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Abstract

We use the formalism of Generalised Geometry to characterise in general the supersymmetric back-
grounds in type II supergravity that have a null Killing vector. We then specify this analysis to configurations
that preserve the same supersymmetries as the D1–D5–P system compactified on a four-manifold. We give a
set of equations on the forms defining the supergravity background that are equivalent to the supersymmetry
constraints and the equations of motion. This study is motivated by the search of new microstate geometries
for the D1–D5–P black hole. As an example, we rewrite the linearised three-charge solution of arXiv:hep-th/
0311092 in our formalism and show how to extend it to a non-linear, regular and asymptotically flat con-
figuration.
© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Supersymmetric solutions of type II supergravities play a central role in many different areas
of string theory, including compactifications with interesting phenomenological properties, the
study of holographic gauge/string dualities and the construction of geometries with the same
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charges as black holes. Supersymmetry is also a powerful tool in finding explicit solutions, since
it allows to solve first order equations instead of the full set of equations of motion.

In all the examples mentioned above, the supergravity solutions are characterised by the pres-
ence of non-trivial Ramond–Ramond (RR) fields, which makes it more complicated to solve the
Killing spinor equations. In the past years, several techniques, from G-structures to Generalised
Geometry, have been developed to simplify the analysis of the Killing spinor equations in pres-
ence of fluxes and make manifest the constraints that supersymmetry puts on the background
geometry. In particular, for compactifications to four dimensions, the formalism of Generalised
Geometry [1,2] provides a very elegant tool for classifying the internal geometries as well as
constructing explicit solutions [3,4] and studying the physics of D-branes [5,6]. The idea is
that it is possible to give a completely equivalent formulation of the Killing spinor equations
as a set of differential equations on two polyforms defined on the internal six-dimensional man-
ifold. The two polyforms are constructed by tensoring the supersymmetry parameters on the
six-dimensional space. See [7–11] for previous works reformulating Killing spinor equations in
terms of differential forms.

Recently this approach has been generalised in [12] to the analysis of generic ten-dimensional
backgrounds in type II supergravity. Again, the supersymmetry constraints are rephrased in terms
of forms, built out of the ten-dimensional supersymmetry parameters. In type II supergravities
in ten dimensions, supersymmetric backgrounds are characterised by the presence of a Killing
vector, which can be either time-like or null. In this paper we will make use of the formalism
developed in [12] to study in detail backgrounds with a null Killing vector.

This analysis is motivated by the construction of new microstate geometries for the 5D
Strominger–Vafa (SV) black hole [13,14]. The SV black hole has a realisation in type IIB string
theory compactified on a circle of radius R � √

α′ times a string-sized four-dimensional space.
For concreteness, in this paper we focus on the T 4 case, but our results are valid for internal K3
as well. The SV black hole carries three charges which, in string theory language, correspond
to D1-branes wrapped on the S1, D5’s wrapped on S1 × T 4 and left-moving momentum (in our
conventions) along the S1. Our main goal is to set up the framework for building horizon-less
solutions that carry the same charges as the SV black hole and thus are relevant for the so-called
“fuzzball” conjecture (see the review articles [15–21] for a general account of this subject). The
first examples of exact and regular supergravity configurations with three charges were found
almost ten years ago [22–24] and are part of a class of smooth 1/8-BPS solutions constructed
in [25,26].

These geometries are characterised by the presence of a dipole charge for each of the three
charges; moreover they are smeared over the compact space S1 × T 4 (and thus can be studied
within a 5D supergravity, see [27] for a recent analysis from this point of view) and are further
restricted by the assumption that they admit a tri-holomorphic U(1) isometry.

There is evidence that the generic microstate of the SV black hole does not fall in the class
of geometries discussed above. First of all, the assumption of a tri-holomorphic U(1) isometry is
clearly too restrictive as it would suppress most of the states already in the two-charge case; this
was confirmed by the countings in [28–30]. The assumption of a tri-holomorphic U(1) isome-
try was relaxed in [31], but a crude counting argument suggested that even those more general
solutions could not account for the full three-charge entropy.

Further evidence that the generic microstate geometry might be more general than [25,26]
comes from a complementary analysis of D1–D5–P systems based on world-sheet techniques
[32,33]. The basic idea is that string correlators in flat space capture the large distance behaviour
of the gravitational backreaction of each D-brane bound state. This approach has been success-
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fully tested for bound states of D1–D5 branes [34,35] where it was shown that disk correlators
with one closed string and all open strings describing the given microstate reproduce the dipole
charges for the known two-charge configurations. The same analysis applied to the three-charge
geometries [33] suggests that the generic SV microstate is not smeared along the S1 and thus
should be described within a 6D supergravity.1 Solutions of minimal 6D supergravity coupled to
(at most) one tensor multiplet and carrying the same charges and dipole charges as the [25,26]
solutions were studied in [38–40]. However, the world-sheet analysis also shows that all fields
of type IIB supergravity are non-trivial for general microstates, and not only those necessary for
describing the dipoles present in [25,26]. This conclusion is supported also by arguments based
on the dual D1–D5 CFT [41]. Thus we should expect that for the generic D1–D5–P microstates
all type IIB fields are excited and, hence, cannot be described by a restricted ansatz based on
minimal six-dimensional supergravity like the one discussed in [38–40].

The first aim of this paper is to provide the most general ansatz and set of equations that
should describe the microstates of the D1–D5–P system directly in ten dimensions, with only two
simplifying assumptions: we assume that the T 4 is rigid, i.e. that it appears in the 10D geometry
as a fixed torus apart from an overall scaling function, and that the solution is ‘isotropic’ on T 4.
Of course, this does not happen for the generic microstate, but, as in the two-charge case, there
is the possibility that the class of geometries we consider gives an entropy that has the correct
scaling in the large charge limit. Our analysis yields a set of equations generalising the results
of [38–40]. The presence of the momentum charge implies the existence of a null Killing vector,
while the requirement of supersymmetric D1 and D5 charges is necessary and sufficient to ensure
that 1/8 of the total type IIB supersymmetries are preserved.

The second aim of the paper is to provide an explicit solution of our system of equations
describing a smooth D1–D5–P microstate geometry that depends non-trivially on the S1 co-
ordinate.2 A class of such solutions would be provided by the non-linear completion of the
perturbative geometries derived from string theory in [33]. However, for sake of simplicity we
focus on a different case: we start from the perturbative 6D solution derived in [42] and show
that it can be uplifted to 10D as a two-charge solution of the general type constructed in [41].
Then we can follow the construction of [42], adding a non-trivial momentum and extending the
solution to an asymptotically flat geometry. The knowledge of the full 10D equations allows us to
perform these steps at the non-linear level and to find a 10D completion of the solution discussed
in [42].

The paper is organised as follows. In Section 2 we give the complete set of equations one
has to solve in order to have a ten-dimensional supersymmetric solution with a null isometry in
type II supergravity. As already mentioned our starting point is the formalism developed in [12].
We construct a one-form, one even/odd polyform in IIA/IIB and a pair of four-forms, which
are obtained as (sum of) bilinears in the supersymmetry parameters, and then we give the set
of equations on these objects that are equivalent to the Killing spinor equations. In doing that,
we derive a new set of equations, which appear simpler than those in [12], but only holds for
backgrounds with a null isometry. Moreover, we show that, in order to have a full solution of all

1 A first example of solution in this class was found in [36]. The fact that generic microstates should be described
by un-smeared six-dimensional geometries was also conjectured in [37] by analysing the supersymmetries preserved by
D1–D5–P bound states.

2 In this sense, the geometry we obtain is a regular solution of a non-minimal 6D supergravity; however, the S1 is part
of the 6D space and the D-branes are wrapped on it: thus from our example it is not possible to derive a regular ‘soliton’
of 6D supergravity in the asymptotically Minkowski space R

1,5.
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supergravity equations of motion, we need also to impose the component of Einstein equations
in the null direction. Then in Section 3 we will specify our equations to the study of a D1–D5–P
(marginal) bound states. We will consider geometries of the form R

1,1 × Y × Ŷ , where Y is
fibrated on the null direction in R

1,1 and Ŷ is eventually identified with the internal T 4 (or K3).
Under the assumption that all fields are homogeneous and isotropic along Ŷ , we derive the most
general ansatz for the type IIB fields describing such systems and the equations that such fields
must satisfy in order to give a solution. These first two sections can be skipped by readers who are
more interested in the construction of explicit geometries. In order to make the second part of the
paper self-contained and consistent with the notation used in the existing literature on microstate
geometries, we collect in Appendix E.7 a summary of the equations relevant for the concrete
applications to the SV miscrostates. In Section 4, we briefly review the perturbative configuration
of [42] and discuss its embedding in the 10D ansatz derived in Section 3. At this point it is
easy to write a full regular non-linear solution in the near-horizon region. The extension to an
asymptotically flat configuration is trickier: here we present the complete solution but postpone
the derivation and a more detailed discussion of its physical properties to a forthcoming paper.
Conventions and details of the derivations of Sections 2 and 3 can be found in Appendices A–E.

2. Null supersymmetric vacua: General discussion

The study of type II flux backgrounds has shown that, rather than dealing directly with spino-
rial equations, it is often convenient to rewrite the supersymmetry conditions as differential
equations on a set of forms on the compactification manifold. In particular, in [12] this approach
has been applied to generic backgrounds in ten dimensions. As we will review in this section, the
idea is that, starting from the pair of supersymmetry parameters ε1 and ε2, one can build a set of
forms which can be used to rewrite the ten-dimensional supersymmetry conditions.

Ten-dimensional supersymmetric solutions in type II supergravity are characterised by the
existence of a Killing vector K , which can be either time-like or null. In this paper we will
assume a null K . We will re-examine the supersymmetry conditions given in [12] and propose
an alternative formulation of some of the supersymmetry constraints.

For generic ten-dimensional backgrounds the supersymmetry constraints are not equivalent
to the full set of equations of motion. For the case of K null, we show that, in order to get a
proper supergravity solution, the supersymmetry constraints, the Bianchi identities for the NSNS
flux and for all the RR fluxes of the democratic formalism, summarised in (2.10), have to be
supplemented by the vv component of Einstein equation.

2.1. Supersymmetry and geometrical structures

In ten dimensions, a supersymmetric vacuum of type II supergravity is characterised by a
pair of Majorana–Weyl spinors, ε1 and ε2, satisfying the Killing spinor equations. We take their
chirality to be

Γ(10)ε1 = ε1, Γ(10)ε2 = ∓ε2, (2.1)

where the minus (plus) sign is for IIA (IIB). We have introduced the ten-dimensional chiral
operator Γ(10) = Γ 0...9. Here and in the following the uderline denotes flat indices.

Form the spinor bilinears, we can construct a vector K [12]

K = −1

2

(
ε̄1Γ

Mε1 + ε̄2Γ
Mε2

)
∂M, (2.2)
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which can be either time-like or null. It can be shown [10,11] that K is a Killing vector:

LKg(10) = 0. (2.3)

In addition to K , one can construct other useful tensorial objects which characterise the ge-
ometry. A 1-form

χ = −1

2
(ε̄1ΓMε1 − ε̄2ΓMε2)dXM (2.4)

and a polyform

Ψ = −32 ε1 ⊗ ε̄2Γ(10) =
∑

k

1

k! ε̄1ΓM1...Mk
ε2 dXM1 ∧ · · · ∧ dXMk, (2.5)

where k = is even/odd in IIA/IIB. We use conventions which are slightly different from those of
[12], since more ‘natural’ for studying D-branes [43].3

One can then show that the ordinary spinorial supersymmetry conditions, which are obtained
by setting to zero the supersymmetry variation of the type II gravitini and dilatini, imply the
following differential conditions for χ and Ψ [12]

dχ = ιKH, (2.6a)

dH

(
e−φΨ

) = ιKF + χ ∧ F, (2.6b)

where dH denotes the twisted exterior derivative

dH ≡ d − H∧, (2.7)

φ is the dilaton, H is the Neveu–Schwarz three-form, and F , following the democratic formal-
ism, denotes the sum of all Ramond–Ramond field strengths

F =
∑

k

Fk, (2.8)

with k even (from 0 to 10) in IIA and odd (from 1 to 9) in IIB. The redundant degrees of freedom
in F are eliminated by the self-duality constraint

F = ∗λ(F ), (2.9)

where λ acts on forms by inverting the order of the indices: on a form Fk of rank k it acts as

λ(Fk) = (−)
k(k−1)

2 Fk . We assume that the fluxes satisfy the proper the Bianchi identities

dH = 0, dH F = 0. (2.10)

More details on our conventions are given in Appendix A.
The form equations (2.6) and the condition (2.3) can be used to show that K is actually a

symmetry of the full solution [12]

LKH = LKF = LKφ = LKΨ = 0. (2.11)

3 The dictionary is the following: Hhere = Hthere, F IIA
here = −F IIA

there, F IIB
here = F IIB

there, Khere = −32Kthere, χhere =
−32K̃there, Ψ IIB

here = 32ΦIIB
there, Ψ IIA

here = −32ΦIIA
there.
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As explained in [12], Eqs. (2.3) and (2.6) in general contain less information than the com-
plete set of Killing spinor equations. In other words, they are necessary but not sufficient for
having a supersymmetric configuration and must be supplemented by complementary supersym-
metry conditions. In [12] a possible way of writing such complementary conditions in terms Ψ

and other geometrical data was proposed – see Eqs. (3.1c)–(3.1d) therein. However these extra
equations are quite cumbersome to manipulate when looking for explicit solutions. In the fol-
lowing, restricting to the case of K null, we propose another set of complementary conditions
which might be easier to work with.

2.2. The null K case

Let us assume that K is null. We define a light-cone coordinate u such that

K = ∂

∂u
. (2.12)

As explained for instance in [38], one can introduce a second coordinate v and write the (string
frame) metric as

ds2
(10) = −2e2D(dv + β)

[
du + ω + W(dv + β)

] + ds2
X, (2.13)

where ds2
X = gab(v, x)dxa dxb is a metric on an 8-dimensional space X, ω = ωa(v, x)dxa and

β = βa(v, x)dxa are one-forms on X. In the applications to the D1–D5–P system we will identify

u = 1√
2
(t − y), v = 1√

2
(t + y), (2.14)

where t and y label time and the S1. All the fields in the metric can depend in principle on v and
the eight-dimensional coordinates xa . We choose the following vielbeine and covielbeine

Eu = du + ω + W(dv + β), Eu = ∂

∂u
,

Ev = e2D(dv + β), Ev = e−2D

(
∂

∂v
− W

∂

∂u

)
,

Ea = ea, Ea = eb
a

(
∂

∂xb
− ωb

∂

∂u
− βb

∂

∂v

)
, (2.15)

such that ds2
X = δabe

a eb and ds2
(10) = −2EuEv + δabE

aEb with, as usual, ea eb = δ
a

b and

EMEN = δ
M

N .
The NSNS and RR field strengths can be split in the following way

H = h + Eu ∧ hu + Ev ∧ hv + Eu ∧ Ev ∧ huv,

F = f + Eu ∧ fu + Ev ∧ fv + Eu ∧ Ev ∧ fuv, (2.16)

where all the forms h... and f... have components along the 8-dimensional coframe dxa (or
ea) only. The ten-dimensional self-duality of the RR fields (2.9) translates into the following
8-dimensional relations

∗8λ(f ) = fuv, ∗8λ(fuv) = f,

∗8λ(fu) = −fu, ∗8λ(fv) = fv. (2.17)
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Notice that this parametrisation, and in particular the choice of u and v, is not unique. For
fixed xa we have the following mixed diffeomorphisms

u → u + U(v,x), v → v + V (x), xa → xa, (2.18)

which preserve the ansatz (2.13) if

ω → ω − dXU + U̇ β, β → β − dXV, W → W − U̇ , (2.19)

with U̇ ≡ dU
dv

. Since we know that K is a symmetry of the background, the forms on X do not
depend on u but can in general depend on v. On such forms the exterior derivative dX = dxa ∧∂a

is not covariant under (2.18), but can be naturally replaced by the modified exterior derivative:

D ≡ dX − β ∧ d

dv
. (2.20)

K being null also restricts the form of the supersymmetric structures. First of all, we can
choose the ten-dimensional gamma matrices to be

Γ u = −√
2

(
0 0
1 0

)
⊗ γ(8), Γ v = √

2

(
0 1
0 0

)
⊗ γ(8), Γ a = 1 ⊗ γ a, (2.21)

where γ a are eight-dimensional gamma matrices associated with the manifold X and γ(8) ≡
γ 1...8 is the eight-dimensional chiral operator.

