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Abstract

The epoxygenase CYP2J2 has an emerging role in inflammation and vascular biology. The role of CYP2J2 in phagocytosis is
not known and its regulation in human inflammatory diseases is poorly understood. Here we investigated the role of
CYP2J2 in bacterial phagocytosis and its expression in monocytes from healthy controls and Crohns disease patients.
CYP2J2 is anti-inflammatory in human peripheral blood monocytes. Bacterial LPS induced CYP2J2 mRNA and protein. The
CYP2J2 arachidonic acid products 11,12-EET and 14,15-EET inhibited LPS induced TNFa release. THP-1 monocytes were
transformed into macrophages by 48h incubation with phorbol 12-myristate 13-acetate. Epoxygenase inhibition using a
non-selective inhibitor SKF525A or a selective CYP2J2 inhibitor Compound 4, inhibited E. coli particle phagocytosis, which
could be specifically reversed by 11,12-EET. Moreover, epoxygenase inhibition reduced the expression of phagocytosis
receptors CD11b and CD68. CD11b also mediates L. monocytogenes phagocytosis. Similar, to E. coli bioparticle phagocytosis,
epoxygenase inhibition also reduced intracellular levels of L. monocytogenes, which could be reversed by co-incubation with
11,12-EET. Disrupted bacterial clearance is a hallmark of Crohn’s disease. Unlike macrophages from control donors,
macrophages from Crohn’s disease patients showed no induction of CYP2J2 in response to E. coli. These results
demonstrate that CYP2J2 mediates bacterial phagocytosis in macrophages, and implicates a defect in the CYP2J2 pathway
may regulate bacterial clearance in Crohn’s disease.
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Introduction

Monocyte-derived macrophages play a critical role in host

defence, wound healing and chronic inflammation [1]. Arachi-

donic acid is metabolised into families of biologically active

mediators by cyclooxygenase, lipoxygenase and CYP450 pathways

[2,3]. The main arachidonic acid-metabolising CYPs are the

CYP2 family, [3–6], of which CYP2J2 and CYP2C8 are present in

human monocytes and macrophages [7]. Recombinant CYP2J2

metabolises arachidonic acid in to all four cis-EETs 5,6-EET, 8,9-

EET, 11,12-EET and 14,15-EET [8], and all are produced by

human macrophages [9]. We recently published that CYP2J2 and

its anti-inflammatory products are ligands for the peroxisome-

proliferator activated receptor (PPAR) class of nuclear receptors

[10]. Moreover, we showed that endogenous epoxygenases are

anti-inflammatory in human monocytes and M1 macrophages in

part via activation of PPARa. EETs are rapidly metabolized in the

body. The main pathway for EET removal is through their

conversion into dihydroxyeicosatrienoic acid (DHETs) by soluble

epoxide hydrolase (sEH) [11]. DHETs are generally considered to

be less active than EETs; however they have been shown to inhibit

monocyte migration [12]. Endotoxin-induced lung inflammation

is reduced with global sEH knockout [13], which showed

significantly reduced activation of e-selectin mRNA, NFkB
signaling, and neutrophil infiltration [13]. In addition, sEH

knockout or sEH inhibitors reduce the chronic inflammatory

bowel disease [14] and its associated tumor formation [15] in IL-

10 knockout mice, which was also associated with a reduction in

TNFa, MCP-1 and neutrophil infiltration [14]. The roles of

CYP450 pathways in mediating responses to pathogens remain

poorly understood.

Crohn’s disease is characterized by defects in bacterial clearance

[16] and has been associated with an increased burden of bacteria

including E. coli and L. monocytogenes [17]. Here we show CYP2J2 is

induced by bacterial stimulation, but is absent in Crohn’s disease

macrophages. Moreover, we show CYP2J2 and 11,12-EET

mediate the phagocytosis and uptake of E. coli and L. monocytogenes

in macrophages.
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Materials and Methods

Ethics Statement
Monocyte studies were approved by the Joint University

College London (UCL)/UCL Hospitals (UCLH) Committee for

the Ethics of Human Research (project numbers 02/0324 and 04/

Q0502/29) and conducted according to the Declaration of

Helsinki. All volunteers gave written informed consent prior to

entering the study.

