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Abstract

Global supersymmetries of the S-matrices of N = 2, 4, 8 supersymmetric
Yang-Mills theories in three spacetime dimensions (without matter hypermul-
tiplets) are shown to be SU(1|1), SU(2|2) and SU(2|2)⊗SU(2|2) respectively.
These symmetries are not manifest in the off-shell Lagrangian formulations of
these theories. A direct map between these symmetries and their represen-
tations in terms of the Yang-Mills degrees of freedom and the corresponding
quantities in Chern-Simons-Matter theories with N ≥ 4 supersymmetry is also
obtained. Dimensional reduction of the on-shell observables of the Yang-Mills
theories to two spacetime dimensions is also discussed.
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1 Introduction and Summary

In this paper we continue with investigations of hidden symmetries of S-matrices of
three dimensional supersymmetric Yang-Mills (SYM) theories and their relation to the
corresponding quantities for supersymmetric Chern-Simons matter (SCS) theories.
In a previous publication [1], we showed that the S-matrices of SYM theories with
N ≥ 2 supersymmetry (without additional matter hypermultiplets) have additional
bosonic symmetries that are not manifest in their off-shell Lagrangian formulations.
In particular, the bosonic symmetries of the N ≥ 2 S-matrices was shown to be
SO(N ), while only a global SO(N − 1) R-symmetry is explicitly realized in the
Lagrangians. In this note we uncover the supersymmetric completion of the bosonic
symmetries of the S-matrices and find them to be SU(1|1), SU(2|2), and SU(2|2)⊗
SU(2|2) for N = 2, 4 and 8 SYM theories respectively.

A related class of gauge theories of much recent interest are SCS models with
N ≥ 4 supersymmetry. In particular the N = 6 ABJM model [6] and the N = 8
BLG theories [7] have been investigated in great detail in the recent literature focusing
on M2-branes. For instance, the S-matrix of the superconformal ABJM model has
been shown to have numerous fascinating hidden structures, including a potential
infinite dimensional Yangian symmetry [2, 8]. Since the SYM and SCS theories
are expected to be related by renormalization group flows (at least in the case of
maximal supersymmetry through the flow of the D2-brane theory to M2 ) one might
expect some aspects of the symmetries of the SCS S-matrices to be evident in on-
shell properties of the SYM theories as well. A puzzling aspect of the D2 to M2
flow is the lack of a direct off-shell connection between the symmetries and degrees
of freedom of the respective worldvolume theories1. For instance, the ABJM model
has four complex scalars and a SU(2|2) × g2 supersymmetry invariance, while the
N = 8 SYM theory on the other hand has a SO(7) R-symmetry relating the seven
real scalars of the theory. Part of what we do in this paper is show that the on-shell
supersymmetry algebras of the SYM and SCS theories can be mapped to one another.
We also provide a dictionary connecting the on-shell physical gauge invariant degrees
of freedom of these two classes of theories.

The organization of the paper and a summary of our results are as follows. Starting
with a particularly generic off-shell formulation of the N = 2, 4, 8 SYM theories in
three dimensions we review the arguments from [1] showing that the S-matrices for
these theories possess a SO(N ) symmetry. We also briefly comment upon the three
dimensional analog of the spinor-“helicity” formalism developed in [1] that allows this
symmetry enhancement to be manifest.

In the next sub-section we briefly review some salient aspects of the on-shell
supersymmetry symmetry algebra of SCS theories with N = 4, 6, and 8. In particular
we focus on the SU(2|2) structures that are naturally present as the symmetries of
the S-matrices of these theories. Much of our discussion on SCS theories is based on
the formalism introduced in [2].

