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ABSTRACT 

In this paper, we propose a machine learning model for 

voice separation in lute tablature. Lute tablature is a 

practical notation that reveals only very limited 
information about polyphonic structure. This has 

complicated research into the large surviving corpus of 

lute music, notated exclusively in tablature. A solution 

may be found in automatic transcription, of which voice 

separation is a necessary step. During the last decade, 

several methods for separating voices in symbolic 

polyphonic music formats have been developed. 

However, all but two of these methods adopt a rule-based 

approach; moreover, none of them is designed for 

tablature. Our method differs on both these points. First, 

rather than using fixed rules, we use a model that learns 
from data: a neural network that predicts voice 

assignments for notes. Second, our method is specifically 

designed for tablature—tablature information is included 

in the features used as input for the models—but it can 

also be applied to other music corpora. We have 

experimented on a dataset containing tablature pieces of 

different polyphonic textures, and compare the results 

against those obtained from a baseline hidden Markov 

model (HMM) model. Additionally, we have performed a 

preliminary comparison of the neural network model with 

several existing methods for voice separation on a small 

dataset. We have found that the neural network model 
performs clearly better than the baseline model, and 

competitively with the existing methods. 

1. INTRODUCTION 

The lute, an instrument widely used from the early 

sixteenth to the mid-eighteenth century, has left us with a 

considerable corpus of instrumental polyphonic music: 

over 860 print and manuscript sources survive, containing 

approximately 60,000 pieces [12]. This music is notated 

exclusively in lute tablature. Lute tablature is a practical 
notation that provides no direct pitch information and 

only limited rhythmic information, but instead instructs 

the player where to place the fingers on the fretboard and 

which strings to pluck (see Figure 1). It reveals very little 

about the polyphonic structure of the music it encodes, 

since it specifies neither to which polyphonic voice the 

tablature notes belong, nor what their individual durations 

are. Lute tablature’s “alien nature” [5] is the principal 

reason why, apart from a number of specialist studies, 

this large and important corpus has so far escaped 

systematic musicological research. 

 

 

Figure 1. Excerpt of lute tablature in Italian style. 

Transcription into modern music notation—a format 

much more familiar to the twenty-first-century scholar or 

musician—will increase the accessibility of the corpus, 
and, in fact, is the current modus operandi among those 

studying lute music. Transcribing tablature, however, is a 

time-consuming and specialist enterprise. Automatic 

transcription into modern music notation may provide a 

solution. An important step in the process of (automatic) 

transcription of polyphonic music is voice separation, i.e., 

the separation of the individual melodic lines (‘voices’) 

that together constitute the polyphonic fabric. Using 

machine learning techniques, we have developed two 

models for voice separation in lute tablature—a neural 

network model and a baseline hidden Markov model 
(HMM) model—which, with some modifications, can 

also be applied to other music corpora.  

The outline of this paper is as follows: in Section 2, the 

existing methods for voice separation are discussed. In 

Section 3 the proposed models are introduced, and in 

Section 4 the dataset is presented. Section 5 is dedicated 

to the evaluation of the models; in Section 6 the results 

are discussed; and in Section 7 the performance of the 

neural network model is compared with that of several 

existing methods. Concluding thoughts are presented in 

Section 8. 

2. RELATED WORK 

During the last decade, several methods for separating 

voices in symbolic polyphonic music formats have been 

developed.1 Except for two, described further below, all 

of these methods are rule-based. More concretely, they 

are based on at least one of two fundamental perceptual 

principles that group notes into voices, which have been 

                                                        
1
 In addition, a number of methods for voice separation in music in 

audio format exist—these, however, are left out of consideration here. 
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labelled the Pitch Proximity Principle and the Temporal 

Continuity Principle by Huron [6]. These principles 

imply that the closer notes are to one another in terms of 

pitch or time, respectively, the more likely they are 

perceived as belonging to the same voice. In addition, 

some of the methods include supplementary perceptual 

principles. Although these methods vary considerably in 

their approach, in each of them, the perceptual principles 

it is based on guide the voice assignment procedure.  

Temperley [17] adopts an approach based on four 

‘preference rules,’ i.e., criteria to evaluate a possible 
analysis. Two of these match the abovementioned 

principles; the other two prescribe to minimise the 

number of voices (New Stream Rule) and to avoid shared 

notes (Collision Rule). Cambouropoulos [1] briefly 

describes an elementary version of a voice separation 

algorithm based on the (Gestalt) principle of pitch 

proximity only. Chew and Wu [4] use a ‘contig’ 

approach, in which the music is divided into segments 

where a constant number of voices is active (the contigs). 

