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Abstract

Wilson loops which are small deviations from straight, infinite lines, called

wavy lines, are considered in the context of the AdS/CFT correspondence.

A single wavy line and the connected correlation function of a straight and

wavy line are considered. It is argued that, to leading order in “waviness”, the

functional form of the loop is universal and the coefficient, which is a function

of the ’t Hooft coupling, is found in weak coupling perturbation theory and the

strong coupling limit using the AdS/CFT correspondence. Supersymmetric

arguments are used to simplify the computation and to show that the straight

line obeys the Migdal-Makeenko loop equation.
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1 Introduction and Summary

The AdS/CFT correspondence has provided a fascinating array of relationships be-

tween gauge field theories, string theory and supergravity[1]-[9]. One of the natural

objects of gauge theory which couples directly to strings is the Wilson loop. The

study of Wilson loops has provided an interesting approach to extracting information

from the AdS/CFT correspondence [10]-[41].

In N = 4 supersymmetric Yang-Mills theory1, the Wilson loop of most interest

contains both the gauge field and a scalar field in the exponent and has the form in

Euclidean space[10]

Tr
(

P e
∮

ds(iAµ(x)ẋµ(s)+Φ(x)·θ|ẋ(s)|)
)

(1)

This loop measures the holonomy of the wave-function of a heavy W-boson which

occurs when the gauge symmetry of super Yang-Mills theory is realized in a Higgs

phase with the unit vector θI related to the condensate,
〈

ΦI(x)
〉

∼ θI .

Computations of the expectation value of this Wilson loop have proven to be

tractable in certain special geometries. For example, the infinite straight line, or any

array of infinite parallel straight lines form a BPS object and it is expected that

all radiative corrections cancel, so that the Wilson loop corresponding to them has

expectation value exactly equal to one.

The expectation value of the circular loop, which is also a BPS object closely

related to the straight line, is conjectured to be known exactly[42]. In that case

ladder diagrams can be summed explicitly. The sum can be extrapolated to strong

coupling and compared with the predictions of the AdS/CFT correspondence where

it agrees beautifully. It is conjectured that all corrections to ladder diagrams cancel.

This has been demonstrated to leading and next-to-leading orders [42, 43, 44] and

there are other arguments to support it[45]. Similar observations have been made for

the correlators of chiral primary operators with the circular Wilson loop[46].

Polyakov and Rychkov [47, 48, 49] have discussed Wilson loops which were small

deviations from straight lines, their so-called “wavy lines”. There, they observed some

interesting structures which gave some hope that the area Ansätz at strong coupling

actually satisfied the loop equations of the gauge theory.

In this Letter, we shall present some preliminary results of our investigation of

wavy lines. We begin by reviewing some preliminaries.

1The action and other conventions are summarized in the Appendix.
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1.1 Preliminaries

We will be entirely concerned with Wilson loops in four-dimensional Euclidean space.

There is some closely related and very interesting work on Minkowski space loops[34].

Apparent differences between those and the present work are attributable to the richer

array of boundary conditions which can be imposed in Minkowski space.

A wavy line deviates by a small amount from an infinite straight line. We shall

describe it using the Monge gauge parameterization

xµ(s) = (s, ξ(s)) s ∈ (−∞,+∞) (2)

The three-dimensional vector ξ(s) is a smooth function of the curve parameter s with

small magnitude.

The expectation value of the Wilson loop is a functional of the geometry of the

loop. We will consider the leading order of this functional, which is quadratic in ξ(s).

This leading order is restricted by the spacetime symmetries of N = 4 supersymmetric

Yang-Mills theory. Rotation and translation invariance dictate that it has the form

∫

ds

∫

ds′ξ̇i(s)K(s− s′)ξ̇i(s′) (3)

Scale invariance indicates that the kernel K(s− s′) has dimension 1/distance2 and is

therefore of the form

K(s− s′) ∼ 1

(s− s′)2

However the integration then diverges linearly. We do not expect that such diver-

gences appear in the supersymmetric Wilson loop that we are considering. Therefore,

the kernel must be a distribution. There are two distributions with the correct di-

mensions,
d

ds
δ(s− s′) ,

d

ds

P

s− s′

The second of these, the derivative of the principal value distribution, is an even

function, so we must chose it. By adding terms which integrate to zero, we can then

write the functional in a more manifestly finite form,

∫

ds

∫

ds′
{

2ξ̇(s) · ξ̇(s′) − 2ξ̇(s′)2
} d

ds

P

(s− s′)
=

∫

ds

∫

ds′

(

ξ̇(s) − ξ̇(s′)
)2

(s− s′)2
(4)

We shall see that this is precisely the form that we obtain for the wavy line, both in

perturbation theory and in the strong coupling limit using AdS/CFT. In the leading
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order in perturbation theory, the part in (3) comes from the gauge interactions,

whereas the extra terms needed to make (4) come from the scalar fields.

