al. (240) They used the 

original "deep breathing through pursed lips" protocol, as a respiratory 

countermanoeuvre to maintain the blood pressure (BP) of patients 

diagnosed with orthostatic hypotension in context of autonomic failure. 

This manoeuvre was designed to activate the “respiratory pump” and 

affect the BP in several ways. It augments venous return when the 

intrathoracic pressure becomes more negative during inspiration and in 

doing so, stimulates the aortic arch and carotid baro- and 

chemoreceptors to increase afferent stimulation of the nucleus of the 

solitary tract (NTS) and VMC. (229)(Figure 44) It thereby increased the 

cardiac vagal outflow to the heart and blood vessels that is associated 

with synchronised augmentation of the RSA. (Figure 48, panel 1) They 

further demonstrated that patients who trained with BP biofeedback 

improved the effectiveness of the countermanoeuvres while fully 

preventing hyperventilation, and reproducibly could increase 

parasympathetic outflow in laboratory conditions. (210) 

 

The enhanced parasympathetic outflow in this study was achieved by 

paced breathing at full inspiratory capacity in 4 sec, followed by 

exhaling to forced expiratory vital capacity in 6 sec. This was repeated at 

a frequency of 0.1Hz (6 breaths per minute), for a one-minute period. This 

manoeuvre was repeated every 5 minutes for the 30-minute duration of 

the acid infusion phase of the experiment, thus allowing for about 6 

deep breathing cycles per 30-minute period (Figure 49). The amplified 

RSA and the coinciding increase in CSB and CVT, in contrast to the sham 

breathing protocol is illustrated in Figure 48, panel 1, as measured on the 

Neuroscope. 
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Figure 49 Diagram illustrating the psychophysiological modulation protocol for the 
‘deep breathing’ visit. The subject was paced to perform 6 deep breaths on six 
occasions (purple figures) during the 30minitus acid infusion period (red bar). 
Autonomic measurement (brown bars) was done before and during the acid infusion. 
Pain thresholds (blue bars) were done before and three times after acid infusion. PH-
metry (green bar) was started 20mins before acid infusion, and stopped 30mins after 
acid infusion ended (see figure 41). 

 

2.20.4 Deep breathing with atropine or placebo protocol 

In both treatment arms of study 4, subjects were asked to perform the 

deep breathing protocol, as described in section 2.20.3, while they 

received the acid infusion. In one treatment arm subjects received IV 

saline (placebo) while in the other arm they received IV atropine in a 

double blind manner, given by the unblinded third assistant (see section 

2.17). (Figure 50) 

 

After baseline measurements of ANS and upper/lower oesophageal pain 

thresholds to electrical stimulation, the volunteers received a dose of 

0.5mg atropine sulphate administered intravenously (IV) 5-minutes before 

the start of acid infusion (Figure 41). Its mechanism of blocking 
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parasympathetic tone has been shown to be pro-algesic in previous 

similarly performed studies. (241, 242) 

 

 

Figure 50 Diagram illustrating the psychophysiological modulation protocol for the 
atropine-placebo study. The subject was paced to perform 6 deep breaths on six 
occasions (purple figures) during the 30minitus acid infusion period (red bar) on all 
visits. Atropine or placebo was administered 5mins before the start of acid infusion. 
Autonomic measurement (brown bars) was done before and during the acid infusion. 
Pain thresholds (blue bars) were done before and three times after acid infusion. PH-
metry (green bar) was started 20mins before acid infusion, and stopped 30mins after 
acid infusion ended (see figure 41). 

 

Atropine is a cholinergic (muscarinic) antagonist that in humans, at a 

low-dose, (≤ 2µg/kg IV) paradoxically decreases heart rate and 

increases RSA because of increased parasympathetic activity. At high 

doses (≥15µg/kg IV) atropine causes blockade of muscarinic receptors 

at the cardiac sinoatrial node and a marked reduction in 

parasympatholytic tone as seen by an increase in heart rate and 

decreased heart rate variability. This paradoxical response is not fully 

understood but atropine effectively antagonises the parasympathetic 

inputs to the SA node, therefore there is unopposed sympathetic activity, 
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which causes the increased heart rate. However it is thought that at low 

doses it doesn't cause this vasolytic function and instead causes a 

vagotonic reaction, which causes further bradycardia. (243) It has a half-

life of approximately 4 hours, which covered the duration of the 

experiment adequately.  

 

 

Figure 51 This diagram shows 3 x deep breathing cycles (numbered in blue) of an 
actual healthy volunteer’s NeuroScope™ ‘screenshot’. The subject received 0.5mg 
Atropine IV between breath cycle 1 & 2 (green dashed line). The graphs in the upper 
half of the panel show the blood pressure labelled BP (upper red graph: systolic, lower 
red graph: diastolic and yellow graph: MAP), and the RR-interval labelled RR (white 
graph). The graphs in the lower half of the panel shows the CSB (green graph) and CVT 
(white graph) each labelled as such. The first yellow oval (left) highlights the RSA 
changes in the BP & RR, brought about by six consecutive breaths of the deep breathing 
protocol before the administration of the atropine. The red box below highlights the 
coinciding increase in CSB & CVT from baseline. Compared to this the second yellow 
oval (right) highlights reduced RSA changes in the BP & RR, indicating that even though 
the subject was doing six consecutive breaths of the deep breathing protocol the 
brainstem outflow is now reduced. The RSA, CSB & CVT is noticeably diminished by the 
second breath cycle, and almost totally unresponsive by the third. The red box on the 
right highlights the total block of the coinciding CSB & CVT response by atropine. 
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In study 4, largely due to regulatory concerns over cardiovascular safety, 

a standard dose of 0.5mg of atropine sulphate IV was chosen and was 

used in accordance with the indications and dosing guidelines of the 

British National Formulary. This equates to approximately 7µg/kg. The 

methodological requirement was for a marked reduction in the RSA due 

to the antagonism of the parasympathetic outflow, in spite of 

implementing an effective deep breathing protocol. At this dose 

however there is not a marked tachycardic effect expected, which 

would allow for the active agent to remain blinded with regards to the 

participating subject. As a result of atropinisation the CSB and CVT will 

remain unresponsive during deep breathing, as illustrated in Figure 51. 

The increasing blockade of atropine is demonstrated in comparing the 

progression of three breathing cycles, one pre- and two post- atropine 

administration, and would thus be observable by the second assistant. 

(See 2.17, page 110.) 

 

2.20.5 Isometric “handgrip” exercise test protocol 

Isometric exercise stimulates the vasomotor centre located in the 

medulla and thereby increases the sympathetic tone while reciprocally 

decreasing the parasympathetic tone. This increases the heart rate, 

cardiac output and blood pressure. The protocol’s aim was to examine 

the effect of enhancing the sympathetic tone in previously non-

sensitising individuals to oesophageal acid sensitisation as identified by 

the screening visit. This was used to explore if an increase in sympathetic 

tone has any effect on subject’s vulnerability to sensitisation, and 

explores the effects of physical stress on pain sensitisation. 
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Figure 52 Diagram illustrating the psychophysiological modulation protocol for the 
‘handgrip’ visit. The subjects were directed to complete three separate isometric 
handgrips sustained for 5mins (purple figures) during the 30minitus acid infusion period 
(red bar). Autonomic measurement (brown bars) was done before and during the acid 
infusion. Pain thresholds (blue bars) were done before and three times after acid 
infusion. PH-metry (green bar) was started 20mins before acid infusion, and stopped 
30mins after acid infusion ended (see figure 41). 

 

Sympathetic tone was increased with isometric exercise using a 

specifically designed handgrip equipped with a ‘power feedback’ 

meter. To standardise the force applied by selected subjects in this study, 

30% of the maximal force possible was applied and maintained over five 

minutes. (162, 244, 245) This physiological modulation was then repeated 

three times during the 30-minute acid infusion. What is experimentally 

observed is a gradual increase in the BP and heart rate (decrease in RR-

interval) over the 5-minute period. (Figure 52) This is associated with a 

gradual decrease of both the CSB and CVT, as illustrated in Figure 53, 

panel 2. 
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Figure 53 This diagram shows two actual healthy volunteer NeuroScope™ ‘screenshots’. 
The graphs in the upper half of each panel show the blood pressure labelled BP (upper 
red graph: systolic, lower red graph: diastolic and yellow graph: MAP), and the RR-
interval labelled RR (white graph). The graphs in the lower half of each panel shows the 
CSB (green graph) and CVT (white graph) each labelled as such. Panel 1.SV (left) is a 
recording during the ‘screening visit’ protocol.  The yellow oval highlights normal RSA 
fluctuations in the BP & RR during baseline recording. Similarly, highlighted in the red 
box below, is normal CSB & CVT observed at baseline. Compared to this the yellow oval 
in panel 2.HG (right) highlights a gradual increase in BP, with a decrease in RR, brought 
about buy the ‘Handgrip protocol’. Highlighted in the red box below, is the coinciding 
decrease in CSB & CVT. 

 

2.20.6 “Dichotomous listening” psychological stress test protocol 

Psychological stress increases the sympathetic tone while reciprocally 

decreasing the parasympathetic tone. This increases the heart rate, 

cardiac output and blood pressure. Psychological stress induction was 

achieved by using dichotic listening, which involves two conflicting types 

of music delivered simultaneously at 30 dB, via separate headphone 

channels. The subject heard Folk music in a foreign language in one ear 

and “heavy metal” music in the other ear. All subjects were exposed to 

the same pre-recorded music selection. This technique, which has been 
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previously validated by other investigators, has also been used to 

examine the impact of stress on visceral perception in patients with 

irritable bowel syndrome. (246-248) Following the results of study 1, to 

increase the subjective degree of psychological stress induction, subjects 

in study 3 were also asked to perform a standardised reading and 

mental arithmetic task while listening to the dichotomous music tract. This 

adaption was used to further increase the degree of psychological stress 

induction and has been validated by our group in inflammatory bowel 

disease  (IBD) studies. (249) 

 

 

Figure 54 Diagram illustrating the psychophysiological modulation protocol for the 
’stress test’ visit. Subjects listened to a conflicting duel track sound recording (purple 
figures) during the 30minitus acid infusion period (red bar). During study 3, it was 
augmented to include a mental arithmetic task as well. Autonomic measurement 
(brown bars) was done before and during the acid infusion. Pain thresholds (blue bars) 
were done before and three times after acid infusion. PH-metry (green bar) was started 
20mins before acid infusion, and stopped 30mins after acid infusion ended (see figure 
41). 

 

2.21 Data handling and statistical analysis 

All statistical analyses were performed using proprietary software (SPSS® 

v.19, IBM Inc., USA, Excel® Microsoft Inc., California USA & Prism® v.6.0c 

GraphPad Software Inc., California USA, Stata® V10.0, Stata Corp., Texas 

USA) in consultation with an accredited bio-statistician. Analysis 

included: 
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2.21.1 Primary endpoint analysis 

In healthy volunteers an absolute fall in pain threshold (Δ Avr PT) of ≥6mA 

from baseline in the distal oesophageal following acidification was 

required for sensitisation to be documented as previously reported in the 

model (51, 191). Changes in PT were analysed using linear mixed effects 

regression models with maximum restricted likelihood (fixed effects: time, 

interventions i.e. deep breathing/sham breathing; atropine/placebo; 

random effect = subject) with T0 thresholds accounted for in the model 

as zero to yield a regression coefficient for intervention effect (with 

confidence interval (CI)). In study 2 & 3 the trapezoid area-under-the-

curve (AUC) was calculated for all subjects at each time point for 

oesophageal pain thresholds. Comparisons of AUCs were undertaken 

with Mann-Whitney U test (pilot-&-study 2) and a repeated measures 

analysis of variance (ANOVA) with appropriate correction for multiple 

testing. Comparisons between groups were made using either the 

Student's t-test if parametric, or the Wilcoxon signed ranks test if non-

parametric (pilot study). Comparisons between unpaired groups were 

made with an unpaired t-test or Mann-Whitney U-test depending on 

distributional assumption. All tests were two-tailed, and paired (same 

group) and non-paired (inter group) t-tests were used. All confidence 

intervals are given to 95% and p value significance was taken at p<0.05.  

 

For the autonomic measures, normality of distribution was tested with 

histograms for each data set and was parametrically distributed. Analysis 

of Variance (ANOVA) was used to determine the measures of effect of 

ANS regulation for the differing modulations over multiple time points. For 

pain thresholds, the change in threshold from baseline was calculated 

for each time point and averaged to give a mean change in threshold 

for each individual subject. (250) The mean change of differing 

modulations across all time points was analysed using multivariate 
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analysis of variance (MANOVA). Baseline threshold was accounted for in 

the model. It allowed for repeated measures within patients, and for 

missing data. The residual variance from the model was used to 

calculate 95% confidence intervals for the differences in least square 

means between groups, and p value significance was taken at p<0.05. 

Distributional assumptions underlying this analysis were assessed by 

inspection of residual plots. Homogeneity of variance was assessed by 

plotting the residuals against the predicted values from the model, whilst 

normality was assessed by the use of normal probability plots.  

 

2.21.2 Secondary endpoint analysis 

To identify the factors associated with the magnitude of sensitisation, 

simple linear regression was used to determine the relationship between 

groups. Regression analyses on subgroups were performed if a 

relationship was present. Pearson's ‘product-moment coefficient’ was 

used for the correlations. The Bonferroni correction was used during 

multiple comparisons for all illustrated correlations. For some of the minor 

observational correlations, where the correction was not applied, it was 

clearly stated. Confidence intervals are given to 95% and p value 

significance was taken at p<0.05.  

 

2.21.3 Sample size power calculation 

The primary endpoint of these studies was the utility of 

psychophysiological manipulation of ANS in modulating oesophageal 

VPH in healthy volunteers who sensitise to acid. Calculation of sample 

size was done from this endpoint. The sample size calculation on the 

large amount of data we have over our research group’s 5-year 

experience of manipulating the oesophageal VPH. (184-190) The group 

has produced summary data from these trials that show the mean effect 
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of placebo and acid in reducing sensory thresholds to electrical 

stimulation at 30 and 60 minutes as well as the mean and standard 

deviations of responses. 

 

For studies 2 and 3, a 7.2mA was used as the between-subject standard 

deviation of the two groups (acid plus breath), and we estimated the 

within-subject standard deviation for both groups as 9.3mA based on 

previous studies using the acid induction VPH model. (175) Using a mean 

value of 83.4mA for the control group, and the within-subject standard 

deviation of 9.3mA in order to achieve 6mA difference between the two 

groups at 5% significant level and 80% power (beta of 0.8 p=0.05), the 

minimum sample size was calculated to be 30 by using the paired t-test. 

That means a total of 30 subjects will enter this paired designed study. 

The probability is 80% that the study will detect a treatment difference at 

a two-sided 5% significance level, if the true difference between the 

treatments is 5 units. This is based on an assumption that the standard 

deviation of the response variable is 9.33mA as in previous studies. On 

average only about 64% of recruited subjects who will enter the study will 

sensitise to acid, as such, it was necessary to recruit 47 subjects 

presuming a dropout rate of zero, and 53 subjects assuming a 10% drop 

out rate. 

 

For study 4, the primary endpoint was the utility of physiological 

manipulation of ANS in conjunction with atropine in oesophageal VPH in 

healthy volunteers who sensitise to acid with a ≥6mA difference between 

the two groups. Hitherto this has not been studied so it was impossible to 

estimate the size of any effect accurately, so it was based on previous 

studies using atropine blockade. (251) Calculation of sample size for 

placebo vs. atropine was used, with a 30% reduction in sensitisation from 

baseline with atropine or saline  (+/- 2 SDs) with a beta of 0.8 p=0.05, 
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giving n=7 in each treatment arm, and a sample size of 14 sensitisers. 

Based on previous studies using this model, a conservative estimated 

non-sensitiser rate of 40%, with a dropout rate of 10%, was used to back-

calculate a minimum-screening cohort of 30 subjects. 
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3 Effect of Psychophysiological Modulation on Acid Induced 

Oesophageal Hypersensitivity - Pilot Study  

  

3.1 Introduction 

Psychiatric comorbidity is common in FGID. It is widely observed that IBS 

patients have a greater degree of anxiety and depression than either 

healthy controls or patients with inflammatory bowel disease. (252) A 

similar finding is seen in other medical conditions like Non Cardiac Chest 

Pain (NCCP) and patients diagnosed with coronary artery disease. (253, 

254) The lack of clearly identifiable biological markers along with the 

aforementioned associations promotes the belief that these disorders are 

clinical manifestations of psychosomatic disturbance. Exploratory 

findings like the enhanced perceptual responses to experimental gut 

stimulation demonstrated in FGID patients, further strengthens the 

likelihood of this hypothesis. (152) Visceral pain hypersensitivity (VPH), 

clinically presents as hyperalgesia and allodynia, and occurs because of 

peripheral and central sensitisation, presently understood to result from 

the upregulation of nociceptive pathways. Given that both psychiatric 

comorbidity and VPH are common findings in FGID, an important 

question now being raised is how they interact in the pathophysiology of 

these disorders.  

 

Persisting IBS symptoms develop as a result of gastroenteritis in about 30% 

of individuals (Post-infectious IBS (PI-IBS)), suggests that there is a link 

between inflammation, gastrointestinal injury and subsequent sensory 

dysfunction. (40) Furthermore it has been observed that the likelihood of 

developing PI-IBS in patients who were hospitalised when they 
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experienced gastroenteritis is much higher in those patients also suffering 

with comorbid anxiety, suggesting that psychiatric factors may modulate 

this link, although the exact mechanisms remain unclear. (255) A 

preceding history of inflammation or injury leading to somatic and 

visceral pain syndromes is also commonly seen in a variety of medical 

conditions, and includes cases of PI-IBS (40), Post-Herpetic Neuralgia 

(256) and also NCCP where acid reflux is a common finding. (257) There 

however remains great individual variety in the susceptibility for 

developing these post insult chronic conditions, as for instance only 

about a third of patients with gastroenteritis go on to develop PI-IBS. (40) 

 

It is now clear that in the gastrointestinal tract inflammatory and immune 

mediators can facilitate peripheral afferent nociception (Peripheral 

Sensitisation) and subsequently upregulate nociception at or above 

spinal dorsal horn level (Central Sensitisation). (152) In “post insult” 

affected tissues, peripheral and central sensitisation manifests clinically 

with heightened sensitivity to experimental stimuli (hyperalgesia or 

allodynia). (152) This interface between gut lumen, sensory-neural 

pathways and the higher brain centres is closely regulated by the 

Autonomic Nervous System (ANS). (152) The degree of regulation 

suggests that altering ANS balance modulates bowel sensitivity, for 

example in healthy volunteers greater colonic sensitivity to balloon 

distension, has been shown by increasing sympathetic nervous system 

dominance. (153)  

 

In patients with gastro-oesophageal reflux disease experimental 

oesophageal acidification is associated with enhanced sympathetic 

dominance (154), while in NCCP patients reporting pain during acid 

infusion, a reduction in vagal activity was observed. (155) 

Sympathetically mediated mechanisms are implicated in several chronic 
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pain syndromes (258, 259) and are associated with diarrhoea 

predominant symptoms in FGID patients. (260) Both animal and human 

data support a vagally mediated inhibition of visceral nociception (181, 

261), and constipation predominant symptoms in FGID patients. (61, 262) 

These observations provide a mechanism whereby psychological 

abnormalities via their influence on the ANS, could be translated into 

differences in transit and pain discrimination leading to clinical 

syndromes observed. The potential role of autonomic dysfunction in 

FGIDs is made more plausible by the report from the Mayo Clinic of eight 

patients with acute autonomic neuropathies who presented with 

apparently typical IBS symptoms. (263) 

 

In the model of acid-induced oesophageal pain hypersensitivity, while 

most subjects demonstrate reproducible sensitisation to repeated 

infusions, a proportion do not sensitise at all. (53, 175, 191) In addition, 

there is inter-individual variability in the magnitude of sensitisation to the 

order of 23.8 ±12.8%(SD). (264) The reasons for this inter-individual 

variation in developing hypersensitivity remain unknown. Data presented 

by Sharma et al., (179, 185) suggested that psychological trait factors 

such as anxiety and neuroticism, and physiological (ANS) arousal states 

(HR, MBP and CVT) correlated with the degree of acid-induced 

oesophageal sensitisation in this model. What remains still unknown is to 

what degree the modulation of these psychophysiological factors via 

the ANS, can affect the degree of acid-induced oesophageal pain. The 

combined study of these factors as well as the effect of their modulation 

will further enhance our understanding and improve our ability to identify 

the phenotypes predisposed to or protected against pain hypersensitivity 

in this model, by means of more effective “psychophysiological 

profiling”. This in turn could have important implications for 
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understanding the development of visceral sensitisation in clinical states, 

and may also offer novel therapeutic possibilities. 

 

The aim of the study was thus to determine the effects of 

psychophysiological modulation of the ANS on acid-induced 

oesophageal pain hypersensitivity and to ascertain if inter-individual 

differences in the degree of sensitisation were predicted by inter-

individual differences to different ANS modulation types. It was 

hypothesised that sensitisation as expressed by the difference in average 

pain threshold (ΔPT) would be directly proportional to sympathetic 

nervous system activation (SNS: ∆SCR), and parasympathetic nervous 

system withdrawal (PNS: ∆CVT), as induced or amplified by different 

psychophysiological modulations. A secondary aim of the study was to 

expand on the data in order to determine whether psychological state 

and trait factors predicted the degree of sensitisation to acid in the 

model. 

 

3.2 Materials and Methods 

3.2.1 Ethics Committee Approval 

All protocols for this study were submitted and approved by the 

University Senate Ethics Committee, ‘East London and The City Research 

Ethics Committee - Alpha’ (ref: 09/H0704/71). See section 2.1(page 77). 

3.2.1 Subjects 

20 healthy asymptomatic adult male and female volunteers, aged 18 to 

50, were recruited by advertisement. Screening for acceptability for 

inclusion and exclusion criteria was completed as described in section 

2.2 (page 77).  
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3.2.2 Oesophageal Manometry 

For this study standardised oesophageal manometry (183) was 

performed in the first five subjects to determine the positions of the upper 

and lower oesophageal sphincter (UOS and LOS) from the nostril. As the 

LOS positions on these first five subjects were found to be accurate 

enough for the purpose of this study, only the ‘pH change’ pull through 

technique as described in section 2.3 (page 78), was used for the 

remaining 15 subjects. 

 

3.2.3 Other Methods of Measurement 

All other methods of measurement; Catheter Assembly (section 2.4, 

page 78), Oesophageal acid infusion (section 2.4, page 78), 

Oesophageal pH monitoring (section 2.6, page 80), Pain Threshold 

Measurements (section 2.8, page 82), Psychological assessment (section 

2.11, page 85), Measurement of the Autonomic Nervous System (section 

2.12, page 86) and Respiratory Monitoring (section 2.16, page 99), was 

performed as described in their specific sections. 

 

3.2.2 Methods of Psychophysiological Modulation 

For this study the Screening visit protocol (section 2.20.1, page 111), 

Deep breathing protocol (section 2.20.3, page 114) and Isometric “hand 

grip” exercise test protocol (section 2.20.5, page 118), was used as 

described in the specific sections, and illustrated in figure 3.1 below. The 

Psychological stress induction was achieved by using the “Dichotomous 

listening” psychological stress test protocol as described in section 2.20.6 

(page 119), but without the subsequent “standardised reading and 

mental arithmetic task” adaption, which was introduced for study 3.  
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Figure 55 Diagram illustrating the psychophysiological modulation protocol for (from top 
to bottom) the Screening visit: As this visit during study 1 was to serve as a baseline visit, 
no psychophysiological modulation was performed during the 30minitus acid infusion 
period (red bar). ‘Deep breathing’ visit: The subject was paced to perform 6 deep 
breaths on six occasions (purple figures) during the 30minitus acid infusion period (red 
bar). ‘Handgrip’ visit: The subjects were directed to complete three separate isometric 
handgrips sustained for 5mins (purple figures) during the 30minitus acid infusion period 
(red bar). ’Stress test’ visit: Subjects listened to a conflicting duel track sound recording 
(purple figures) during the 30minitus acid infusion period (red bar). Autonomic 
measurement (brown bars) was done before and during the acid infusion. Pain 
thresholds (blue bars) were done before and three times after acid infusion. PH-metry 
(green bar) was started 20mins before acid infusion, and stopped 30mins after acid 
infusion ended (see figure 41). 

 

3.2.3 Study Procedure, Experimental Design & Protocol 

The experimental study design was that of a prospective pseudo-

randomised three-tiered crossover double-blinded longitudinal cohort 

study. (Figure 56) The study procedure was followed as described in 

section 2.17 (page 99), i.e. using the ‘three research assistants’ method. 

The experimental protocol was used as described in section 2.20.5 (page 

118), with ‘time and events’ proceeding as outlined in figure 40 (page 

100). Specific modulation protocols were followed as discussed above in 

section 3.2.2.  
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Figure 56 Flowchart illustrating the final numeric outcome of participants in the pilot 
modulation study (study 1). The experimental study design was that of a prospective 
pseudo-randomised three-tiered crossover double-blinded longitudinal cohort study. 
[Sv: Screening Visit, ST: Stress Test, Db: Deep Breathing, Hg: Hand Grip.] 

 

3.2.4 Data Handling and Analysis 

Demographic, pain threshold and autonomic data were normally 

distributed hence data are presented as mean ± SD, with parametric 

analysis.  For the Isometric “hand grip” test protocol, ‘collection bin’ 

analysis (figure 66, page 152), and the “Dichotomous” psychological 

stress test, pain threshold ‘pre and post acid’ analysis (figure 60, page 

136). All statistical analysis was completed as described in section 2.21 

(page 120). 
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3.3 Results 

During acid infusion, pH fell to <2.0 in the distal oesophagus of all subjects 

but remained >6.0 in the proximal (unexposed) oesophagus. The most 

common symptom reported with acid infusion was nausea. Other 

sensations included a cold sensation in the chest region, feeling of 

hunger and / or heartburn. 

 

3.3.1 Demographic Data 

A total of 20 healthy volunteers were recruited and assessed for criteria 

eligibility. The majority (about 85%) of the subjects who responded to the 

adverts had a medical background (hospital staff or medical students), 

the rest were mostly students or research staff from a local university. The 

age range was from 18-41 years with a mean age of 28 ±5.87years. There 

were no obese or underweight subjects and the average body mass 

index (BMI) was 23.59 ±2.43kg/m2. The subjects were recruited from 

different ethnic backgrounds reflective of local ethnic diversity. The 

majority of subjects were Caucasians (76%) followed by Asians (12%), 

Africans (6%) and Chinese (6%). All were acid infusion naïve, and 88% 

sensitised to acid infusion. Both sensitisers and non-sensitisers to acid were 

recruited for study 1. 

 

During screening visit two subjects could not tolerate prolonged nasal 

intubation, even though intubations were successful, and a further 

subject threw up during acid infusion, contaminating the proximal 

oesophagus, and had to be excluded.  17 Subjects completed the 

screening visit protocol and were subsequently randomised into three 

groups for their second visits by means of a ‘pseudo-block-

randomisation’, as the different modulation types were initially started 

one at a time, until all three were ‘up-and-running’ and formal 
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randomisation could be instigated.  One more subject dropped out for 

their third visit, as he could not attend his final visit due to unexpected 

travel commitments. For the final analysis, 17 subjects (13 male) were 

included from the screening visit protocol, 12 subjects from the deep 

breathing protocol, 12 subjects from the isometric handgrip protocol, 

and seven subjects from the psychological stress protocol. (Figure 56) 

 

 

3.4.2 Pain Tolerance Threshold Data for Proximal Oesophagus 

 

The proximal oesophageal pain threshold (PT) data unexpectedly 

showed that all three modulations caused desensitisation, i.e. no 

decrease in the difference of mean pain threshold (Δ Avr PT) with regard 

to the that observed during the screening visit, across all post acid time 

points. Figure 57(A) & table B below illustrate the average absolute PT 

values. 
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Table 2  

Figure 57 (A&B) Absolute values for proximal oesophageal pain thresholds before (T0) 
and at T60, T90 and T120, post acid infusion, with  (blue) screening visit, (red) deep 
breathing, (green) stress induction and (orange) isometric exercise. (n-values as stated)	   

 

Two-way MANOVA analyses, comparing the screening visit’s mean ΔPT 

for the proximal oesophagus with that of the other modulations, across 

all time points and with regard to modulation type, showed a statistical 

difference for deep breathing and isometric exercise. (Figure 58(A)) In 

comparing average means of pre/post-acid PT differences (Δ Avr PT – 

‘degree of sensitivity’) between screening visit and modulations; no 

statistical difference was found for psychological stress modulation, 

however there was a clear statistical difference seen for both deep 

breathing and isometric exercise. (Figure 58(B)) There was also no 

statistical difference in the PT between the mean differences of deep 

breathing and psychological stress modulation. This suggests that the 
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psychological stress modulation and isometric exercise did not facilitate 

an increase in sensitisation to acid during the pilot study.  

 

Figure 58 A: Shows the difference in mean pain threshold  (ΔPT) in mA, for the proximal 
oesophagus between baseline and the three-time points (minutes) after acid infusion, 
for the different modulation types. B: Shows the difference in average means of pain 
threshold (Δ  Avr PT) in mA, for the proximal oesophagus between pre & post acid 
infusion, for the different modulation types. 

 

3.4.3 Pain Tolerance Threshold Data for Foot 

The foot pain threshold data showed that all three modulations caused 

no significant change with regard to the screening visit. There was thus 

no indication of any degree of sensitisation with regard to the somatic 

control (foot) demonstrated in this instance for both MANOVA analyses 

(Figure 59), and on average PT means comparison of pre/post-acid 

differences (Δ Avr PT, not illustrated). For all MANOVA analysis data stets 

were of similar in variance and found to be statistically matching.  
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Figure 59 Shows the difference in mean pain threshold (ΔPT) in mA, for the foot between 
baseline and the three-time points (minutes) after acid infusion, for the different 
modulation types. 

 

3.4.4 Autonomic Data 

The pre/post-acid change in ANS during the screening visits served as 

the ‘baseline’ with which other modulation-ANS changes were 

compared, and is illustrated below. (Figure 60(A) & table 3(B)) The 

changes observed for screening visit protocol demonstrated (Figure 

60(A) - shaded graph), is a post-acid increase in SNS activation (SCR & 

MBP), with a coinciding PNS withdrawal (CSB & CVT). The SNS is hence 

‘unopposed’ in this instance.  
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Table 3 

 

Figure 60 The comparison between the different ‘pre/post-acid infusion’ ANS changes 
between screening visit (shaded) and other modulation-types, are graphically 
illustrated in (A); with table (B) below showing the mean values of change & standard 
deviations for each specific protocol, and for the three modulations; there respective 
comparison & p-value significance with regards to the screening visit. [Abbreviations 
are as follows; SCR: skin conductance response, MBP: mean blood pressure, HR: heart 
rate, CSB: cardiac sensitivity to baroreflex, & CVT: cardio vagal tone.] 
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Immediately above  (Figure 60(A) - one above shaded graph) is seen the 

ANS changes as modulated by the deep breathing protocol. There is a 

distinct and significant difference in activation for this modulation 

compared to screening and all other visits, as there is a marked 

activation of the PNS, with a withdrawal of the SNS. The PNS increase is 

thus uniquely associated with a reduction in SNS activation. 

 

The changes observed during the psychological stress protocol (Figure 

60(A) - two above the shaded graph) showed that there was no 

significant difference in activation for this modulation compared to 

screening, except for an increase in the magnitude of SNS outflow. Of 

note is that there was also an increase in CVT, which could be indicative 

of PNS co-activation, and needs further clarification. Changes for the 

isometric exercise protocol (Figure 60(A)) demonstrated a similar ANS 

activation pattern as observed for screening. The main difference being 

a twofold increase in SNS outflow. Contrary to expectation, there is 

almost no change with regard to the PNS.  

 

In figure 58(A&B) it is shown that isometric exercise led to a 

desensitisation with a reduction in Δ Avr PT (post-acid sensitivity) when 

compared to screening visit, which was an unanticipated result, as the 

opposite response was intended. However of particular interest here is 

that this desensitisation is seemingly not associated with an increase in 

CVT (PNS) outflow, as observed during deep breathing. (Figure 60) To 

assess this apparent conflicting phenomenon further analysis of the CVT 

change during the acid infusion period was undertaken.  

 

CVT-data during the 30minute acid-infusion period was analysed in 

seven data ‘collection bins’ (each lasting approximately 4.5-minutes). 
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This was due to a technical limitation of the Neuroscope that only allows 

for a maximum period of 5 minutes of information to be analysed 

accurately at any given moment. 

 

Figure 61 A: Graph plotting the change for each individual data collection bin during 
the 30minute acid infusion period. B: Mann-Whitney test showing the comparison of the 
average difference between collection bins. 

 

The average of all seven bins was used for comparative analysis. (Figure 

61(A)) When the change for each individual bin is plotted (Figure 61(B)) 

the graph gradient of isometric exercise (orange) is similar to that of 

deep breathing (red), in comparison to screening visit (blue). In 

comparing average differences in CVT per collection bin, (Mann-

Whitney) t-test indicated a difference between screening visit and deep 

breathing, and no difference between deep breathing and isometric 

exercise. This finding suggests that the net activation of the isometric 
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exercise modulation is similar to that of the deep breathing for some of 

the time during acid infusion, and dissimilar in others causing an ‘overall-

cancellation’, and hence a neutral average for the infusion time in total, 

compared to screening visit, where the withdrawal increases with 

duration of infusion time.  

