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Approximating Vector Quantization by
Transformation and Scalar Quantization

Lei Yang, Pengwei Hao and Dapeng Wu

Abstract—Vector quantization provides better rate-
distortion performance over scalar quantization even for a
random vector with independent dimensions. However, the
design and implementation complexity of vector quantizers
is much higher than that of scalar quantizers. To reduce the
complexity while achieving performance close to optimal
vector quantization and better than scalar quantization,
we propose a new quantization scheme, which consists of
a transformation and scalar quantization. The transfor-
mation is to convert a two-axis representation to a tri-
axis representation; then scalar quantization is applied
to each of the three axes. The proposed quantizer is
asymptotically optimal/suboptimal for low/high rate quan-
tization, especially for the quantization with certain prime
number of quantization levels. The proposed quantizer
has O(N2) design complexity, while VQ has O(N !) de-
sign complexity, where N is the number of quantization
levels per dimension. The experimental results show that
it achieves average bit-rate saving of 0.4%-24.5% over
restricted/unrestricted polar quantizers and rectangular
quantizers for signals of circular and elliptical Gaussian
distributions and Laplace distributions. It holds potential
of improving the performance of existing image and video
coding schemes.

Index Terms—Scalar quantization, Vector quantization,
Hexagonal lattice, Lloyd-Max quantizer, Gaussian mixture
model (GMM), Polar quantization, Elliptical distribution.

I. INTRODUCTION

Quantization is a critical technique for analog-to-
digital conversion and signal compression [1]. Scalar
quantization is simple, fast and easily amenable to a
hardware implementation, while vector quantization [2]
in high dimension could achieve smaller mean square
error (MSE) and better Rate-Distortion (R-D) perfor-
mance, by jointly considering all the dimensions [3], but
at the cost of exponentially increasing quantizer design
time and more quantization computations, i.e. at the cost
of more codebook design and lookup time.

To reduce the cost, a lot of research has focused on
two-dimensional random variables, especially those of
circular Gaussian distributions, since circular distribu-
tions [4], [5] have a lot of elegant closed-form expres-
sions. The earliest work could be referred to Huang and
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Schultheiss’s method [6], which quantizes each dimen-
sion of random variables in Gaussian distributions with
separate one-dimensional Lloyd-Max quantizers [7]. It is
efficient and effective, but definitely could be improved.
Later, Zador [8] and Gersho [9] studied quantization
by using companders with a large number of quanti-
zation levels theoretically. They used a compressor to
transform the data into a uniform distribution, and then
applied the optimal quantizers for the uniform distri-
bution, and then transform the data with an expander.
But this scheme does not work well under a small
number of quantization levels. Another major method
for designing quantizers for circular distributions uses
polar coordinates, termed as polar quantization. Polar
quantization includes separable magnitude quantization
and phase quantization. Uniform polar quantization was
studied by Moo [10] with uniform magnitude and phase
quantization. The optimal ratio between the number of
magnitude quantization levels and the number of phase
quantization levels was studied by Pearlman [11] and
Bucklew et al. [12], [13], and an MMSE restricted
polar quantizer is implemented by using a uniform
quantizer for the phase angles and a scaled Lloyd-Max
quantizer of Rayleigh distribution for the magnitude. But
their MMSE scheme does not consider the center of
a circular distribution as a quantization level, thus, its
MSE performance is sometimes worse than rectangular
quantizers and other lattice quantizers, and it does not
work well for elliptical distributions neither. Wilson
[14] proposed a series of non-continuous quantization
lattices which provide almost the optimal performance
among the existing polar quantization. It is a kind of
unrestricted polar quantization, but without Dirichlet
boundaries. Peter et al. [15] improved Wilson’s scheme
by replacing arc boundaries with Dirichlet boundaries.
He showed the optimal circularly symmetric quantizers
for circular Gaussian distributions with a small number
of quantization levels.

Most of the previous work focuese on Gaussian distri-
butions, and provide numerical results only for Gaussian
distributions. Although Gaussian source is considered as
the “worst case” source for data compression, which
is instructive to construct a robust quantizer [16], the
quantizers for Gaussian distributions are far from the
optimal quantizers for other distributions. They did
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not consider the elliptical distributions neither, whose
optimal quantizers are obviously different from those
for circular distributions. Also, they did not provide a
unified framework for arbitrary distributions. Therefore,
the optimal quantizers for other distributions such as
Laplace distributions, elliptical Gaussian and Laplace
distributions need investigation under a unified frame-
work.

To address these problems, we propose a unified quan-
tization system to approach the optimal vector quantizers
by using transforms and scalar quantizers. The function
of transforms, especially unitary transforms and volume-
preserving scaling transforms, on signal entropy and
signal distortion is discussed. The optimal decorrelation
transform is illustrated which turns an arbitrary memory
source into a memoryless source in a mixture distribution
model. Then we focus on the scalar quantizer design for
memoryless circular and elliptical sources. The tri-axis
coordinate system is proposed to determine the quanti-
zation lattice, i.e. the positions of quantization levels,
inspired by the well-known optimal hexagonal lattice
for two-dimensional uniformly distributed signals [17].
It provides a unified framework for both circular and
elliptical distributions, and encompasses the polar quan-
tization as a special case. The proposed quantizer is
also a kind of adaptive elastic lattice quantizer. We will
present the simple design methodology, which utilize
the Lloyd-Max quantizers for the corresponding one-
dimensional distributions. The optimality of this scheme
is verified on elliptical/circular Gaussian and Laplace
distributions. The methodology description and exper-
iments are focused on the bivariate random variables,
and the extension to high dimensional random variables
is also discussed.

The advantages of our scheme include the following:

1) It provides an elegant quantization lattice for arbi-
trary number of quantization levels, especially for
prime numbers.

2) It almost always has smaller MSE than the other
quantizers.