1The M2-brane theory can be shown to be related to the D2-brane theory through a Higgs
mechanism [9].
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The following section contains the central results of this note where we present a
clear connection between the the degrees of freedom and the underlying supersymme-
try algebras of the SYM and SCS theories. In particular we show how to construct
the SO(N ) covariant “ρ” tensors – that fix both the off-shell Lagrangians as well as
the on-shell SUSY algebra of the SYM theories – from the single particle represen-
tation of the on-shell SUSY algebra of the SCS models. As a result we are able to
extend the results of [1] and uncover the full global supersymmetry algebras for the
SYM theories which are shown to be SU(1|1), SU(2|2), and SU(2|2) ⊗ SU(2|2) for
N = 2, 4, and 8 SYM theories respectively2. This is to be contrasted with the global
off-shell bosonic symmetries of these theories which are SO(N − 1). As noted in [1],
this symmetry enhancement is due to N − 1 extra U(1) generators that couple the
scalar degree of freedom arising from the on-shell gluon to the scalars transforming
under the R-symmetry generators. The N − 1 extra U(1) generators enhance the
bosonic symmetries to SO(N ) and the SU(1|1), SU(2|2), and SU(2|2)⊗SU(2|2) su-
peralgebras are the supersymmetric completion of the enhanced bosonic symmetries
of the S-matrices. As a consequence of this construction we are also able to relate
the degrees of freedom of the SYM and SCS theories; namely identify the degrees of
freedom which furnish a representation of the part of the superalgebra that is common
to both these theories. In the case of N = 4 supersymmetry we find the complex
combination of the real degrees of freedom of the SYM theory that carry a represen-
tation of the SU(2|2) superalgebra carried by the matter hypermultiplets of the SCS
theory. For N = 8 supersymmetry, the same construction is doubled, in a precise
sense outlined later. Furthermore, we also find the precise truncation, in terms of the
SYM supercharges, of the N = 8 superalgebra to N = 6 – the superalgebra of the
ABJM theory.

In the final section of the paper we show that the on-shell supersymmetry algebras
of the SYM theories considered in this paper survive a dimensional reduction to 1+1
dimensions. In particular we show how the dimensional reduction of the spinor-
“helicity” formalism allows one to eliminate the two dimensional gluon via gauge
transformations while turning the three-dimensional gluon into an on-shell pseudo-
scalar in two spacetime dimensions. We hope that this note will be useful in the
further analysis of the on-shell symmetries and potential integrable structures for D2
and D1-brane theories.

2 Invariant on and off shell formulations of D = 2+1

SYM and SCS theories

We begin with a unified off-shell presentation of theN = 2, 4, 8 SYM theories obtained
in [1]. The action for these theories can be written in the following compact notation

2For other recent applications of SU(2|2)-type symmetries to studies of lower dimensional gauge
theories see [10].
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(a is a gauge-group index)

S = −1

4

∫

F a
µνF

aµν − 1

2

∫

(Dµφ
i)a(Dµφi)a +

i

2

∫

λ̄aIγ
µDµλ

a
I

+
i

2

∫

fabcρiABλ̄
a
A(φ

i)bλcb −
1

4

∫

fabcfamn(φi)b(φj)c(φi)m(φj)n.

(1)

The capital indices A,B, I run from 1 · · ·N while the number of adjoint scalars (or
the range of the lower case indices, i, j) is N − 1. The global R symmetries of these
theories are obviously SO(N − 1).

While most of the terms in the action are the standard ones for supersymmetric
Yang-Mills theories in any number of dimensions, the ρ tensors appearing as the
Yukawa coupling are specific to three dimensions. Their explicit form depends on how
copies of three dimensional gamma matrices are embedded in the gamma matrices
of the higher dimensional minimally supersymmetric theories, of which the D = 3
theories can be thought of as dimensional reductions.