 

3.4.5 Psychological Profiling Data  

3.4.5.1 BFI questionnaire 

On the Big five Inventory (BFI) subjects were scored based on: 

1. Extraversion – (outgoing/energetic [100] vs. solitary/reserved [0]).  
2. Agreeableness – (friendly/compassionate [100] vs. cold/unkind 

[0]).  
3. Conscientiousness – (efficient/organised [100] vs. easy-

going/careless [0]).  
4. Neuroticism – (sensitive/nervous [100] vs. secure/confident [0]).  
5. Openness to experience – (inventive/curious [100] vs. 

consistent/cautious [0]). 10 

 

There is no maximum value subjects could achieve using the BFI 

questionnaire. Therefore the percentage of maximum possible 

(Cumulative Percentages) was used to interpret the data. Cumulative 

Percentages is a linear transformation of raw metric data, which is 

graded into a 0 to 100-percentile scale. Where 0 represents the minimum 

possible score and 100 represents the maximum possible score on the 

continuum between the opposites of the specific personality trait. 

Cumulative Percentage scores is a universal metric that is more intuitive 

than scale scores with idiosyncratic ranges. (265)(Figure 62) 

 

                                                        
10 For a more detailed description see explanatory note, appendix Three. 
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Figure 62 Big Five inventory (BFI) as percentage of maximum possible (Cumulative Percentages) 
scores in n=17 healthy volunteers across the five different personality domains.  

 

The personality domains of this cohort of healthy volunteers indicated 

that they were evenly grouped between introversion and extroversion. 

Their agreeableness was just below the 50th percentile, whereas their 

conscientiousness, neuroticism and openness were above the 50th, but 

below the 80th percentiles. There were no personality extremes detected 

(above the 80th, or below the 20th percentile – indicative of personality 

disorders). Neuroticism, a personality vulnerability factor, was the highest, 

with openness, a protective personality factor, the second highest. 

Based on the BFI average response the cohort as a whole could be 

described as a “semi-social, slightly reserved, organised, emotionally 

sensitive but curious and adventurous” group. This personality description 

would be expected from a cohort where the majority of individuals are in 

or are training to be in the caring professions (conscientious with 

emotional sensitivity (neuroticism)). It is further suggestive and consistent 

of the self-selection that occurs with advert recruitment, as only the 

individuals with a high degree of openness (curiosity and 
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adventurousness) will willingly volunteer for invasive experimentation as 

required by this study.  

3.4.5.2 Hospital Anxiety and Depression questionnaire 

On the Hospital Anxiety and Depression Score (HADS) the mean values 

for anxiety, 9.18 ±2.51(SD) and depression, 8.41 ±1.28(SD) were within the 

borderline range (HADS score of 8-10/21), but below the clinical 

‘caseness’ cut-off (HADS score of ≥11/21)(266), but 29% of subjects met 

the criteria for moderate anxiety and 6% for moderate depression. This is 

reflective of the efficacy of exclusion criteria used during recruitment, as 

none of the subjects attracted a formal psychiatric diagnosis and as 

such were not on any psychotropic medication. These individuals are 

examples of the more extreme end of a healthy cohort, with a high 

percentage being university students and are of interest as they are 

potentially representative of a large part of the patient group clinically 

seen. (200) Hence the cohort was slightly anxious, but still representative 

and consistent with expected means for age and gender of the general 

population. 8 

 

Analysis of the State and Trait Anxiety Inventory (STAI) indicated firstly that 

the cohort’s trait anxiety, 38.53 ±7.22(SD) is consistent with general 

population expectations (38.69 ±10.34(SD)). (267) A second finding was 

that the subjects’ state anxiety reduced with each subsequent visit 

(mean ∆STAI-S = -2.395 per visit), and is an example of exposure 

habituation. With regard to emotional attachment style, only 13% of 

subjects had significant attachment vulnerability as measured by the 

Vulnerable Attachment Style Questionnaire (VASQ), and due to the small 

sample size most probably represent a type II error. 
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3.4.6 Correlation Data  

 

During Screening visit a statistically significant positive correlation 

between the differences in PT and SCR was detected, r=0.505 (p=0.039). 

This implies that visceral sensitivity increases with the increase in 

sympathetic outflow. (Figure 63) 

 

  

Figure 63 The correlation between the difference in pain threshold (ΔPT) and skin 
conductance response (ΔSCR) during screening visit. 

 

Also seen during the screening visit was that the difference in SCR (ΔSCR) 

correlated positively with HADS-anxiety, r=0.491 (p=0.045), WAI-distress, 

r=0.528 (p=0.029) and TAS, r=0.4596 (p=0.012).11 This implies that an 

increase in sympathetic outflow correlates with anxiety, distress and the 

inability to read or understand subject’s subjective emotional state. For 

                                                        
11 Bonferroni correction was not used for these observations. 
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this study there was no significant correlation found with neuroticism for 

any of the visits. A strong negative correlation between the differences in 

PT and CVT was found during the Deep breathing protocol, r=-0.753 

(p=0.031). (Figure 64) Also seen was a strong negative correlation 

between the differences in PT and CSB, r=-0.817 (p=0.013), implying that 

an increase in both afferent and efferent branches of the para-

sympathetic nerves system is associated with a reduction in the degree 

of visceral sensitivity, and replicates previous findings using this model. 

(30) 

 

Figure 64 The correlation between the difference in pain threshold (ΔPT) and cardiac 
vagal tone (ΔCVT) during deep breathing visit. 

 

In comparing both the sympathetic and para-sympathetic activation, a 

divergent effect regarding their respective correlations with the average 

PT is observed during Deep breathing. Sympathetic activation as 

measured by the difference in SCR has a strong negative correlation, r=  

-0.766 (p=0.016), while para-sympathetic as measured by the differences 

in CVT, r= 0.787 (p=0.02) have strong positive correlations. Thus, the higher 
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the average PT, the higher the para-sympathetic activation and 

inversely, the bigger the degree of the sympathetic withdrawal.  

 

3.5 Summery of Key findings for study 1 (Modulation Pilot Study) 

3.5.1 Demographic Data: 

1. 85% of the subjects had a medical background. 

2. All subjects were acid infusion naïve, and 88% sensitised. 

3. The pilot study was at 60% power. 

3.5.1 Pain Tolerance Thresholds Data: 

1. The distal oesophageal pain threshold data showed all three 

modulations caused desensitisation, with regard to the Screening 

visit, across all time points. 

2. The foot pain threshold data showed all three modulations caused 

no significant change with regard to the Screening visit, across all 

time points. 

3. Deep breathing desensitised significantly at, -18.3 ±10.45mA 

p=0.0004, with p=0.0171 across all time points. 

4. Isometric exercise desensitised significantly at, -17.67 ±16.24mA, 

p=0.0031 with p=0.0014 across all time points. 

5. Psychological stress modulation did not significantly desensitise at, 

-2.286 ±5.648mA p=0.3255, with p=0.1187 across all time points. 

6. Non-sensitisers remained desensitised for all modulations. 

7. Non-sensitisers were markedly less vulnerable to the effects of stress 

induction p=0.0201. 
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 3.5.2 Autonomic Data: 

1. Screening visits demonstrated a post-acid increase in sympathetic 

outflow, with a para-sympathetic withdrawal. (SNS increase 

unopposed by PNS) 

2. Deep breathing protocol demonstrated a post-acid/modulation 

decrease in sympathetic outflow, with a statistically significant 

increase in para-sympathetic activation, CSB: 2.33 ±0.90ms/mmHg 

p=0.017, and CVT: 4.16 ±1.15Lvs p=0.002. (PNS increase with no SNS 

co-activation) 

3. During Psychological stress modulation there was no objective 

indication of ANS stress, with no significant difference in ANS 

regulation post-acid/modulation demonstrated. (SNS was 

increased with PNS co-activation) 

4. Isometric exercise protocol showed a difference in an increase in 

the magnitude of SNS outflow, with a statistical increase for HR, 

4.55 ±1.80bpm p=0.018. (Twofold increase in SNS, with ‘neutral’ 

PNS) 

5. Isometric exercise protocol, during the 30minute acid infusion 

period, showed that the degree of change per data collection bin 

was more similar to that of the Deep breathing, than to that of the 

Screening visit, and no statistical difference was detected 

between Deep breathing and Isometric exercise during data bin 

analysis, p=0.097. 

 

3.5.3 Psychological Questionnaire Data & Correlations: 

1. The lower the volunteers’ pain threshold (Avr PT, p=0.049), or the 

higher their degree of sensitivity (ΔPT, p=0.016); the more likely the 

subjects were to report the stimulus as more painful or unpleasant.  
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2. Neuroticism, a personality vulnerability factor was the highest, with 

openness, a protective factor the second highest. (BFI) 

3. The cohort’s mean personality profile indicated a “semi-social, 

slightly reserved, organised, emotionally sensitive but curious and 

adventurous” study group. (BFI) 

4. 29% of subjects met the criteria for moderate anxiety and 6% for 

moderate depression. (HADS) 

5. Subjects’ state anxiety reduced with each subsequent visit with a 

mean difference in score of 2.4 per visit. (STAI-S) 

6. Significant positive correlation between ∆PT and ∆SCR was 

detected, r=0.505 (p=0.039), during Screening visit. 

7. A strong negative correlation between the differences in ∆PT and 

∆SCR was found during the Deep breathing protocol, r=-0.753 

(p=0.031). 

8. The higher the average PT, the higher the para-sympathetic 

activation and inversely, the larger the degree of the sympathetic 

withdrawal, SCR, r=-0.766 (p=0.016), CVT, r= 0.787 (p=0.02) and 

CSB, r=0.717 (p=0.045). 

9. The higher the emotional valence, the lower the pain threshold, 

HADS anxiety, r=-0.900 (p=0.006), and depression, r=-0.809 

(p=0.028). 

10. There were no significant correlations found with neuroticism for 

any of the visits. 

 

3.6 Discussion 

This study replicates and further demonstrates the finding that 

oesophageal acidification in a validated model of human oesophageal 

pain hypersensitivity is associated with sympathetic nervous system 

activation, and parasympathetic withdrawal. (30) The data presented 
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further suggest that activity within the ANS during oesophageal 

acidification correlates with the degree of subsequent sensitisation. Using 

this model, previous studies have shown that the magnitude of 

sensitisation is variable between individuals with some failing to sensitise. 

(175, 191) The factors responsible for variability in sensitisation in the 

model were unknown; this study examined how this variability could be 

influenced by psychophysiological factors, and the preliminary data 

suggests that autonomic nervous system’s activity is associated with 

variability in sensitisation to acid infusion.  

 

The data presented showed that the initial hypothesis was confirmed 

stating that sensitisation as expressed by the difference in pain threshold 

(ΔPT) was directly proportional to SNS activation (∆SCR), and PNS 

withdrawal (∆CVT). Objectively, for the first time it was demonstrated that 

psychophysiological induced unopposed PNS activation successfully 

produced a subsequent statistically significant desensitisation in the 

acidified oesophagus.  Subjectively, the reporting of pain and discomfort 

was found to be proportional to the degree of hypersensitivity, and it was 

observed that subjects’ pain and discomfort during acidification was 

also reduced during positive PNS modulation.12 However, the SNS could 

not be further amplified by stress or exercise induction. Pain thresholds on 

the foot did not change significantly from baseline with acid infusion 

suggesting that hypervigilance was not the mechanism of the increased 

pain sensitivity in the oesophagus.  

 

This study also replicates, and independently verifies the previous finding 

that anxiety is a significant vulnerability factor, and that it increases the 

magnitude of acid-induced oesophageal pain hypersensitivity in healthy 

                                                        
12 For more information see appendix 4.1.    
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volunteers. (179, 211, 268)  Objective evidence is thus further provided to 

support the hypothesis that anxiety influences the degree of post-injury 

pain hypersensitivity in the human oesophagus. The data presented also 

highlighted the role and relationship between affective states (anxiety, 

depression and distress), ANS activation and the subsequent degree of 

visceral hypersensitivity. Even though this study failed to demonstrate a 

further increase in the degree of sensitisation by means of stress 

induction, it still confirmed that stress plays a role in the degree of visceral 

sensitisation.  

 

Supporting this, it has been reported clinically that increased comorbid 

anxiety scores significantly predict the diminished symptomatic response 

to PPI therapy in both endoscopy positive and negative cases. (269) This 

data suggests that anxiety both promotes the development of sensory 

dysfunction and hinders the resolution of aberrant sensory processes in 

response to therapy once dysfunction is established. A recent study by 

Rubenstein et al. (270) demonstrated that oesophageal sensation in 

patients with heartburn was correlated with the presence and degree of 

psychological dysfunction. Compared to healthy volunteers, patients 

with heartburn demonstrating VPH had lower sensory and pain thresholds 

to oesophageal balloon distension. However, when these patients 

underwent oesophageal acid perfusion, the presence of psychiatric 

factors such as anxiety was associated with increased pain intensity and 

discomfort suggesting that anxiety modulates visceral sensory 

processing.  

 

Regarding the psychological stress induction modulation; the data 

presented indicated that the use of dichotomous listening, a previously 

validated method to examine the impact of stress on visceral perception 

in IBS patients, (246-248) was unsuccessful in further increasing the 
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degree of hypersensitivity in the healthy volunteers above that which 

was already established during screening visit. Contrary to the initial 

hypothesis the modulation protocol produced a degree of 

desensitisation in the proximal oesophagus compared to the secondary 

hyperalgesia observed at screening visit. This observation is most likely 

due to the study not being at full power and producing a type II error, 

the changes seen were not of statistical significance, but remain 

important.  ANS regulatory markers indicated an increase in SNS and PNS 

outflow (increased SCR, MBP & CVT) that is suggestive and consistent 

with of autonomic co-activation.  

 

Paine et al. (271) found that the pain induced by balloon distension in 

the proximal oesophagus of healthy volunteers, evoked “fight-n-flight” 

responses with novel parasympathetic/sympathetic co-activation, and 

that the personality traits correlated with the slope of distal oesophageal 

pain-related CVT changes, where the more neurotic-introvert subjects 

had greater sensitivity. The data presented indicated that the cohort 

investigated in the current study measured highest for neuroticism on the 

BFI, and hence these findings may have a bearing on the observed ANS 

response. Porges et al. (70, 272) with the polyvagal theory demonstrated 

that in greater stress situations the more primitive vagal nucleus (dorsal 

motor nucleus - DMNX) contrary to expectation increases activation to 

produce greater PNS outflow to cause co-activation with the SNS. The 

branches of the vagus nerve serve different evolutionary stress responses 

in mammals: the more primitive branch (DMNX) elicits immobilisation 

behaviours (e.g., feigning death), whereas the more evolved branch 

from the nucleus Ambiguous is linked to social communication and self-

soothing behaviours. (See section 1.9.4, chapter 1, page 53) These 

functions follow a phylogenetic hierarchy, where the most primitive 

systems are activated only when the more evolved structures fail. The 
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experimental measurement of vagal tone has since become a novel 

index of stress vulnerability and reactivity and could be an objective 

indication of the stress induction protocol’s effect on SNS and PNS co-

activation which precluded any effect of SNS modulation on pain 

sensitivity. (273) 

 

The data presented showed no significant correlations found with 

neuroticism for any of the visits, even though it was a prominent 

personality factor in the cohort. Drabant et al. (274) reported that 

neuroticism mediated autonomic and neural responses during threat 

anticipation, where the intensity varyed as a function of the threat 

anticipated, and Coen et al. (275, 276) demonstrated that higher 

neuroticism is associated with engagement of brain regions responsible 

for emotional and cognitive appraisal during anticipation of pain but 

reduced activity in these regions during the actual experience of the 

pain. It could hence be that the main influence of the degree of 

neuroticism is not effectivly evaluated in the response to an isolated pain 

incident, as simulated by this model, but that it would be more reflective 

in situations of prolonged anticipation of pain.  

There is further the confounding factor of self-selection to consider that 

occurs with advert recruitment, as only the individuals with a high degree 

of openness (curiosity and adventurousness) will volunteer for invasive 

experimentation. Firstly the high degree of openness might not be 

representative of the clinical population, and secondly it is a protective 

factor when exposed to stress induction, and might influence results 

obtained. Another confounder is the fact that a high percentage of the 

subjects had a medical or research background, and hence are familiar 

with the laboratory environment or procedures. The reduced novelty has 

a negative impact on the anticipation, as is represented by the low 

baseline STAI anxiety scores measured. This then enhances the exposure 
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habituation observed as reflected by the subjects’ state anxiety 

reducing with each subsequent visit, and affects the degree of visceral 

sensitivity to repeated stimuli.	   Labus et al. (277) demonstrated 

normalisation of visceral hypersensitivity following repeated exposure to 

experimental visceral stimuli in IBS patients. (277)demonstrating that they 

experienced decreased discomfort and pain thresholds to visceral 

stimuli, including cognitive change in hypervigilance to gastrointestinal 

sensations, and to the context in which these visceral sensations and 

symptoms occurred. In addition Sharma, using this model demonstrated 

that the magnitude of acid-induced sensitisation is variable between 

visits and that sensitisers may show diminishing sensitisation with repeated 

studies. (30)	  

A final important factor to consider regarding the psychological stress 

induction modulation specifically, but applying equally to all modulation 

protocols used, is that previous studies showed that distraction reduces 

the degree of visceral pain sensitivity. (276, 278) In 1968 Melzack and 

Casey (279) described pain in terms of its three “dimensions”:  

I. Sensory- discriminative (location, intensity, quality, duration),  

II. Motivational- affective (emotional valence, suffering and urge to 

escape the suffering), and 

III. Cognitive- evaluative (contextual meaning and degree of 

attention/ focus).  

At the Screening visit the subject has no distraction during the period of 

acid infusion, and is fully focused on the visceral sensation, while during 

all subsequent visits during the same period they are in addition also 

engaged with one of the modulation protocols. In the case of stress 

induction, it could produce a reduction, while during the deep breathing 

protocol the effect could be additive.  
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In a similar study, Fass et al. used the dichotomous listening stress 

paradigm to assess the effect of distress on the perception of 

intraoesophageal acid in patients with gastro-oesophageal reflux 

disease, and found that it was effective in producing hypersensitivety 

only in patients, and could not reproduce visceral sensitisation in healthy 

controls. (280) This suggests that in the absence of a predisposing 

vulnerability the stress intensity produced by this paradigm is not of a 

magnitude to produce the intended effect required in healthy 

volunteers, and can explain the lack of sensitisation observed in our 

study. To overcome similar problems while assessing the effect of stress in 

Inflammatory Bowel Disease patients, Goodhand et al. (249) amended 

the protocol to include a standardised reading and mental arithmetic 

task to perform while listening to the dichotomous auditory recording. 

The inclusion of this amendment, along with the minimisation of acid 

exposure visits, and the addition of an active placebo to control for the 

effect of distraction, should be incorporated in future modulation studies.  

 

 Concerning the use of the Isometric handgrip exercise protocol as 

positive modulator of the sympathetic nervous system, the data 

presented was unexpected, as the anticipated response was that of an 

increase in sympathetic tone, associated with the withdrawal in 

parasympathetic tone. Previous studies used this method successfully to 

increase sympathetic tone. (162, 244, 245) Here however the stimulation 

paradigm was for a far shorter time duration and was effective as a 

positive SNS modulator. For my study however the isometric handgrip 

exercise was used over a 30-minute period during acid infusion. Each 

handgrip exercise period lasted for five minutes, and was repeated at 

least three times during the infusion period.  
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On post hoc ANS data analyses it became clear the when the isometric 

handgrip exercise was used repeatedly over a longer time period it 

exhibited different physiological properties. Closer laboratory observation 

revealed that towards the end of the 5-minute exercise period, as the 

muscle excursion becomes more evident, subjects, as part of the 

‘straining to maintain the grip’, would unconsciously hold their breath 

and effectively perform a prolonged Valsalva manoeuvre. When this 

manoeuvre is analysed using the Neuroscope, it becomes clearer that 

the Valsalva manoeuvre produces a short initial SNS increase and PNS 

withdrawal, but is then followed by a large PNS rebound increase, 

caused by the increased outflow from midbrain regulatory centres in 

response to the positive thoracic pressure stimulation of baro- and- 

chemoreceptor situated in the carotid sinus and aorta arch. (Figure 65) 

 

Figure 65 This diagram shows the Neuroscope ‘screenshot’ analysis of a subject 
performing two Valsalva manoeuvres. The red box highlights the coinciding decrease in 
CVT from baseline followed by a large rebound increase in PNS activity highlighted by 
the yellow oval. The graphs in the upper half of each panel show the blood pressure 
labelled BP (upper red graph: systolic, lower red graph: diastolic and yellow graph: 
MAP), and the RR-interval labelled RR (white graph). The graphs in the lower half of etch 
panel shows the CSB (green graph) and CVT (white graph) each labelled as such.  
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Neuroscope analysis of the isometric handgrip exercise revealed similar 

physiological responses to that observed during the Valsalva 

manoeuvre. (Figure 66) It thus clarifies why the resultant CVT change 

measured during the isometric handgrip protocol was neutral (-0.26 

±3.51Lvs, Figure 60), as the produced CVT withdrawal is effectively 

cancelled by the rebound PNS increase. Analysis of the data collection 

bins during the acid infusion period confirms this, as the net CVT change 

during the handgrip protocol was not significantly different from that 

which was observed during the deep breathing protocol, and would 

explain the significant subsequent oesophageal desensitisation 

observed. (Figure 61) The repeated use of the isometric handgrip 

exercise protocol over a longer time period inadvertently turned out to 

be similar to the deep breathing protocol at producing desensitisation in 

this model.   

 

Figure 66 This diagram shows the Neuroscope ‘screenshot’ analysis of a subject 
performing he Isometric handgrip exercise. The red box highlights the coinciding 
decrease in CVT from baseline followed by a large rebound increase in PNS activity 
highlighted by the yellow oval. The graphs in the upper half of each panel show the 
blood pressure labelled BP (upper red graph: systolic, lower red graph: diastolic and 
yellow graph: MAP), and the RR-interval labelled RR (white graph). The graphs in the 
lower half of etch panel shows the CSB (green graph) and CVT (white graph) each 
labelled as such.  
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The only feasible alternative to producing prolonged SNS increase 

associated with PNS withdrawal is the use of the tilt-table test (TTT), (281) 

which can be effective over time periods as long as 20 to 30 minutes.  Its 

costly, cumbersome equipment is associated with frequent dizziness and 

syncope, making its possible use for this study impractical given the 

present circumstances. Future investigators will have to find a more 

appropriate alternative physiological method to examine the effect of 

sympathetic increase on sensitisation in this model. 

  

Concerning the use of the Deep breathing protocol as positive 

modulator of the para-sympathetic nervous system, it would suffice to 

say at this stage that data presented was novel and encouraging, and 

will be fully discussed in the following chapter. The deep breathing 

modulation protocol successfully demonstrated the proof of concept 

that increasing parasympathetic outflow can produce visceral 

desensitisation in this model. Due to the desensitising effect of distraction 

(as discussed for the "dichotomous listening” protocol), Deep breathing 

as intervention should be tested against an active placebo. This should 

now be investigated further with a fully powered study. 

 

 Finally, in spite of all subjects being acid infusion naïve, 22% did not 

sensitise during acid infusion, and also failed to sensitise on subsequent 

visits, irrespective of modulation. They also demonstrated that acid-

induced autonomic responses are variable between visits. For these 

subjects the difference in degree of sensitisation between visits was not 

related to the degree of change in HR, CVT or CSB between visits. They 

had less sympathetic activation (SCR) compared to sensitisers, and 

scored less for neuroticism on the BFI. Their response remained consistent, 

and remains unclear and is suggestive that they may represent a distinct 
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phenotype with reduced susceptibility to injury-induced sensitisation in 

the model. As a previous study using this model demonstrated that stress 

induction increases the degree of secondary oesophageal hyperalgesia 

in sensitisers, (30)  it now remains to further investigate this in non-

sensitisers. 

	  

3.7 Conclusions 

 

As study 1 was a pilot study and not yet fully powered the emphasis was 

on identifying early trends to investigate more thoroughly in the 

subsequent studies, hence the following conclusions were made: 

1. The Isometric “handgrip” exercise test is not suitable for this 

investigation, as it produces both a parasympathetic withdrawal and 

rebound increase. The alternative “tilt-table” test is impractical in the 

circumstances, and future investigators will have to find a more 

appropriate method to examine the effect of sympathetic increase 

on sensitisation in this model. 

2. Due to subjects’ anxiety habituation as measured by the STAI, the 

decreased induction of acid induced sensitisation on subsequent 

visits and the "first-pass effect" of the screening visit, the amount of 

visits should be kept to a minimum. The screening visit should be 

discontinued, and randomisation should occur directly following 

recruitment. Recruitment should attempt to include a larger diversity 

of backgrounds to reduce subjects familiar with medical 

environment. 

3. As previous studies have already demonstrated that stress increases 

the degree of sensitisation in sensitisers using this model, the 

augmented Psychological stress protocol should be performed only 
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in non-sensitisers, as the effect on non-sensitisers has not been studied 

and remains unknown. 

4. The Deep breathing modulation successfully demonstrated the proof 

of concept that increasing parasympathetic outflow can produce 

visceral desensitisation in this model. Due to the desensitising effect of 

distraction (as discussed for the "dichotomous listening” protocol), 

deep breathing as intervention should be tested against an active 

placebo. This should be investigated further with a fully powered 

study. 

5. The inter-individual variability in the magnitude of sensitisation 

between sensitisers and non-sensitisers, as well as their vulnerability 

and protective factors remains unclear and as yet unexamined, and 

should now be further explored in a comparative study, that will 

allow the evaluation of ANS responses across a continuum of 

environmental stress for the different sensitisation groups. 
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4 Effect of Psychophysiological Modulation by Deep Breathing 

& Psychological Stress on Acid Induced Oesophageal 

Hypersensitivity    

  

4.1 Introduction 

Visceral pain in FGID is a major global cause of disability, healthcare 

seeking and a leading cause for loss of quality of life and patient 

morbidity. (23) Chronic visceral pain is a common condition for which 

patients seek care from various health-care providers. This type of pain 

causes much suffering and disability, but in spite of its ubiquity is still 

misunderstood and undertreated and tangible patient benefit remains 

limited. (282) Visceral pain shares many features with somatic pain, yet 

there are important differences in the pathophysiological mechanisms 

underlying visceral nociception, but these differences are not reflected 

in treatment approaches to date. (283) Few controlled clinical trials of 

psycho-behavioural interventions for pain relief in FGID exist in spite of 

frequent support for their importance as adjuncts to medical treatment. 

(284) 

 

Ashburn et al. (285) in a landmark discussion of the long-term care of 

patients suffering from chronic pain conditions, state that these patients 

often require adjustment of treatment with the aim of decreasing pain 

and suffering while improving physical and mental functioning, and they 

cite behavioural interventions including training in deep breathing 

amongst effective interventions in the management of this difficult to 

treat patient group. Similarly Syrjala et al. (286) researching in cancer 

related visceral pain, found that training of deep breathing, relaxation 

and guided imagery, reduced cancer treatment-related pain to such a 
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degree, that adding cognitive-behavioural skills to the breathing-

relaxation regimen did not further improve pain relief. Observations of 

this kind have led to the use of deep breathing in pain control becoming 

more widespread. Using data from the 2002 National Health Interview 

Survey (NHIS), conducted by the Centres for Disease Control and 

Prevention National Centre for Health Statistics, it was found that in 2002 

already 12% of patients in the USA used deep breathing exercise 

strategy in the treatment of chronic pain. (287) Deep breathing exercises 

now form a standard part of the non-pharmacological treatment for 

patients with chronic widespread pain and fibromyalgia. (288) 

 

With regard to pain control in the acute A&E setting, Downey et al. (289) 

found that the usefulness of deep breathing exercises was ineffective in 

reducing acute pain levels statistically; however noted that the majority 

of patients who received deep breathing education felt it was useful. 

The exercise was effective in increasing patients’ feelings of rapport and 

motivation to follow their doctors’ directives, both of which are key 

features in the effective management and treatment of chronic pain. 

 

Finally concerning the clinical use of deep breathing, Jerath et al. (290) 

described a specific variation of deep breathing (long pranayamic13 

breathing) in the treatment of autonomic nervous system and other 

related disorders. They described a physiological response characterised 

by the presence of decreased oxygen consumption, decreased heart 

rate, and decreased blood pressure, as well as increased theta wave 

amplitude in EEG recordings, with increased parasympathetic activity, 

accompanied by the psychological experience of alertness and 

reinvigoration. The exact mechanism of how deep breathing interacted 

                                                        
13 Prana (प्राण, prāṇa) is the Sanskrit word for breath or "life force". 
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with the nervous system affecting metabolism and autonomic nervous 

system changes remains to be clearly understood. This model however 

validated the hitherto poorly understood modulation effects of deep 

breathing as a topic requiring more research, especially in context of 

chronic visceral pain management. 

 

Similar autonomic findings to those described were observed during 

study 1 described in chapter three. Using the deep breathing protocol, it 

was demonstrated that increasing parasympathetic outflow could 

produce oesophageal pain desensitisation in a model of acid induced 

hypersensitivity. Study 1 was, however, a pilot study and not fully 

powered with the emphasis being on identifying early trends. Further 

investigation of this desensitising effect of deep breathing and the 

underlining mechanisms was therefore undertaken. Due to the 

desensitising effect of distraction as discussed in chapter three, deep 

breathing as intervention was now tested against an active placebo 

using a blinded crossover study design at full power. 

 

Also discussed in chapter three was the use of stress induction, and the 

role of the stress responses in oesophageal sensitisation. It is in this regard 

that Paine et al. (271) demonstrated that oesophageal intubation 

evoked "fight-flight" responses with heart rate and sympathetic (CSI, SC, 

MBP) activation and significant parasympathetic (CVT) withdrawal 

(p<0.05). Sharma et al. (185) went on to demonstrate that the degree of 

resulting oesophageal sensitisation to acid correlated with the degree of 

vagal withdrawal. Porges proposed vagal tone as a novel index of stress 

vulnerability and reactivity with potential applications in all branches of 

medicine. He further proposed a model emphasising the role of the 

parasympathetic nervous system and particularly the vagus nerve in 

mediating homeostasis and defining the degree of stress. (273) 
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Hausken et al. (291) investigated the effects of acute mental stress on 

gastric antral motility in 23 healthy volunteers and 25 patients with 

functional dyspepsia. They found that the sympathetic tone increased 

during stress in both groups. Vagal tone was however lower in the 

functional dyspepsia patient group than in the healthy controls (p < 

0.001). The lack of stress-related reduction of motility among patients with 

functional dyspepsia may, therefore, be a consequence of poor vagal 

tone, supporting Porges’s hypothesis where vagal tone acts as a novel 

index of stress vulnerability. 

 

Mayer et al. described that different types of stress play an important 

role in the onset and modulation of irritable bowel syndrome (IBS) 

symptoms. They demonstrated the physiological effects of psychological 

and physical stressors on gut function and brain-gut interactions, and 

highlighted that they are mediated by outputs of the emotional motor 

system in terms of autonomic, neuroendocrine, attentional, and pain 

modulatory responses. (110) Posserud et al. confirmed this by 

demonstrating that stress worsens IBS symptoms. They hypothesised that 

the stress effect might be explained by altered neuroendocrine and 

visceral sensory responses to stress in IBS patients, as they found that stress 

induced exaggeration of the neuroendocrine response and visceral 

perceptual alterations during and after the exposure to stress. This may 

explain some of the stress related gastrointestinal symptoms in IBS 

patients. (292) 

 

In study 1 the examination of the effect of stress was attempted in 

context of the acid induced oesophageal hypersensitivity model. 

Unfortunately the psychological "dichotomous listening” stress test was 

found to be ineffective most likely due to a lack in stress intensity, and 
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therefore requires augmentation as suggested by Goodhand et al. (249) 

The protocol was hence amended to also include a standardised 

reading and mental arithmetic task, to be completed during the 

"dichotomous listening” stress test.  

 

Study 1 demonstrated that in spite of all subjects being acid infusion 

naïve, 22% did not sensitise during acid infusion, and also failed to 

sensitise on subsequent visits, irrespective of modulation. For these 

subjects the difference in degree of sensitisation between visits was not 

related to the degree of change in HR, CVT or CSB between visits. They 

had less sympathetic activation (SCR) compared to sensitisers, and 

scored less for neuroticism on the BFI. It is possible that they may 

represent a distinct phenotype with reduced susceptibility to injury-

induced sensitisation in this model. A previous study using this model 

demonstrated that stress induction increases the degree of secondary 

oesophageal hyperalgesia in sensitisers, (30) but the response in non-

sensitisers remains still unclear. It was decided to focus further 

investigation in this area.  

	  

In study 1 it was noted that due to subjects’ anxiety habituation, there 

was a reduced induction of acid induced sensitisation on subsequent 

visits. Thus the amount of visits should be kept to a minimum. The 

screening visit was hence discontinued, and randomisation occurred 

directly following recruitment. Recruitment also attempted to include a 

larger diversity of volunteer backgrounds to reduce subjects familiar with 

the medical environment. The stress augmentation together with the 

minimised number of acid exposure visits, and the addition of an active 

placebo to control for the effect of distraction and personal interaction, 

was now used to examine the effects of stress induction in non-sensitising 

individuals during study 3. 
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The aim of this study was thus to determine the effects of 

psychophysiological modulation of the ANS by means of deep breathing 

(study 2), and psychological stress induction (study 3), on acid-induced 

oesophageal pain. Also to ascertain if inter-individual differences in the 

degree of sensitisation were predicted by inter-individual differences in 

psychological profile. In order to best achieve this aim, the study was 

divided into two parts, with study 2 focusing on the effect of PNS 

increase (SNS withdrawal) in individuals that sensitise to acid, and study 3 

focusing on the effects of PNS withdrawal (SNS increase) in individuals 

that do not sensitise to acid. It was hypothesised that sensitisation as 

expressed by the difference in average pain threshold (ΔPT) would be 

directly proportional to sympathetic nervous system activation (SNS: 

∆SCR), and parasympathetic nervous system withdrawal (PNS: ∆CVT), as 

induced or amplified by different psychophysiological modulations. A 

secondary aim of the study was to expand on the data in order to 

determine whether psychological state and trait factors predicted the 

degree of sensitisation to acid in the model. 

