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Summary 19 

 20 

1. Geographic profiling (GP) was originally developed as an analytical tool in criminology, where it uses the spatial 21 

locations of linked crimes (for example murder, rape or arson) to identify areas that are most likely to include the 22 

offender's residence. The technique has been extremely successful in this field, and is now widely used by police 23 

forces and investigative agencies around the world. More recently, the same method has been applied to biological 24 

data, notably in spatial epidemiology, where it uses the locations of disease cases to identify infection sources: the 25 

identification of these sources is critical to control efforts of diseases such as malaria, since targeted intervention is 26 

more efficient and cost effective than untargeted intervention.  27 

2. Here we solve the problem of identifying multiple sources, even when the number of sources is unknown – a 28 

requirement for many biological studies. We present a new, rigorous mathematical and computational method, and 29 

show why previous Bayesian methods were often outperformed by the empirically-developed Criminal Geographic 30 

Targeting (CGT) algorithm used in criminology.  31 

3. We use simulations and real-world examples to compare our model to both the CGT algorithm and to an existing 32 

Bayesian model. We demonstrate that our method combines the advantages of both previous methods, particularly 33 

in cases featuring large data sets and multiple sources.  34 

4. Our approach provides an increase in search efficiency over other methods and is likely to lead to improved 35 

targeting of interventions and more efficient use of resources. We suggest that the Dirichlet process mixture (DPM) 36 

model provides a useful and practical tool for conservation biologists and epidemiologists that can be used to inform 37 

management decisions and public health policy.   38 

 39 

Keywords 40 
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Introduction 46 

In many areas of biology (for example invasion biology and epidemiology), models describing the ways in which 47 

animals, plants or pathogens spread outwards from a central source are of considerable importance. Such models are 48 

routinely used to generate risk maps in epidemiology, or to predict the effect of global climate change on the spread 49 

of invasive species (Kolar & Lodge 2001). Surprisingly, very few models exist which run backwards in time, using 50 

current spatial patterns to identify sources of infections or biological invasions, despite the fact that the identification 51 

of these sources can be used to target control efforts, dramatically improving the efficiency of interventions. 52 

Recently, geographic profiling (GP) – a technique originally developed in criminology to help prioritise large lists of 53 

suspects in cases of serial crime (Rossmo, 2000) – has been successfully applied to biological data, providing a way 54 

of doing exactly this (Le Comber & Stevenson 2012). 55 

 56 

Investigations of serial crime typically involve too many, rather than too few, suspects; for example, the 57 

investigation into the Yorkshire Ripper murders in the UK between 1975 and 1980 generated 268,000 names 58 

(Doney 1990). In criminology, GP techniques use spatial data concerning the locations of connected crime sites to 59 

create a surface of search priority that is overlaid on a map of the study area to produce a geoprofile, which in turn 60 

allows the police to prioritise investigations by systematically checking suspects associated with locations in 61 

descending order of the height on the geoprofile (Rossmo 2000). There are a number of different geographic 62 

profiling software programs available, including Rigel (Miller 2003), developed by Environmental Criminology 63 

Research Inc. (ECRI), CrimeStat (Levine 1996), funded by the U.S. National Institute of Justice, and Dragnet 64 

(Canter 2000), developed at the University of Liverpool. Other authors (for example Snook et al. (2002, 2005)) have 65 

made a case for the use of human judges. Of different programmes available, the most widely used is the criminal 66 

geographic targeting (CGT) algorithm of Rossmo (Rossmo 1993), which forms the basis of Rigel (Miller 2003), in 67 

which information from multiple crime sites is combined by means of summing over independent distributions. The 68 

CGT is used by organisations including the Royal Canadian Mounted Police, the Bureau of Alcohol, Tobacco, 69 

Firearms and Explosives, the Los Angeles Police Department, the National Crime Agency in the UK and the United 70 

States Marine Corps and has also been used to identify source populations during biological invasions and sources 71 

of infection during disease outbreaks (Le Comber et al. 2006; Raine et al. 2009; Le Comber et al. 2011; Stevenson et 72 

al. 2012).  73 
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 74 

The development of geographic profiling has – understandably – been driven by the need for practical solutions to 75 

the problems encountered by law enforcement agencies. O'Leary (O'Leary 2009; O'Leary 2010; O'Leary 2012) 76 

placed GP in a Bayesian framework, mathematically formalising the problem. However, the model put forward by 77 