3) It considers both memoryless and memory sources
of arbitrary distributions, which include circular
distributions, elliptical distributions and mixed dis-
tributions.

4) It is in a unified framework of a tri-axis coordinate
system.

5) It has small design and implementation complex-
ity.

The rest of the paper is organized as follows. Section II
presents the preliminaries of our proposed quantizer.
Section III describes the system architecture of trans-
form plus scalar quantization to approximate the optimal
vector quantizer. The preprocessing with transforms is
discussed in Section IV to decorrelate signals. In Sec-

tion V, we present a tri-axis coordinate system, and
the methodology to design the optimal scalar quantizer
for both circular and elliptical distributions in detail.
Experimental results are shown in Section VI. Finally,
Section VII concludes the paper.

II. PRELIMINARIES

A. n-dimensional MMSE Quantizer and Scaling Law

Usually, there are three tools to evaluate the perfor-
mance of a quantizer. Firstly, mean square error (MSE)
between input signal X and the reconstructed signal X̂ ,
where X, X̂ ∈ <n, is considered as following,

MSE = E[(X − X̂)2] (1)

Signal-to-Noise ratio is another evaluation tool.

SNR =
|Σ|

MSE
(2)

where Σ is the covariance matrix of X , and | · | is the
matrix determinant operator. The rate-distortion curve is
the third one.

Lloyd-Max quantizer [2], [7] is an MMSE quantizer.
For one-dimensional signals, let tk (k = 0, · · · , N)
denote boundary points of quantization intervals, and let
rk (k = 0, · · · , N − 1) denote quantization levels. Then
Lloyd-Max quantizer is characterized by:

{t∗k, r∗k} = arg min
{tk,rk}

MSE

= arg min
{tk,rk}

N−1∑
k=0

∫ tk+1

tk

(x− rk)
2fX(x)dx

(3)

where fX(x) is the probability density function (pdf)
of X , N is the number of quantization levels. From (3),
we have the centroid condition, and the nearest neighbor
condition:

t∗k =
r∗k−1 + r∗k

2
, k = 1, · · · , N − 1, (4)

and

r∗k =

∫ t∗k+1

t∗k
xp(x)dx∫ t∗k+1

t∗k
p(x)dx

, k = 0, · · · , N − 1, (5)

[t∗0, t
∗
N ] is the range of the input of quantizers.

The Lloyd-Max quantizer for one-dimensional Gaus-
sian distribution with zero mean and unit variance has
been well studied. Given the number of quantization
levels N , the Lloyd-Max quantizer for zero mean, unit
variance Gaussian is shown in the tables in [17]. Given
the Lloyd-Max quantizer for zero mean, unit variance
Gaussian, we can use the affine law in Proposition 1 to
obtain the Lloyd-Max quantizer for Gaussian distribution
with arbitrary mean µ and arbitrary variance σ2.
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Proposition 1: (Affine Law) For a random X with
zero mean, assume that its N -level Lloyd-Max quantizer
is specified by tk (k = 0, · · · , N) and rk (k =
0, · · · , N − 1). Then for random Y = Σ− 1

2X + µ, with
mean µ and covariance matrix Σ, where Σ = c · I ,
c > 0, its Lloyd-Max quantizer is specified by t̂k =
Σ− 1

2 tk + µ (k = 0, · · · , N) and r̂k = Σ− 1
2 rk + µ

(k = 0, · · · , N − 1).
Proof: For one-dimensional random variables, Σ =

σ−2, the Lloyd-Max quantizer is:

min
r
′
k,t

′
k

N∑
k=1

∫ t
′
k

t
′
k−1

(x− r
′

k)
2fX(x)dx (6)

with {tk}Nk=0 and {rk}Nk=1 as the solution.
For Y = σX + µ,

min
r
′′
k ,t

′′
k

N∑
k=1

∫ t
′′
k

t
′′
k−1

(y − r
′′

k )
2fY (y)dy

=

N∑
k=1

∫ t
′′
k −µ

σ

t
′′
k−1

−µ

σ

(σx+ µ− r
′′

k )
2fX(x)dx

=σ2
N∑

k=1

∫ t
′′
k −µ

σ

t
′′
k−1

−µ

σ

(x− r
′′

k − µ

σ
)2fX(x)dx

(7)

if and only if t
′′
k−1−µ

σ = tk and r
′′
k −µ
σ = rk, Eq. (7) is

minimal, i.e. {σtk + µ}Nk=0 and {σrk + µ}Nk=1 is the
solution for Eq. (7).

Similarly, it holds for n-dimensional random vari-
ables.

It indicates that for a random variable obtained from
another random variable by an affine transform, the
optimal quantizer could be obtained from the original
quantizer by the same affine transform. In the following,
we focus our investigation on random variables with zero
means and diagonal covariance matrices.

B. Circular and Elliptical Distributions

The source of a circular distribution is a memory-
less source. Each dimension of data is of exactly the
same one-dimensional distribution. For example, a two-
dimensional circular Gaussian distribution with unitary
variance is shown as following:

f(x1, x2) =
1

2π
e−

x2
1+x2

2
2 (8)

It could also be represented in polar coordinate system
as following:

f(r, φ) =
1

2π
re−

r2

2 (9)

That is why Lloyd-Max quantizer for Rayleigh distri-
bution is preferred to quantize signal magnitudes in
restricted polar quantization.

The source of an elliptical distribution could be mem-
oryless source with erect principal axes, and memory
source with skewed principal axes. Memory source could
be decorrelated with unitary transforms into memoryless
source whose component in each dimension is of the
same distribution but with possible different variances.
The memoryless elliptical Gaussian source could be
represented as follows:

f(x1, x2) =
1

2πσ1σ2
e
− (x1−µ1)2

2σ2
1 · e

− (x2−µ2)2

2σ2
2 (10)

Uniform distribution is both an ordinary circular dis-
tribution and an ordinary elliptical distribution.

