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Abstract

We study a particular class of D-brane bound states in type IIB string theory (dubbed “superstrata”) that
describe microstates of the 5D Strominger–Vafa black hole. By using the microscopic description in terms
of open strings we probe these configurations with generic light closed string states and from there we obtain
a linearized solution of six-dimensional supergravity preserving four supersymmetries. We then discuss two
generalizations of the solution obtained which capture different types of non-linear corrections. By using
this construction, we can provide the first explicit example of a superstratum solution which includes the
effects of the KK-monopole dipole charge to first order.
© 2012 Elsevier B.V. All rights reserved.

1. Introduction

In string theory supersymmetric black holes are realized as bound states at threshold of many
basic constituents, such as perturbative string states and branes. In [1,2] this picture was used
to count in concrete examples the degeneracy of the configurations that have the same (three)
conserved charges. In particular, the setup studied in those papers is type IIB string theory com-
pactified on an S1 of radius R � √

α′ times a string-sized four manifold, which is either T 4

or K3. In the large charge limit the microscopic counting matches perfectly the Bekenstein–
Hawking entropy of a black hole solution with the same charges. However, while the study of
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the bound state degeneracy is performed at zero string coupling gs , the gravitational backre-
action of the string/brane bound state, and thus its connection to black holes, is manifest only
when gsN is big, where N roughly indicates the number of elementary constituents of each type
present in the bound state. The presence of four preserved supercharges is crucial for connecting
the degeneracy of the configuration at gs = 0 with the black hole entropy derived from the black
hole geometry. In [3–5] a new line of research was initiated with the aim to understand the gravi-
tational backreaction of the different configurations (known as microstates), which at the level of
the free theory account for the bound state degeneracy. One of the aims of this programme is to
understand whether it is possible to give a supergravity description of each microstate in the limit
when gs is small, but gsN is finite. Even if this geometric description fails when approaching
the bound state under analysis, the really important question is whether this happens before a
horizon is formed or not.

Even though there has been continuous progress over the last ten years and many works have
been published on the subject (see for instance the review articles [6–12]), a complete under-
standing of the 3-charge microstate geometries relevant for the black hole studied in [1,2] is still
lacking. The question of whether the generic microstate can be described by a horizonless ge-
ometry is still open. However very far away from the location of the bound state, the geometry
will be certainly described by a 5D Minkowski metric times the compact space plus tiny correc-
tions. There are cases where this asymptotically flat part can be glued with a smooth geometry
describing the gravitational backreaction of a particular 3-charge bound state at any value of the
radial distance r , see [13–15] for some of the first examples of such geometries. These config-
urations appear as 1/8-BPS solutions of the standard type IIB supergravity equations, but with
some striking geometric properties. In this case one can check explicitly that no horizons develop
inside the throat of the geometry and the sources appear to have dissolved into fluxes of the su-
pergravity gauge fields, which makes the classical solution regular even in the interior. A more
general class of 1/8-BPS solutions with the same features was constructed in [16,17]. The set
of 3-charge microstates with a known gravitational dual was further extended in [18]: the main
novelty of this new class of backgrounds is that the large S1 present in the compact space plays
a non-trivial role and the solutions are genuinely six-dimensional.

In this paper we will follow the approach of [19–21] and use the microscopic description of
the bound state in terms of D-branes and open string states to derive the geometric properties of
3-charge microstates in particular limits. The basic idea of this approach is that the couplings of
the bound state with the massless closed string sector of the theory (i.e. the supergravity fields)
are described in the underlying World-sheet Conformal Field Theory (WCFT) by a set of cor-
relation functions with disk topology. The conditions imposed on the boundary of the disk and
the possible presence of open string states define the particular microstate under analysis. The
WCFT correlators we are interested in will always have a single external closed string state.
These correlators are directly related to the backreaction of the D-brane bound state for the su-
pergravity field corresponding to the closed string state considered. Physically this closed string
is the probe used to explore the backreacted geometry. In [19–21] this probe was always taken to
have zero momentum in all compact directions. Of course, the information derived in this way
cannot distinguish between localized or smeared configurations and the supergravity solutions
derived could be interpreted entirely in a (non-minimal) five-dimensional supergravity [22].

We wish to revisit this analysis by allowing closed string probes that are localized in the
large S1 of the compact space, or in other words that have momentum along this S1. In partic-
ular, we will still focus on the D-brane configurations discussed in [21], but we wish to explore
the geometry in a finer detail by using the more general probes mentioned above (of course the
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same generalization can be done for other D-brane configurations). Our analysis shows that, in
the D1–D5 frame, the 3-charge microstates behave differently from the 2-charge ones: while in
this second case the use of localized probes does not give any new information, the 3-charge
microstates seem to always have a non-trivial dependence on the S1 coordinate. A purely 5D ge-
ometry is obtained only if we focus just on delocalized probes along the S1 or, in other words, we
smear over the S1. In principle, this process of smearing can induce spurious singularities which
would be absent in the complete geometry and it is an interesting open problem to understand
exactly when this happens. The smeared configurations are likely to be described by exotic or
non-geometric configurations, of the type studied in [23,24].

The bound states we are interested in are constructed at the microscopic level by taking D5
branes wrapped on the whole compact space and D1 branes wrapped on the S1 and by giving
them an identical profile describing a vibration in the transverse non-compact space. As usual, in
order to preserve some supercharges, the functions f i describing the shape of the D-branes in the
transverse directions can depend only on either one of the two light-cone coordinates, v and u,
constructed out of time and the S1 coordinate, but not on both. In order to have a real bound
state, one should switch on a non-trivial KK-monopole dipole charge which at the microscopic
level corresponds to give a non zero vacuum expectation value (vev) to some D1/D5 open string
states [19]. It was argued in [25], mostly based on supersymmetry arguments, that this class
of bound states should be described by smooth supergravity configurations parameterized by
arbitrary functions of two variables, that were dubbed “superstrata”. The construction of the exact
supergravity solutions for superstrata is an important open problem: the first steps in this direction
were taken in [26,27] (building on previous supergravity results of [28,29]), which derived exact
supergravity solutions representing a superposition of D1 and D5 branes with generic oscillation
profiles but no KK-monopole dipole charge. In both the WCFT and supergravity approaches
it is easier to start by treating the KK-monopole dipole charge perturbatively. The main goal
of this paper is to provide the first explicit example of a solution which includes the effects of
the KK-monopole dipole charge to first order. It is interesting to notice that the supergravity
solutions emerging from the simplest D-brane configurations studied here by following [21] do
not fall in the ansatz considered in [26]. It should be possible to engineer a D-brane configuration
whose backreaction contains only the fields of the restricted ansatz [26], but this will involve a
more complicated choice of the open string vev’s defining microscopically the bound state. Thus
simpler microscopic configurations correspond to more complicated supergravity solutions and
vice versa. This might be somewhat unexpected or be just a result of the fine tuning required at
the microscopic level to cancel the extra dipoles which are allowed by supersymmetry but are
absent in the ansatz [26].

The paper is structured as follows. In Section 2 we generalize the ansatz discussed in [22] so
as to adapt it to the v-dependent case we are interested in. The full list of constraints imposed
by supersymmetry and the equations of motion on the functions appearing in the ansatz is not
known. Work is in progress to derive these equations from first principles [30]. However it is
not difficult to start from the equations derived in [26] and generalize them at the linearized
level needed for our analysis. In Section 3 we collect the results for the 1-point string correlators
mentioned above and extract the geometric information we need by comparing them against
the ansatz of Section 2. In Section 3 we provide a first generalization of the results obtained
from string theory and show that it is natural to write the linearized supergravity configuration
in terms of a set of simple scalar functions and 1-forms. In particular the 1-form β captures
the KK-monopole dipole charge of the configuration; in the diagrammatic language of string
amplitudes β is related to the disk amplitudes with the insertion of one gui graviton and an
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arbitrary number of twisted open string vertices. We show that the linearized equations in the bulk
are satisfied if we assume some simple properties for the basic building blocks of the supergravity
configuration. In particular they must enjoy the same harmonic and duality constraints that, in
the perturbative string approach of Section 3, follow from the BRST invariance of the open
string vertices [19]. In Section 5 we focus on the special case where the functions f i describing
the D-brane profile have periodicity 2πR (this needs not to be the case when the D-branes are
multiply wrapped as it happens for generic 3-charge states). This is the class of microstates
studied from a supergravity point of view in [26]. We show that this case is more easily studied
in a coordinate system where the metric for the non-compact space is conformally flat, but the
10D metric is not asymptotically Minkowski. In this frame the supergravity equations take a
particularly simple form. This allows us to present a further generalization and obtain an explicit
solution which includes the non-linear terms in the D1 and D5 charges, but is still linear in the
KK-monopole dipole charge. In Section 6 we present our conclusion by discussing some possible
further developments and the connections of our approach with recent supergravity literature on
the subject.