O'Leary makes the simplifying assumption that all observed data points originate from a single source, and hence 78 

performs extremely badly in cases where there are actually multiple sources (see Methods and Results). Thus, 79 

despite the mathematical appeal of O'Leary's approach, the CGT algorithm continues to be widely used as a result of 80 

its proven track record (Rossmo 2000). 81 

 82 

Here, we present a well-defined mathematical approach that unifies existing methods in a single framework. 83 

Crucially, our method explicitly deals with the issue of multiple sources – a situation typical of biological data sets, 84 

but less common in criminology. Under these circumstances, our model outperforms both the CGT algorithm and a 85 

simple Bayesian model based on the work of O'Leary (O’Leary 2010). Further, we develop a computational 86 

approach using Markov Chain Monte Carlo (MCMC) methods that extends the technique to large data problems. 87 

Finally, we demonstrate the effectiveness of our model using a real-life example of malaria cases in Egypt. 88 

 89 

Specifically, we assert that (1) one of the reasons for the CGT algorithm's improved performance relative to the 90 

simple Bayesian model lies in its ability to deal with multiple sources; and hence by constructing a Bayesian model 91 

that incorporates the ability of the CGT algorithm to deal with multiple sources while maintaining the mathematical 92 

rigour of the simple Bayesian model, we can outperform both of the existing methods; (2) this method can be 93 

extended to large data problems using MCMC; (3) this method can be used to provide practical solutions to real-life 94 

problems, such as those found in epidemiology. 95 

 96 

Geographic Profiling Models 97 

The traditional (CGT) and Bayesian approaches to geographic profiling differ in both their construction and 98 

implementation. In the following sections we specify each in common terms. 99 

 100 



5 

 

CGT algorithm 101 

The traditional method begins by considering a distance-decay function around each individual data point. The 102 

height of the surface is a measure of how confident we are that the source location lies at this point. The decay 103 

function can take a number of forms, but in criminological applications it is typical to use a two-part distribution that 104 

increases to a maximum at a distance B from the data point, and then declines beyond this: 105 

        [1] 106 

where d is the distance (either Euclidian or Manhattan) from the observation. This distribution was originally 107 

proposed by Rossmo (2000), but here we have used the notation of O'Leary (O’Leary 2009; O’Leary 2010) 108 

(correcting for a mistake in the direction of the inequalities). In this paper we use the Euclidean distance throughout. 109 

Although this decay function is often referred to as a probability distribution, this is not technically true as there is 110 

no requirement for the surface to integrate to unity (nor, in criminology, any need for it to do so, since the analysis is 111 

used to produce ranked scores rather than probabilities). Thus, in the traditional method the decay function is better 112 

described as a surface of search priority, subject to the more general constraint that points high up on the surface 113 

represent areas of high priority. This measure of priority is modelled as an additive quantity, meaning that the 114 

information from several observations can be combined by summing together the independent surfaces. The end 115 

result of this process of summation is a single surface that represents our integrated knowledge of the source 116 

location, which is referred to as a jeopardy surface (Rossmo, 2000). 117 

 118 

The search efficiency of the model can be calculated using the hit score percentage; the proportion of the area that 119 

we must search before the true source location is found. The smaller the hit score percentage, the more accurate the 120 

geoprofile, with a hit score percentage of 50% representing what we would expect from a non-prioritised random or 121 

uniform search (see Rossmo 2000). 122 

 123 

Simple Bayesian model 124 

We compare the CGT algorithm against a simple Bayesian model based on the initial approach described by 125 

O'Leary (O’Leary 2010; O’Leary 2012), and ignoring subsequent extensions relating to the choice of priors. This 126 
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approach differs from the CGT in that distributions are defined and manipulated according to the laws of 127 

probability. The starting point is to write down the probability of the data, given the known location of the source. 128 

This is achieved through the use of a probability distribution, which we will refer to as the migration profile, in 129 

which the probability of finding an observation at any point in the domain is expressed relative to the location of the 130 

source. Assuming independence between observations, the probability of the sample is simply the product over the 131 

probabilities of the individual data points (in fact, Rossmo (1995) considered a similar formulation in which the 132 

CGT algorithm is applied in log space). By placing a suitable prior on the source location and applying Bayes' rule it 133 

is possible to derive the posterior distribution of the source location, given the observations. 134 