C. Ideal Uniform Distribution and Optimal Two-
dimensional Hexagonal Lattice

Vector quantization aims to minimize MSE, but its
computational complexity is really high and increases
exponentially with the number of quantization levels.
For uniform distribution, we generally accept that the
optimal VQs are regular voxels in the source domain.
Whereas, due to the finite domain constrain, regular vox-
els cannot just pad the space by exactly integer number
of voxels. Therefore, the VQs of uniform distributions
found by various algorithms compose of irregular voxels,
which are degenerated from the regular ones. We build
our theorem on the infinite domain, i.e. infinite dynamic
range, to avoid boundary dilemma. Thus, we define ideal
uniform distribution as follows.

Definition 1: Ideal Uniform Distribution
Given domain V of distribution whose volume is

Ω(V ), the uniform distribution is

f(x) =


1

Ω(V )
, x ∈ V,

0, o/w.

(11)

When Ω(V ) → ∞, then f(x) is an ideal uniform
distribution. There is no boundary constraint for optimal
VQ designing in ideal uniform distributions.

Lemma 1: The optimal VQ for the two-dimensional
ideal uniform distribution is regular honeycomb as
shown in Fig. 5.

III. SYSTEM ARCHITECTURE

A. Quantization for Compression

The general coding system usually includes transform,
quantization and entropy coding as shown in Fig. 1.
The optimal transform could simplify vector quantiza-
tion scheme into scalar quantization, and even replace
variable-length entropy coding in the coding system with
fixed length coding. Rate-Distortion code is an optimal
code proposed by Shannon [3]. It is an optimal vector
code when block length n → ∞. Only is known its
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existence, but not its design in a general case. Vector
quantization has the ability to approach Rate-Distortion
bound when number of quantization levels N → ∞,
but is overwhelmed by the exponentially increasing
complexity. Therefore, vector quantization is desired to
be replaced by transform followed by scalar quantization
with the same Rate-Distortion performance but much
less design and implementation complexity, as adopted
by a general transform compression system shown in
Fig. 1. Therefore, an optimal transform plus an optimal
scalar quantizer gives us a new promising guideline to
achieve Rate-Distortion bound as presented in the next
Sections.

B. Theorem and System Framework

Therefore, we give a theorem as follows:
Theorem 1: The MMSE vector quantization could be

achieved by transformation followed by scalar quantiza-
tion.

It will be proved in Section V for uniform distribu-
tions.

Fig. 2. System architecture to implement VQ with a transform plus
scalar quantization.

Following Theorem 1, we propose a system architec-
ture as shown in Fig. 2. A vector quantizer is imple-
mented by a transformation and a scalar quantizer. The
transformation we focus on can be a linear transform
with high decorrelation ability. We will discuss the uni-
tary transforms, volume-preserving scaling transforms
and the optimal decorrelation transforms in Section IV.
The scalar quantizer is implemented in the tri-axis
coordinate system which will be described in detail in
Section V. The transformation plus scalar quantization
has the advantage of possible small complexity and good
R-D performance. The system still has issue of tradeoff
between complexity (C), rate (R) and distortion (D).
Therefore, the system design should comprise the C-R-
D theory. Best R-D performance with least complexity
is desired.

The proposed system is flexible, in which the com-
panding technique could also be plugged in as shown in
Fig. 3. As we will show later, the companding technique

is asymptotically optimal, but may not work well in low
rate situation. But our method with the tri-axis coordinate
system works almost universally.

IV. PREPROCESSING WITH TRANSFORMS

Transform is helpful for quantization. Any mapping
is a transform. Nonlinear transforms introduce unde-
sired nonlinear error after quantization. Therefore, linear
transform is considered in this section. To preserve
signal energy constant, linear transforms, such as unitary
transforms and volume-preserving scaling transforms,
represented by matrices with unitary determinant, are
focused on.

A. Unitary Transforms

Unitary Transforms are rotations or rotations with re-
flection in Euclidean space, aiming at high decorrelation
ability.

We know that signal-dependent Karhunen-Loeve
transform (KLT) is optimal in the sense of the highest
decorrelation ability for finite block length signals. While
DCT is a fixed transform and a good substitution of KLT.

Lemma 2: Mean Square Error is invariant under uni-
tary transforms.

Proof: A unitary transform Q satisfies Q∗Q =
QQ∗ = I . For vectors x and y, the Euclidean distance
between them is ‖x−y‖. After transform by Q, the Eu-
clidean distance between Qx and Qy is ‖Qx−Qy‖2 =
‖Q·(x−y)‖2 = (x−y)∗·Q∗·Q·(x−y) = ‖x−y‖2. Thus,
Mean Square Error is invariant under unitary transforms.

Lemma 3: The MMSE vector quantizers of random
vectors after unitary transformation are the MMSE vec-
tor quantizers of the random vectors after the same
unitary transformation.

Lemma 3 is easy to obtain from Lemma 2, and is a
rotation-invariant property of MMSE vector quantizers.

Lemma 4: The sum of entropy of each component of
random vector X will decrease after decorrelation by
unitary transforms.

Proof: Denote the components of random vector
X as (X1, X2) and a unitary transform as U . After
transform, the random vector becomes X ′ = (X ′

1, X
′
2).

Neglect the precision loss brought by the computer,
U is a one-to-one mapping. Therefore, H(X1, X2) =
H(X ′

1, X
′
2). If X ′

1 and X ′
2 are independent, then

H(X ′
1) + H(X ′

2) = H(X ′
1, X

′
2) = H(X1, X2) ≤

H(X1) +H(X2)

B. Scaling Transforms

From Affine Law in Proposition 1, we know that the
MMSE quantizers will undergo the similar expansion or
shrinkage as input signals, whose dimensions are scaled
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by a same factor. This kind of transforms could be
represented as the following matrix:

c ·


a 0 · · · 0
0 a · · · 0
...