The voice fragments in the segments are then connected 

on the basis of pitch proximity; voice crossings are 
forbidden. Szeto and Wong [16] consider voices to be 

clusters containing events proximal in the pitch and time 

dimensions, and model voice separation as a clustering 

problem. The aim of their research, however, is to design 

a system for pattern matching, and not one for voice 

separation. In their method, voice separation is only a 

pre-processing step that prevents “perceptually 

insignificant stream-crossing patterns” from being 

returned by the system. Kilian and Hoos [9] present an 

algorithm that is not intended primarily for correct voice 

separation, but rather for creating “reasonable and 

flexible score notation.” Their method allows for 
complete chords in a single voice. In the method 

presented by Karydis et. al [8], too, a ‘voice’ is not 

necessarily a “monophonic sequence of successive non-

overlapping notes” [2]. Rather, they prefer to use the term 

‘stream,’ which they define as “a perceptually 

independent voice consisting of single or multi-note 

sonorities.” Hence, in addition to the ‘horizontal’ pitch 

and time proximity principles, they include two ‘vertical 

integration’ principles into their method: the Synchronous 

Note Principle (based on Huron’s Onset Synchrony 

Principle) and the Principle of Tonal Fusion (based on 
Huron’s Tonal Fusion Principle). A new version of this 

algorithm is described in Rafailidis et al. [14]. Madsen 

and Widmer [11], lastly, present an algorithm based 

primarily on the pitch proximity principle, with some 

heuristics added to handle unsolved situations.  

In the remaining two methods, then, machine learning 

techniques are used. Kirlin and Utgoff [10] describe a 

system that consists of two components: a ‘predicate,’ 

implemented as a learned decision tree, that determines 

whether or not two notes belong to the same voice, and a 

hard-coded algorithm that then maps notes to voices. 

Jordanous [7] adopts a probabilistic approach based on a 
Markov model, and presents a system that learns the 

probability of each note belonging to each voice, as well 

as the probability of successive note pairs belonging to 

the same voice.  

In addition to these more recent methods, another rule-

based method—one designed specifically for automatic 

transcription of German lute tablature—was developed as 

early as the 1980s by Charnassé and Stepien [3]. In their 

research an approach was followed that combines expert 

knowledge encoded as rules with simpler heuristics. 

Although the results appear to be promising, the research 

seems to have ended prematurely.  

3.  PROPOSED MODELS 

We have implemented two models for voice separation in 

tablature. The first uses a discrete hidden Markov model 

[13] to predict voice assignments for complete chords; 

the second uses a neural network (NN) to predict voice 

assignments for individual notes. The HMM model, in 

which the tablature chords are the only observations, is 

straightforward and functions as a baseline model to 

compare the neural network model against.  

In our method, as in most existing methods, we use the 
notion of voice as a monophonic sequence of notes. In 

contrast to most rule-based methods, however, we allow 

voice crossings and shared notes (notes where two voices 

meet at the unison), both of which are perceptually 

problematic, but encountered frequently in polyphonic 

lute music. (This goes in particular for shared notes, 

which, especially in denser polyphony, are difficult to 

realise technically on the lute. Although actual unisons 

are sometimes used, a more idiomatic solution is to finger 

only one note of the unison—a technique also witnessed 

in keyboard music. Such notes shall henceforth be 

referred to as ‘shared single notes.’) Furthermore, unlike 
most existing methods, we assume in advance a 

maximum number of possible voices (five).2  

3.1 HMM Model 

We have used an HMM model in which the observations 

are the tablature chords, and the hidden states are the 

voice assignments. Each chord c is represented by a 

vector of pitches (MIDI numbers), depending on the 

number of notes in the chord ranging in length from 1 to 

4; each voice assignment qt for a given time frame t is 
represented by a vector of length 4. Here, each vector 

index represents a voice and can take the values -1, … , 3, 

where -1 denotes inactivity of the voice, and one of the 

other numbers the sequence number in the chord of the 

pitch that is assigned to that voice.   

For each training set used in cross-validation, we have 

created a transition probability matrix P(qt+1|qt), denoting 

the probability of having transitions between various 

voice assignments, an observation probability matrix 

P(ct|qt), denoting the probability of encountering chord ct 

given voice assignment qt, and an initial state distribution 
P(q1). Since a training set might contain no instances of 

certain chord-voice assignment combinations, we have 

modified P(ct|qt) by including a small non-zero 

                                                        
2
 Because of technical and physical limitations of lute and lutenist, more 

voices are rare in lute music. 