As shown in [1], the ρ tensors are key to understanding how the on-shell S-matrices
of these theories have an enhanced symmetry, namely SO(N ). The hidden SO(N )
symmetry can readily be glimpsed by the following observation. Combining the ρ
tensors that dictate the Yukawa couplings with the obvious SO(N ) invariant, namely,
the delta function δAB, we get a tensor that has natural transformation properties
under SO(N )

ρCAB = {ρ1AB = δAB, ρ
i
AB} → ρDACρ

E
BC + ρEACρ

D
BC = 2δDEδAB. (2)

For example, for N = 2 we have

ρCAB = {δAB, ǫAB}, (3)

i.e. the two SO(2) invariants. For N = 8, ρABC are the well known 8s,c,v symbols
relating the three eight dimensional representations of SO(8). As we shall see later
on, the ρ tensors also dictate the bosonic part of the on-shell symmetries of these
theories. A main result reported later in this paper is the full supersymmetry algebra
whose bosonic part – namely SO(N ) – is captured by the ρ tensors.

Before moving on to other issues we note that (1) is invariant under the following
off-shell supersymmetry transformations

δAa
µ = −2iλ̄AγµǫA,

δ(φi)a = −2iρiAB λ̄
a
AǫB,

δλaA = F a
µνγ

µνǫA + 2(Dµφ
i)aρiABγ

µǫB − fabcρiABρ
j
BC(φ

i)b(φj)cǫC .

(4)

Supersymmetry invariance requires that the ρ tensors satisfy the following identities3

ρiAB = −ρiBA,

ρiABρ
j
CB + ρ

j
ABρ

i
CB = 2δijδAC ,

ρiABρ
i
CD = δACδBD − δADδBC − ǫABCD,

(5)

3The signs in front of the epsilon tensors are sensitive to the ordering of the ρA’s. We have used
the conventions of section 3 below.
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for the case of N = 2, 4. In the case of maximal supersymmetry the last of the three
identities needs to be modified to

ρiABρ
i
CD = δACδBD − δADδBC − ǫÂB̂ĈD̂ + ǫÃB̃C̃D̃ − ǫÂB̂C̃D̃, (6)

where the hatted indices run from 1, . . . , 4 and the tilded indices from 5, . . . , 8. The
last term indicates ǫ3456, and is totally antisymmetric under permutations. Further
details and additional properties of the ρ tensors relevant to proving off-shell SUSY
invariance are provided in appendix A.

Focusing now on on-shell quantities4, it is convenient to introduce a three dimen-
sional polarization vector

ǫµ(p, k) =
〈p|γµ|k〉
〈kp〉 , pµǫ

µ(p, k) = kµǫ
µ(p, k) = 0, (7)

(in the notation of [1]) for the oscillator expansion of the gauge potential. p is the
physical momentum of the gluon while k is an auxiliary momentum whose choice is
tantamount to gauge fixing. After carrying out the oscillator expansions, the super-
symmetry algebra (4) translates into the following SO(N ) covariant transformations
for the on-shell fields

QA|aB〉 =
u

2
ρBAC |λC〉, QA|λB〉 = −u

2
ρCAB|aC〉. (8)

|a1〉 is the on-shell scalar obtained from the gluon, while |a2〉, . . . , |aN 〉 are the on-shell
versions of the real scalars present in the Lagrangian5. u is a real three dimensional
Majorana spinor, whose form in the conventions of [1] is

u(p) =
1√

p0 − p1

(

p2
p1 − p0

)

. (9)

Since the supersymmetry algebra above is manifestly SO(N ) covariant, the S-matrix
for these theories must necessarily be SO(N ) invariant for it to commute with the
on-shell supercharges. This statement was also illustrated explicitly at the level of
the four particle amplitudes in [1].

As is evident, the hidden enhanced bosonic symmetry of the SYM S-matrices are
encoded in the the ρ tensors, which also fix the Yukawa couplings of the corresponding
off-shell Lagrangians. In section 3 we shall construct these tensors from representa-
tions of the on-shell superalgebras relevant to SCS theories which will allow us to both
find the supersymmetric completion of the bosonic SO(N ) symmetries and relate the
superalgebras underlying the S-matrices of the SYM and SCS theories.