. . .
...

0 · · · 0 a


It will increase or decrease signal volume uniformly.

Thus, we steer to Volume-preserving scaling trans-
form.

Definition 2: Volume-preserving scaling transform
could be represented by a diagonal matrix with unitary
determinant, i.e., the product of all the diagonal elements
of the diagonal matrix is 1 as following:

a1 0 · · · 0
0 a2 · · · 0
...

. . .
...

0 · · · 0 an


where

∏n
i=1 ai = 1.

Usually the MSE and energy of signals change
after volume-preserving scaling transformation, since∑n

i=1 x
2
i 6=

∑n
i=1 a

2
ix

2
i . The rate-distortion theory re-

quires the MSE uniformly distributed among each com-
ponent of the random vector, if the MSE does not exceed
the variance of that component. Therefore, the MMSE
vector quantizer for an elliptical distribution could not be
obtained from the MMSE vector quantizer for a circular
distribution by a simple scaling. That is why the existing
works seldom consider elliptical distributions, or inde-
pendent consider the circular and elliptical distributions.
But they are unified in our system.

Lemma 5: The sum of the entropy of every compo-
nent of a random vector in Gaussian or Laplace dis-
tribution keeps constant after volume-preserving scaling
transform.

Proof: Denote the variance of every compo-
nent of an n-dimensional Gaussian vector X =
(X1, X2, · · · , Xn) as (σ2

1 , σ
2
2 , · · · , σ2

n). After volume-
preserving scaling transforms, the resulted Gaussian
vector X ′ has variances of (σ2

1
′
, σ2

2
′
, · · · , σ2

n
′
) for

each component and
∏n

i=1 σ
2
i =

∏n
i=1 σ

2
i
′. From

information theory, we know that entropy of Gaus-
sian is: H(Xi) = 1

2 ln(2πeσ
2
i ), i = 1, · · · , n.

Therefore,
∑n

i=1 H(Xi) =
∑n

i=1
1
2 ln(2πeσ

2
i ) =

1
2 ln((2πe)

n
∏n

i=1 σ
2
i ) = 1

2 ln((2πe)
n
∏n

i=1 σ
2
i
′
) =∑n

i=1 H(X ′
i)

Similarly, it holds for random vectors of Laplace
distribution.

C. Transforms with Unitary Determinant

A transform matrix with unitary determinant is
a volume-preserving transform. A general volume-

preserving transform may change both sum of subband
entropy and MSE.

A matrix A has a QR factorization: A = QR, where Q
is an unitary matrix and R is an upper triangular matrix.
The diagonal elements of R could be extracted to make
a diagonal matrix D: R = UD, where U is unit upper
triangular, and D is diagonal. Then for A with unitary
diterminant, we can have a factorization: A = QUD,
where Q is unitary or rotation, U is unit upper trian-
gular or shearing, and D is volume-preserving scaling
transform. Besides that unitary transforms change sum
of subband entropy and that volume-preserving scaling
transforms change MSE, shearing will change both sum
of subband entropy and MSE.

D. Optimal Transform for Arbitrary Distributions

Since the volume-preserving scaling transforms per-
turb the MSE of each component, we only consider
unitary transforms before quantization for MMSE quan-
tizers.

If an arbitrary distribution is considered, the most
powerful decorrelation might not be achieved by a simple
unitary transform, since unitary transforms generally can
not decrease both the intra-component/block correlation
and the inter-component/block correlation.

An arbitrary distribution can be approximated by a
Gaussian Mixture Model (GMM) found by expectation
maximization (EM) algorithm. The pdf of a GMM
random variable X is given below:

fX(x) =

Ng∑
i=1

pi · gi(x) (12)

where Ng is the number of Gaussian components in
the GMM; gi(x) is the Gaussian pdf for component
i (i = 1, · · · , Ng) shown as an ellipse in Fig. 4; pi
denotes the probability of component i (i = 1, · · · , Ng);
and

∑Ng

i=1 pi = 1 . Assume the data come from the
neighbor pixel pairs in a gray image. Then Gaussian
components of data almost fall along the diagonal due to
the correlation between pixel pairs. For decorrelation, the
first step is for intra-component decorrelation, the second
step is for inter-component decorrelation. The two steps
could change order. Later the scalar quantizers could be
applied to each decorrelated Gaussian component.

V. OPTIMAL SCALAR QUANTIZERS IN TRI-AXIS
COORDINATE SYSTEM

After transformation, we can obtain random vectors
with independent components. For Theorem 1, one-
dimensional vector quantization is scalar quantization.
No transform is needed. It is a trivial case. For two-
dimensional vector quantization, we will prove this the-
orem for uniform distributions in a tri-axis coordinate
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system. For high dimensional vector quantization, multi-
axis coordinate system is needed.

A. Tri-axis Coordinate System

Fig. 5. Two dimensional tri-axis coordinate system.

Definition 3: The tri-axis coordinate system in a two-
dimensional space has three axes X , Y and Z, and the
angles are 120◦ between the three axes X , Y and Z.

The tri-axis coordinate system is shown in Fig. 5.
Every point in the two-dimensional space can be rep-
resented as a point in this tri-axis coordinate system.

B. Orthonormal Property of Tri-Axis Coordinate System

Proposition 2: Any point in the tri-axis coordinate
system (x, y, z) satisfies x+ y + z = 0.

Proof: Unit vectors along three axes X , Y and
Z could be ~X = (1, 0)T , ~Y = (−1/2,

√
3/2)T and

~Z = (−1/2,−
√
3/2)T . A point P = (u, v) in Cartesian

coordinate system could be represented by (x, y, z) in
tri-axis coordinate system with x = P · ~X , y = P · ~Y
and z = P · ~Z. Then x+y+z = P · ~X+P · ~Y +P · ~Z =
P · ( ~X + ~Y + ~Z) = P · 0 = 0.