 135 

Unsurprisingly, the choice of method makes a big difference to the results. While the CGT algorithm tends to create 136 

a patchy distribution of peaks and troughs, entertaining the possibility of a number of different source locations, the 137 

simple Bayesian method tends to place the majority of the posterior probability mass around the spatial mean of the 138 

data points (at least for many choices of prior and likelihood, including those considered here). Another important 139 

difference between the methods is in the rate of convergence. In the Bayesian approach the variance of the posterior 140 

distribution tends to decrease rapidly as more data is added, whereas in the CGT method the variance of the 141 

geoprofile can never be less than the variance of the decay function. Generally, when there is in fact a single source 142 

location the Bayesian method is predicted to outperform the traditional method. However, if there is the potential for 143 

multiple source locations then the Bayesian method is predicted to converge quickly on the wrong answer, while the 144 

traditional method will still perform well. In this study, we test this prediction using a variety of simulations (see 145 

Results 1 and 2, below). 146 

 147 

The Dirichlet process mixture model 148 

Our primary objective is to address the issue of multiple sources within a well-defined Bayesian framework. The 149 

tool that allows us to do this is the Dirichlet Process Mixture (DPM) model, which has a strong mathematical 150 

foundation (Ferguson 1983; Green & Richardson 2001) and is finding increasing application within biology (e.g. 151 

Huelsenbeck et al. 2006; Huelsenbeck & Andolfatto 2007; Dorazio et al. 2008). Unlike many clustering approaches, 152 

DPM models do not require the user to specify the number of clusters beforehand, making them extremely useful in 153 

situations where there is no strong prior information about the exact number of clusters. In place of a fixed number 154 
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of clusters, the DPM model describes the process of cluster formation using a single ‘concentration parameter’, α. 155 

Specifically, if we have already seen n observations, of which nA came from cluster A, then the (prior) probability of 156 

the next observation also belonging to cluster A is given by nA/(n + α). It follows that, no matter how many 157 

observations we have seen, there is always a positive probability α/(n + α) of the next observation originating from a 158 

previously undiscovered cluster. While we may not believe there to be a truly unlimited number of clusters, by 159 

allowing for the possibility of an expanding number of clusters we can ensure that our model is always appropriate 160 

for the quantity of data at hand. Obviously the choice of the concentration parameter α has a strong influence on the 161 

model. Although an appropriate value of α could be fitted from training data, here we chose instead to integrate over 162 

our uncertainty by placing a diffuse hyper-prior over α (of the form h(α)=1/(1+α)2, see Appendix 2 for details). 163 

Where stronger prior information is available, the model can easily be adapted to include this. 164 

 165 

The second part of the DPM model is the calculation of the posterior distribution of source locations, conditional on 166 

a particular partition of the data into clusters. This part is mathematically very similar to the simple Bayesian model, 167 

with the only difference being that a different posterior distribution is produced for each cluster. The likelihood of 168 

all observations in the same cluster is equal to the product of the migration profile over each of the observations. By 169 

incorporating an appropriate prior on the source location and applying Bayes’ rule we arrive at the posterior 170 

distribution of the source location from which this particular subset of observations derived. Carrying out this step 171 

for each cluster independently we obtain a set of posterior distributions – one for each of the (potentially) multiple 172 

source locations. 173 

 174 

Finally, in order to obtain an analytical solution to the DPM model described above we would be required to sum 175 

over all possible partitions of the n data points into up to n clusters, weighted by the posterior probability of the 176 

partition in each case. The number of such partitions is given by the nth Bell number (Bn) which becomes 177 

prohibitively large for values as low as n=10 (B10=115,975). Thus, for any reasonably sized data set we must turn to 178 

MCMC methods for a practical solution. Fortunately, a detailed exposition of MCMC algorithms for DPM models is 179 

provided by Neal (2000), and we need only to adapt these algorithms to our specific application. A more detailed 180 

description of the DPM model, including expressions relating to posterior inference under the analytical and MCMC 181 

forms of the solution, is provided in Appendices 1 to 3. 182 
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 183 

It is important to emphasise that the DPM model can be adapted to use any migration profile that satisfies the laws 184 

of probability (i.e. integrates to unity). The essence of the DPM model lies in the way that information is combined 185 

between clusters, and not in the specific details of the migration profile used. This can be seen in the logic of our 186 

study, which has four parts. (i) First, when comparing directly the CGT, simple Bayesian, and DPM models, we use 187 

the distribution from the CGT (described in equation [1]) as our migration profile in all three approaches. This 188 

ensures that the only difference between methods lies in the way that information is being combined, and not in any 189 

other assumptions relating to migration. (ii) Next, we validate the MCMC version of our proposed solution using 190 

this same migration profile, thereby ensuring that our MCMC results are directly comparable with our analytical 191 

results. (iii) From this, we move on to consider simulated data generated from a distribution more typical of those 192 

assumed in biology – the normal distribution – and explicitly compare the full form of the DPM model with the 193 