4For recent reviews of on-shell methods see [11].
5This symmetry can also be uncovered upon a linearization of the recently constructed gauge

invariant formalism for SYM theories. For a discussion on this matter, we refer to [12]; especially
the last section of this reference.
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2.1 Supersymmetric Chern-Simons-Matter theories

Before relating the symmetries of the S-matrices of SYM and SCS theories in the
next section, let us briefly review some details of Chern-Simons matter theories with
N ≥ 4 supersymmetry. In the case of N = 4 supersymmetry, one has two complex
scalars φa and two compensating fermionic degrees of freedom ψȧ transforming under
two different SU(2) groups (denoted by the dotted and undotted indices) [3]. Since
we shall be concerned only with color ordered amplitudes, we will not delve into the
possible gauge groups and the representations compatible withN ≥ 4 supersymmetry,
except to refer to [2–5]. One can add twisted matter hypermultiplets φ̃ȧ, ψ̃a which, in
general, can carry a different representation of the gauge group without losing N = 4
supersymmetry [4, 5]. However, when the twisted and untwisted hypermultiplets
carry the same representation, one has N = 5 supersymmetry. The special case of
the hypermultiplets being in the bifundamental representation of SU(N) corresponds
to the ABJM model with N = 6 superconformal invariance [6], while the particular
case of N = 2 produces the maximally supersymmetric N = 8 BLG theory [7]. In
the absence of twisted hypermultiplets, one has four supercharges6 Qαbċ which act
linearly on the on-shell fields as [2]

Qαbċ|φd〉 = ǫbduα|ψċ〉, Qαbċ|ψḋ〉 = ǫċḋuα|φb〉, (10)

where uα are solutions of the massless Dirac equation in three dimensions (9). The
on-shell supersymmetry algebra for the conformal N = 4 SCS theories is simply
SU(2|2)

{Qαbċ,Qβeḟ} = ǫbeǫċḟPαβ. (11)

In the case of N = 6 supersymmetry one has two additional supercharges Q̃±
α forming

a g2 algebra which relate the twisted and untwisted matter fields. In the case of
maximal supersymmetry one has two complete copies of SU(2|2) furnishing the eight
supercharges needed for the BLG theory. For a detailed exposition of the on-shell
symmetry algebra for a more general class of theories (which include potential mass-
deformations) we refer to [2], where a Lagrangian formulation of these gauge theories
can also be found.

In the case of the SCS theories, the on-shell symmetries are also reflected in the
off-shell Lagrangians, which is in contrast to the case of SYM theories [1]. In the
next section, we show that the underlying on-shell supersymmetry algebras of the
N = 4 and N = 8 SYM and SCS theories are the same. Furthermore, we obtain
the appropriate truncation of the N = 8 superalgebra of the SYM theories that
reproduces the N = 6 on-shell algebra of the ABJM models. In the process, we also
obtain a precise map between the on-shell gauge invariant degrees of freedom of these
two different classes of gauge theories.

6α is the three dimensional Lorentz index.

5



3 SU(2|2) structure for S-matrices

In this section we will show that the on-shell superalgebra (8) respected by the S-
matrices of the N = 4 (N = 8) SYM theories may be re-cast into the SU(2|2)
(SU(2|2) ⊗ SU(2|2)) supersymmetry algebras obeyed by the N = 4 (N = 8) SCS
theories considered in [2]. We will also show that the intermediate case, N = 6,
corresponds to removing two of the 8 SUSY generators of the N = 8 SYM theory.

The on-shell degrees of freedom of the N = 2, 4, 8 SYM theory consist of N real
bosons |aA〉 and an equal number of Majorana fermions |λC〉. The superalgebra is
then given by the action of the supercharges QB,α upon these on-shell states [1]

QB,α|aA〉 =
1

2
uα ρ

A
BC |λC〉, QB,α|λC〉 = −1

2
uα ρ

A
BC |aA〉, (12)

where the indices A,B,C = 1, . . . ,N and uα is a 2-spinor (α = 1, 2), while ρ1 = 1.
The ρI obey

ρI(ρJ)T + ρJ(ρI)T = 2δIJ1. (13)