The big advantage of the tri-axis system is that the
coordinate lattice is hexagonal, which is what we need
for optimal vector quantization, while bi-axis systems
can only give quadrilateral coordinate lattices. Linear
transforms preserve linearity and parallelism, therefore,
if a linear transform is applied, the coordinate lattice
is still hexagonal and with three pairs of parallel edges
although the angles are not neccessary 120◦. The optimal
vector quantizer for a uniform distribution is perfect
represented by the tri-axis coordinate system as shown
in Proposition 3, but not by polar coordinate system.

The coordinates (x, y, z) are highly correlajted. For
some symmetrical distributions, two axes or one axis
is sufficient. For example, the optimal two-dimensional
vector quantization for uniform distributions could be
determined by two axes X , Y of 120◦ in spanning a
hexagonal lattice. The optimal two-dimensional vector
quantization for circular distributions also needs two
axes, one of which determines the magnitude quanti-
zation, another one determines the phase quantization.
It is rotation-invariant for circular distributions, but not
for elliptical distributions. We will show them in next
subsections.

C. Tri-Axis Coordinate System for Uniform Distribution

Fig. 6. Two dimensional optimal uniform vector quantizer.

It is well known that the optimal vector quantizer
for uniform distributions in a two-dimensional space is
regular honeycomb [17], which is from the geometry of
numbers, also from discrete geometry in the Euclidean
space. We will implement it with scalar quantization in
tri-axis system as shown in Fig. 6.

Proposition 3: Hexagonal lattice in tri-axis system is
still Rate-Distortion optimal for quantization of uniform
distributions.

Proof:
1) Vector quantization levels are the centroids of the

hexagons. The centroid of each hexagon of the
optimal quantizer could be represented by a fixed
length code. R = log2 N , where N is the number
of quantization levels.

2) Every point in the two-dimensional space could
be represented by the vector ~r = c1~r1 + c2~r2,
as shown in Fig. 6, where ~r1 and ~r2 are the
basis vectors of VQ. c1 and c2 are integers and
uniformly distributed if the centroid is uniformly
distributed.
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3) Scalar quantizers compose of two independent
scalar quantizers along two axes ~r ′

1 and ~r ′
2 . Every

point could be represented by two indices in the
codebook. The indices are obtained by projecting
the point to the nearest code on the axes. For
example, a point representation is ~r = x~r ′

1 + y~r ′
2

which is quantized to ~r = xm~r ′
1 + yn~r

′
2 .

4) Let ~r1 = ~r ′
1 and ~r2 = ~r ′

2 , then we have c1 = xm

and c2 = ym. The sum of square error of SQ is
the inner product of (x−xm)~r ′

1 and (y− ym)~r ′
2 ,

and the sum of square error of VQ is the inner
products of (x− c1)~r1 and (y − c2)~r2. Thus, VQ
and SQ have the same distortion.

5) For uniform distribution, only one codebook is
needed for two axes ~r ′

1 and ~r ′
2 . The indices could

be coded with a fixed length. Ri = log2 Ni, where
Ni is the number of quantization levels along axis
i (i = 1, 2).

6) N1 × N2 = N asymptotically, i.e. R1 + R2 =
log2 N1 + log2 N2 = log2 N = R, VQ and SQ
have the same rate.

7) Therefore, SQ and VQ are with the same R-D
performance.

Therefore, the optimal MMSE vector quantization could
be achieved by a transform (an identical transform)
followed by a uniform scalar quantizer for a two-
dimensional ideal uniform distribution.

In this way, SQ and VQ have the same R-D per-
formance, while the codebook size of SQ is around
the square root of that of VQ. Because of the reduced
complexity provided by SQ, we try to use SQ to replace
VQ in this paper. Another point needed to mention is that
the numbers of quantization levels for hexagon lattice
are prime numbers 1, 7, 19, 37, · · · , growing along circles
with larger and larger radius, which could be found in
Fig. 5. Therefore, it is easy to design quantizers of prime
number of quantization levels with hexagonal lattices,
while it is difficult and inferior with rectangular lattices
for circular distributions.

D. Tri-Axis Coordinate System for Circular and Ellipti-
cal Distributions

How about the distribution is not uniform, what will
the optimal quantization lattices be? This is a problem
of finding the transform from a non-uniform distribution
to a uniform distribution.

1) Elastic Quantization Lattices for Circular and
Elliptical Distributions: From the optimal hexagonal
lattice for a uniform distribution, we state that the
optimal vector quantizer for a circular distribution forms
an expanded hexagonal lattice, as shown in Fig. 7.
The expansion ratio between the optimal lattice for
a two-dimensional circular distribution and that of a
two-dimensional uniform distribution along the radius

Fig. 7. Circularly expanded hexagon lattice for two-dimensional
circular Gaussian distribution.

(a) Horizontal elliptical hexagonal lat-
tice

(b) Vertical elliptical hexago-
nal lattice

Fig. 8. Elliptically expanded hexagon lattice for two-dimensional
Elliptical Gaussian distribution.

direction may approximately follow the expansion ratio
between the Lloyd-Max quantizer for the correspond-
ing one-dimensional distribution and that of a one-
dimensional uniform distribution, i.e. the Lloyd-Max
quantizer for the corresponding one-dimensional distri-
bution.

