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Abstract

Correlation functions of 1/4 BPS Wilson loops with the infinite family of 1/2 BPS chiral primary operators are computed in N = 4 super-
Yang–Mills theory by summing planar ladder diagrams. Leading loop corrections to the sum are shown to vanish. The correlation functions are
also computed in the strong-coupling limit by examining the supergravity dual of the loop–loop correlator. The strong coupling result is found
to agree with the extrapolation of the planar ladders. The result is related to known correlators of 1/2 BPS Wilson loops and 1/2 BPS chiral
primaries by a simple re-scaling of the coupling constant, similar to an observation of Drukker [N. Drukker, hep-th/0605151] for the case of the
1/4 BPS loop vacuum expectation value.
© 2006 Elsevier B.V.

Recently, the study of the properties of highly symmetric states has provided considerable insight into the AdS/CFT correspon-
dence. In the case of 1/2 BPS local chiral operators and 1/2 BPS Wilson loops of N = 4 supersymmetric Yang–Mills theory,
their correspondence with 1/2 BPS gravitons and fundamental string world-sheets has been generalized to large operators where
a beautiful picture of giant gravitons [1–3], giant Wilson loops [4–15] and bubbling geometries [16] has emerged. These relate
infinite classes of highly symmetric protected operators in Yang–Mills theory to their dual geometries which solve IIB supergravity.

In the case of 1/2 BPS Wilson loops, an essential component of the bubbling loop picture is the ability to compute the loop
expectation value and correlators of the loop with chiral primary operators in Yang–Mills theory by summing planar diagrams
[11,17–21]. To point, for example, it is this sum, in the form of a matrix model computation, which provides evidence that the giant
loops are dual to D3- and D5-branes. The matrix model is thought to coincide with the sum of all Feynman diagrams. This depends
on cancellation of loop corrections, which has been demonstrated in leading orders, but has not yet been proven.3 It apparently
holds for the expectation value of the 1/2 BPS Wilson loop and the correlator of the 1/2 BPS Wilson loop with any 1/2 BPS
chiral primary operator. In all of these cases, when extrapolated to strong coupling, the sum of planar ladder Feynman diagrams
agrees with the supergravity computation using AdS/CFT. This gives an infinite tower of functions which interpolate between weak
and strong coupling. In this Letter, we will examine a modest extension of the picture. We will demonstrate similar results for the
expectation value and the correlation functions of a 1/4 BPS Wilson loop with 1/2 BPS chiral operators.

The vacuum expectation value of the 1/4 BPS loop was studied by Drukker in Ref. [23]. He observed a number of interesting
features of the gauge theory computation. One was that the ladder diagrams had a structure similar to the 1/2 BPS circle loop and
they could be summed to obtain an expression very similar to the case of the 1/2 BPS loop. The difference was the replacement
of the ’t Hooft coupling λ by λ cos2 θ0 where θ0 is a parameter of the 1/4 BPS loop. He further showed that, as occurred for the
1/2 BPS loop, the leading corrections from diagrams with internal vertices (those diagrams which are left out of the sum over
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ladders) cancel. He observed that, in the string dual where, following the prescription given in Ref. [24], the expectation value of
the loop is found as the area of an extremal world-sheet bounding the loop, there are two saddle point solutions. He showed that
the strong coupling extrapolation of the sum of diagrams on the gauge theory side carried a vestige of these two saddle points with
some of the expected features of a saddle-point expansion.

In the following, we will study correlators of 1/4 BPS Wilson loops with 1/2 BPS chiral primary operators. We find that these
correlators depend on the SO(6)-orientation of the chiral primary. We identify all of the orientations where the Wilson loop and the
chiral primary share some degree of supersymmetry. We find that the ladder diagrams can be summed for correlators of the loop and
these operators and the result is identical to those previously found with the 1/2 BPS Wilson loop [11,20] with a certain rescaling
of the coupling constant. We shall also study the strong coupling limit of the same correlators using the AdS/CFT correspondence.
We identify the supergravity dual of the loop–loop correlation function and compute it in the asymptotic limit that is appropriate to
extracting the contribution of intermediate chiral primary operators. This yields the limit of large N and large ’t Hooft coupling λ.
We find that the results agree with the extrapolation to strong coupling of the Yang–Mills computation.