CGT under this assumption. (iv) Finally, we examine a real-world data set – an outbreak of malaria in Cairo – using 194 

all three models. 195 

 196 

 197 

Methods(i) Comparing the simple Bayesian, CGT and DPM models 198 

As mentioned above, our first task is to compare the simple Bayesian, CGT and DPM models purely in terms of the 199 

way that information is combined in each case, and controlling for any differences between models, such as the 200 

migration profile. We simulated 6, 7, 8 or 9 data points from the distribution given in equation [1] (B=0.5, f=4, g=4), 201 

emanating from either 1, 2 or 3 sources, truncated them to fit the available grid. For the purposes of simulation we 202 

split the domain into a 100*100 grid, and replicated each combination of the number of data points and sources 1000 203 

times. Sources were chosen to fall within the central 50*50 cells in a random, uniform manner. For each simulated 204 

data set we then used each of the three methods described above to search for the ‘unknown’ source locations, with 205 

search efficiency being measured in terms of the hit score percentage. The same distribution (distribution [1] with 206 

B=0.5, f=4, g=4) was used as the search distribution in each of the three methods. By designing simulations in this 207 

way we can capture an idealised situation in which all three methods make the same assumptions about the true 208 

dispersal distribution, and furthermore these assumptions are exactly correct (thereby removing another possible 209 

source of model error). 210 
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 211 

(ii) MCMC validation 212 

For the reasons described previously, the analytical form of the DPM model can deal with only small data sets, and 213 

for larger data sets an MCMC implementation of the solution is required. For each of the 12000 simulations 214 

described above (1000 replicates of each combination of 1, 2 and 3 sources and 6, 7, 8 or 9 data points), we also 215 

used an MCMC implementation of the model, and calculated the correlation between the surface produced by the 216 

analytical form of the model and the MCMC form (see Appendix 3 for details of the MCMC algorithm). We also 217 

repeated the comparison of the DPM model with the CGT for larger data sets (1, 2 and 5 source locations; 20, 40, 218 

60, 80 and 100 spread points), using just the MCMC implementation of the model. 219 

 220 

When running the MCMC, multiple chains were run simultaneously, with convergence being assessed using the 221 

Gelman-Rubin (GR) diagnostic statistic (Gelman et al. 2003) evaluated on the concentration parameter α (using a 222 

value of GR=1.1 as a threshold for convergence). After the burn-in period, samples were obtained until the largest 223 

standard error of any point on the estimated surface was less than 0.01. Samples were not thinned, as it has 224 

previously been shown that this does not increase statistical power in situations such as this (Link & Eaton 2012). 225 

 226 

(iii) Further comparison of the CGT and DPM models  227 

The migration profile used above (distribution [1]) was designed for criminological applications. In some cases, 228 

including many biological applications, it may be more appropriate to assume alternative migration profiles.  Here, 229 

we assume a bivariate normal migration profile, centred on the unknown source location(s), and with variance σ2. In 230 

some cases, there will be biological data on dispersal patterns that can be used to inform the choice of σ; for 231 

example, studies have shown that most malaria transmission occurs close to the larval breeding sites – usually 232 

between a few hundred meters and a kilometer– and rarely exceeds 2-3 km (Carter et al. 2000).  233 

 234 

We are also required, as part of the DPM model, to choose a prior on the source location(s). For the sake of 235 

simplicity we use an empirical Bayes approach, assuming a bivariate normal prior, centred on the spatial mean of 236 

the observed data, and with variance τ2, where τ was set to the maximum distance in either latitude or longitude 237 
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between the crime sites. τ equals one standard deviation of the normal prior; hence, we expect our source to lie 238 

within this distance of the centre around two-thirds of the time, and the model allows for sources well outside the 239 

area bounding the crimes. Hence, there is a diffuse, non-informative prior over and beyond the normal search area. 240 