The fact that K ≡ Eu is null implies that the two supersymmetry parameters ε1 and ε2 can be
written as4

εI =
(

1
0

)
⊗ ηI (I = 1,2), (2.22)

where ηi are real eight-dimensional spinors of positive chirality.
By further imposing the normalisation condition K = ∂u we get

1√
2

(
η

†
1η1 + η

†
2η2

) = 1, (2.23)

so that we can parametrise

‖η1‖2 ≡ η
†
1η1 = √

2 sin2 θ, ‖η2‖2 ≡ η
†
2η2 = √

2 cos2 θ. (2.24)

By using this restricted form of the Killing spinors and the gamma matrices given in (2.21), it
is not difficult to see that the one-form χ defined in (2.4) reduces to

χ = cos 2θ e2D(dv + β). (2.25)

On the other hand, the polyform Ψ defined in (2.5) becomes

4 In general one can split the type II supersymmetry parameters as

εI =
(

1
0

)
⊗ ηI +

(
0
1

)
⊗ η̃I ,

with I = 1,2. If K is null, ε̄I Γ MεI ∂M = ε̄I Γ uεI Eu for both I = 1,2 and then

ε
†
I
Γ 0Γ vεI ∼ ε

†
I

(−1 + Γ 01)
εI = ε

†
I

[
(−12 + σ3) ⊗ 1

]
εI = 0,

which requires η̃I = 0.
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Ψ = √
2e2D sin 2θ (dv + β) ∧ Φ, (2.26)

where Φ is a polyform on X

Φ =
∑

k

1

k!η
†
1γa1...ak

η2 dxa1 ∧ · · · ∧ dxak (2.27)

which is odd/even in IIA/IIB.

2.2.1. The missing supersymmetry conditions
As shown in [12], Eqs. (2.3) and (2.6) contain less information than the original Killing spinor

equations. As we discuss more in detail in Appendix D, the analysis of the intrinsic torsion of
the Killing spinor equations and of the system (2.3)–(2.6) reveals that the missing constraints are
exactly provided by the vanishing of the v-component of the gravitino variations5(

∇v − 1

4
ιvH

)
ε1 + 1

16
eφFΓvΓ(10)ε2 = 0,(

∇v + 1

4
ιvH

)
ε2 − 1

16
eφλ(F )Γvε1 = 0, (2.28)

where F is the sum of all RR-field strengths defined in (2.8) and all forms are implicitly con-
tracted by gamma matrices, e.g. F ≡ ∑

k
1
k!FM1...Mk

Γ M1...Mk .
In this section, we discuss how one can rewrite the spinorial equations (2.28) as an equivalent

set of equations involving just (possibly v-dependent) differential forms defined on the internal
eight-dimensional space X.

Let us introduce a pair of four-forms Ω(1) and Ω(2) on X as follows:

Ω
(1)
abcd = ηT

1 γabcdη1, Ω
(2)
abcd = ηT

2 γabcdη2. (2.29)

Ω(1) and Ω(2) define the two Spin(7) structures associated with the presence of the two
Majorana–Weyl spinors η1 and η2. Such Spin(7) structures provide a useful tool to analyse the su-
pergravity equations as one can decompose tensors in irreducible representations of these Spin(7)
structures. In particular, two-forms on X contain a component transforming as the representations
7 corresponding to Ω(1) and Ω(2), which are selected by the following projectors(

P
(1)
7

)
ab

cd = 1

4

(
δ
[c
[aδ

d]
b] − 1

2
√

2 sin2 θ
Ω

(1)cd
ab

)
,

(
P

(2)
7

)
ab

cd = 1

4

(
δ
[c
[aδ

d]
b] − 1

2
√

2 cos2 θ
Ω

(2)cd
ab

)
. (2.30)

Then, as shown in details in Appendix D, the two spinorial equations (2.28) can be recast into
the following equivalent set of equations

d

dv
(cos 2θ) =

√
2

4
e2D+φfv · Φ, (2.31a)

1√
2
eφ(f · ιaΦ)dxa = e−2DDe2D − β̇ + cos 2θ huv, (2.31b)

5 See Appendix A for our convention on the Killing spinor equations.
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1√
2
eφ(ιaf · Φ)dxa = −huv − cos 2θ

(
e−2DDe2D − β̇

)
, (2.31c)

ι[aΩ(1) · d

dv

(
ιb]Ω(1)

) = −16 sin4 θ e2D
(
P

(1)
7

)
ab

cd(Dω + WDβ − hv)cd

+ √
2 sin2 θ e2D+φΦ · (γabfv), (2.31d)

ι[aΩ(2) · d

dv

(
ιb]Ω(2)

) = −16 cos4 θ e2D
(
P

(2)
7

)
ab

cd(Dω + WDβ + hv)cd

+ √
2 cos2 θ e2D+φΦ · (fvγab). (2.31e)

In the above equations, the gamma matrices γa must be considered as the corresponding opera-
tors under Clifford map: if ωp is a p-form, then

γaωp ≡ ιaωp + gab dxb ∧ ωp,

ωpγa ≡ (−)p−1(ιaωp − gab dxb ∧ ωp

)
. (2.32)

Furthermore, as usual, γab ≡ γ[aγb]. Notice that in (2.31d) and (2.31d) only the 7 components
(with respect to Ω(1) and Ω(2) respectively) of the antisymmetric two-tensor are non-trivial.

Eqs. (2.31a)–(2.31e) provide, for the case of K null, a set of constraints, alternative to
Eqs. (3.1c)–(3.1d) of [12], that need to be imposed in addition to (2.3) and (2.6) in order to
have a supersymmetric configuration.

2.2.2. Einstein and B-field equations
It is well known that supersymmetry does not generically imply the complete set of equations

of motion. The question is then which is the minimal set of equations one has to solve in order
to be sure to have a solution of the full system of equations of motion. The general strategy is to
first impose the supersymmetry and Bianchi identities for the fluxes, and then to check whether
these imply the flux and dilaton equations of motion and Einstein equations.

In ten dimensions, one has again to distinguish between backgrounds with null or time-like
Killing vectors. We show in Appendix C that for K null, one has to solve the following set of
equations: the supersymmetry constraints, the Bianchi identities (2.10) and the vv component of
the Einstein equations

Rvv + 2∇v∇vφ − 1

2
ιvH · ιvH − 1

4
e2φιvF · ιvF = 0, (2.33)

where ιvF · ιvF = ∑
k ιvF

(2k+1) · ιvF (2k+1) with k = 1/2, . . . ,3/2 for IIA and k = 0, . . . ,4 for
IIB.

All other equations, namely the equation of motion for B and the dilaton, and the other com-
ponent of Einstein equations, are automatically satisfied.

With our ansatz for the metric and the fluxes the vv component of Einstein equations becomes

0 = −e−4DDa

(
e2DLa

) + 1

2
e−2DβaL

agbcġbc + 2e−2Dβ̇aL
a

+ 1

4
(Dω + WDβ)ab(Dω + WDβ)ab − 1

4

d

dv

(
e−4Dgab

)
ġab

− 1

2
e−4Dgabg̈ab + e−2D d

dv

(
e−2Dφ̇

) + e−2DLaDaφ

− 1

2
hv · hv − 1

4
e2φfv · fv, (2.34)
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where hv and fv are defined in (2.16) and the symbol L denotes

L = ω̇ + Wβ̇ −DW. (2.35)

2.2.3. Summary of BPS equations for null Killing vectors
In the previous sections we derived a set of conditions on the geometric structures χ , Ψ ,

Ω(1) and Ω(2) which, for null K , are equivalent to the standard Killing spinor equations of
ten-dimensional type II supergravities. We will summarise them in this section.

First, in addition to LKg(10) = 0, we have Eqs. (2.6) [12]

dχ = ιKH, (2.36a)

dH

(
e−φΨ

) = ιKF + χ ∧ F, (2.36b)

which must be supplemented by the additional constraints6

e−2DDe2D − β̇ +D log(sin 2θ) = 1√
2 sin2(2θ)

eφ(f · ιaΦ)dya, (2.37a)

Da cos 2θ = 1√
2
eφιaf · Φ, (2.37b)

d

dv
(cos 2θ) =

√
2

4
e2D+φfv · Φ, (2.37c)

ι[aΩ(1) · d

dv

(
ιb]Ω(1)

) = −16 sin4 θ e2D
(
P

(1)
7

)
ab

cd(Dω + WDβ − hv)cd

+ √
2 sin2 θ e2D+φΦ · (γabfv), (2.37d)

ι[aΩ(2) · d

dv

(
ιb]Ω(2)

) = −16 cos4 θ e2D
(
P

(2)
7

)
ab

cd(Dω + WDβ + hv)cd

+ √
2 cos2 θ e2D+φΦ · (fvγab). (2.37e)

Second, in order to have a solution of the full set of equations of motion, we also have to
impose the Bianchi identities/eom dH = 0 and dH F = 0 and the vv component of Einstein
equations

0 = −e−4DDa

(
e2DLa

) + 1

2
e−2DβaL

agbcġbc + 2e−2Dβ̇aL
a

+ 1

4
(Dω + WDβ)ab(Dω + WDβ)ab − 1

4

d

dv

(
e−4Dgab

)
ġab

− 1

2
e−4Dgabg̈ab + e−2D d

dv

(
e−2Dφ̇

) + e−2DLaDaφ

− 1

2
hv · hv − 1

4
e2φfv · fv, (2.38)

where hv , fv and L are defined in (2.16) and (2.35).

6 These equations are a partial rewriting of the constraints discussed in Section 2.2.1. In particular, (2.37a) and (2.37b)
can be obtained from (2.31a) and (2.31b) by using (2.36a).
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3. The D1–D5–P geometries

In this section we will apply the formalism developed in Section 2 to study the full back-
reaction of a D1–D5–P system, where the D1-branes wrap an S1 ⊂ R

1,1 while the D5’s wrap
S1 × T 4. The momentum represents a left-moving wave propagating on S1. We will therefore
consider spaces of the form R

1,1 × Y × Ŷ , with metric

ds2
(10) = −2e2D(dv + β)

[
du + ω + W(dv + β)

] + e2G ds2
4 + e2Ĝ dŝ2

4 . (3.1)

Eventually we will take Ŷ = T 4 with a flat metric, but the following arguments work also when
Ŷ has Ricci-flat hyper-Kähler metric ds2

K3.
On the other hand, being ds2

4 a priory completely arbitrary, the warping e2G is a ‘pure-gauge’
degree of freedom, in the sense that we have the freedom to perform the gauge transformation

G → Λ and ds2
4 → e−2Λ ds2

4 , (3.2)

with Λ an arbitrary function. We will fix this redundancy by making a convenient gauge choice
suggested by the equations.

At different steps in our derivation, we will also make the simplifying assumption that
the backgrounds are ‘isotropic’ along Ŷ . Configurations describing more general states of the
D1–D5–P system can in principle be included by generalising our results.

3.1. Restricted spinorial structure

We now derive the restrictions that a D1–D5–P (marginal) bound state puts on the form of the
Killing spinors. In this section we will assume that the NSNS two-form has no legs on Ŷ and

LKB = 0. (3.3)

According to the structure of the metric (3.1), we take a factorised form for the eight-dimensional
gamma-matrices7

γ
i

(8) = γ i ⊗ 1, γ
4+a

(8) = γ(4) ⊗ γ̂ a, (3.4)

and the eight-dimensional spinors ηI

ηI = ζ+
I ⊗ ζ̂+

I + ζ+c
I ⊗ ζ̂+c

I + ζ−
I ⊗ ζ̂−

I + ζ−c
I ⊗ ζ̂−c

I , (3.5)

with ζ±
α and ζ̂±

α chiral spinors on the four non-compact spatial directions Y and Ŷ . The suffix c

denotes the conjugation ζ+c = C(4)ζ
+∗ (see Appendix A for notations and conventions).

Let us first consider what are the constraints a momentum in the direction of S1 sets on the
spinors εI . A wave propagating left-wise in the direction y is supersymmetric if

Γ uvεI = εI . (3.6)

This corresponds to the existence of the null Killing vector K and is automatically satisfied by
the spinor ansatz (2.22)

εI =
(

1
0

)
⊗ ηI (I = 1,2). (3.7)

7 From now on we use γ i and γ̂ a for the 4D gamma matrices in Y and Ŷ respectively and introduce a subscript when
we refer to the 8D gamma matrices.
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We then require that a D1-brane probe, filling the (u, v) directions and sitting at a generic
point of the internal eight-dimensional space, is always supersymmetric. The supersymmetry
condition for a probe D1-brane is

ΓD1ε2 = −ε1. (3.8)

In general,

ΓD1 = εαβ

2
√−det ι∗(g − B)

(Γαβ − Bαβ), (3.9)

where σα , with α = 0,1, denote world-volume coordinates, Γα = ∂αXME
M

M ΓM and ι∗g ≡
gαβ dσαdσβ and ι∗B ≡ 1

2Bαβ dσα ∧ dσβ are the pull-back of the metric and NSNS two-form
on the world-volume. Notice that, since we consider D1-brane probes with no induced charges,
the world-volume gauge field is zero.