2. The supergravity ansatz

Eq. (2.8) of [22] contains an explicit ansatz for type IIB supergravity compactified on S1 ×T 4

which preserves 4 supercharges provided that the conditions (2.9)–(2.11) of that paper are satis-
fied. We now wish to extend that ansatz to the case where all functions and forms appearing in
the various fields can depend on v, besides the R4 coordinates xi , with

v = t + y√
2

, u = t − y√
2

, (2.1)

where t and y indicate the coordinates along the time and the S1 direction respectively. We will
also rephrase the ansatz by using the language of [28,26]. Then the string frame metric takes the
following form

ds2 = −2
α√

Z1Z2
(dv + β)

(
du + ω + F

2
(dv + β)

)
+ √

Z1Z2 ds2
4 +

√
Z1

Z2
ds2

T 4 , (2.2)

where α, F and the ZI ’s are functions depending on v and the R4 coordinates xi , while ω and
β are 1-forms on R4 but can depend on v as well. The two 4D metrics ds2

4 and ds2
T 4 indicate

the non-compact and the T 4 metric respectively. For the time being we allow for a general v-
dependent R4 metric hij and for the sake of simplicity take the torus to be perfectly cubic

ds2
4 = hij dxi dxj , ds2

T 4 = (
dz1)2 + · · · + (

dz4)2
. (2.3)

The ansatz for the remaining type IIB supergravity fields is written in terms of a function Z4
related to α by

α =
(

1 − Z2
4

Z1Z2

)−1

, (2.4)

the 1-forms a1 and a4, the 2-forms γ2 and δ2 and the 3-form x3. All these ingredients, except
for x3, already appear in the v-independent ansatz [22]. Thus it is useful to summarize the redef-
inition necessary to map the conventions of that paper with the conventions used here:
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β = â3√
2
, ω = √

2k̂ − â3√
2
, F = −2(Ẑ3 − 1), a1 = √

2â1, a4 = √
2â4,

(2.5)

where the hatted quantities are those appearing in [22]. Now we can complete the list of fields
appearing in our ansatz. For the dilaton we take

e2φ = α
Z1

Z2
, (2.6)

and the NS–NS 2-form is

B(2) = − αZ4

Z1Z2
(du + ω) ∧ (dv + β) + a4 ∧ (dv + β) + δ2. (2.7)

Finally the Ramond–Ramond (RR) forms are

C(0) = Z4

Z1
,

C(2) = − α

Z1
(du + ω) ∧ (dv + β) + a1 ∧ (dv + β) + γ2,

C(4) = Z4

Z2
dVT 4 − αZ4

Z1Z2
γ2 ∧ (du + ω) ∧ (dv + β) + x3 ∧ (dv + β), (2.8)

where dVT 4 = dz1 ∧ dz2 ∧ dz3 ∧ dz4.
This generalizes the ansatz studied in [26] by adding the fields B(2), C(0) and C(4), which, in

the language of 6D supergravity, should correspond to the addition of an extra tensor multiplet
on top of the gravity and tensor multiplet already present in [26]. We leave the detailed analysis
of the constraints imposed by supersymmetry and the equations of motion in this more general
set up to a forthcoming paper [30]. However, in most of this paper we will be working in the
approximation in which only linear terms in the expansion of the geometry around flat space are
kept: at this linearized level the new fields present in the ansatz above basically decouple from
those already present in the ansatz used in [26]. So we can use the equations discussed in that
paper and supplement them with a set of linearized equation for Z4, a4, δ2 and x3.

Let us denote by d the differential with respect to the R4 coordinates and define

D ≡ d − β ∧ ∂v. (2.9)

The first conditions are on the 1-form β and the 4D metric ds2
4 : β has to satisfy

Dβ = 
4Dβ, (2.10)

where the 
4 represents the Hodge star according to the R4 metric hij ; the Hodge dual with
respect to the flat R4 will instead be denoted as ∗4. The metric ds2

4 has to be “almost hyper-

Kähler”, which means that there exist three 2-forms J (A) ≡ 1
2J

(A)
ij dxi ∧ dxj , with A = 1,2,3,

satisfying

J (A) ∧ J (B) = −2δAB 
4 1, dJ (A) = ∂v

(
β ∧ J (A)

)
. (2.11)

This implies that the J ’s are anti-self-dual with respect to the star 
4 defined above:

J (A) = − 
4 J (A). (2.12)

As usual, by raising one index and choosing an appropriate ordering, we can define three almost
complex structures
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J (A)i
kJ

(B)k
j = εABCJ (C)i

j − δABδi
j . (2.13)

For later use, by using the complex structures we define a new anti-self-dual 2-form ψ

ψ ≡ 1

8
εABCJ (A)ij J̇

(B)
ij J (C), (2.14)

where the dot indicates the derivative with the respect to v.
Let us now consider the equations for the part of the ansatz determining the charges and the

dipoles of the D1 and D5 branes. Again this sector was already studied in [26] and it turns out
that we can use the same1 set of equations also in our case. In order to put the D1 and the D5
branes on the same footing, let us suppose that the gauge potential C(6) takes a form which
closely follows that of C(2) in (2.8)

C(6) =
[
− α

Z2
(du + ω) ∧ (dv + β) + a2 ∧ (dv + β) + γ1

]
∧ dVT 4 + · · · , (2.15)

where the dots stand for terms that do not have components along the T 4. The equations we give
below ensure that it is possible to define a 1-form a2 and a 2-form γ1 so as to satisfy (2.15). The
2-forms γI satisfy

Dγ2 = 
4(DZ2 + β̇Z2) + a1 ∧ Dβ, Dγ1 = 
4(DZ1 + β̇Z1) + a2 ∧ Dβ. (2.16)

Then it is convenient to combine a1 and a2 in two new 2-forms Θ1 and Θ2

Θ1 = da1 + ∂v(γ2 − β ∧ a1), Θ2 = da2 + ∂v(γ1 − β ∧ a2), (2.17)

which must satisfy the following duality conditions involving the 2-form ψ defined in (2.14)


4(Θ1 − Z2ψ) = Θ1 − Z2ψ, 
4(Θ2 − Z1ψ) = Θ2 − Z1ψ. (2.18)

The equations for Z1 and Z2 are a consequence of (2.16) and (2.17)

D 
4 (DZ2 + β̇Z2) = −Θ1 ∧ Dβ, D 
4 (DZ1 + β̇Z1) = −Θ2 ∧ Dβ. (2.19)

Now we turn our attention to the equations that are sensitive to the novelty of the ansatz
considered in this paper. We will give only the linearized version of these equations. We first
have as set of constraints which are the (linearized) analogue of (2.16) and (2.18)

dδ2 = ∗4dZ4, ∗4(da4 − δ̇2) = da4 − δ̇2. (2.20)

There is also a constraint for the new component x3 of the 4-form gauge potential

dx3 = ∗4Ż4. (2.21)

Then we have the relation that constrains the angular momentum 1-form ω, that can be derived,
for example, by requiring the existence of the RR 6-form C(6). At the linearized level the new
fields Z4, a4, δ2, x3 do not enter this relation, and we can thus read it off from [26]:

dω + ∗4dω = (Θ1 − ψ) + (Θ2 − ψ). (2.22)

1 We find it more convenient to work with gauge potentials rather than with field strengths, as instead was done in [26].
Moreover the RR 3-form field strength used here should be identified with twice the 3-form G of [26]: this has the
consequence that 2Θ there

I
= Θhere

I
and also that 2ψ̂ there = ψhere. Moreover: 2γ there

2 = d(γ here
2 + a1 ∧ β).
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This concludes the conditions following from supersymmetry. They also imply all the second-
order equations of motion, except for the vv-component of the Einstein equations. At the lin-
earized order even this extra constraint does not get modified by the new fields, and it reads

∗4d ∗4

(
ω̇ − 1

2
dF

)
= ∂2

v (Z1 + Z2) + 1

2
∂2
v (hii). (2.23)

3. Mixed disk amplitudes revisited

Let us start from an unbound point-like state whose basic constituents are D1 branes wrapped
on the S1 and D5’s wrapped on the whole compact space. All D-branes vibrate in the non-
compact space according to the same profile fi(v). From the WCFT point of view these D-branes
can be described by using the boundary state formalism (see [31,32] for a review), as discussed
in [33–35]. In [20] this approach was used to show that the boundary state |B〉f i contains the
information necessary to reconstruct the 2-charge solutions discussed in [36,37] (once they are
rewritten in the appropriate duality frame). By following the idea sketched in the Introduction,
one can calculate the scalar product of |B〉f i with the various massless closed string states. This
gives the value of the 1-point correlators on a disk where the boundary conditions are determined
by f i(v). As shown in [20], these couplings can be combined with a free propagator yielding
the first two diagrams in Fig. 1; after a Fourier transformation from momentum to configura-
tion space, these diagrams reproduce the solution in [36,37] at the linear level in the D1 and
D5 charges.

We are now interested in considering more in detail the zero-mode structure of the boundary
state, see Eqs. (3.14) and (3.15) of [20]. It follows that, even if both t and y are directions with
Neumann boundary conditions, D-branes with a travelling wave can emit closed strings with a
non-trivial momentum k along v provided that

ku = 0, kv + ḟ iki = 0, (3.1)

where, as before, the dot indicates the derivative with the respect to v. Thus kv = 0 is possible for
special values of the ki ’s. If we limit ourselves to probes with zero momentum along v, then the
string correlators contain always an integral over v and the smeared solution discussed in [20]
is recovered. However if we test the D-brane configuration with a generic (localized) probe,
then we obtain a v-dependent result for the string correlator and the original solution [36,37],
without integrals over v, is obtained. Notice that these v-dependent 2-charge solutions cannot be
dualized to the D1–D5 frame as it was done in [3]. The obstruction is clearly that for v-dependent
geometries the shifts along y are not an isometry. This suggests that the only 2-charge microstates
in the D1–D5 frame are those studied in [3] which always include a smearing over the S1.