The Wilson loop operator of N = 4 supersymmetric Yang–Mills theory which is most relevant to the AdS/CFT correspondence
is [24]

(1)W [C] = 1

N
TrP exp

[∫
C

(
iAα

(
x(τ)

)
ẋα(τ ) + ∣∣ẋ(τ )

∣∣ΘI (τ)ΦI

(
x(τ)

))
dτ

]
,

where Aα(x) are the gauge fields and ΦI (x), I = 1, . . . ,6 are the scalar fields of N = 4 supersymmetric Yang–Mills theory. The
curve C is described by xμ(τ) and ΘI (τ), with

∑6
I=1 ΘIΘI = 1, describes a loop on the 5-sphere. This loop operator is related

to the holonomy of heavy W -bosons in the gauge theory with SU(N + 1) → SU(N) × U(1) symmetry breaking. Its string theory
dual is a source for a fundamental open string whose world-sheet ends on the contour C at the boundary of AdS5 × S5.

When probed from a distance much larger than the extension of C, the Wilson loop operator should look like an assembly of
local operators,4

(2)W [C] = 〈0|W [C]|0〉
(

1 +
∑
Δi>0

OΔi
(0)L[C]Δi ξΔi

[C]
)

,

where L[C] = ∫
C

|ẋ(τ )|dτ is the length of C and we have assumed that C is near the origin 0. The operator expansion coefficients
generally depend on the shape and orientation of C, as well as the parameters of N = 4 Yang–Mills theory, the coupling constant
gYM and the number of colors N . In the remainder of this Letter, we will consider only the planar ’t Hooft large N limit of Yang–
Mills theory where N → ∞ holding λ ≡ g2

YMN fixed. In that limit, we can see from (4) below that ξΔ is the ratio of a disc to a
cylinder amplitude and therefore should be of order 1

N
times a function of λ.

All operators which can be made from the gauge fields, scalars and their derivatives can appear in the expansion in Eq. (2). We
have classified operators according to their conformal dimensions, Δi . In a conformal field theory, the operators of fixed conformal
dimensions can be organized into families which contain a primary operator with smallest Δ and an infinite tower of descendants.
We will assume that primary operators are normalized so that

(3)〈0|OΔ(x)OΔ′(0)|0〉 = δΔΔ′

(4π2x2)Δ
.

The operator expansion coefficient ξΔ for a primary operator can be extracted from the asymptotics of the correlator

(4)
〈0|W [C]OΔ(x)|0〉

〈0|W [C]|0〉 = L[C]Δ
(4π2|x|2)Δ ξΔ + · · · .

For example, for the 1/2 BPS circle Wilson loop,

(5)C1/2: xμ(τ) = (R cos τ,R sin τ,0,0), ΘI = (1,0, . . .)

a perturbative expansion of the loop gives

(6)W [C1/2] = 〈0|W [C1/2]|0〉
( ∞∑

k=0

(2πR)k
1

Nk!
1

2k
:Tr

(
Z(0) + Z̄(0)

)k: + · · ·
)

,

4 It is also possible to consider the insertion of supersymmetric operators into the Wilson loop itself. We emphasize that is a different procedure from what we are
discussing here, where correlations of primary operators with the Wilson loop are the objects of most interest. Also, chiral operators of the type that we consider
figure promptly in the discussion of the BMN limit as well as some issues of integrability [25–29].
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where Z = (Φ1 + iΦ2) and the dots indicate quantum corrections as well as operators with derivatives of Z, Z̄ and containing
gauge fields. For the chiral primary operators

(7)OJ ≡ 1√
JλJ

:TrZ(0)J :

the weak coupling limit of ξJ [C1/2, λ] is the appropriate coefficient in Eq. (6),

(8)ξJ [C1/2;λ ∼ 0] = 1

N

1

2J J !
√

JλJ .

This expression should receive quantum corrections. The sum of all quantum corrections from planar ladder diagrams was computed
in Ref. [20]

(9)ξJ [C1/2;λ] = 1

N

1

2

√
λJ

IJ (
√

λ)

I1(
√

λ)
,

where IJ (x) is the J th modified Bessel function of the first kind. In the expression (9), as it must, the leading term in a small
λ expansion agrees with (8). The leading order planar diagrams which are left out of the sum over ladders was also computed
in Ref. [20] and were shown to cancel identically. It was then tempting to conjecture that these corrections vanish to all orders.
To support this conjecture, the extrapolation of Eq. (9) to large λ can be compared with the result of a computation of the same
coefficients using the AdS/CFT correspondence, originally done in Ref. [30],

(10)ξJ [C1/2;λ ∼ ∞] = 1

N

1

2

√
λJ .