We can use the supersymmetry condition (2.36a) and the fact that K is a symmetry of the
solution to determine the form of the NSNS two-form. Indeed (2.36a) is solved by taking

ιKB = −χ = −e2D cos 2θ (dv + β), (3.10)

which means

B = −e2D cos 2θ (du + ω) ∧ (dv + β) + b ∧ (dv + β) +B, (3.11)

where b and B are a 1- and 2-form on the internal eight-dimensional space X.
By using the metric (2.13) and (3.11) we find that, in our case,

ΓD1 = 1

sin 2θ
(Γuv + cos 2θ 1(10)) = 1

sin 2θ
(−σ3 + cos 2θ 1(2)) ⊗ 1(8), (3.12)

where in the last step we have used the 2 + 8 decomposition (2.21) of the gamma matrices.
Hence, the projection (3.8) on the spinors (3.7) reduces to

sin θ

cos θ
η2 = η1, (3.13)

which implies that the two internal eight-dimensional spinors η1,2 are proportional. Comparison
with the normalisation condition (2.24) fixes8

η1 = 2
1
4 sin θη, η2 = 2

1
4 cos θη, (3.14)

where the Majorana–Weyl spinor η has positive chirality and unitary norm.
Finally we have to impose that a D5-brane probe wrapping Ŷ , extending along the (u, v)

direction and sitting at any point of Ŷ is supersymmetric

ΓD5ε2 = ε1. (3.15)

As for the D1-brane, there is no purely world-volume gauge field. Since we are assuming van-
ishing B-field along Ŷ , we can rewrite the D5 projector in terms of the D1 one

ΓD5 = ΓD1(1 ⊗ 1 ⊗ γ̂(4)). (3.16)

We see that (3.15) reduces the spinor (3.5) to

8 Notice also that Majorana conditions η
†
α = ηT

α C(8) imply that the proportionality constants must be real.
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η = ζ ⊗ ζ̂ + ζ c ⊗ ζ̂ c, (3.17)

where ζ and ζ̂ have positive chirality in four dimensions (γ(4)ζ = ζ , γ̂(4)ζ̂ = ζ̂ ) and we can
choose them to have unitary norm.

With the ansatz (3.14)–(3.17) for the eight-dimensional spinors, the polyform Ψ takes the
form (2.26) with

Φ = 1√
2

(
1 + Ω + e4G+4Ĝ vol4 ∧v̂ol4

)
, (3.18)

where Ω is the four-form defining the Spin(7) structure associated with η (see Appendix B for
some definitions and properties of Spin(7) structures)

Ω = e4G vol4 +e4Ĝv̂ol4 − e2G+2Ĝ

3∑
A=1

JA ∧ ĴA. (3.19)

Furthermore, the forms (2.29) can be expressed in terms of Ω too

Ω(1) = √
2 sin2 θ Ω, Ω(2) = √

2 cos2 θ Ω. (3.20)

In the equation above vol4 and v̂ol4 denote the volume forms on Y and Ŷ respectively, while
JA and ĴA (A = 1,2,3) are two triplets of two-forms which define two SU(2) structures on Y

and Ŷ , respectively. They are built as bilinears of the spinors ζ and ζ̂ as follows:

J1 + iJ2 = 1

2
ζ T C(4)γij ζ dxi ∧ dxj , J3 = i

2
ζ †γij ζ dxi ∧ dxj , (3.21)

−Ĵ1 + iĴ2 = 1

2
ζ̂ T Ĉ(4)γ̂abζ̂ dx̂a ∧ dx̂a, Ĵ3 = i

2
ζ̂ †γ̂abζ̂ dx̂a ∧ dx̂a. (3.22)

Both triplets of two-forms are anti-self-dual with respect to the corresponding metrics

∗4JA = −JA and ∗̂4ĴA = −ĴA A = 1,2,3, (3.23)

and satisfy the usual properties of almost hyper-Kähler structures, e.g.

(JA)ik(JB)kj =
∑
B

εABC(JC)ij − δABδi
j , (3.24)

or equivalently

JA ∧ JB = −2δAB vol4. (3.25)

The same equations hold for ĴA.

3.2. Minimal set of equations for our ansatz

The second part of the paper will be devoted to the construction of new examples of D1–D5–P
geometries describing microstates of a black hole. In this section we specify the general su-
persymmetry conditions of Section 2.2.3 to the restricted spinorial structure we worked out in
Section 3.1 and we identify a minimal set of equations which need to be solved in order to get a
full supergravity solution.
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For concreteness, in the rest of the paper we will always take Ŷ = T 4, choosing dŝ2
4 to be a

flat metric on it.9 Then we can take the triplet ĴA to be closed

dĴA = 0, (3.26)

so that T 4 is endowed with a hyper-Kähler structure. We will also assume that all the fields
depend just on the (u, v, xi) coordinates along the six-dimensional space R

1,1 × Y .
Finally we restrict our analysis to backgrounds that are ‘isotropic’ along T 4. In other words,

we impose that H has legs just along R
1,1 ×Y and that the RR-flux polyform F splits as follows:

Ftot = F + F̃ ∧ v̂ol4, (3.27)

where

F ≡ F1 + F3 + F5, (3.28a)

F̃ ≡ F̃1 + F̃3 + F̃5 (3.28b)

have legs along R
1,1 × Y only, and v̂ol4 is the volume form associated with the flat metric dŝ2

4 .
To avoid confusion, in this section, we denote the ten-dimensional RR fluxes by the subscript
tot. The ten-dimensional self-duality condition ∗λ(Ftot) = Ftot translates into the six-dimensional
Hodge-duality

F̃ = e4Ĝ ∗6 λ(F ), (3.29)

where ∗6 uses the complete, warped, six-dimensional metric. Notice that, by isotropy, F and F̃

must satisfy the following six-dimensional Bianchi identities/equations of motion

dH F = 0, (3.30a)

dH F̃ = 0, (3.30b)

where we recall that dH ≡ d − H .
The BPS equations of Section 2.2.3 can be used to derive a general ansatz (provided the as-

sumptions we made before) describing the D1–D5–P geometries we want to study. In particular
the metric and fluxes can be expressed in terms of a reduced number of independent fields sat-
isfying a simplified set of equations. The detailed derivation of such a minimal ansatz can be
found in Appendix E. Here we simply discuss the main steps of that derivation and the final
results, omitting several technical details.

Let us consider first (2.36a). As already discussed in Section 3.1, this can be used to derive
the most general for of the NSNS two-form, under the assumption that LKB = 0.

B = −e2D cos 2θ (du + ω) ∧ (dv + β) + b ∧ (dv + β) +B, (3.31)

where b = bi dxi and B = 1
2Bij dxi ∧ dxj have legs just along Y .

Similarly the ‘isotropic’ components of (2.36b) can be used to determine the RR potentials.
We define

F = dH C, F̃ = dH C̃, (3.32)

9 We stress once again that, with the two assumptions recalled after (3.26), everything we will say is actually valid for

Ŷ = K3 and Ricci-flat dŝ2
4 ≡ ds2

K3 as well.
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where C = C0 + C2 + C4 and C̃ = C̃0 + C̃2 + C̃4 are u-independent. Then the most general
solution of (2.36b) for the potentials is

C = −e2D(du + ω) ∧ (dv + β) ∧ (
e−φ sin 2θ + cos 2θ C

) + c ∧ (dv + β) + C, (3.33a)

C̃ = −e2D(du + ω) ∧ (dv + β) ∧ (
e4Ĝ−φ sin 2θ + cos 2θ C̃

) + c̃ ∧ (dv + β) + C̃, (3.33b)

where we have introduced the following polyforms on Y

c ≡ c1 + c3, c̃ ≡ c̃1 + c̃3,

C ≡ C0 + C2 + C4, C̃ ≡ C̃0 + C̃2 + C̃4. (3.34)

In order to proceed, we observe that the gauge freedom (3.2) can be conveniently fixed by
imposing that

e−2G = e2D+2Ĝ−φ sin 2θ. (3.35)

Then, the isotropy condition tells us the that the ‘non-isotropic’ components of (2.36b) must
vanish. This gives conditions involving the two-forms JA

DJA − β̇ ∧ JA = 0 (3.36)

and the one-form β

∗4Dβ =Dβ. (3.37)

The first tells us that the non-trivial v-dependence of the background constitutes a potential ob-
struction to the integrability of the almost hyper-Kähler structure on Y . The second conditions is
simply the self-duality of Dβ .

By using (2.37a) and (2.37b) one can show that the dilaton is given by

eφ = e2Ĝ

sin 2θ
, (3.38)

up to an arbitrary overall constant factor, which we have chosen to be 1 for simplicity.
It is convenient to explicitly solve the two relations (3.35) and (3.38) by expressing the three

wrappings e2D , e2G and e2Ĝ, the angle θ and the dilaton eφ in terms of three independent func-
tions Z, Z̃ and Zb

10:

e2D = α√
ZZ̃

, e2G =
√

ZZ̃, e2Ĝ =
√

Z

Z̃
,

cos 2θ = Zb√
ZZ̃

, e2φ = α
Z

Z̃
, (3.39)

where we have introduced a further function

α ≡ ZZ̃

ZZ̃ − Z2
b

= 1

sin2 2θ
. (3.40)

10 It can be useful to list the inverse relations too: Z = e2G+2Ĝ , Z̃ = e2G−2Ĝ and Zb = cos 2θe2G, with e2G given by
(3.35).
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By combining (2.37a) and (2.37b) with the self-duality condition for the RR field-strengths we
can also fix

C0 = Zb

Z
, C̃0 = Zb

Z̃
, (3.41)

up to an additive constant, which we set equal to zero. We then see that part of the supersymmetry
conditions can be used to fix the form of all scalars in our ansatz in terms of just the three
functions Z, Z̃ and Zb .

In order to write the remaining supersymmetry conditions in a more inspiring form, let us
introduce the anti-self-dual two form [38]

ψ ≡ 1

8
εABC(JA)ij (J̇B)ij JC, (3.42)

which measures the rotation of the triplet {JA} under the v-flow, and a set of three two-forms

Θ = Ċ2 +Dc1 − β̇ ∧ c1,

Θ̃ = ˙̃C2 +Dc̃1 − β̇ ∧ c̃1,

Θb = Ḃ +Db − β̇ ∧ b. (3.43)

Then, the self-duality of the RR fields implies that the anti-self-dual components of Θ , Θ̃ and
Θb are proportional to ψ

(1 − ∗4)Θ = 2Z̃ψ, (3.44a)

(1 − ∗4)Θ̃ = 2Zψ, (3.44b)

(1 − ∗4)Θb = 2Zbψ, (3.44c)

and determines the self-dual component of Dω

Dω + ∗4Dω = Z ∗4 Θ + Z̃Θ̃ − Zb(Θb + ∗4Θb) − 2WDβ. (3.45)

Notice that the self-duality of the r.h.s. of (3.45) is guaranteed by (3.44a) and (3.44b).
The remaining conditions encoded in the self-duality of the RR fields can be shown to reduce

to other two sets of equations. The first set is

DC2 −Dβ ∧ c1 = ∗4(DZ̃ + Z̃β̇), (3.46a)

DC̃2 −Dβ ∧ c̃1 = ∗4(DZ + Zβ̇), (3.46b)

DB −Dβ ∧ b = ∗4(DZb + Zbβ̇), (3.46c)

and the second set is

Ċ4 +Dc3 − β̇ ∧ c3 − Θb ∧ C2 − (DB −Dβ ∧ b) ∧ c1 = Z̃2 d

dv

(
Zb

Z̃

)
vol4, (3.47a)

˙̃C4 +Dc̃3 − β̇ ∧ c̃3 − Θb ∧ C̃2 − (DB −Dβ ∧ b) ∧ c̃1 = Z2 d

dv

(
Zb

Z

)
vol4 . (3.47b)

In fact, this latter set of equations does not give any additional constraint since it can always be
solved locally: one can always choose a gauge in which C4 ≡ C̃4 = 0 and Eqs. (3.47) can always
be (locally) integrated to give the (local) expression for c3 and c̃3.
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To conclude this section it might be useful to summarise what we obtain for the different
gauge invariant fields once we have implemented the above constraints. The metric ansatz (3.1)
can be rewritten as

ds2
(10) = − 2α√

ZZ̃
(dv + β)

[
du + ω + W(dv + β)

] +
√

ZZ̃ ds2
4 +

√
Z

Z̃
dŝ2

4 . (3.48)

The dilaton is given by

e2φ = α
Z

Z̃
. (3.49)

The NSNS field-strength is

H = −(du + ω) ∧ (dv + β) ∧
[
D

(
αZb

ZZ̃

)
− αZb

ZZ̃
β̇

]
+ (dv + β) ∧

(
Θb − αZb

ZZ̃
Dω

)
+ αZb

ZZ̃
(du + β) ∧Dβ + ∗4(DZb + Zbβ̇). (3.50)

The RR field-strengths (3.28a) are

F1 =D
(

Zb

Z

)
+ (dv + β) ∧ d

dv

(
Zb

Z

)
, (3.51a)

F3 = −(du + ω) ∧ (dv + β) ∧
[
D

(
1

Z

)
− 1

Z
β̇ + αZb

ZZ̃
D

(
Zb

Z

)]
+ (dv + β) ∧

(
Θ − Zb

Z
Θb − 1

Z
Dω

)
+ 1

Z
(du + ω) ∧Dβ

+ ∗4(DZ̃ + Z̃β̇) − Zb

Z
∗4 (DZb + Zbβ̇), (3.51b)

F5 = − α

Z
(du + ω) ∧ (dv + β) ∧ ∗4

[
Zb

Z̃
(DZ̃ + Z̃β̇) −DZb − Zbβ̇

]
(3.51c)

+ Z̃2 d

dv

(
Zb

Z̃

)
(dv + β) ∧ vol4, (3.51d)

while the RR field-strength (3.28b) are given by

F̃1 =D
(

Zb

Z̃

)
+ (dv + β) ∧ d

dv

(
Zb

Z̃

)
, (3.52a)

F̃3 = −(du + ω) ∧ (dv + β) ∧
[
D

(
1

Z̃

)
− 1

Z̃
β̇ + αZb

ZZ̃
D

(
Zb

Z̃

)]
+ (dv + β) ∧

(
Θ̃ − Zb

Z̃
Θb − 1

Z̃
Dω

)
+ 1

Z̃
(du + ω) ∧Dβ

+ ∗4(DZ + Zβ̇) − Zb

Z̃
∗4 (DZb + Zbβ̇), (3.52b)

F̃5 = − α

Z̃
(du + ω) ∧ (dv + β) ∧ ∗4

[
Zb

Z
(DZ + Zβ̇) −DZb − Zbβ̇

]
(3.52c)

+ Z2 d

dv

(
Zb

Z

)
(dv + β) ∧ vol4 . (3.52d)



526 S. Giusto et al. / Nuclear Physics B 876 (2013) 509–555

Our general supersymmetric ansatz is completely specified in terms of the fields ds2
4 , ω, β , W , Z,

Z̃, Zb , Θ , Θ̃ and Θb . They have to satisfy (3.36), (3.37), (3.44), (3.45) and (3.46), which ensure
the Bianchi identities for the NSNS and RR fields, as well as the RR self-duality condition
(3.29).11 Notice that the definitions (3.43) and the conditions (3.46), which explicitly involve
some (locally defined) RR and NSNS potentials, can be substituted with the conditions

DΘ − β̇ ∧ Θ = d

dv
∗4 (DZ̃ + Z̃β̇), (3.53a)

DΘ̃ − β̇ ∧ Θ̃ = d

dv
∗4 (DZ + Zβ̇), (3.53b)

DΘb − β̇ ∧ Θb = d

dv
∗4 (DZb + Zbβ̇), (3.53c)

and

D ∗4 (DZ + β̇Z) = −Θ̃ ∧Dβ, (3.54a)

D ∗4 (DZ̃ + β̇Z̃) = −Θ ∧Dβ, (3.54b)

D ∗4 (DZb + β̇Zb) = −Θb ∧Dβ, (3.54c)

respectively. Indeed, (3.43) and (3.46) can be regarded as explicit local solutions of Eqs. (3.53)
and (3.54).