 241 

We simulated 6, 7, 8 or 9 data points from a bivariate normal distribution with standard deviation sigma = 1 and 242 

emanating from either 1, 2 or 3 sources. For the purposes of simulation we split the domain into a 100*100 grid, and 243 

replicated each combination of the number of data points and sources 1000 times. For each simulated data set we 244 

then used the two best performing methods described above (CGT and DPM) to search for the ‘unknown’ source 245 

locations, with search efficiency being measured in terms of the hit score percentage. The CGT uses the distribution 246 

describe in equation [1] with parameters fitted from the data as described by Rossmo (2000), while the DPM uses 247 

the spatial mean to fit phi, with sigma fixed at 1.  248 

 249 

(iv) Case study 250 

We tested the performance of our model in a real world example by using the MCMC implementation of the DPM 251 

model to reanalyse data from Le Comber et al. (2011). In this study, spatial data relating to 139 recorded 252 

Plasmodium vivax malaria cases were collected, and buffer zones of 2 km were created around the locations of these 253 

malaria cases and merged to form a polygon of 296.5 km2 (Hassan 2006). All accessible aquatic habitats within this 254 

study area (surface/cryptic; temporary/semipermanent/permanent) were located and characterised between April and 255 

September 2005. These included water tanks, water pools created through pipelines or drainage system breakage, 256 

seepage from slum housing, natural springs, pools and ditches filled with ground water. Water sources included in 257 

this analysis were identified as bodies of water harbouring at least one mosquito larva over the study period (n= 59). 258 

A total of 11 mosquito species were identified, including the malaria vectors An. sergentii and An. pharoensis, as 259 

well as other, non-vector, species. Of these 59 sites, seven tested positive for one or both of the malaria vectors An. 260 

sergentii and An. pharoensis (An. sergentii is well established as the most dangerous malaria vector in Egypt (Said 261 

et al. 1986)).  262 

 263 
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A dispersal distance of sigma = 0.018, roughly corresponding to 1km, was used in the DPM model in 264 

correspondence with values in the literature (e.g. Carter et al. 2000) and a value of tau = 0.328 was fitted from the 265 

observed data (see above). 266 

 267 

The model is written in R (R core team 2012) and integrates with Google Maps via the R package RgoogleMaps 268 

(Loecher 2012). The model used in this paper is available from the authors on request as an R package called 269 

‘Rgeoprofile’.  270 

 271 

 272 

Results 273 

(i) Comparing the simple Bayesian, CGT and DPM models 274 

Starting with the first set of simulations (1000 replicates of each combination of 1, 2 and 3 sources and 6, 7, 8 or 9 275 

data points), we used a fully factorial ANOVA to test the effect on the hit score percentage (or average hit score 276 

percentage when the number of sources was > 1) of model type, number of sources and number of spread points. 277 

Three model types were examined; the analytical form of the DPM model, the classical CGT algorithm and the 278 

simple Bayesian model. 279 

 280 

Model type, number of points and number of sources all significantly affected the relative performance of the three 281 

models (ANOVA: model type: F2,35964=4787.05,p< 2e-16; sources: F2, 35964=13099.30,p<2e-16; points: F3, 282 

35964=106.23, p<2e-16). All interactions were highly significant, with the F value for model type*sources interaction 283 

having the largest effect size (F4, 35964=2840.12, p<2e-16); none of the other F values exceeded 52. Tukey post-hoc 284 

tests at α=0.05 showed that (1) the CGT significantly outperformed the simple Bayesian model, by an average of 285 

1.81% (95% CI: 1.75-1.86%); (2) the DPM model showed a statistically significant improvement over both the CGT 286 

algorithm, albeit only by 0.3% (95% CI: 0.25-0.36%) and the simple Bayesian model, again by about 2% (95% CI: 287 

2.1-2.2%). Across all 12,000 runs, the DPM model performed better than the CGT in 68.2% of trials, and as well or 288 

better in 74.9%, and better than the simple Bayesian model in 64.6% of trials, and as well or better in 91.5%. 289 
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However, although the DPM model outperformed the simple Bayesian model overall, the simple Bayesian model 290 

had a small advantage when there was a single source (Figure 1). 291 

 292 

(ii) MCMC validation 293 

For the same simulated data sets described above we calculated the correlation between the surface produced by the 294 

analytical form of the DPM model and the MCMC form. The two surfaces tended to extremely highly correlated (r 295 

(mean ±sd) = 0.9998 ± 0.0010), demonstrating that the MCMC algorithm does indeed find the same – or at least 296 

extremely similar – posterior distributions as the analytical form of the model. 297 