This coincides with the large λ limit of the expression in Eq. (9). The coefficients ξJ [C1/2, λ] in (9), together with the result of
Ref. [17]

(11)
〈
W [C1/2]

〉 = 2√
λ

I1
(√

λ
)
,

yield an infinite family of interpolating functions which match both the strong and weak coupling limits computed in string and
gauge theory, respectively.

In the present Letter, we will examine the 1/4 BPS loop which has the trajectory

(12)C1/4: xμ(τ) = R(cos τ, sin τ,0,0), ΘI (τ ) = (sin θ0 cos τ, sin θ0 sin τ, cos θ0,0,0,0).

The main difference from the 1/2 BPS loop is that ΘI (τ) moves in a circle on an S2 ⊂ S5, rather than sitting at a point. Putting θ0
to zero recovers the 1/2 BPS loop in (5). The special case of this 1/4 BPS loop with θ0 = π/2 was originally discussed by Zarembo
[31].

To understand the supersymmetries of the loop with trajectory (12) we recall that the supersymmetry transformation of N = 4
Yang–Mills theory is generated by the spinor

(13)ε(x) = ε0 + γμxμε1.

Here, we have to consider both Poincaré supersymmetries, with constant spinor ε0 and conformal supersymmetries, with constant
spinor ε1. In order to be supersymmetries of the 1/4 BPS Wilson loop, it is straightforward to see that they have to satisfy the
equations [23]

(14)sin θ0
(
γ 1Γ 2 + γ 2Γ 1)ε0 = 0, sin θ0

(
γ 1Γ 2 + γ 2Γ 1)ε1 = 0,

(15)cos θ0ε0 = R
(−iγ 1 + sin θ0Γ

2)Γ 3γ 2ε1,

where the ten-dimensional gamma matrices are (γ i,Γ I ) with i = 1, . . . ,4 and I = 1, . . . ,6. Let us count the supersymmetries.
Each of the spinors ε0 and ε1 has 16 components. The conditions in (14) are half-rank and reduce the number of each of the spinors
by half. Then (15) relates the remaining components of ε1 to those of ε0 in a way which is compatible with (14). The remaining
independent components are eight—half of the original 16 components of ε0. This is 1/4 of the original 32 components of ε0
and ε1.

We will consider a chiral operator which has an arbitrary SO(6) orientation, beginning with

Tr
(
u · Φ(0)

)J
,

where u is a complex 6-vector, satisfying the constraint that u2 = 0. Being a scalar operator, conformal supersymmetries are
automatic. This operator has some Poincare supersymmetry if there exist some non-zero constant spinors ε0 which solve the
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equation

(16)u · Γ ε0 = 0.

There are solutions only when (u · Γ )2 = u2 = 0 which, as we have assumed, is the case. Then u · Γ is half-rank and there are
exactly eight independent non-zero solutions of Eq. (16).

Now we can ask the question as to whether the eight independent ε0 which solve (16) have anything in common with the eight
solutions of (14) and (15), i.e. are there spinors which solve both of them?

Before we answer this question, let us backtrack to the case of the 1/2 BPS loop geometry (9). There Eq. (14) is absent and the
spinors must solve (15) with θ0 = 0. This simply relates ε1 to ε0, eliminating half of the possible spinors. There are 16 independent
solutions of this equation—it is 1/2 BPS. Now, consider a chiral primary operator. Without loss of generality, we can consider the
operator Tr(Φ1 + iΦ2)

J . It is supersymmetric if ε0 satisfies the equation(
Γ 1 + iΓ 2)ε0 = 0.

The matrix Γ1 + iΓ2 has half-rank, so this requirement eliminates half of the supersymmetries generated by ε0. This leaves eight
supersymmetries which commute with both the 1/2 BPS Wilson loop and the 1/2 BPS chiral primary operator. This high degree
of residual joint supersymmetry is thought to be responsible for the fact that, apparently, only ladder diagrams contribute to the
asymptotic limit of their correlator.

Returning to the 1/4 BPS loop and chiral primary with general orientation, it is easy to see that there is a simultaneous solution
of (14)–(16) only when one of the following holds:

• u1 = u2 = 0. We can always do an SO(6) rotation which commutes with the loop operator and sets (u4, u5, u6) → (u4,0,0).
Then, there will be simultaneous solutions of (14)–(16) only when u3 = iu4 or when u3 = −iu4. In both of these cases, there
are four solutions, corresponding to 1/8 supersymmetry in common between the chiral primary and the Wilson loop. Up to a
constant, the chiral primary operator is Tr(Φ3 + iΦ4)

J or the complex conjugate Tr(Φ3 − iΦ4)
J .