As explained in Section 2.2.2, in order to obtain a supersymmetry solution, one needs to
further impose the vv component of the Einstein equation (2.38). By using the parametrisation
introduced in this section and some of the above constraints imposed by supersymmetry, this
reduces to the following equation

∗4D ∗4 L + 2 β̇iL
i − 1

4

ZZ̃

α

[
Z̃

Z

d

dv

(
Z

Z̃

)]2

− α

4

d

dv

(√
ZZ̃

α2
gij

)
d

dv

(√
ZZ̃gij

) − 1

2

√
ZZ̃

α
gij d2

dv2

(√
ZZ̃gij

)
+

√
ZZ̃

d

dv

[√
ZZ̃2

d

dv

(
Z2

b

ZZ̃

)]
− 1

2
Z2

[
d

dv

(
Zb

Z

)]2

− 1

2
Z̃2

[
d

dv

(
Zb

Z̃

)]2

+ 1

2
∗4

[
(Θ − Z̃ψ) ∧ (Θ̃ − Zψ) − (Θb − Zbψ) ∧ (Θb − Zbψ)

+ ZZ̃

α
ψ ∧ ψ − 2ψ ∧Dω

]
= 0, (3.55)

where we recall that

L = ω̇ + W β̇ −DW, (3.56)

and gij are the components of the metric on Y : ds2
4 = gij dxidxj .

It is useful to examine some limits of the general ansatz we have found above to clarify how
previously known solutions embed in it. When the metric and the gauge fields are taken to be
independent of v, the solution reduces to the one of [44,45] and it can be reduced to N = 2 5D

11 In particular, we see we do not need to use (3.47), which correspond to trivial Bianchi identities.
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supergravity coupled to three vector multiplets. When Zb = b = B = 0 one re-obtains the ansatz
of [39,40], which is equivalent to 6D supergravity coupled to an anti-self-dual tensor multiplet (if
one further restricts Z = Z̃, c1 = c̃1, C2 = C̃2, one reduces to minimal 6D supergravity, studied
in [38]).

We would like to conclude this section by emphasising that, in order to find explicit solutions,
the minimal set of equations we listed above can be conveniently organised in a way which
highlights a hidden linear structure [40]. This is discussed in Appendix E.7.

3.3. Supersymmetry of the solution

The supergravity backgrounds described in Section 3.2 are 1/8 supersymmetric, that is they
preserve four supercharges, both for Ŷ = T 4 or K3. In order to understand this point we need
to count the number of independent degrees of freedom of the spinors ε1 and ε2 satisfying the
supersymmetry conditions. According to our ansatz (3.7) and (3.14)–(3.17) these are given by

εI = NI

(
1
0

)
⊗ (

ζ ⊗ ζ̂ + ζ c ⊗ ζ̂ c), (3.57)

where the spinors ζ and ζ̂ are positive chirality spinors of unitary norm on Y and T 4, respectively.
The functions NI are given in (3.14): N1 = 21/4 sin θ and N2 = 21/4 cos θ .

In our approach we trade spinors for forms built as bilinears in the spinors. Indeed, the com-
plete information on the spinorial ansatz (3.57) is carried by the angle θ and the four-form
Ω introduced in (3.19). In turn, the information on ζ and ζ̂ is encoded in the two almost
hyper-Kähler structures (J1, J2, J3) and (Ĵ1, Ĵ2, Ĵ3) (see (3.21)), which enter Ω through the
combination∑

A

JA ∧ ĴA. (3.58)

Now, it is immediate to check that all the equations for our backgrounds are invariant under
separate rigid SU(2) � SO(3) rotations of JA and ĴA, say SU(2) × ŜU(2). Such transformations
do not change the metric and the other bosonic fields but do generically transform the form Ω ,
which is left invariant only under by the diagonal subgroup SU(2)diag ⊂ SU(2) × ŜU(2) which
preserves the combination (3.58).12 This means that these rigid SU(2) × ŜU(2) transformations
produce a three-parameters family of inequivalent normalised Killing spinors, locally identifiable
with the coset [SU(2) × ŜU(2)]/SU(2)diag. We also have the freedom of a constant rescaling of
the Killing spinors. If we take into account this extra parameter, we obtain a four-parameter
family of Killing spinors, corresponding to four supercharges preserved by our backgrounds.

4. An exact solution

The supergravity analysis of the previous sections provides a general framework for the con-
struction of supersymmetric type IIB solutions with a null isometry. In particular it can be
specialised to the study of type IIB backgrounds containing a T 4 and isotropic in T 4. The main
physical application that motivated this analysis is the construction of the generic solution carry-
ing D1, D5 and P charges. As mentioned in the Introduction, it would be very interesting to see

12 The SU(2) rotations translate into analogous rotations of the spinors ζ and ζ̂ , and again it is easy to see that (3.57) is
left invariant only by the diagonal subgroup SU(2)diag.
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whether the subset of D1–D5–P microstates that are isotropic in T 4 is sufficient to account for a
finite fraction of the total entropy associated with the given asymptotic charges.

In this section we present the first example of a configuration of this kind: an exact, completely
regular, horizonless, v-dependent solution of the supergravity equations of Section 2.2.3 carrying
D1, D5 and P charges, with a non-trivial profile for all type IIB fields. It also admits an AdS limit
which is dual to a known state of the D1–D5 CFT. Our main purpose is to show that it is possible
to find such explicit v-dependent solutions,13 rather than to discuss how to build them. That is
why we will give the explicit form of the solution but only briefly sketch the method that was used
to construct it (this is basically the approach of [50], just implemented at the full non-linear level).
A more detailed presentation of the solution generating technique, of the regularity analysis and
of the duality with the D1–D5 CFT, together with possible generalisations, will be presented in
a forthcoming work.

The solution we obtain can be seen as the non-linear completion of an approximate solution
derived by Mathur, Saxena and Srivastava (MSS) in [42], which represented the first example
of a microstate geometry for the three-charge black hole. We will review below the approximate
construction of [42], and then outline our method to promote that solution to an exact one of the
non-linear supergravity equations.

Note
To make contact with the existing literature on D1–D5–P microstates, in this section we will

use a different notation than in the previous part of the paper. The switch of notation and the
supergravity equations in the new variables are give in Appendix E.7. From now on we will refer
to equations in that appendix.

4.1. The perturbative solutions of MSS

The three-charge solution of MSS [42] is realised as a perturbation around a particular
two-charge background. Thus we begin with a very brief summary of the D1–D5 1/4-BPS mi-
crostates. These geometries were derived starting from the solution describing the back-reaction
of a vibrating F1-string [51,52]. When the asymptotic 10D geometry is R1,4 × S1 × T 4 it is pos-
sible to perform a U-duality transformation mapping the F1–P charges into the D1–D5 charges.
One obtains a microstate defined by a curve gi(v

′) in R
4. We are interested in the Lunin–Mathur

solution [53,54] which is defined by the circular profile

g1
(
v′) = a cos

2πv′

L
, g2

(
v′) = a cos

2πv′

L
, g3

(
v′) = g4

(
v′) = 0. (4.1)

Here

a =
√

Q1Q5

R
, L = 2π Q5

R
, (4.2)

where R is the radius of the direction y common to the D1 and D5 branes, and Q1 and Q5 are the
charges for N1 D1 and N5 D5 branes. The v′ appearing in the equation above has to be thought as

13 The example discussed in [36] falls in the restricted ansatz of [40] and a full analysis of the regularity conditions
of this case has still to be performed. Another very interesting family of a v-dependent geometries has been recently
discussed in [46,47]; these solutions are somehow complementary to those discussed in this paper as they are non-trivial
along T 4 and are identical to the two-charge configurations for the 6D part. A class of v-dependent but unbound solutions
has been found in [48,49].
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a parameter along the profile gi(v
′), and is not to be confused with the space–time coordinates v,

used in the supergravity sections, which is related to the time coordinate t and the S1 coordinate
y as in (2.14).

In this and the next subsection we will restrict, as in [42], to the particular case in which
Q1 = Q5 = Q. This ensures that the 6D description of the solution in (4.3a)–(4.3d) is simpler
as it can be described by minimal supergravity. In this case, the Lunin–Mathur geometry with
circular profile can be written in terms of the ansatz (E.51) as follows:

ds2
4 = (

r2 + a2 cos2 θ
)( dr2

r2 + a2
+ dθ2

)
+ (

r2 + a2) sin2 θ dφ2 + r2 cos2 θ dψ2, (4.3a)

β = Ra2

√
2(r2 + a2 cos2 θ)

(
sin2 θ dφ − cos2 θ dψ

)
, (4.3b)

Z1 = Z2 = 1 + Q

r2 + a2 cos2 θ
, a1 = a2 = 0, (4.3c)

ω = Ra2

√
2(r2 + a2 cos2 θ)

(
sin2 θ dφ + cos2 θ dψ

)
, F = 0, (4.3d)

Z4 = a4 = δ2 = 0. (4.3e)

Note that the 4D base metric ds2
4 in (4.3a) is just flat R4 written in non-standard coordinates, in

which the 10D metric takes its simplest form.
For r ∼ √

Q a curved region of space–time, named the “throat”, opens up. Contrary to the
“naive” extremal black hole geometry (which corresponds to the case a = 0), the throat ends
smoothly after a coordinate distance of order Q/a. As usual, the decoupling (or “near-horizon”)
limit corresponds to the case in which one focuses on the region inside a throat whose length is
much larger than its width. Quantitatively this approximation requires

r � √
Q, a � √

Q. (4.4)

In this limit, the “1” in the expression (4.3c) for Z1 and Z2 can be neglected:

Znh
1 = Znh

2 = Q

r2 + a2 cos2 θ
, (4.5)

while all the other geometric data are left unchanged. One can see that the resulting 10D geometry
reduces to AdS3 × S3 × T 4 after the coordinate redefinition

φ → φ + t

R
, ψ → ψ + y

R
. (4.6)

According to the general AdS/CFT paradigm, the full string (or M) theory in an AdS space
arising from a “near-horizon” limit should be dual to the CFT describing the low-energy ap-
proximation of the theory living on the branes used in the construction. In our case, we have
to deal with the (1 + 1)-dimensional CFT with central charge 6N1N5 [55,56] that captures the
low energy dynamics of the open strings ending on the D1 and D5 branes. Let us recall that
this CFT has an SU(2)L × SU(2)R R-symmetry, corresponding to rotations of R4, whose affine
generators are J 3

n , J±
n and J̄ 3

n , J̄±
n . According to the standard AdS/CFT dictionary, the “empty”

AdS3 × S3 × T 4 space corresponds to the vacuum state of the CFT, which is in the NSNS sector,
while the geometry defined by Eq. (4.1) is dual to the RR ground state of the D1–D5 CFT with
maximal values of J 3

0 and J̄ 3
0 (i.e. the highest weight state in each SU(2) given the total angular

momentum of the geometry). Then, from the point of view of the CFT, the coordinate change
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(4.6) realises the spectral flow from the RR sector to the NSNS sector [57], since it connects the
geometry dual to a RR ground state to the “empty” AdS3 × S3 × T 4, dual to the NSNS ground
state.

Non-trivial chiral primaries of the CFT are more easily described by reducing to six-
dimensional supergravity, and are represented by supergravity perturbations of the AdS3 × S3

background. This is the point of view adopted by the authors of [42], who consider a 6D su-
pergravity comprising the gravity multiplet (whose bosonic part contains the metric, a self-dual
2-form C and a vector) and a tensor multiplet (which includes an “anti-self-dual” 2-form B , a
scalar w and a vector). The metric and C describe the AdS3 × S3 background:

ds2
6 = − r2 + a2

Q
dt2 + r2

Q
dy2 + Q

dr2

r2 + a2
+ Q

(
dθ2 + cos2 θ dψ2 + sin2 θ dφ2), (4.7a)

C = − r2 + a2

Q
dt ∧ dy − Q cos2 θ dφ ∧ dψ. (4.7b)

Then, following [42], we switch on a perturbation that sits in the tensor multiplet and only ex-
cites the fields B and w. The equations satisfied by B and w are the 6D supergravity equations
linearised around the AdS3 × S3 background and are given by

dB + ∗6dB + w dC = 0, d ∗6 dw − 2dB ∧ dC = 0. (4.8)

The explicit form of the perturbation14 is [42]

w = cl

Q
e−2il(φ+ t

R
) sin2l θ

(r2 + a2)l
, (4.9a)

B = cl

2
e−2il(φ+ t

R
) sin2l θ

(r2 + a2)l

[
− r2

Q2
dt ∧ dy − i

R

r

r2 + a2
dr ∧ dy

− cos2 θ dφ ∧ dψ − i
cos θ

sin θ
dθ ∧ dψ

]
. (4.9b)

This perturbation is dual to a chiral primary state |Ψ 〉NS identified by the quantum numbers

jNS = hNS = l, j̄NS = h̄NS = l, (4.10)

where jNS and j̄NS are the eigenvalues of J 3
0 and J̄ 3

0 and hNS and h̄NS are the eigenvalues of the
Virasoro generators L0 and L̄0.