In addition, we shall consider the connected correlation function of a wavy line

with a straight line. In that case, the correlator depends on the distance, L, between

the two lines. We will compute the leading order, which varies as 1
L2 . Then, the same

reasoning and counting of dimensions tells us that the correlator must be of the form

1

L2

∫

ds

∫

ds′ξ̇(s) · ξ̇(s′) ln[Λ2(s− s′)2] (5)

Here, Λ is a constant with the dimension of inverse length.

1.2 Results

Our results can be summarized as follows:

• Unlike the circle and other loops that have been computed in the past, where

ladder diagrams were the most important, the wavy line gets all of its corrections

from internal loops. Any ladder diagrams either cancel or vanish identically

(beyond the trivial leading order for the single wavy line).

• We shall find that the wavy line and the connected correlation function of

a wavy line with a straight line indeed have the universal forms, (4) and (5),

respectively. We show this to leading order in weak coupling perturbation theory

and we confirm it at strong coupling using the AdS/CFT correspondence. For

the single wavy line, we also confirm that it is so to next-to-leading order at

weak coupling.

• In the universal form (4), to leading orders in perturbation theory, the role of

the scalar field in the Wilson loop is minimal. It serves to regulate divergences

and define the distribution in the kernel. This is consistent with the results of

Polyakov and Rychkov[47, 49] who applied similar ideas to non-supersymmetric

loops.

• The coefficients of the universal functionals are nontrivial functions of the cou-

pling constant which we expect obtain contributions from all orders in pertur-

bation theory.

• One way that a scale dependence could creep into the Wilson loop is if the power

law in (4) is corrected by logarithms in higher orders of perturbation theory. In
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the case of the wavy line, we shall confirm to the next to leading order that it

is not corrected by logarithms. We also use AdS/CFT to compute the strong

coupling limit and find the same functional form, suggesting that logarithms do

not appear at any order.

• The above statement is even more interesting in the case of (5) where, in our

explicit computations, a logarithm of the cutoff Λ in fact appears. The integral,

however, is insensitive to the appearance of this logarithm. It can be removed

by adding a term which is a total derivative. If higher orders in logarithms

appeared there, it is hard to see how the cutoff dependence could be removed in

this way. We confirm using AdS/CFT that, at strong coupling, there is indeed

only this single logarithm. In that case, the ultraviolet cutoff, Λ, is replaced by

the inverse of an infrared cutoff, a symptom of the interchange of ultraviolet and

infrared behaviors which occurs in the AdS/CFT correspondence in general.

• We use supersymmetry to simplify the computation of correlation functions and

put them in a form where further computations can be done more readily.

• We use supersymmetry to find that the infinite straight line obeys the Migdal-

Makeenko[50, 51]loop equation of gauge theory. This is beautifully consis-

tent with the results of and Drukker, Gross and Ooguri[45] and Polyakov and

Rychkov[47, 49] who showed that the strong coupling Ansätz obeys the loop

equation. For a wavy line, this can actually be deduced directly from the fact

that it has the functional form in (4) where the kernel does not contain the

delta function singularity which would be identified with the loop operator in

the quadratic variation of the loop.

• A local limit of the waviness can be taken so that one could in principle use

the operator product expansion to compute the correlation functions of gauge

invariant operators with the straight line Wilson loop. We hope to report results

in the near future.

2 Weak Coupling

2.1 Single Line

We have calculated the expectation value of a single wavy line to second order in the

’t Hooft coupling. The calculation involves evaluating various Feynman diagrams. In
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the following the horizontal line denotes the Wilson line, the wiggly line denotes the

gauge field Aµ, while the solid line denotes the scalar field ΦJ .