• u3 = u4 = 0. There is a solution when u1 = ±iu2 and there is also 1/8 supersymmetry. The chiral primary is Tr(Φ1 + iΦ2)
J or

its complex conjugate. In this case, we show in Appendix C that the coefficient ξJ which is extracted from the long range part of
the correlator of this operator and the loop vanishes due to R-symmetry. Thus, for all J > 0, the coefficients of Tr(Φ1 + iΦ2)

J

or Tr(Φ1 − iΦ2)
J in the operator expansion of the 1/4 BPS loop are zero.

• u1 = ±iu2. There are two non-zero solutions when u3 = iu4 or when u3 = −iu4. This corresponds to 1/16 supersymmetry.
There are essentially four operators,

Tr
(
χ(Φ1 + iΦ2) + (Φ3 + iΦ4)

)J

plus others with substitutions of Φ1 − iΦ2 or Φ3 − iΦ4. In this case too, because of R-symmetry the contribution with any
non-zero power of (Φ1 ± iΦ2) will be zero. The coefficient ξJ [C1/4] for these operators is therefore the same as those for the
operator Tr(Φ3 ± iΦ4)

J .

Thus we see that the interesting quantity where there is some degree of supersymmetry common to both the loop operator and the
primary is

(17)ξJ [C1/4] = lim|x|→∞

(
4π2|x|2

2πR

)J 1√
JλJ

〈0|W [C1/4]Tr(Φ3(x) + iΦ4(x))J |0〉
〈0|W [C1/4]|0〉 .

It is these partially supersymmetric configurations which we expect to have some level of protection from quantum corrections.
Indeed, we shall find evidence for this. All other possibilities either vanish, are equivalent to (17) or have no supersymmetry at all.
The cases with no supersymmetry at all are apparently not protected.

We will present arguments that the sum of planar ladder diagrams contributing to the correlation function in (17) gives a contri-
bution which differs from the one for the 1/2 BPS loop quoted in Eq. (9) by the simple replacement λ → λ cos2 θ0, so that the total
result is

(18)ξJ [C1/4] = 1

N

1

2

√
λ cos2 θ0J

IJ (
√

λ cos2 θ0)

I1(
√

λ cos2 θ0)
.

To find this result using Feynman diagrams, we begin with the lowest order diagrams, depicted in Fig. 1. There, each occurrence of
the scalar Φ3 in the composite operator contracts with a scalar Φ3 in the Wilson loop. We consider only the planar diagrams. Each
scalar Φ3 from the Wilson loop carries a factor of cos θ0, leading to an overall factor of (cos θ0)

J . We are taking the convention
for Feynman rules where each line in the Feynman diagram results in a factor of λ, totaling λJ for the diagram in Fig. 1. With this
convention, the chiral primary operator has normalization λ−J/2 (see (7)). The net result is a factor of λJ/2 which combines with
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Fig. 1. The leading planar contribution to 〈W [C1/4]Tr(Φ3 + iΦ4)J 〉. There
are J lines connecting the chiral primary on the left with the circular Wilson
loop on the right.

Fig. 2. A ladder diagram of 〈W [C1/4]Tr(Φ3 + iΦ4)J 〉. The “rungs” represent
the combined gauge field and scalar propagator. For clarity, J has been set to 2.

Fig. 3. The one-loop radiative corrections to 〈W [C1/4]Tr(Φ3 + iΦ4)J 〉. Only an adjacent pair of the J scalar lines are shown.

the (cos θ0)
J to give a coupling constant dependence in the form (λ cos2 θ0)

J/2. This is identical to what one would have obtained
by taking the same diagram for the 1/2 BPS loop and simply replacing λ by λ cos2 θ0.

To compute the next orders, we must decorate the diagram in Fig. 1 with propagators. The simplest are ladder diagrams, see
Fig. 2, which go between two points on the periphery of the loop. They are described by summing the contribution of the vector and
the scalar field. In the Feynman gauge, the sum of scalar and vector propagators connecting two points on arcs of the same circle is
a constant:

∣∣ẋ(σ )
∣∣ΘI (σ )

〈
ΦI

(
x(σ )

)
ΦJ

(
x(τ)

)〉∣∣ẋ(τ )
∣∣ΘJ (τ) − ẋα(σ )

〈
Aα

(
x(τ)

)
Aβ

(
x(τ)

)〉
ẋβ(τ )

= |ẋ(σ )||ẋ(τ )|Θ(σ) · Θ(τ) − ẋ(σ ) · ẋ(τ )

4π2(x(σ ) − x(τ))2
= R2

8π2
cos2 θ0.