Materials
Rabbit polyclonal anti-CYP2J2 was from Abcam (Cambridge,

UK). EETs were from Cayman Chemical Company (Cambridge

Bioscience, Cambridge, UK). SKF525A was from Biomol (Affiniti

Research Products, Exeter, UK). The CYP2J2 inhibitor com-

pound 4 was a gift from Dr Patrick Dansette (Université Paris

Descartes, Paris, France; [18]). Taqman primers and reagents and

pHrodo Red E. coli bioparticles were from Invitrogen (Paisley,

Renfrewshire, UK). The human TNFa ELISA was from

eBioscience (Hatfield, UK). Unless stated, all other reagents were

from Sigma-Aldrich (Poole, Dorset, UK).

Cell and Tissue Culture
THP-1 were cultured in RPMI supplemented with antibiotic/

antimycotic mix, and 10% FBS; 37uC; 5% CO2; 95% air. Primary

monocytes were isolated from peripheral blood of human

volunteers as previously described [19]. The MTT cell viability

assay was as previously described [20]. Crohn’s disease macro-

phages and macrophages from healthy controls were isolated as

previously described [16]. Briefly, all patients had definitive

diagnoses of Crohn’s disease, confirmed using standard diagnostic

criteria, with quiescent disease (Harvey-Bradshaw or Mayo score

,3; [21,22]). Patients on either no medication or a stable

maintenance dose of 5-aminosalicylates (2.5 g/d) for the previous

3 months were included. None of the patients had received

corticosteroid, immunosuppressant, anti-TNF, or metronidazole

therapy within 3 months of enrollment. Healthy control subjects

approximately matched for age, sex, and smoking history were

recruited. Written informed consent was obtained from all

volunteers. Unlike THP-1 cells which can be differentiated in to

a macrophage phenotype over 24–48 h by PMA incubation,

primary macrophages were produced by culture for 5d. Adherent

cells were scraped on day 5 and re-plated in 96-well culture plates

at 105/well in X-Vivo-15 medium (Cambrex). Primary monocyte-

derived macrophages were incubated overnight to adhere where

they were then stimulated with 2.56105 heat killed E. coli for 4 h,

prepared as previously described [23].

RT-PCR
CYP2J2 was measured by Taqman qRT-PCR ddCt method

and normalized to GAPDH levels. mRNA expression of

phagocytosis receptors was assessed by the Sybr Green ddCT

method. Briefly, RNA was extracted using an RNA extraction kit

(Thermo Scientific) and 1 mg was used to generate cDNA using

Superscript II (Invitrogen) according to manufacturer’s instruc-

tions. Sybr green qPCR was performed using Premix Ex Taq II

mastermix (Takara) using a Corbett Rotor-Gene 6000 machine.

Sequences of primers pairs are listed in Table S1.

Western Blotting and Immunoassays
CYP2J2 and b-actin protein levels were measured as previously

described [8,24]. TNFa.
ELISA was performed according to manufacturer’s instructions.

Phagocytosis Assays
THP-1 cells were differentiated in to macrophages over 48 h

using 100 nM PMA in RPMI supplemented with 10% fetal bovine

calf serum and 50 mg/mL of penicillin and streptomycin. The cells

were rested for 24 h. Cells were then treated with epoxygenase

inhibitors and/or epoxygenase products for 24 h before addition

of the phagophores. pHrodo red E.coli BioParticles (1 mg/ml)

were added for 2 h, and particle uptake analyzed using a Nikon

TE2000 inverted florescent microscope connected to a SPOT-RT

digital camera and a FLUO star Galaxy plate reader (BMG

Labtech, Germany). For L. monocytogenes assays, overnight cultures

of L. monocytogenes EGDe [25] or EGD/pNF8 (GFP-expressing L.

monocytogenes) [26] were initiated in LB the day before macrophage

infection. The morning of the experiment cultures were serially

diluted and grown for an additional 3–4 h. Optical density was

determined at 600 nm and cultures were selected and diluted in

RPMI to correspond to less than one bacterial particle per

macrophage. The bacteria was applied to the THP-1 macrophag-

es, the plates were spun at 2000 rpm for five minutes and left in a

37uC incubator with 5% CO2 for 3 or 7 h. Macrophages were

washed three times in PBS and subsequently lysed using dH2O

with 0.2% Tween 20. The macrophage lysates were serially

diluted and plated on agar plates and left at 37uC overnight.