  

 

probability for all cases where the number of pitches in a 

chord is the same as the number of assigned pitches in a 

voice assignment. This way, we discourage the prediction 

of voice assignments in which too few or too many 

pitches are assigned. Finally, the optimal voice 

assignment sequence is computed using the Viterbi 

algorithm [13].  
It should be noted here that our HMM model is similar 

to Jordanous’s system, as described in [7]. Firstly, both 

are probabilistic approaches, and second, only pitch-

related observations from the training data are used. The 
main difference between her system and our HMM model 

is that in the former, a Markov chain with an ad-hoc cost 

function based on learned transition probabilities is used. 

Jordanous herself notes that “[i]t would be interesting to 

apply Hidden Markov Models . . . so that more of the 

previously allocated notes can be used to assist in voice 

allocation.” 

3.2 Neural Network Model 

In the neural network model, the task of voice separation 
is modelled as a classification problem where every 

tablature note is assigned to a voice—or, in the case of a 

shared single note, to two voices. We used a standard 

feed-forward neural network with resilient 

backpropagation (Rprop) [15] and sigmoid activation 

function, which provides a proven fast and robust 

learning model.3 The network consists of an input layer 

of 32 neurons, one hidden layer of 8 neurons, and an 

output layer of five neurons, each of which represents a 

voice. Having five output neurons enables us to use the 

network for five-voice lute music; however, because we 

are currently using a four-voice dataset, at the moment 
the fifth neuron is never activated. Using the sigmoid 

function, the individual output neurons all have activation 

values between 0 and 1; the neuron that gives the highest 

activation value determines the voice assignment 

decision. Prior to the actual training and testing, we have 

optimised the regularisation parameter λ (0.00003) and 

the number of hidden neurons (8) using a cross-validated 

grid search.  

Using cross-validation and regularisation, we have 

trained in three runs, where each run consisted of 200 

training epochs and the network weights were re-
initialised randomly at the start of each run. The model 

from the training run in which the lowest error rate (see 

Section 5) was obtained, was selected for the validation 

stage.  

In the validation stage, the model traverses the 

tablature note by note, from left to right (always starting 

with the lowest note in a chord), and assigns the notes to 

voices. The test process is linear, and previous voice 

assignments are not revised—except when an assignment 

conflict arises within a chord, i.e., when a note is 

assigned to a voice that was already assigned a note in the 
chord. Because we do not allow two notes within a chord 

to be assigned to the same voice, conflicts are solved 

using a heuristic that reassigns the current note to a yet 

                                                        
3
 We use the implementation provided by the Encog framework. See 

http://www.heatonresearch.com/encog (accessed May 2013). 

unassigned voice. Since we have encountered only two 

conflicts in our experiments, we will not go into further 

details on this heuristic here. We assume that the low 

number of conflicts is due to the fact that the voices 

already assigned in the chord are given as a feature to the 

network (see next section).  

3.2.1 Features 

A 32-dimensional feature vector is generated for each 

tablature note, which contains two types of information 
(see Table 1). Features 1-12 contain only tablature 

information, and consist of (a) features encoding 

instrument-technical properties of the note (1-8), and (b) 

features encoding information about the position of the 

note within the chord (9-12). Features 13-32 contain 

information about the note’s polyphonic embedding: (c) 

pitch and time proximities of the note to the previous note 

in each voice at the current onset time (13-27), and (d) 

the voices that have already been assigned to previous 

notes in the chord (28-32).  

Three things should be noted here. First, features 13-
27 encode, in essence, the principles that were labelled 

Pitch Proximity- and Temporal Continuity Principle by 

Huron [6]. Second, for the calculation of features 13-32, 

in addition to tablature information, voice assignment 

information is needed. Third, the time window within 

which the information is extracted that is used for the 

voice assignment decision, is presently still rather limited 

as it reaches back only one note per voice.  

 

Tablature information 

Note information 7. isOrnamentation 

1. pitch  8. isOpenCourse 

2. course Chord information 

3. fret 9. numberOfNotesBelow 

4. minDuration 10. numberOfNotesAbove 

5. maxDuration 11. pitchDistanceToNoteBelow 

6. chordSize 12. pitchDistanceToNoteAbove 

Polyphonic embedding information 

Pitch/time proximities 23-27. offsetOnsetProx 

13-17. pitchProx  Voices already assigned 

18-22. interOnsetProx 28-32. voicesAlreadyAssigned 

Table 1. Features for the NN model. 