As discussed in the previous section, the SCS theories considered in [2] have, for
the N = 4 theory, on-shell complex bosons |φb〉 and complex fermions |ψḃ〉, obeying
the algebra (10). In the case of N = 6 and N = 8 there are also twisted versions of
these states, denoted with a tilde. In these cases the states also carry an additional
label corresponding to representations of the g2 and g4 algebras for the N = 6 and
N = 8 cases respectively [2]. In [2] this additional label was denoted with a ± for
the N = 6 case,

|φb±〉, |φ̃ḃ±〉, |ψḃ±〉, |ψ̃b±〉, (14)

and by the addition of an extra SU(2) index (hatted for the untwisted states and
tilded for the twisted ones) for the N = 8 case

|φbĉ〉, |φ̃ḃc̃〉, |ψḃĉ〉, |ψ̃bc̃〉. (15)

It should be noted that the field content of the theory under consideration is obtained
by fixing a value for these extra indices. For example, in the N = 6 case choosing +
or − amounts to a choice of sign for the central charge in the algebra [2]. The N = 4
fields have no such extra indices, but it is convenient for us to decorate them as in
the N = 8 case, with a (in this case superfluous) extra index, so that (10) becomes

Qαbċ|φdê〉 = uαǫbd|ψċê〉, Qαbċ|ψḋê〉 = uαǫċḋ|φbê〉. (16)

The N = 8 case essentially amounts to a doubling of this algebra, and the addition
of new supercharges Q̃αb̃ĉ which relate twisted and untwisted states. This gives the
SU(2|2)⊗ SU(2|2) algebra

Qαbċ|φdê〉 = uαǫbd|ψċê〉, Qαbċ|φ̃ḋẽ〉 = uαǫċḋ|ψ̃bẽ〉,
Qαbċ|ψḋê〉 = uαǫċḋ|φbê〉, Qαbċ|ψ̃dẽ〉 = uαǫbd|φ̃ċẽ〉,
Q̃αb̃ĉ|φdê〉 = uαǫĉê|ψ̃db̃〉, Q̃αb̃ĉ|ψḋê〉 = −uαǫĉê|φ̃ḋb̃〉,
Q̃αb̃ĉ|ψ̃dẽ〉 = uαǫb̃ẽ|φdĉ〉, Q̃αb̃ĉ|φ̃ḋẽ〉 = −uαǫb̃ẽ|ψḋĉ〉.

(17)
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We now give an explicit map between the on-shell degrees of freedom of the N = 8
SCS and SYM theories which translates the SUSY algebras (12) and (17) into one
another; the cases with less supersymmetry then follow in a straightforward way. We
begin by breaking-up the SO(8) indices A, B, and C in (12) into two indices, so that
A = (Â, Ã) = (1, . . . , 4, 5, . . . , 8), etc.. We then take two copies of the the Pauli
matrices σi along with the unit matrix

σÂ = σÃ = (1, iσ1, iσ2, iσ3). (18)

Using the map7

Q = QÂ σÂ, Q̃ = QÃ σÃ, |φ〉 = |aÂ〉 σÂ, |φ̃〉 = |aÃ〉 σÃ,
|ψ〉 = |λÂ〉 σT

Â
ǫ, |ψ̃〉 = −|λÃ〉 ǫ σT

Ã
,

(19)

one finds that

ρÂ
B̂Ĉ

= −1

2
Tr

(

ǫ
[

σT

Ĉ

]−1
σT

B̂
ǫ σÂ

)

,

ρÂ
B̃C̃

= −1

2
Tr

(

ǫ σT
B̃

[

σT
C̃

]−1
ǫ σÂ

)

,

ρÃ
B̂C̃

=
1

2
Tr

(

[

σT
C̃

]−1
ǫ σB̂ ǫ σÃ

)

,

ρÃ
B̃Ĉ

= −1

2
Tr

(

σÃ ǫ σB̃ ǫ
[

σT

Ĉ

]−1
)

.