Colonies were then counted and expressed as % uptake based on

initial number of bacteria used to infect the macrophages. Uptake

of EGD/pNF8 was analyzed using a Nikon TE2000 inverted

florescent microscope connected to a SPOT-RT digital camera,

and levels of GFP assessed by analysis using ImageJ software.

Results

CYP2J2 is Induced in hPBMCs by LPS
Treatment of hPBMCs with 10 mg/ml LPS induces CYP2J2

mRNA by 4 h which was still evident by 24 h (Figure 1A), and

protein by 24 h (Figure 1B). LPS also induces TNFa release from

monocytes (Figures 1C and D), and treatment with epoxygenase

arachidonic acid products 11,12-EET and 14,15-EET (1 mM)

abolished basal and LPS-induced TNFa release (Figure 1C). In

contrast, to the arachidonic acid metabolite EETs, co-treatment

with epoxygenase linoleic acid products 9,10-EPOME and 12,13-

EPOME (1 mM) had no effect on basal or LPS-induced TNFa
release (Figure 1C).

CYP2J2 Promotes Bacterial Phagocytosis
THP-1-macrophages rapidly phagocytosed E. coli bioparticles

after 2 h. 24 h pretreatment with a non-selective epoxygenase

inhibitor SKF525A (10 mM) or a selective CYP2J2 inhibitor

Compound 4 (3 mM), inhibited E. coli bioparticle phagocytosis,

which could be reversed by 11,12-EET (1 mM) (Figure 2A and B),

but not 14,15-EET (1 mM; Figure 2D). Compound 4 is a high-

affinity, competitive inhibitor and alternative substrate of CYP2J2

based upon the structure of terfenadine, which CYP2J2 is known

to metabolize [18,27]. The ability of compound 4 to inhibit

CYP2J2 was tested in house by its ability to inhibit CYP2J2

mediated activation of PPARa ([10]; Figure S1). SKF525A,

Compound 4 and 11,12-EET had no effect on cell viability in any

combination (Figure 2C). Interestingly, 9,10-EPOME (1 mM;

Figure 2E), but not 12,13-EPOME (1 mM; Figure 2D) also

reduced E. coli bioparticle phagocyosis. Treatment with SKF525A,

further reduced 9,10-EPOME inhibition of phagocytosis in an

additive manner (Figure 2E).

We performed an initial broad spectrum screen of phagocytosis

receptors using standard RT-PCR and found SR-B, HPRT,

CD11b, CD14, CD68, CD200R, CLEC7A, TIMD4, and CR1,

CYP2J2 and Phagocytosis
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mRNA were detected in THP-1 cells in culture (data not shown).

After PMA differentiation in to macrophages, SR-A, CD11b,

CD14, LOX1, CLEC7A, CD18 and CD11c were induced, SR-B,

CD200R inhibited, and CD68 and HPRT levels remained

unchanged (unpublished observations). qRT-PCR analysis of

THP-1 macrophages showed the epoxygenase inhibitor SKF525A

(10 mM; 24 h) reduced CD11b and CD68 mRNA levels, while

levels of SR-A, CD14, CD11c, CR1, LOX1 and CLEC7A

remained unchanged (Figure 3).

As well as mediating Gram negative E. coli phagocytosis [28],

CD11b is known to mediate Gram positive L. monocytogenes

phagocytosis [29]. SKF525A (10 mM; 24 h) pretreatment reduced

the intracellular levels of L. monocytogenes (Figure 4A) and GFP-L.

monocytogenes (Figure 4B). 11,12-EET restored the uptake of GFP-L.

monocytogenes inhibited by SKF525A (Figure 4B), but was not

significant from control by itself (GFP expression; data not shown).

Crohn’s Disease Macrophages Do not Induce CYP2J2 in
Response to E Coli
PBMCs from Crohn’s disease patients and healthy volunteers

were differentiated in to macrophages over 5 days. Macrophages

were treated with heat inactivated E. coli for 4 h. Similar to LPS-

treated monocytes (Figure 1), heat-treated E. coli induced CYP2J2

expression (Figure 5) in macrophages from healthy controls. In

contrast macrophages derived from Crohn’s disease patients

showed no induction of CYP2J2 with heat-treated E. coli

(Figure 5). Figure 5A shows the induction of CYP2J2 by heat-

treated E. coli in macrophages from healthy volunteer but not

Crohn’s disease patients, by an unpaired analysis of 7–13 donors.