 

4.2 Materials and Methods 

 

4.2.1 Ethics Committee Approval 

All protocols for this study were submitted and approved by the 

University Senate Ethics Committee, ‘East London and The City Research 

Ethics Committee - Alpha’ (ref: 09/H0704/71). See section 2.1(page 77). 

4.2.1 Subjects 

55 healthy asymptomatic adult male and female volunteers, aged 18 to 

50, were recruited by advertisement. In an attempt to include a larger 



 

 

 

 

178 

 

diversity of backgrounds to reduce subjects familiar with the medical 

environment, adverts were placed in waiting areas open to the public. 

Adverts were also placed at a local university’s main campus where 

non-medical students attend. Pre-screening for inclusion and exclusion 

criteria was completed as described in section 2.2 (page 77).  

 

4.2.2 Location of the LOS  

 As in study 1 we had determined that the LOS position could be 

accurately identified using the pH pull through technique therefore this 

technique (as described in section 2.3 page 78), was used for the 

subjects in studies 2 & 3. 

 

4.2.3 Other Methods of Measurement 

All other methods of measurement; Catheter Assembly (section 2.4, 

page 78), Oesophageal acid infusion (section 2.4, page 78), 

Oesophageal pH monitoring (section 2.6, page 80), Pain Threshold 

Measurements (section 2.8, page 82), Psychological assessment (section 

2.11, page 85), Measurement of the Autonomic Nervous System (section 

2.12, page 86) and Respiratory Monitoring (section 2.16, page 99), was 

performed as described in their specific sections. 

 

4.2.2 Methods of Psychophysiological Modulation 

For study 2 & 3 the Sham breathing protocol (section 2.20.2, page 111) 

and Deep breathing protocol (section 2.20.3, page 114), was used as 

described in the specific sections, and illustrated in figure 4.1 below. 

During the Sham breathing protocol subjects were divided into two 

groups depending on the degree of sensitisation. If they sensitised, they 

completed study 2 (hypothesis testing study); if they did not sensitise, 
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they were diverted to study 3 (hypothesis generating study), where the 

psychological stress induction was achieved by using the augmented 

“Dichotomous listening” psychological stress test protocol as described in 

section 2.20.6 (page 119). During study 3 the “standardised reading and 

mental arithmetic task” was included. (249) 

 

 

 

Figure 67 Diagram illustrating the psychophysiological modulation protocol for (from top 
to bottom) the ‘Sham breathing’ visit: The subject was asked to count 6 breaths on six 
occasions (purple figures) during the 30minitus acid infusion period (red bar).  ‘Deep 
breathing’ visit: The subject was paced to perform 6 deep breaths on six occasions 
(purple figures) during the 30minitus acid infusion period (red bar). ’Stress test’ visit: 
Subjects listened to a conflicting duel track sound recording (purple figures) during the 
30minitus acid infusion period (red bar). During study 3, it was augmented to include a 
mental arithmetic task as well.  Autonomic measurement (brown bars) was done before 
and during the acid infusion. Pain thresholds (blue bars) were done before and three 
times after acid infusion. PH-metry (green bar) was started 20mins before acid infusion, 
and stopped 30mins after acid infusion ended (see figure 41). 
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4.2.3 Study Procedure, Experimental Design & Protocol 

The experimental study design was that of a prospective randomised 

placebo controlled two-tiered crossover double-blinded longitudinal 

cohort study. (Figure 67) The study procedure was followed as described 

in section 2.17 (page 99), i.e. using the ‘three research assistants’ 

method. The experimental protocol was used as described in section 

2.18 (page 101), with ‘time and events’ proceeding as outlined in figure 

2.12 (page 86). Specific modulation protocols were followed as 

discussed above in section 4.2.2. 

 

Figure 68 Flow diagram illustrating the final numeric outcome of participants in studies’ 2 
& 3. The experimental study design was that of a prospective randomised placebo 
controlled two-tiered crossover double-blinded longitudinal cohort study. [SB: Sham 
Breathing, ST: Stress Test, Db: Deep Breathing.] 

Visit%1%

Visit%2%

Visit%3%

Recruitment%
55"

Analyses%
(SB:47"Db:31"St:16)""

Deep%breathing%protocol%%

25"

“Dichotomous%listening”%stress%%
protocol%%

8"

“Dichotomous%listening”%stress%%
protocol%%

8"

Sham%breathing%protocol%%

25"

Deep%breathing%protocol%%

15"

Sham%breathing%protocol%%

25"

Studies'%2%&%3:%
(Full%cohort)%

N S

S:"SensiDsers%
N:"NonFsensiDsers%

N

RandomisaDon%

15" 8"

16"8"

50"

47"

5%Drop%Out%

1%Drop%Out%

2%Drop%Out%

S



 

 

 

 

181 

 

4.2.4 Data Handling and Analysis 

Due to the methodological dissimilarities (differences in baseline 

protocol), data derived from study 1 was not pooled or used in the 

analysis of studies 2 or 3. Demographic, pain threshold and autonomic 

data were normally distributed hence data are presented as mean ± SD, 

with parametric analysis. The variability was computed for the main 

effects of each subject’s change in PT over time points (ΔPT & time). All 

statistical analysis was completed as described in section 2.21 (page 

120).  

 

4.3 Results 

During acid infusion, pH fell to <2.0 in the distal oesophagus of all subjects 

but remained >6.0 in the proximal (unexposed) oesophagus. The most 

common symptom reported with acid infusion was nausea. Other 

sensations included a cold sensation in the chest region, feeling of 

hunger and / or heartburn. 

 

4.3.1 Demographic Data for full cohort (studies 2 & 3) 

A total of 55 healthy volunteers (31, male) were recruited and assessed 

for criteria eligibility. In spite of changing our advertising strategy, the 

majority (about 60%) of the subjects who responded to the adverts still 

had a medical background (hospital staff or medical students), the rest 

were other students from a local university and general public. The age 

range was from 18-48 years with a mean age of 26 ±6.61years. There 

were no obese or underweight subjects with a mean body mass index 

(BMI) of 22.73 ±2.41kg/m2. The subjects were recruited from different 

ethnic backgrounds reflective of local ethnic diversity. The majority of 

subjects were Caucasians (63%) followed by Asians (29%) and Africans 

(4%). All were acid infusion naïve, and 63% sensitised to acid infusion. 
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Author’s note: 

To avoid confusion, parts of the results section will be presented separately in 
the following order: 

• Sections 4.3.2 to 4.3.7:  will deal with study 2, (sensitisers) and 

• Sections 4.3.8 to 4.4.11:  will focus on study 3 (non-sensitisers). 

Further results will once again pertain to the whole cohort. 

 

 

4.3.2 Demographic Data for study 2 (Deep Breathing in Sensitisers) 

 

 

Figure 69 Flow diagram illustrating the final numeric outcome of participants in study 2. 
The experimental study design was that of a prospective randomised placebo 
controlled two-tiered crossover double-blinded longitudinal cohort study.  [SB: Sham 
Breathing, Db: Deep Breathing.] 
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Form the full cohort of 55 healthy volunteers, 31 subjects (18, male) 

sensitised to acid infusion during the Sham breathing protocol visit, and 

were recruited to study 2. (Figure 69) The age range was from 18-48 years 

with a mean age of 26 ±6.28 years. There were no obese or underweight 

subjects and the average body mass index (BMI) was 22.87 ±2.66kg/m2. 

The subjects were recruited from different ethnic backgrounds reflective 

of local ethnic diversity. The majority of subjects were Caucasians (55%) 

followed by Asians (35%) and Africans (10%). All were acid infusion naïve. 

 

During their first randomisation visit, five subjects could not tolerate 

prolonged nasal intubation even though intubations were successful and 

were excluded. For the final analysis, 31 subjects (18 male) completed 

both the sham breathing and deep breathing protocols, as a further 

three subjects were unable to complete the study due to study 

unrelated reasons (one had a family emergency and the other two 

sudden unscheduled commitments). (Figure 69) 

 

4.3.3 Pain Tolerance Threshold Data of Proximal Oesophagus for 

study 2 

 

Absolute threshold data for the proximal oesophagus at (T0) and after 

acid infusions (T60, T90, T120) are shown in Figure 70(A) & table B below.  
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Table 4 

Figure 70 Absolute values for proximal oesophageal pain thresholds before (T0) and 
after (T60 T90 and T120) post-acid infusion with (red) sham and (blue) deep breathing.	   

 

The mean individual ‘pre/post-acid infusion’ changes in pain threshold 

(∆PT) for all subjects in the proximal oesophageal, during sham-&-deep 

breathing with the mean group value (SD) for each time point, are 

shown in figure 71.  
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Figure 71 Individual values of change (difference from baseline) for proximal 
oesophageal pain thresholds (∆PT) for time points T60, T90 and T120, before and after 
acid infusion with (A) sham and (B) deep breathing. 

  

Two-way MANOVA analyses, comparing the influence of effect for sham 

vs. deep breathing modulation’s mean ΔPT for the proximal oesophagus 

with that of modulation type, across all time points, showed a strong 

statistical significance with regard to deep breathing, contributing 

29.85% (p<0.0001). (Figure 72(A)) In the comparison of the pre/post-acid 

infusion differences in average means of pain threshold (Δ Avr PT) 

between sham breathing, a strong statistical difference was detected 

between the modulation types. (Figure 72(B)) Deep breathing almost 

abolished the development of acid-induced hypersensitivity in the 

proximal oesophagus. At 60 minutes, mean change in PT (C.I.) was -

13.2mA (-15.8 to -10.6) after sham breathing, compared to a very small 
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decrease of -1.4mA (-3.5 to +0.7) after deep breathing.	  This pattern was 

repeated at 90 and 120 minutes. Mixed effects regression showed a 

coefficient of effect for deep breathing of + 9.94 (CI 8.3-11.6), p= 0.0001. 

 

Figure 72 A: shows the difference in mean pain threshold  (ΔPT) in mA, for the proximal 
oesophagus between baseline and the three-time points (minutes) after acid infusion, 
for the different modulation types. B: Showing the difference in average means of pain 
threshold (Δ  Avr PT) in mA, for the proximal oesophagus between pre & post acid 
infusion, for the different modulation types. The two-tailed paired t test was statistically 
significant. 

 

4.3.4 Pain Tolerance Threshold Data of Foot for study 2 

 

The foot pain threshold data showed the deep breathing modulations 

caused no significant change with regards to sham breathing. There was 
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thus no indication of any degree of sensitisation with regard to the 

somatic control (foot) demonstrated in this instance for both MANOVA 

analyses (Figure 73), and on average PT means comparison of pre/post-

acid differences (Δ Avr PT, not illustrated). For all MANOVA analysis data 

sets were of similar in variance and found to be statistically matching.  

 

 

 

 

Figure 73 Shows the difference in mean pain threshold (ΔPT) in mA, for the foot between 
baseline and the three-time points (minutes) after acid infusion, for the different 
modulation types. 

 

 

4.3.5 Autonomic Data for study 2 

 

The ‘pre/during-acid’ infusion change in ANS for sham breathing served 

as ‘baseline’ to which deep breathing’s ANS changes were compared 

for p-value calculation, and is illustrated below.  (Figure 74(A) & table 

5(B)) 
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Foot: Deep breathing 89.12 1 89.12 F (1, 240) = 0.4731 P = 0.4922 
Residual 45214 240 188.4 

Number of missing values 0 

A:#

B:#
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Table 5 

 

Figure 74 The comparison between the different ‘pre/post-acid infusion’ ANS changes 
between sham breathing (shaded) and deep breathing modulation-types, are 
graphically illustrated in (A); with table (B) below showing the mean values of change & 
standard deviations for each specific protocol, and for deep breathing’s comparison & 
p-value significance with regards to sham breathing. [Abbreviations are as follows; SCR: 
skin conductance response, MBP: mean blood pressure, HR: heart rate, CSB: cardiac 
sensitivity to baroreflex, & CVT: cardio vagal tone. 

-40 -20 0 20 40

Sham Breathing

Deep Breathing

Autonomic change by Modulation

Units of change due to acid infusion

SCR$(mS)%
MBP$(mmHg)!
HR$(bpm)%
CSB$(ms/mmHg)%
CVT$(Lvs)%

**" p=0.0022"

*" p=0.041"

Modulation Protocol ANS Measure Δ Avr SD Difference between 
means P value 

SCR 
(mS) 0.11 4.75 -5.91 ± 9.24 0.0022 

  MBP 
(mmHg) 5.06 28.19 -9.0 ± 32.51 0.1447 

Deep Breathing  HR 
(bpm) 2.07 7.12 -1.13 ± 9.17 0.5168 

  CSB 
(ms/mmHg) -0.26 3.13 0.24 ± 3.81 0.7351 

  CVT 
(Lvs) 1.7 2.6 2.07 ± 5.12 0.041 
SCR 
(mS) 8.73 9.09     

  MBP 
(mmHg) 15.71 14.02     

 Sham Breathing HR 
(bpm) 2.47 4.78     

  CSB 
(ms/mmHg) 0.29 2.45     

  CVT 
(Lvs) 0.53 2.83     

A: 

B: 
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Sham breathing (shaded graph above, figure 74(A) & table (B)) 

demonstrated a post-acid increase in SNS activation, with a coinciding 

PNS withdrawal. The SNS is hence homeostatically ‘unopposed’ as a 

result of acid infusion. In contrast the deep breathing protocol showed 

the reverse, demonstrating a decrease in sympathetic outflow with an 

increase in parasympathetic activation, with statistically significant 

changes in SCR & CVT. (Figure 75(A&B)) Modulated deep breathing’s 

PNS increase is thus not associated with SNS co-activation.  

 

 

Figure 75 The comparison of the difference in ANS change between Sham breathing 
visit and Deep breathing, with (A) showing the change in SCR (SNS) and  (B) the change 
in CVT (PNS).  

 

 

 

 

0

5

10

15

Sham Breathing                   Deep Breathing

∆ 
S

C
R

 (
m

S
)

Difference in SCR relative to intervention type. 
-5.911 ±9.245mS, p=0.0022 (n=28)

**"

-6

-4

-2

0

2

4

6

Sham Breathing                   Deep Breathing

Δ
 C

V
T

 (
lv

s
)

Difference in CVT relative to intervention type. 
2.079 ±5.125 Lvs, p=0.041 (n=28)

*"

A:# B:#



 

 

 

 

190 

 

4.3.6 Psychological Profiling Data for study 2 

4.3.6.1 BFI questionnaire 

The BFI questionnaire, using cumulative percentages, was used to 

analyse and interpret the cohort’s personality domain data. The 

personality domains of this cohort of healthy volunteers indicated that 

they were evenly grouped between introversion and extroversion. (Figure 

76(B)) Their agreeableness was just below the 50th percentile, which is 

higher than observed during study 1. (Figure 76(A)) Their 

conscientiousness, neuroticism and openness were above the 50th, but 

below the 80th percentiles and similar to that of study 1. 

 

 

Figure 76 Big Five inventory (BFI) as percentage of maximum possible (Cumulative 
Percentages) scores in (A) study 1(n=1) and (B) studies 2&3 (n=49), across the five 
different personality domains. 

 

Their Openness was slightly higher than observed in the pilot study, 

reflecting the need for a greater sense of ‘adventure/risk-taking’ by the 
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general public (40%) in participating with an invasive medical study 

compared to study 1 (15%). There were no personality extremes 

detected (above the 80th, or below the 20th percentile – indicative of 

personality disorders). As in study 1, the mean Neuroticism score, a 

vulnerability factor, was the highest, with openness, a protective 

personality factor, the second highest. Based on the BFI average 

response the cohort as a whole could be described as a “semi-social, 

slightly reserved, organized, emotionally sensitive but curious and 

adventurous” group. This personality description is similar to that of the 

pilot study, as the participants were of a similar background, education 

and socio-economical status. It is consistent with the self-selection that 

occurs with advert recruitment in the same geographical site, as only the 

individuals with a high degree of openness (curiosity and 

adventurousness) and extroversion will volunteer for this type of study.  

 

4.3.6.2 Hospital Anxiety and Depression questionnaire 

On the Hospital Anxiety and Depression Score (HADS) the mean values 

for anxiety, 8.97 ±2.52(SD) and depression, 8.55 ±1.52(SD) were within the 

borderline range (HADS score of 8-10/21), but below the clinical 

‘caseness’ cut-off (HADS score of ≥11/21). (266) Only 16.1% of subjects 

met the criteria for moderate anxiety and 9.7% for moderate depression, 

which is below average expectation. This is reflective of the efficacy of 

exclusion criteria used during recruitment, as none of the subjects 

attracted a formal psychiatric diagnosis and as such were not on any 

psychotropic medication. These individuals are examples of the upper 

end of the normal range of a healthy cohort, with a high percentage 

being university students. Hence the sensitiser cohort was slightly anxious, 

but representative and consistent with expected means for age and 

gender of the general population.   
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4.3.6.3 State and Trait Anxiety Inventory questionnaire 

Analysis of the State and Trait Anxiety Inventory (STAI) indicated firstly that 

the cohort’s trait anxiety, 38.45 ±9.56(SD) is consistent with the 

expectations from a general population (38.69 ±10.34(SD)). (267) A 

second finding that was consistent with observations in study 1, was that 

the subjects’ state anxiety reduced on the subsequent visit (mean ∆STAI-

S = -3.81 ±9.43(SD) per visit), and is an example of exposure habituation.	  
There was no relationship between STAI-trait and T0 thresholds, nor with 

degree of acid sensitisation at subsequent time points (p= 0.84 – 0.89, 

linear regression). A significant negative correlation was found between 

STAI-trait and change in CVT during deep breathing, coeff. -1.05 (CI -0.54 

to +1.44), p= 0.004, but not sham breathing, coeff. 0.45 (CI -1.73 to -0.36), 

p= 0.36. 

 

4.3.6.4 Vulnerable Attachment Style Questionnaire 

With the Vulnerable Attachment Style Questionnaire (VASQ), 40% of 

subjects had significant attachment vulnerability, which is similar to the 

proportion among other non-patient samples (293, 294). Of these 

subjects with attachment vulnerability 67% of anxious-preoccupied, and 

33% of dismissive-avoidant types. The combined attachment vulnerability 

for the whole cohort (study 2&3) was 37%. (Figure 77) 
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Figure 77 The Vulnerable Attachment Style Questionnaire (VASQ) findings for study 2, 
showing the secure/insecure percentages with the pie graph, and a brake-down of the 
types of insecure attachment style on the adjacent bar chart. 

 

4.3.7 Correlation Data for study 2 

 

During sham breathing a negative correlation between the differences 

in PT and SCR (yellow graph, figure 78) was detected and a positive 

correlation with the difference in MBP (red graph, figure 78). There was 

no correlation with CVT (blue graph, figure 78).  
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Figure 78 The correlation between the difference in pain threshold (ΔPT) and skin 
conductance response (ΔSCR), blood pressure (∆MBP) and efferent PNS (∆CVT) during 
sham breathing. [Encircled: outlying point] 

 

This is potentially contradictory, as it implies that visceral sensitivity (∆PT) 

increases with the increase in sympathetic outflow, except for the 

positive correlation with MBP.  The ∆PT/∆MBP correlation was sensitive to 

the inclusion/exclusion of an outlying point. When the analysis was 

repeated after the exclusion of the outlier the strength of the correlation 

and the statistical significance disappeared, r=0.158 (p=0.402), and 

suggests no contradiction, but rather a probable chance finding.  

 

During deep breathing contrary to the above ‘sham breathing-

observation’ (yellow graph, figure 78), the SNS now had a weak non-

significant negative correlation with the mean pain threshold (SCR, 

yellow graph, figure 79), while the PNS had a significant positive 

correlation.  (CVT, blue graph, figure 79) 
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Figure 79 The correlation between the average pain threshold (Avr PT) and cardiac 
vagal tone (ΔCVT) during deep breathing visit.  

 

There was a moderate positive correlation between the degree of PNS 

activation (∆CVT) and BFI-conscientiousness score (red graph, figure 

80).14 Also observed during sham breathing, was a negative correlation 

with WAI-defensiveness (blue graph, figure 80).14 This is of interest, as it 

infers that the “more” conscientious and the “less” defensive the subject 

is, the higher the observed CVT activation; suggestive of a ‘generally 

more relaxed, prepared, non-threatened’ attitude being associated with 

a higher protective vagal tone. 

 

 

                                                        
14 Bonferroni correction was not used for these observations. 
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Figure 80 The correlations between the difference in cardiac vagal tone (ΔCVT), the 
personality trait Conscientiousness (BFI) and WAI-defensiveness score (WAI) during 
sham breathing protocol. 

 

4.3.8 Demographic Data for study 3 (Stress induction in Non-

sensitisers) 

 

From the full cohort of 55 healthy volunteers, 18 subjects (13, male) did 

not sensitise to acid infusion during the Sham breathing protocol visit, 

and were recruited to study 3. (Figure 81) The age range was from 19-45 

years with a mean age of 27 ±7.33 years. There were no obese or 

underweight subjects and the average body mass index (BMI) was 22.5 

±1.98kg/m2. The subjects were recruited from different ethnic 

backgrounds reflective of local ethnic diversity. The majority of subjects 

were Caucasians (78%) followed by Asians (17%) and Africans (5%). All 

were acid infusion naïve. 
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Figure 81 Flow diagram illustrating the final numeric outcome of participants in study 3. 
The experimental study design was that of a prospective randomised placebo 
controlled two-tiered crossover double-blinded longitudinal cohort study. [SB: Sham 
Breathing, St: Stress Test, Db: Deep Breathing.] 

 

During their first randomisation visit, five subjects could not tolerate 

prolonged nasal intubation even though intubations were successful and 

were excluded. For the final analysis, 18 subjects (13 male) completed 

the sham breathing protocol and only 16 the psychological stress 

induction protocol, as a further three subjects were unable to complete 

the study (due to study unrelated reasons, one had a family emergency 

and the other two, sudden unscheduled commitments). (Figure 81) Due 

to the sensitisation state ‘blinded’ randomisation, 8 non-sensitising 
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subjects completed the deep breathing protocol, before they could be 

identified and recruited to study 3. 

 

4.3.9 Pain Tolerance Threshold Data of Proximal Oesophagus for 

study 3 

 

4.3.9.1 Main modulation group 

Absolute threshold data for the proximal oesophagus at (T0) and post-

acid infusions (T60, T90, T120) for all modulation types are shown in Figure 

82(A&B). 

Table 6 

Figure 82 (A) Graph and (B) table, illustrating and listing absolute values for proximal 
oesophageal pain thresholds before (T0) and after (T60 T90 and T120) acid infusion with 
sham, deep breathing	  and stress induction protocols. 

 

The mean individual ‘pre/post-acid infusion’ changes in pain thresholds 
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breathing and stress test, with the mean group value (SD) for each time 

point, are shown in figure 83 (A, B & C). During the stress test visit however 

25% (n=4) of subjects sensitised (i.e. mean ∆PT ≤-6mA) to acid infusion, 

and are indicated by means of the pink rectangles, in figure 83(C).  

 

 

Figure 83 Individual values of change for proximal oesophageal pain thresholds (∆PT) 
for time points T60, T90 and T120, following acid infusion with (A) sham breathing, n = 18  
(B) deep breathing, n = 8 and (C) Stress Test, n = 16. 

  

Two-way MANOVA analyses, comparing the influence of modulation 

type, across all time points, showed no statistical significance between 

modulations for the study group as a whole. (Figure 84(A)) 
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Figure 84 A: shows the difference in mean pain threshold  (ΔPT) in mA, for the proximal 
oesophagus between baseline and the three-time points (minutes) after acid infusion, 
for the different modulation types. B: Showing the difference in average means of pain 
threshold (Δ  Avr PT) in mA, for the proximal oesophagus between pre & post acid 
infusion, for the different modulation types. 

 

4.3.9.2 Sensitised stress-test modulation group 

Concerning the subjects that sensitised to acid infusion during the 

psychological stress induction visit, two-way MANOVA analyses indicated 

significance with regard to degree of sensitisation, contributing 25% of 

change over all time points (Figure 86(A)) and means comparison of the 

difference in pain threshold (∆PT) post-acid, also achieved significance. 

(Figure 86(B)) 
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Figure 85 A: shows the difference in mean pain threshold  (ΔPT) in mA, for the proximal 
oesophagus between sensitisation status and the three-time points (minutes) after acid 
infusion, for the stress induction modulation. B: Showing the difference in average 
means of pain threshold (Δ  Avr PT) in mA, for the proximal oesophagus between pre & 
post acid infusion, for the different modulation types.  

 

4.3.10 Pain Tolerance Threshold Data of Foot for study 3 

 

The foot pain threshold data showed that both deep breathing and 

stress induction modulations caused no significant change with regard to 

sham breathing. There was thus no indication of any degree of 

sensitisation with regard to the somatic control (foot) demonstrated in 

this instance for both MANOVA analyses (Figure 73), and on average PT 

means comparison of pre/post-acid differences (Δ Avr PT, not illustrated). 

For all MANOVA analysis data stets were of similar in variance and found 

to be statistically matching.  
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Figure 86 Shows the difference in mean pain threshold (ΔPT) in mA, for the foot between 
baseline and the three-time points (minutes) after acid infusion, for the different 
modulation types. B: shows the two-way MANOVA analysis tables across all time points 
for each individual modulation compared to sham breathing visit. 

 

3.4.11 Autonomic Data for study 3 

 

4.4.11.1 Sham breathing 

The ‘pre/during-acid’ infusion changes in ANS for the sham-breathing 

visit, served as ‘baseline’ to which deep breathing and stress induction’s 

modulated ANS-changes were compared; and are illustrated below in 

figure 87(A) & table 7(B). The changes observed during the sham 

breathing protocol demonstrated a post-acid increase in SNS activation, 

but in this group, as opposed to the sensitisers’ response in study 2 (Figure 

74(A&B)), there is still a degree of coinciding increased PNS activation 

observed. The SNS is hence still homeostatically ‘apposed’ to a degree, 

which is a novel finding not previously observed. (Shaded graph below, 

figure 87(A) & table 7(B). 

!! !! !! !! !! !!
Two-way MANOVA Foot (Alpha 0.05) 

            
    
Source of Variation % of total variation P value P value summary Significant?   
Interaction 1.314 0.7185 ns No   
Time 2.117 0.5402 ns No   
Deep breathing 1.289 0.2531 ns No   
            
ANOVA table SS DF MS F (DFn, DFd) P value 
Interaction 321.5 3 107.2 F (3, 96) = 0.4492 P = 0.7185 
Time 518.1 3 172.7 F (3, 96) = 0.7237 P = 0.5402 
Deep breathing 315.4 1 315.4 F (1, 96) = 1.322 P = 0.2531 
Residual 22907 96 238.6     
!! !!
!! !!
Source of Variation % of total variation P value P value summary Significant?   
Interaction 1.518 0.6724 ns No   
Time 2.133 0.5397 ns No   
Stress test 0.00481 0.9443 ns No   
            
ANOVA table SS DF MS F (DFn, DFd) P value 
Interaction 310.2 3 103.4 F (3, 96) = 0.5157 P = 0.6724 
Time 435.9 3 145.3 F (3, 96) = 0.7247 P = 0.5397 
Stress test 0.983 1 0.983 F (1, 96) = 0.004902 P = 0.9443 
Residual 19250 96 200.5     
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Table 7 

 

Figure 87 The comparison between the different ‘pre/post-acid infusion’ ANS changes 
between sham breathing (shaded), deep breathing and stress test modulation-types, 
are graphically illustrated in (A); with table (B) below showing the mean values of 
change & standard deviations for each specific protocol, and for deep breathing’s 
comparison & p-value significance with regards to sham breathing. [Abbreviations are 
as follows; SCR: skin conductance response, MBP: mean blood pressure, HR: heart rate, 
CSB: cardiac sensitivity to baroreflex, & CVT: cardio vagal tone.  

-50 0 50 100 150

Sham Breathing

Stress Test

Deep Breathing

Autonomic change by Modulation

Units of change due to acid infusion

SCR$(mS)%
MBP$(mmHg)!
HR$(bpm)%
CSB$(ms/mmHg)%
CVT$(Lvs)%

***"p=0.0006"

Modulation Protocol ANS Measure Δ Avr SD Difference between 
means P value 

SCR 
(mS) 5.28 6.74 1.07 ± 7.77 0.708 

  MBP 
(mmHg) 4.57 8.83 -10.2 ± 12.36 0.099 

 Deep Breathing HR 
(bpm) 3.58 8.86 2.63 ± 10.15 0.553 

  CSB 
(ms/mmHg) 0.2 1.75 0.117 ± 3.56 0.939 

  CVT 
(Lvs) 2.5 2.01 2.67 ± 2.70 0.0602 
SCR 
(mS) 6.17 4.31 -2.56± 11.64 0.3774 

  MBP 
(mmHg) 67.22 46.22 52.01 ± 48.34 0.0006 

Psychological 
Stress  

HR 
(bpm) 5.41 4.31 3.13 ± 7.08 

0.097 

  CSB 
(ms/mmHg) -0.76 1.3 -0.94 ± 3.13 0.246 

  CVT 
(Lvs) -0.5 2.03 -1.13 ± 3.78 0.253 
SCR 
(mS) 8.73 9.09     

  MBP 
(mmHg) 15.71 14.02     

 Sham Breathing HR 
(bpm) 2.47 4.78     

  CSB 
(ms/mmHg) 0.29 2.45     

  CVT 
(Lvs) 0.53 2.83     

B: 

A: 
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4.4.11.2 Deep breathing 

The changes observed during the deep breathing protocol (figure 87(A) 

and table 7(B)), demonstrated no change post-acid/modulation in 

sympathetic outflow, but showing a further increase in the para-

sympathetic activation. Of note is that although the CVT showed a 

strong trend, there was no statistical difference to that observed during 

sham breathing. Interestingly the non-sensitisers’ PNS co-activation is 

consistent for both deep-and-sham breathing visits.  

 

4.4.11.3 Stress test 

The changes observed during the psychological stress test induction 

(figure 87(A) and table 7(B)), demonstrated a strong statistical significant 

post-acid/modulation increase in the MBP part of the sympathetic 

outflow, with a small withdrawal of para-sympathetic activation (a novel 

finding in non-sensitisers). Looking at the ANS response in the non-

sensitiser study group as a whole, in spite of the SNS increase and the 

slight PNS withdrawal (their only example of ANS non-co-activation), the 

modulation was not sufficient in producing an associated increase in 

post-acid sensitisation in the group, except in the 25% of individual 

subjects who sensitised (Figure 83), that we will turn to next. 

 

4.4.11.4 Sensitised vs. non-sensitised 

Comparing the ANS responses of subjects who sensitise vs. those that did 

not, as illustrated in figure 88(A&B) below. The changes observed during 

the psychological stress test induction demonstrated a significantly larger 

activation of the SNS (SCR - figure 89(A)) by the non-sensitisers, while the 

PNS (CVT - figure 89(B)) was not statistically significant. 
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Table 8 

 

 

Figure 88 The comparison between the different ‘pre/post-acid infusion’ ANS changes 
between the mean difference in ANS change between the group of subjects who 
sensitised and who did not, during the psychological stress protocol, are graphically 
illustrated in (A); with table (B) below showing the mean values of change & standard 
deviations for each specific protocol, and for deep breathing’s comparison & p-value 
significance with regards to sham breathing. [Abbreviations are as follows; SCR: skin 
conductance response, MBP: mean blood pressure, HR: heart rate, CSB: cardiac 
sensitivity to baroreflex, & CVT: cardio vagal tone.   