It is possible to reach the same conclusion by working directly in the D1–D5 frame and fol-
lowing the microscopic approach used in this paper. In this language the D1–D5 microstates are
built by starting from an unbound set of D-branes and switching on a vev for the open strings
stretched between the D1 and the D5 branes. If we do not want to introduce any further charge or
equivalently we wish to preserve the same number of supercharges of the unbound system, then
all open string states introduced must have exactly zero momentum. Now it is clear also from this
point of view why 2-charge configurations are always smeared along the S1: the boundary condi-
tions appropriate for the basic D-brane constituents require momentum conservation both along v

and u, and no open strings carry any momentum; thus the 1-point correlators are non-trivial only
if the closed string probe is at zero momentum as well and then the results automatically include
integrals over both common Neumann directions.
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Fig. 1. A schematic picture of the diagrams relevant to the calculation of the gravitational backreaction of a microstate:
the straight lines represent generic massless closed string states and the circles represent the boundary of the string world-
sheet ending on the D-branes defining the microstate; the continuous (dashed) parts of the circles mean that the boundary
conditions appropriate for a vibrating D1 brane (D5 brane) are imposed on the string coordinates, while the black dots on
the transition between these two types of boundary conditions represent the insertion of a twisted open string state (i.e.
an open string stretched between a D1 brane and D5 brane). The first line contains all diagrams with a single border, i.e.
the contributions linear in the source. The second line contains the diagrams that are needed to reconstruct the non-linear
solution; the vertices in the bulk follow from the non-linear part of the standard IIB supergravity equations.

We now wish to use localized probes to test the 3-charge systems studied in [21]: this means
that we start from the unbound system mentioned at the beginning of this section, describing
D1 and D5 branes oscillating with a common profile, and introduce a vev for the open strings
stretched between the D1 and the D5 branes; then we probe the configuration with generic closed
string states which have also a non-zero momentum kv . As in [21], in this section we limit
ourselves to the contributions of the first three diagrams in Fig. 1 and calculate explicitly the
corresponding string amplitudes by using the RNS formalism. In particular the simplest class of
microstates [3] corresponds to the configurations obtained by introducing a vev for the mixed
D1–D5 open strings in the Ramond sector [19]. At the leading order, this condensate involves
only two open string states (the black dots in Fig. 1) and so is described by a spinor bilinear
which can be decomposed in a vector and a self-dual 3-form vIJK living in the space orthogonal
to the T 4. We will focus exclusively on the contribution of the 3-form and, as done in [21], we
also set to zero the components with just one (or all three) legs along the R4. So the non trivial
part of vIJK can be decomposed in two SO(1,1) × SO(4) representations with opposite duality
properties

vuij = −1

2
εijklvukl, vvij = +1

2
εijklvvkl . (3.2)

The first guess is that the result will follow the same pattern discussed above in the D1–P (or
D5–P) case and that the v-dependent backreaction would simply be the solution in Eq. (5.16)–
(5.32) of [21], where all integrals over v (hidden in the definition of I) are dropped. However it
is not difficult to check that this guess cannot be correct, as the configuration just mentioned is
not a solution of the supergravity equations even if we limit ourselves to the leading order in the
charges and the condensate (3.2). It turns out that in the 3-charge case there are new contributions
to the geometric backreaction that are invisible to delocalized probes. The origin of this is as
follows: the string correlator is calculated in ten dimensions where the R4 and the light-cone
(u, v) directions share the feature of having the same boundary conditions (either Neumann or
Dirichlet) on both types of branes. Then the correlators are more easily calculated in an SO(1,5)

invariant way which keeps all these directions on the same footing. For instance this was done in
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Eq. (4.14) of [21] for a generic NS–NS probe. At this level the generalization from a smeared to
a localized probe involves just dropping the integral over v. However, the ansatz of the previous
section is clearly not SO(1,5) covariant; then in order to identify the different supergravity fields
we need to decompose the string result in SO(1,1) × SO(4) representations. In doing this step
in [21] it was assumed that the momentum of the closed string probe was entirely in the non-
compact dimensions. So in order to read the new v-dependent geometry we have to reconsider
this step. The starting point is Eq. (4.14) of that paper which describes the emission of NS–NS
state from a disk with two twisted open string state (i.e. the third diagram of the first line of Fig. 1
in the NS–NS sector). By dropping the v integral we have

AD1D5
NS = −2

√
2πVue

−ikif
i (v)kKGIJ

(tR
)
J

MvIMK, (3.3)

where Vu is the infinite volume of the u direction, the uppercase indices run over v,u, xi and
R is (the zero-mode part of) the reflection matrix [20,21]2

Rμ
ν =

⎛
⎜⎜⎝

1 0 0 0
2|ḟ (v)|2 1 −2ḟi (v) 0

2ḟi (v) 0 −1 0

0 0 0 −1

⎞
⎟⎟⎠ . (3.4)

The matrix indices are ordered by putting first the light-cone coordinates v,u, then the R4 in-
dices i and finally the T 4 ones a. By decomposing (3.3) we obtain

AD1D5
NS = 2

√
2πVue

−ikif
i (v)kl

[(
Guj + Gju

)
vujl + (

Gvj + Gjv
)
vvjl

− 2ηuvGjv|ḟ |2vujl − 2Guvḟj vujl − 2Gvvḟj vvjl + 2ηuvGij ḟj vuil

]
+ ηuvkv

[−2Gjvḟivuji + Gij vuij

]
, (3.5)

where G is the polarization of a generic NS–NS state which needs to be further decomposed in
the graviton, dilaton and B-field. If we set kv to zero in (3.5) of course we recover Eq. (4.15)
of [21].

A similar step has to be performed also when we use a closed string state in the RR sector as
a probe. We start from Eq. (4.24) of [21], again without the integral over v

AD1D5
R = iπ

2
Vue

−ik·f (v)vIJK

(
CΓ IJK

)BA(
C−1FRC−1)

AB
, (3.6)

where A,B and Γ ’s are spinor indices and the Gamma matrices of SO(1,5), F is a bispinor
encoding the RR field strengths (see Eq. (4.23) of [21] for our conventions) and R is the spinorial
representation of the reflection matrix, i.e.

R= Γ uv − ḟ i (v)Γ iv. (3.7)

Then by rewriting the field strengths in terms of the gauge potentials C we have

2 In [20,21] the coordinates u and v where defined as in (2.1) but without the factor 1/
√

2. In the following we adapt the
results of those papers to our conventions for the light-cone coordinates: this is the reason why the form of the reflection
matrices in (3.4) and (3.7) differ from the corresponding expressions in [21]. In the expressions (3.5) and (3.8) for the
NS–NS and RR amplitudes the metric component ηuv equals −1 in the conventions of the present paper and −2 in the
conventions of [20,21].
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AD1D5
RR = 4πVue

−ik·f (v)

[
ηuvklC(0)ḟj vulj + ηuvklC5678ḟj vulj + kiCuvjkḟkvuij

+ 1

2
kkCuvij ḟkvuij + ηuv

2
kvC

vijkḟkvuij + ηuv

2
kvC

ij vuij − kiCuj vuij

+ kiCvj vvij − ηuvkvC
vj ḟlvulj − kiCuvḟlvuli + ηuv

2
klCij ḟlvuij

+ ηuvkjCli ḟlvuij

]
. (3.8)

Notice the appearance, in the second term of the second line, of a contribution to the 4-form
potential with three indices in the R4. Such a structure is absent in the smeared case where kv is
set to zero; this is the origin of the 3-form x3 in the RR ansatz (2.8).

In our discussion so far we assumed that both the D1 and the D5 branes are wrapped once on
the S1 of radius R; in this case the functions fi(v) describing their (common) shape in the R4 are
periodic under shifts v → v + 2πR. However the most interesting configurations in the analysis
of the black hole microstates involve D-branes with wrapping number w larger than one; then
the profile fi depends on the world-volume coordinate v̂ and has periodicity 2πwR. Geometri-
cally we can describe this situation by splitting the closed profile in w open segments f α

i (v) with
α = 1, . . . ,w, and then imposing the gluing conditions f α

i (2πR) = f α+1
i (0) where α = w + 1

is identified with α = 1. We will not write the complete expression describing the boundary
state corresponding to these multiply wrapped D-branes: since we consider the emission only of
closed string states with zero winding number, we will treat each segment independently and sum
over the individual results to obtain the coupling of the wrapped D-brane to the closed strings.
This is sufficient for our purposes, since on the gravity side we work at the linearized level in the
sources, i.e. we are interested in world-sheets with just one boundary. Another interesting issue
that we will not analyze further is related to the special points in space–time where two of these
segments intersect. The open strings living at these intersections will feel locally two D-branes
with a relative rotation and boost; however the parameters of the transformations are tuned so
as to always preserve supersymmetry (notice that the situation is different in the space-like [38]
or time-like [39] cases). We will not make explicit use of these open string sectors. As a consis-
tency check of our approach, we will show that the backreaction obtained by superimposing the
contributions of each segment preserves four supercharges.