� + � =
g2N

16π2
I

� +� +� +� = 0� +� +	 +
 = − g4N2

27π2

1

3
I

where,

I =

∮

ds1 ds2

[

ξ̇(s1) − ξ̇(s2)
]2

2 (s1 − s2)
2 (6)

The first two diagrams in the last line represent the one-loop corrected exchange of a

single particle. These diagrams are divergent, but a divergent piece from the following

diagrams (those with an internal vertex) cancel these divergences exactly, leaving a

finite result. The diagrams in the second line are zero at second order in waviness

individually. Summarizing, we find

〈W (C)〉 = 1 +

[

g2N

24π2
− g4N2

3 · 27π2
+ . . .

]
∮

ds1 ds2

[

ξ̇(s1) − ξ̇(s2)
]2

2 (s1 − s2)
2 + . . . . (7)

2.2 Line-Line Correlator

A Wilson loop which consists of an array of infinite parallel straight lines is a BPS

object. As an operator it commutes with half of the supercharges and one might

expect that, like the single straight line, it is protected from quantum corrections.

Explicit computations to a few orders in perturbation theory indeed show that lower

order corrections cancel and one might conjecture that they do to all orders. This

is consistent with what is found in the strong coupling limit using the AdS/CFT
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correspondence. It has the physical interpretation that an array of static heavy quarks

do not interact.

An interesting variant of this configuration is a combination of an infinite straight

line and a wavy deformation of another parallel straight line. In this case, the con-

nected correlation function measures the interaction energy of two quarks which is

induced by the slight motion of one of them.

We can compute the correlation function of an infinite straight line and a wavy

line in perturbation theory. The leading contribution turns out to be at cubic order

in the ’t Hooft coupling and is given by the following diagram:

�
where the two Wilson loops are represented as vertical lines. The other “H-diagrams”

obtained by all possible substitutions of scalar for gauge fields also contribute.

In the limit of large separation L, we find:

〈W1W2〉connected = − 1

N2

1

L2

[

g6N3

211π4
+ . . .

]
∮

ds ds′ ξ̇(s)·ξ̇(s′) ln(Λ2(s−s′)2)+. . . (8)

The parameter Λ in the logarithm is an ultraviolet cutoff. Note that the result is

finite. The cutoff disappears when we integrate by parts in s or s′.

3 Strong Coupling

The AdS/CFT correspondence hypothesizes that the strong coupling limit of the

Wilson loop is found by computing the regularized minimal area of a surface in

AdS5×S5 whose boundary is the curve of the Wilson loop, embedded in the boundary

of the space[10].

We use the metric of AdS5 × S5,

ds2 = R2dx
µdxµ + dyIdyI

yIyI

where, according to the AdS/CFT correspondence, the radius of curvature is R =

(g2N)1/4
√
α′. We shall consider surfaces which are located on a single point in S5,

given by yI = yθI . The boundary of the space is located at y → 0.
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3.1 Single Line

The straight line is the boundary of a surface which is orthogonal to the boundary of

AdS, which we parameterize using the coordinates (s, t). The parametric embedding

of the surface is

(xµ, yI) = (s, 0, 0, 0, tθI) (9)

This surface is itself AdS2, with metric

ds2 = R2ds
2 + dt2

t2

It has infinite area,

A0 =

∫ ∞

−∞

ds

∫ ∞

0

dt
R2

t2

which must be defined by regularization and the infinity must be subtraced to obtain

the final result. The regularization is normally carried out by cutting off the integrals

A0 =

∫ L/2

−L/2

ds

∫ ∞

ǫ

dt
R2

t2
= R2L/ǫ

The subtraction of the infinite part is implemented by operating
(

1 + ǫ d
dǫ

)

which has

an interesting interpretation as a Legendre transform[15, 26]. In the case of an infinite

straight line this subtracts everything

A0Reg =

(

1 + ǫ
d

dǫ

)

R2L

ǫ
= 0

so the result is

〈W (straight line)〉 = e−
R2

2πα′
A0Reg = 1

To describe a wavy line, we must find a minimal surface whose boundary is the

wavy line. We describe the surface using the embedding coordinates

(xµ, yI) = (s, ∆j(t, s), tθ
I) where ∆j(0, s) = ξj(s) (10)

The three components ∆j are the small deviation from AdS2 induced by the waviness

of the line.