 

 

-100 -50 0 50 100

Sham Breathing

Sensitised

Non-sensitised

Units of change due to acid infusion

Autonomic change by Stress Test Modulation

**" p=0.0015"

SCR$(mS)%
MBP$(mmHg)!
HR$(bpm)%
CSB$(ms/mmHg)%
CVT$(Lvs)%

Not.sensi3sed$
(Stress%Test)%

Sensi3sed$
(Stress%Test)%

-100 -50 0 50 100

Sham Breathing

Sensitised

Non-sensitised

Units of change due to acid infusion

Autonomic change by Stress Test Modulation

**" p=0.0015"

SCR$(mS)%
MBP$(mmHg)!
HR$(bpm)%
CSB$(ms/mmHg)%
CVT$(Lvs)%

Not.sensi3sed$
(Stress%Test)%

Sensi3sed$
(Stress%Test)%

Modulation Protocol ANS Measure Δ Avr SD Difference between 
means P value 

SCR 
(mS) 13.61 2.96 6.372 ± 1.626 0.0015 

  MBP 
(mmHg) 59.65 302.50 78.35 ± 155.5 0.6229 

 Not-sensitised HR 
(bpm) -64.58 10.63 -0.6818 ± 5.481 0.9029 

(Stress Test)  CSB 
(ms/mmHg) 0.16 2.33 -1.361 ± 1.321 0.3216 

  CVT 
(Lvs) -0.18 2.93 -0.6318 ± 1.585 0.6966 
SCR 
(mS) 7.24 2.23     

  MBP 
(mmHg) -18.70 49.73     

Sensitised  HR 
(bpm) -63.90 2.24     

 (Stress Test)  CSB 
(ms/mmHg) 1.53 2.03     

  CVT 
(Lvs) 0.45 1.85     
SCR 
(mS) 8.73 9.09     

  MBP 
(mmHg) 15.71 14.02     

 Sham Breathing HR 
(bpm) 2.47 4.78     

  CSB 
(ms/mmHg) 0.29 2.45     

  CVT 
(Lvs) 0.53 2.83     

A: 

B: 
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Of note are two potentially contradictory observations regarding the 

sensitised ‘non-sensitiser’ group’s observed ANS responses: 

(i) Opposite to the observations in study 2, here the sensitised 

‘non-sensitisers’ demonstrate no PNS withdrawal (possibly even 

a trend indicative of PNS increase), yet sensitised. In study 2, 

CVT had a positive correlation with increased pain threshold 

(Avr PT), and hence a higher CVT would be associated with 

desensitisation.  (Figure 79) 

(ii) Compared with the non-sensitised ‘non-sensitisers’ who were 

not able to maintain ANS co-activation, the sensitised group 

had a statistically significant lower degree of SCR activation, 

yet sensitised. In study 2, SCR correlated positively with 

increased pain sensitivity (∆PT), and hence a lower SCR would 

be associated with desensitisation. (Figure 78) 

 

 

Figure 89 The comparison of the difference in ANS change between the group of 
subjects who sensitised (pink) and who did not (green) during the psychological stress 
protocol with (A) showing the change in SCR (SNS) and  (B) the change in CVT (PNS).  
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4.4.12 Psychological Profiling Data for study 3 

 

4.4.12.1 BFI questionnaire 

The BFI questionnaire, using cumulative percentages15, was used to 

analyse and interpret the cohort’s personality domain data. A 

comparison of personality domains of the cohort of healthy volunteers 

between study 2 and 3, indicated that they were both evenly grouped 

between introversion and extroversion, with the sensitisers slightly more 

extrovert and higher for agreeableness and conscientiousness. (Figure 

4.24(B)) The non-sensitisers scored higher for neuroticism and openness. 

(Figure 4.24(A)) The respective profiles suggest that the sensitisers are 

more ‘out-going’ and ‘eager to please’, with the non-sensitisers more 

‘reserved and conservative’ yet ‘adventurous’. Both groups were similar 

in general personality, reflecting the confounder of self-selection for 

voluntary experimentation. 

 

Figure 90 Big Five inventory (BFI) as percentage of maximum possible (Cumulative 
Percentages) scores in (A) studies 3, non-sensitisers and (B) study 2, sensitisers, across 
the five different personality domains.  

                                                        
15 For a more detailed description see explanatory note, appendix thee, and chapter 
3, section 3.4.4, page 135). 
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4.4.12.2 Hospital Anxiety and Depression questionnaire 

On the Hospital Anxiety and Depression Score (HADS) the mean values 

for anxiety, 8.44 ±1.76(SD) and depression, 9.55 ±1.73(SD) were within  the 

borderline range (HADS score of 8-10/21), but below the clinical 

‘caseness’ cut-off (HADS score of ≥11/21). (266) Only 11.1% of subjects 

met the criteria for moderate anxiety and 16.7% for moderate 

depression, which is below average expectation. The sensitisers (study 2) 

scored less for depression (9.7%) and more for anxiety (16%). The 

opposite was observed for the non-sensitisers (study 3) (16.1% - anxiety & 

11.1% - depression). This could suggest that higher anxiety states 

(sensitisers) coincided with a greater awareness and sensitivity to 

influence from internal/external environmental stimulus, while not the 

case for depression (non-sensitisers). (295) 

 

4.4.12.3 State and Trait Anxiety Inventory questionnaire  

Analysis of the State and Trait Anxiety Inventory (STAI) indicated firstly that 

the cohort’s trait anxiety (STAI-T), 34.33 ±8.05(SD) is below general 

population expectations (38.69 ±10.34(SD)). (267) A second consistent 

finding was that the subjects’ state anxiety reduced with each 

subsequent visit, and is an example of exposure habituation. Between 

visit 1 and 2 state anxiety dropped by ∆-4.49, and between visit 1 and 3, 

by a further ∆-2.44. (mean ∆STAI-S = -3.47 ±5.19(SD) per visit) 

 

In comparing STAI-S analysis with regard to non-sensitised ‘non-sensitisers’ 

(non-sensitised-ns) vs. sensitised ‘non-sensitisers’ (sensitised-ns), the 

sensitised-ns had a lower trait anxiety, 29.00 ±2.16(SD) compared to the 

non-sensitised-ns: 35.17 ±8.20(SD), p=0.504; replicating this previously 

observed contradictory finding. (296) When the sensitised-ns & non-

sensitised-ns’s ‘anxiety habituation’ were compared, the sensitise-ns 
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habituated more, mean ∆STAI-S(S) = -2.25 per visit, than the non-

sensitisers-ns, mean ∆STAI-S(N) = -0.875 per visit. At the time of the third 

(stress induction) visit, the sensitised-ns’ STAI-S was 21.00 <0.00(SD), 

compared to the non-sensitisers-ns’ 30.33 ±4.72(SD), p=0.038. This finding 

could suggest “non-adaptive calm”, or coinciding conflicting 

emotional/arousal states, sighted by Gray and McNaughton. (66)  

 

4.4.12.4 Toronto Alexithymia Scale questionnaire 

In comparing the Toronto Alexithymia Scale (TAS-20) analysis with regard 

to the sensitised/non-sensitised-ns, the sensitised-ns had a significant 

higher TAS-20 score, 87.5 ±5.45(SD) compared to the non-sensitised-ns’ 

76.00 ±6.99(SD), p=0.010, replicating similar previous findings. (297-299) 

The “Difficulty describing feelings” TAS-20 sub-scale was specifically 

predictive as the non-sensitised-ns had a mean of 21.5 ±2.08(SD) 

compared to the non-sensitised-ns’ 17.00 ±2.52(SD), p=0.006.  

 

4.4.12.5 Vulnerable Attachment Style Questionnaire 

With the Vulnerable Attachment Style Questionnaire (VASQ) 33% of 

subjects had significant attachment vulnerability, which is lower than 

expected for a non-patient population (293), of which 67% was of 

anxious-preoccupied, and 33% of dismissive-avoidant types. The 

percentage of significant attachment vulnerability for the non-sensitisers 

(study 3 - 33%) was less than for the sensitisers (study 2 - 40%), as well as 

less for the cohort as a whole (studies 2&3 - 37%). (Figure 91) 
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Figure 91 The Vulnerable Attachment Style Questionnaire (VASQ) findings for study 3, 
showing the secure/insecure percentages with the pie graph, and a brake-down of the 
types of insecure attachment style on the adjacent bar chart. 

 

In comparing the VASQ analysis with regard to the sensitised/non-

sensitised-ns sub-group, the sensitised-ns had significant higher 

attachment vulnerability VASQ percentage of 50%, which is also higher 

to the proportion when compared to other non-patient samples. The 

non-sensitised-ns’ 33%, on the contrary was lower than expected for a 

non-patient population. (293, 294) (Figure 92) The non-sensitised-ns’ 

vulnerability was consistent with that of the cohort (33%), but the 

sensitised-ns were 17% higher (50%). 
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Figure 92 The Vulnerable Attachment Style Questionnaire (VASQ) findings, showing the 
secure/insecure percentages with the pie graph, and a brake-down of the types of 
insecure attachment style on the adjacent bar chart. 

 

 

4.4.13 Correlation Data for study 3 

 

During sham breathing visit a positive correlation between pain threshold  

(Avr PT) and CVT was detected, r=0.518 (p=0.032), i.e. the higher the 

CVT, the higher the PT. This replicates the finding that visceral pain 

threshold increases with the increase in para-sympathetic outflow. (132, 

133) (Figure 93) 
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Figure 93 The correlation between the average pain threshold (Avr PT) and cardiac 
vagal tone (ΔCVT) during sham breathing visit.  

 

During psychological stress induction visit a positive correlation between 

the degree of pain sensitivity (∆PT) and SCR was detected, r=0.063 

(p=0.030). This indicates that visceral pain sensitivity increases with the 

increase in sympathetic outflow during stress. (Figure 94) 

 

Figure 94 The correlation between the difference in pain threshold (ΔPT) and cardiac 
vagal tone (ΔCVT) during deep breathing visit. 
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4.5 Discussion 

The results of study 2 provide evidence that visceral pain hypersensitivity, 

induced in the proximal oesophagus by acid infusion in the distal 

oesophagus, is prevented by deep breathing through its action on the 

increasing PNS tone.  

 

Hitherto, the mechanisms by which deep breathing increases PNS tone 

have been incompletely understood. (300-302) It has been hypothesised 

that deep breathing increased PNS tone through its action on increasing 

afferent baroreflex signalling via the vagus nerve. (228) This enhances 

neuronal activity in the nucleus tractus solitarius (NTS), located in the 

caudal medulla, resulting in excitation of pathways leading to the 

nucleus ambiguous (NA), a structure within the medulla responsible for 

increasing efferent vagal tone, i.e. CVT. To date, to the best of my 

knowledge, this physiological reflex arc has not been demonstrated with 

a direct, rather than proxy, measure of CVT in humans. These results 

therefore provide evidence that deep breathing manoeuvres do cause 

a demonstrable objective rise in CVT and thus PNS tone, which could 

represent a physiological mechanism of action of many complementary 

therapies in which deep breathing is emphasised. (57, 303) 

  

It has been in excess of 20 years since the role of vagal afferents, where 

the effects of vagotomy, with or without supplementary vagal nerve 

stimulation (VNS), in modulating pain in animal models were first 

reported. (304) For instance, Chen et al. have presented evidence to 

support the hypothesis that vagal afferents modulate sensorimotor 

responses to visceral pain emanating from the GI tract per se. (305) In this 

study, the authors’ measured visceromotor responses (VMR) to graded 

colorectal distension (CRD) following electrical VNS, or topical 

application of lidocaine to the vagus nerve, following subdiaphragmatic 
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vagotomy in conscious rats. In both of these scenarios, a reduction of 

VMR to increasing CRD was noted thus indicating enhancement of PT.   

 

Study 2 was devised to translate these findings into a human model of 

visceral pain in order to evaluate the importance of physiologically 

manipulating PNS tone in the development of central sensitisation. 

Central sensitisation is considered to be an important component of the 

endogenous pain regulatory system, whose dysfunction is considered to 

play a role in the maintenance of chronic visceral pain, through its 

functional and dynamic interaction with the ANS. (306, 307) For the first 

time in a model of human visceral hypersensitivity it has been 

demonstrated that deep breathing increases PNS tone and prevents the 

development of central sensitisation. However thus far, objective 

experimental evidence for the effectiveness of deep breathing in 

management of visceral pain is lacking. Nevertheless, both common 

personal experience and a number of studies have postulated its 

efficacy in ameliorating both acute and chronic somatic pain. In the 

context of chronic somatic pain syndromes, deep breathing has been 

observed to reduce pain and increase daily functioning in patients with 

fibromyalgia. (308) Similarly in acute somatic pain, what parent has not 

soothed their child, following a grazed knee for argument, with the 

suggestion of “taking deep breaths,” presumably conferring a degree of 

analgesia from the said injury. Somewhat more objectively, Friesner et al., 

have demonstrated breathing induced analgesia, when comparing 

deep breathing with natural breathing, during thoracic drain removal, 

although this study did not control for distraction. (309) More recently, 

Chalaye et al. resolved this confounding, evaluating basic HRV variables 

and thermal PT during deep breathing and distraction. (310) In healthy 

subjects, deep breathing increased proxy measures of vagal activity and 

resulted in elevated PT, and whilst distraction produced similar relative 
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analgesia it was not accompanied by changes in autonomic tone. In 

the context of this data, it would be important to study the effect of co-

administered atropine and deep breathing on sensitisation. This could 

potentially examine and contrast the contribution and importance of the 

neurobiological pathways that underlie deep breathing induced PNS 

analgesia, with the degree of associated distraction which arguably 

accompanies all paced breathing techniques, and could highlight their 

possible difference. Distraction is a manifold phenomenon; the analgesia 

that was observed could plausibly be due to the observed reduction in 

anxiety. 

 

Anxiety at the time of GI injury or inflammation increases the risk of 

developing chronic visceral hyperalgesia and symptoms. (41) Sharma et 

al. recently examined whether anxiety influences acid-induced 

hyperalgesia in a cohort of healthy subjects. (311) In this study the 

investigators demonstrated that acute anxiety induction, through 

autobiographical recall of adverse life events, caused an increase in 

sympathetic nervous system tone, with concomitant PNS withdrawal, 

and an increase in acid-induced oesophageal hyperalgesia. Thus 

anxiety may therefore facilitate the development of central sensitisation 

in the oesophagus presumably in combination with modulatory 

influences of the ANS.   Study 2 evaluated trait anxiety measures and saw 

a small negative effect on CVT but not PT. In combination therefore, 

both short (state) and long (trait) term anxiety measures influence ANS 

tone in response to acid-infusion although the former may confer 

hyperalgesia possibly through the acute withdrawal of PNS tone 

influencing the process of central sensitisation. 

 

Whilst this study was not designed to describe the precise 

neurobiological mechanisms by which increasing PNS tone imparts an 
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analgesic effect, data derived from VNS studies have facilitated 

important insights to be garnered. It maybe surmised that such 

mechanisms may be manifest at three levels from the periphery to 

central neurotransmission and supraspinal areas. Firstly, in the periphery, it 

has been shown that VNS may have a dual effect with seemingly 

inhibitory and excitatory effects below and above C3 respectively, 

raising the possibility that neurones arising from the propriospinal tracts of 

higher cervical segments may confer anti-nociception in more distal 

segments. (312, 313) Secondly, a plethora of neurotransmitter systems 

have been implicated in vagal mediated anti-nociception including 

serotonin, noradrenaline and opioids. (314) For example, opioid 

antagonism, which would be expected to cause hyperalgesia, has been 

shown to not influence PT following functional vagotomy thereby 

suggesting a role for opioidergic pathways in vagal mediated anti-

nociception. (315) Vagal afferents signalling also influences the allostatic 

hypothalamic-pituitary-adrenal axis through indirect activation of the 

parabrachial nucleus through the modification of adrenocorticotrophic 

hormone, corticosterone and adrenaline, themselves arbitrators of 

inflammation and nociception. (316, 317) Finally, within the brainstem, 

the NTS forms part of the central autonomic network (CAN), itself 

encompassing a network of highly interconnected pain inhibition relays 

in association with the periaqueductal grey, lateral parabrachial nucleus 

and the ventrolateral medulla. (318) Experimental evidence, largely 

derived from animal studies utilising local aesthetic blockage of the 

constituent areas of the CAN, support the notion that these structures are 

the main substrates for vagal induced analgesia. (319, 320) Moreover, in 

humans, following short-term transcutaneous VNS, functional 

neuroimaging shows changes in activity in areas of the visceral pain 

neuromatrix, such as the limbic brain areas, including the amygdala, 

hippocampus and parahippocampal gyrus. (321)  
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There are a number of important therapeutic implications of study 2’s 

findings. An immediately attractive suggestion is whether the direct 

measurement of CVT during deep breathing techniques may facilitate 

the objective interrogation of the success of such measures in changing 

PNS tone but also inducing analgesia. Furthermore, interventional 

manipulation of PNS tone could be used to identify patients with visceral 

hypersensitivity as sequelae of central sensitisation per se. For instance, if 

it were possible to show that hyperalgesia was lessened following 

administration of a technique that increased PNS tone, it would provide 

evidence for central sensitisation as the underlying cause. In contrast, 

failure to respond would suggest a different mechanism such as 

hypervigilance. Such characterisation would also allow appropriate 

individualisation of management to the underlying mechanism, such as 

cognitive behavioural treatments in those with hypervigilance and 

pharmacotherapy in those with central sensitisation. Equally, it is possible 

that episodic utilisation of deep breathing techniques during acute 

inflammatory episodes, such as during gastro-oesophageal reflux events, 

may produce both symptomatic relief and prevention of central 

sensitisation, hyperalgesia and chronicity of symptoms that are seen in 

EO. Finally with regard to study 2, transcutaneous electrical VNS 

stimulation has been shown to increase somatic PT and reduce pain 

ratings, in the absence of any demonstrable cardiovascular side effects, 

and therefore this novel non-invasive technology may offer a treatment 

option in the prevention of central sensitisation and with it, chronic pain, 

in patients with FGID. (322) 

 

With the consideration of study 3’s results evidence is provided that 

explains and clarifies the hitherto poorly understood multifactorial ANS 

regulatory mechanisms of visceral pain hypersensitivity in non-sensitising 

subjects. This group has never been studied using this model before, and 
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it is with the inclusion of their ANS response to acid that allows us for the 

first time to observe and compare the ANS response of healthy subjects 

across the complete spectrum of visceral hypersensitivity reactions as 

induced by this model.  

 

In study 2 it has been demonstrated how increase in PNS activation (and 

SNS withdrawal) is associated with reversal of hypersensitisation, but it is 

only when compared with the responses of the non-sensitisers that a 

deeper understanding can be reached. The most striking observation is 

the contradictory finding that in non-sensitisers under stressful conditions 

an increase in PNS (CVT) is associated with sensitisation and activation of 

SNS (SCR) is now associated with non-sensitisation. This is an example of 

what has now come to be known as the “Vagal Paradox”. (8) It is only 

with the incorporation of ‘polyvagal’ and ‘attachment’ theory that a 

more full and coherent discussion of the observed results can be given as 

hypothesis.  

 

The Polyvagal theory is proposed by Porges et al. (8, 215, 292) and has 

gained great acceptance as it is increasingly supported by laboratory 

findings. From a psychological perspective, it provides an understanding 

of visceral self-regulation and sensory modulation. A phylogenetic 

approach is proposed to explain the vagal paradox in terms of the 

medullary source nuclei of the dorsal motor nucleus (DMNX) and nucleus 

ambiguous (NA). The term polyvagal is used as it distinguishes between 

the two main branches of the vagus nerve: 

1: The primitive unmyelinated “Vegetative Vagus”; which originates in 

the DMNX, and is associated with passive reflexive regulation of visceral 

functions, and mediates the most primitive ‘freeze’ stress response, which 

is part of the reptilian response system. 
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2: The new-myelinated “Mammalian Vagus”; which originates in the 

medullary source of the NA. The ventral vagal complex (including NA) is 

related to processes associated with attention, motion, emotion and 

communication, and mediates the most recent evolutionary 

‘communication system’ stress response that regulates heart (RSA) and 

bronchi to promote calm and self-soothing physiological states. 

 

Physiological states support different classes of behaviour. Vagal 

withdrawal, for instance, would support mobilisation behaviours of ‘fight-

n-flight’. Vagal activation would (via NA) support spontaneous ‘social 

engagement’ behaviours by means of structural links between brainstem 

nuclei and the striated muscles of the face and the smooth muscles of 

the viscera. (99) This is known as neuroception, and is the mechanism 

with which defence strategies are triggered. Neuroception, as a process, 

determines whether specific features in the environment elicit specific 

physiological states that would support either ‘fight-flight’ or ‘social 

engagement’ behaviours. It involves areas of the temporal cortex that 

decode biological movement and detect the intentionality of social 

interactions and would distinguish them between situations that are 

‘safe’ or ‘threatening’. (118) Porges proposes that the evolution of the 

ANS provides an organising principle to interpret the adaptive 

significance of affective processes. It thus links the evolution and 

structure of the ANS to affective experience, emotional expression, facial 

gestures, vocal communication and contingent social behaviour-and-

interaction. Hence a plausible explanation of socio-emotional, 

communication dysfunctions and visceral disregulation and sensitisation 

is potentially provided.  

 

Three phylogenetic stages of vertebrate ANS development are 

proposed (Table 9). Each stage is associated with a distinct ANS 
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subsystem that is retained and expressed by mammals.16 These ANS 

subsystems are phylogenetically ordered and behaviourally linked to (III) 

social communication (NA), (II) mobilisation (Spinal cord) and (I) 

immobilisation (DMNX). The three subsystems can be conceptualised as 

dynamic, providing adaptive responses to progressively safe, dangerous, 

or life threatening events and contexts. 

 

 

Table 9 The Phylogenetic stages of Polyvagal Theory’s stress activation responses.  
                                 [Duplicated from Porges, 2007 (8)] 

 

Functionally, when the environment is perceived as ‘safe’, the visceral 

state is regulated in an efficient manner to promote growth and 

restoration (e.g., visceral homeostasis), but when the environment is 

                                                        

16 They respond to challenges in a phylogenetically-determined hierarchy consistent 

with the Jacksonian principle of dissolution. Jackson proposed that in the brain, higher 

(i.e., phylogenetically newer) neural circuits inhibited lower (i.e., phylogenetically older) 

neural circuits and “when the higher are suddenly rendered functionless, the lower rise 

in activity” and describe the sequence of ANS response strategies to challenges. (John 

Hughlings Jackson (1835-1911) – known as “The Father of English Neurology”.) 
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perceived as ‘threatening’, two more primitive neural circuits to regulate 

defensive strategies (i.e., fight-flight and freeze behaviours) are retained. 

Social behaviour-and-communication and visceral homeostasis states 

are incompatible with the neurophysiological states and behaviours 

promoted by the two neural circuits that support defence strategies. 

Thus, via evolution the human nervous system retains all three neural 

circuits of ANS activation, which are in a phylogenetically organised 

hierarchy. In this hierarchy of adaptive responses, the newest circuit is 

used first (III), and if that circuit fails to provide safety the older circuits (II 

and I) are recruited sequentially. 

  

Bearing the aforementioned in mind, if the ANS responses observed in 

studies 2 and 3 are considered with the deep breathing visit representing 

arguably a safe/nurturing environment with a high degree of 

interpersonal interaction he sham breathing visit with some interaction, 

as representing a neutral environment, and the stress test that of a 

threatening/stressful environment, as summarised in table 10, one will 

then have a continuum of ANS responses of various subject vulnerability 

phenotypes across progressively increasing environmental stress states.  
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Table 10 An ‘Executive schematic summery’ of the results for study 2&3.   

 

Using the subject group’s sensitisation status the ANS responses can now 

be contrasted and better understood with the ANS activation phase as 

proposed by Porges et al. across different stress environments. In Figure 

95 it will become clear how the sensitisers PNS (∆CVT) activation 

represents a U-shape, where the vagal is both adaptive, and 

maladaptive, depending on the specific lower vagal motor neuron 

activated, which then leads to subsequent sensitisation in phases II and I, 

and desensitisation during phase III. The non-sensitisers on the other hand 

demonstrate an S-shaped curve, which does not lead to 

hypersensitisation in any of the phases. During the deep breathing visit, 

both groups demonstrate similar increases in CVT, consistent with phase 

III’s NA activation (the “mammalian vagus”). It is during the sham-

breathing visit that differences in the groups become clearer, with the 

sensitisers demonstrating a greater degree of vagal withdrawal 

compared to the non-sensitisers, consistent with phase II. Similarly during 
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phase I, the subjects that did not sensitise had lower activation than 

those that sensitised, consistent with phase I’s DMNX activation (the 

“vegetative vagus”). 

 

Figure 95 Illustrates the changes in Cardiac Vagal Tone (CVT) of the Parasympathetic 
nervous system (PNS) across three different environmental stress conditions ranging 
from ‘supportive/safe’ (left) as experienced during the deep breathing-experimental 
modulation procedure, threw ‘neutral’ (middle) as experienced during the sham 
breathing-experimental modulation procedure, to ‘demanding/threatening’ (right) as 
experienced during the stress test-experimental modulation procedure. This gives rise to 
three distinct different activation patterns as described by S. Porges (100) and illustrated 
by the roman numerals: III, II & I, coinciding with different vagal lower motor neuron 
activation, illustrated above as ranging from left, mainly Nucleus Ambiguus (NA) to the 
Dorsal motor neuron nucleus of the vagus (DMNX) on the right. In the foreground is a 
schematic representation of the changes in stress responses as observed during studies 
2 & 3, for the sensitisers (pink graph), and the non-sensitisers (green graph) to acid 
infusion induced oesophageal pain hypersensitivity (OPH).  

 

Similarly in Figure 96 the differences in SNS (∆SCR) are illustrated during 

the same stress activation phases as in table 9 for the differing subject 

sensitisation status groups. Once again during phase III (deep breathing 

visit), both groups demonstrated low SNS activation/withdrawal. During 
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phase II (sham breathing visit) there is SNS activation to a degree where 

the between group differences are noted, but not statistically significant. 

It is during phase I that a clear difference can be detected, with the 

non-sensitisers able to mount an appropriate sympathetic response, 

compared to much lower activation by the subject group that sensitised 

(stress test). 

 

 

Figure 96 Illustrates the changes in sudomotor activation of the Skin Conduction 
Response (SCR) under control of the Sympathetic nervous system (SNS) across three 
different environmental stress conditions ranging from ‘supportive/safe’ (left) as 
experienced during the deep breathing-experimental modulation procedure, threw 
‘neutral’ (middle) as experienced during the sham breathing-experimental modulation 
procedure, to ‘demanding/threatening’ (right) as experienced during the stress test-
experimental modulation procedure. This gives rise to three distinct different activation 
patterns as described by S. Porges (100) and illustrated by the roman numerals: III, II & I, 
coinciding with change in primary autonomic nervous system (ANS) activation, 
illustrated above as ranging from left, mainly Vagal (also known as the ‘vagal brake’ to 
unimpeded sympathetic activation on the right. In the foreground is a schematic 
representation of the changes in stress responses as observed during studies 2 & 3, for 
the sensitisers (pink graph), and the non-sensitisers (green graph) to acid infusion 
induced oesophageal pain hypersensitivity (OPH). 
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It is with the incorporation of attachment theory that the psychological 

underpinnings of the above observed ANS responses potentially become 

clearer and possibly more understandable. 

 

In the extreme, the true freeze response (phase I) is dangerous to 

mammals as the high tone immobility response of the DMNX vagal 

system is lethal in mammals. Whereas high tone from the NA-vagal 

system (phase III) may be beneficial in adaptive significance of 

mammalian affective processes including courting, sexual arousal, 

copulation, and the establishment of enduring social bonds 

(attachment). In the development of enduring pair-bonds the 

mammalian vagus communicates safety and trust, via oxytocin and 

vasopressin, between the hypothalamus and the medullary source 

nuclei of the viscera vagus. (323) 

 

The higher cognitive processes of the prefrontal cortex calm the stress 

response and establish effective social connections by using facial 

muscles, establishing eye contact, modulating tone of voice and 

listening to others (attachment behaviour). This increases the influence of 

the myelinated vagus, which is calming and decreases the stress 

response and is metabolically more efficient. (324) 

 

The vagus is asymmetrical with the left and right sides performing 

different tasks, with the right vagus most active in cardiovascular 

regulation. Primary emotions are related to autonomic functioning since 

they are often survival related, and hence they must be integrated into 

cardiopulmonary regulation. Emotions have a right limbic bias, as does 

the brainstem medullary structures controlling visceral function. Only 

when the environment is perceived as “safe” is there cortical regulation 
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of the visceral pathways, because while under threat, cortical control of 

brainstem structures would compromise the individual’s ability to mobilise 

(phase II). Therefore when stressed or in danger, cortical control of 

brainstem is “inhibited” and the brainstem structures are “disinhibited” to 

allow the SNS to efficiently increase metabolic output (phase I). 

 

Vagal stimulation releases noradrenaline into the amygdala 

strengthening memory storage and regulates arousal, memory and 

affective responses to emotionally laden stimuli. This is the mechanism by 

which peripheral adrenaline released during the fight-flight response, 

activates noradrenaline release in the limbic system strengthening 

memory of certain events. Since adrenalin cannot cross the blood brain 

barrier it activates the vagus nerve, which in turn stimulates neurons in 

the NTS. Visceral organ vagal afferents from the head, neck, thorax, and 

abdomen relay information to the NTS, that in turn release noradrenaline 

into the memory processing areas of the amygdala and hippocampus. 

(325) This activates long-term memory storage of emotionally laden 

events.  It is these long term stored limbic memories of “emotionally 

laden events”, that give rise to one’s inner-concept of a “secure-base”, 

that forms the discriminating factor in the observed inter-individual 

variation of the degree of cortical control of brainstem structures 

controlling the individual’s ability to mount an appropriate mobilisation 

response. Therefore when stressed or in danger, the inhibitory cortical 

control of the brainstem is modulated by the limbic memory storage and 

brainstem structures, that then affect the degree of SNS “disinhibition” 

that is allowed to increase metabolic output in response to an 

environmental stress stimuli (phase I). 

 

Craig et al. (326) explains how emotions arise from feelings in our organs 

and gut. The feelings are sent via the vagus nerve to the Anterior Insular 
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Cortex (AIC) in the brain. The AIC captures feelings over time and stores 

them as snapshots of feelings. This is our “working emotional memory”. 

These feelings are massaged and integrated with the social exchange to 

give us both an emotional response to the world around us as well as a 

safety-driven response strategy (e.g. an adult attachment style). Almost 

any activity will involve the combined interaction of the various safety 

strategies. The bottom line of which is that one is constantly adjusting to 

meet the challenges posed by the world. The results of studies 2 and 3 

give one a look at how this potentially works.  

 

Safety, as an inner sensation, not a mind-based concept, is the feeling of 

“inner-security” that Bowlby and Ainsworth et al. called one’s "secure-

base," and one’s “fundamental need of attachment to others, for 

healthy physical and emotional/mental, functioning.” (119, 327, 328) 

Attachment theory describes the dynamics of long-term relationships 

between humans. Its most important tenet is that an infant needs to 

develop a relationship with at least one primary caregiver for social and 

emotional development to occur normally. It explains how much the 

parents’ relationship with the child influences development. Attachment 

theory is an interdisciplinary study encompassing the fields of 

psychological, evolutionary, and ethological theory. Ainsworth et al. 

(329) introduced and reinforced the basic concept of the "secure base" 

and developed a theory of a number of attachment patterns in infants: 

secure attachment, avoidant attachment and anxious attachment, that 

later was expanded to include a fourth type,17 and applied it to adults. 

 

“Feeling safe within” and “having a secure-base”, is now increasingly 

understood as being as vital to one’s physical, emotional and mental 

                                                        
17 The Disorganised attachment. 
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health, as oxygen is for one’s on-going survival. It is known that feeling 

unsafe within or not having a secure-base ‘autonomically’ triggers our 

ancient freeze/flight/fight defences, through the above-mentioned 

process of "neuroception", and thus produces these individuals more 

vulnerable. It has been previously reported that when one does not feel 

‘safe within’, or has no ‘secure-sense-of self’, the resulting tension is then 

observable in the changes seen in visceral responses. Depressing this 

neural system has several behavioural consequences including flat 

affect, aprosody, difficulty in phoneme recognition, articulation 

problems, auditory hypersensitivity, and behavioural state regulation 

issues. (330) Although these symptoms are nonspecific regarding 

differential psychiatric or behavioural diagnosis, they are shared by 

many children with developmental disorders. 

 

With the above-mentioned in mind, when one considers the 

‘vulnerability phenotype’ column of table 10, the most vulnerable 

subjects (subjects sensitising at sham breathing) had a 40% vulnerability 

score, as opposed to the ‘resistant phenotype’-groups (subjects who did 

not sensitise at sham breathing) 33%, on VASQ. Of the resistant 

phenotype group, those subjects who sensitised under stress had a 50% 

VASQ vulnerability. The tentative results with regard to the adult 

attachment style indicate that it was predictive of the sensitisation 

response status. This finding could represent a replication of that made 

by Meredith et al. (22) and Davies et al. (331) working in similar fields of 

chronic pain disorders, and can aid in a better understanding of the 

context of underlining ANS effects in analgesia.  

 

The main weakness of this part of the study was the small sample size 

(type II error), and that attachment was assessed using a brief, self-report 

measure. The assessment of attachment therefore reflects individuals’ 
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subjective perceptions of their close relationships, which may be 

vulnerable to reporting bias. Whilst other more comprehensive 

assessments of attachment, delivered by self-rated questionnaire or 

interview, were available, these were considered too lengthy for 

inclusion in the laboratory setting of this study. 

 

Closely related to attachment is the significance of alexithymia in 

affording a degree of vulnerability to individuals in study 3. If a subject is 

able to ‘understand’, or ‘make sense’ of their inner emotional and/or 

visceral – states, i.e. neuroception, the individual is able to ‘cortically’ 

mediate the resulting ANS response more effectively, as described 

above, and in so doing maintain a higher visceral PT. Nyklícek et al. (298) 

looking at 41 healthy volunteers, found that alexithymia was associated 

with low tolerance to experimental pain stimuli, a finding that Ahlberg et 

al. (297) replicated looking at 750 subjects in connection with 

temporomandibular pain disorder. Dealing with alexithymia and 

attachment issues has now become the object of a major field of 

research known as “interpersonal neurobiology”, where Siegel et al. are 

developing novel therapeutic interventions dealing with these 

complicated interdisciplinary patients. A concept known as “mindsight” 

has been coined to address alexithymia and disregulation 

therapeutically. (332)  

 

Finally, with regard to study 3 there remains the issue around anxiety. 

Here the observed contradiction where the non-sensitising subjects had 

a higher state anxiety when compared to those who sensitised 

previously, goes against findings in study 1 and heretofore experiences 

using this model by Sharma et al. (311) This is however not without  

precedent, as Thibodeau et al. (296) found looking at 95 nonclinical 

participants (55% women) that anxiety sensitivity was associated with an 
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increased pain tolerance, “a novel finding needing further examination.” 

(296) Here pain was induced by using heat and cold stimuli, 

administered by a Medoc Pathway Pain and Sensory Evaluation System. 

This arguably represents a stressful experience in healthy volunteers 

(possibly a resistant group), and it would be interesting to see if the results 

remained consistent when repeated in patients (a vulnerable group). 