This is what makes ladder diagrams easy to sum. We note that this propagator is accompanied by a factor of λ, so the total λ and
θ0-dependence again comes in the combination λ cos2 θ0. Further, the only difference from the analogous quantity for the 1/2 BPS
loop is the factor cos2 θ0. Thus we see that the sum of ladders for this 1/4 BPS loop will be identical to that for the 1/2 BPS loop
with the replacement λ → λ cos2 θ0.

Finally, there are the diagrams that have not yet been included so far. The conjecture is that they vanish. The leading order are
depicted in Fig. 3. By a simple generalization of the argument obtained in Ref. [20] and explained in more detail in Ref. [26], they
can be shown to cancel identically. Assuming that this cancellation occurs to higher orders as well, the result for the summation of
all planar Feynman diagrams is summarized in the formula (18).

We now turn to the string theory dual of the correlator of the 1/4 BPS Wilson loop and the chiral primary operator. This will give
a strong coupling planar limit of the operator expansion coefficients. It is most efficient to extract the operator expansion coefficient
from the asymptotic form of the connected correlator of two Wilson loops, where the contributions of chiral primary intermediate
states can be easily identified. This was used to compute the same quantity for a 1/2 BPS loop in Ref. [30]. The string theory dual
of the Wilson loop operator is a fundamental string worldsheet which has as boundary the contour C and which itself sits at the
boundary of the space AdS5 × S5 [24]. The coupling constant of the string sigma model is α′/R2 = 1/

√
λ where R is the radius of

curvature of AdS5 × S5 and we have used its relation with the ’t Hooft coupling R4/α′2 = λ. In the limit of large λ, the worldsheet
sigma model is weakly coupled and can be solved semi-classically. The leading order is classical, it simply finds an extremal surface
with boundary C and which is compatible with other boundary conditions.

The connected loop–loop correlator has an extremal surface whose boundary is the two loops. When the loops have large
separation, this surface degenerates to two disc geometry worldsheets whose boundaries are each loop with an infinitesimal tube
connecting them, see figure Fig. 4. In the limit of large separation, this tube is described by the propagator of the lightest gravity
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Fig. 4. The string worldsheets of two widely separated Wilson loops exchange a supergravity mode dual to a chiral primary operator.

modes, which at large λ are 1/2 BPS supergravitons, the string theory duals of the chiral primary operators. The connection between
the graviton propagator and the worldsheet is through a vertex operator which must be identified and the connection point with the
vertex operator must be integrated over the worldsheet. The resulting amplitude is proportional to the square of the desired operator
expansion coefficient.

To begin, the first step is to identify the minimal surface in AdS5 × S5 whose boundary is the 1/4 BPS contour C1/4. This was
done in Ref. [23]. We will summarize it here in more convenient coordinates. We take the metric of AdS5 × S5

(19)ds2 = √
λ

(
dy2 + dr2

1 + r2
1 dφ2

1 + dr2
2 + r2

2 dφ2
2

y2
+ dθ2 + sin2 θ dφ2 + cos2 θ

(
dρ2 + sin2 ρ dφ̂2 + cos2 ρ dφ̃2)).

The string world-sheet is then embedded as follows,

y = R tanhσ, r1 = R

coshσ
, φ1 = τ, r2 = 0, φ2 = const,

(20)sin θ = 1

cosh(σ0 ± σ)
, φ = τ, ρ = π

2
, φ̂ = 0, φ̃ = const,

where σ ∈ [0,∞] and τ ∈ [0,2π] are the world-sheet coordinates. The contour C1/4 is the boundary of the worldsheet at σ = 0,
which in turn sits at y = 0, the boundary of AdS5 × S5. The parameter cos θ0 = 1

coshσ0
. The choice of ± sign in the embedding of

θ arises because there are two saddle points in the classical action corresponding to wrapping the north or south pole of the S5.
Of course the sign should be chosen to minimize the classical action, which corresponds to choosing +. The other saddle point is
unstable, and the string world-sheet will slip-off the unstable pole.