We did not have paired control and E. coli samples for all the

donors, so Figure 5B shows the paired analysis from healthy

volunteers (n = 7) and Crohn’s disease patients (n = 5) where we

did obtain matched control and E. coli treatment (Figure 5B).

Discussion

Here we show CYP2J2 is a LPS/E. coli inducible enzyme in

PBMCs and macrophages. The CYP2J2 promoter does not

contain a TATA box [30], and as such it has not been considered

an inflammation or TLR-4 inducible target. However, consistent

with these findings, CYP2J2 is up-regulated in preeclampsia and is

induced in a trophoblast cell line with TNFa [31]. As reported by

Figure 1. CYP2J2 is an LPS responsive gene: CYP2J2 products feedback to inhibit TNFa release. Time course of CYP2J2 mRNA (A) and
protein (B) in human peripheral blood mononuclear cells treated with LPS (10 mg/ml). CYP2J2 mRNA was measured by Taqman RT-PCR and
expressed as fold of the LPS induced CYP2J2 expression at 4 h. Data shows data points and mean6s.e.m from 4 individual donors. CYP2J2 protein
determined by Western blot was compared to that of b-actin. This data is representative of n = 4 separate donors. (C) Effect of 11,12-EET, or 14,15-EET
and (D) 9,10-EPOME, or 12,13-EPOME, on basal and LPS (10 mg/ml; 7 h) induced TNFa release from THP-1 monocytes. TNFa release (pg/ml) in the
supernatant was measured by ELISA. The data presents the mean6s.e.m. of n = 8 replicates from 3 separate experiments. *denotes p,0.05 control or
LPS and EET treatments, and { denotes p,0.05 between control and LPS, by one-way ANOVA and Bonferroni’s post test.
doi:10.1371/journal.pone.0075107.g001

CYP2J2 and Phagocytosis
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us and others, [7,32], circulating PBMCs contain low levels of

CYP2J2. However, similar to TLR-4 stimulation CYP2J2 could

also be induced by PMA, M-CSF and GM-CSF [32]. These

results together clearly suggest that CYP2J2 is inducible and

therefore may be the major inflammation regulated epoxygenase

in man.

THP-1 monocytes and M1 macrophages contain CYP2J2 and

CYP2C8 [7]. Inhibition of epoxygenases with the non-selective

epoxygenase inhibitor SKF525A and a selective chemically

distinct CYP2J2 inhibitor, Compound 4 [18] equally reduced E.

coli phagocytosis, strongly implicating CYP2J2 as the enzyme

responsible. We routinely use SKF525A to inhibit CYP2J2 as we

previously demonstrated 10 mM SKF (the concentration used in

this study) abolishes CYP2J2-dependent activation of PPAR

responses [32]. Compound 4 similarly inhibits CYP2J2-dependent

activation of peroxisome-proliferator activated receptor responses

(Figure S1). E. coli uptake was reversed selectively by 11,12-EET,

but not 14,15-EET, or linoleic acid epoxygenase products. Indeed,

9,10-EPOME itself reduced phagocytosis. This E. coli phagocytosis

assay therefore distinguishes 11,12-EET from 14,15-EET and

9,10-EPOME from 12,13-EPOME.

In contrast, 11,12- and 14,15-EET both reduced TNFa release

from LPS-stimulated monocytes, consistent with their known anti-

inflammatory actions [33]. In contrast the linoleic acid CYP2J2

products 9,10-EPOME and 12,13-EPOME had no effect on

TNFa release. As the receptors for epoxygenase products are

poorly defined [33] these findings are of particular interest, as the

EETs and EPOMEs used here show clear and distinct regio-

isomer specific action on phagocytosis and TNFa release,

suggesting that specific receptor targets are present and in the

future could be identified from these assays.