With the understanding gleamed from the ‘phase I protective’ SNS 

activation (figure 96) a possible reinterpretation consistent with the 

present findings would suggest that anxiety in this context represents an 

appropriate ‘adaptive’ response from a more resistant phenotype, and 

just like the PNS could represent a ‘double edged sword’, where, 

depending on the context. Activation can be both ‘protective’ and 

‘harmful’. This hypothesis is strengthened by the observation that the 

non-sensitising group’s trait anxiety was lower than that of the sensitising 

group. The finding would be consistent with a more resistant sub-group. 

Further, Holtmann et al. (333) found that when acute psychological stress 

was  induced in 14 healthy subjects and compared with endogenously 

stimulated gastric acid output, there was a great individual variability in 

gastric acid response to acute mental stress, and that this variability may 

be “attributed to differences in personality traits.” (333) They go on to 

describe inter individual differences in blood pressure and heart rate 

responses, suggesting personality (in their case, impulsivity) mediated 

differences in cortical control of ANS responses, as described above, 

effecting gastric acid secretion.  

 

Hence the application and reinterpretation of previously contradicting 

findings could possibly become more understandable and clinically 

applicable. This would suggest that for clinicians to reach greater clinical 

efficacy in future, they would have to have a working knowledge of a 

patient’s vulnerability phenotype, in order to best match to most 
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effective treatment regimen. Characterisation would also allow 

appropriate individualisation of management to the underlying 

mechanism. The results from studies 2 and 3 for the first time give us an 

explanation of underlying neural mechanisms for the observed spectrum 

in phenotype vulnerability, but further study is necessary to clarify this. 

  

4.6 Conclusions 

In conclusion, studies 2 and 3’s findings represent the first human study 

addressing the pivotal role of the ANS in mediating visceral pain 

hypersensitivity as induced in the proximal oesophagus by acid infusion 

in the distal oesophagus. Study 2 provides evidence for how sensitisation 

can be prevented by deep breathing through its action on the 

increasing PNS tone, and study 3 demonstrates the paradoxes with 

regard to ANS regulation across a continuum of environmental stress 

levels. It also highlights the need for a deeper understanding of the 

vulnerability phenotypes involved. 

 

Studies 2’s results represent a novel human intervention study addressing 

the key role of the PNS in mediating visceral pain hypersensitivity. It has 

now been shown that the induction of acid-induced hypersensitivity is 

altered by physiological influencing PNS tone. This finding strongly 

indicates that the PNS plays a central role in the development of central 

sensitisation. Further study is now needed to investigate the potential of 

therapeutically manipulating PNS tone in the management of visceral 

pain.  

 

It is now important to study the effect of co-administered atropine and 

deep breathing on sensitisation. This could potentially examine and 

contrast the contribution and importance of the neurobiological 
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pathways that underlie deep breathing induced PNS analgesia. The 

degree of associated distraction that accompanies all paced breathing 

techniques could be examined and potentially highlight their 

therapeutic difference and impact. Distraction is a manifold 

phenomenon; the analgesia that was observed in study 2 could plausibly 

be due to the observed reduction in anxiety. The results should also be 

validated by means of an unrelated cohort in another study centre.  

 

Studies 3’s results provide evidence that explain and clarify the hitherto 

poorly understood multifactorial ANS regulatory mechanisms of visceral 

pain hypersensitivity in non-sensitising subjects. This group has never been 

studied using this model before, and it is with the inclusion of their ANS 

response to acid that allows us for the first time to observe and compare 

the ANS response of healthy subjects across the complete spectrum of 

visceral hypersensitivity reactions as induced by this model.  

 

With the simultaneous examination of all three parts of the 

biopsychosocial triumvirate, an important synthesis could be made 

between developmental psychology, neurobiology and 

gastroenterology. This allows us to reinterpret previously conflicting results 

with more clarity and potentially greater therapeutic advantages.  With 

the incorporation of attachment and polyvagal theory, study 3’s results 

demonstrate the paradoxes surrounding ANS regulation with regard to 

central sensitisation across a continuum of environmental stressors. It also 

highlights the need for a deeper understanding of the vulnerability 

phenotypes involved, and further study is now warranted to clearly 

define the psychological, physiological and genetic markers of the 

vulnerability phenotypes. Future investigation is also needed to examine 

the potential of therapeutically manipulating ANS tone (e.g. 
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psychologically / pharmacologically) in the management of chronic 

visceral pain syndromes.  
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5 Effect of Psychopharmacological Modulation with Atropine 

on Acid Induced Oesophageal Hypersensitivity - Study 4 

(Atropine challenge pilot study)  

  

5.1 Introduction 

Visceral pain is a complex phenomenon with sensory-discriminative, 

affective-motivational and cognitive-evaluative components. (334) In 

study 2 it was demonstrated that during deep breathing there is an 

increase in CVT such that oesophageal acid infusion failed to cause 

sensitisation. This observation supports the hypothesis that withdrawal of 

parasympathetic tone is associated with sensitisation whereas an 

increase is protective and reduces sensitisation. This data supports the 

notion that the parasympathetic nervous system may have anti-

hyperalgesic properties in the human viscera, and that anxiety may 

predispose to greater post-injury gut sensitisation through the withdrawal 

of vagal tone. Conversely, it has been demonstrated that increasing CVT 

through deep breathing reduces sensitisation in the viscera. However, 

the exact mechanism of how this decrease in sensitisation occurs is not 

clear despite evidence pointing to the ‘up’ modulation of the 

parasympathetic nervous system as the likely cause for the anti-

hyperalgesia.  

 

It is important to study the effect of co-administered atropine and deep 

breathing on sensitisation. If potential amelioration of the degree and 

development of visceral hyperalgesia is due to deep breathing induced 

PNS, this should be negated with pharmacologically reduced PNS tone 

by an anti-cholinergic. This could potentially examine and contrast the 

contribution and importance of the neurobiological pathways that 

underlie deep breathing induced PNS analgesia. The degree of 
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associated distraction that accompanies all paced breathing 

techniques as in study 2, should be clarified. Distraction is a manifold 

phenomenon; the analgesia that was observed in study 2 could plausibly 

be due to the observed reduction in anxiety. Study 2’s results should also 

be validated by means of an unrelated cohort in another study centre. 

 

The proposed study aims to clarify this phenomenon, as well as elaborate 

on the conditions of desensitisation with the addition of a means of PNS 

anti-cholinergic blocking with atropine sulphate, administered 

intravenously. Atropine is used, as it is an established form of blocking 

vagal tone in similar experimental studies. The resulting re-sensitisation of 

volunteers that previously desensitised with the deep breathing 

modulation protocol during oesophageal acidification will be conclusive 

in establishing the role of the PNS in deep breathing induced 

desensitisation. 

 

It is thus hypothesised that the physiological deep breathing induced 

PNS desensitisation will be inhibited with the anticholinergic atropine, 

causing a re-sensitisation in oesophageal pain hypersensitivity through 

the unopposed effect of the sympathetic nervous system. 

 

5.2 Materials and Methods 

5.2.1 Ethics Committee Approval 

All protocols for this study were submitted and approved by the 

Research Ethics Committee of North Jutland, Denmark (ref: N-

20120065vII).  See section 2.1 (page 77). 
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5.2.1 Subjects 

32 healthy asymptomatic adult male and female volunteers, aged 18 to 

50, were recruited by advertisement. Screening for acceptability for 

inclusion and exclusion criteria was completed as described in section 

2.2 (page 77).  

 

5.2.2 Oesophageal Manometry 

For this study standardised oesophageal manometry (183) was 

performed in the first five subjects of study 1 to determine the positions of 

the upper and lower oesophageal sphincter (UOS and LOS) from the 

nostril. As the LOS positions on these first five subjects were found to be 

accurate enough for the purpose of this study, only the ‘pH change’ pull 

back technique as described in section 2.3 (page 78), was used for the 

remaining 15 subjects. 

 

5.2.3 Psychological Assessment 

For study 4, only Spielberger – Trait and State Anxiety Inventory STAI was 

used. (section 2.11, page 85) The Trait questionnaire was completed 

during the screening visit, wiles the State questionnaire, was completed 

at the start and end of visit 2 (V1) and visit 3 (v2), as study 4’s endpoint 

analysis did not require more extensive psychological examination.  

 

5.2.4 Other Methods of Measurement 

All other methods of measurement; Catheter Assembly (section 2.4, 

page 78), Oesophageal acid infusion (section 2.4, page 78), 

Oesophageal pH monitoring (section 2.6, page 80), Pain Threshold 

Measurements (section 2.8, page 82). Measurement of the Autonomic 
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Nervous System (section 2.1, page 86) and Respiratory Monitoring 

(section 2.16, page 99) was performed as described in their specific 

sections, except that the skin conductance response could not be 

measured, as required equipment was not available in the Danish 

research site. Screening visit protocol was followed for the first visit, and 

all non-sensitisers were excluded.  For the following two visits the exact 

same protocol was followed as for the deep breathing modulation, used 

in study 2, with the exception of the administering of placebo (0.9% 

normal saline solution), or atropine, as described in chapter 2 (section 

2.20.4, page 115) and illustrated in figure 97 below.  

 

 

 

 

Figure 97 Diagram illustrating the psychophysiological modulation protocol for the 
atropine-placebo study. The subject was paced to perform 6 deep breaths on six 
occasions (purple figures) during the 30minitus acid infusion period (red bar) on all 
visits. Atropine or placebo was administered 5mins before the start of acid infusion. 
Autonomic measurement (brown bars) was done before and during the acid infusion. 
Pain thresholds (blue bars) were done before and three times after acid infusion. PH-
metry (green bar) was started 20mins before acid infusion, and stopped 30mins after 
acid infusion ended (see figure 41). 
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5.2.5 Study Procedure, Experimental Design & Protocol 

The experimental study design was that of a prospective randomised 

two-tiered double-blinded longitudinal crossover cohort study. (Figure 

98) The study procedure was followed as described in section 2.17 (page 

99), i.e. using the ‘three research assistants’ method. The experimental 

protocol was used as described in section 2.18 (page 101), with ‘time 

and events’ proceeding as outlined in figure 41 (page 102), with 

amendments as mentioned in section 5.2.3.  

 

  

Figure 98 Flow diagram illustrating the final numeric outcome of participants in study 4. 
The experimental study design was that of a prospective randomised two-tiered 
double-blinded longitudinal crossover cohort study. Sv: Screening visit, P: Deep 
breathing & placebo, A: Deep Breathing & atropine. 
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5.2.6 Data Handling, sample size and Analysis 

Demographic, pain threshold and autonomic data were normally 

distributed hence data are presented as mean ± SD, with parametric 

analysis. The variability was computed for the main effects of each 

subject’s change in PT over time points (ΔPT & time). All statistical analysis 

was completed as described in section 2.21 (page 120). 

 

 

5.3 Results 

 

During acid infusion, pH fell to <2.0 in the distal oesophagus of all subjects 

but remained >6.0 in the proximal (unexposed) oesophagus. The most 

common symptom reported with acid infusion was nausea. Other 

sensations included a cold sensation in the chest region, feeling of 

hunger and / or heartburn. 

 

5.3.1 Demographic Data: 

A total of 32 healthy volunteers were recruited and assessed for criteria 

eligibility. The healthy volunteers were recruited through an already 

established database at the Aalborg University Hospital, Denmark. All 

had normal medical assessments comprising of medical and surgical 

history with physical examination, heart rate (HR) and blood pressure (BP) 

recording, baseline electrocardiograph (ECG) and routine 

haematological and biochemical laboratory tests. The age range was 

from 21-49 years with a mean age of 28 ±9.11years. There were no obese 

or underweight subjects and the average body mass index (BMI) was 

23.10 ±2.75kg/m2. All subjects were recruited from a European (Danish) 

ethnic backgrounds All subjects were acid infusion naïve, with 59% 
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sensitising to acid infusion, allowing 19 subjects to be approached for 

phase two of the study. Three subjects withdrew from the study due to 

logistical limitations, and two withdrew consent following their 

experience during the screening visit. 

 

14 Subjects were randomised into two groups for their second visits. To 

randomise subjects without bias, www.randomisation.com (an approved 

statistical randomisation software package) was used. Subjects were 

randomised in groups of n=5. For the final analysis 14 subjects (6 male) 

were included. Due to technical problems with equipment, only 13 

subjects’ autonomic data could be analysed. (Figure 68) 

 

5.3.2 Pain Tolerance Threshold Data of Proximal Oesophagus and 

Foot 

Absolute threshold data for the proximal oesophagus at (T0) and after 

acid infusions (T60, T90, T120) are shown in Figure 99(A) & table 11(B) 

below.  
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Table 11 

Figure 99 (A&B) Absolute values for proximal oesophageal pain thresholds before (T0) 
and after (T60 T90 and T120) acid infusion with  (blue) Screening visit, (red) Deep 
breathing & placebo and (green) Deep breathing & atropine (n = 14)	   

 

The mean individual ‘pre/post-acid infusion’ changes in pain threshold 

(∆PT) for all subjects in the proximal oesophageal, during screening visit, 

deep breathing and placebo, and deep breathing and atropine with 

the mean group value (SD) for each time point, are shown in Figure 

100(A, B and C). Deep breathing and placebo significantly reduced the 

development of acid-induced hypersensitivity in the proximal 

oesophagus compared to screening visit. With deep breathing and 

atropine there was a greater degree of acid-induced hypersensitivity, 

but not to the degree observed during screening visit. 
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Figure 100 Individual values of change for proximal oesophageal pain thresholds (∆PT) 
for time points T60, T90 and T120, following acid infusion with (A) screening visit, (B) deep 
breathing & placebo, and (C) deep breathing & atropine. 	   

  

Two-way MANOVA analyses, comparing the influence of effect for 

‘Deep breathing and placebo’ and ‘Deep breathing and atropine’ vs. 

screening visit modulation’s mean ΔPT for the proximal oesophagus with 

that of modulation type, across all time points. A strong statistical 

significance with regard to deep breathing and placebo, for 

‘interaction’ (p=0.01) and ‘time points’, contributing 18.33% at p<0.0001, 

was observed. (Red graph, Figure 101(A)) Regarding deep breathing 

and atropine, there was not a statistical difference for ‘interaction’ 

(p=0.215), but significance was achieved to a lesser degree across ‘time 

points’, contributing 3.91% at p<0.0119. (Green graph, Figure 101(A)) 
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In the comparison of the pre and post acid differences in average 

means of pain threshold (Δ Avr PT) for the proximal oesophagus between 

the screening visit and the two modulations, a statistical difference was 

found with regard to screening visit vs. deep breathing and placebo, 

where the between group difference was ∆11.8 ±13.03mA, p=0.0048. For 

screening visit vs. deep breathing and atropine there was not a statistical 

between group difference, ∆7.24 ±13.06mA, p=0.058. The between 

modulation group difference was not significant, ∆-4.6 ±9.50mA, p=0.094, 

using two-tailed paired t-testing. (Figure 101(B))  

 

 

Figure 101 A: shows the difference in mean pain threshold  (ΔPT) in mA, for the proximal 
oesophagus between baseline and the three-time points (minutes) after acid infusion, 
for the different modulation types. B: Shows the difference in average means of pain 
threshold (Δ  Avr PT) in mA, for the proximal oesophagus between pre & post acid 
infusion, for the different modulation types.  
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all time points and modulation type; as well as with regard to means 

comparison analysis. 

5.3.3 Autonomic Data 

 

The ‘pre/during-acid’ infusion change in ANS for deep breathing and 

placebo protocol served as the ‘baseline’ to which deep breathing and 

atropine’s ANS changes were compared, and are illustrated below in 

figure 102(A) & table 12(B). 

 

 

Table 12 

 

Figure 102 The comparison between the difference in ANS change between Deep 
breathing & Placebo (A) and Deep breathing & Atropine (B).  In the tables below (A&B) 
are the mean values of changes (SD & SEM), along with each measure’s units and n 
numbers. Table B, includes the change in means between modulation types with there 
p value significance. 
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Units of change due to acid infusion
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HR$(bpm)(
CSB$(ms/mmHg)(
CVT$(Lvs)(

***" p=0.0002"

***"

***"

p=0.0003"
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Modulation Protocol ANS Measure Δ Avr SD Difference between 
means P value 

  MBP 
(mmHg) 6.7 13.55 -0.71 ± 2.19 0.7871 

Atropine +  HR 
(bpm) 9.19 11.09 14.82 ± 7.08 0.0002 

Deep Breathing  CSB 
(ms/mmHg) -2.05 2.29 -3.43 ± 0.99 0.0003 

CVT 
(Lvs) -3.12 3.33 -5.46 ± 1.54 0.0002 

  MBP 
(mmHg) 7.41 11.36     

 Placebo + HR 
(bpm) -5.63 4.013     

Deep Breathing  CSB 
(ms/mmHg) 1.38 1.298     

CVT 
(Lvs) 2.34 1.79     

A: 

B: 
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The changes observed for Deep breathing and placebo protocol 

demonstrated a post-acid decrease in SNS activation, with coinciding 

PNS activation, consistent with the observations in study 2. (Chapter 4, 

Figure 74 (un-shaded graph), page 171) The PNS is hence iatrogenically 

‘induced’ by the behavioural modulation, and unimpeded by the 

placebo. (Figure 103, shaded graph) 

 

The changes observed during the Deep breathing and atropine protocol 

demonstrated a post-acid/modulation significant increase in the HR 

component of the sympathetic outflow, and PNS withdrawal. (Figure 102, 

un-shaded graph) When compared the difference in SNS was statistically 

a highly significant decrease in para-sympathetic activation. (Figure 102 

and Figure 103) Looking at the ANS comparison, there is a distinct and 

significant difference in activation between placebo and atropine, 

where there is a marked deactivation of the PNS, with some SNS 

activation. 

 

 

Figure 103 The comparison of the difference in CVT change between Deep breathing & 
placebo (Red) and Deep breathing & atropine (Blue).  

 

  Mean difference in CVT   

-5
-4
-3
-2
-1
0
1
2
3

ΔC
VT

 (lv
s) Deep Breathing + Atropine

Deep Breathing + Placebo

∆5.46 ± 1.54Lvs 
p=0.0002

***"



 

 

 

 

246 

 

5.3.4 Psychological Questionnaire Data 

The Danish (study 4) cohort’s trait anxiety, 25.79 ±5.90(SD, STAI-T) 

measured much lower than the British cohort, (study 2: 38.45 ±9.56(SD)) 

and expectations for similar studies. (267) 

  

Analysis of the State Anxiety Inventory (STAI-S) demonstrated very little 

variation between visits placebo-or-atropine modulation arm or for pre-

and-post modulation measures. This observation combined with the low 

Trait measure would suggest a psychological robust study group. The self-

selection byes that occur with advert recruitment for voluntary invasive 

experimentation is also a likely contributing factor. 

 

5.4 Summery of Key findings for study 4 

 

5.4.1 Demographic Data: 

1. 100% of the subjects were European. 

2. All subjects were acid infusion naïve, and 59% sensitised. 

 

5.4.2 Pain Tolerance Thresholds Data: 

1. Deep breathing & placebo desensitised significantly at, ∆11.8 

±13.03mA p=0.0048, compared to Screening visit, with p<0.0001 

across all time points. (MANOVA) 

2. The distal oesophageal pain threshold data showed Deep 

breathing & placebo modulation arm caused desensitisation, with 

regard to the Screening visit, across all time points.  
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3. Deep breathing and atropine desensitised at, ∆7.24 ±13.06mA 

p=0.058, compared to Screening visit, with p=0.0119 across all time 

points. (MANOVA) 

4. The desensitisation as a result of Deep breathing and placebo 

modulation was significantly reduced during the Deep breathing  

and atropine modulation arm.  

5. The foot pain threshold data showed no significant change or 

difference with regards to visit and observations. 

 

 5.4.3 Autonomic Data: 

1. Deep breathing and placebo modulation arm demonstrated a 

post-acid reduction in sympathetic outflow, with para-sympathetic 

activation consistent with study 2.  

2. The changes observed for Deep breathing and placebo protocol 

were; MBP: 7.41 ±11.36mmHg, HR: -5.63 ±4.013bpm, CSB: 1.38 

±1.298ms/mmHg, and CVT: 2.34 ±1.790Lvs. 

3. Deep breathing and atropine modulation arm demonstrated an 

increase in the HR component of the sympathetic outflow, and 

PNS withdrawal. 

4. The changes observed for Deep breathing and atropine protocol 

were; MBP: 6.70 ±13.55mmHg, HR: 9.19 ±11.09bpm, CSB: -2.05 

±2.29ms/mmHg, and CVT: -3.12 ±3.33Lvs. 

5. Comparison of between arm difference in SNS was, MBP: ∆-0.71 

±2.19mmHg p=0.787, HR: ∆14.82 ±7.08bpm p=0.0002, with a 

statistically highly significant decrease in para-sympathetic 

activation of; CSB: ∆-3.43 ±0.99ms/mmHg p=0.0003, and CVT: ∆-

5.46 ±1.54Lvs p=0.0002. 

6. The between arm comparisons of ANS responses, indicated a 

marked PNS deactivation, with some SNS activation. 
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5.4.4 Psychological Questionnaire Data 

1. The Danish (study 4) cohort’s trait anxiety, 25.79 ±5.90(SD, STAI-T) 

measured much lower than the British cohort, (study 2: 38.45 

±9.56(SD)) and expectations for similar studies.  

2. State Anxiety Inventory (STAI-S) demonstrated very little variation 

between visits, placebo-or-atropine modulation or for pre-and-

post modulation measures. 

 

 

5.5 Discussion 

The results of study 4 provide evidence that visceral pain hypersensitivity, 

induced in the proximal oesophagus by acid infusion in the distal 

oesophagus, is prevented by deep breathing through its action on the 

increasing PNS tone. The analgesic effect of deep breathing is partially 

reversed by addition of an anti-cholinergic demonstrating that 

development of oesophageal pain hypersensitivity, through central 

sensitisation, is influenced by the PNS. 

 

The first phase of study 4 was to exclude non-sensitisers following 

screening visit. Previous literature quotes that up to 30% of healthy 

volunteers will not sensitise to acid. (175) In this study using the model of 

acid induced oesophageal hypersensitivity it has been demonstrated 

that this result was replicated: such that 19 out of 32 (i.e.: 41%) of healthy 

volunteers did not sensitise to acid infusion. Enhanced sympathetic 

dominance to oesophageal acid infusion has been documented in 

patients with gastro-oesophageal reflux disease. (GORD) (154) It can 

therefore be speculated that in this model the difference between these 

two groups lies in their capacity to maintain or withdraw 

parasympathetic tone during acid infusion at this specific stress response 
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level. Withdrawal of parasympathetic tone indicates a pro-nociceptive 

state in the sensitisers, in phase II of the ‘stress response’, as discussed in 

chapter 4.  On the other hand, the lack of parasympathetic tone 

withdrawal in non-sensitisers is indicative of an anti-nociceptive state.  

 

Following studies 2 and 3, it is now more understandable why some 

subjects do not sensitise to acid infusion, as this is due to both peripheral 

and central factors as previously discussed. Concerning peripheral 

factors that are implicated in oesophageal hypersensitivity in GORD 

however, it has been suggested that sub mucosal nerves become 

exposed to acid through dilated intercellular spaces. Support for this 

phenomenon has been demonstrated by Sifrim et al. (335) whereby they 

verified that a 30 minute oesophageal acid infusion in healthy volunteers, 

(in a manner alike to this study), leads to dilated intercellular spaces both 

at the site of acid infusion in the distal oesophagus as well as in the 

unexposed proximal oesophagus. Non-sensitisers may therefore have 

greater resistance to the dilation of intercellular spaces, which does not 

allow their sub-mucosal nerves to become exposed to the acid. Hence, 

by sensing less acid, they do not withdraw parasympathetic tone after 

acid infusion to the same degree as sensitisers. This theory however 

cannot be confirmed by the present data, as the scope of this research 

was not to study the mucosal response to acid. What is definite however, 

is that the subjective response to acid between both sensitisers and non-

sensitisers was similar and therefore any differences regarding the 

exposure of the sub-mucosal nerves to the acid is unlikely to play a 

significant role in the present study context. 

 

Pain perception can also be influenced by central factors such as 

certain personality traits and psychological states like anxiety, as 

previously discussed. Past studies looking into such phenomena using this 
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experimental model showed that anxiety increases oesophageal 

hypersensitivity in subjects in the condition of anxiety being artificially 

induced. (336) Another study also demonstrated that healthy subjects 

with neurotic and introvert personality traits tended to sensitise more to 

painful oesophageal stimulation. (271) In the current study however, any 

significant difference in the levels of anxiety (STAI-trait) and the baseline 

(T0) levels of pain was not observed. The only significant relationship 

found between STAI-trait and change in CVT was during placebo and 

deep breathing (which was then abolished by atropine). The results 

therefore seem to suggest that psychological factors are not exclusively 

responsible for the differential response to acid infusion in this cohort.  

 

Figure 104 This diagram shows 3 x deep breathing cycles (numbered in blue) of an 
healthy volunteer’s NeuroScope™ ‘screenshot’. The subject received 0.5mg Atropine IV 
between breath cycle 1 & 2 (green dashed line). The graphs in the upper half of the 
panel show the blood pressure labelled BP (upper red graph: systolic, lower red graph: 
diastolic and yellow graph: MAP), and the RR-interval labelled RR (white graph). The 
graphs in the lower half of the panel shows the CSB (green graph) and CVT (white 
graph) each labelled as such. The first yellow oval (left) highlights the RSA changes in 
the BP & RR, brought about by six consecutive breaths of the deep breathing protocol 
before the administration of the atropine. The red box below highlights the coinciding 
increase in CSB & CVT from baseline. Compared to this the second yellow oval (right) 
highlights reduced RSA changes in the BP & RR, indicating that even though the subject 
was doing six consecutive breaths of the deep breathing protocol the brainstem outflow 
is now reduced. The RSA, CSB & CVT is noticeably diminished by the second breath 
cycle, and almost totally unresponsive by the third. The red box on the right highlights 
the total block of the coinciding CSB & CVT response by atropine. 
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Since anxiety is associated to an extent with dysfunction in the 

autonomic nervous system and the Hypothalamic-Pituitary-Adrenal axis, 

further study of these systems may provide more objective markers of 

psychological arousal and distress rather than the questionnaire based 

scoring tools used in this study, possibly by including the study of subject 

group’s genetic predisposition. In conclusion, the results may explain 

inter-individual susceptibility to injury-induced sensitisation. Nevertheless, 

the factors that predict non-sensitisation to acid in this model still remain 

unclear at present. 

 

The main objective of this study was however to study the anti-

hyperalgesic effects of the PNS in modulating the response to 

sensitisation through acid infusion. Use of the deep breathing protocol 

was to increase the CVT while use of atropine was used in a sense to 

‘knock-out’ any effects of the deep breathing. The protocol was based 

on the theory that you can stimulate the vasomotor centre (and NA), 

which maintains the body’s autonomic tone. Physiological stimuli such as 

paced forced deep inspiration and expiration selectively exaggerates 

the normal sinus arrhythmia controlled by parasympathetic output of the 

brain stem vasomotor centre leading to a slowing of the heart rate. This 

experiment has successfully shown that during deep breathing while on 

placebo there is indeed an increase in cardio vagal tone and evidence 

of this can be clearly seen on the Neuroscope™ (Figure 106) while the 

subject underwent the deep breathing protocol of 6 breaths per minute. 

Conversely, once atropine was administered, the drug successfully 

reduced the activity of the parasympathetic nervous system and likewise 

the cardio vagal tone dropped significantly.  

 

Atropine has a half-life of about two hours, but the data is 

notwithstanding a degree of circumspection, particularly with respect to 
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the relatively small sample size, although comparable to other studies of 

this type. However, it has demonstrated a degree of internal validity in 

that deep breathing reproducibly increased CVT and alleviated the 

development of central sensitisation in two unrelated cohorts across two 

study centres. Additionally, there are inherent limitations to all human 

pharmacological studies of atropine as its human pharmacodynamics 

are dose dependent with low dose (c. 2µg/kg IV) and high (>15µg/kg IV) 

where atropine is considered to be vagotonic and vagolytic 

respectively. (243) In study 4, largely due to regulatory concerns over 

cardiovascular safety, a standard dose of 0.5mg of atropine was chosen, 

which equates to approximately 7µg/kg. Given that only a partial 

sensitisation was observed in the atropine/deep breathing group, it is 

possible that the dose that was chosen was vagotonic rather than 

vagolytic. Therefore it may be possible by increasing the dose of 

atropine to vagolytic concentrations, i.e. in excess of 15µg/kg, that a 

complete blockade of the PNS effect of deep breathing may occur 

thereby allowing re-sensitisation to take place. Ultimately, whether such 

findings will translate to larger healthy populations and to clinical cohorts, 

as yet remains uncertain.  

 

Having determined that physiological modulation of the ANS through 

deep breathing does promote parasympathetic activity, next it had to 

be resolved whether or not the magnitude of acid-induced 

oesophageal hyperalgesia could be reduced through promoting 

activation of the parasympathetic nervous system. The results show that 

there was a slight fall in thresholds with placebo despite deep breathing. 

Despite subjects executing the deep breathing protocol the PT did not 

rise to baseline levels even after 90min post acid infusion. Secondly, 

when atropine was administered to block the rise in CVT, the sensitisation 

was significantly more pronounced with a greater drop in PT compared 
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to placebo intervention. This observation supports the hypothesis that 

parasympathetic tone withdrawal plays a key role, and is associated 

with sensitisation while an increase in parasympathetic tone is protective 

and reduces sensitisation at this phase of the stress response. 

 

To further verify the effect of deep breathing on the PT the same 

subjects’ data from visit 2 and 3 was compared with the data obtained 

at screening visit. It was found that subjects sensitised the most at 

screening visit where they didn’t perform any deep breathing. There was 

a statistically significant difference between the average PT of screening 

visit and placebo and deep breathing groups which can allow us to 

conclude that in the context of this model by increasing the 

parasympathetic autonomic nerve tone, oesophageal pain 

hypersensitivity could be reduced. Of note is the fact that when 

comparing the difference between the change in PT between screening 

visit and placebo and atropine groups across all time points, the fall in PT 

was smaller for the atropine group. Although this difference is not 

statistically significant on ANOVA analysis, potential explanations for why 

this occurred could be offered. Deep breathing may also exert its anti-

hyperalgesic effect through distracting subjects from experiencing pain. 

A theory by McCaul and Malott (337) states that “an individual must 

attend to a painful stimulus in order for it to be perceived as painful”. 

Therefore, when subjects are distracted, their perception of pain will also 

be decreased.  

 

The methodology used in this study was based on a validated model of 

acid infusion developed by Sarkar et al. (311) However, the model has 

limitations, as it does not fully replicate pathophysiology of GORD. This 

model uses hydrochloric acid to simulate heartburn/reflux, but clinically 
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there are other components, such as enzymes and bile salts that make 

up oesophageal refluxate, which could contribute to development of 

pathology and VPH symptomology. Another potential drawback of using 

this model in healthy volunteers is that it is uncertain whether patients 

suffering from GORD will respond in the same way. Since it is unknown 

how similar these two groups are, as the cohort in question had a below 

average expectation trait anxiety when compared to similar studies 

(297-299), it would thus be unwise to generalise results obtained, and 

further study in this regard is warranted. Finally, even though comparable 

results were found between the different research centres, successful 

deep breathing is experimenter dependent as a more experienced 

experimenter may cause a bigger effect size. 

 

3.6 Conclusions 

In conclusion, study 4’s findings represent the first human studies 

addressing the pivotal role of the PNS in mediating visceral pain 

hypersensitivity. It has been shown that the induction of acid-induced 

hypersensitivity in the proximal oesophagus in a human model of visceral 

hypersensitivity is altered by physiological and pharmacologically 

influencing PNS tone. These findings strongly indicate that the PNS plays a 

central role in the development of central sensitisation. Further study is 

now required to investigate the potential of therapeutically manipulating 

PNS tone in the management of chronic visceral pain syndromes.  

 

Study 4 is the first human study to assess the role of parasympathetic 

nervous antagonism using atropine in modulating acid induced 

oesophageal pain hypersensitivity. Future directions could look into 

whether diminished vagal activity does exist in patients with GORD, 

which might explain whether it does contribute to clinical oesophageal 
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acid sensitivity. Since the results have demonstrated that there is an 

autonomic response noted with acid infusion, it would be of value to test 

this in patients with GORD to determine whether there is greater 

sympathetic dominance in this patient group.  

 

Despite laudable progress in gastrointestinal neuroscience research 

directed towards describing the culpable mechanisms that account for 

development of visceral pain, in conjunction with considerable 

investment in drug development, translation into tangible improvements 

in patient outcomes have remained poor. (51, 338) Moreover, given that 

the contemporary pharmacological armamentarium has limited 

efficacy, and in some cases marked concerns regarding safety (339), it 

comes as no surprise that the multidisciplinary approach utilising a 

number of psychosocial and psychophysiological treatments have been 

used in the treatment of visceral pain. (340, 341) The results of study 4 

could also be applied clinically by using the deep breathing intervention 

in patients undergoing biofeedback training for pain-related diseases. 

Deep breathing techniques may be used in a variety of chronic pain 

states, which are characterised by clear limitations in drug treatment, 

and can be tailored to the individual needs of each patient. 