(20)

It is then straightforward to verify that ρ1 = 1 and that (5), (6), and (12) are obeyed.
The map is given more explicitly by

|a1〉 =
1

2
(|φ11〉+ |φ22〉), |a2〉 = − i

2
(|φ12〉+ |φ21〉),

|a3〉 =
1

2
(|φ12〉 − |φ21〉), |a4〉 = − i

2
(|φ11〉 − |φ22〉),

|a5〉 =
1

2
(|φ̃11〉+ |φ̃22〉), |a6〉 = − i

2
(|φ̃12〉+ |φ̃21〉),

|a7〉 =
1

2
(|φ̃12〉 − |φ̃21〉), |a8〉 = − i

2
(|φ̃11〉 − |φ̃22〉),

(21)

Q1 =
1

2
(Q11 +Q22), Q2 = − i

2
(Q12 +Q21),

Q3 =
1

2
(Q12 −Q21), Q4 = − i

2
(Q11 −Q22),

Q5 =
1

2
(Q̃11 + Q̃22), Q6 = − i

2
(Q̃12 + Q̃21),

Q7 =
1

2
(Q̃12 − Q̃21), Q8 = − i

2
(Q̃11 − Q̃22),

(22)

7We suppress the spinor index α on the supercharges while the SU(2) indices of the SCS fields
are understood to be carried by the Pauli matrices, the first index corresponding to the row. Fur-
thermore, ǫ ≡ iσ2 is understood to act on the Pauli matrices by usual matrix multiplication.
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|λ1〉 =
1

2
(|ψ12〉 − |ψ21〉), |λ2〉 =

i

2
(|ψ11〉 − |ψ22〉),

|λ3〉 =
1

2
(|ψ11〉+ |ψ22〉), |λ4〉 = − i

2
(|ψ12〉+ |ψ21〉),

|λ5〉 = −1

2
(|ψ̃12〉 − |ψ̃21〉), |λ6〉 =

i

2
(|ψ̃11〉 − |ψ̃22〉),

|λ7〉 = −1

2
(|ψ̃11〉+ |ψ̃22〉), |λ8〉 = − i

2
(|ψ̃12〉+ |ψ̃21〉).

(23)

The N = 4 case then follows simply by deleting the φ̃, ψ̃, and Q̃, or equivalently, by
ignoring the Ã, B̃, C̃ indices. The N = 2 case is a further truncation of this, where in
addition, the range of the Â, B̂, Ĉ indices is taken to be from 1 to 2, or equivalently,
where we take

Q11 → Q22, Q12 → Q21, |φ11〉 → |φ22〉, |φ12〉 → |φ21〉,
|ψ22〉 → −|ψ11〉, |ψ21〉 → −|ψ12〉.

(24)

Then the relations (16) reduce to a SU(1|1) algebra.
The N = 6 SCS theory has a superalgebra given by [2]

Qαbċ|φd±〉 = uαǫbd|ψċ±〉, Qαbċ|φ̃ḋ±〉 = uαǫċḋ|ψ̃b±〉,
Qαbċ|ψḋ±〉 = uαǫċḋ|φb±〉, Qαbċ|ψ̃d±〉 = uαǫbd|φ̃ċ±〉,
Q̃±

α |φb∓〉 = uα|ψ̃b∓〉, Q̃±
α |ψḃ∓〉 = −uα|φ̃ḃ∓〉,

Q̃∓
α |ψ̃b∓〉 = −uα|φb∓〉, Q̃∓

α |φ̃ḃ∓〉 = uα|ψḃ∓〉,

(25)

with all other actions of the supercharges upon the states producing zero. We make
the following map between the ± index on the scalars and fermions and the tilded
and hatted indices of (17)

+ → 1, − → 2, (26)

and then (25) are equivalent to (17) with

Q̃+ → Q̃21, Q̃− → −Q̃12, Q̃11 → 0, Q̃22 → 0, (27)

where the spinor index α has been suppressed. Therefore the restriction to N = 6 is
achieved by removing Q̃11 and Q̃22. In the SYM language we lose Q5 and Q8 while