The regularized area to second order in ∆ is given by

AReg = −
∫

dt ds

t2

{

1

2
(∂t∆)2 +

1

2
(∂s∆)2

}

(11)
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The variation of this functional gives an equation of motion for ∆, the solution of

which, with the boundary condition in (10) is

∆(t, s) =

∫

ds′ξ(s′)

π

2t3

((s− s′)2 + t2)2
(12)

When plugged back into (11) we find the area

AReg[ξ] = − 1

2π

∫

ds′ds

[

ξ̇(s) − ξ̇(s′)
]2

2(s− s′)2
(13)

and the strong coupling limit of the wavy line Wilson loop is

〈W (−)〉 = exp







√

g2N

4π2

∫

ds′ds

[

ξ̇(s) − ξ̇(s′)
]2

2(s− s′)2
+ . . .







Note that, as was expected, this procedure gives the same functional of the deviation

from the straight line as we found at weak coupling. This supports the idea that

the power law behavior is not corrected by logarithms at intermediate orders in per-

turbation theory. The coefficient seems to be a non-trivial function of the coupling,

interpolating between a linear function at weak coupling and the square root at strong

coupling.

3.2 Line-Line Correlator

If we consider an array of parallel straight lines, they are the boundaries of a set of

sheets in AdS5 × S5 similar to (9). If two lines are anti-parallel, they can be joined

by a single sheet which dominates their connected correlation function. Since, in the

case of interest to us, the lines are parallel, rather than anti-parallel, there is no single

sheet whose boundary is more than one of the lines. This means that in the leading

order, the lines do not interact, i.e. their connected correlation function vanishes.

This is consistent with the weak coupling expansion where we saw that the connected

correlation function indeed has a coefficient proportional to 1/N2 (times a function of

the ’t Hooft coupling g2N) which indicates that it arises from higher genus Feynman

diagrams. In the strong coupling limit, we expect this to translate to higher genus

surfaces.

Still, we expect that, for exactly parallel lines, because of their BPS nature, higher

genus contributions cancel exactly. We emphasize that we do not know an explicit

proof of this statement. It can be checked to leading orders in weak coupling and it
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appears to occur there. However, at strong coupling, we are not even able to check

it to the leading order, but we shall assume that it is the case.

It is possible to take into account higher genus surfaces to the straight line-wavy

line correlation function if we consider the limit where the lines are far apart compared

to the distance scale of the waviness. In this case, at higher genus, the lines are

boundaries of two infinite sheets which are connected by thin tubes, which are formed

by the exchange of the light particles in the spectrum of supergravity linearized about

the AdS5 × S5 background.

This idea was used in [52] to compute the correlator of widely separated circular

Wilson loops. The Euler character χ = −2 worldsheet then has the area

Aχ=−2 =
g2N

4π2

∫

Ω1

∫

Ω2

V1 P V2 (14)

where Ωi refers to the worldsheet domains, Vi refers to the vertex operator on that

worldsheet, and P denotes the propagator for the supergravity field which travels

between the worldsheets. The factor in front comes from two powers of the coefficient

of the worldsheet action, (R2/2π
√
α′)2 = g2N/4π2.

The lightest mode comes from the perturbation of the AdS5 metric, which is

expressed in terms of a Kaluza-Klein scalar (in the following equation greek indices

refer to the five coordinates on AdS5)

g̃µν = gµν −
10k

3
gµν s

k Y k +
4

k + 1
D(µDν) s

k Y k +
32k

15
gµν s

k Y k, (15)

where Y k is the spherical harmonic on S5, and sk is the Kaluza-Klein scalar field

described in section 4.2 of [52]. The lightest mode of sk is for k = 2. The resulting

perturbation in the Nambu action on AdS5 yields the vertex operator. At zeroth

order in waviness the vertex operator is

V∆=0 = −12

5

1

t2
− 4

15
~∇2 +

4

5

1

t
∂t +

2

5
(∂2

t + ∂2
s ) (16)

where s and t are the embedding coordinates as in (10), i.e. the worldsheet coordi-

nates. The derivatives will act on the propagator. In the limit of large separation the

propagator is

P =
9

8N2

t2t′2

[(s− s′)2 + (t− t′)2 + (~x− ~x′)2]2

∣

∣

∣

∣

~x=~x′+~L

(17)

where the separation is given by ~L. As for the vertex operator of the wavy line, i.e.

the vertex operator terms which are second order in waviness, we keep only those

9



terms which contain derivatives in t′, other terms producing results subleading in the

separation. We find

V(s′, t′) =

(

1

2
∆̇2 +

1

2
∆′2

)

1

t′2

{

−12

5
− 4

15

[

t′2∂2
t′ − 3t′∂t′

]