Figure 2. CYP2J2 regulates E. coli. phagocytosis. (A) Top panel shows representative florescent micrographs and (B) (D), and (E) florescent plate
reader recordings of E. coli fluorescent bioparticle uptake (1 mg/ml; 2 h) in THP-1 derived macrophages. THP-1 derived macrophages were induced
by PMA (100 nM; 48 h). (A) 11,12-EET (1 mM), but not (D) 14,15-EET (1 mM) or 12,13-EPOME (1 mM) reverses SKF525A (10 mM) or Compound 4 (3 mM)
reduced E. coli particle uptake. (C) MTT viability assay: SKF525A or Compound 4 alone or in combination with 11,12-EET has no effect on cell viability.
(E) 9,10-EPOME by itself reduces E. coli particle, and acts in an additive manner with SKF25A to reduce E. coli particle phagocytosis. Compounds were
given as a 24 h pretreatment before addition of E. coli bioparticles (1 mg/ml; 2 h). Data represents mean6s.e.m. as a % of control from n= 3 separate
experiments. * denotes p,0.05 between control and treatments by one-sample t-test.
doi:10.1371/journal.pone.0075107.g002

CYP2J2 and Phagocytosis
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To examine the potential mechanism by which CYP2J2 could

regulate phagocytosis we screened a broad spectrum of phagocy-

tosis receptors by RT-PCR. Of those tested, only CD11b (Mac-1,

CR3) and CD68 showed regulation by epoxygenase inhibition,

Figure 3. Epoxygenase inhibition regulates CD11b and CD68 phagocytosis receptor expression. Epoxygenase inhibition (SKF525A;
10 mM) reduces expression of CD11b and CD68 mRNA in THP-1–derived macrophages. Levels SR-A, CD14, CD11c, CR1, LOX1 and CLEC7A were
unchanged in the presence of SKF525A. Data represents mean6s.e.m. fold change in expression from control, from n=3–4 separate experiments. *
denotes p,0.05 between control and SKF525A by one-sample t-test.
doi:10.1371/journal.pone.0075107.g003

CYP2J2 and Phagocytosis
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and both were reduced. As CD68 is considered an oxidized lipid

receptor and not a bacterial sensing receptor [34], we focused on

CD11b. CD11b is a versatile pattern recognition receptor that can

mediate both Gram negative (e.g. E. coli) as well as Gram positive

bacterial phagocytosis [35]. For example, CD11b is associated

with gram positive L. monocytogenes phagocytosis and killing [29].

We therefore tested whether live L. monocytogenes uptake by

macrophages could also be affected by epoxygenase inhibition.

Similar to the E. coli bioparticle, intracellular uptake of live L.

monocytogenes was inhibited by SKF525A and reversed by 11,12-

EET.

L. monocytogenes, like E. coli, has been found at higher levels in

Crohn’s disease tissue [17]. Moreover, L. monocytogenes and E. coli

infection are a side-effect of anti-TNFa therapy in Crohns disease

[36–38]. CD11b has also been shown to be expressed at lower

levels in Crohn’s disease compared to ulcerative colitis [39]. We

therefore examined CYP2J2 in Crohn’s disease macrophages.

The rested macrophages from Crohn’s disease patients similar

to healthy controls had low levels of CYP2J2. However, unlike

healthy controls, CYP2J2 was not induced by further E. coli

stimulation. Interestingly, these results confirm some of our

previous microarray analysis of macrophages from healthy

controls, and patients with ulcerative colitis and Crohn’s disease

[16]. CYP2J2 was one of the un-validated targets absent

specifically in Crohn’s disease (but not ulcerative colitis) macro-

phages treated with heat inactivated E. coli. The mechanism for

this lack of induction is currently under investigation. Although

CYP2J2 polymorphisms, particularly the 50G-T promoter poly-

morphism have been associated with cardiovascular disease and

hypertension in some populations [40] a polymorphisms of the

CYP2J2 pathway has yet to be associated with any other form of

inflammatory disorder in man.

The lack of CYP2J2 in response to inflammation may therefore

mediate some of the macrophage defects observed in Crohn’s

disease. Using epoxygenase/CYP2J2 inhibitors reveals a dysreg-

ulation in bacterial clearance which is also a hallmark of Crohn’s

disease [16]. Crohn’s disease is strongly associated with defective

bacterial handling that is also linked to abnormalities in autophagy

Figure 4. CYP2J2 regulates L. monocytogenes phagocytosis. (A) Epoxygenase inhibition (SKF525A 10 mM; SKF; 24 h) inhibits the infection of L.
monocytogenes into THP-1 derived macrophages, expressed as % of bacteria added at 0 h. (B) Right panel shows representative fluorescent
micrographs and left panel image analysis of GFP-L. monocytogenes in THP-1 derived macrophages at 7 h. THP-1 derived macrophages were induced
by PMA (100 nM; 48 h). 11,12-EET (1 mM) reversed the SKF525A (10 mM) mediated reduction in L. monocytogenes infection. Compounds were given
as a 24 h pretreatment before addition of L. monocytogenes. Data represents mean6s.e.m. as a % of control from n= 3–6 separate experiments. *
denotes p,0.05 between control and treatments by paired t-test (A) or one-sample t-test (B).
doi:10.1371/journal.pone.0075107.g004