It is now straightforward to follow the procedure discussed in Section 4.3 of [21] and derive
from (3.5) and (3.8) the configuration space results (3.9)–(3.20). As mentioned above, the label α

indicates the different segments of the multiply wrapped profile (common to the D1 and D5
branes); also, in the expressions below, a sum over α, in each α-dependent term, is present even
if it is not explicitly written

Z1 = 1 + Q1Iα + vulk∂lIαḟ α
k , (3.9)

Z2 = 1 + Q5Iα + vulk∂lIαḟ α
k , (3.10)

F = −(Q1 + Q5)Iα
∣∣ḟ α

∣∣2 − 2vvlk∂lIαḟ α
k , (3.11)

Z4 = −vulk∂lIαḟ α
k , (3.12)

a1 = Q5
(
Iαḟ α

i + ḟ α
k Îα

ki

)
dxi + vuli∂lIα

∣∣ḟ α
∣∣2

dxi, (3.13)

β = vuli∂lIα dxi, (3.14)

a4 = [
vuil∂lIα

∣∣ḟ α
∣∣2 + vuil∂v

(
Iαḟl

)]
dxi, (3.15)
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ω = [
(Q1 + Q5)Iαḟ α

i + vvli∂lIα + vuli∂lIα
∣∣ḟ α

∣∣2 + vuli∂v

(
Iαḟ α

l

)]
dxi, (3.16)

δ2 =
[

vuli∂lIαḟ α
j − 1

2
vuij ∂vIα

]
dxi ∧ dxj , (3.17)

γ2 = 1

2
Q5Îα

ij dxi ∧ dxj − vuli∂lIαḟ α
j dxi ∧ dxj , (3.18)

x3 = 1

2
vuij ∂v

(
Iαḟ α

k

)
dxi ∧ dxj ∧ dxk, (3.19)

ds2
4 = [

δij + vuli∂lIαḟ α
j + vulj ∂lIαḟ α

i − δij vulk∂lIαḟ α
k

]
dxi dxj , (3.20)

where the QI ’s indicate the D1 and D5 charges and v is the open string condensate (3.2) after a
constant rescaling

vuij = −2
√

2κ

πV4
vuij , vvij = −2

√
2κ

πV4
vvij . (3.21)

The function Iα is harmonic and defines implicitly also the 2-form Îα

Iα = 1

|x − f α(v)|2 , dÎα = ∗4dIα, (3.22)

where the star is defined by using the flat R4 metric and the differential d acts only on xi and not
on v. In the next section we check that the IIB background defined by the data above solves the
linearized constraints following from supersymmetry and the equations of motion.

4. The linearized geometry

The linearized type IIB background obtained in the previous section has different 2-charge
limits. We can switch off the condensate of D1–D5 strings v and obtain the geometry corre-
sponding to an unbound configuration of D1 and D5 branes or set to zero the geometric profile
f α

i (v) and obtain the 2-charge D1–D5 microstates. As mentioned before, these D1–D5 geome-
tries are dual to the geometry of a vibrating string and their non-linear completion is known [3,
4,40]. In particular, the dependence of the full solution on the open string condensates can be
expressed in terms of auxiliary periodic functions gi(v

′), whose moments are the vev’s used in
the world-sheet description of the previous section. For instance the condensate we considered
(i.e. v) is written in terms of gi(v

′) as follows [19]

vt ij ∼ 1

L′

L′∫
0

ġi

(
v′)gj

(
v′), (4.1)

where L′ is the periodicity of gi(v
′) and the dot on gi represents the derivative with respect to

the auxiliary variable v′. Thus we can use the exact 2-charge D1–D5 solution to generalize the
result (3.9)–(3.20). The idea is to promote all QI and v-dependent terms to more general objects
depending on gi(v

′) which should encode the exact-dependence on the open string condensates.
This should account for the contribution of the diagrams that have more than two insertions of
twisted open strings, see for instance the diagram at the end of the first line of Fig. 1.

We can implement the idea above by setting to zero the profile f α
i (v). Then from the Lunin–

Mathur [3,4] solution we can read the general dependence of the various object on the functions
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gi(v
′) representing general twisted open string condensates. Z1 and Z2, which for f α

i (v) = 0 are
just harmonic functions centered in zero, become

ZD1D5
1 = 1 + Q5

L

L∫
0

dv′ |ġ(v′)|2
|x − g(v′)|2 , ZD1D5

2 = 1 + Q5

L

L∫
0

dv′

|x − g(v′)|2 . (4.2)

Similarly the general form of (3.14) and (3.16) (always at f α
i (v) = 0) is given by

βD1D5 = AD1D5 − BD1D5, ωD1D5 = AD1D5 + BD1D5, (4.3)

with

AD1D5 = −Q5

L

L∫
0

dv′ ġi (v
′)

|x − g(v′)|2 dxi, ∗4dBD1D5 = −dAD1D5. (4.4)

These quantities satisfy simple harmonic conditions

d ∗4 dZD1D5
1 = 0, d ∗4 dZD1D5

2 = 0, (4.5)

and the self-duality and anti-self-duality properties

∗4dβD1D5 = dβD1D5, ∗4dωD1D5 = −dωD1D5. (4.6)

Thanks to (4.5) we can define a 2-form γ D1D5
2 satisfying

dγ D1D5
2 = ∗4dZD1D5

2 . (4.7)

Moreover, by possibly adding exact terms, we can also impose the gauge conditions

d ∗4 βD1D5 = d ∗4 ωD1D5 = 0, (4.8)

which are satisfied by the perturbative expressions of the previous section when f α
i (v) = 0. In

this gauge it is possible to define a 2-form ζ D1D5 such that

dζD1D5 = ∗4β
D1D5, (4.9)

where ζD1D5 itself is defined up to a gauge, which we can fix by imposing

ζD1D5 = − ∗4 ζD1D5. (4.10)

Now the strategy is to include the dependence on the geometric profile f α
i (v) as done in the

previous section. First let us introduce the barred quantities which are related to the D1–D5 ones
as follows

Z̄α
I = ZD1D5

I

(
x − f α(v)

)
, γ̄ α

2 = γ D1D5
2

(
x − f α(v)

)
,

β̄α = βD1D5(x − f α(v)
)
, ω̄α = ωD1D5(x − f α(v)

)
,

ζ̄ α = ζD1D5(x − f α(v)
)
. (4.11)

These new expressions still solve, of course, the same harmonic equations and duality conditions
of the f -independent results written above

d ∗4 dZ̄α
I = 0, dγ̄ α

2 = ∗4dZ̄α
2 , ∗4dβ̄α = dβ̄α, ∗4dω̄α = −dω̄α,

d ∗4 β̄α = d ∗4 ω̄α = 0, dζ̄ α = ∗4β̄
α, ζ̄ α = − ∗4 ζ̄ α. (4.12)
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The v-dependence of the barred quantities is entirely implicit in their dependence on f α
i (v), so

that, for example,

∂vβ̄
α = −ḟ α

i ∂i β̄
α. (4.13)

We will make repeatedly use of this identity in the following.
When only the first non-trivial term in the small gi(v

′) expansion of these results is kept, β̄α

reduces to (3.14)

β̄α = vuli∂lIα dxi, (4.14)

and the explicit expression for ζ̄ α is

ζ̄ α = −1

2
vuijIα dxi ∧ dxj , (4.15)

which satisfies (4.12) thanks to (3.2). Then we can generalize (3.9)–(3.20) by redefining all the
expressions appearing there as follows

Z1 = Z̄α
1 + β̄α

k ḟ α
k , (4.16)

Z2 = Z̄α
2 + β̄α

k ḟ α
k , (4.17)

F = −(
Z̄α

1 + Z̄α
2 − 2

)∣∣ḟ α
∣∣2 − 2ω̄α

k ḟ α
k , (4.18)

Z4 = −β̄α
k ḟ α

k , (4.19)

a1 = (
Z̄α

2 − 1
)
ḟ α

i dxi − γ̄ α
2ikḟ

α
k dxi + β̄α

∣∣ḟ α
∣∣2

, (4.20)

β = β̄α, (4.21)

a4 = −β̄α
∣∣ḟ α

∣∣2 + ∂v

(
ζ̄ α
ki ḟ

α
k dxi

)
, (4.22)

ω = (
Z̄α

1 + Z̄α
2 − 2

)
ḟ α

i dxi + ω̄α + β̄α
∣∣ḟ α

∣∣2 − ∂v

(
ζ̄ α
ki ḟ

α
k dxi

)
, (4.23)

δ2 = β̄α ∧ ḟ α
i dxi + ∂vζ̄

α, (4.24)

γ2 = γ̄ α
2 − β̄α ∧ ḟ α

i dxi, (4.25)

x3 = −∂v

(
ζ̄ α ∧ ḟ α

i dxi
)
, (4.26)

ds2
4 ≡ (

δij + h
(1)
ij

)
dxi dxj = (

δij + β̄α
i ḟ α

j + β̄α
j ḟ α

i − δij β̄
α
k ḟ α

k

)
dxi dxj . (4.27)