For later convenience, it is also useful to analyse the corresponding solution in the RR sector.
|Ψ 〉NS maps, via the inverse of the spectral flow transformation

φ → φ − t

R
, ψ → ψ − y

R
, (4.11)

into a RR ground state |Ψ 〉R with15

jR = l, hR = 0, j̄R = l, h̄R = 0. (4.12)

14 In all linearised solutions we follow [42] and complexify the field describing the perturbation: both the real and the
imaginary parts of this field represent valid solutions. Of course, at the non-linear level we will always have to work with
real fields.
15 Spectral flow transforms the CFT quantum numbers as hR = hNS − jNS + c

24 , jR = jNS − c
12 , with c = 6N1N5 for

the D1–D5 CFT. The terms proportional to c are associated with the background and thus, for the perturbation alone, one
has hR = hNS − jNS , jR = jNS .
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The geometry corresponding to |Ψ 〉R is represented as a perturbation around the background
given in Eqs. (4.3a), (4.3b), (4.3d) and (4.5); the fields of the perturbation16 read

w = cl

Q
e−2ilφ sin2l θ

(r2 + a2)l
, (4.13a)

B = cl

2
e−2ilφ sin2l θ

(r2 + a2)l

[
− r2 + a2 cos2 θ

Q2
dt ∧ dy − i

R

r

r2 + a2
dr ∧ dy

− cos2 θ

(
dφ ∧ dψ − a

Q
(dt ∧ dψ + dφ ∧ dy)

)
− i

cos θ

sin θ

(
dθ ∧ dψ − a

Q
dθ ∧ dy

)]
. (4.13b)

The idea of [42] is that, by a sequence of transformations in the chiral algebra of the CFT,
|Ψ 〉NS (and so the RR state |Ψ 〉R obtained after an inverse spectral flow) can be related to a state
in the RR sector of the CFT carrying one unit of momentum. In particular, one can consider the
state J−

0 |Ψ 〉NS: it has

jNS = l − 1, hNS = l, j̄NS = h̄NS = l, (4.14)

and hence is not a chiral primary. If one performs an inverse spectral flow transformation one
then reaches a RR state which is not a ground state and whose quantum numbers are

jR = l − 1, hR = 1, j̄R = l, h̄R = 0. (4.15)

This state can be identified with J−
−1|Ψ 〉R ; it carries momentum

p = hR − h̄R = 1. (4.16)

Thanks to the fact that the operator J−
0 can be identified with an infinitesimal rotation in R

4,
it is straightforward to generate (in the near-horizon limit) the gravity solution dual of the state
J−

−1|Ψ 〉R : one starts with the solution (4.9a)–(4.9b), performs the infinitesimal rotation associ-
ated with J−

0 , and finally the change of coordinates (4.11). The resulting geometry, whose explicit
expression can be found in Eqs. (3.21)–(3.30) of [42], solves by construction the linearised equa-
tions in the “near-horizon” region. In order to construct a real microstate of the three-charge
black hole, this “near-horizon” geometry should be glued back to the asymptotically flat region.
This step was performed in [42] only approximately, through a perturbative expansion in the
parameter ε = a√

Q
(the regime ε � 1 describes geometries with a very long throat). In the next

subsection we will show that, by embedding the solution into our general ansatz (E.51), the ex-
tension from the asymptotically AdS solution to an asymptotically flat one is straightforward.
The same formalism will also make the generalisation from a linearised to an exact background
more transparent.

4.2. Embedding MSS in our ansatz

Let us go back to the original two-charge geometry (4.13a)–(4.13b) corresponding to the CFT
state in the RR sector |Ψ 〉R : to embed this 6D supergravity solution into our 10D ansatz one first

16 In order to obtain (4.13b) one needs to use also Q = Ra following from (4.2) in the case Q1 = Q5.
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needs to specify a 10D uplift. This uplift is not unique, but we focus here on one based on the
following identifications17

C ≡ −C2, w ≡ 2C0, B ≡ B. (4.17)

With these identifications, the state |Ψ 〉R is represented by the original Lunin–Mathur ge-
ometry given in (4.3a), (4.3b), (4.3d) and (4.5), plus the 10D uplift of the perturbation
Eqs. (4.13a)–(4.13b):

C0 = cl

2Q
e−2ilφ sin2l θ

(r2 + a2)l
, (4.18a)

B = cl

2

{
e−2ilφ sin2l θ

(r2 + a2)l

[
− r2 + a2 cos2 θ

Q2
(du + ω) ∧ (dv + β)

− r2 + a2

r2 + a2 cos2 θ
cos2 θ dφ ∧ dψ − i

cos θ

sin θ
dθ ∧ dψ

]
+ e−2ilφ sin2l θ

(r2 + a2)l

[
a

Q

(
dφ + i

cos θ

sin θ
dθ − i

r

r2 + a2
dr

)
∧ dy

]}
, (4.18b)

with β and ω given in (4.3b) and (4.3d). The term in the last line is d-trivial and can be gauged
away. Notice that the perturbation (4.18a)–(4.18b) can be embedded, at linear order in cl , in the
ansatz (E.51), by choosing

Z4 = cl

2
e−2ilφ sin2l θ

(r2 + a2)l(r2 + a2 cos2 θ)
, a4 = 0, (4.19a)

δ2 = −cl

2
e−2ilφ sin2l θ

(r2 + a2)l

[
r2 + a2

r2 + a2 cos2 θ
cos2 θ dφ ∧ dψ + i

cos θ

sin θ
dθ ∧ dψ

]
. (4.19b)

It is immediate to check that the Z4 and δ2 above satisfy the only supergravity constraint (E.57a)
that is non-trivial for this solution, i.e.

∗4 dZ4 = dδ2. (4.20)

Since all two-charge solutions are known and are associated with a curve gA(v′) (A =
1, . . . ,8) in R

4 × T 4, the solution (4.19a)–(4.19b) is defined by a particular gA(v′). As men-
tioned before, this curve represents the profile of the string in the duality frame in which the
charges are fundamental string and momentum: the solutions corresponding to curves in R

4 are
the Lunin–Mathur geometries [53,54], while general curves where considered in [41,58]. Choos-
ing a generic profile in R

4 × T 4 for the vibrating string breaks the rotation invariance on T 4;
however, when going from the F1–P to the D1–D5 duality frame, one of the directions of T 4,
that we take to be the direction A = 5, is singled out. In particular a profile gA(v′) that has only
component 5 in T 4 will be a scalar in the D1–D5 frame, while a profile in the other T 4 direction
will correspond to a three-form. Then, D1–D5 geometries whose profile has components only
along the directions A = 1, . . . ,5 are T 4 isotropic and have, generically, all type IIB fields ex-
cited. The solution dual to the state |Ψ 〉R is exactly of this form, and indeed one can see that it
coincides with the D1–D5 geometry associated with the curve

17 To match the conventions of [42] with ours, one also needs to reverse the orientation: ∗6 → −∗6, where, in our
conventions, εty1234 = +1.
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g1
(
v′) = a cos

2πv′

L
, g2

(
v′) = a cos

2πv′

L
, g5

(
v′) = −ibe− 4πilv′

L , (4.21)

at first order in b and with all remaining components of g set to zero. The relation between the
parameters b and cl is

cl

2
= −baR. (4.22)

We can embed in our ansatz also the solution in Eqs. (3.21)–(3.30) of [42] corresponding
to the three-charge CFT state J−

−1|Ψ 〉R . As discussed in the previous section this configuration
is generated by combining the change of coordinates corresponding to the CFT spectral flow
and R

4 rotations. The solution carrying one unit of momentum is described by the following
geometric data18

Z4 = −clle
−i

√
2 v

R e−2ilφ+i(φ+ψ) sin2l−1 θ cos θ

(r2 + a2)l(r2 + a2 cos2 θ)
, (4.24a)

δ2 = −clle
−i

√
2 v

R e−2ilφ+i(φ+ψ) r sin2l−1 θ

(r2 + a2)l

[
sin θ

(
dr ∧ dθ

r2 + a2
+ r sin θ cos θ

r2 + a2 cos2 θ
dφ ∧ dψ

)
− i

(
cos θ

r2 + a2
dr ∧ dψ + sin θ

r
dθ ∧ dφ

)]
. (4.24b)

The other data describing the geometry remain, of course, unchanged at linear order and the only
non-trivial supergravity equations are (E.57)

δ̇2 = ∗4δ̇2, ∗4DZ4 =Dδ2, (4.25)

which are easily verified.
The advantage of rewriting the “near-horizon” MSS solution in the form of our ansatz is that

the extension to the asymptotically flat region is now immediate: it is enough to re-add the “1”
to the functions Z1 and Z2. As the equations for Z4 and δ2 do not involve Z1 an Z2 (when, as
in our case, β is v-independent), it is evident that sending Z1,2 → Z1,2 + 1 does not change Z4
and δ2. Moreover, inspection of the other supergravity constraints immediately shows that all the
other geometric data are unmodified at first order in the perturbation parameter cl . In conclusion,
the geometry given by the data in (4.3a)–(4.3d) and in (4.24a)–(4.24b) solves the supergravity
equations at first order in cl and interpolates between flat space and the AdS region for any value
of ε = a√

Q
. Thus it represents a “perturbative” microstate of the three-charge black hole with one

unit of momentum.

4.3. The non-linear completion

If one wants to describe microstates that carry a macroscopic amount of momentum charge
(rather than just one quantum) one needs to take into account higher order contributions in the
perturbation parameter cl . The solution of the previous subsection fails to solve the supergravity
equations at all orders in cl : terms of order c2

l appear on the r.h.s. of the equations involving F

18 We exploit the gauge invariance

a4 → a4 − λ̇(1), δ2 → δ2 +Dλ(1), (4.23)

with λ(1) a 1-form, to set a4 = 0.
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and ω (E.58) and thus these metric coefficients will necessarily be modified at that order. Note
that the appearance of a non-vanishing F is expected for geometries carrying a finite amount of
momentum charge.

One can construct a fully non-linear three-charge solution by starting from an exact two-
charge geometry and applying a sequence of transformations similar to the ones described above.
We will give here a sketch of the construction, specifying for simplicity to the case l = 1

2 .
Let us consider the non-linear extension of the two-charge microstate described by the curve

in (4.21). First of all, when working at the non-linear level one has to use real expressions (as the
trick of taking the real part of the final solution does not apply when the equations are non-linear).
There are of course many possible curves that reduce to the real part of (4.21) at linear order in
b. We will make here the following choice

g1
(
v′) = a cos

(
2πv′

L

)
, g2

(
v′) = a sin

(
2πv′

L

)
, g5

(
v′) = −b sin

(
2πv′

L

)
,

(4.26)

while all other components of the profile are trivial. The exact two-charge geometry correspond-
ing to this profile can be derived thanks to the results of [41] and is given, in our notations,
by19

ds2
4 = (

r2 + a2 cos2 θ
)( dr2

r2 + a2
+ dθ2

)
+ (

r2 + a2) sin2 θ dφ2 + r2 cos2 θ dψ2, (4.27a)

β = R a2

√
2(r2 + a2 cos2 θ)

(
sin2 θ dφ − cos2 θ dψ

)
, (4.27b)

Z1 = 1 + R2

Q5

a2 + b2

2

r2 + a2 cos2 θ
+ R2a2b2

2Q5

cos 2φ sin2 θ

(r2 + a2 cos2 θ)(r2 + a2)
, (4.27c)

Z2 = 1 + Q5

r2 + a2 cos2 θ
, a1 = 0, (4.27d)

Z4 = Rab
cosφ sin θ√

r2 + a2(r2 + a2 cos2 θ)
, a4 = 0, (4.27e)

δ2 = −Rab sin θ√
r2 + a2

[
r2 + a2

r2 + a2 cos2 θ
cos2 θ cosφ dφ ∧ dψ + sinφ

cos θ

sin θ
dθ ∧ dψ

]
, (4.27f)

ω = Ra2

√
2(r2 + a2 cos2 θ)

(
sin2 θ dφ + cos2 θ dψ

)
, (4.27g)

F = 0. (4.27h)

The relation (4.2) between the y radius R and the charges is now modified as

R =
√

Q1Q5

a2 + b2

2

. (4.28)

19 From now on we work with arbitrary D1 and D5 charges; of course, in order to find the results of the previous two
subsections one needs to use explicitly the constraint Q1 = Q5 = Q.
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One can now take the “near-horizon” limit,20 which amounts to replacing Z1,2 → Z1,2 − 1,
do a spectral flow to the NSNS sector, make a finite rotation in R

4, and finally spectral flow back
to the RR sector. One generates in this way a solution describing a three-charge microstate in the
“near-horizon” region. The solution is

ds2
4 = (

r2 + a2 cos2 θ
)( dr2

r2 + a2
+ dθ2

)
+ (

r2 + a2) sin2 θ dφ2 + r2 cos2 θ dψ2, (4.29a)

β = Ra2

√
2(r2 + a2 cos2 θ)

(
sin2 θ dφ − cos2 θ dψ

)
, (4.29b)

Z1 = R2

Q5

a2 + b2

2

r2 + a2 cos2 θ
+ R2a2b2

2Q5
cos 2v̂

cos2 θ

(r2 + a2 cos2 θ)(r2 + a2)
, (4.29c)

Z2 = Q5

r2 + a2 cos2 θ
, a1 = 0, (4.29d)

Z4 = Rab cos v̂
cos θ√

r2 + a2(r2 + a2 cos2 θ)
, a4 = 0, (4.29e)

δ2 = Rab
r√

r2 + a2

[
cos v̂ sin θ

(
dr ∧ dθ

r2 + a2
+ r sin θ cos θ

r2 + a2 cos2 θ
dφ ∧ dψ

)
− sin v̂

(
cos θ

r2 + a2
dr ∧ dψ + sin θ

r
dθ ∧ dφ

)]
, (4.29f)

ω = Ra2

√
2(r2 + a2 cos2 θ)

(
sin2 θ dφ + cos2 θ dψ

)
+ Rb2

√
2

(r2 + a2) sin2 θ dφ + r2 cos2 θ dψ

(r2 + a2)(r2 + a2 cos2 θ)
, (4.29g)

F = − b2

r2 + a2
, (4.29h)

with

v̂ =
√

2v

R
− ψ. (4.30)

Note that the sequence of spectral flows and rotations in general mixes the coordinates u and v

with the R
4 coordinates; thus, one would have expected that the 4D metric ds2

4 and the 1-form
β would have been modified by the series of change of coordinates performed. However, this
has not happened for the particular transformations that generate the geometry corresponding
to the state J−

−1|Ψ 〉R : at the end ds2
4 is still flat and β is still v-independent. Note also that a1

is still vanishing and Z2 is still v-independent, which implies that Θ1 = 0. One has instead a
non-vanishing Θ2, that can be computed to be

Θ2 = −
√

2Ra2b2

Q5

r cos θ

r2 + a2

[
sin 2v̂ sin θ

(
dr ∧ dθ

r2 + a2
+ r sin θ cos θ

r2 + a2 cos2 θ
dφ ∧ dψ

)
+ cos 2v̂

(
cos θ

r2 + a2
dr ∧ dψ + sin θ

r
dθ ∧ dφ

)]
. (4.31)

20 In the “near-horizon” limit both a2 and b2 are much smaller than
√

Q1Q5.
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Being generated from a regular solution via a globally defined sequence of coordinate transfor-
mations, the geometry (4.29a)–(4.29h) is guaranteed to solve the supergravity constraints and to
be regular.