Furthermore, since the modulation is physiological rather than 

pharmacological, the treatment is not associated with any negative 

health side effects. However, further research must also address the 

limitation that a decrease in experimental pain perception due to deep 

breathing does not necessarily mean a significant alleviation of a 

patient’s clinical pain. This knowledge gap should now be addressed, 

possibly by including the study of subject groups’ genetic predisposition 

and its contributing role in offering protection against the development 

of clinical hypersensitisation conditions. 
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6 Evidence of a role for GTP cyclohydrolase-1 in Acid Induced 

Oesophageal Hypersensitivity - Study 5 (Psychogenetic Pilot 

Study) 

 

6.1 Introduction 

The enzymatic conversion of guanosine triphosphate (GTP) to neopterin 

by GTP cyclohydrolase-1 (GCH-1) is a rate-limiting step in the de novo 

synthesis of tetrahydrobiopterin (BH4) (Figure 105), a co-factor for the 

production of monoamines and nitric oxide. (342) BH4 production is 

normally tightly controlled, however following tissue or neuronal injury 

expression of GCH-1 is enhanced leading to increased production of 

BH4, which in turn facilitates the activation of sensory nerves. (343, 344) 

For example intraplantar injection of BH4 causes mechanical 

hyperalgesia in rodents and triggers calcium transients in isolated DRGs. 

(344) Furthermore substantial reduction in pain behaviours can be seen 

following treatment with the selective GCH-1 inhibitor, 2,4-diamino-6-

hydroxypyrimidine (DAHP) or knock down of GCH-1 with small hair pin 

RNA in animals. (344, 345) 

 

Figure 105 Biosynthetic pathway for the de novo synthesis of BH4.      
                 (Adapted from Costigan, 2012) (342) 
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Importantly these preclinical observations are supported by genomic 

studies which have identified the presence of a GCH-1 haplotype in 

patients and volunteers that is associated with reduced BH4 production 

and reduced pain. This haplotype was originally found to be associated 

with lower post-operative pain scores following discectomy (344) and 

lower pain scores and higher pain thresholds following sensitisation in 

healthy volunteers. (344, 346, 347) Further studies in patients have 

continued to support a role for GCH-1 in pain processing, demonstrating 

an association between the pain protective GCH-1 haplotype and 

reduced analgesic requirement or delayed opioid use in chronic pain 

states or cancer patients, (348, 349) in addition to improved pain scores 

and outcomes following surgical treatment of degenerative disc disease. 

(350) (Figure 106) Little research has been conducted on the role of 

GCH-1 in visceral pain, one study has demonstrated a modest increase 

in the prevalence of the haplotype within a subgroup of patients with 

pancreatitis, (351) however the importance of this finding is unclear.  

 

The goal of this study was to further investigate the role of GCH-1 in 

visceral pain. The role of the GCH-1 gene in mediating visceral analgesia 

was indicated in a previous preliminary GCH-1 inhibitor study of a rodent 

model of visceral pain. This study was performed via collaboration 

between Dr David Bulmer, currently a lecturer at the Wingate Institute, 

Queen Mary University of London, and Professor Beverley Greenwood-

Van Meerveld from Oklahoma University as part of a Glaxo-Smith Kline 

sponsored study.  

 

Briefly this study examined the role for GCH-1 in visceral pain by eliciting 

the effects of the selective GCH-1 inhibitor DAHP, on spontaneous pain 

behaviours elicited by colorectal injection of a chemical irritant (3% 

mustard oil), in male Sprague Dawley rats. In the rodent visceral pain 
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model, experimental pre-treatment with DAHP produced a substantial, 

and dose related inhibition of pain behaviours at doses from 10 to 

180mg/kg i.p. p<0.05. The data generated in these studies suggested 

that GCH-1 played an important role in visceral pain processing and 

required further investigation in a healthy volunteer model of visceral 

pain. 

 

Based on the results of the above study it is possible to speculate that the 

difference in the genotype could also further explain the inter-individual 

differences in pain response, observed in the human model of visceral 

pain. Our aim was to evaluate the possible contribution of the GCH-1 

pain protective haplotype to visceral pain processing in healthy 

volunteers characterised for baseline oesophageal pain thresholds, 

sensitisation to oesophageal acidification, and psychological states of 

depression and anxiety. Our initial hypothesis being that the prevalence 

of the pain protective GCH-1 haplotype would be greatest in subjects 

who did not sensitise to acid injury by comparison with subjects that were 

sensitive to acid injury. As was seen in study 4, further research is needed 

to address the limitation found, where the decrease observed in 

experimental pain perception due to the “deep breathing increased 

CVT” component does not fully equate to a complete alleviation of a 

patient’s clinical pain or the degree of sensitisation. Study 5 is a start in 

attempting to address this knowledge gap by including the examination 

of subject groups’ psycho-genetic predisposition and its contributing role 

in offering protection against the development of clinical 

hypersensitisation conditions and its associated psychiatric sequelae. 

(Figure 106) 
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Figure 106 Illustration of the central psycho-genetic predisposing role of BH4 and its contribution 
in offering protection against the development of clinical hypersensitisation conditions  & its 
resulting mental health sequelae “Tetrahydrobiopterin pathway, with the rate-limiting enzyme GTP 
cyclohydrolase 1, and its functional clinical implications. GTP cyclohydrolase expression and/or 
activity are up regulated during inflammation, mast cell stimulation, following ischemic stroke or 
peripheral nerve injury leading to increased BH4 production. Excess BH4 in peripheral sensory 
neurons following axonal injury contributes to the manifestation of neuropathic pain. This is 
mediated in part by increasing calcium influx and nitric oxide production. Inhibition of GCH1 
activity or reduced GCH1 upregulation reduces pain in various models. In blood vessels BH4 is 
required to produce nitric oxide by endothelial NOS (eNOS). Relative BH4 deficiency leads to an 
uncoupling of oxidation–reduction steps performed by eNOS resulting in increased production of 
reactive oxygen species, instead of nitric oxide, that contribute to endothelial dysfunction. 
Increasing endothelial BH4 improves vascular functions, particularly in diabetes models. In the 
brain BH4 is required for the production of dopamine and serotonin. BH4 deficiency due to loss-
of-function mutations of GCH1 lead to DOPA-responsive dystonia, a Parkinson-like neurologic 
disease, or to atypical phenylketonuria. On the other hand, excess BH4 in the striatum contributes 
to the dying of dopaminergic neurons probably mediated by enhanced calcium influx and 
disturbance of the redox balance. Similarly, excess BH4 after stroke due to GCH1 upregulation 
contributes to neuronal death.                                                                  [Abbreviations: GTP, 
guanosine triphosphate; GCH1, GTP cyclohydrolase 1; PTPS, 6-pyruvoyl tetrahydropterin synthase; 
SPR, sepiapterin synthase; QDPR, quinoid dihydropteridine reductase; PCD, pterin-4a-
carbinolamine dehydratase; BH4, tetrahydrobiopterin; BH2, dihydrobiopterin; nNOS, neuronal 
nitric oxide synthase; iNOS, inducible nitric oxide synthase; eNOS, endothelial nitric oxide 
synthase; NO, nitric oxide; PheH, phenylalanine hydroxylase; PheA, phenylalanine; TyrH, tyrosine 
hydroxylase; DA, dopamine; NA, noradrenaline; 5-HT, serotonin; TrpH, tryptophan hydroxylase; 
ONOO, peroxynitrite; BP, blood pressure; CAD, cardiovascular disease.”]                                                                            
Quoted and adapted from Doering (2008) (352) 
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6.2 Materials and Methods 

 

6.2.1 Oesophageal pain testing 

Based on a clear reduction in visceral pain behaviours seen in the animal 

model following pre-treatment with DAHP, we went on to evaluate the 

potential contribution of the pain protective GCH-1 haplotype to visceral 

pain thresholds and depression and anxiety scores in healthy volunteers 

who were subjected to psychological profiling and oesophageal pain 

testing using a previously well validated model of acid induced central 

sensitisation. (184-190) The study was approved by the ‘East London and 

The City Research Ethics Committee - Alpha’ (ref: 09/H0704/71) and all 

subjects provided written informed consent prior to the start of the 

experiments.  

 

6.2.2 Protocol  

Volunteers underwent oesophageal pain testing during two visits 

separated by 2-4 weeks as part of a cross over design interventional 

study. (Sham breathing visit protocol – Study 2 & 3, see section 2.20.2, 

page 111) Volunteers were randomly assigned to an intervention prior to 

oesophageal acidification on either their first or second visit. Only data 

generated prior to intervention or on the non-interventional visit was used 

for this study. In addition during the first visit volunteers underwent 

psychological profiling with hospital-based depression and anxiety 

based questionnaires following which blood samples were taken for 

genomic analysis and frozen down.  
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6.2.3 Other Methods of Measurement 

All other methods of measurement; Catheter Assembly18 (section 2.4, 

page 78), Oesophageal acid infusion (section 2.4, page 78), 

Oesophageal pH monitoring (section 2.6, page 80), Pain Threshold 

Measurements (section 2.8, page 82), Psychological assessment (section 

2.11, page 85) and Measurement of the Autonomic Nervous System19 

(section 2.12, page 86) was performed as described in their specific 

sections. 

 

6.2.4 Genotyping and pain phenotyping 

GCH-1 haplotype was examined in blood samples in 38 healthy 

volunteers from the original study cohort of 72 which could be classified 

as sensitisers (n=19, mean age 27yrs; 11 females) or non-sensitisers (n=19, 

mean age 27yrs; 11 females) based on changes in their proximal 

oesophageal pain threshold to electrical stimulation following 

acidification of the distal oesophagus during their non-interventional visit. 

For the purposes of this study non sensitisers were characterised by a 

decrease in pain threshold no greater than 5mA or an increase in pain 

threshold following acidification (mean post acid increase of 2.4 

±1.4mA), and sensitisers were characterized by a decrease in pain 

threshold of 15mA or greater (change mean post acid decrease of 22.6 

±2.0mA). (Figure 107) The remaining subjects had a change in pain 

threshold >5 and<15mA following acidification and were not genotyped. 

20 

 

                                                        
18 For a more detailed description see appendix one. 
19 For a more detailed description see appendix one. 
20 For a more detailed description appendix four. 
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Figure 107 Human acid infusion study showing ∆ pain threshold following acidification 
with (white) non-sensitisers (mean post acid increase of 2.4 ±1.4mA), and (black) 
sensitisers (mean change mean post acid decrease of 22.6 ±2.0mA). 

 

 

Blood samples from these subjects were thawed, genomic DNA 

extracted and genotyped for the previously described pain protective 

GCH-1 haplotype using a 3 SNP screening strategy devised by Lotsch et 

al. (2007), which identifies the haplotype with 100% accuracy. Taqman 

assay kits were used to genotype for the three SNPs (dbSNP 

rs8007267G>A in the 50 untranslated region, rs3783641A>T in intron 1, and 

rs10483639C>G in the 30 untranslated region spanning the entire GCH1 

gene range) in a 384 well format using 5ng genomic DNA from each 

patient, total reaction volume 5µl. CGH haplotypes were reconstructed 

using Haploview. (353) 21 

  

                                                        
21 For a more detailed description appendix four 
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6.2.5 Data analysis 

Subjects were stratified by GCH-1 haplotype into those possessing at 

least one allele for the pain protective haplotype (X) or not (O). In 

addition subject’s pain phenotype was also determined from the 

change in pain threshold post acid infusion by calculating the mean 

value of the pain thresholds 30, 60 and 90 min post acid infusion and 

subtracting the pre-acid pain threshold. Subjects were stratified into 

sensitisers and non-sensitisers based on this value as described above. 

Baseline oesophageal pain thresholds on first and second visits, the 

change in pain threshold between first and second visits, depression and 

anxiety scores were then compared between subjects grouped by 

haplotype, pain phenotype and a combination of haplotype and pain 

phenotype using Student’s t-test or one way ANOVA as appropriate, 

significance set at p<0.05. Additionally the prevalence of GCH-1 

haplotype was compared between sensitisers and non-sensitisers using 

Fisher’s exact test. All data is expressed as mean ±SEM unless otherwise 

stated. 

 

 

6.3 Results 

6.3.1 Prevalence of the pain protective GCH-1 haplotype (X):  

The allelic frequency of the pain protective haplotype was 0.18 (14/62) 

across all 38 subjects genotyped, which was comparable with reported 

values in the literature. This resulted in the presence of n=12 volunteers 

heterozygous (O/X) for the haplotype and n=1 individual homozygous 

(X/X) for the haplotype. No difference was seen in the prevalence of the 

pain protective haplotype between subjects classified as sensitisers 

compared with non-sensitisers. (Figure 108) 
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Figure 108 Pain thresholds and haplotype/phenotype. (n=12) volunteers heterozygous 
(O/X & homozygous (X/X) for the haplotype. No difference was seen in the prevalence 
of the pain protective haplotype sensitisers & non-sensitisers. 

 

6.3.1 Characterisation of oesophageal pain thresholds by GCH-1 

haplotype: 

Across all 38 subjects baseline oesophageal pain thresholds were greater 

on the second visit compared with the first (e.g. 44.6 ± 3.3mA vs. 57.1 ± 

3.9mA first vs. second visit p<0.001). However no significant difference 

was seen in pain thresholds based on the presence or absence of the 

pain protective haplotype during either visit (e.g. first visit 44.9 ±4.2(SEM) 

vs. 44.0 ±5.6(SEM) p=0.90; second visit 55.8 ±4.7(SEM) vs. 59.5 ±7.2(SEM) 

p=0.66; (O) n=25 vs. (X) n=13 respectively), and no difference in the 

change in threshold between visits was seen based on haplotype (e.g. 

11.8 ±2.0mA vs. 16.4 ±5.2mA p=0.33 (O) vs. (X). Similarly no significant 

difference was seen in baseline oesophageal pain thresholds if subjects 

were stratified based on both haplotype and pain phenotype, although 

a trend towards a greater pain threshold was seen on the second visit in 
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sensitisers who possessed the pain protective haplotype compared with 

sensitisers who did not (e.g. 77.6 ±6.2mA vs. 60.6 ±6.1mA p=0.087; (X) n=7 

vs. (O) n=12). (Figure 109)  

 

 

 

Figure 109 Baseline oesophageal pain thresholds. Comparing first & second visits. PT’s 
were greater on the second visit compared with the first (77.6 ±6.2mA vs. 60.6 ±6.1mA 
p=0.087; (X) n=7 vs. (O) n=12) 

 

Analysis of the change in pain threshold between visits did however 

reveal a significantly greater increase in threshold for sensitisers that 

possessed the haplotype compared with sensitisers who did not and 

both subgroups of non-sensitisers (e.g. 26.6 ±6.2mA (X) sensitiser n=7 

p=0.012 vs. 10.1 ± 2.4mA (O) sensitiser n=12 vs. 4.5 ± 5.9mA (X) non-

sensitiser n=6 vs. 13.6 ± 3.1mA (O) non-sensitiser n=12). (Figure 110) 
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Figure 110 Analysis of the change in pain threshold between visits and pain protective 
haplotype. 

 

6.3.2 Characterisation of depression and anxiety scores by GCH-1 

haplotype: 

No difference was observed in depression or anxiety scores based on 

haplotype (depression 9.0 ±0.3(SEM) vs. 8.3 ±0.5(SEM) p=0.23; anxiety 8.6 

±0.5(SEM) vs. 9.4 ±0.7(SEM) p=0.37; (O) vs. (X) respectively). However in a 

comparable manner to pain thresholds, analysis of depression scores 

based on pain phenotype and genotype revealed that depression 

scores were significantly lower in sensitisers, ∆2.11 ±0.62(SEM), p=0.008 

(Figure 111) who possessed the pain protective haplotype compared to 

sensitisers who did not or both subgroups of non-sensitisers (e.g. 

depression score of 7.1 ±0.5(SEM) (X) sensitisers p=0.03 vs. 9.3 ±0.4(SEM) 

(O) sensitisers vs. 9.7 ± 0.7(SEM) (X) non sensitisers vs. 8.8 ±0.5mA (O) non-

sensitisers). (Figure 112) No difference was observed in anxiety scores 
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when subjects were grouped by pain phenotype and haplotype. (Figure 

113) 

 

 

 

Figure 111 Analysis of the sensitisers’ HADS – Anxiety & Depression scores and haplotype 
/phenotype. 
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Figure 112 Analysis of HADS - Depression scores and haplotype/phenotype. 

 

 

Figure 113 Analysis of HADS - Anxiety scores and haplotype/phenotype. 

 

 

 



 

 

 

 

269 

 

6.4 Discussion 

With this study we have generated data that supports a role for GCH-1 in 

visceral pain processing. We found a significant increase in pain 

thresholds on repeat pain testing in a subgroup of subjects who 

demonstrated robust central sensitisation to oesophageal injury and 

possessed the pain protective GCH-1 haplotype. 

 

Utilising a visceral model of central sensitisation by acidifying the distal 

oesophagus and examining pain thresholds within the proximal 

oesophagus. This restricts our observations to the resultant secondary 

hyperalgesia elicited in response to the central sensitisation produced by 

injury of the distal oesophagus. (354) Additionally by measuring pain 

thresholds with electrical stimulation we further restrict our observations to 

central changes by bypassing the contribution of stimulus transduction 

mechanisms to the activation of nociceptors within the proximal 

oesophagus. Two pain phenotypes are typically seen following 

oesophageal acidification, subjects who sensitise and present lower pain 

thresholds following injury (sensitisers), and subjects who do not sensitise 

and retain comparable pain thresholds following injury (non-sensitisers). 

Data from human studies has shown that pain thresholds following 

sensitisation of the skin in healthy volunteers were increased in subjects 

who possessed the GCH-1 pain protective haplotype consistent with a 

role for GCH-1 in inflammatory pain. (344, 346, 347) We therefore 

hypothesised that subjects with this GCH-1 haplotype may also have a 

reduced response to acid injury of the oesophagus. The prevalence of 

the pain protective haplotype would therefore be more in non-sensitisers 

compared with sensitisers. 

 

The data generated in the current study did not however support this 

hypothesis. The prevalence of the pain protective haplotype was 
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comparable between sensitisers and non-sensitisers. Furthermore 

baseline pain thresholds were also comparable between subjects with 

the pain protective haplotype and those without. However if pain 

thresholds were examined by pain phenotype and genotype we did find 

a trend towards increased pain thresholds on the second visit between 

sensitisers who possessed the pain protective haplotype and sensitisers 

who did not possess the haplotype. Furthermore a substantial increase in 

baseline pain thresholds was seen between first and second visits in these 

sensitisers who possessed the pain protective haplotype which was 

significantly greater than sensitisers who did not possess the haplotype 

and non-sensitisers regardless of whether they possessed the haplotype 

or not. Interestingly a similar pattern was found when depression scores 

were examined with the exception that depression scores were 

significantly lower in subjects possessing the pain protective haplotype 

and who sensitised to oesophageal acidification compared with the 

other groups. 

 

 Further studies are now needed to confirm the validity of our initial 

findings. The difference in pain thresholds and depression scores within 

subjects grouped by GCH-1 haplotype and pain phenotype suggests the 

two findings may be related. For example subjects with lower depression 

scores may adapt more quickly to the prospect of a repeat pain test 

and hence show increased pain thresholds. However it is not clear why 

we have only found these differences in a subgroup of subjects who 

possessed the pain protective GCH-1 haplotype and develop secondary 

hyperalgesia to injury as opposed to all subjects with the haplotype.  

 

One explanation for our changes is that subjects who sensitise following 

acid injury to the oesophagus have an on going contribution by GCH-1 

to their baseline pain thresholds which is reduced in people with the pain 
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protective haplotype and hence results in their higher pain thresholds. By 

contrast in subjects who don’t sensitise to injury there is little or no GCH-1 

contribution to baseline pain thresholds and so baseline pain thresholds 

are unaffected by the presence or absence of the pain protective GCH-

1 haplotype. Precisely what this might be is unclear, however the lower 

depression scores observed in the same subgroup of subjects who 

sensitise and possess the pain protective haplotype suggests that a link 

to emotional states may be important. This can be expected because of 

the polygenic nature of hypersensitisation conditions and its resulting 

mental health effects, which are additionally shaped by psychological 

and environmental pressures. (355, 356) With modest phenotypic 

consequences such as for pain, variants in other genes are likely to 

contribute to the phenotype to a similar extent, sometimes with opposite 

or cancelling out effects as proposed by Lötsch et al. (357). This might 

also be a reason for non-reproductions of genetic associations in 

polygenically controlled symptoms, as observed in this study for the pain-

protection by GCH1 variants. (358, 359) 

 

 

6.5 Conclusion 

The goal of this study was to further investigate the role of GCH-1 in 

visceral pain. The role of the GCH-1 gene in mediating visceral analgesia 

was indicated in a previous GCH-1 inhibitor study of a rodent model of 

visceral pain. The difference in the genotype could also further explain 

the inter-individual differences in pain response, observed in the human 

model of visceral pain. Our aim was to evaluate the possible contribution 

of the GCH-1 pain protective haplotype to visceral pain processing in 

healthy volunteers, with the hope of replicating its pain protection. 

Although we did not find a clear association between the GCH-1 pain 

protective haplotype and sensitisation of the acidified oesophagus, a 
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modest psychological effect was observed with regard to depression 

scores, highlighting the difficulties of research of polygenic conditions 

affecting hypersensitisation. Study 5 represents a start in attempting to 

address the knowledge gap with regard to the psycho-genetic 

predisposition and its contributing role in offering protection. Further 

research is now needed to address the existing limitations in our 

understanding of the development of clinical hypersensitisation 

conditions and its associated psychiatric sequelae. 
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7 Summary and General Discussion  

 

The aim of my research programme in essence was to ascertain what 

the determinants and ANS mechanisms were for predicting the inter-

individual differences with regard to the vulnerability of developing acid-

induced oesophageal pain hypersensitivity (OPH), and to determine if 

modulation of these ANS mechanisms could influence the degree of 

acid-induced OPH.  

 

7.1 Introduction and study rational 

Studying the factors that influence the development of post-injury 

visceral pain hypersensitivity is important, as I was aware that clinically 

the majority of individuals recover after an episode of visceral 

inflammation or injury, but a proportion go on to develop a functional 

gastrointestinal disorder with demonstrable visceral pain hypersensitivity 

(VPH). (41) This suggests phenotypic differences in the way individuals 

respond to and recover from injurious stimuli in the viscera. Reviewing 

preliminary research, I became aware of the inter-individual variability in 

magnitude of sensitisation to acid in the model. The factors underlying 

why some individuals developed greater sensitisation compared to 

others, and why some failed to sensitise at all, were not known. It was 

clear that understanding these factors might help understand the 

mechanism of injury-induced visceral pain hypersensitivity. Furthermore, 

identifying biological differences between individuals that predicted 

their tendency to sensitise to acid in the model might help identify 

phenotypic traits that predispose to or protect against injury-induced 

visceral sensitisation. This in turn might identify new targets for therapeutic 

developments. To achieve my aim I performed a number of studies in 

healthy human volunteers (chapters 3-6) using a previously well-
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validated model of acid-induced OPH. (177, 184-190) Autonomic 

nervous system activity during infusion was measured continuously in real 

time with novel technology that derived markers of selective 

sympathetic and parasympathetic activity. 

 

7.2 Summary of what I have demonstrated 

 

7.2.1 Chapter 3 (study 1 – pilot study) 

As study 1 was a pilot study and not fully powered the emphasis was on 

identifying early trends that would be investigated more thoroughly in 

the subsequent studies, and to test the suitability of the various 

psychophysiological modulations proposed in this model. It was 

hypothesised that sensitisation as expressed by the difference in average 

pain threshold (ΔPT) would be directly proportional to sympathetic 

nervous system activation (SNS: ∆SCR), and parasympathetic nervous 

system withdrawal (PNS: ∆CVT), as induced or amplified by different 

psychophysiological modulations. The secondary aim of the study was to 

expand on the data in order to determine what psychological state and 

trait factors predicted the degree of sensitisation to acid in the model. 

 

I found that in spite of all subjects being acid infusion naïve, 22% did not 

sensitise during acid infusion, and also failed to sensitise on subsequent 

visits, irrespective of modulation. These non-sensitisers demonstrated 

variable acid-induced autonomic responses between the different 

experiments. For these subjects the degree of sensitisation between visits 

was not related to the degree of change in HR, CVT or CSB. They had 

less sympathetic activation (SCR) compared to sensitisers, and scored 

less for neuroticism on the BFI. Overall their response pattern suggested 

that they might represent a distinct phenotype with reduced 
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susceptibility to injury-induced sensitisation in this model. As a previous 

study using this model demonstrated that stress induction increases the 

degree of secondary oesophageal hyperalgesia in sensitisers, (30)  it now 

remained to further investigate this phenomena, to ascertain if this could 

be replicated in the non-sensitiser group. 

 

The following conclusions were reached as a result of study 1:	  

1. The Isometric “handgrip” exercise test was not suitable for trying to 

increase sympathetic tone, as it produced both an initial 

parasympathetic withdrawal and then rebound increase.  

2. Due to subjects’ anxiety habituation with potential for decreasing 

induction of acid induced sensitisation on subsequent visits, the 

number of visits should be kept to a minimum. The screening visit was 

hence discontinued, and randomisation occurred directly following 

recruitment.  

3. The Deep breathing modulation was successful in producing visceral 

desensitisation in this model. But due to non-specific factors 

associated with deep breathing it was decided to test it against an 

active placebo.  

4. The inter-individual variability in the magnitude of sensitisation 

between sensitisers and non-sensitisers should now be further 

explored in a comparative study that will allow the evaluation of ANS 

responses across a spectrum of experimental stressors. 

 

7.2.2 Chapter 4 (study 2 - deep breathing in sensitisers & study 3 – 

stress induction in non-sensitisers)  

The results from studies 2 and 3 represented the first human studies 

addressing the pivotal role of the ANS in mediating VPH using this model 
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of OPH. Study 2 (fully powered hypothesis testing study) provided 

evidence for how sensitisation can be prevented by deep breathing 

through its action on increasing NA mediated - PNS tone, and study 3 

(hypothesis generating pilot study) demonstrated the mechanistic 

paradoxes with regards to ANS regulation across a continuum of 

experimental stress levels. 

 

7.2.2.1 Chapter 4 (study 2 - deep breathing in sensitisers) 

Study 2’s results represent a novel human intervention study addressing 

the key role of the Nucleus Ambiguus (NA) mediated - PNS in regulating 

visceral pain hypersensitivity. It demonstrated how acid-induced 

hypersensitivity could be abolished by physiologically increasing PNS 

tone. This finding strongly indicates that the PNS plays a central role in the 

development of central sensitisation. It was now important to study the 

effect of co-administered atropine and deep breathing on sensitisation. 

This could potentially examine and contrast the contribution and 

importance of the neurobiological pathways that underlie deep 

breathing induced PNS analgesia. As the placebo response is a manifold 

phenomenon, the analgesia that was observed in study 2 could plausibly 

be due to the observed reduction in anxiety. Also study 2’s results 

needed to be independently validated by means of an unrelated 

cohort in another study centre.  

 

7.2.2.2 Chapter 4 (study 3 – stress induction in non-sensitisers) 

The factors associated with failure to sensitise in the model were poorly 

understood; it has been noted that around 1 in 5 subjects display this. 

(175) Previous studies that were performed to pharmacologically 

modulate hyperalgesia using this model and help understand the 

receptor mechanisms of central sensitisation excluded non-sensitisers to 
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participation. (179, 180, 185) As such it was not known why they failed to 

sensitise and whether they sensitised on subsequent studies. Therefore, 

their selective study during repeated acid exposures was necessary to 

examine the consistency of response. 

 

Study 3’s results provided novel evidence that explain and clarify for the 

first time the hitherto poorly understood multifactorial ANS regulatory 

mechanisms of visceral pain hypersensitivity in subjects who fail to 

sensitise to acid infusion. With the coinciding ‘real time’ examination of 

all three parts of the biopsychosocial model in this study, it allowed for an 

important novel synthesis to be made between developmental 

psychology, neurobiology and gastroenterology. This allowed us to 

reinterpret previously conflicting results with more clarity and potentially 

greater therapeutic advantages.  With the incorporation of attachment 

and polyvagal theory, study 3’s results demonstrated the paradoxes 

surrounding ANS regulation with regard to central sensitisation as 

influenced by differing environmental stress assessments. It also 

highlighted the need for a deeper understanding of the vulnerability 

phenotypes involved. 

 

7.2.3 Chapter 5 (study 4 - placebo controlled /atropine challenge 

study)  

Study 4 (hypothesis testing study) was the first human study to assess the 

role of parasympathetic nervous system antagonism using atropine in 

modulating acid induced OPH, and it independently validated study 2’s 

results by means of an unrelated cohort in another study centre. 

 

In study 4, it was observed that in both arms of the study there was 

modulation of the induced hyperalgesia. Thus In the atropine arm, where 
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CVT’s effect was antagonised, a degree of desensitisation also occurred 

in comparison to the sensitisation that was observed in the screening visit. 

In other words, factors other than the increase in CVT were involved in 

reducing visceral sensitisation. This could be due to the ‘non specific’ 

therapeutic elements of the behavioural intervention, but also that of 

‘placebo effect’ induced as a result of the subjects being aware of an 

intervention. The placebo arm of the study resulted in subjects receiving 

the un-atropinised increase in CVT (i.e. the active treatment).  

  

However because in study 4 the ‘placebo arm’s paced deep breathing’ 

had efficacy over and above the effects of the atropine’s ‘antagonised’ 

deep breathing arm’s response, in spite of also being exposed to the 

nonspecific therapeutic elements of distraction and increased 

interpersonal interaction while being “paced”, this strongly suggested 

that the activation and increase of the NA mediated CVT by the deep 

breathing’s RSA added additional reduction in acid induced sensitisation 

and hyperalgesia of the spinal dorsal horn mediated central sensitisation 

per se, and thus could potentially provide additional ‘direct’ clinical 

efficacy in symptom reduction due to VPH. These findings thus confirmed 

that the PNS plays a central role in the development of central 

sensitisation.  

 

7.2.4 Chapter 6  (study 5 – psycho-genetic pilot study) 

The goal of this study (hypotheses generating pilot study) was to further 

investigate the role of GCH-1 in visceral pain. The role of the GCH-1 gene 

in mediating visceral analgesia was indicated in a previous GCH-1 

inhibitor study of a rodent model of visceral pain. The difference in the 

genotype could also further explain the inter-individual differences in 

pain response, observed in the human model of visceral pain. My aim 
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was to evaluate the possible contribution of the GCH-1 pain protective 

haplotype to visceral pain processing in healthy volunteers, with the 

hope of replicating its pain protection. Although we did not find a clear 

association between the GCH-1 pain protective haplotype and 

sensitisation of the acidified oesophagus, a modest psychological effect 

was observed with regard to depression scores, highlighting the 

difficulties of research of polygenic conditions affecting 

hypersensitisation. Study 5 represents a start in attempting to address the 

knowledge gap with regard to the psychogenetic predisposition and its 

contributing role in offering protection. Psychogenetic-

neurogastroenterology is presently in its infancy, and further research of 

this kind is clearly indicated.  

  

7.3 Psychophysiological Mechanisms in acid induced OPH 

The studies presented in this thesis have demonstrated that acid-induced 

oesophageal pain hypersensitivity can be modulated by a number of 

psychophysiological factors. The mechanisms underlying how 

sensitisation develops after acid exposure in the model are now better 

understood and indicate that it is a combination of peripheral and 

central factors.  

 

7.3.1 Psychophysiological Mechanisms in Sensitisers and non 

sensitisers 

In sensitisers acid infusion may activate acid-sensing receptors such as 

TRPV1 and ASIC resulting in increased primary afferent activity. The 

increased nociceptor barrage onto spinal dorsal horn neurones may 

activate a number of receptors, including NMDA receptors, resulting in 

the development of central sensitisation, further enhancing nociception. 

The magnitude and duration of central sensitisation that develop are 
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modulated by supraspinal pain inhibitory and facilitatory systems that in 

turn are influenced by cognitive factors such as psychological state, 

adult attachment vulnerability, alexithymia scores, attention & arousal 

levels and anticipation. 

 

In non-sensitisers the mechanisms in the model remain speculative. A 

failure of sensitisation once again could be due to peripheral or central 

effects. Non-sensitisers may have enhanced mucosal barrier function in 

response to injurious stimuli, which might result in reduced nociceptive 

inputs to the spinal cord. As a result, the magnitude of central 

sensitisation that develops in response to peripheral insults may be 

attenuated. Alternatively, these individuals may have enhanced 

supraspinal inhibitory processes that either reduce the magnitude of 

injury-induced central sensitisation at dorsal horn level, or inhibit the 

transfer of nociceptive inputs to cortical centres where pain is evaluated, 

and will be further considered below in contexts of supraspinal ANS stress 

response mediation. It might be possible to test the involvement of 

endogenous opioid systems in these individuals by determining whether 

naloxone induces hyperalgesia after acid in these individuals. 