Q̃+ = iQ6 −Q7, Q̃− = −iQ6 −Q7. (28)

The algebras mentioned in this section largely constrain the structure of the S-
matrices. In the case of four-particle amplitudes, the supersymmetry algebra con-
strains the S-matrix to one undetermined function of the coupling constant and the
kinematic Mandelstam variables. In the notation of [2], one can decompose the scat-
tering matrix S as S = I + iT , where S is the scattering operator. The SU(2|2)
symmetry for the the N = 4 SCS theory then allows one to parametrize the four-
particle amplitudes in terms of ten independent functions of the Mandelstam variables

8



A, . . . , L as

〈T |φαφβφγφδ〉 =
[

1

2
(A +B)ǫαδǫβγ +

1

2
(A− B)ǫαγǫβδ

]

δ3(
∑

i

pi),

〈T |ψα̇ψβ̇ψγ̇ψδ̇〉 =
[

1

2
(D + E)ǫα̇δ̇ǫβ̇γ̇ +

1

2
(D − E)ǫα̇γ̇ǫβ̇δ̇

]

δ3(
∑

i

pi),

〈T |φαψβ̇φγψδ̇〉 = −Gǫαγǫβ̇δ̇δ3(
∑

i

pi),

〈T |ψα̇φβψγ̇φδ〉 = −Lǫα̇γ̇ǫβδδ3(
∑

i

pi),

〈T |φαφβψγ̇ψδ̇〉 = −1

2
Cǫαβǫγ̇δ̇δ

3(
∑

i

pi),

〈T |φαψβ̇ψγ̇φδ〉 = −Hǫαδǫβ̇γ̇δ3(
∑

i

pi),

〈T |ψα̇ψβ̇φγφδ〉 = −1

2
Fǫȧβ̇ǫγδδ

3(
∑

i

pi),

〈T |ψα̇φβφγψδ̇〉 = −Kǫα̇δ̇ǫβγδ3(
∑

i

pi),

(29)

where we have suppressed the extra index corresponding to the gN−4 representation,
i.e. we have fixed the choice of + or − for the N = 6 case or fixed the hatted and
tilded indices to 1 or 2 in the N = 8 case. All the functions can be expressed in
terms of a single function (chosen to be A in [2]) using the constraining properties

of the algebra alone. For instance, D = −A 〈34〉
〈12〉 , G = +A 〈41〉

〈12〉 , etc. [2]. Similar

constraints for N = 5, 6, and 8 SCS theories were also obtained in [2]. On the other
hand, amplitudes for SYM theories with extended supersymmetry were constrained
in a similar fashion using a real basis for the scalar and fermion fields in [1]. The map
between the SYM and SCS on-shell degrees of freedom obtained earlier in this section
implies that these constraints are common to both families of theories, as long as the
underlying on-shell superalgebras can be mapped to each other, namely, in the cases
of N = 4, 6, and 8 supersymmetry.

4 Dimensional reduction to d = 2

In this final section we note that the three dimensional on-shell techniques can be
easily reduced to two spacetime dimensions to make the SO(N ) invariance of the
lower dimensional gauge theories manifest at the level of S matrices. We implement
dimensional reduction by compactifying the “1” direction. The real three dimensional
Majorana spinor (9) becomes

ũ(p) =
1√
p0

(

p2
−p0

)

=
√
p0

(

sgn(p)
−1

)