The supergravity modes that we are interested in are fluctuations of the RR 5-form as well as the spacetime metric. They are by
now very well known, and details can be found in Refs. [15,30,32–34]. The fluctuations are

(21)δgαβ =
[
−6J

5
gαβ + 4

J + 1
D(αDβ)

]
sJ (X)YJ (Ω), δgIK = 2kgIKsJ (X)YJ (Ω),

where α,β are AdS5 and I,K are S5 indices. The symbol X indicates coordinates on AdS5 and Ω coordinates on the S5. The
D(αDβ) represents the traceless symmetric double covariant derivative. The YJ (Ω) are the spherical harmonics on the five-sphere,
while sJ (X) have arbitrary profile and represent a scalar field propagating on AdS5 space with mass squared = J (J − 4), where
J labels the representation of SO(6) and must be an integer greater than or equal to 2. (This is the representation of SO(6) which
contains the chiral primary operators that we are interested in.)

The supergravity field dual to the operator Tr(u · Φ)J is obtained by choosing the combination of spherical harmonics with the
same quantum numbers and evaluating them on the worldsheet using (20) (see Appendix B) so that,

(22)YJ (θ,φ) =NJ (u)[u1 sin θ cosφ + u2 sin θ sinφ + u3 cos θ ]J .

The worldsheets will be connected by the propagator for the scalar supergravity mode sJ (X). The asymptotic form of this propa-
gator for large separation x is

(23)P(X, X̄) = 〈
sJ (X)sJ (X̄)

〉  ΛJ

(
1

x

)2J

yJ ȳJ ,

where ΛJ = 2J (J + 1)2/(16N2J ). The barred quantities are coordinates on the second Wilson loop worldsheet. Then, in the large
λ limit, the Wilson loop correlator is

(24)
〈0|W [C1/4, x]W ∗[C1/4,0]|0〉

|〈0|W [C1/4]|0〉|2 =
∫
Σ

∫
Σ̄

∂aX
M∂aXNδgMNP (X, X̄)δḡM̄N̄ ∂āX

M̄∂āXN̄ ,
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where M,N = 1, . . . ,10 and the δgMN are given in (21), except now we have removed the fluctuating parts, sJ (X) and replaced
them by the propagator P . The pullback of the fluctuations (21) to the worldsheet are found in Appendix A. Using them we have,

〈0|W [C1/4, x]W ∗[C1/4,0]|0〉
|〈0|W [C1/4]|0〉|2 = ΛJ

x2J

λ

16π2

[
2J

∫
dσ dτ y′2yJ−2YJ (θ,φ) − 2J

∫
dσ dτ

(
r ′2

1 + r2
1

)
yJ−2YJ (θ,φ)

(25)+ 2J

∫
dσ dτ

(
θ ′2 + sin2 θ

)
yJ YJ (θ,φ)

]2

.

Each of the terms inside the square on the right-hand side of the above expression has a common factor of

(26)

2π∫
0

dτ YJ (θ,φ) =NJ (u)

2π∫
0

dτ [u1 sin θ cos τ + u2 sin θ sin τ + u3 cos θ ]J .

From this expression we see that, consistent with our expectations using R-symmetry on the gauge theory side, for the at least
1/16 supersymmetric combination of loop and primary when u2 = ±iu1, the dependence on u1 and u2 integrates to zero. If
these parameters are chosen more arbitrarily, so that there is no supersymmetry at all, the loop depends on them. In that case the
contributions proportional to powers of u1 and u2 in the final result for the operator expansion coefficients do not follow the rule
that they are related to the 1/2 BPS loop ones by the replacement of λ by λ cos2 θ0. We attribute this to absence of supersymmetry.
From here, we will proceed with the supersymmetric case only by putting u1 = u2 = 0 and u3 = 1.

We will now compute the integrals in (25) with this assumption. We note that the embedding (20) has some nice properties. For
instance y′2 + r ′2

1 = r2
1 = y′ and also sin2 θ = θ ′2. Using these, we can express the integrals in (25) as follows,

(27)
2−J/2

RJ

∫
dσ y′2yJ−2 cosJ θ = 2−J/2

∞∫
0

dσ
(tanhσ)J−2

cosh4 σ
tanhJ (σ0 ± σ) = 2−J/2

1∫
0

dz
(
1 − z2)zJ−2

(±z + cos θ0

1 ± z cos θ0

)J

,

(28)
2−J/2

RJ

∫
dσ

(
r ′2

1 + r2
1

)
yJ−2 cosJ θ = 2−J/2

1∫
0

dz
(
1 + z2)zJ−2

(±z + cos θ0

1 ± z cos θ0

)J

,

(29)
2−J/2

RJ

∫
dσ

(
θ ′2 + sin2 θ

)
yJ cosJ θ = −21−J/2

−1∫
∓ cos θ0

dz

(±z + cos θ0

1 ± z cos θ0

)J

zJ .