 

My work has however provided novel insights into how the ANS may 

differentially modulate the response to oesophageal acidification in 

sensitisers and non-sensitisers. In the following section I provide an 

interpretation of my results in sensitisers versus non-sensitisers within the 

conceptual framework provided by Porges poly vagal theory described 

in detail in sections 1.9.4, (page 53); section 2.12.4 (page 91) & chapter 

4, table 9, (page 201). 
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7.4 Novel ANS responses in the context of environmental stress  

Stress and anxiety have been associated with the onset and severity of 

symptoms in functional gastrointestinal disorders; in particular, life events 

associated with stress and anxiety at the time of gastroenteritis increases 

the likelihood of developing symptoms of IBS. (255) 

 

7.4.1 Parasympathetic nervous system (PNS) stress response 

In a safe (supportive) environment (deep breathing) both sensitisers 

(Figure 114, pink graph) and non-sensitisers (green graph) increase PNS 

activation, due to paced breathing - NA activation (240)  

 

Figure 114 Illustrates the changes in Cardiac Vagal Tone (CVT) of the Parasympathetic 
nervous system (PNS) across three different environmental stress conditions ranging 
from ‘supportive/safe’ (left) as experienced during the deep breathing-experimental 
modulation procedure, threw ‘neutral’ (middle) as experienced during the sham 
breathing-experimental modulation procedure, to ‘demanding/threatening’ (right) as 
experienced during the stress test-experimental modulation procedure. This gives rise to 
three distinct different activation patterns as described by S. Porges (100) and illustrated 
by the roman numerals: III, II & I, coinciding with different vagal lower motor neuron 
activation, illustrated above as ranging from left, mainly Nucleus Ambiguus (NA) to the 
Dorsal motor neuron nucleus of the vagus (DMNX) on the right. In the foreground is a 
schematic representation of the changes in stress responses as observed during studies 
2 & 3, for the sensitisers (pink graph), and the non-sensitisers (green graph) to acid 
infusion induced oesophageal pain hypersensitivity (OPH).     
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(Porges-Stage III (see table 9, chapter 4, page 201)) that desensitises 

visceral pain thresholds in both groups. In a neutral (sham breathing), 

though challenging (experimental) environment (Porges-Stage II) non-

sensitisers are able to maintain the ‘protective’ vagal tone, while the 

sensitisers withdraw their ‘protective’ NA tone. In a stressful 

(demanding/threatening) environment (Porges-Stage I), the sensitisers 

increase their ‘damaging’ vagal tone (with SNS co- activation) (134-137), 

most likely due to DMNX activation (108), while the non-sensitisers do not. 

 

7.4.2 Sympathetic nervous system (SNS) stress response 

 In a safe (supportive) environment both sensitisers (Figure 115, pink 

graph) and non-sensitisers (green graph) have low activation, most likely 

due to the regulating “vagal-brake” (143) (via - NA activation; Porges-

Stage III (see table 9, chapter 4, page 201)), which is more efficient and 

neuro-chemically “cost-effective” in maintaining homeostasis. (138) In a 

neutral, though challenging (experimental) environment i.e. during sham 

breathing (Porges-Stage II) both the sensitisers and non-sensitisers 

increase SNS tone by the withdrawal of the external constraint due to the 

opposing “vagal-brake”, but the non-sensitisers are better at mobilising 

SNS tone. In a stressful (demanding/threatening) environment, the non-

sensitisers are more able to significantly increase their SNS tone in 

comparison with the sensitisers. The sensitisers are most likely unable to 

match this due to their DMNX co-activation (Porges-Stage I) that is 

impeding a more appropriate adaptive increased SNS response. (108) 
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Figure 115 Illustrates the changes in sudomotor activation of the Skin Conduction 
Response (SCR) under control of the Sympathetic nervous system (SNS) across three 
different environmental stress conditions ranging from ‘supportive/safe’ (left) as 
experienced during the deep breathing-experimental modulation procedure, threw 
‘neutral’ (middle) as experienced during the sham breathing-experimental modulation 
procedure, to ‘demanding/threatening’ (right) as experienced during the stress test-
experimental modulation procedure. This gives rise to three distinct different activation 
patterns as described by S. Porges (100) and illustrated by the roman numerals: III, II & I, 
coinciding with change in primary autonomic nervous system (ANS) activation, 
illustrated above as ranging from left, mainly Vagal (also known as the ‘vagal brake’ to 
unimpeded sympathetic activation on the right. In the foreground is a schematic 
representation of the changes in stress responses as observed during studies 2 & 3, for 
the sensitisers (pink graph), and the non-sensitisers (green graph) to acid infusion 
induced oesophageal pain hypersensitivity (OPH).      

 

7.5 The central role of stress and anxiety in the development of 

sensitisation in this model of OPH 

In chapter 3, 4 and 5, it was demonstrated that acid infusion was 

associated with an increase in subjective anxiety levels, and during acid 

infusion there was an associated increase in sympathetic and reduction 

in parasympathetic activity during screening/sham breathing (Porges-

stage II) in those subjects that sensitised to acid. This suggests that 

psychological factors can modulate the perception of pain directly at 

the level of the viscera. In addition it is inferred that anxiety at the time of 
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injury may have an additive effect on nociception that predisposes 

some individuals to chronic sensory dysfunction. 

 

In chapter 5 - study 3, the novel observation where stress induction was 

associated with greater acid-induced sensitisation in certain individuals 

that previously did not sensitise to acid, replicates findings seen in 

sensitising subjects of previous studies using this model. (175, 179, 194) It is 

difficult to know how stress and anxiety has this effect as it can both 

modulate peripheral mucosal barrier function and permeability, (360) 

and have a variety of central effects. Stress induction may induce 

activity in certain brain regions such as the ACC that may in turn 

enhance pain perception. (361) Stress induction may also influence 

nociception through the modulation of supraspinal pain inhibitory and 

facilitatory systems, or exert effects through the associated reduction in 

vagal tone as demonstrated during screening/sham breathing acid 

infusion (Porges-stage II) of this study.  

 

In this thesis the sensitising group were found to be generally more 

anxious, alexithymic, with greater adult attachment vulnerability markers, 

than the non-sensitising group. This would suggest that the non-sensitising 

group were emotionally more coherently integrated, enabling them to 

make more ‘emotional’ sense of both exteroceptive (psychosocial) and 

interoceptive (biological) stressors, and were possibly more capable of 

prefrontal cortex mediated inhibition (e.g. via GABA, oxytocin and 

vasopressin) of subcortical structures, resulting in subsequent greater 

adaptive abilities to remain in phase III of the stress and anxiety response 

for longer (sham breathing), and when called for (stress test) could 

mount a better (un-impeded) mobilisation (phase I) response, but by 

means of better mentalisation processes could be able to “self sooth” 

more effectively resulting in shorter time intervals before returning to the 
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baseline  phase III homeostatic regulation, resulting in less oesophageal 

pain hypersensitivity. Further research is now needed to address the 

existing limitations in our understanding of the role of pervasive supra 

spinal stress regulation in the development of clinical hypersensitisation 

conditions and to replicate and confirm present findings and posited 

theories regarding the stress/anxiety regulation as suggested above by 

using larger cohorts. 

 

 

7.6 A proposed consilient model incorporating observed ANS 

stress responses: 

 

Drawing from a number of models discussed in this thesis, one can come 

closer to a “unity of knowledge”, as E.O. Wilson has used the term (6) 

with regard to the greater implications and impact on our current 

aetiological understanding of FGID and medically unexplained 

symptoms. Currently in patients with FGID, visceral pain hypersensitivity 

(VPH) is thought to be an important mechanism in the development of 

chronic pain, (43) however the factors that predict the development of 

chronic pain due to VPH in these patients after inflammation or injury to 

the GI tract is not well understood. The precise physiological mechanisms 

for inter-individual differences in the differing degrees of VPH after gut 

inflammation or injury are difficult to identify. In addition to the severity of 

the external stressor, factors such as psychological state and trait, 

genotype, early life experiences and physiological factors such as the 

biomechanical properties of the gut are all important. To clarify some of 

these aspects, a proposed consilient view would start with our present 

FGID conceptualisation of bio-psycho-social, but now to extend it with 

the addition of the hitherto poorly understood physiological ANS stress 
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regulatory mechanisms, as suggested by the results obtained in this 

thesis:  

 

Looking at figure 116, one could start at the ‘over-lap’ of sociological 

(Figure 121 - purple, upper-right) with the psychological (Figure 121 - 

orange, upper-left) domains. The most common precipitating factors are 

(A) life events, (35) with concomitant on-going (i) psychological and (ii) 

physical stress; (24) and chronic medical (B) symptoms. As clinically it is 

observed that pain is one of the most common presenting complaints, 

irrespective of it being explained or unexplained, (89) followed by 

dysfunction and distress. These two factors (A&B) lead to (C) 

exteroceptive and (D) interoceptive stress respectively, affecting (purple 

arrow) the psychological domain of the patient, with its resulting 

activation of the “emotional motor system” (EMS).  

 

 
Figure 116 A proposed holistic, hierarchical, integrated conceptual-working model, 
incorporating the dynamic interplay of the observed ANS responses with four domains 
of centrally sensitised patients. Illustrated here is the effect of the Sociological domain 
on that of the Psychological. For the full conceptual-model, of which this is a part, see 
figure 121.               (For abbreviations and explanation see accompanying text.) 
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Looking at figure 117 (and Figure 121 - orange, upper-left), 

Psychologically predisposing factors of mental state/trait, adult 

attachment type, and ‘mentalisation status’ (362) (e.g. degree of 

alexithymia or “emotional intelligence”(363)) is here of immediate 

import. This is affected by the patient’s (1) genotype, and its expression 

by environmental factors. For instance heritability-twin studies in IBS, 

found that social learning contributed an equal or even greater 

influence than genetic heredity alone. (17) Regarding (2) early life 

influences, a co-morbid, or concomitant psychiatric diagnosis, history of 

abuse (mental/physical) or abandonment/neglect, and previous 

trauma, are of particular note. These vulnerability factors affect the level 

of (3) vigilance (e.g. hyper-vigilance, anticipatory anxiety & 

catastrophisation), which affect the ‘cognitive-evaluative’, and degree 

of (4) arousal (emotional valance) - ‘affective-motivational’ dimensions 

of the pain neuromatrix as proposed by Melzac et al. (77, 78), and hence 

causing greater activation of the (5) “emotional motor system” (EMS) as 

proposed by Drossman et al. (109). This then induces more involvement 

from the subcortical structures e.g. (6) amygdala (mediating 

emotions),(122) (7) periaqueductal grey (PAG) (mediating defence: 

avidness/approach response behaviours), (8) hypothalamus 

(homeostasis) and (9) facial/laryngeal- “visceral” responses (99, 

100)(mediating inter-personal communication). It is at the activation of 

the sub-cortical level that the psychological aspect eventually affects 

the brainstem structures (orange arrow), which then triggers the ANS 

response of the physiological domain.  
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Figure 117 A proposed conceptual-working model, incorporating the dynamic interplay 
of the observed ANS responses with four domains of centrally sensitised patients. 
Illustrated here is the effect of the Psychological domain on that of the Physiological. For 
the full conceptual-model, of which this is a part, see figure 7.8.     (For abbreviations 
and explanation see accompanying text.) 

 

Now considering the involvement of the Physiological ANS response 

domain (Figure 118 and figure 119 - blue bottom left), the basic Cardio 

Vagal Control (CVC) reflex cycle as proposed by Julu et al. (219) needs 

first to be illustrated. The (10) Nucleus Tractus Solitarius (NTS) (green 

triangle) regulates the cardio vagal motor (CVM) centre (purple half-

moon) that also has efferent nerve inputs from the (12) Nucleus 

Ambiguus (NA) that innervate the sinoatrial node of the heart in the 

modulation of the heart rate (HR). This then has a regulatory feedback 

loop, via changes in the blood pressure (BP) on the baroreceptors which 

then connect back to the NTS, and influences the beat-to-beat 

fluctuations as seen by monitoring heart rate variability (HRV).(10) To 

complicate things, CVC’s control at this juncture is also regulated by the 

opposing effects of the  (13) SNS spinal cord afferents, but further 

augmented by the control exerted by the unmyelinated nerve fibres 
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from the (14) Dorsal Motor Nucleus (DMNX) of the vagus.  The CVC/SNS’s 

regulatory effect on the HR is thus best understood across a spectrum of 

responses, with differing degrees of activation from (12) NA, (13) SNS and 

the (14) DMNX, and this complicated interplay is best understood by the 

‘Dynamic Systems Approach’ (2-D & 3-D) – autonomic space 

conceptualisation as proposed by Berntson et al.(139) (See chapter 1, 

section 1.9.3, page 51) Finally the ANS response works in concert with the 

(11) HPA/Immune - response, (not here discussed) giving rise to the 

patient’s eventual clinical presentation by a multiplicity of means, but of 

particular note for this model is that of sensory modulation, via the 

regulation of spinal dorsal horn neurones, activating a number of 

receptors, including NMDA receptors, resulting in the development of 

central sensitisation, that affects the degree of nociception. 

 

With this understood, one can see how the psychological domain via the 

activation of the subcortical structures innervate the brain stem ANS 

response. It is here that the observations as discussed with figures 114 & 

115 come into effect. Depending on the psychological environmental 

threat assessment, one will find differing variations of PNS/SNS activation 

as proposed by Porges et al.(8, 100, 118). In a ‘Safe’ environmental 

threat assessment, the main regulation is via the (12) NA (III), during ‘Un-

safe’ assessments, the (13) SNS (II) is increasingly more activated with a 

coinciding withdrawal of NA activity, enabling “fight-or-flight” in the short 

term, and increase in anxiety in the long.  When deemed to be in a ‘Life-

threatening’ situation, the (14) DMNX (I) co-activation increases, to 

facilitate the “deer in the headlights” freeze response in acute situations, 

but an impeding ‘avoidant-denial’ type procrastination behaviour in the 

long term.  This implies that in the majority of FGID cases there would be 

an abnormal autonomic substrate, but merely as a part of the 

mechanism of the underlining disorder, and not as a primary aetiology. 
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This then through sensory modulation, has a bearing on the persons (15) 

Sensitisation status, which then can develop to have clinical significance 

(blue arrow).  

 

 

Figure 118 A proposed conceptual-working model, incorporating the dynamic interplay 
of the observed ANS responses with four domains of centrally sensitised patients. 
Illustrated here is the effect of the Physiological domain on that of the Clinical. For the 
full conceptual-model, of which this is a part, see figure 7.8.           (For abbreviations 
and explanation see accompanying text.) 
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observed by the (17) GI pathophysiological symptoms. (16) VPH 

contributes towards the (17) GI pathophysiological symptoms observed, 

giving rise to pain, dysfunction and patient distress. (43) Due to resulting 

(18) alteration in GI function, medical consultation, and specialist 
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referrals ensue, which is followed inevitably by investigations and special 

(more invasive/expensive) investigations e.g. colonoscopy; gastroscopy 

etc. and finally medications are started. This can have a profound effect 

on patients, especially when more sinister diagnoses like neoplasms need 

to be excluded, affecting the patient’s social domain (green arrow).  

 

 

Figure 119 A proposed conceptual-working model, incorporating the dynamic interplay 
of the observed ANS responses with four domains of centrally sensitised patients. 
Illustrated here is the effect of the Clinical domain on that of the Sociological. For the full 
conceptual-model, of which this is a part, see figure 7.8.          (For abbreviations and 
explanation see accompanying text.) 

 

Finally in considering the Sociological (Figure 120 and figure 121 - purple, 

upper-right) domain, the effect of chronic medical symptoms is seen in 

poor quality of life (QoL), (14) commonly due to sleep disturbance, low 

energy/libido, social withdrawal and varying degrees of anhedonia and 

dyshedonia. (45) As a result of this in many cases there are accounts of 

increased sick leave (poor productivity), with increasing ‘tension/stress’ 

at the work place because of this. In extreme instances this leads to the 
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complicated process of ‘dismissal on medical grounds’ and 

disheartening negotiations associated with the turbulent process of 

securing state funded ‘Disability Living Allowance’ and its 

accompanying stigma. ‘Learnt helplessness’ and deskilling 

externalisation of the individual’s locus of control is also seen in cases, 

(14) which then contribute to poor interpersonal relationships, with 

increased strain and dependence on the individuals’ families and/or 

caregivers (‘carers fatigue’), which due to mounting desperation can 

lead to an increase in consultation behaviour, and resulting poor doctor-

patient relations. (15) Patients’ (19) adaptive or maladaptive behaviours 

are influenced to a great extent by the actual, or perceived sociological 

environment which can range from ‘safe’ to ‘life threatening’, 

determining in turn how they cope with and deal with inevitable (A) life 

events (35) and its subsequent demand on the psychological domain 

(purple arrow), bringing one full circle to where the discussion began.  

 

 

Figure 120 A proposed conceptual-working model, incorporating the dynamic interplay 
of the observed ANS responses with four domains of centrally sensitised patients. 
Illustrated here is the effect of the Sociological domain on that of the Psychological. For 
the full conceptual-model, of which this is a part, see figure 7.8.     (For abbreviations 
and explanation see accompanying text.) 
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A consilient view would entail the “weaving together” of all the 

constituent parts and their respective models as highlighted throughout 

the discussion, into  one united perspective as illustrated in figure 121 

below. It is then that (i) the ANS responses observed’s true context and 

impact can fully be appreciated and (ii) the circular re-enforcing nature 

of the interactions becomes evident. The circular re-enforcement is of 

particular note, as over time its spiralling course can produce the full 

complement of the chronic/perpetuating biopsychosocial factors 

observed in some of the extreme “heart-sink”- or -“revolving-door” VPH 

patients, that can place a considerable burden on personal, 

professional, financial and even national resources. (16) Finally, it could 

assist in the earlier ‘pro-active’ identification of individual key areas that 

could be specifically targeted. This could potentially reduce 

inappropriate referrals and guide more timely clinically relevant referrals 

and cost effective multidisciplinary interventions. 
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Figure 121 A new holistic, hierarchical, integrated conceptual-working model, 
incorporating the dynamic interplay, of four domains; Psychological, Physiological, 
Clinical & Sociological; along with the incorporation of the novel physiological (ANS) 
regulatory mechanisms as observed in this study. The interplay of factors affecting 
patients with chronic visceral pain hypersensitivity (VPH) disorders, as seen in clinical 
practise can be better understood, as in extreme cases they can exhibit the ‘full 
compliment’ of the biopsychosocial triumvirate.          (For abbreviations and 
explanation see accompanying text.) 

 

7.7 Implications on therapeutic approaches  

 

7.7.1 Psychopharmacology 

Despite laudable progress in gastrointestinal neuroscience research, 

directed towards describing the culpable mechanisms that account for 

development of visceral pain, in conjunction with considerable 
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investment in drug development, translation into tangible 

pharmacological improvements in patient outcomes have remained 

poor. (51, 338) Moreover, given that the contemporary pharmacological 

armamentarium has limited efficacy, and in some cases marked 

concerns regarding safety, (339) it comes as no surprise that the 

multidisciplinary approach utilising a number of psychosocial and 

psychophysiological treatments has been used in the treatment of 

visceral pain. (340, 341) However it is already common practice for 

antidepressants to be used for chronic functional pain disorders. The 

circular observations of visceral pain inducing dyshedonia, and the 

response of negative emotional context e.g. stress and anxiety 

enhancing the visceral hyperalgesia induced provides rationale for how 

antidepressant therapy works. This is relevant for both pharmacological 

and psychological therapies. Because there is a clinical tendency to 

focus on more typical “anti-nociceptive” treatments in functional 

syndromes, whereas evidence suggests that co-morbid emotional 

problems are under diagnosed and undertreated, (364, 365) which if left 

untreated may then lead to less effective treatment responses and 

outcomes. The implication suggested by this thesis is that rather than 

treating either pain or emotion, both need to be simultaneously 

addressed, as they are mutually re-enforcing.  

 

7.7.2 Psychotherapy 

The results from this thesis would suggest the incorporation of the 

behavioural intervention of “paced deep breathing” as part of a 

therapeutic ‘package’ aimed at patients where VPH is suspected. In 

study 4 (the placebo controlled /atropine challenge study), it was 

observed that in both arms of the study there was modulation of the 

induced sensitisation and hyperalgesia suggesting that the non-specific 

(psychological/placebo-effect) component of deep breathing 
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produces analgesia that can modulate spinal nociception and thus 

influence the development of central sensitisation and hyperalgesia. 

(366) This may relate to activity in supraspinal pain modulatory systems 

involving opioids. (367) The behavioural interpersonal interaction may be 

activating these systems by the higher cognitive factors of the 

intervention such as distraction, expectation and anticipation, 

transmitting its effects ‘downstream’ to the spinal dorsal horns to have an 

impact on the development of central sensitisation through the 

modulation of chemical signalling and receptor function. The fact that 

acid-induced sensitisation can be modulated by the non-specific 

(psychological/placebo-effect) component of deep breathing confirms 

that supraspinal mechanisms are important and should also be 

incorporated in treatment interventions modulating pain sensitivity.  

 

However in study 4 the ‘paced deep breathing’ demonstrated efficacy 

over and above that of the atropine’s ‘knock-out’ arm in spite of also 

receiving the nonspecific therapeutic elements associated as above, by 

being “paced”. This strongly suggests that the increased CVT tone per se 

adds additional analgesia in central sensitisation induced VPH, and thus 

could provide additional ‘direct’ clinical efficacy in symptom reduction. 

The intervention could still continue to offer the more traditional ‘indirect’ 

therapeutic use of deep breathing in reducing levels of subcortical and 

visceral arousal, by means of the so-called “calming breath” (368) and 

induction of the “relaxation response”. (369) The results of studies 2 and 4 

could also be applied clinically by using the deep breathing intervention 

in patients undergoing biofeedback training for pain-related diseases. 

Deep breathing techniques may also be used in a variety of chronic 

pain states, which are characterised by clear limitations in response to 

drug treatment, and can be tailored to the individual needs of each 

patient. Furthermore, since the modulation is physiological rather than 
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pharmacological, the treatment is not associated with any negative 

health side effects. 

 

If this is combined with mindfulness (370) and mentalisation strategies, 

(362, 371) the alexithymia, attachment vulnerability and its associated 

misappropriated somatic tension and subsequent activation of the EMS, 

indicated by this thesis, could also be addressed. With regard to the 

attachment vulnerability, more therapeutic skill would be required 

however, as it would suggest the facilitation of the patients’ ability to 

interpret their ‘intrinsic somatic-emotions’ by developing a coherent 

extrinsic life narrative, that incorporates a prefrontal mentalisation22 of 

the subcortical/brainstem arousal patterns/symptoms, and its resulting 

interpersonal implications. Dan Siegel coined the term ‘mindsight’ to 

describe this ability, and states, originally with regard to better parenting, 

but applying equally to pain management, the following:  

 

“A coherent life story is one in which the adult has made sense of 

his or her own childhood experience […or visceral pain symptoms] 

and has insights into how that past has influenced his or her 

development as an adult and as a parent […or patient]. Making 

sense is revealed in a flexible and reflective narrative that is 

predictive of that adult’s child having a secure attachment, […or 

being able to demonstrate better cortical pain regulation in 

chronic sensitising pain conditions].”(373) 

  

                                                        

22 Mentalisation; defined generally as: (i)“To make mental in nature, rather than 
physical”, or in psychology as: (ii) “To understand the behaviour of others as a product 
of their mental state.” 372. Wiktionary. Mentalisation. 
http://enwiktionaryorg/wiki/mentalize. 2013.  
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This mentalisation aspect combined with CBT (374), interpersonal (375) or 

hypnotherapeutic (376, 377) interventions in conjunction with the 

behavioural ‘paced deep breathing’ component would seem to be 

addressing the ‘area of overlap’ in the four domains as referred to in the 

proposed conceptual model above, suggesting the area of ‘most 

return’. (Figure 117) This is where with the least amount of resource input, 

applied to the most relevant clinical areas of this specific patient group, 

could potentially deliver the most cost effective clinical outcomes, as 

illustrated in figure 122. This hypothesis needs to be developed and 

tested with more clinically based research. 

 

Figure 122 Illustrated is an example of a possible new proposed psychotherapy 
treatment, as suggested by this thesis: “Mentalised Paced-Breathing Therapy” (MPT), 
incorporating four distinct psychotherapeutic modalities, as components to a 
therapeutic ‘package’ specifically designed to affect the “area of overlap” of the 
psychological, physiological, clinical & sociological domains; as seen in patients with 
chronic visceral pain hypersensitivity disorders.  
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7.8 Limitations of the oesophageal model 

The amount of practical, established models of injury-induced visceral 

hyperalgesia in humans is limited. Amongst them, the acid induction 

model of OPH, which I used in these studies, is particularly well validated. 

Having been used now in several significant studies’ by a variety of 

independent research groups, considerable experience and data have 

been accumulated with this model. It has provided insights into the 

mechanisms of central sensitisation and the pathophysiology of pain 

hypersensitivity in a number of different FGIDs, e.g. NCCP. There are 

inevitably limitations to any model, no matter how validated, and this 

one is not an exception. These limitations should be appreciated before 

the extrapolation of conclusions to patient populations. 

 

7.8.1 Nature of the sensitising stimulus 

Experimentally, the model consists of a 30-minute infusion of 0.15M HCl in 

the distal oesophagus, which then induces secondary hyperalgesia in 

the non-acid exposed proximal oesophagus. Short-lived pain 

hypersensitivity is produced, with a mean normalisation of nociception 

within 8 hours. (177) This is most likely due to the acute stimulation of 

oesophageal nociceptors such as TRPV1 and ASIC, due to the action of 

the acid giving rise to subsequent induction of spinal central sensitisation, 

which then affects the observed hyperalgesia. With the completion of 

the acid infusion, the noxious stimulus and peripheral drive is removed, 

thus allowing receptor function and the nociceptive processing to 

normalise.  

 

Clinically however, pain hypersensitivity is often a persistent finding in 

patients with functional gastrointestinal disorders. In patients with PI-IBS for 

example, hyperalgesia persists long after the resolution of a previous 
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infectious insult, most likely due to the nociceptive circuits remaining 

active. In previous studies using this model of OPH, gastroscopies were 

performed within 12 hours of experimental acid infusion, (179) which did 

not shown histological evidence of inflammation. Although increased 

cytokine production and receptor translation at the infusion site cannot 

be ruled out, the processes that would be clinically induced in chronic 

gastro-oesophageal reflux disease is most likely to be significantly 

different to those seen in subjects.  

 

Thus, the model’s short duration of induced hyperalgesia, together with 

the lack of any identifiable inflammatory response, would suggest it 

being more reflective of an acute form of “activity dependent” central 

sensitisation. Clinically this form of sensitisation is initially of significance in 

the development of visceral pain hypersensitivity, and hence this model 

is limited in providing information on the mediators of chronic changes in 

synaptic plasticity following injury. Accordingly the relevance of this 

model of OPH has limitations when applied to states characterised by 

long-term post-injury pain hypersensitivity. As it would clearly be unethical 

to develop a model of chronic post-injury pain hypersensitivity in humans, 

this problem deserves further consideration. 

 

As chapters 3 to 6 showed that acid infusion per se was associated with 

increased unpleasantness and anxiety scores, the aversive nature of the 

acid infusion needs also to be considered, as it raises the possibility that 

any sensory or autonomic changes observed might be significantly 

driven by psychological factors. Generalised hypervigilance as being the 

mechanism of observed visceral hyperalgesia can be ruled out, as the 

lack of change in pain threshold on the foot after oesophageal acid 

argues convincingly against this. Selective hypervigilance to visceral 

stimulation however, cannot be completely disqualified. Previous studies 
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with proximal oesophageal evoked potentials following distal 

oesophageal acid infusion have shown a decrease in latency of the 

early components (related to sensory discrimination) with no change in 

the late components (related to cognitive evaluative factors e.g. 

vigilance), (378) which would argue against visceral hypervigilance 

being the mechanism of acid-induced hyperalgesia in the model. 

 

7.8.2 Nature of the pain stimulus 

Oesophageal pain threshold testing in the model is achieved by means 

of electrical stimulation. This modality offers practical beneficial 

characteristics that include: (i) ease of administration, (ii) reproducibility 

(iii) well-defined onset and offset, and (iv) an ensured short latency to 

afferent fibre stimulation. (179) On the other hand, a potential criticism of 

this modality is that it is not as physiological as other modalities in use, like 

for instance mechanical distension or thermal stimulation.  

 

A second negative characteristic of electrical stimulation is that it directly 

depolarises all classes of primary afferents and hence bypasses any 

peripheral receptor mediated transduction, and thus the activity in 

specific nociceptors cannot be inferred. (51) This said, the modality 

remains effective in assessing the contributions of mediators to spinal 

pain processing, allowing for clear information with regard to central 

sensitisation mechanisms. As other modalities may be associated with 

different psychological and/or autonomic effects, it would be prudent in 

future research to replicate some of the findings in this study with 

multimodal oesophageal stimulation. Studies of this kind might provide 

more clinically relevant characterisation of oesophageal sensory 

processing at baseline and after acid sensitisation. 
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7.8.3 Reproducibility, Carryover and Period effect of the model 

Although previous studies with the model (53, 177) did not show 

significant intra-study change in the degree of sensitisation to suggest an 

order effect and as such demonstrated good repeatability of the 

magnitude of acid-induced sensitisation within studies. The data 

presented in this thesis has however reproduced results found on at least 

one occasion using this model. (179) This would suggest that when 

sensitisation is examined across studies, i.e. involving longer periods of 

time with the same subject cohort (more interval studies), the degree of 

acid-induced hyperalgesia might diminish on subsequent studies. 

 

The mechanism of this habituation is unknown but could relate to a 

variety of peripheral and central factors. Neurologically, receptor 

desensitisation – and – down-regulation, increased descending spinal 

pain inhibition, and reduced pain facilitation may reduce neuronal-

sensitivity responses on repeated study. Psychologically, there is a 

gradual reduction of the dopaminergic attenuated ‘novelty response’ 

that affects the quality of subject attention. Due to anxiety habituation 

brought about through repeated behavioural exposure the subjects’ 

emotional valance is also gradually diminished.  Finally, with repeated 

visits due to familiarity, unavoidable changes are facilitated in the 

interpersonal response between research staff and subjects that could 

also have an increasing longitudinal effect.  

 

During the design of the studies in this thesis, the potential of the carry-

over effect was debated in some detail and it was decided that a 

period of at least 2 weeks would address this concern from a standpoint 

of pragmatism. (379) The meantime between visits was 3 weeks 4 days 

(range 2 weeks 1 day – 4 weeks 5 days) for studies 2 and 4 and therefore 

the likelihood of any carry-over effect is small. As is highlighted in the 
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paper by Mills et al. there is an argument that the carry-over effects of 

interventions across periods as carry-over effects are rare and moreover 

statistical manipulation per se cannot address the impact of a carry-over 

effect as they are often under-powered. (379-381)  

 

Further it is hence recommended that subjects are not studied regularly, 

and that sufficient time intervals between studies are scheduled, such 

that participation in studies remains as far as possible a novel 

experience. Randomised double-blind cross-over study formats are here 

important, with possibly novel “unknown examiners” introduced in the 

later phases of study, that might help to reduce the development of 

encountered order effects. 

 

7.8.4 Applicability of the Results to Clinical Populations 

The studies presented in this thesis have all been performed in healthy 

volunteers, and thus from a psychophysiological perspective it is a 

prerequisite to draw attention to the likelihood of significant differences 

between these individuals and patients with functional gastrointestinal 

disorders. Additionally, there may be further psychological variation 

between volunteers and healthy individuals who do not seek study 

participation. Factors such as anxiety, past experience and openness to 

new experiences may be relevant. Further the model used to explore 

oesophageal sensitivity in these studies is of an acute nature, yet the 

illnesses seen clinically are chronic. Necessarily in using this model, 

research findings’ direct applicability to clinical populations are 

informative, but remains speculative and should be done judiciously. 

 

On the other hand, the oesophageal acid model has been extensively 

validated as a reproducible model of central sensitisation in healthy 
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individuals, and has already shown clinical validity in some conditions. 

For example in patients with NCCP, using this model, exaggerated 

hyperalgesia to acid infusion was demonstrated. (175, 178) Additional 

factors that could also be observed during these studies, were 

accompanying reductions in latency of the early oesophageal evoked 

potential components; suggestive of heightened central sensory 

processing in these patients. As such, the model has some relevance to 

patients with states characterised by oesophageal hypersensitivity and 

can provide useful information, especially in the development of acute 

post acid injury induced central sensitisation. A possible mechanism 

proposed by Sharma, for the development of oesophageal 

hypersensitivity in these patients, could be: 

“… that repeated episodes of acid reflux induce peripheral and 

central sensitisation; the latter may then persist in susceptible 

individuals despite removal of the acid stimulus by appropriate 

[pharmacological] therapies. Subsequent small volumes or sub-

clinical acid exposure may then be sufficient to maintain 

sensitisation and result in sensory dysfunction manifesting as 

hyperalgesia and allodynia.”(179) 

Finally, the research in this thesis doesn’t directly provide an explanation 

for symptoms or hypersensitivity in the group of FGID that is preceded by 

infection or inflammation. In these cases it would focus only on the 

hypersensitivity component of these conditions, which is found in post 

infective hypersensitivity as well as in hypersensitivity de novo. 

 

7.8.5 Validity and Reproducibility of CVT and the Neuroscope 

Central to the findings of this thesis is the validity and reliability of cardiac 

vagal tone (CVT) and the instrument/method by which it was measured. 

Due to the methodological shortcomings of the traditionally established 
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techniques of measuring autonomic nervous system tone (see 2.12, 

page 96), a commercially available biosignals acquisition system known 

as a “Neuroscope” was used to measure and record cardio vagal tone 

(CVT) in this thesis. The Neuroscope is unique in using a process called 

“phase demodulation” to derive at a measure of cardiac vagal control 

(CVC), and hence to calculate CVT. (226) It is measured in standardised 

units on a Linear Vagal Scale (LVS), where 0 was derived from fully 

atropinised healthy human volunteers. (219) CVT has been 

demonstrated to both a sensitive and specific measure of vagal tone, 

comparable to other indices derived from analysis of heart rate 

variability, (10) and has also been demonstrated to be a reproducible 

measure of parasympathetic nervous system tone over a period of 1 

year. (382) The measurement of cardiac vagal tone has been 

increasingly utilised as a research tool for deriving PNS tone across a 

diverse range of research themes. (271, 311, 383)  

 

The technique and concept of CVT is of interest but not without 

conceptual concerns, particularly as there is a paucity of clinical data 

evaluating patients with known dysfunction of the autonomic nervous 

system using this technique. Similarly to HRV measures, this technique 

does not actually measure vagal tone per se but high-frequency 

modulation of HR. Thus it is based on an identical physiological concept 

as HRV, resting upon the assumption that the short latency of HR 

responses to blood pressure changes reflects the vagal limb of the 

baroreflex arc, in contrast to the longer latency of HR responses due to 

sympathetic activation/deactivation.  