, (30)
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upon dimensional reduction. The sign refers to the two dimensional mass-shell con-
dition p2 = sgn(p)p0. Under the action of the two dimensional “gamma-five” (which
is γ1 in the three dimensional notation), γ1ũ = −sgn(p)ũ. Now, the D = 3 polariza-
tion vector (7) can be simplified by choosing the auxiliary momentum k judiciously
after reducing it to three dimensions. Choosing k2 = p0 and k0 = −p2 makes ǫ0
and ǫ2 vanish. Recalling that fixing k is tantamount to choosing a gauge, the above
statement is nothing but an illustration of the fact that the two dimensional gluon
can be gauge transformed away. Under the same gauge choice, ǫ1 = −sgn(p). Using
the dimensionally reduced versions of the three-dimensional quantities in the relation
δA1 = δφ1 = 1

2
(ǭIγ1λI), and employing the mode expansions given above, we get

QA|a1〉 =
ũ

2
|λA〉, (31)

in D = 2. The dimensional reductions of the other mode expansions are trivial, and
they yield the SO(N ) covariant algebra

QA|aB〉 =
ũ

2
ρBAC |λC〉, QA|λB〉 = − ũ

2
ρCAB|aC〉, (32)

in two dimensions as expected. This reduction makes the SO(N ) structure, and by
the analysis presented earlier in the paper, the SU(1|1), SU(2|2), and SU(2|2) ⊗
SU(2|2) symmetries of the S-matrices of the dimensional reductions of three dimen-
sional N = 2, 4, and 8 SYM theories to two spacetime dimensions manifest.
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A Off-shell supersymmetry via ρ tensors

In this section we provide further details of how supersymmetry invariance of the
action (1) depends on the specific properties of the ρ tensors (5)-(6). While most
of the cancelations necessary to see the supersymmetry invariance of the action are
obtained using the properties of the ρ tensors mentioned before, the cancelation of
the variation of the Yukawa term imposes some further constraints. The variation of
the Yukawa term produces

− i

2

∫

[ρiρ[kρl]]CDf
amnfapg(ǭDλ

n
C)(φ

k)p(φl)q(φi)m. (33)

The ρ tensors are multiplied in the expression above in the sense of matrix multipli-
cation, where for each value of i, ρi is an N × N matrix. For this term to cancel
against the variation of the φ4 term, we shall need to reduce the term cubic in the
ρ tensors to fewer factors of ρ. To see this in the case of N = 4 supersymmetry one
needs to utilize the fact that the tensors obey the SO(3) algebra

ρiρj = −ǫijkρk, (ρi)2 = −I. (34)

10



Using these identities, and carrying out the sum over the i, k, l indices in (33) produces
two terms, T1 and T2. T1 corresponds to the case where i = k or i = l

T1 = −2i

∫

fabcfamnρiCD(λ̄CǫD)(φ
j)c(φi)m(φj)n, (35)

and it cancels against the variation of the φ4 term. T2 corresponds to the case of
i 6= k 6= l

T2 = −i
∫

(λ̄CǫC)
n
[

famnfapl + fapnfalm + falnfamp
]

(φ1)p(φ2)l(φ3)m. (36)

The combination of structure constants in the square brackets vanishes due to the
Jacobi identity, hence

T2 = 0. (37)

To see how theN = 4 cancellation generalizes to the N = 8 case we note the following
properties. Let the indices i, j, and k be distinct. Then

ρij ≡ 1

2

(

ρiρj − ρjρi
)

= ρiρj = −ρjρi. (38)

Consider
ρij M = ρk, =⇒ M =

(

ρij
)−1

ρk. (39)

Since (ρi)2 = −1 (no sum over i), we see that (ρi)−1 = −ρi = (ρi)T . Therefore

M = −ρiρjρk. (40)

We would now like to prove that the first relation in (39) is cyclically invariant. So
we consider

ρkiM = ρkρi
(

−ρiρjρk
)

= ρkρjρk = −(ρk)2ρj = ρj, (41)

and we have thus proven cyclical invariance. We then find that T2 generalizes to

T2 = −i
∫

(λ̄A
(

ρiρjρk
)

AB
ǫB)

n
[

famnfapl + fapnfalm + falnfamp
]

(φi)p(φj)l(φk)m

(42)
which vanishes similarly; T1 is produced in the same way as for the N = 4 case.
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