2) Design Methodology: We firstly focus on the posi-
tions of quantization levels of a two-dimensional vector
quantizer. The lattice patterns of the proposed quantizer
are determined beforehand, as shown in Fig. 10 and
Fig. 11. The quantization levels approximately fall on the
centroids of the lattice, which are uniformly distributed
in each annulus. We restrict them to be in the same circle
for simplicity, and each quantization region of lattice
do not need to be hexagonal. In different annuluses,
quantization levels are staggered arranged similar to
those of the rotated polar quantization [15]. The optimal
distance between the quantization levels and the origin
for the magnitude quantization is determined by weight-
ing the Lloyd-Max quantizer of the corresponding one-
dimensional distribution with the unitary-variance. For



8

more precise locations of MMSE magnitude quantiza-
tion levels, they are further searched outwards in radial
directions for MMSE.

To be specific, for a two-dimensional circular distribu-
tion, its pdf could be separately represented in the polar
coordinate system as f(r, θ) = f1(r) · f2(θ), while it is
not for elliptical distributions. For an arbitrary elliptical
distribution, the data could be transformed by unitary
transforms into a distribution whose principal axes are
parallel to the coordinate systems, and then shifted to the
origin. After such transformation, the equal-probability
contours of distributions could be uniformly represented
by the following equation in Cartesian coordinate sys-
tem:

n∑
i=1

x2
i

b2i
= 1 (13)

b1 = b2 = · · · = bn = b for circular distributions; bis are
not all equal for elliptical distributions. The weighting
effect from b1 and b2 for elliptical distributions is im-
portant. Because if the quantizers of circular distributions
is used for elliptical distributions, the resultant MSE per
each dimension has ratio of b21

b22
. Whereas, from Shannon

Rate-Distortion theory (i.e. reverse water filing), we
know that the if the MSE is less than the variance
of each component, bit-rate should be allocated such
that the MSE per dimension is nearly equal. Therefore,
we should use b1 and b2 to weight quantization levels
towards this for elliptical distributions.

The magnitude quantization is non-uniform. For both
circular and elliptical distributions, the two-dimensional
quantization levels fall on each circle or oval could be
represented by the coordinates (c · b1 · cos θ, c · b2 · sin θ)
shown as stars in Fig. 9. c increases non-uniformly in
radial directions. c could be determined by searching out-
ward starting from Lloyd-Max quantization for Gaussian
distribution in radial directions.

The uniform phase quantization is optimal for circular
distributions, but may not for elliptical distributions.
We take uniform phase quantization for both kinds
of distributions, since the optimal phase quantization
for elliptical distributions is a little perturbation from
the uniform phase quantization. We will show its sub-
optimality for elliptical distribution in experiments. As
shown in Fig. 10, the number of quantization levels in
each annulus is 1, 6, 12, 18, similar to that of the regular
hexagonal lattice. Within each magnitude annulus, the k
phase regions all have equal size, whose boundaries are
represented as follows:

(j − 1)
2π

k
≤ θ < j

2π

k
(14)

where j = 1, 2, · · · , k.
The boundaries of quantization intervals are obtained

by the nearest neighborhood scheme based on the fixed

Fig. 9. Tri-axis frame for a general two-dimensional elliptical
distribution.

quantization levels as shown in Eq. (4). The resultant
quantization regions are not necessarily hexagonal. The
optimal VQ for any distributions, including uniform dis-
tributions, in finite regions is deformed from hexagonal
lattices in this way.

3) The Number of Quantization Levels in Each An-
nulus: How many quantization levels should we assign
to each annulus? Previously, for the restricted polar
quantization [11], quantization levels N is factorized into
N = Nθ · Nr, where Nθ is the number of quantiza-
tion levels in each annulus, and Nr is the number of
annuluses. Although the optimal ratio between Nθ and
Nr is studied, some numbers of N can not be perfectly
factorized, not to mention a prime number. This difficulty
also lies in the unrestricted polar quantization [14]. The
non-continuity of quantization patterns exists in all the
previous works. It is also an imperfection in our schemes.
We have two schemes to arrange magnitude quantization
levels vs. phase quantization levels. Our quantizer design
and optimization methodology is much simpler than that
of the unrestricted polar quantization.

The first scheme allows freedom in the number of
phases assigned at each magnitude level. The optimal
patterns are derived from experiments, which are coin-
cident with Wilson’s scheme [14] but with better perfor-
mance and Dirichlet boundaries, as shown in Fig. 12.

The second one is the progressive quantization scheme
[18] as shown in Fig. 13. The number of annuluses
L increases with the number of quantization levels
N = 1, 7, 19, · · · , 1 + 6 · (1 + 2 + 3 + · · · ). Define set
NL = {1, 7, 19, · · · , 1+3l(l+1)} and NL(l) is the l-th
element in set NL. That is the number of annuluses L
is determined by:

L =

{
inf{l : N − 3l ≤ NL(l)}, N ≤ 4

inf{l : N + 7− 6l ≤ NL(l)}, o/w
(15)

where inf is the infimum. Therefore, the quantizer
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could be implemented progressively with the increase
of N . The previously located quantization levels need
not change their relative positions, only their magni-
tudes should be shrinked a little as suggested by the
Lloyd-Max quantizer of one-dimensional Gaussian. Or
hierarchically, we could further quantize each existing
quantization region with our scheme.

Comparing the two schemes of quantization lattice
patterns, we can see that the quantitative descriptions
of the first optimal scheme are difficult to provide. For
small N , the second scheme has performance close
to the first scheme, although with possible different
lattice patterns; for large N , their performance difference
decreases, and the quantization patterns of the second
scheme is asymptotically approaches those of the first
scheme. Scheme one and scheme two have a lot of
common quantization lattice patterns.

Fig. 10. Expanded hexagonal lattice for two-dimensional circular
Gaussian distribution.