Figure 5. Crohn’s disease macrophages do not induce CYP2J2 in response to E. coli stimulation. (A) unpaired analysis and (B) paired
analysis of CYP2J2 mRNA induction in macrophages from Crohn’s disease patients and matched controls in response to heat killed E. coli (2.56105;
4 h). CYP2J2 mRNA was measured by Taqman RT-PCR and expressed as dCT (4 h). Data shows data points and mean6s.e.m from 7–13 individual
donors (A) or 7 paired control and 5 paired Crohn’s disease samples (B). *denotes p,0.05 between control and E. coli treatment, by Mann-Whitney U
test.
doi:10.1371/journal.pone.0075107.g005

CYP2J2 and Phagocytosis
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pathways [41]. Interestingly, we found epoxygenases may also

regulate macrophage autophagy. Treatment of THP-1 macro-

phages with SKF525A results in LC3-II induction similar to that

of a known autophagy inducer rapamycin A (Figure S2) providing

a further link between the two processes which relate to a Crohn’s

disease phenotype.

11,12-EET reversed the actions of epoxygenase inhibition in all

the assays tested. Elevation of epoxygenase products using soluble

epoxide hydrolase inhibitors or the use of EET-agonists/mimetics

may therefore be a therapeutic avenue to correct in Crohn’s

disease. sEH inhibitors attenuate the chronic colitis associated with

IL-10 knockout in mice [14], indicating that epoxygenases are

protective at least in animal models of bowel inflammation. Since

CYP2J2 appears particularly dysregulated, our results suggest

EET mimetics and/or sEH inhibitors may be of particular benefit

in Crohn’s disease.

In conclusion, we show CYP2J2 is an inflammatory induced

epoxygenase that has anti-inflammatory actions, and promotes

Gram positive and Gram negative bacteria phagocytosis. An

absence of CYP2J2 in Crohn’s disease macrophages in response to

bacterial infection may contribute to the pathogenesis of Crohn’s

disease, in part via a reduced expression of CD11b. Elevating

epoxygenase products or the use of 11,12-EET mimetics may

provide useful therapeutic avenues for the treatment of inflam-

matory bowel diseases and in particular may correct a defect

present in Crohn’s disease.

Supporting Information

Figure S1 Inhibition of CYP2J2 by compound 4. HEK293

cells were transfected with a combination of CYP2J2, PPARa and

the PPAR luciferase reporter gene pACO.Luc as previously

described1. The figure shows the reduction in CYP2J2 mediated

PPARa activation by increasing concentrations of CYP2J2

inhibitor compound 4. The data represents mean6s.e.m. from

n=3 separate experiments. 1Wray JA, et al. The epoxygenases

CYP2J2 activates the nuclear receptor PPARalpha in vitro and in

vivo. PLoS One. 2009 Oct 12;4(10):e7421. doi: 10.1371/journal.-

pone.0007421.

(DOCX)

Figure S2 Epoxygenase regulation of the macrophage
autophagy marker LC3-II. THP-1 derived macrophages were

treated with rapamycin A (RAPA; 50 mg/ml; positive control for

autophagy; 3h), or SKF525A (10 mM; 24 h), in the presence or

absence of 3-methyladenine (3 MA; 5 mM; autophagy inhibitor),

or 11,12-EET (1 mM). LC3-II lipidylation from LC3-I was

determined by Western blotting and densometric analysis of the

bands performed using ImageJ image analysis software. The figure

shows the relative expression of LC3-II expression as a % of the

RAPA induced LC3-II. Data represents mean6s.e.m. from n= 3

separate experiments. Epoxygenase inhibition induces a compa-

rable level of LC3-II expression as RAPA, which is reversed either

my co-incubation with the autophagy inhibitor 3 MA or 11,12-

EET.

(DOCX)

Table S1 Primer pairs for phagocytosis receptors.

(DOCX)
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