As before we understood a sum over the label α indicating the contribution of each segment of
the multiply wrapped D1 and D5 branes. The two-step procedure used to derive (4.16)–(4.27)
seems justified from the world-sheet picture, where the data of the two profiles gi(v

′) and f α
i (v)

are encoded by completely different open string states. We will show that this more general
configuration satisfies the supergravity equations just as a consequence of (4.12). Of course this
implies that also the configuration of the previous section, where we kept only the first-order
terms in the small gi(v

′) expansion, is a solution of the supergravity equations.
We leave most of the details of the check to Appendix A and collect in the main text only some

results on the “almost hyper-Kähler” base metric. The first ingredient on which the whole solu-
tion is built is the 1-form β . Since we are working at the linearized order in β itself, Eq. (2.10)
simplifies: the curved star 
4 reduces to the flat one ∗4 and the v-dependent differential D be-
comes the standard differential d in R4. Then the linearized (2.10) is just dβ = ∗4dβ and it is a
direct consequence of (4.12). The next step is to define the set of complex structures J (A) com-
patible with the 4D metric (4.27). In our case, these can be written in terms of β̄α and the trivial
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complex structures J
(A)
0 appropriate for a flat R4

J
(1)
0 = dx1 ∧ dx2 − dx3 ∧ dx4,

J
(2)
0 = dx1 ∧ dx3 + dx2 ∧ dx4,

J
(3)
0 = dx1 ∧ dx4 − dx2 ∧ dx3. (4.28)

Then at linear order in β we have

J (A) ≡ J
(A)
0 + J

(A)
1

= J
(A)
0 − 1

2

[
ḟ α

i

(
β̄α ∧ J

(A)
0

)
ijk

dxj ∧ dxk
]

= J
(A)
0 − β̄α

i ḟ α
i J

(A)
0 − β̄α ∧ J

(A)
0 ij ḟ α

j dxi . (4.29)

At first order in β the constraints (2.11) reduce to

J
(A)
0 ∧ J

(B)
1 + J

(A)
1 ∧ J

(B)
0 = −h

(1)
kk δAB dx1 ∧ dx2 ∧ dx3 ∧ dx4,

dJA
1 = β̇ ∧ JA

0 , (4.30)

where the trace of the first-order part of the metric is

h
(1)
kk = −2β̄α

k ḟ α
k . (4.31)

We leave to Appendix A the proof that (4.30) follows from (4.29), (4.28) and dβ = ∗4dβ . Let us
conclude the discussion of the 4D base by noticing that the (linearized) ψ takes a very simple
form

ψ = −1

2

∑
C

∂v

(
β̄α

i ḟ α
j

)
J

(C)
0 ij J

(C)
0 = −1

2
∂v

[
β̄α ∧ ḟ α

i dxi − ∗4
(
β̄α ∧ ḟ α

i dxi
)]

, (4.32)

where, in order to get the second identity, we used∑
C

J
(C)
0 ij J

(C)
0kl = δikδjl − δilδjk − εijkl . (4.33)

5. A (partially) non-linear generalization

The results of the previous section contain all the genuinely stringy information on the su-
perstrata that can be built by giving a (common) non-trivial profile to the D1 and D5 branes
present in the Lunin–Mathur 2-charge microstates. In the language of perturbative string am-
plitudes this information captures the direct couplings between the supergravity fields and the
D-branes forming the bound state, as depicted in the first line of Fig. 1. In other words, the string
calculation gives an explicit expression for the stress–energy side of Einstein’s equations and the
“source-depending” side of all other supergravity equations. Clearly a string-theory derivation of
the diagrams depicted in the second line of Fig. 1 is very challenging, as it requires to deal with
multi-loop open string diagrams (i.e. world-sheets with many boundaries). It is certainly easier
to ignore all α′ corrections and derive these non-linear terms by using supergravity: technically
we have just to use the stringy results for the disk amplitudes as boundary conditions at large
distances which fix the solution of the source-free supergravity equation.

At present, the only fully non-linear v-dependent solution representing a 3-charge microstate
with a known CFT dual is the one discussed in [18]. This example can be interpreted as a special
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configuration where the functions gi(v
′) introduced in the previous section are directly deter-

mined by the geometric profile fi(v). The solution of [18] thus depends on only one independent
profile and it represents a set of measure zero in the space of 3-charge microstates, that are
expected to be parametrized by generic functions of two variables [25]. A first level of generaliza-
tion consists in finding v-dependent solutions where the profiles gi(v

′) and fi(v) are unrelated.
In this section we make a first step, by focusing on the class of superstrata considered in [26].
In that paper an exact solution carrying D1, D5 and P charges was constructed: that solution
represents an unbound state of D1 and D5 branes oscillating according to a profile which has
periodicity 2πR even if the D-branes are multiply wrapped. In the notations introduced in Sec-
tion 3, we then have f α

i (v) = fi(v) for any α. The solution discussed in [26] is exact in the D1
and D5 charges and in the corresponding dipole charges, originating from the oscillation of the
global D1 and D5 charges, but has no KK-monopole charge.

The aim of this section is to generalize the solution of [26]: we keep the full dependence on
the D1 and D5 (dipole) charges, but we also wish to include at first order the effects of the KK-
monopole dipole charge and the angular momentum; this will also turn the configuration into a
real bound state. In the diagrammatic language of Fig. 1, this solution captures also some of the
non-linear terms depicted in the second line: in particular we need to include all diagrams with
at most one boundary which can contribute to β and ω at the linear level, but with an arbitrary
number of other type of boundaries. However, as mentioned above, in order to capture these con-
tributions we will not follow the perturbative approach, but a trick closely related to the approach
of [41], which was also used by [36,37] to generate the gravity solutions corresponding to an
oscillating string. The key point is the following: when f α

i (v) = fi(v), the dependence on fi(v)

of the 4D base metric ds2
4 in (4.27) can be completely absorbed in the change of coordinates

xi → xi +f i(v). This suggests that, when the solution (4.16)–(4.27) depends on a common pro-
file, it takes a particularly simple form in the new coordinate system. The result obtained after
the shift can again be expressed in terms of the ansatz discussed in Section 2 and we obtain the
following simple set of geometric data

Z′
1 = ZD1D5

1 , (5.1)

Z′
2 = ZD1D5

2 , (5.2)

F ′ = −|ḟ |2 − 2ζD1D5
lk f̈l ḟk, (5.3)

Z′
4 = −βD1D5

k ḟk, (5.4)

a′
1 = −ḟi dxi, (5.5)

β ′ = βD1D5, (5.6)

a′
4 = ζD1D5

ki f̈k dxi, (5.7)

ω′ = −ḟi dxi + ωD1D5 + βD1D5|ḟ |2 − βD1D5
k ḟkḟi dxi

+ ∂lζ
D1D5
ki ḟl ḟk dxi − ζD1D5

ki f̈k dxi, (5.8)

δ′
2 = βD1D5 ∧ ḟi dxi − ∂kζ

D1D5ḟk, (5.9)

γ ′
2 = γ D1D5

2 − βD1D5 ∧ ḟi dxi, (5.10)

x′
3 = ∂kζ

D1D5ḟk ∧ ḟi dxi − ζD1D5 ∧ f̈i dxi, (5.11)

ds′2
4 = dxi dxi . (5.12)
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In Appendix B we give the explicit expression of the relation between the new and the old
geometric data induced by an fi(v)-dependent shift of the coordinates for the R4. Clearly the
supergravity configuration obtained in this way is guaranteed, by construction, to solve the equa-
tions of motion in the same approximation used in the previous section, i.e. at first order in a
simultaneous expansion in both the D1 and D5 charges and the KK-monopole dipole charge (to
which βD1D5, and therefore ζD1D5, and ωD1D5 are proportional).

The situation is actually a bit better: a slightly modified ansatz actually solves the supergravity
equations exactly in the D1 and D5 (dipole) charges, and at first order in the KK-monopole dipole
charge. The basic reason for this drastic simplification is twofold: first in these coordinates the
R4 metric is flat (5.12), and second the combinations Θ ′

1 and Θ ′
2 vanish

Θ ′
1 = Θ ′

2 = 0, (5.13)

as can be easily verified by using the definitions (2.17). For instance

Θ ′
1 = ∂v

(
γ ′

2 − β ′ ∧ a′
1

) = ∂v

(
γ D1D5

2 − βD1D5 ∧ ḟi dxi + βD1D5 ∧ ḟi dxi
) = 0, (5.14)

which follows from the fact that a′
1 is constant and that all quantities with the “D1D5” superscript

are independent of fi and thus of v. Of course the presence of terms that do not vanish at large |xi |
in a′

1, ω′ and F ′ means that this solution is not asymptotically Minkowski and thus this coordinate
frame is not the most suited to study the physical properties of the microstate geometry. However
the frame where the metric ds′2

4 is flat is the perfect setup to study the non-linear corrections
induced by the supergravity equations. So we will use this approach as a way of generating
non-linear solutions and then transform them back with the opposite shift xi → xi − f i(v) to
asymptotically flat geometries which are directly relevant to the problem of studying the 3-charge
microstates.