4) Expansion Rule: How far away the expansion rule
along radial direction for two-dimensional distributions
from the Lloyd-Max quantizer for the corresponding
one-dimensional distributions? Take Gaussian distribu-
tion for example. For two-dimensional Gaussian with
joint pdf given by:

PX(x1, x2) =
1

2π
exp{−x2

1 + x2
2

2
}) (16)

where −∞ < x1, x2 < ∞. Its polar coordinate repre-
sentation is:

PR,Θ(r, θ) =
r

2π
exp{−r2/2} (17)

where
0 ≤ r < ∞, 0 ≤ θ < 2π

r = (x2
1 + x2

2)
1/2

Fig. 11. Expanded hexagonal lattice for two-dimensional elliptical
Gaussian distribution.

θ = tan−1(
x2

x1
)

The number of annuluses L of the quantizer for
two-dimensional circular Gaussian has the following
relationship with the number N1 of quantization levels
of one-dimensional Gaussian distribution.

N1 =

{
2L, L = 1

2L− 1, L ≥ 2
(18)

Then the expansion rule for r in Eq. (17) with L
annuluses is found in table of the Lloyd-Max quantizer
for one-dimensional Gaussian with N1 quantization lev-
els. For example, N = 7, L = 2 case as shown in
Fig. 12. It corresponds to N1 = 3 of the quantizer for
one-dimensional Gaussian, i.e., r1 = 0, r2 = 1.2240.

Then how far away of r1 = 0, r2 = 1.2240 from
the optimal r∗1 , r∗2? Consider an upper bound of the
difference between r1 and r∗1 when L = 1. The radial
expansion is following the rule for Rayleigh distribution.
But there is no quantization level at origin for Rayleigh
distribution, so we have to utilize the quantizer for
Gaussian distribution for our quantizer.∫∞

0

∫ θ1
θ0

r2

2π e
− r2

2 dθdr∫∞
0

∫ θ1
θ0

r
2π e

− r2

2 dθdr
=

√
π

2

The Lloyd-Max quantizer for one-dimensional Gaussian
distribution is as follows:∫∞

0
x√
2π

e−
x2

2 dx∫∞
0

1√
2π

e−
x2

2 dx
=

√
2

π

Then the upper bound of the difference is around 0.46
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Fig. 12. The first optimal quantization scheme.

(=
√

π
2 −

√
2
π ) for uni-variance distributions. As N gets

larger, the difference becomes smaller. These are also the
maximal searching ranges to find the optimal magnitude
quantizers. The Lloyd-Max quantizer for one-dimension
Gaussian is a good initial for finding the optimal mag-
nitude quantization for one-dimensional distributions.

The magnitude quantization is almost independent of
the phase quantization. It means that when phase quan-
tization changes, the magnitude quantization suffers a
little perturbation at most. As the number of quantization
levels goes larger, the perturbation turns smaller.

E. Generalization to GMM or LMM

We can use EM algorithm to identify the components
in Gaussian Mixture Model (GMM) or Laplace Mixture
Model (LMM). Then for each component, the proposed
transformation plus scalar quantizer could be used to
replace vector quantizers to approximate the optimal
quantization performance.

F. Generalization to High Dimension

The dodecahedron is the optimal voxel of vector
quantization for signals of an ideal three-dimensional
uniform distribution [19]. The three-dimensional six-axis
coordinate system, composing of six axes for six parallel
face pairs of dodecahedron, can be built up similarly
as shown in Fig. 14, and its coordinates(a,b,c,d,e,f)

Fig. 13. the second progressive quantization scheme.

have three independent components. Analogously, vector
quantization could also be approximated by transfor-
mation plus scalar quantization for three-dimensional
distributions. For even higher dimensional space, once

Fig. 14. Hexa-axis coordinate system for quantization of three-
dimensional distributions.

the optimal voxel of vector quantization for signals of a
uniform distribution is obtained, we can obtain the op-
timal transformation plus scalar quantization to replace
vector quantization accordingly. Quantization levels are
uniformly located on each sphere.
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VI. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, we first show the basic properties of the
proposed scalar quantizer. Then we show experimental
results with a two dimensional memoryless source of
unitary circular Gaussian and Laplace distributions, and
elliptical Gaussian and Laplace distributions with b1 =
2, b2 = 1.

We will compare MSE and the Rate-Distortion per-
formance of our proposed quantizers based on the first
scheme with optimal quantization lattices, the unre-
stricted polar quantizers [14] (indicated by ‘UPQ’), the
restricted polar quantizers [11] (indicated by ‘PQ’), the
rectangular quantizers [6] (indicated by ‘Rectangular’).
The rate here is defined as log2 N/2. The distortion is
shown with MSE per dimension. The benchmark is Rate-
Distortion function for a Gaussian memoryless source:

R(D) =
1

2
log2(

1

D
) (19)

where 0 < D ≤ 1. Each quantizer is tested for its best
performance, with the corresponding optimal quantiza-
tion levels, and the optimal ratio between the number of
phase quantization levels and the number of magnitude
quantization levels. For example, the rectangular quan-
tizers are almost tested with n2 quantization levels for
circular distributions, i.e. each dimension is quantized by
a Lloyd-Max quantizer with n quantization levels, and
2n × n for elliptical distributions, i.e. data is quantized
by a Lloyd-Max quantizer with 2n and n quantization
levels respectively applied to the two dimensions. We
will not show the results of the vector quantizers found
by LBG algorithm, since it is highly initial dependent
and the results we obtained are much worse than those
of our proposed quantizers.

A. Basic Optimal Properties
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Fig. 15. MSE per dimension for quantization of 10000 samples from
uni-variance circular Gaussian distribution.

1) The property of optimal solutions is considered
as follows. Assume MMSE per dimension is the
objective. For N = 7 = 1+6 with two magnitude
levels (i.e. the first magnitude quantization level
is quantized with one phase quantization level,
the second magnitude quantization level with six
phase quantization levels), MSE per dimension
performance on uni-variance circular Gaussian is
shown in Fig. 15 with respect to different radius of
circles where lies the second magnitude quantiza-
tion level. The radius shown in Fig. 15 starts from
the second quantization level of Lloyd-Max quan-
tizer for univariate Gaussian around 1.224. Then
MSE per dimension decreases with the increase of
radius, reaches its unique minimum around 1.43,
and then increases with the increase of radius. With
more magnitude levels and more than one radiuses
needed to be tuned for the optimal performance,
there are definitely local minima. But the optimal
radiuses could be easily and quickly found with
values starting from the quantization levels of
Lloyd-Max quantizers for univariate Gaussian.