Putting everything together,

〈0|W [C1/4, x]W ∗[C1/4,0]|0〉
|〈0|W [C1/4]|0〉|2 = 16J 2 ΛJ

2J

(
R

x

)2J
λ

4

[{ ∓ cos θ0∫
−1

dz −
1∫

0

dz

}(±z + cos θ0

1 ± z cos θ0

)J

zJ

]2

(30)= 16J 2 ΛJ

2J

(
R

x

)2J
λ

4

[−(±)J+1 cos θ0

J + 1

]2

= 1

4N2
Jλ cos2 θ0

(
R

x

)2J

,

which is just the result for the 1/2 BPS circle [30] with λ → λ cos2 θ0. Using the prescription [30] to obtain from the loop-to-loop
correlator the overlap with the chiral primary in question, we find ξJ [C1/4] =

√
Jλ cos2 θ0/2N . This is identical to the large λ limit

of Eq. (18). We have thus confirmed that the sum of planar ladder diagrams agrees with the prediction of AdS/CFT in the strong
coupling limit. The emergence of this structure on the supergravity side of the duality is non-trivial. The integrations over the AdS5
and S5 portions of the string worldsheet conspire in a complicated way in (30) to give the λ → cos2 θ0λ result.

It is instructive to consider this calculation where both saddle points of the classical action are kept in the path integral, as is
discussed in [23]. There it was noted that the semi-classical result for the expectation value of the Wilson loop is a sum of two terms;
one proportional to exp(

√
λ′ ) and the other to exp(−√

λ′ ), where λ′ = cos2 θ0λ. This was mirrored in the asymptotic expansion
[35] of the modified Bessel function of (11),

(31)I1
(√

λ′ ) = e
√

λ′√
2π

√
λ′

∞∑
k=0

( −1

2
√

λ′

)k
�(3/2 + k)

k!�(3/2 − k)
± i

e−√
λ′√

2π
√

λ′

∞∑
k=0

(
1

2
√

λ′

)k
�(3/2 + k)

k!�(3/2 − k)
,

where the sign of the i is ambiguous due to the Stokes’ Phenomenon [36]. The factor of i was associated with the fluctuation
determinant of the three tachyonic modes associated with the worldsheet slipping off the unstable pole of the five-sphere.

Due to the sign structure found in (30) before squaring, the analogous structure for the connected correlator of the primary
with the loop is a sum of a term proportional to exp(

√
λ′ ) and of another proportional to (−1)J+1 exp(−√

λ′ ). The sum of these
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two terms should then be normalized by the expectation value of the Wilson loop. If we employ the asymptotic expansions of the
modified Bessel functions in (9), we have

(32)
IJ (

√
λ′ )

I1(
√

λ′ )
=

e
√

λ′ ∑∞
k=0(

−1
2
√

λ′ )
k �(J+k+1/2)

k!�(J−k+1/2)
∓ i(−1)J e−√

λ′ ∑∞
k=0(

1
2
√

λ′ )
k �(J+k+1/2)

k!�(J−k+1/2)

e
√

λ′ ∑∞
k=0(

−1
2
√

λ′ )
k �(3/2+k)

k!�(3/2−k)
± ie−√

λ′ ∑∞
k=0(

1
2
√

λ′ )
k �(3/2+k)

k!�(3/2−k)

.

This clearly reflects the presence of two saddle points in the functional integrals in both the numerator and denominator.
We also note that the chiral primary has zero overlap with the supersymmetric Wilson loop (i.e. Wθ0=π/2). This is expected,

since two such Wilson loops should not interact with each other by supersymmetry.
There has been extensive work of late concerning Wilson loops whose SU(N) representations are of higher rank [4–8,10–13].

They have been associated with D-brane solutions analogous to giant gravitons. Explicit solutions are available for the 1/2 BPS
loop, and results have been matched to matrix model calculations. It would be very interesting to solve the DBI equations of motion
corresponding to the 1/4 BPS loop, and to repeat the calculations done here for that solution, as has been recently done for the
1/2 BPS case [15].

Appendix A. Metric fluctuations

Given (21) and (19), we must construct the traceless symmetric double covariant derivative,

(A.1)D(μDν) ≡ 1

2
(DμDν + DνDμ) − 1

5
gμνg

ρσ Dρσ .

The action of DμDν on a scalar field φ is,

(A.2)DμDνφ = ∂μ∂νφ − Γ λ
μν∂λφ.