The final task is the extension of the above “near-horizon” solution to one that has flat asymp-
totics. This task is complicated in this case by two factors: first, the replacement Z1,2 → Z1,2 +1
generates on the r.h.s. of Eqs. (E.38) and (E.58b) terms proportional to Θ2 and to the v-derivatives
of Z1 and forces ω and/or F to be corrected in order to preserve the supergravity constraints.
Second, the necessary corrections to ω spoil the regularity of the geometry and have to be fur-

ther compensated by corrections of order a2

Q5
. We will not attempt to explain here a systematic

technique to address these problems. The recent results of [59] have provided a general method
to produce v-dependent solutions of the supergravity equations precisely in the situation that is
relevant for our problem, i.e. when the 4D metric ds2

4 and β are v-independent. The construction
of [59] applies to the restricted ansatz in which Z4 = a4 = δ2 = 0, but its extension to our more
general set up is straightforward. We have checked that the solution (4.29a)–(4.29h) fits into the
scheme of [59], and we have used this observation to generate the corresponding asymptotically
flat geometry. We leave the details, as well as further applications, to a forthcoming work. We
quote here, for completeness, the final solution:

ds2
4 = (

r2 + a2 cos2 θ
)( dr2

r2 + a2
+ dθ2

)
+ (

r2 + a2) sin2 θ dφ2 + r2 cos2 θ dψ2, (4.32a)

β = Ra2

√
2(r2 + a2 cos2 θ)

(
sin2 θ dφ − cos2 θ dψ

)
, (4.32b)

Z1 = 1 + R2

Q5

a2 + b2

2

r2 + a2 cos2 θ
+ R2a2b2

2(Q5 + a2)

cos 2v̂ cos2 θ

(r2 + a2 cos2 θ)(r2 + a2)
, (4.32c)

Z2 = 1 + Q5

r2 + a2 cos2 θ
, a1 = 0, (4.32d)

Z4 = Rab cos v̂
cos θ√

r2 + a2(r2 + a2 cos2 θ)
, a4 = 0, (4.32e)

δ2 = Rab
r√

r2 + a2

[
cos v̂ sin θ

(
dr ∧ dθ

r2 + a2
+ r sin θ cos θ

r2 + a2 cos2 θ
dφ ∧ dψ

)
− sin v̂

(
cos θ

r2 + a2
dr ∧ dψ + sin θ

r
dθ ∧ dφ

)]
, (4.32f)

ω = Ra2

√
2 (r2 + a2 cos2 θ)

(
sin2 θ dφ + cos2 θ dψ

)
+ Rb2

√
2

(r2 + a2) sin2 θ dφ + r2 cos2 θ dψ

(r2 + a2)(r2 + a2 cos2 θ)

− Ra2b2

2
√

2 (Q5 + a2)

[
cos 2v̂

a2 sin2 θ dφ − r2 dψ

(r2 + a2)(r2 + a2 cos2 θ)
cos2 θ

+ sin 2v̂
r cos θ dr − (r2 + a2) sin θ dθ

(r2 + a2)2
cos θ

]
, (4.32g)

F = − b2

r2 + a2
. (4.32h)



S. Giusto et al. / Nuclear Physics B 876 (2013) 509–555 537

This geometry solves the non-linear supergravity equations, is regular and horizon-less, and at
large distances reduces to the geometry of the black hole with D1, D5 and P charges.
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Appendix A. Conventions

In this paper we will consider ten-dimensional Minkowski space we use the signature
(−,+, . . . ,+), as well as eight- and four-dimensional Euclidean space. We distinguish local
flat indices by underlying them.

In a D-dimensional space, take an oriented vielbein em, with m = 0, . . . ,D − 1 if the space is
Minkowskian and m = 1, . . . ,D if it is Euclidean. Then the Hodge-∗ of a k-form Ak is defined
as follows:

∗Ak ≡ 1

k!(D − k)!εm1...mD−kmD−k+1...mD
AmD−k+1...mDem1 ∧ · · · ∧ emD−k , (A.1)

where εm1...mD
is the totally antisymmetric symbol, such that ε0...D−1 = 1 and ε1...D = 1 in

Minkowskian and Euclidean spaces respectively.
We often use the operator λ which acts on a k-form Ak as follows:

λ(Ak) = (−)k(k−1)/2Ak, (A.2)

that is, λ exchanges the order of the indices of the form it is action on.
We define the contraction of a k-form Ak by a vector X = Xm∂m by

ιXAk ≡ 1

(k − 1)!X
mAmn1...nk−1 dxn1 ∧ · · · ∧ dxnk−1 , (A.3)

and we use the shorthand notation ιm ≡ ι∂m .
We also make use of the full contraction of two k-forms, Ak and Bk ,

Ak · Bk ≡ 1

p!AM1...MpBM1...Mp , (A.4)

which is generalised to the contraction of polyforms A = ∑
k Ak and B = ∑

k Bk as

A · B ≡
∑

k

Ak · Bk. (A.5)

When acting on spinors, a k-form is implicitly taken to be contracted by gamma matrices
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Ak ≡ 1

k!Am1...mk
γ m1...mk , (A.6)

where, as usual, γ m1...mk ≡ γ [m1 · · ·γ mk].
We use spinor in 10 Minkowskian and 8 and 4 Euclidean dimensions. The corresponding

chirality operators are

Γ(10) = Γ 0...9, γ(8) = γ 1...8, γ(4) = γ 1...4. (A.7)

When we consider the split from 10 to 2 + 8 dimensions we use the following gamma matrices
decomposition

Γ 0 = iσ2 ⊗ γ(8), Γ 1 = σ1 ⊗ γ(8), Γ a = 1 ⊗ γ a. (A.8)

We can also split the ten-dimensional charge conjugation matrix

C(10) = iσ2 ⊗ C(8)γ(8), (A.9)

where C(8) is such that C(8)γaC
−1
(8)

= γ T
a . The Majorana condition on a ten-dimensional spinor ε

imposes that

ε̄ ≡ ε†Γ 0 = εT C(10), (A.10)

and on an eight-dimensional spinor η imposes

η† = ηT C(8). (A.11)

By choosing C(8) = 1 and then C(10) = Γ 0 one obtains the real representation.
We also consider the split of the Euclidean 8 dimensions into 4 + 4 dimensions as in (3.4),

under which

C(8) = C(4) ⊗ Ĉ(4), (A.12)

where C(4) (and analogously Ĉ(4)) now satisfies the identities C(4)γiC
−1
(4) = −γ T

i . For instance,
we could take the following explicit representation for four-dimensional gamma matrices

γ 1 = σ1 ⊗ 1, γ 2 = σ2 ⊗ 1, γ 3 = σ3 ⊗ σ2, γ 4 = σ3 ⊗ σ1 (A.13)

and then γ(4) = σ3 ⊗ σ3. In this basis we can choose C(4) = σ2 ⊗ σ1.
In this paper we use the democratic formulation [60] of type II supergravities in the conven-

tions spelt out in detail in Appendix A of [61], up to a sign flip H → −H . Let us just recall some
informations relevant for the analysis of supersymmetry.

For the Ramond–Ramond fields we consider the full sum of field strengths

F =
∑

k

Fk, (A.14)

with k even (from 0 to 10) in IIA and odd (from 1 to 9) in IIB. The redundant degrees of freedom
in F are eliminated by the self-duality constraint

F = ∗λ(F ), (A.15)

where λ is given in (A.2).
The fermionic content of type II supergravity consists of a doublet of gravitino’s and dilatino’s

ψM = (
ψ1

M,ψ2
M

)
, λ = (

λ1, λ2). (A.16)
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The components of the doublet have different chirality in type IIA and the same chirality in type
IIB. In both theories we fix the chirality to be

Γ(10)ψ
1
M = ψ1

M, Γ(10)λ
1 = −λ1. (A.17)

The type II supersymmetry transformations are parameterised by a doublet of Majorana–Weyl
spinors ε = (ε1, ε2), of opposite chirality in IIA and same chirality in IIB

Γ(10)ε1 = ε1 (IIA), Γ(10)ε2 = ∓ε2 (IIB). (A.18)

In our conventions, the type II supersymmetry transformations of [60] can be written as follows:

δψ1
M =

(
∇M − 1

4
ιMH

)
ε1 + 1

16
eφFΓMΓ(10)ε2, (A.19a)

δψ2
M =

(
∇M + 1

4
ιMH

)
ε2 − 1

16
eφλ(F )ΓMΓ(10)ε1, (A.19b)

δλ1 =
(

dφ − 1

2
H

)
ε1 + 1

16
eφΓ MFΓMΓ(10)ε2, (A.19c)

δλ2 =
(

dφ + 1

2
H

)
ε2 − 1

16
eφΓ Mλ(F )ΓMΓ(10)ε1, (A.19d)

where fluxes are contracted on gamma matrices as in (A.6).

Appendix B. Spin(7) structures

Take an 8-dimensional space X and a globally defined, nowhere vanishing Majorana–Weyl
spinor η. The structure group oh the spin bundle is reduced from Spin(8) to Spin(7). We choose
the charge conjugation matrix C(8) = 1, so that all gamma matrices γa are real, η is real and
satisfies γ(8)η = η, with γ(8) = γ1...8. Furthermore we normalise η in such a way that

ηT η = 1. (B.1)

An equivalent way of defining a reduced Spin(7) structure is via a four-form

Ω = 1

4! ηT γabcdη dya ∧ dyb ∧ dyc ∧ dyd. (B.2)

If η has positive chirality, then Ω is self-dual

∗Ω = Ω, (B.3)

while if γ(8)η = −η then ∗Ω = −Ω .
The different tensors can be decomposed in different representations of Spin(7). A vector

transforms in the representation 8 of Spin(7). On the other hand, a tensor with two antisymmetric
indices decomposes as follows in irreducible representations:

α[ab] = 7 ⊕ 21. (B.4)

We can use Ω to construct the corresponding projectors. In particular

(P7)ab
cd = 1

4

(
δ
[c
[aδ

d]
b] − 1

2
Ωab

cd

)
(B.5)

is the projector on the 7 of Spin(7).
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It is also useful to observe that, if χ is any four-form, then one can construct a two-form
transforming in the 7 of Spin(7)

T 7 ≡ ι[aΩ · ιb]χ dya ∧ dyb ≡ 1

3!
(
Ω[acdeχb]cde

) ∧ dya ∧ dyb. (B.6)

B.1. Decomposition of spinors

We can decompose an arbitrary spinor ξ on X by using as basis η, γaη, γabη. In particular, if
η has positive chirality, we can decompose a positive/negative chirality spinor ξ+/− as

ζ+ = χ1η + 1

2!χ
7
abγ

abη,

ζ− = χ8
a γ aη, (B.7)

where χ1 is a singlet of Spin(7), χ8 is a vector and the two-form χ7
ab transforms as 7 of Spin(7).

This is due to the following projector conditions:

(P7)ab
cdγcdη = γcdη. (B.8)

Hence ζ+ ∈ 1 ⊕ 7 and ζ− ∈ 8. Notice also that (η, γabη) and (γ aη) form a basis for the positive
and negative chirality spinors, respectively. If γ(8)η = −η, we have a similar decomposition with
chiral and antichiral spinors exchanged.

The spinorial basis (η, γaη, γabη) obeys the following orthogonality conditions

ηT γaγ
bη = δb

a,

ηT γabγ
cdη = −8(P7)ab

cd , (B.9)

which can be used to invert the decomposition (B.7)

χ1 = ηT ζ+, χ7
ab = −1

4
ηT γabζ+, χ8

a = ηT γaζ−. (B.10)

Another useful identity is the following. Let us state it for a non-normalised spinor η, with
ηT η �= 1. If we define a (non-normalised) Ωabcd = ηT γabcdη, then

ηT γabη̇ − 1

2
ηT γabmAη = − 1

8ηT η
ι[aΩ · d

dv
(ιb]Ω). (B.11)

Notice that all terms in this equations transform as two-forms in 7, cf. (B.6) and (B.8).

Appendix C. Integrability for null Killing vectors

In this section we discuss again the relation between supersymmetry and equations of motion
for the case of null Killing vector, which is relevant for this paper. In the derivation we do not
explicitly include branes as localised sources and we only consider the closed string sector.

Let us first define

EMN = RMN + 2∇M∇Nφ − 1

2
HM · HN − 1

4
e2φFM · FN,

HMN = e2φ ∗10

[
d
(
e−2φ ∗10 H

) + 1

2
(∗10F ∧ F)8

]
,

O = 2R − H 2 + 8
[∇2φ − (dφ)2], (C.1)
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where F is the sum of all RR filed-strengths as in (A.14). Using this notation, the string-frame
trace-reversed Einstein equations, the B-field equations and the dilation’s equation are simply

EMN = 0, HMN = 0, O = 0. (C.2)

On the other hand,

dH = 0, dH F = 0 (C.3)

give the Bianchi identity for the Bfield and the Bianchi identities and equations of motion for the
RR-fields.

The starting point of our discussion is provided by Eqs. (11.4) in [61]. They immediately
imply that, if the type II background is supersymmetric, the following equations are satisfied

EMNΓ Nε1 + 1

2

[
HMNΓ N + ιM(dH)

]
ε1 + 1

4
(dH F)ΓMΓ(10)ε2 = 0,

EMNΓ Nε2 − 1

2

[
HMNΓ N + ιM(dH)

]
ε2 − 1

4
Γ(10)λ(dH F)ΓMε1 = 0,

Oε1 + 2(dH)ε1 − (dH F)ε2 = 0,

Oε2 − 2(dH)ε2 − λ(dH F)ε1 = 0. (C.4)

If we then impose the Bianchi identities (C.3), it is easy to see from the last two equations in
(C.4) that the dilaton equation, O = 0, is automatically fulfilled. On the other hand, the first two
equations of (C.4) reduce to(

EMN + 1

2
HMN

)
Γ Nε1 = 0,(

EMN − 1

2
HMN

)
Γ Nε2 = 0. (C.5)

These can be reduced to a set of bosonic conditions using the fact that Γ uε1 and Γ aε1, with
a = 1, . . . ,8, form a set of linearly independent spinors21 (the same is true for ε2)

EMu + 1

2
HMu = 0, EMa + 1

2
HMa = 0,

EMu − 1

2
HMu = 0, EMa − 1

2
HMa = 0, (C.6)

where again a = 1, . . . ,8. Clearly, these are in turn equivalent to the set of equations

EMu = 0, EMa = 0,

HMu = 0, HMa = 0. (C.7)

Since HMN is antisymmetric, the second line of (C.7) is actually equivalent to the complete set
of B-field equations of motion HMN = 0. The first line provides almost all components of the
Einstein equations EMN = 0, with the exclusion of the vv component

Evv = 0. (C.8)

We then reach the conclusion that, if K is null, imposing supersymmetry and the BI’s (C.3) au-
tomatically implies all remaining equations of motion but (C.8), which then needs to be checked
separately.

21 Remember that for K null, both ε1 and ε2 are annihilated by Γ v .



542 S. Giusto et al. / Nuclear Physics B 876 (2013) 509–555

Appendix D. The missing supersymmetry equations

Eqs. (2.3) and (2.6) are not sufficient for guaranteeing the supersymmetry of a ten-dimensional
background and must be supplemented by additional conditions [12]. The problem is that some
information contained in the Killing spinor equations is projected out when going to the polyform
equations. In fact, by looking at Appendix B of [12] one can easily identify which are the Killing
spinor equations which are not captured by (2.3) and (2.6). The missing conditions are provided
by Eqs. (B.39) and (B.40) therein and correspond exactly to the component of two gravitino
equations along the null-directions e+1 and e+2 .

In our case, where K is null, we can identify e+1 and e+2 with Ev and then the missing
supersymmetry conditions are given by the v-component of the gravitino variations given in
(A.19):(

∇v − 1

4
ιvH

)
ε1 + 1

16
eφFΓvΓ(10)ε2 = 0,(

∇v + 1

4
ιvH

)
ε2 − 1

16
eφλ(F )Γvε1 = 0. (D.1)

Our aim is to express these equations in a more tractable form, different (but equivalent) to
Eqs. (3.1d)–(3.1e) of [12].