Let us now discuss how (5.1)–(5.12) need to be modified in order to provide a solution at all
orders in Q1 and Q5, but only at the linearized level in βD1D5 and ωD1D5, which capture the
presence of a KK-monopole dipole charge. Actually, the only equation3 that receives corrections
at our level of approximation is the one for x′

3. It can be shown [30] that Eq. (2.21) should be
generalized as follows

dx′
3 = da′

4 ∧ γ2 − a′
1 ∧ dδ′

2 + Z′
2 ∗4 ∂vZ

′
4, (5.15)

where we now have to consider the factor of Z2 in the last term as it contains the dependence
on Q5 which we wish to keep exact; also we need to include the first two terms because, after the
shift, a1 is constant and the term γ D1D5

2 in γ2 is independent of the KK-monopole dipole charge.
The solution of this equation, at linear order in the KK-monopole charge, is

x′
3 = ∂kζ

D1D5ḟk ∧ ḟi dxi − ZD1D5
2 ζD1D5 ∧ f̈i dxi + ζD1D5

ki f̈k dxi ∧ γ D1D5
2 . (5.16)

Thus summarizing, the configuration specified by the data (5.1)–(5.12), where x3 is substituted
with the result above, solves the supergravity equations at linear order in βD1D5 and ωD1D5.

We leave the explicit check of this statement to a forthcoming publication. Here we can sup-
port it by showing how the new solution looks in the original frame, where the 10D metric is
asymptotically flat. Thus we can use the formulae of Appendix B and perform the coordinate

3 In principle also Eq. (2.23) for F receives non-linear corrections in the D1 and D5 charges, as can be seen for example
from Eq. (4.12) of [26]. However, when ΘI = 0, these corrections involve the v-derivatives of ZI , and thus vanish for
the ansatz (5.1)–(5.12).
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shift xi → xi − f i(v), so as to go back to the frame where the solution is asymptotically flat.
However this time we keep terms of all orders in Q1 and Q5 and linearize the change of variables
only in the KK-monopole charge. We thus arrive at the solution specified by the following data

Z1 = Z̄1(1 + β̄kḟk), (5.17)

Z2 = Z̄2(1 + β̄kḟk), (5.18)

F = −(Z̄1Z̄2 − 1)(1 + β̄kḟk)|ḟ |2 − 2ω̄kḟk, (5.19)

Z4 = −β̄kḟk, (5.20)

a1 = (Z̄2 − 1)ḟi dxi − γ̄2ikḟk dxi + Z̄2β̄|ḟ |2, (5.21)

β = β̄, (5.22)

a4 = −β̄|ḟ |2 + ∂v

(
ζ̄ki ḟk dxi

)
, (5.23)

ω = (Z̄1Z̄2 − 1)(1 + β̄kḟk)ḟi dxi + ω̄ + Z̄1Z̄2β̄|ḟ |2 − ∂v

(
ζ̄ki ḟk dxi

)
, (5.24)

δ2 = β̄ ∧ ḟi dxi + ∂vζ̄ , (5.25)

γ2 = γ̄2 − β̄ ∧ (
ḟi dxi − γ̄2 ij ḟi dxj

)
, (5.26)

x3 = −∂vζ̄ ∧ ḟi dxi − Z̄2ζ̄ f̈i dxi + (
ζ̄ki f̈k dxi + β̄kḟkḟi dxi

) ∧ γ̄2, (5.27)

ds2
4 = (δij + β̄i ḟj + β̄j ḟi − δij β̄kḟk) dxi dxj , (5.28)

where we used the same conventions of the previous section, but we dropped all superscript α,
since we are now working under the assumption f α

i (v) = fi(v). It is interesting to compare this
result with the solution of [26]. Even if our solution falls into an enlarged ansatz, where all fields
of type IIB supergravity are non-trivial, the extra fields, which are encoded in Z4, a4, δ2 and x3,
arise from the combined effect of having both a KK-monopole charge and an oscillating profile.
Hence, when βD1D5 and ωD1D5 are set to zero our solution should reduce to the result of [26].
This is indeed the case, as it can be checked by comparing (5.19) and (5.24) with Eqs. (4.11)
and (4.13) of [26], when the arbitrary parameters (c1, c2 and the harmonic function H3) in those
equations are chosen appropriately. The geometric data given above provide a generalization of
the result of [26] which includes the first corrections in βD1D5 and ωD1D5.

6. Conclusions

In this paper we take the first steps towards the construction of supergravity solutions describ-
ing the class of bound states carrying D1, D5 and P charges introduced in [25] with the name of
superstrata. The example of superstrata we construct carry four dipole charges corresponding to
D1 and D5 branes, to an F1-string, and to a KK-monopole. We have obtained the geometries via
successive levels of approximation. First we considered the solution as an expansion around flat
space and for the most part we discarded terms of order higher than the first in this expansion.
This corresponds to the solution (3.9)–(3.20), that results from summing the first three types
of string diagrams in Fig. 1: it is a linearized solution in which, moreover, the linear terms re-
ceive contributions only from a finite number (zero or two) of insertions of the string condensate
associated with the open strings stretching between D1 and D5 branes.

Exploiting the fact that the D1–D5 solution, that resums arbitrary numbers of D1–D5 con-
densate insertions, is known [3], and that the dependence on the oscillation profile fi(v) can be
exactly computed in the WCFT, we infer the geometry (4.16)–(4.27), that gives the complete
linearized solution for a superstratum: this solution should contain the information of all the
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string disk diagrams and, together with the non-linear information encoded in the supergravity
equations, should allow to reconstruct the full exact geometry.

We make a first step towards the non-linear completion of the solution in the particular case in
which all the strands of the multiply wound D1–D5 string are described by the same oscillation
profile, i.e. when f α

i (v) = fi(v), ∀α. In this case one can apply a trick analogous to the one used
in [41,36,37] and move to a coordinate frame where the equations simplify, though the solution
ceases to be explicitly asymptotically Minkowski. Transforming back to an asymptotically flat
frame, we arrive at the solution (5.17)–(5.28), that solves the equations at all orders in the D1 and
D5 charges, but only at first order in the KK-monopole dipole charge; this solution represents the
first-order deformation of the solution of [26] upon the addition of the fourth dipole charge.

Our work opens the way to several future developments. The extension of our result to an
exact solution of supergravity will not only represent a technical improvement but it will provide
important physical insights on the nature of black hole microstates: it will allow us to probe a
larger class of 3-charge microstate geometries at scales where a classical horizon is expected to
form, and to verify their smoothness or their eventual singularity structure.

The solutions we find are v-dependent geometries that contain more fields (making up one
more 6D tensor multiplet) than the ones present in the ansatz of [26]. The conditions for super-
symmetry in this enlarged v-dependent setting are not known: to aim at a non-linear extension
of our results a first necessary step is thus the derivation of the appropriate set of supergravity
equations. Work in this directions is in progress [30].

With the supergravity equations at hand, and exploiting the trick introduced in Section 5, we
think that a fully non-linear completion of the solution (5.17)–(5.28), describing a superstratum
where the various strands oscillate with the same profile, should be within reach.

For a generic superstratum, described by strands oscillating with independent profiles, the
problem seems much more intricate, and potentially interesting.4 In particular there does not
seem to exist a coordinate frame that trivializes the 4D base metric given in (4.27). One is
thus faced with the highly non-linear problem of finding an “almost hyper-Kähler” metric and
a 1-form β that solve the constraints (2.10)–(2.11) and reduce to (4.27) and (4.21) at the lin-
ear level. It was however shown in [26] that this is the only intrinsically non-linear part of the
problem: the remaining equations, if solved in the right order, reduce to a sequence of linear
equations.

Finally we note that we landed onto a supergravity ansatz that generalizes the one of [26]
by starting from the simplest world-sheet string configuration describing a bound state of D1–
D5–P charges. In particular we decided to switch on only the components of the D1–D5 string
condensate associated with the 2-charge microstates of [3], but general condensates are possible,
corresponding to the microstates of [40]. Moreover, we took the condensate to be v-independent,
so that momentum is entirely carried by the oscillation profile fi(v). It is conceivable (and
some preliminary computations support this possibility) that by starting from a more general
world-sheet setup and by fine-tuning the various ingredients at our disposal, one could engineer
a microscopic worksheet configuration that only sources the fields present in the restricted ansatz
of [26]. Most likely, having a simpler supergravity ansatz should contribute to make the task of
constructing a fully non-linear solution more tractable. The price to pay for this simplification is

4 Already for solutions with no KK-monopole dipole charge it was noted in [27] that new shape–shape interaction
terms arise in generic superstrata with unequal strands.
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that the microscopic D-brane configuration will be more complicated and thus the derivation of
the linearized solution from string amplitudes will require more effort.
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Appendix A. Checking the linearized equations of motion

We will explicitly verify that the geometry given in (4.16)–(4.27) solves the linearized equa-
tions of motion as a consequence of (4.12).