The Christoffel symbols for the AdS geometry (19) are,

(A.3)Γ
ri
φiφi

= −ri, Γ
y
φiφi

= r2
i

y
, Γ

φi

φiri
= 1

ri
, Γ

φi

φiy
= − 1

y
, Γ

y
ri ri = 1

y
, Γ ri

yri
= − 1

y
, Γ

y
yy = − 1

y
,

where i = 1,2. The trace of DμDνφ is given by,

(A.4)gμνDμDν =
2∑

i=1

(
y2∂2

y + y2∂2
ri

+ y2

r2
i

∂2
φi

− 3y∂y + y2

ri
∂ri

)
φ.

Because of (23), we only keep those terms of D(μDν) which contain derivatives in y. These are,

(A.5)D(yDy) = 4

5
∂2
y + 8

5y
∂y, D(r1Dr1) = 1

r2
1

D(φ1Dφ1) = −1

5
∂2
y − 2

5y
∂y.

We now note that since the derivatives will be acting on yJ from the propagator, we may replace ∂2
y → J (J − 1)/y2 and y−1∂y →

J/y2. Therefore the metric fluctuations may be expressed as follows,

δgyy =
[
−6J

5
+ 4

J + 1

(
4

5
J (J − 1) + 8

5
J

)]
L2

y2
= 2J

L2

y2
,

(A.6)δgr1r1 = 1

r2
1

δgφ1φ1 =
[
−6J

5
− 4

J + 1

(
1

5
J (J − 1) + 2

5
J

)]
L2

y2
= −2J

L2

y2
.

Appendix B. Spherical harmonics

The five-sphere is embedded in R
6 in the following manner,

(B.1)

x1 = sin θ cosφ, x2 = sin θ sinφ,

x3 = cos θ sinρ cos φ̂, x4 = cos θ sinρ sin φ̂,

x5 = cos θ cosρ cos φ̃, x6 = cos θ cosρ sin φ̃,

and has the metric

(B.2)ds2
S5 = dθ2 + sin2 θ dφ2 + cos2 θ

(
dρ2 + sin2 ρ dφ̂2 + cos2 ρ dφ̃2).
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The embedding (20) takes ρ = π/2, φ̂ = 0, or x4 = x5 = x6 = 0. Note that ρ ∈ [0,π/2] while θ ∈ [0,π]. A general chiral primary
normalized as in (3) may be written as,

(B.3)
2J/2

√
λJ J

CI1···IJ TrΦI1 · · ·ΦIJ
,

where CI1...IJ is traceless symmetric and CI1...IJ C∗I1...IJ = 1. The corresponding spherical harmonic is given by YJ (θ,φ) =
CI1...IJ xI1 · · ·xIJ . A properly normalized (i.e. (3)) operator built on Tr(u · Φ)J will then correspond to

(B.4)YJ (θ,φ) =NJ (u)[u1 sin θ cosφ + u2 sin θ sinφ + u3 cos θ ]J
for some normalization NJ (u). If we choose u1 = u2 = 0 and u3 = ±iu4 = 1, i.e. the operator Tr(Φ3 ± iΦ4)

J /
√

λJ J , then
NJ (u) = 2−J/2.

Appendix C. R-symmetry

Let OJ = 1√
JλJ

Tr(Φ1 + iΦ2)
J and let U be a rotation in the x1–x2 plane. Then

(C.1)
〈
OJ (x)W [C1/4]

〉 = 〈
UOJ (x)W [C1/4]U†〉 = 〈

OJ (Ux)UW [C1/4]U†〉.
Examining C1/4 in (12), we see that the spatial rotation acting on W [C1/4] may be realized by a shift in the contour parameter τ ,
which can in turn by compensated by an R-symmetry rotation R in the Θ1–Θ2 plane, UW [C1/4]U† = RW [C1/4]R†. Then,

(C.2)
〈
OJ (x)W [C1/4]

〉 = 〈
ROJ (Ux)R†W [C1/4]

〉
.

The operator expansion coefficient depends on the leading asymptotic in large x which is a function of only the length of C1/4 and
x2,

(C.3)
〈
OJ (x)W [C1/4]

〉  (
2πR

4π2x2

)J

ξJ + · · · .

Performing the Θ1–Θ2 plane R-symmetry transformation on OJ multiplies it by a phase exp(iJφ) so that,

(C.4)
〈
ROJ (Ux)R†W [C1/4]

〉  eiJφ

(
2πR

4π2(Ux)2

)J

ξJ + · · · = eiJφ

(
2πR

4π2x2

)J

ξJ + · · · .

Using (C.2) and (C.3), we have eiJφξJ = ξJ , i.e. ξJ = 0.
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