 298 

For the second set of simulations (1000 replicates of each combination of 1, 2 and 5 sources and 20, 40, 60, 80 or 299 

100 data points) we performed the same analysis as in Results part 1, with extremely similar results (ANOVA: 300 

model type: F1,29992=167.7, p<2e-16; sources: F2, 29992=10603.1, p<2e-16; points: F4, 29992=1986.2, p<2e-16; model 301 

type*sources: F2, 29992=463.5, p<2e-16; model type*points: F4, 29992=17.4, p<2e-16; sources*points: F8, 29992=2916.7, 302 

p<2e-16; model type*sources*points: F8, 29992=0.9, p=0.87). Tukey post-hoc tests at α =0.05 showed that the DPM 303 

model outperformed the CGT algorithm in a statistically significant way; again, this improvement was most marked 304 

when the number of sources was > 1 (Figure 2). 305 

 306 

(iii) Further comparison of the CGT and DPM models  307 

In the next set of simulations, in which a normal migration profile was assumed, we used ANOVA to test the effect 308 

on the hit score percentage (or average hit score percentage when the number of sources was > 1) of model type, 309 

number of sources and number of spread points. The two best performing model types from previous simulations 310 

were examined; the CGT and the DPM. 311 

 312 

The best performing ANOVA was selected by AIC to include a single significant interaction term. Model type, 313 

number of points and number of sources all significantly affected the relative performance of the two models 314 

(ANOVA: model type: F19991=3693.6,p< 2e-16; sources: F2, 19991=2038,p<2e-16; points: F3, 19991=39.1, p<2e-16). 315 

Model type*sources interaction was also significant (F4, 19991=222.1, p<2e-16). Tukey post-hoc tests at α=0.05 316 
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showed that the DPM model showed a statistically significant improvement over the CGT algorithm with an effect 317 

size of 4.1% (95% CI: 3.9-4.2%). The MCMC implementation of the DPM outperforms the CGT 67.1% of the time, 318 

and performs as well or better 67.2% of the time. In our simulations this equates to searching on average 410 fewer 319 

cells (95% CI: 394-421) before finding all of the sources.   320 

 321 

(iv) Case study 322 

The median hit score percentages for the seven vector breeding sites identified in Hassan (2006) were 0.34% for the 323 

DPM model, compared to 0.43% for the CGT and 1.2% for the simple Bayesian model. Note that the hit scores 324 

reported here differ from those in Le Comber et al. (2011), although the surface produced is the same in both cases.  325 

The difference arises because the DPM model uses RgoogleMaps (Loecher 2012), and thus the exact dimensions of 326 

the search area (which affects the hit score) are set by the available zoom levels in the Google Maps data. To allow 327 

direct comparison, we used the same search area for the CGT and the DPM mode. 328 

 329 

For five of the seven sites, hit score percentages for the DPM were less than half a per cent. An additional output of 330 

our model is that it can provide a barplot of the posterior probability of the number of realised sources (Figure 3). In 331 

this case our model indicated the highest probability for seven sources, with a likely range of 6-10. Interestingly, 332 

some of these correspond to areas where no vector species were found by Hassan (2006) (Figure 4). One possibility, 333 

of course, is that these are false-positive results. Alternatively, it is possible that some sources were missed in the 334 

original survey, especially given the often considerable difficulty of locating small, transient breeding populations of 335 

mosquitoes (Carter et al. 2000) and since searches were carried out in a single year (2005), whereas the malaria 336 

cases spanned four (2001-2004) (Hassan 2006; Le Comber et al. 2011). 337 

 338 

Discussion 339 

Overall the DPM model is an improvement on the existing methods. When the number of sources is greater than one 340 

it outperforms them (Results (i)), it does not require that the number of sources is known a priori and, in addition, it 341 

generates estimates of their number. Even in conditions specifically designed to maximise the performance of the 342 

CGT algorithm, the DPM model still obtains a small advantage, reflecting the way in which it appropriately 343 

combines information from observations, rather than taking a simple sum (as in the CGT) or product (as in the 344 
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simple Bayesian model). The DPM model’s analytical method cannot be extended to very large numbers of 345 

observations, but the approach can be implemented in an MCMC algorithm which accurately constructs the 346 

posterior distribution, as demonstrated in Results (ii). 347 

 348 

With these facts established we move on to consider cases in which the DPM model may have a practical advantage 349 

over other approaches. The later set of simulations (Methods (iii) and Results (iii)) demonstrate that there are 350 

biologically plausible settings in which the use of the DPM model can result in an appreciable increase in search 351 

efficiency compared with other methods. Finally, and perhaps most encouragingly, we find that the DPM model 352 

leads to an increase in search efficiency when applied to a real-world data set describing malaria transmission in 353 