We already noted in the text that β trivially solves its equation (2.10) at linear order. Let us
now look at the equations for the 4D base ds2

4 : the linearized equations are given in (4.30). The

first is an algebraic constraint that can be verified starting from the explicit form of J
(A)
1 given

in (4.29):

1

2

(
J

(A)
1 ∧ J

(B)
0 + J

(B)
1 ∧ J

(A)
0

) ≡ J
((A)
1 ∧ J

(B))
0

= −β̄α
i ḟ α

i J
(A)
0 ∧ J

(B)
0 − β̄α ∧ J

((A)
0 ij ḟj dxi ∧ J

(B))
0

= 2β̄α
i ḟ α

i δAB d4x − 1

2
εijkl β̄

α
i J

((A)
0 jmJ

(B))
0kl ḟ α

l d4x

= 2β̄α
i ḟ α

i δAB d4x + β̄α
i J

((A)
0 jmJ

(B))
0 ij ḟ a

m d4x

= 2β̄α
i ḟ α

i δAB d4x − β̄α
i ḟ α

i δAB d4x

= β̄α
i ḟ α

i δAB d4x = −1

2
h

(1)
kk δAB d4x. (A.1)

Here we have introduced the short-hand notation

d4x ≡ dx1 ∧ dx2 ∧ dx3 ∧ dx4, (A.2)

and we have used the anti-self-duality of J
(A)
0 and the property

J
(A)
0 ik J

(B)
0kj = εABCJ

(C)
0 ij − δABδij , (A.3)

which is the zeroth-order version of (2.13). The last step follows from (4.31).
The differential constraint in (4.30) can be proved as follows:

dJ
(A)
1 − β̇ ∧ J

(A)
0 = −d

(
β̄α

i ḟ α
i

)
J

(A)
0 − dβ̄α ∧ J

(A)
0 ij ḟ α

j dxi + ḟ α
i ∂i β̄

α ∧ J
(A)
0

= dxi ḟ α
j ∧ [(

∂j β̄
α
i − ∂i β̄

α
j

)
J

(A)
0 − dβ̄α J

(A)
0 ij

]
= −dxi ḟ α

j ∧ [(
dβ̄α

)
ij
J

(A)
0 + dβ̄α J

(A)
0 ij

]
, (A.4)

where we used (4.13). To see that this is zero, let us take its Hodge dual

∗4
(
dJ

(A)
1 − β̇ ∧ J

(A)
0

) = −1

2
dxi εijkl

[(
dβ̄α

)
jm

J
(A)
0kl + (

dβ̄α
)
jk

J
(A)
0 lm

]
ḟ α

m. (A.5)
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If we use the anti-self-duality of J
(A)
0 in the first term of the r.h.s. and the self-duality of dβ̄α in

the second term, we find

∗4
(
dJ

(A)
1 − β̇ ∧ J

(A)
0

) = dxi
[(

dβ̄α
)
jm

J
(A)
0 ij − (

dβ̄α
)
il
J

(A)
0 lm

]
ḟ α

m. (A.6)

If, vice versa, we use the self-duality of dβ̄α in the first term of the r.h.s. and the anti-self-duality
of J

(A)
0 in the second term, we find

∗4
(
dJ

(A)
1 − β̇ ∧ J

(A)
0

) = −1

4
dxi εijkl

[
εjmab

(
dβ̄α

)
ab

J
(A)
0kl − (

dβ̄α
)
jk

εlmabJ
(A)
0ab

]
ḟ α

m

= 1

2
dxi

(
dβ̄α

)
kl

J
(A)
0kl ḟ

α
i + dxi

(
dβ̄α

)
li
J

(A)
0kl ḟ

α
k

− 1

2
dxi

(
dβ̄α

)
jk

J
(A)
0 jkḟ

α
i − dxi

(
dβ̄α

)
jk

J
(A)
0ki ḟ

α
j

= dxi
[(

dβ̄α
)
il
J

(A)
0 lm − (

dβ̄α
)
jm

J
(A)
0 ij

]
ḟ α

m. (A.7)

If we compare (A.6) and (A.7) we see that the expressions on the r.h.s. are equal and opposite
and hence vanish: the second equation in (4.30) is thus satisfied.

Let us now pass to the equation for a1: at linear order the definition of Θ1 in (2.17) becomes

Θ1 = da1 + γ̇2

= d
(
Z̄α

2 ḟ α
i dxi − γ̄ α

2 ikḟ
α
k dxi

) + ∂vγ̄
α
2 + dβ̄α

∣∣ḟ α
∣∣2 − ∂v

(
β̄α ∧ ḟ α

i dxi
)
, (A.8)

where the second expression follows from the ansatz (4.16)–(4.27). Using (the dual of) the iden-
tity

∗4d
(−γ̄ α

2 ikḟ
α
k dxi

) = −1

2
dxi ∧ dxj εijkl∂kγ̄

α
2 lmḟ α

m

= −1

4
dxi ∧ dxj εijklεklmp∂pZ̄α

2 ḟ α
m + 1

4
dxi ∧ dxj εijkl∂mγ̄ α

2kl ḟ
α
m

= d
(
Z̄α

2 ḟ α
i dxi

) − ∂v

(∗4γ̄
α
2

)
, (A.9)

that descends from the second relation in (4.12), we can rewrite

Θ1 = d
(
Z̄α

2 ḟ α
i dxi

) + ∗4d
(
Z̄α

2 ḟ α
i dxi

) + dβ̄α
∣∣ḟ α

∣∣2 − ∂v

(
β̄α ∧ ḟ α

i dxi
)
. (A.10)

The linearized version of the a1 equation (2.18) is

∗4(Θ1 − ψ) = Θ1 − ψ. (A.11)

Using the expression for ψ given in (4.32) and the one for Θ1 derived above one finds

Θ1 − ψ = d
(
Z̄α

2 ḟ α
i dxi

) + ∗4d
(
Z̄α

2 ḟ α
i dxi

) + dβ̄α
∣∣ḟ α

∣∣2

− 1

2
∂v

[
β̄α ∧ ḟ α

i dxi + ∗4
(
β̄α ∧ ḟ α

i dxi
)]

, (A.12)

which shows explicitly that Θ1 − ψ is self-dual, as required by (A.11).
From the first of (2.16), the linearized version of the Z2 equation is

dγ2 = ∗4(dZ2 + β̇). (A.13)

From the ansatz (4.16)–(4.27), and the identity (4.13), one finds



184 S. Giusto, R. Russo / Nuclear Physics B 869 (2013) 164–188

dZ2 + β̇ = dZ̄α
2 − dxi

(
∂i β̄

α
k − ∂kβ̄

α
i

)
ḟ α

k ; (A.14)

hence, making use of the second and third relation in (4.12), one has

∗4(dZ2 + β̇) = ∗4dZ̄α
2 − 1

3! dxi ∧ dxj ∧ dxk εijkl

(
dβ̄α

)
lm

ḟ α
m

= −dγ̄ α
2 − 1

2 3! dxi ∧ dxj ∧ dxk εijklεlmpq

(
dβ̄α

)
pq

ḟ α
m

= −dγ̄ α
2 + dβ̄α ∧ ḟ α

i dxi = −dγ2, (A.15)

where in the last step we have used (4.25). We have thus obtained the Hodge dual of (A.13). As
we have already explained, (A.13) implies the linearized version of the Z2 equation in (2.19).

Analogously, to prove the Z1 equation in (2.19) it is easier to show that there exists a γ1 that
solves the second equation in (2.16), which to linear order is

dγ1 = ∗4(dZ1 + β̇). (A.16)

If one defines

γ1 = γ̄ α
1 − β̄α ∧ ḟ α

i dxi, (A.17)

where

dγ̄ α
1 = ∗4dZ̄α

1 , (A.18)

(such a γ̄ α
1 exists thanks to the first of (4.12)) the proof proceeds as for Z2.

Let us now come to the equations for the new multiplet, Z4, a4, δ2, x3. To verify the first
equation in (2.20), let us start from (4.19) and compute

∗4dZ4 = − 1

3! dxi ∧ dxj ∧ dxk εijkl∂l β̄
α
mḟ α

m

= − 1

3! dxi ∧ dxj ∧ dxk εijkl

(
dβ̄α

)
lm

ḟ α
m − 1

3! dxi ∧ dxj ∧ dxk εijkl∂mβ̄α
l ḟ α

m

= dβ̄α ∧ ḟ α
i dxi + ∂v

(∗4β̄
α
) = d

(
β̄α ∧ ḟ α

i dxi + ∂vζ̄
α
) = dδ2, (A.19)

where in the intermediate steps we have used again the self-duality of dβ̄ and the definition of ζ̄

in (4.12) and the relation (4.13), and in the last step we have compared with the form of δ2 given
in (4.24).