We first split the NSNS and RR fluxes as in (2.16)

H = h + Eu ∧ hu + Ev ∧ hv + Eu ∧ Ev ∧ huv,

F = f + Eu ∧ fu + Ev ∧ fv + Eu ∧ Ev ∧ fuv. (D.2)

Then we compute the covariant derivatives using the ansatz for the metric (2.13) and the spinors
(2.22)

∇vε1 ≡ EM
v ∇Mε1 =

(
1
0

)
⊗

[
e−2Dη̇1 + 1

4
(Dω + WDβ)η1 − 1

2
e−2DmAη1

]
−

(
0
1

)
⊗

[√
2

4

(
e−2DDe2D − β̇

)
η1

]
, (D.3)

where we have introduced the two-form

mA = 1

2
δacė

c

ded
b ea ∧ eb. (D.4)

Analogously

∇vε2 = EM
v ∇Mε1 =

(
1
0

)
⊗

[
e−2Dη̇2 + 1

4
(Dω + WDβ)η2 − 1

2
e−2DmAη2

]
+

(
0
1

)
⊗

[
(−)|F |

√
2

4

(
e−2DDe2D − β̇

)
η2

]
. (D.5)

The terms in (D.1) containing the fluxes are easily simplified using (D.2) and the chirality
properties of the spinors. Then, we can rewrite (D.1) as(

e−2DDe2D − β̇
)
η1 − huvη1 − 1

2
eφf η2 = 0, (D.6a)(

e−2DDe2D − β̇
)
η2 + huvη2 − 1

2
(−)|f |eφλ(f )η1 = 0, (D.6b)
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η̇1 − 1

2
mAη1 + e2D

4
(Dω + WDβ)η1 − e2D

4
hvη1 + 1

8
e2D+φfvη2 = 0, (D.6c)

η̇2 − 1

2
mAη2 + e2D

4
(Dω + WDβ)η2 + e2D

4
hvη2 − e2D+φ

8
λ(fv)η1 = 0. (D.6d)

Each of the spinors η1 and η2 defines a Spin(7) structure. We can use them to expand
(D.6a)–(D.6d) in a natural spinorial basis.

Let us start with (D.6a). By construction all terms have opposite chirality with respect to η1.
As discussed in Appendix B, we can expand it in the basis γaη1 with a = 1, . . . ,8. The different
components are obtained by contraction it with ηT

1 γa . Using the definition of Φ (2.27), we can
write

√
2 sin2 θ

(
e−2DDe2D − β̇ − huv

) − 1

2
eφ(ιaf · Φ + f · ιaΦ)dxa = 0. (D.7)

We can repeat the same procedure, expanding (D.6b) in the basis γaη2,

√
2 cos2 θ

(
e−2DDe2D − β̇ + huv

) + 1

2
eφ(ιaf · Φ − f · ιaΦ)dxa = 0. (D.8)

(D.7) and (D.8) combine into the following algebraic equations

e−2DDe2D − β̇ + cos 2θhuv = 1√
2
eφ(f · ιaΦ)dxa,

huv + cos 2θ
(
e−2DDe2D − β̇

) = − 1√
2
eφ(ιaf · Φ)dxa, (D.9)

which can be further simplified if one uses the supersymmetry equations (2.6). Indeed (2.6a)
allows to determine some components of the NSNS flux

hu = cos 2θe2DDβ,

huv = cos 2θβ̇ − e−2DD
(
cos 2θe2D

)
, (D.10)

while (2.6b) gives

fu = √
2e2D−φDβ ∧ Φ,

fuv + cos 2θf = −√
2e−φ

[
e−2D+φD

(
e2D−φΦ

) − h ∧ Φ − β̇ ∧ Φ
]
. (D.11)

In particular, using (D.10), we can rewrite (D.9) as

e−2DDe2D − β̇ +D log(sin 2θ) = 1√
2 sin2(2θ)

eφ(f · ιaΦ)dxa, (D.12a)

Da cos 2θ = 1√
2
eφιaf · Φ, (D.12b)

d

dv
(cos 2θ) =

√
2

4
e2D+φfv · Φ. (D.12c)

Let us now pass to the last two equations, (D.6c) and (D.6d). We can expand them in the basis
(η1, γabη1) and (η2, γabη2), respectively. Let us first contract (D.6c) with ηT

1 . Recalling that we
set ηT

1 η1 = √
2 sin2 θ , we get

1√
2

d

dv

(
sin2 θ

) + 1

8
e2D+φfv · Φ = 0. (D.13)
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On the other hand, contracting (D.6d) with ηT
2 and using ηT

1 η1 = √
2 cos2 θ gives

1√
2

d

dv

(
cos2 θ

) − 1

8
e2D+φfv · Φ = 0. (D.14)

These two equations are clearly equivalent and can be rewritten as

1√
2

d

dv
(cos 2θ) − 1

4
e2D+φfv · Φ = 0. (D.15)

We now have to consider the γabη1 and γabη2 components of (D.6c) and (D.6d). Let us intro-
duce the four-forms Ω(1) and Ω(2) defined as

Ω
(1)
abcd = ηT

1 γabcdη1, Ω
(2)
abcd = ηT

2 γabcdη2. (D.16)

Then, by using (B.11) we can write

ηT
1 γabη̇1 − 1

2
ηT

1 γabmAη1 = − 1

8
√

2 sin2 θ
ι[aΩ(1) · d

dv

(
ιb]Ω(1)

)
,

ηT
2 γabη̇2 − 1

2
ηT

2 γabmAη2 = − 1

8
√

2 cos2 θ
ι[aΩ(2) · d

dv

(
ιb]Ω(2)

)
. (D.17)

On the other hand, by using the projectors on the representations 7 of the two reduced Spin(7)
structure group defined by η1 and η2,(

P
(1)
7

)
ab

cd = 1

4

(
δ
[c
[aδ

d]
b] − 1

2
√

2 sin2 θ
Ω

(1)
ab

cd

)
,

(
P

(2)
7

)
ab

cd = 1

4

(
δ
[c
[aδ

d]
b] − 1

2
√

2 cos2 θ
Ω

(2)
ab

cd

)
, (D.18)

we can write

η1γab(Dω + WDβ)η1 − η1hvη1 = −4
√

2 sin2 θ
(
P

(1)
7

)
ab

cd(Dω + WDβ − hv)cd ,

η2γab(Dω + WDβ)η2 + η2hvη2 = −4
√

2 cos2 θ
(
P

(2)
7

)
ab

cd(Dω + WDβ + hv)cd . (D.19)

Furthermore we have

ηT
1 γabfvη2 = Φ · (γabfv),

ηT
2 γabλ(fv)η1 = −Φ · (fvγab), (D.20)

where the action of gamma matrices on differential forms is explained after (2.31) and in the
present case is explicitly given by

γabfv = ιaιbfv + dxa ∧ dxb ∧ fv + 2dx[a ∧ ιb]fv,

fvγab = ιaιbfv + dxa ∧ dxb ∧ fv − 2 dx[a ∧ ιb]fv, (D.21)

with dxa ≡ gab dxb . Putting all these steps together, we obtain the following equations

ι[aΩ(1) · d

dv

(
ιb]Ω(1)

) = −16 sin4 θe2D
(
P

(1)
7

)
ab

cd(Dω + WDβ − hv)cd

+ √
2 sin2 θe2D+φΦ · (γabfv),

ι[aΩ(2) · d

dv

(
ιb]Ω(2)

) = −16 sin4 θe2D
(
P

(2)
7

)
ab

cd(Dω + WDβ + hv)cd

+ √
2 sin2 θe2D+φΦ · (fvγab). (D.22)
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Appendix E. Derivation of the general ansatz of Section 3.2

In this appendix we show how the ansatz we use in Section 3.2 to describe bound states of
D1–D5–P branes is the most general one compatible with the BPS equations of 2.2.3 under some
hypothesis we will discuss below.

We want to describe the back-reaction of bound states of D1–D5–P in R
1,1 ×Y ×T 4. The two

assumptions we make are that the backgrounds are homogeneous and isotropic on T 4. Therefore
all the fields in the ansatz only depend on the (u, v, xi) coordinates of R1,1 × Y and we impose
that H has legs just along R

1,1 × Y and that the RR-flux polyform F splits as follows:

Ftot = F + v̂ol4 ∧ F̃ , (E.1)

where F and F̃ have legs along R
1,1 × Y only. The ten-dimensional self-duality condition re-

duces to the six-dimensional conditions

F̃ = e4Ĝ ∗6 λ(F ), (E.2)

where ∗6 uses the complete, warped, six-dimensional metric. Moreover F and F̃ must satisfy
the following six-dimensional Bianchi identities/equations of motion

dH F = 0, (E.3a)

dH F̃ = 0, (E.3b)

where dH ≡ d − H . In this appendix we will adapt the flux decomposition (2.16) to the metric
(3.1). With obvious notation, we can write

F = Eu ∧ Ev ∧ fuv + Ev ∧ fv + Eu ∧ fu + f, (E.4a)

F̃ = Eu ∧ Ev ∧ f̃uv + Ev ∧ f̃v + Eu ∧ f̃u + f̃ . (E.4b)

Notice that here f... denote the flux components along the four-dimensional space Y and not, as
in the rest of the paper, the eight-dimensional components transverse to (u, v).

The duality condition (E.2) splits into the following set of duality conditions on Y :

f̃uv = e4Ĝ∗̃4λ(f ), f̃v = e4Ĝ∗̃4λ(fv), f̃u = −e4Ĝ∗̃4λ(fu),

f̃ = e4Ĝ∗̃4λ(fuv), (E.5)

where ∗̃4 uses the complete warped four-dimensional metric e2Gds2
4 .

We will now solve the BPS conditions summarised in Section 2.2.3.

E.1. Equation (2.36a)

Let us start with (2.36a)

dχ = ιKH. (E.6)

As already discussed in Section 3.1, the most general local solution is provided by22

22 More precisely, the most general local solution takes the form H = dB , with B u-independent and such that ιKB =
−χ + dλ where λ is a function. On the other hand, we can perform a gauge transformation B → B + d(λdu) which
allows to bring ιKB into the form ιKB = −χ .
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B = −e2D cos 2θ (du + ω) ∧ (dv + β) + b ∧ (dv + β) +B, (E.7)

where b = bi dxi and B = 1
2Bij dxi ∧ dxj have legs just along Y . Then

H = −(du + ω) ∧ (dy + β) ∧ [
D

(
e2D cos 2θ

) − e2D cos 2θβ̇
]

+ (dv + β) ∧ [
Ḃ − e2D cos 2θ Dω − (Db − β̇ ∧ b)

]
+ (du + ω) ∧ (

e2D cos 2θ Dβ
) +DB −Dβ ∧ b. (E.8)

E.2. Equation (2.36b)

We then pass to (2.36b). The isotropy condition (E.1) implies that the ‘non-isotropic’ compo-
nents of dH (e−φΨ ) should vanish. Explicitly, we have

dH

(
e−φΨ

)∣∣
non-is. = −dH

[
e2(D+G+Ĝ)−φ sin 2θ (dv + β) ∧

3∑
A=1

JA ∧ ĴA

]
. (E.9)

We can use the gauge freedom (3.2) to fix

e−2G = e2(D+Ĝ)−φ sin 2θ. (E.10)

With this choice, by using (E.8) we have

dH

(
e−φΨ

)∣∣
non-is. =

3∑
A=1

ĴA ∧ {
(dv + β) ∧ (DJA − β̇ ∧ JA) −Dβ ∧ JA

+ (du + ω) ∧ (dv + β) ∧ [
e2D cos 2θ Dβ ∧ JA

]}
. (E.11)

Hence, dH (e−φΨ )|non-is. = 0 gives the conditions

DJa − β̇ ∧ JA = 0, (E.12a)

Dβ ∧ JA = 0 ⇔ ∗4Dβ =Dβ, (E.12b)

where now ∗4 denote the four-dimensional Hodge star with respect to the metric without warp-
factor. The first condition tells us that the non-trivial v-dependence of the background constitutes
a potential obstruction to the integrability of the almost hyper-Kähler structure on Y .

Once we have imposed (E.10) and (E.12), the remaining equations contained in (2.36b) split
as follows:

dH

(
e−φϕ

) = ιKF + χ ∧ F, (E.13a)

dH

(
e4Ĝ−φϕ

) = ιKF̃ + χ ∧ F̃ , (E.13b)

where ϕ is the part of the Ψ with all legs in R
1,1 × Y :

ϕ = e2D sin 2θ (dv + β) ∧ (
1 + e4G vol4

)
. (E.14)

Using (E.6) and LkB = 0, (E.13a) can be rewritten as

d
(
e−φeBϕ

) = ιK
(
eBF

)
(E.15)

and can therefore be solved in the same way as (E.6). Locally we can write F as

F = dH C = e−B d
(
eBC

)
, (E.16)
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where C = C0 + C2 + C4 is u-independent. C must satisfy ιK(eBC) = −e−φeBϕ and then

ιKC = −e−φϕ − χ ∧ C, (E.17)

which means that we can set

C = −(du + ω) ∧ (
e−φϕ + χ ∧ C

) + c ∧ (dv + β) + C
= −e2D(du + ω) ∧ (dv + β) ∧ [

e−φ sin 2θ + cos 2θ C
] + c ∧ (dv + β) + C, (E.18)

where c ≡ c1 + c3 and C ≡ C0 + C2 + C4 are polyforms with legs along Y and in the second
step we have omitted the piece of ϕ containing vol4 since it is irrelevant. Eq. (E.18) provides a
parametrisation of the most general local solution of (E.13a).

The most general solution of (E.13b) can be obtained in an almost identical way. Setting
locally F̃ = dH C̃, with C̃ = C̃0 + C̃2 + C̃4 gives the general local solution

C̃ = −(du + ω) ∧ (
e4Ĝ−φϕ + χ ∧ C̃

) + c̃ ∧ (dv + β) + C̃

= −e2D(du + ω) ∧ (dv + β) ∧ (
e4Ĝ−φ sin 2θ + cos 2θ C̃

) + c̃ ∧ (dv + β) + C̃, (E.19)

where again c̃ ≡ c̃1 + c̃3 and C̃ ≡ C̃0 + C̃2 + C̃4 have legs along Y , and, in the last line, we have
omitted an irrelevant six-form.