Cairo. The improvement over the CGT algorithm is small, but justifies further investigation of this model on a range 354 

of data sets.  355 

 356 

In its construction, the DPM model forms a bridge between the seemingly disparate methodologies of the CGT and 357 

the simple Bayesian approach to geographic profiling. From a practical point of view the major difference between 358 

the two existing approaches lies in whether distributions should be summed (CGT) or multiplied (simple Bayesian). 359 

The DPM model works by splitting the data into groups, with each group corresponding to a different source 360 

location. The laws of probability then dictate that distributions should be multiplied within groups, but summed 361 

between groups. Thus, if all points are assigned to a single source we arrive back at the simple Bayesian model, 362 

while if all points are assigned to different sources we arrive at something more akin to the CGT algorithm. In this 363 

context, our concentration parameter α can be understood as a prior over the complete spectrum of models, which 364 

allows us to transition between a single-source model and a multiple-source model. When α is set to zero, the DPM 365 

model becomes mathematically equivalent to the simple Bayesian model; conversely, as α tends to infinity, we 366 

converge on the CGT algorithm. In the majority of cases – particularly those dealing with biological data – the most 367 

likely explanation for the data will often lie between these two extremes. For example, in the malaria analysis, the 368 

DPM model assigned the highest probability to seven sources from 139 disease case locations (Figure 3). 369 

 370 

In our simulations, the DPM model outperformed both other approaches when there were multiple sources. In cases 371 

with a single source – a common scenario in criminology – the improvement over the CGT, although statistically 372 
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significant, was minimal when the dispersal distribution was drawn from Equation [1] (when this assumption was 373 

relaxed, the improvement was more marked).  The comparison between the DPM model and the simple Bayesian 374 

model shows that latter has a small advantage when there is a single source. However, when there is more than one 375 

source, the DPM shows a large improvement (this is perhaps unsurprising, since the simple Bayesian model assumes 376 

that there is a single source). In real-world applications of GP models it will often (perhaps even always) be the case 377 

that the true number of sources is unknown, therefore the principal advantage of the DPM model lies in its ability to 378 

rigorously handle the problem of multiple sources. In fact, since the difference between the simple Bayesian model 379 

and the DPM model is small when there is a single source, and the advantage offered by the DPM model when there 380 

are multiple sources is larger, we would argue that the DPM model is preferable in real-world applications of GP. In 381 

our simulations, the DPM model outperformed both other approaches in cases with multiple sources. In cases with a 382 

single source – a common scenario in criminology – the improvement over the CGT, although statistically 383 

significant, was minimal when the dispersal distribution was drawn from Equation [1] (when this assumption was 384 

relaxed, the improvement was more marked).  385 

 386 

However, formulating the problem in a rigorous Bayesian framework also allows for a number of useful extensions. 387 

First, our model produces a true probability surface, allowing us to calculate the marginal probability of different 388 

numbers of sources, as in Figure 3. Second, we can produce a probability surface conditional on a particular number 389 

of sources, thereby allowing us to break the overall picture down into different scenarios (we can imagine a different 390 

search strategy, conditional on there being one source, two sources etc.). Third, the DPM model explicitly calculates 391 

the posterior probability under the model that a particular observation is derived from a particular source. This may 392 

be of interest in criminology, where crime linkage is an important problem (Rossmo 2000), and may also be useful 393 

in biological data sets, where the spatial linkage can be validated against other forms of information (for example 394 

genetic data).  395 

 396 

So far, the DPM model is constructed with flexibility in mind, rather than statistical power. For particular cases it 397 

may be possible to increase the power of the model by incorporation of stronger prior information – for example, by 398 

inferring the concentration parameter from training data. Similarly, where empirical evidence has shown that non-399 

normal dispersal profiles are appropriate (for example, Cauchy distributions in some bird species (Winkler et al. 400 
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2005; VanHoutan et al. 2007) or bivariate Student's t-distributions in seeds (Nathan & Muller-Landau 2000)), these 401 

can be used within the same general framework. 402 

 403 

As well as producing a range of new outputs, the DPM model could also be extended to incorporate new inputs. For 404 

example, one useful possible extension of our approach is the utilisation of the outputs produced by niche models to 405 

generate priors in the DPM model. Niche modelling is a well-developed field that has recently been placed on a 406 