}

+
1

3

(

−∆̇2∂2
t′ + ∆′2∂2

t′

)

− 4

3

1

t′
∆̇2∂t′

(18)

where ∆′(t′, s′) = ∂s′∆(t′, s′) and ∆̇(t′, s′) = ∂t′∆(t′, s′), and where derivatives act

on the numerator of the propagator only, else leading to subleading terms. Plugging

everything into (14), we find to leading order in the separation

Aχ=−2 =
1

L2

1

N2

g2N

8π2

3

20

∫

ds ds′ ξ̇(s) · ξ̇(s′) ln(µ2 (s− s′)2) (19)

This has the same dependence on ξ as the weak coupling limit, supporting our

expectation that the logarithm is not modified by loop corrections and it remains the

same universal form at all orders. The coefficient is indeed of order 1/N2 and the

coupling constant appears to be nontrivial.

4 Supersymmetry, Simplifications, and the Loop

Equation

Consider the expansion of the single wavy line to two orders in the function ξ,

δ2W (C) =
1

N
Tr

∫

ds

∫

dt Pe
∫

∞

s
ds1E(s1)O1(s)Pe

∫ s

t
ds2E(s2)O1(t)Pe

∫ t

−∞
ds3E(s3)

+
1

N
Tr

∫

dsPe
∫

∞

s
ds1E(s1)O2(s)Pe

∫ s

−∞
ds2E(s2),

(20)

where,

E(s) = iA0(x(s)) + Φ(x(s)) · θ (21)

O1(s) = ξj(s) [ iFj0(x(s)) +DjΦ(x(s)) · θ ] (22)

O2(s) = ξk(s)ξj(s) [ iDjFk0(x(s)) +DjDkΦ(x(s)) · θ ] . (23)

In the following we will show that the second term in (20) is the result of acting the

loop space Laplace operator on the Wilson loop and vanishes identically.
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We shall also find that the wavy line operators (22, 23) can be described, via

supersymmetry, in terms of fermionic operators. This provides a simplification of

the Feynman diagrams involved in the various computations, as well as a proof that

(23) vanishes to all orders in perturbation theory, which means that the straight line

Wilson loop obeys the loop equation.

We use the ten dimensional supersymmetry transformations, as D = 4, N = 4

super-Yang-Mills theory is just a dimensional reduction of D = 10, N = 1 super-

Yang-Mills theory. The supersymmetry transformations are

δAµ =
i

2
ǭγµψ δΦm =

i

2
ǭΓmψ δψ = −1

4
ΓMNFMN ǫ ΓMN =

1

2
[ΓM ,ΓN ] (24)

where M = (0, i,m) so that i = 1, 2, 3, m = 4, ..., 9, and µ = 0, ..., 3. The 10-D

gamma matrices are ΓM = (γµ,Γm) and ψ is a 10-D Majorana-Weyl fermion. The

generalized field strength FMN is understood as being built from the 10-D gauge field

AM = (Aµ,Φm).

We identify a projected supersymmetry transformation which commutes with the

straight line Wilson loop, that is with the exponent (21)

ǭ = η̄ (iγ0 + Γ · θ). (25)

Let the supercharge responsible for this subset of transformations be called Qp, while

the full supercharge we will call Q. We find that

O1 =
i

4
tr

({

Qp,
[

Q̄, ξiAi

]})

O2 =
i

4
tr

({

Qp,
[

Q̄, ξiξjD(iAj)

]})

(26)

where the trace is over Dirac indices. This allows us to write the following identity

0 =
i

4
tr

〈{

Qp,
1

N
Tr

∫

ds dt Pe
∫

E O1(s)Pe
∫

E [Q̄, Ai](t)Pe
∫

E

}〉

=

〈

1

N
Tr

∫

ds dt Pe
∫

EO1(s)Pe
∫

EO1(t)Pe
∫

E

〉

−
〈

1

16
tr

1

N
Tr

∫

ds dt Pe
∫

E ξi(s)ψ̄(x(s))γi Pe
∫

E ξ̇j(t)(iγ
0 + Γ · θ)γjψ(x(t))Pe

∫

E

〉

(27)

and so we have found a fermionic representation of the first term in (20). This affords

a considerable simplification of the Feynman diagrams involved in calculating the

expectation values because the fermions have less couplings than the gauge fields and
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scalars. For example, in the second appendix, we give the computation of the leading

term in the wavy line, which is now just the free field limit of (27).