To prove the a4 equation (the second equation in (2.20)), we need the identity

∗4d
(
ζ̄ α
ki ḟ

α
k dxi

) = β̄α ∧ ḟ α
i dxi + ∂vζ̄

α, (A.20)

which can be shown as follows

∗4d
(
ζ̄ α
ki ḟ

α
k dxi

) = 1

2
dxi ∧ dxj εijkl∂kζ̄

α
mlḟ

α
m

= 1

4
dxi ∧ dxj εijklεkmlpβ̄α

p ḟ α
m + 1

4
dxi ∧ dxj εijkl∂mζ̄ α

kl ḟ
α
m

= β̄α ∧ ḟ α
i dxi + ∂vζ̄

α, (A.21)

where we have used the defining properties of ζ̄ α (the last two identities in (4.12)) and the
analogue of (4.13) for ζ̄ α . The ansatz (4.16)–(4.27) gives
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da4 + δ̇2 = −dβ̄α
∣∣ḟ α

∣∣2 + ∂v

[
d
(
ζ̄ α
ki ḟ

α
k dxi

) + β̄α ∧ ḟ α
i dxi + ∂vζ̄

α
]; (A.22)

the identity (A.20) shows that the quantity in square brackets on the r.h.s. of the above expression
is self-dual, while the self-duality of dβ̄α guarantees that the first term on the r.h.s. is self-dual.
Hence the second relation in (2.20) is satisfied.

To verify the linearized x3 equation (2.21) let us compute

dx3 = −∂vd
(
ζ̄ α ∧ ḟ α

i dxi
) = −1

2
εijkl∂v

(
∂i ζ̄

α
jkḟ

α
l

)
d4x = −∂v

(
β̄α

i ḟ α
i

)
d4x, (A.23)

where in the last step we have used that dζ̄ α = ∗4β̄
α ; this is indeed equal to

∗4Ż4 = − ∗4 ∂v

(
β̄α

i ḟ α
i

)
. (A.24)

Verifying the ω equation (2.22) amounts to show that the Θ2 derived from (2.22) can be
written as in second of (2.17), for some 1-form a2. At the linear level one should have that

Θ2 = da2 + γ̇1, (A.25)

where γ1 is given in (A.17). Using the expressions from the ansatz (4.16)–(4.27), together with
the self-duality of dβ̄α and the anti-self-duality of dω̄α , we find

dω + ∗4dω = (
dZ̄α

1 + dZ̄α
2

) ∧ ḟ α
i dxi + ∗4

[(
dZ̄α

1 + dZ̄α
2

) ∧ ḟ α
i dxi

] + 2dβ̄α
∣∣ḟ α

∣∣2

− ∂v

[
d
(
ζ̄ α
ki ḟ

α
k dxi

) + ∗4d
(
ζ̄ α
ki ḟ

α
k dxi

)]
. (A.26)

The terms in the second line can be simplified with the help of the identity (A.20) and the fact
that ζ̄ is anti-self-dual, obtaining

dω + ∗4dω = (
dZ̄α

1 + dZ̄α
2

) ∧ ḟ α
i dxi + ∗4

[(
dZ̄α

1 + dZ̄α
2

) ∧ ḟ α
i dxi

] + 2dβ̄α
∣∣ḟ α

∣∣2

− ∂v

[
β̄α ∧ ḟ α

i dxi + ∗4d
(
β̄α ∧ ḟ α

i dxi
)]

. (A.27)

Subtracting from dω + ∗4dω the expression (A.12) for Θ1 − ψ , we find, according to (2.22)

Θ2 − ψ = d
(
Z̄α

1 ḟ α
i dxi

) + ∗4d
(
Z̄α

1 ḟ α
i dxi

) + dβ̄α
∣∣ḟ α

∣∣2

− 1

2
∂v

[
β̄α ∧ ḟ α

i dxi + ∗4
(
β̄α ∧ ḟ α

i dxi
)]

, (A.28)

which is of the same form as Θ1 − ψ with the exchange of Z1 with Z2; it immediately follows
that the 1-form a2 exists and it is given by

a2 = (
Z̄α

1 − 1
)
ḟ α

i dxi − γ̄ α
1 ikḟ

α
k dxi + β̄α

∣∣ḟ α
∣∣2

. (A.29)

The last equation to be verified is the one for F , given in (2.23). From the ansatz (4.16)–(4.27)
we see that F is a linear combination of Z̄α

1 , Z̄α
2 and ω̄α , which are harmonic according to (4.12):

hence d ∗4 dF = 0, and on the l.h.s. of equation (2.23) only the term containing ω̇ contributes.
Thus the l.h.s. of (2.23) is

∗4d ∗4 ω̇ = ∗4∂v

[
d ∗4

((
Z̄α

1 + Z̄α
2

)
ḟ α

i dxi
) − ∂v

(
d ∗4

(
ζ̄ α
ki ḟ

α
k dxi

))]
, (A.30)

where a term proportional to d ∗4 ω̄α and one proportional to d ∗4 β̄α have been dropped on
account of (4.12). One has

∗4d ∗4
((

Z̄α
1 + Z̄α

2

)
ḟ α

i dxi
) = −∂i

(
Z̄α

1 + Z̄α
2

)
ḟ α

i = ∂v

(
Z̄α

1 + Z̄α
2

)
, (A.31)



186 S. Giusto, R. Russo / Nuclear Physics B 869 (2013) 164–188

and

∗4d ∗4
(
ζ̄ α
ki ḟ

α
k dxi

) = −∂kζ̄
α
ikḟ

α
i = −β̄α

i ḟ α
i , (A.32)

where we have used that β̄α = − ∗4 dζ̄ α = ∗4d ∗4 ζ̄ α , as it follows from (4.12); hence

∗4d ∗4 ω̇ = ∂2
v

(
Z̄α

1 + Z̄α
2 + β̄α

i ḟ α
i

)
. (A.33)

One the r.h.s. of (2.23) one finds

∂2
v (Z1 + Z2) + 1

2
∂2
v (hii) = ∂2

v

(
Z̄α

1 + Z̄α
2 + 2β̄α

i ḟ α
i − β̄α

i ḟ α
i

) = ∗4d ∗4 ω̇, (A.34)

which proves (2.23).

Appendix B. Coordinate shift

Let us consider the supergravity ansatz of Section 2 with a flat 4D base metric hij = δij . We
perform the shift xi → xi − f i(v) on the R4 coordinates and rewrite the resulting 10D metric in
the form dictated by the ansatz (2.2). As a result we obtain a new form for the 4D base metric
and the other geometric data

ds2
4 = (

1 − β̄ ′
kḟk

)
dxi dxi + (

β̄ ′
j ḟi + β̄ ′

i ḟj

)
dxi dxj + β̄ ′

i β̄
′
j

1 − β̄ ′
kḟk

|ḟ |2 dxi dxj , (B.1)

β = β̄ ′

1 − β̄ ′
kḟk

, (B.2)

ZI = Z̄′
I

1 − β̄ ′
kḟk

, I = 1,2,4, (B.3)

ω = ω̄′ + β̄ ′
(

ω̄′
l ḟl

1 − β̄ ′
kḟk

+ Z̄′
1Z

′
2

ᾱ′(1 − β̄ ′
kḟk)2

|ḟ |2
)

+ Z̄′
1Z̄

′
2

ᾱ′(1 − β̄kḟk)
ḟi dxi, (B.4)

F = F̄ ′(1 − β̄ ′
kḟk

) − 2ω̄′
kḟk − Z̄′

1Z̄
′
2

ᾱ′(1 − β̄ ′
kḟ

′
k)

∣∣ḟ 2
∣∣, (B.5)

where the quantities on the l.h.s. define the solution after the shift, while the barred and primed
quantities on the r.h.s. are the original geometric data (i.e. those in the frame where the base
metric is flat) evaluated at the point x − f i(v). By repeating the same change of variables on the
other supergravity fields we obtain

a1 = (
1 − β̄ ′

kḟk

)
a′

1 + β̄ ′ā′
1kḟk + Z̄2

(
ḟi dxi + β̄ ′

1 − β̄ ′
kḟk

∣∣ḟ 2
∣∣) − γ̄ ′

2ij dxi ḟ j , (B.6)

a4 = (
1 − β̄ ′

kḟk

)
ā4 + β̄ ′ā′

4kḟk + Z̄4

(
ḟi dxi + β̄ ′

1 − β̄ ′
kḟk

|ḟ |2
)

− δ̄′
2ij dxi ḟ j , (B.7)

γ2 = γ̄ ′
2 + γ̄ ′

2ij ḟi

β̄ ′

1 − β̄ ′
kḟk

∧ dxj , (B.8)

δ2 = δ̄′
2 + δ̄′

2ij ḟi

β̄ ′

1 − β̄ ′
kḟk

∧ dxj , (B.9)
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x3 = x̄′
3

(
1 − β̄ ′

kḟk

) + 1

2
β̄ ′ ∧ x̄′

3 ijkḟk dxi ∧ dxj + Z̄′
4γ̄

′
2 ∧

(
ḟi dxi + β̄ ′

1 − β̄ ′
kḟk

|ḟ |2
)

+ Z̄′
4γ̄

′
2 ij ḟi dxj ∧ β̄ ′

1 − β̄ ′
kḟk

∧ ḟk dxk. (B.10)

It is straightforward to check that Eqs. (5.17)–(5.28) are reproduced by choosing the quantities
on the r.h.s. as done in (5.1)–(5.12) and then by linearizing the result in βD1D5 and ωD1D5. As
discussed in Section 5, this keeps the dependence on the D1 and D5 charges Q1 and Q5 exact
and includes only the first-order backreaction due to the KK-monopole dipole charge βD1D5, to
ωD1D5 and to the other objects that are related to βD1D5 or ωD1D5 by the supergravity equations.
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