 

Moreover, a continued conceptual concern of all techniques using 

heart rate variability as a surrogate marker of autonomic tone are, by 

definition, derived from cardiotropic parameters. Therefore, their direct 
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applicability and correlation to the autonomic tone occurring at the 

proximal and mid regional and mucosal level of the GI tract is largely 

unknown and warrants further systematic investigation. For instance, it 

would be interesting to concomitantly measure HRV parameters of vagal 

tone in association with other objective physiological markers in the gut. 

For instance one could measure pancreatic polypeptide as its excretion 

is exclusively under vagal control. In addition, it would also be possible to 

measure transient relaxations of the lower oesophageal sphincter as 

these occur as a sequelae of the vago-vagal reflex. Nevertheless, whilst 

these studies remain to be performed, cardiotropic measures do offer a 

potential insight, until further refinement via future technologies. 

 

7.8.6 Study-design and Statistical limitations 

This thesis explores by using a randomised crossover trial design to derive 

the main hypothesis testing study findings. The study design and the 

choice of statistical analysis used could have some methodological 

limitations that deserve attention.  Of note is the use of statistical 

methods for repeat measures in the crossover analyses (i.e. liner mixed 

models), as opposed to the preferred intention to treat analyses, where 

all patients randomised are analysed, despite the intervention they 

actually received. The potential shortcoming could be that the ‘per-

protocol’ analyses may bias the results and may be seen to be used only 

for the rationale that the latter reveals statistical significance and thus of 

interest to be reported; whereas  an additional intention to treat analyses 

would be possibly more appropriate to improve scientific rigor. (384-386) 

Convention would encourage presenting the results with non-sensitisers 

and, if not done, to justify the rationale and to illustrate what the results 

would be if non-sensitisers were included and how the lack of data on 

non-sensitisers could have influenced the results. 
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Even though a “per protocol analysis” could potentially bias the results 

and notwithstanding the fact that this is of paramount importance in 

crossover trials as highlighted in the literature, (384-386) however, these 

principles are not directly applicable to the hypothesis testing studies in 

this thesis. If one considers the relevant studies in turn:  

Study 2 - The study design was such that sensitisation/non-sensitisation 

was defined on the results obtained from the study visit in which the 

participants were exposed to the ‘sham breathing’ arm. If participants 

were randomised to the sham breathing intervention during the first visit 

of study 2, they were excluded and did not attend study 2’s second visit 

where deep breathing would have been studied (see figure 69, page 

206). Conversely, subjects who were randomised to the deep breathing 

intervention during the first visit, and underwent the deep breathing 

protocol during the second visit, could potentially have been included in 

an “intention to treat” analysis. However, it was actively chosen not to 

include this data for the following reasons: 

1. As not all non-sensitisers were exposed to both visits, it was 

deemed not appropriate to present an analysis on a proportion of 

these participants, as this would introduce an element of bias in 

the analysis de novo. 

2. Non-sensitisers were defined as having no reduction, or a 

reduction of <6 mA in proximal oesophageal PT, after acidification 

and therefore such subjects do not display secondary 

hyperalgesia in response to the acid infusion model. Thus, the anti-

hyperalgesic/analgesic effect of deep breathing cannot be 

assessed in this subgroup as they do not sensitise to the stimulus.   

3. If one had included this subgroup in our analysis, it may have 

conversely over-estimated the effect of ‘deep breathing’ and 

‘sham breathing’ as these participants did not sensitise. 
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Study 4 – In study 4, there was a screening visit, after which the non-

sensitising participants were excluded and therefore these subjects were 

not exposed to the ‘deep breathing’ or atropine treatment arm. The 

design of this study included a screening visit as it was judged 

inappropriate and unethical to expose healthy participants to intra-

venous atropine if they were going to be excluded. Hence an “intention 

to treat” analysis would also be inappropriate for similar reasons as stated 

above.  Future studies will have to account for this with improved 

designs. 

 

7.9 Future Directions 

In this thesis I concentrated on using atropine as a muscarinic antagonist 

to enhance visceral pain perception. A future line of enquiry using 

pharmacological agents would be to focus on muscarinic agonists, to 

increase the PMS activity. Alternatively the focus should be on reducing 

the SNS activity by means of modulating catecholamine function. Here 

Alpha 2 agonists: (clonidine) stimulate presynaptic alpha 2 receptors to 

mediate feedback inhibition of noradrenaline release.  Postsynaptic 

alpha 2 receptors in the vicinity of the NTS and rostroventrolateral 

medulla are important determinants of sympathetic outflow. Clonidine 

acts on these receptors to significantly reduce sympathetic outflow to 

the cardiovascular system to cause hypotension and bradycardia. On 

the other hand, Beta agonists: Stimulation of both beta 1 and 2 receptors 

(isoproterenol) increase cardiac contractility, heart rate and cardiac 

output. Beta antagonists: Propanolol is a competitive inhibitor of 

sympathomimetic amines at both beta 1 and beta 2 receptors and 

therefore counteracts the effects of isoprenaline. It reduces heart rate, 

contractility and blood pressure.  
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Hence clonidine and beta-blockers has the potential of acting like 

pharmacological agents producing similar effects to "paste deep 

breathing". Of these clonidine offers the most potential, because of its 

ease of administration, high bioavailability and for its future potential 

therapeutic role. A proposed study could be to use clonidine in this 

model of acid induced VPH, where clonidine will be administered orally 

at a single dose of 5.5 micrograms/kg. Side effects should be monitored 

and the subjects could be given cognitive tasks to perform to control for 

the sedative effects of clonidine.  

 

Further, the factors regarding the healthy volunteers who in spite of 

repeated acid infusion and stress modulation still failed to sensitise, 

remains unclear.  Although some light was shed on possible aspects 

associated with this group in study 3, as such it represents a beginning, 

but more experimentation using this model is still necessary to fully 

understand their phenotype. Potential research here would be to repeat 

acid exposure studies, but this time using a different more effective 

psychological stressor. To date strategies recalling past sad life events, 

(179) as well as exposing subjects to pictures of different emotive faces 

at time of acid exposure, have been proven constructive and could 

offer better opportunities of eliciting more explicit physiological results. 

(268) A second line of enquiry could be to antagonise their endogenous 

opioid systems with naloxone prior to acid infusion in order to determine 

whether sensitisation could then be induced. 

 

The clinical applicability of the results in this thesis remains to be explored. 

The findings of studies 2 and 4 confirmed that autonomic control plays a 

prominent role in the development of central sensitisation and that by 

increasing vagal tone, induced visceral pain hypersensitivity can 

effectively be reversed. These results are encouraging, but remain 
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speculative, as they represent laboratory findings of an acute exposure 

in a healthy volunteer group. Of importance is now to replicate these 

outcomes in patients with chronic visceral pain syndromes. A suggested 

initial study here would be, by using a marker of oesophageal sensitivity, 

to compare the introduction of ‘paced breathing’ in patients in a 

laboratory setting. If these findings remain positive, a further clinical study 

incorporating the ‘paced breathing’, as a component of a specially 

designed treatment strategy in actual patients should be undertaken. A 

potential study that needs to be concluded in the clinical setting would 

be a three tiered randomised control trial, whereby the ‘paced 

breathing treatment intervention’, is compared to a ‘placebo control’ 

using similar psycho-education, but replacing the breathing-component 

with a standard ‘relaxation intervention’, and the medical treatment as 

usual. A second important clinical study would be a ‘head-to-head’ 

comparison study of the ‘paced breathing treatment intervention’ with 

an intervention with proven efficacy like for instance hypnotherapy. The 

impact and cost-effectiveness of treatment strategies should then be 

assessed and compared.  

 

The literature supports the notion that psychophysiological factors e.g. 

trait anxiety and neuroticism, influence an individual’s visceral pain 

sensitivity and tendency to develop post-injury OPH. This thesis goes on to 

imply that these factors are also influenced by alexithymia and 

attachment vulnerability. The data presented would suggest that an 

awareness of these issues might assist in more effective patient 

management, as it has the potential to identify likely patients at higher 

risk of developing chronic pain in individuals suffering with acute visceral 

pain. It could also assist distinguishing between patients who might cope 

poorly with chronic pain, and those who may have difficulty in engaging 

with healthcare services, affecting prognosis and potential healthcare 
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costs. Thus, regarding this issue further powered studies are also required 

to confirm the novel but putative observations concerning the 

alexithymia/attachment association with central sensitisation and in OPH 

patients. A potential study that could clarify this would be an 

epidemiological based cohort study. Here all first attender patients at a 

designated specialist gastroenterology clinic would undergo routine 

alexithymia/attachment profiling, with subsequent outcome follow-up 

relating to diagnosis, treatment and prognosis. A correlation between 

trait vulnerability and outcome could then be highlighted and its clinical 

presence confirmed. A similar study could also be done in a match 

control group in a related medical/surgical clinic to probe if potential 

correlations are specific FGIDs or a general medical finding.  

 

Finally, regarding genetic profiling, it will suffice to say here that it will 

always be a high priority in pain research and all opportunities to possibly 

identify genetic factors should be pursued. 

 

7.10 Conclusions 

The studies in this thesis have investigated the psychophysiological 

modulation of autonomic responses involved in acid-induced 

oesophageal pain hypersensitivity.  

 

My studies suggest that an important role is played by the autonomic 

control in the development of central sensitisation, and demonstrated 

that by increasing PNS tone, induced visceral pain hypersensitivity can 

effectively be reversed. In addition it also demonstrated that the 

processes that determine the development and magnitude of post-injury 

pain hypersensitivity in the human viscera are complex and intertwined. 

Cognitive factors such as anxiety, alexithymia and attachment status 
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influence supraspinal mechanisms and autonomic responses, which in 

turn modulate the development and degree of central sensitisation in 

the viscera. Certain individuals may also be predisposed to greater injury-

induced sensitisation in the viscera based on their psychophysiological 

and genetic profiles.  

 

The development of effective therapies for patients with FGID requires 

the clear understanding of the relevant psycho-pathophysiological 

processes involved and their modulating interactions. Due to the 

complexity of these processes the incorporation of effective 

characterisation of at risk phenotypes and development of specifically 

tailored treatment strategies, may be the key to developing targeted, 

effective and cost-effective therapeutic agents in patients with chronic 

visceral pain syndromes.  

 

Hence in conclusion, the modern physician, just like in the time of 

Hippocrates, may once again make little distinction between emotional 

and physical wellbeing, (2) as physical and mental concepts are once 

again being interchanged and found to be equally relevant at 

procuring diagnosis and cure; but now with greatly increased awareness 

and respect for the complex-intertwined nature of the ‘body/mind’. (3) 
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Appendix One 

 

Additional Technical Specifications 

1. Bespoke naso-oesophageal catheter 
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2. Dimensions of electrical stimulation paradigm 
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Appendix Two 

 

Psychological Assessment Questioners 

 

1. Big Five Inventory (BFI)  
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2. The Weinberger Adjustment Inventory (WAI) 

(Not shown here) 
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3. Toronto Alexithymia Scale (TAS- 20)  

Toronto Alexithymia Scale (TAS-20) 
The TAS-20 utilizes a five-point Likert scale with five of the items inversely scored. It is 
hand scored with a maximum score of 100. It uses cutoff scoring: equal to or less than 
51 = non-alexithymia, equal to or greater than 61 = alexithymia. Scores of 52 to 60 = 
possible alexithymia. The maximum scores for each of the subscales are: Factor 1 (7 
items): 35; Factor 2 (5 items): 25; Factor 3 (8 items): 40. There are no cutoff scores 
established for each of the three factor subscales. 

F1 - Difficulty Identifying Feelings 

 1.   I am often confused about what emotion I am feeling. 

 3.   I have physical sensations that even doctors don’t understand. 

 6.   When I am upset, I don’t know if I am sad, frightened, or angry. 

 7.   I am often puzzled by sensations in my body. 

 9.   I have feelings that I can’t quite identify. 

 13. I don’t know what’s going on inside me. 

 14. I often don’t know why I am angry. 

 

F-2 - Difficulty Describing Feelings 

 2.   It is difficult for me to find the right words for my feelings. 

 4.   I am able to describe my feelings easily. 

 11. I find it hard to describe how I feel about people 

 12. People tell me to describe my feelings more. 

 17. It is difficult for me to reveal my innermost feelings, even to close friends. 

 

F-3 - Externally-Oriented Thinking 

 5.   I prefer to analyse problems rather than just describe them. 

 8.   I prefer to just let things happen rather than to understand why   

they turned out that way. 

 10. Being in touch with emotions is essential. 

 15. I prefer talking to people about their daily activities rather than their feelings. 

 16. I prefer to watch “light” entertainment shows rather than psychological 
dramas. 

 18. I can feel close to someone, even in moments of silence. 

 19. I find examination of my feelings useful in solving personal 
 problems. 

 20. Looking for hidden meanings in movies or plays distracts from their 
enjoyment. 

  Note: Items 4, 5, 10, 18, and 19 are inversely keyed. 
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Development of the TAS-20 
 In the absence of valid and reliable instruments to measure the 
alexithymia construct, Taylor, Ryan and Bagby (1985) devised the original self-
report Toronto Alexithymia Scale (TAS). They used both empirical and rational 
methods in scale construction, initially defining five domains of alexithymia: (a) 
difficulty describing feelings, (b) difficulty distinguishing between feelings and 
accompanying bodily sensations, (c) lack of introspection, (d) social conformity, 
and (e) impoverished fantasy life and poor dream recall (Taylor et al., 1997). 
Responses were rated with a 5-point Likert scale ranging from ‘strongly 
disagree’ to ‘strongly agree’. After factor and item analysis, the 41 item 
questionnaire was pared to 26 items and four domains that were more 
theoretically consistent with the alexithymia construct. These four domains, or 
factors, were: Factor 1 (F1) difficulty identifying and distinguishing between 
feelings and bodily sensations, Factor 2 (F2) difficulty describing feelings, 
Factor 3 (F3) reduced daydreaming, and Factor 4 (F4) externally oriented 
thinking.  
 While studies demonstrated support for the discriminant and convergent 
validity of the TAS, and the psychometric properties of the TAS were a 
considerable improvement over other available instruments, the construction of 
the TAS prompted refinement of the alexithymia construct and its essential 
facets. Daydreaming, for example, was determined to negatively correlate with 
the first factor (Taylor et al., 1997). In 1992 the attempt at scale reconstruction 
led to the development of a revised, 23 item self-report scale, the TAS-R. 
Continuing shortcomings with the scale prompted further examination of its 
compositional structure. There was high correlation between factors 1 and 2, 
and several items cross-loaded on each factor. Further revision resulted in the 
TAS-20 (Bagby, Parker &Taylor, 1994; Bagby, Taylor & Parker, 1994), a 20-
item self-report scale consisting of 3 factors: Factor 1 (F1) difficulty identifying 
feelings, Factor 2 (F2) difficulty describing feelings, and Factor 3 (F3) externally-
oriented thinking. These three factors represent essential intercorrelated traits 
that are theoretically congruent with the alexithymia construct. The TAS-20 
eliminates the theoretical overlap of the three factors and the cross-loading of 
items that was a liability in earlier versions, and demonstrates good internal 
consistency and test-retest reliability. “The psychometric properties of the TAS 
provide considerable empirical support for the validity of the alexithymia 
construct” (Taylor et al., p. 49). 
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4. Hospital Anxiety and Depression Scale (HADS)  
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5. Spielberger State (SSAI) and Trait (STAI) anxiety Questionnaire 
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6. Vulnerable Attachment Style Questionnaire (VASQ) 
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Appendix Three 

 

Explanatory note BFI: 

 

 

A summary of the factors of the Big Five and their constituent traits:[1] 

 

1. Extraversion – (outgoing/energetic vs. solitary/reserved). Energy, 
positive emotions, surgency, assertiveness, sociability and the 
tendency to seek stimulation in the company of others, and 
talkativeness. 

2. Agreeableness – (friendly/compassionate vs. cold/unkind). A 
tendency to be compassionate and cooperative rather than 
suspicious and antagonistic towards others. It is also a measure of 
ones' trusting and helpful nature, and whether a person is 
generally well tempered or not. 

3. Conscientiousness – (efficient/organised vs. easy-going/careless). 
A tendency to show self-discipline, act dutifully, and aim for 
achievement; planned rather than spontaneous behaviour; 
organized, and dependable. 

4. Neuroticism – (sensitive/nervous vs. secure/confident). The 
tendency to experience unpleasant emotions easily, such as 
anger, anxiety, depression, or vulnerability. Neuroticism also refers 
to the degree of emotional stability and impulse control, and is 
sometimes referred by its low pole – "emotional stability". 

5. Openness to experience – (inventive/curious vs. 
consistent/cautious). Appreciation for art, emotion, adventure, 
unusual ideas, curiosity, and variety of experience. Openness 
reflects the degree of intellectual curiosity, creativity and a 
preference for novelty and variety a person has. It is also 
described as the extent to which a person is imaginative or 
independent, and depicts a personal preference for a variety of 
activities over a strict routine. Some disagreement remains about 
how to interpret the openness factor, which is sometimes called 
"intellect" rather than openness to experience. 

[1] Atkinson RL, Atkinson RC, Smith EE, Bem DJ, Nolen-Hoeksema S. Hilgard's Introduction to 
Psychology (13 ed.). Harcourt College Publishers. 2000: 437. 
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Appendix Four 

 

 

1. Study 1 – Pilot Study: PNS modulation data on pain reporting 

As part of examining the psychological dimension of the cohort in study 

1, the volunteers’ subjective reporting responses as measured by Visual 

Analogue Scale (VAS) scores during different phases of the experiment 

for pain and unpleasantness was recorded at baseline (T0), during the 

acid infusion, and for time points T60, T90 and T120, and compared 

between visits. With regards to the subjective pain experienced, there 

was no statistical difference between visits, but for the unpleasantness, 

there was some differences detected. Of note is the observation that 

immediately (T60) post Psychological stress induction (green graph, 

Figure ax-4.1(B)), the unpleasantness VAS score was the highest, 7.38 

±1.60(SD), p=0.053, but at T120, it was the lowest, 3.43 ±2.30(SD), p=0.019. 

[p values were calculated relative to there difference with regards to 

Screening visit] A second observation was that for both pain and 

unpleasantness during the acid infusion period, the Deep breathing 

protocol produced the lowest subjective ratings.  
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Figure ax-4.1: Subjective rating A: experienced pain in the proximal 
oesophagus, and B: unpleasantness experienced due to the electrical 
sensitivity stimulus, and acid infusion.  

 

Looking at the relationship between subjective pain and unpleasantness 

reported, and the objective pain-stimulation strength actually 

experienced (experimentally delivered), correlations of note were 

detected. During Screening visit there was a negative correlation 

between the average pain threshold (Avr PT) and for both the reporting 

of pain, r=-0.483 (p=0.049) and unpleasantness, r=-0.42 (p=0.093). (Figure 

ax-4.2(A)) A similar finding was seen during the psychological stress 

induction, with regards to the difference in pain threshold (Δ PT) and the 

subjective reporting of pain, r=-0.787 (p=0.036) with unpleasantness, r=-

0.849 (p=0.016). (Figure ax-4.2(B)) Further analysis revealed that the 

correlation was sensitive to the inclusion/exclusion of an outlying point. 
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When the analysis was repeated after the exclusion of the outlier there 

remained statistical significance for unpleasantness, r=-0.892 (p=0.017), 

but not for pain, r=-0.602 (p=0.206). These correlations imply that the 

lower the volunteers’ pain threshold (Avr PT), or the higher there degree 

of sensitivity (ΔPT) were; the more likely they were of reporting the stimulus 

experienced as more painful or unpleasant.  

 

 

Figure ax-4.2: A: The correlation between average pain threshold (Avr 
PT) and subjective reporting on a visual analogue scale (VAS) during 
screening visit. B: The correlation between the difference in pain 
threshold (ΔPT) and) and subjective reporting on a visual analogue scale 
(VAS) during psychological stress protocol. 
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Study 1 – Pilot Study: Pain reporting data tables  

 

 

Subj.&Pain& && T0& Acid& T60& T90& T120& Subj.&Un5
pleasantness& && T0& Acid& T60& T90& T120&

SV& AVR& 6.28% 3.45% 6.13% 6.72% 6.70% SV& AVR& 5.93% 4.18% 5.70% 5.82% 6.39%

&& SD& 0.87% 2.01% 1.20% 1.41% 1.16% && SD& 1.81% 2.68% 2.11% 1.80% 1.94%

&& SEM& 0.21% 0.49% 0.29% 0.34% 0.28% && SEM& 0.44% 0.65% 0.51% 0.44% 0.47%

&& n& 17% 17% 17% 17% 17% && n& 17% 17% 17% 17% 17%

&& && %% %% %% %% %% && && %% %% %% %% %%

DB& AVR& 6.5% 2.8% 6.65% 6.6% 6.8% DB& AVR& 6.65% 3.20% 6.60% 6.80% 6.95%

&& SD& 0.71% 2.10% 0.88% 1.17% 0.79% && SD& 1.11% 2.57% 1.60% 1.03% 1.01%

&& SEM& 0.22% 0.66% 0.28% 0.37% 0.25% && SEM& 0.35% 0.81% 0.50% 0.33% 0.32%

&& n& 10% 10% 10% 10% 10% && n& 10% 10% 10% 10% 10%

&& p& 0.496% 0.916% 0.244% 0.999% 0.619% && p& 0.134% 0.819% 0.405% 0.031%*% 0.217%

ST& AVR& 6.38% 3.00% 6.67% 6.55% 6.33% ST& AVR& 5.50% 4.23% 7.38% 6.62% 3.43%

&& SD& 0.49% 2.08% 0.47% 0.97% 0.47% && SD& 2.47% 2.52% 1.60% 1.83% 2.30%

&& SEM& 0.18% 0.79% 0.18% 0.36% 0.18% && SEM& 0.93% 0.95% 0.61% 0.69% 0.87%

&& n& 7% 7% 7% 7% 7% && n& 7% 7% 7% 7% 7%

&& p& 0.231% 0.067% 0.103% 0.111% 0.134% && p& 0.656% 0.063% 0.053% 0.377% 0.019%*%

HG& AVR& 6.50% 3.83% 6.63% 6.67% 6.33% HG& AVR& 6.46% 4.00% 6.63% 7.00% 6.29%

&& SD& 0.90% 2.66% 0.83% 0.89% 0.78% && SD& 1.27% 2.56% 1.33% 1.13% 1.25%

&& SEM& 0.26% 0.77% 0.24% 0.26% 0.22% && SEM& 0.37% 0.74% 0.38% 0.33% 0.36%

&& n& 12% 12% 12% 12% 12% && n& 12% 12% 12% 12% 12%

&& p& 0.423% 0.245% 0.253% 0.740% 0.491% && p& 0.099% 0.281% 0.321% 0.017%*% 0.687%

A:% B:%

SV: Screening visit protocol 

DB: Deep breathing protocol 

ST: Stress induction protocol 

HG: Handgrip protocol 
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2. Study 5 – GCH-1 Genetic probe ‘well – table’: 

 

 

Genotypes) Haplotypes)
)) )) Most)Probable) 2nd)Most)Probable) ATG)

55306432) 55360114) 55378966) H)1) H)2) p) H)1) H)2) p)

rs10483639) rs3783641) rs8007267) )) )) )) )) )) )) )) )) )) ))
AM158) 1))1) 1))1) 0))0) 1) 1) )) 1) 1) )) 1) )) )) )) )) )) O/O)
AM101) 1))2) 1))1) 1))1) 1) 1) 1) 2) 1) 1) 1) )) )) )) )) )) O/O)
AM104) 1))2) 1))2) 1))2) 1) 1) 1) 2) 2) 2) 0.993) 2) 1) 1) 1) 2) 2) 0.0068) O/X)
AM106) 1))1) 1))1) 1))1) 1) 1) 1) 1) 1) 1) 1) )) )) )) )) )) O/O)
AM107) 1))2) 1))1) 1))1) 1) 1) 1) 2) 1) 1) 1) )) )) )) )) )) O/O)
AM109) 1))1) 1))1) 1))1) 1) 1) 1) 1) 1) 1) 1) )) )) )) )) )) O/O)

AM110) 1))2) 1))2) 1))2) 1) 1) 1) 2) 2) 2)
0.99314

4) 2) 1) 1) 1) 2) 2) 0.0068) O/X)
AM112) 1))1) 1))2) 1))2) 1) 1) 1) 1) 2) 2) 1) )) )) )) )) )) O/O)
AM113) 1))1) 1))1) 1))1) 1) 1) 1) 1) 1) 1) 1) )) )) )) )) )) O/O)
AM115) 1))1) 1))1) 1))1) 1) 1) 1) 1) 1) 1) 1) )) )) )) )) )) O/O)

AM116) 1))2) 1))2) 1))2) 1) 1) 1) 2) 2) 2) ��

����� 2) 1) 1) 2) 2) 1) �����	��� O/X)

AM117) 1))2) 1))2) 1))2) 1) 1) 1) 2) 2) 2) ��

����� 2) 1) 1) 2) 2) 1) �����	��� O/X)
AM118) 1))1) 1))1) 1))1) 1) 1) 1) 1) 1) 1) 1) )) )) )) )) )) O/O)
AM119) 1))2) 1))1) 2))2) 1) 1) 2) 2) 1) 2) 1) )) )) )) )) )) O/O)
AM121) 2))2) 2))2) 2))2) 2) 2) 2) 2) 2) 2) 1) )) )) )) )) )) X/X)
AM123) 1))1) 1))1) 1))1) 1) 1) 1) 1) 1) 1) 1) )) )) )) )) )) O/O)
AM124) 1))1) 1))1) 1))1) 1) 1) 1) 1) 1) 1) 1) )) )) )) )) )) O/O)

AM125) 1))2) 1))2) 1))2) 1) 1) 1) 2) 2) 2) ��

����� 2) 1) 1) 2) 2) 1) �����	��� O/X)

AM126) 1))2) 1))2) 1))2) 1) 1) 1) 2) 2) 2)
0.99314

4) 2) 1) 1) 2) 2) 1) 0.006856) O/X)
AM127) 1))2) 2))2) 2))2) 1) 2) 2) 2) 2) 2) �� )) )) )) )) �� O/X)
AM128) 1))1) 1))1) 1))1) 1) 1) 1) 1) 1) 1) 1) )) )) )) )) )) O/O)
AM129) 1))1) 1))1) 1))1) 1) 1) 1) 1) 1) 1) �� )) )) )) )) �� O/O)
AM130) 1))1) 1))1) 1))1) 1) 1) 1) 1) 1) 1) 1) )) )) )) )) )) O/O)
AM133) 0))0) 1))2) 1))2) 0) 1) 1) 0) 2) 2) �� )) )) )) )) �� O/X)
AM134) 1))1) 1))1) 1))1) 1) 1) 1) 1) 1) 1) 1) )) )) )) )) )) O/O)
AM138) 0))0) 0))0) 1))1) 0) 0) 1) 0) 0) 1) �� )) )) )) )) �� O/O)

AM141) 1))2) 1))2) 1))2) 1) 1) 1) 2) 2) 2) ��

����� 2) 1) 1) 2) 2) 1) �����	��� O/X)
AM144) 1))1) 1))1) 1))2) 1) 1) 1) 1) 1) 2) �� )) )) )) )) �� O/O)
AM146) 1))1) 1))1) 1))2) 1) 1) 1) 1) 1) 2) �� )) )) )) )) �� O/O)
AM147) 0))0) 0))0) 0))0) )) )) )) )) )) )) )) )) )) ))
AM148) 1))1) 1))1) 1))1) 1) 1) 1) 1) 1) 1) �� )) )) )) )) �� O/O)
AM150) 1))1) 1))1) 1))1) 1) 1) 1) 1) 1) 1) �� )) )) )) )) �� O/O)
AM151) 1))1) 1))1) 1))2) 1) 1) 1) 2) 1) 1) �� )) )) )) )) �� O/O)
AM152) 1))1) 1))1) 1))1) 1) 1) 1) 1) 1) 1) �� )) )) )) )) �� O/O)

AM153) 1))2) 1))2) 1))2) 1) 1) 1) 2) 2) 2)
0.99314

4) 2) 1) 1) 2) 2) 1) 0.006856) O/X)

AM155) 1))2) 1))2) 1))2) 1) 1) 1) 2) 2) 2)
0.99314

4) 2) 1) 1) 2) 2) 1) 0.006856) O/X)
AM162) 1))1) 1))1) 1))1) 1) 1) 1) 1) 1) 1) �� )) )) )) )) �� O/O)

AM164) 1))2) 1))2) 1))2) 1) 1) 1) 2) 2) 2)
0.99314

4) 2) 1) 1) 2) 2) 1) 0.006856) O/X)
AM166) 1))1) 1))1) 1))1) 1) 1) 1) 1) 1) 1) 1) )) )) )) )) )) )) )) O/O)

Haplotype)Frequecies)
Haplotype) Haploview)

Obs) Freq)
1)111) )) 0.69)
2)222) )) 0.19)
3)112) )) 0.06)
4)122) )) 0.03)
5)211) )) 0.03)
6)212) )) 0.01)
7)110) )) ))
8)011) )) ))
9)022) )) ))

10)001) )) ))

3’# 5’#
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3. Study 5 - HADS profiling data: 

 

 

 

 

 

n" status" number" HADS" ""
"" Anxiety Depression 

1" Non"sensi3sers" 1" 9" 8"

2" Non"sensi3sers" 7" 6" 8"

3" Non"sensi3sers" 13" 12" 9"

4" Non"sensi3sers" 24" 6" 11"

5" Non"sensi3sers" 25" 9" 8"

6" Non"sensi3sers" 26" 9" 9"

7" Non"sensi3sers" 29" 7" 9"

8" Non"sensi3sers" 30" 10" 8"

9" Non"sensi3sers" 33" 8" 6"

10" Non"sensi3sers" 34" 11" 13"

11" Non"sensi3sers" 41" 8" 13"

12" Non"sensi3sers" 48" 7" 9"

13" Non"sensi3sers" 50" 6" 8"

14" Non"sensi3sers" 52" 9" 10"

15" Non"sensi3sers" 55" 6" 8"

16" Non"sensi3sers" 58" 10" 9"

17" Non"sensi3sers" 62" 10" 10"

18" Non"sensi3sers" 64" 8" 9" n" status" number" HADS" ""

19" Non"sensi3sers" 66" 9" 8" "" "(O/O)" Anxiety Depression 
"" avr$ 8.42" 9.11" "" ""
"" SD$ 23.45" 23.45" 1" Sensi3sers" 4" 13" 7"
"" "" SEM$ 5.38" 5.38" 4" Sensi3sers" 10" 9" 9"
"" "" "" "" "" 7" Sensi3sers" 16" 7" 6"
1" Sensi3sers" 4" 13" 7" 8" Sensi3sers" 17" 11" 7"
2" Sensi3sers" 6" 7" 8" 11" Sensi3sers" 21" 10" 6"
3" Sensi3sers" 9" 5" 9" 13" Sensi3sers" 27" 14" 6"
4" Sensi3sers" 10" 9" 9" 20" Sensi3sers" 53" 6" 9"
5" Sensi3sers" 12" 10" 10" "" 10" 7.14"
6" Sensi3sers" 15" 8" 9" "" ""
7" Sensi3sers" 16" 7" 6" "" ""
8" Sensi3sers" 17" 11" 7" "(0/X,X/X)" ""
9" Sensi3sers" 18" 9" 9" 2" Sensi3sers" 6" 7" 8"
10" Sensi3sers" 19" 12" 13" 3" Sensi3sers" 9" 5" 9"
11" Sensi3sers" 21" 10" 6" 5" Sensi3sers" 12" 10" 10"
12" Sensi3sers" 23" 12" 11" 6" Sensi3sers" 15" 8" 9"
13" Sensi3sers" 27" 14" 6" 9" Sensi3sers" 18" 9" 9"
14" Sensi3sers" 28" 14" 7" 10" Sensi3sers" 19" 12" 13"
15" Sensi3sers" 38" 8" 9" 12" Sensi3sers" 23" 12" 11"
16" Sensi3sers" 44" 4" 8" 14" Sensi3sers" 28" 14" 7"
17" Sensi3sers" 46" 9" 9" 15" Sensi3sers" 38" 8" 9"
20" Sensi3sers" 53" 6" 9" 16" Sensi3sers" 44" 4" 8"
"" avr$ 9.33" 8.44" 17" Sensi3sers" 46" 9" 9"
"" SD$ 2.95" 1.82" 19" Sensi3sers" 51" 10" 9"
"" SEM$ 0.68" 0.42" "" 9" 9.25"
"" "" "" ""
"" "" t$test:$p=$ 0.259" 0.265" "" "" t$test:$p=$ 0.480" 0.008"

In"a"comparable"manner"to"pain"thresholds,"analysis"
of"depression"scores"based"on"pain"phenotype"and"
genotype"revealed"that"depression"scores"were"
significantly"lower"in"sensi3sers"who"possessed"the"
pain"protec3ve"haplotype"than"sensi3sers"who"did"
not"or"both"subgroups"of"nonPsensi3sers"(e.g."
depression"score"of"7.1"±0.5(SEM)"(X)"sensi3sers"
p=0.03"vs."9.3"±0.4(SEM)"(O)"sensi3sers"vs."9.7"±"
0.7(SEM)"(X)"non"sensi3sers"vs."8.8"±0.5mA"(O)"nonP
sensi3sers)."
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Soli Deo Gloria 