Now that we found two independent general solutions for (E.3a) and (E.3b), we have to com-
pute F = dH C and F̃ = dH C̃ and impose the self-duality condition (E.2). In the notation of
(E.4a) and (E.4b), we have for F

fuv = −e−2DD
(
e2D−φ sin 2θ

) − cos 2θ(DC −Dβ ∧ c)

+ e−φ sin 2θβ̇ + (DB −Dβ ∧ b) ∧ (
e−φ sin 2θ + cos 2θ C

)
,

fv = e−2D
[
Ċ − Ḃ ∧ C − e2D−φ sin 2θ (Dω + WDβ) + (Dc − β̇ ∧ c)

− (Db − β̇ ∧ b) ∧ C − (DB −Dβ ∧ b) ∧ c
]
,

fu = e2D−φ sin 2θ Dβ,

f = (DC −Dβ ∧ c) − (DB −Dβ ∧ b) ∧ C, (E.20)

and for F̃

f̃uv = −e−2DD
(
e2D+4Ĝ−φ sin 2θ

) − cos 2θ(DC̃ −Dβ ∧ c̃)

+ e4Ĝ−φ sin 2θ β̇ + (DB −Dβ ∧ b) ∧ (
e4Ĝ−φ sin 2θ + cos 2θ C̃

)
,

f̃v = e−2D
[ ˙̃C + Ḃ ∧ C̃ − e2D+4Ĝ−φ sin 2θ (Dω + WDβ) + (Dc̃ − β̇ ∧ c̃)

− (Db − β̇ ∧ b) ∧ C̃ − (DB −Dβ ∧ b) ∧ c̃
]
,

f̃u = e2D+4G−φ sin 2θ Dβ,

f̃ = (DC̃ −Dβ ∧ c̃) − (DB −Dβ ∧ b) ∧ C̃. (E.21)

E.3. Equations (2.37a) and (2.37b)

Let us start from (2.37a). Using the duality conditions (E.5) and the expressions for the fluxes
(E.20), (E.21), this becomes
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D(2Ĝ − φ) + 1

2
eφ cos 2θ

sin 2θ

(
DC0 + e−4ĜDC̃0

) = 0. (E.22)

To arrive at this expression we have rewritten the right-hand side of (2.37a) as

1√
2 sin2(2θ)

eφ(f · ιaΦ)dxa = eφ

2 sin 2θ

(∗̃4f3 + e−4Ĝ∗̃4f̃3
)

= − eφ

2 sin 2θ

(
e−4Ĝf̃uv1 + fuv1

)
. (E.23)

Let us now look at (2.37b). The r.h.s. is

1√
2
eφιaf · Φ = sin 2θ

2
eφ

(
f1 + e−4Ĝf̃1

)
, (E.24)

and hence, substituting the expressions for f and f̃ , that equation reduces to

D cos 2θ = 1

2
sin 2θ eφ

(
DC0 + e−4ĜDC̃0

)
. (E.25)

Combining (E.22) and (E.25) one obtains

D(2Ĝ − φ − log sin 2θ) = 0, (E.26)

which implies

2Ĝ − φ − log sin 2θ = 0, (E.27)

up to an irrelevant constant which can be reabsorbed by a redefinition of the dilaton. The relation
above and the gauge choice (E.10) leave only two independent quantities out of the three warp
factors D, G, Ĝ and the dilaton φ. In the following, we choose to keep as independent quantities
G and Ĝ, so that

eφ = e2Ĝ

sin 2θ
, eD = e−G

sin 2θ
. (E.28)

The remaining two scalars, C0 and C̃0, are not completely fixed at this point but are related
by the relation (E.25), which can be rewritten as

DC0 + e−4ĜDC̃0 = 2e−2ĜD cos 2θ. (E.29)

E.4. Self-duality of the RR field strengths

Let us now examine the duality relations (E.5). First, notice that by using (E.12b) the third
condition of (E.5) is automatically satisfied. The other conditions

f̃uv = e4Ĝ ∗̃4λ(f ), f̃ = e4Ĝ∗̃4λ(fuv), (E.30)

once expanded in forms of fixed degree, can be written as

DC2 −Dβ ∧ c1 = e2(G−Ĝ) ∗4
[(

e−2Ĝ cos 2θ − C0
)
DC̃0

+ (
e2Ĝ cos 2θ C0 + sin2 2θ

)(
β̇ − 2D(Ĝ − G)

)]
, (E.31a)

DC̃2 −Dβ ∧ c̃1 = e2(G+Ĝ) ∗4
[(

e2Ĝ cos 2θ − C̃0
)
DC0

+ (
e−2Ĝ cos 2θ C̃0 + sin2 2θ

)(
β̇ + 2D(Ĝ + G)

)]
, (E.31b)
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DB −Dβ ∧ b = ∗4
[
e2(G−Ĝ)DC̃0 + e2G cos 2θ

(
β̇ − 2D(Ĝ − G)

)]
, (E.31c)

DC0 − e−4ĜDC̃0 = −4e−2Ĝ cos 2θ DĜ. (E.31d)

The last equation, (E.31d), provides another relation on the scalars in the ansatz, which, combined
with (E.29) gives

D
(
C0 − e−2Ĝ cos 2θ

) = 0, D
(
C̃0 − e2Ĝ cos 2θ

) = 0 (E.32)

and hence, up to a constant,

C0 = e−2Ĝ cos 2θ, C̃0 = e2Ĝ cos 2θ. (E.33)

These relations can be used to simplify the previous ones

DC2 −Dβ ∧ c1 = ∗4
[
e2(G−Ĝ)β̇ +De2(G−Ĝ)

]
,

DC̃2 −Dβ ∧ c̃1 = ∗4
[
e2(G+Ĝ)β̇ +De2(G+Ĝ)

]
,

DB −Dβ ∧ b = ∗4
[
e2G cos 2θ β̇ +D

(
e2G cos 2θ

)]
. (E.34)

Let us now consider the last non-trivial duality constraint in (E.5)

f̃v = e4G∗̃4λ(fv). (E.35)

To this extent it is convenient to introduce some more notation, the three two-forms

Θ = Ċ2 +Dc1 − β̇ ∧ c1,

Θ̃ = ˙̃C2 +Dc̃1 − β̇ ∧ c̃1,

Θb = Ḃ +Db − β̇ ∧ b. (E.36)

Then the self-duality constraints read

d

dv

(
e2Ĝ cos 2θ

) = e4(Ĝ−G) ∗4
[
Ċ4 − Θb ∧ C2 + (Dc3 − β̇ ∧ c3)

− (DB −Dβ ∧ b) ∧ c1
]
,

d

dv

(
e−2Ĝ cos 2θ

) = e−4(Ĝ+G) ∗4
[ ˙̃C4 − Θb ∧ C̃2 + (Dc̃3 − β̇ ∧ c̃3)

− (DB −Dβ ∧ b) ∧ c̃1
]
, (E.37)

and

Dω + ∗4Dω + 2WDβ = e2(G−Ĝ)Θ̃ + e2(G+Ĝ) ∗4 Θ − e2G cos 2θ(Θb + ∗4Θb). (E.38)

E.5. Equation (2.37c)

Using the expression for the fluxes (E.20) and the self-duality conditions, the supersymmetry
constraint (2.37c) becomes

d

dv
(cos 2θ) =

√
2

4
e2D+φfv · Φ

= 1

2
sin 2θeφ

(
Ċ0 + e−4Ĝ ˙̃C0

)
, (E.39)

which is identically satisfied by the relations (E.33).
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E.6. Equations (2.37d) and (2.37e)

The last equations to analyse are (2.37d) and (2.37e). As shown in Section 3.1, the requirement
of having supersymmetric D1–D5–P systems forces the two eight-dimensional spinors η1 and η2
to be proportional

η1 = 21/4 sin θ η, η2 = 21/4 cos θ η. (E.40)

Thus the two Spin(7) structures characterising the most general background with null K col-
lapse to a single one

Ω(1) = √
2 sin2 θ Ω, Ω(2) = √

2 cos2 θ Ω (E.41)

associated with the four-form (3.19)

Ω = e4G vol4 +e4Gv̂ol4 − e2G+2Ĝ
3∑

A=1

JA ∧ ĴA, (E.42)

where JA and ĴA define almost hyper-Kähler structures on Y and T 4 respectively (see (3.21)).
This brings some simplifications to (2.37d) and (2.37e). In particular, their sum and difference

give

16
√

2(P7)ab
cd(hv)cd = −eφΦ ·

(
1

sin2 θ
γabfv − 1

cos2 θ
fvγab

)
, (E.43a)

ι[aΩ · d

dv
(ιb]Ω) + 8e2D(P7)ab

cd(Dω + W Dβ)cd

= e2D+φ

2
√

2
Φ ·

(
1

sin2 θ
γabfv + 1

cos2 θ
fvγab

)
. (E.43b)

In order to simplify further the equations above, we need some extra work. Let us first intro-
duce the two-form

ψ ≡
∑
A

ψAJA = 1

4
εABC(JA · J̇B)JC ≡ 1

8
εABC(JA)ij (J̇B)ij JC, (E.44)

which is anti-self-dual on Y . Notice that, for any self-dual and anti-self-dual 2-forms ρsd and
ρasd we have

(JA)[i k(ρsd)j ]k ≡ 0, ρasd ≡ 1

2

∑
A

(JA · ρasd)JA. (E.45)

These identities can be used to check that ψ can be rewritten as

ψ = −1

4

∑
A

(JA)i
k(J̇A)jk dxi ∧ dxj . (E.46)

Then, it is tedious but straightforward to prove that

ι[mΩ · d

dv
ιn]Ω = −4e2Ĝ

∑
A

ψA(ĴA)mn, (E.47a)

ι[iΩ · d

dv
ιj ]Ω = −4e2Gψij , (E.47b)
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(P7)ab
ij (Dω + WDβ)ij = 1

4
e2Ĝ−2G

∑
A

(JA ·Dω)(ĴA)ab, (E.47c)

(P7)ij
hk(Dω + WDβ)hk = 1

4

[
(1 − ∗4)Dω

]
ij
, (E.47d)

(P7)ab
ij (hv)ij = −1

4
e2G−2G̃

∑
A

(JA · hv)(ĴA)ab, (E.47e)

(P7)ij
hk(hv)hk = −1

4

[
(1 − ∗4)hv

]
ij
, (E.47f)

Φ · (γabf
tot
v

) = −√
2 sin 2θ e2Ĝ−2G

∑
A

(JA · fv2)(ĴA)ab, (E.47g)

Φ · (f tot
v γab

) = −√
2 sin 2θ e2Ĝ−2G

∑
A

(JA · fv2)(ĴA)ab, (E.47h)

Φ · (γij f
tot
v

) = −√
2 sin 2θ

[
(1 − ∗4)fv2

]
ij
, (E.47i)

Φ · (f tot
v γij

) = −√
2 sin 2θ

[
(1 − ∗4)fv2

]
ij
, (E.47j)

where, on the left-hand side, we introduced the superscript tot to distinguish the eight-dimensional
RR fluxes defined in (2.16) from the four-dimensional ones in (E.4a).

Using the identities (E.47) and the expression for the fluxes derived in the previous sections,
it is possible to reduce the constraint (E.43a) to a more readable form

(1 − ∗4)Θ = 2e2G−2Ĝψ, (E.48a)

(1 − ∗4)Θb = 2 cos 2θe2Gψ. (E.48b)

Finally, combining the previous equations with self-duality condition (E.38) gives

(1 − ∗4)Θ̃ = 2e2G+2Ĝψ. (E.49)

E.7. Summary and relation with the notation of previous works

In this section, we summarize our ansatz and the complete set of supergravity equations one
has to solve to find supergravity solutions describing D1–D5–P systems. We change the notation
to make it compatible with previous works [16,33,38–40,44]. We rename the various metric and
gauge field coefficients as follows:

Z → Z1, Z̃ → Z2, Zb → Z4, W → F
2

,

c1 → a1, c̃1 → a2, b → a4,

C2 → γ2, C̃2 → γ1, B → δ2, c3 → x3. (E.50)

Note that now the number subscripts do not denote anymore the form degree but rather refer to
the particular multiplet the corresponding fields belong to.

In the new notation the ansatz for the metric in string frame, the dilaton, the NSNS B-field
and the RR gauge fields is
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ds2
(10) = − 2α√

Z1Z2
(dv + β)

[
du + ω + F

2
(dv + β)

]
+ √

Z1Z2 ds2
4 +

√
Z1

Z2
dŝ2

4 ,

e2φ = α
Z1

Z2
,

B = − α Z4

Z1Z2
(du + ω) ∧ (dv + β) + a4 ∧ (dv + β) + δ2,

C0 = Z4

Z2
,

C2 = − α

Z1
(du + ω) ∧ (dv + β) + a1 ∧ (dv + β) + γ2,

C4 = Z4

Z2

ˆvol4 − αZ4

Z1Z2
γ2 ∧ (du + ω) ∧ (dv + β) + x3 ∧ (dv + β), (E.51)

where

α = Z1Z2

Z1Z2 − Z2
4

. (E.52)

As already mentioned at the end of Section 3.2, the search of a solution can be systematised
by solving the equations in the following order

• Equations for ds2
4 , β:

dJA = d

dv
(β ∧ JA), ∗4JA = −JA, JA ∧ JB = −2δAB vol4, (E.53a)

∗4Dβ =Dβ; (E.53b)

• Equations for Z1, a2, γ1:

∗4(DZ1 + β̇ Z1) = Dγ1 − a2 ∧Dβ, (E.54a)

Θ2 − Z1ψ = ∗4(Θ2 − Z1ψ) with Θ2 =Da2 − β̇ ∧ a2 + γ̇1; (E.54b)

with

ψ = 1

8
εABC(JA)ij (J̇B)ij JC; (E.55)

• Equations for Z2, a1, γ2:

∗4(DZ2 + β̇Z2) =Dγ2 − a1 ∧Dβ, (E.56a)

Θ1 − Z2ψ = ∗4(Θ1 − Z2ψ) with Θ1 =Da1 − β̇ ∧ a1 + γ̇2; (E.56b)

• Equations for Z4, a4, δ2:

∗4(DZ4 + β̇Z4) =Dδ2 − a4 ∧Dβ, (E.57a)

Θ4 − Z4 ψ = ∗4(Θ4 − Z4 ψ) with Θ4 =Da4 − β̇ ∧ a4 + δ̇2; (E.57b)

• Equations for ω,F :
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Dω + ∗4Dω +FDβ = Z1 ∗4 Θ1 + Z2Θ2 − Z4(Θ4 + ∗4Θ4), (E.58a)

∗4D ∗4 L + 2β̇iL
i − 1

4

Z1Z2

α

[
Z2

Z1

d

dv

(
Z1

Z2

)]2

− α

4

d

dv

(√
Z1Z2

α2
gij

)
d

dv

(√
Z1Z2gij

) − 1

2

√
Z1Z2

α
gij d2

dv2

(√
Z1Z2gij

)
+ √

Z1Z2
d

dv

[√
Z1Z2

d

dv

(
Z2

4

Z1Z2

)]
− 1

2
Z2

1

[
d

dv

(
Z4

Z1

)]2

− 1

2
Z2

2

[
d

dv

(
Z4

Z2

)]2

+ 1

2
∗4

[
(Θ1 − Z2ψ) ∧ (Θ2 − Z1ψ) − (Θ4 − Z4ψ) ∧ (Θ4 − Z4ψ)

+Z1Z2

α
ψ ∧ ψ − 2ψ ∧Dω

]
= 0, (E.58b)

with

L = ω̇ + F
2

β̇ − 1

2
DF; (E.59)

• Equation for x3:

Dx3 − β̇ ∧ x3 − Θ4 ∧ γ2 + a1 ∧ (Dδ2 − a4 ∧Dβ) = Z2
2 ∗4

d

dv

(
Z4

Z2

)
. (E.60)

Only the first set of Eqs. (E.53) is non-linear. The remaining conditions, if solved in the order
presented above, represent a set of linear equations for their respective unknowns.
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