Applying the same argument to the operator O2

0 =
i

4
tr

〈{

Qp,
1

N
Tr

∫

dsPe
∫

∞

s
ds1E(s1) ξi(s) ξj(s)[Q̄,D(iAj)](s)Pe

∫ s

−∞
ds2E(s2)

}〉

=

〈

1

N
Tr

∫

dsPe
∫

∞

s
ds1E(s1) O2(s)Pe

∫ s

−∞
ds2E(s2)

〉

(28)

we find that O2 does not contribute at any order in perturbation theory. As is

explained in [47], the loop operator L̂ acting on the Wilson loop W is defined as the

coefficient of δ(s− s′) in the expression for

δ2W

δxµ(s)δxµ(s′)
(29)

According to (20), we have

L̂W =

〈

1

N
TrPe

∫

E [ iDjFj0(x(s)) +DjDjΦ(x(s)) · θ ]Pe
∫

E

〉

= 0 (30)

The infinite straight line is a solution of the loop equation. Note that in this case

it is not a simple consequence of the equations of motion, as the potential terms for

scalars and the fermionic currents are absent. It is, on the other hand, a result of

the 1/2 BPS nature of the Wilson loop. It would be interesting to see whether other

partially supersymmetric loops [27] also obey the loop equation.
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A Conventions

The action of N = 4 supersymmetric Yang-Mills theory that we use for our pertur-

bative computations is

S =

∫

d2ωx
1

2g2

{

1

2
(F a

µν)
2 + (∂µΦa + fabcAb

µΦc)2 + ψ̄aiγµ∂µψ
a+

12



+
10−2ω
∑

I<J=1

(

fabcΦbIΦJc
)2

+ fabcψ̄ai
(

γµAb
µ + ΓIΦbI

)

ψc

}

where

F a
µν = ∂µA

a
ν − ∂νA

a
µ + fabcAb

µA
c
ν

All variables are N × N Hermitian matrices which can be expanded in SU(N) Lie

algebra generators,

Aµ(x) =

N2−1
∑

a=1

Aa
µT

a

The generators are normalized so that

Tr
(

T aT b
)

=
1

2
δab

We use regularization by dimensional reduction where use 10-dimensional N = 1 su-

persymmetric Yang-Mills theory dimensionally reduced to 2ω spacetime dimensions.

There are 2ω components of the vector field Aµ and 10 − 2ω scalar fields ΦI . The

fermions always have 16 real components and the Dirac matrices are appropriate to

a Majorana-Weyl spinor in 10-dimensions.

All of our computations are done in the Feynman gauge where the free field

correlation functions are

〈

Aa
µ(x)A

b
ν(y)

〉

0
= g2∆(x− y)δµνδ

ab ,
〈

ΦIa(x)ΦJb(y)
〉

0
= g2∆(x− y)δIJδab ,

〈

ψa(x)ψ̄b(y)
〉

0
= g2iγµ∂µ∆(x− y)δab

where

∆(x) =
Γ(ω − 1)

4πω

1

[(x− y)2]ω−1

We use dimensional reduction of N = 1 supersymmetric Yang-Mills theory in 10-

dimensions to 2ω-dimensions. The physical dimension is 2ω = 4. Note the factors of

the coupling constant, which come from our normalization of the action.

B Example

Consider the wavy line written in the form

〈W (−)〉 = 1 +

+
1

32N

∫

dsdt
〈

TrPe
∫

Eψ̄(x(s))γ · ξ(s)e
∫

E(iγ0 + Γ · θ)γ · ξ̇(t)ψ(x(t))e
∫

E
〉

+ . . . (31)
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where x(s) = (s, 0, 0, 0). In the leading order, we insert the free field fermion propa-

gator:

〈W (−)〉 = 1 +
g2N

256π2

∫

dsdtξi(s)ξ̇j(t) Tr
[

γiγj(iγ0 + Γ · θ)(−iγ0)
] d

ds

1

(s− t)2
+ . . .

(32)

which can be written as

〈W (−)〉 = 1 +
g2N

16π2

∫

dsdtξ(s) · ξ̇(t) d
ds

1

(t− s)2
+ . . .

= 1 +
g2N

16π2

∫

dsdt
[ξ̇(s) − ξ̇(t)]2

2(s− t)2
+ . . . (33)

which is identical to our previous result.
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