Bayesian footing (Elith & Leatherwick 2009), making its incorporation into the DPM model relatively 407 

straightforward. A Bayesian niche model produces a probabilistic estimate of the suitability of habitat for the 408 

organism being studied that can be used as a prior in the DPM model. Combining these two approaches would go 409 

some way towards producing a spatially explicit niche model approach, as called for by Peterson et al (2003). 410 

 411 

In epidemiology and invasion biology, much more attention is paid to models that run forwards in time to generate 412 

risk maps or forecasts of future incidence than those that run backwards to locate sources. GP, on the other hand, is 413 

radically different, running backwards in time to use current locations to infer sources (Le Comber & Stevenson 414 

2012). The DPM model structure described above also differs from many spatially explicit epidemiological models, 415 

such as the shot noise Cox process (Møller 2003), in assuming a distribution of point sources, rather than a smoothly 416 

varying hazard function over space. This feature also distinguishes the DPM approach from many existing methods 417 

that are routinely used to detect clusters in ecological and epidemiological data (see Pullan et al. 2012 for a review). 418 

The impact that these different modeling assumptions may have on our conclusions should be explored in further 419 

work. In fact, as O’Leary (O’Leary 2010; O’Leary 2012) has shown, a fully Bayesian implementation of GP can 420 

easily be extended to run forwards in time. Despite the difficulties faced by all predictive models, this could 421 

potentially be important in areas of biology including epidemiology, invasion biology and in conservation biology 422 

(e.g. planning reintroductions of animals or plants).  423 

 424 

The DPM model we present here is a general method that can be applied to data describing spread from common 425 

source. Evidence-based targeting of interventions is a crucial component in the fight against infectious disease, and 426 

targeted interventions are more efficient and more cost-effective than untargeted interventions; for example, malaria 427 

is strongly dependent on the location of vector breeding sites, and most transmission only occurs within short 428 
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distances of these sites (Carter et al. 2000). Because of this clustering, untargeted intervention is highly inefficient. 429 

In the Cairo study, the DPM model identified five of the seven breeding sites in less than half a percent of the total 430 

search area, representing a dramatic improvement over a non-targeted search. 431 

 432 

Although our implementation of the DPM model can deal with large data sets (>1000 data points), GP methods also 433 

work well with very small data sets (Rossmo 2000; Stevenson et al. 2012), allowing their use in the early stages of 434 

an outbreak or invasion, when control efforts are most likely to be successful. The DPM model provides a useful 435 

practical tool for conservation biologists and epidemiologists, offering improvements over other methods that are 436 

likely to lead to improved targeting of interventions, and more efficient use of resources.  437 
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 559 

Figures 560 

 561 

 562 

Figure 1 Comparison of the analytical form of the DPM model against (A) the simple Bayesian model, and (B) the 563 

CGT algorithm, expressed as the hit score percentage of the simple Bayesian model minus the hit score percentage 564 

of the DPM model, and the hit score percentage of the CGT algorithm minus the hit score percentage of the DPM 565 

model, respectively. Thus, points above the red line indicate cases in which the DPM model outperformed the other 566 

models. In both cases, the DPM model has a statistically significant advantage, although this is more pronounced for 567 

the comparison with the simple Bayesian model. In both comparisons, the relative performance of the DPM model 568 

improves as number of sources increases. 569 

 570 
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 571 

Figure 2 Comparison of the MCMC implementation of the DPM model against the CGT algorithm, expressed as 572 

the hit score percentage of the CGT algorithm minus the hit score percentage of the DPM model. Again, points 573 

above the red line indicate cases in which the DPM model outperformed the other model. The DPM model 574 

outperformed the CGT algorithm, especially as number of sources increases. 575 

 576 
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 577 

Figure 3 Marginal likelihood of different numbers of realised infection sources for the Cairo data. The DPM model 578 

estimates that there are 6-10 sources, and assigns the highest likelihood to seven sources. 579 

 580 
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 581 

Figure 4 Geoprofile from 139 Plasmodium vivax cases in Cairo, Egypt, using (A) the simple Bayesian model; (B) 582 

the CGT algorithm; (C) the DPM model. (D) shows a close-up of the DPM surface. In all cases the observed data 583 

points are shown as black circles, while the empirically identified sources are shown as blue squares.  584 