2) For the quantization lattices with the same number
of magnitude quantization levels, the radiuses of
the optimal magnitude levels increase with the
number of quantization levels N , and are saturated
with relatively large N . The optimal radiuses of
the second magnitude quantization level are shown
by the vertical coordinates of points in in Fig. 16
corresponding to the number of quantization levels
N = 5(= 1 + 4), 6(= 1 + 5), 7(= 1 + 6), 8(=
1 + 7), 9(= 1 + 8). They increase with N , and
gradually slow down. This gives us a guidance on
how to tune the optimal magnitude quantization
levels.

5=1+4 6=1+5 7=1+6 8=1+7 9=1+8
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Fig. 16. Optimal magnitude levels for different number of quantization
levels for uni-variance circular Gaussian distribution.
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B. Circular Gaussian Distribution
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Fig. 17. Rate-Distortion comparison among different quantizers for
circular Gaussian distribution.

We show the R-D performance of different quan-
tizers on a uni-variance circular Gaussian distribution
in Fig. 17. From Fig. 17, we can see that the R-D
performance of our proposed quantizers is always a
little better than that of UPQs, and much better than
that of PQs and that of Rectangular quantizers. They
have the same R-D performance when N = 4, due
to the same quantization level. Rectangular quantizers
may have better performance than PQs with some n2

quantization levels.

C. Elliptical Gaussian Distribution
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Fig. 18. Rate-Distortion comparison among different quantizers for
elliptical Gaussian distribution.

We show the R-D performance of different quantizers
on an elliptical Gaussian distribution in Fig. 18. From
Fig. 18, we can see that UPQs does not consider
the different variances among different random vector

components, thus do not perform well. Our proposed
quantizers almost always perform better than rectangular
quantizers, except when N = 8. Since N = 8 = 4 × 2
is the best factorization for the rectangular quantizer
on elliptical distributions when ratio of data component
variances equals 2. Whereas, for other N non-factorable,
rectangular quantizers perform much worse than polar
quantizers and the proposed quantizers as expected,
although we did not plot it in the figure.

D. Circular Laplace Distribution
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Fig. 19. Rate-Distortion comparison among different quantizers for
circular Laplace distribution.

We show the R-D performance of different quantizers
on a uni-variance circular Laplace distribution in Fig. 19.
It indicates in Fig. 19 that our proposed quantizers
always perform a little better than UPQs, and much
better than PQs and rectangular quantizers.

E. Elliptical Laplace Distribution

We show the R-D performance of different quantizers
on an elliptical Laplace distribution in Fig. 20. It tells
in Fig. 20 that our proposed quantizers always perform
better than UPQs, and better than rectangular quantizers
except when N = 8 = 4 × 2. Our proposed quantizers
have predominant advantages when N = 7, 19, 37, · · · .

F. Bit-rate Saving

We also evaluate the average bit-rate saving of our
quantizers comparing to other quantizers. Average bit-
rate is calculated by using Bjontegaard’s method [20],
[21] with fitting polynomials of degree 3. Bit-rate saving
is evaluated based on relative average bit-rate in percent-
age as shown in the following equation.

Rc −Rp

Rp
× 100% (20)
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Fig. 20. Rate-Distortion comparison among different quantizers for
elliptical Laplace distribution.

TABLE I
AVERAGE BIT-RATE SAVING OF THE PROPOSED QUANTIZERS OVER

OTHER QUANTIZERS.

UPQ PQ Rectangular
Circular Gaussian 0.36% 6.78% 3.22%
Elliptical Gaussian 22.4% — 16.9%
Circular Laplace 0.94% 24.5% 5.62%
Elliptical Laplace 19.8% — 6.32%

where Rc is the average bit-rate of the compared quan-
tizers, and Rp is the average bit-rate of the proposed
quantizers.

From Table I, we can see that the proposed quantizer
saves 0.4% - 24.5% bit-rate on average, compared to
unrestricted polar quantizers, restricted polar quantizers
and rectangular qantizers. We did not list the average
bit-rate gain over restricted polar quantizers for ellip-
tical distributions, which is even higher than that over
unrestricted polar quantizers.

VII. CONCLUSIONS

In this paper, we proposed a scheme to use transforma-
tion plus scalar quantization to replace the optimal vector
quantization. The unitary transforms rather than scaling
transforms were needed for the optimal vector quantizer
approximation. After transformation, scalar quantization
for both circular and elliptical distributions was studied
in the proposed tri-axis coordinate system. The optimal
quantization levels were found in the elastic hexagonal
lattices, which included the optimal and the progres-
sive quantizer lattice patterns. The experimental results
showed that our proposed quantizers almost always had
better performance than UPQs, PQs and rectangular
quantizers on both Gaussian and Laplace distributions,
especially with prime number of quantization levels. We

achieved O(N2) design complexity and 0.4%-24.5% bit-
rate saving, where N is the number of quantization levels
per dimension. Therefore, we claimed that transforms
plus scalar quantizers could approximate the optimal
vector quantizers in terms of R-D performance but with
much less computational complexity. Our future work
will focus on the optimal vector quantizer approximation
in high dimensional spaces, and the applications in image
and video coding.
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Fig. 1. General encoding and decoding pipeline with transforms and scalar quantization.

Fig. 3. Transform plus scalar quantization with companding technique Pipeline.

Fig. 4. Gaussian mixture model decorrelation.