4. DATASET 

At the moment, we are focusing on sixteenth-century lute 

music—more specifically, on intabulations, lute 

arrangements of polyphonic vocal pieces. There are three 

reasons for this choice. First, intabulations are highly 

representative of the entire sixteenth-century corpus since 

they then formed the predominant lute genre. Second, 

since the densest polyphonic structures in lute music are 

found in intabulations, they constitute a sub-corpus that is 

challenging for our research. Third, the use of 

intabulations provides an objective way of devising a 
ground truth by polyphonically aligning the tablature and 

the vocal pieces, whose voices are always notated 

separately. We have thus transcribed a number of 

carefully selected intabulations into modern music 



  

 

notation, and then converted these to MIDI, storing each 

voice in a separate file. The tablature encoding (in .txt 

format), together with the MIDI representation of the 

ground truth, are given as input to the model.  

The dataset currently consists of nine intabulations, all 

for four voices (the most common intabulation format), 

and contains pieces of different polyphonic texture: three 

imitative pieces, three ‘semi-imitative’ pieces (pieces that 

contain points of imitation, but whose structure is not 

governed by them), and three free pieces. It comprises a 

total of 8892 notes divided over 5156 chords, single-note 
chords included (Table 2). 

 

Piece Texture Notes Chords 

Ochsenkun 1558, 

Absolon fili mi 

imitative 1184 727 

Ochsenkun 1558, In exitu 

Israel de Egipto 
imitative 1974 1296 

Ochsenkun 1558, Qui 

habitat 

imitative 2238 1443 

Rotta 1546, Bramo morir free 708 322 

Phalèse 1547, Tant que 

uiuray  
free 457 228 

Ochsenkun1558, Herr 

Gott laß dich erbarmen  
free 371 195  

Abondante1548, Mais 

mamignone 

semi-
imitative 

705 316 

Phalèse 1563, Las on 

peult 

semi-
imitative 

777 395 

Barbetta 1582, Il nest 

plaisir 

semi-
imitative 

478 234 

Totals  8892 5156 

Table 2. The dataset used for the experiments. 

5. EVALUATION 

5.1 Evaluation Metrics 

Our main evaluation metric is the error rate, which is the 

percentage of notes assigned to an incorrect voice. The 

error rate is calculated by comparing, for each note, the 

predicted voice assignment with the ground truth voice 

assignment. For the NN model, we use two modes of 

evaluation. In test mode, we calculate the feature vectors 

with which the model is evaluated using the ground truth 

voice assignments. In application mode, which 

corresponds to the ‘real-world situation’ where the 

ground truth voice assignments are not provided, we 
calculate the feature vectors using the voice assignments 

predicted by the model. In application mode errors can 

propagate—once a note has been assigned to the wrong 

voice(s), this will influence the decision process for the 

assignment of the following notes or chords—typically 

resulting in higher error values. We thus distinguish 

between the test error, which is the error rate in test 

mode, and the application error, the error rate in 

application mode. For the HMM model, we evaluate 

using only a single metric that corresponds to the 

application error in the NN model. 

Furthermore, for both models we use a tolerant and a 
strict approach for calculating errors—a distinction that 

applies to how shared single notes are handled. We 

distinguish between fully correct assignments (C), fully 

incorrect assignments (I) and three additional mixed 

categories: one voice assigned correctly but the other 

overlooked (O); one voice assigned correctly but another 

assigned superfluously (S); and one voice assigned 

correctly but the other assigned incorrectly (CI). All 

possibilities are listed in Table 3. In the tolerant 

evaluation approach, then, O, S, and CI are not counted 

as errors; in the strict approach they are counted as 0.5 

errors.  

 
Error category P(n) G(n) Possibility 

C O S CI I 

P is G  X     1 1 

P is not G     X 

P is one of G   X    1 2 

P is none of G     X 

one of P is G   X   2 1 

none of P is G      X 

both P are G X     

one of P is G     X  

2 2 

none of P are G      X 

Table 3. Error categories (P(n) = predicted voice(s) for 

note n; G(n) = ground truth voice(s) for note n). 

5.2 Results 

We have trained and evaluated both models on the 
complete dataset using nine-fold cross-validation, where 

the folds correspond to the individual pieces in the dataset 

and each piece serves as test set once. The results are 

given in Table 4. 

 

Tolerant approach Strict approach 

Error (%) Std. dev. Error (%) Std. dev. 

NN model, test error 

11.52 3.41 12.87 3.63 

NN model, application error 

19.37 5.43 20.67 5.61 

HMM model, application error 

24.95 6.59 25.64 6.69 

Table 4. Averaged error rates (weighted) and standard 

deviation in cross-validation. 

6. DISCUSSION 

The performance of the models is compared by means of 

the application error rates. We see that the NN model 

outperforms the HMM model by about 5 percentage 

points—both when the tolerant and when the strict 

approach is applied. While the application error gives a 
realistic idea of how well the NN model actually 

performs, it is also interesting to have a look at the test 

error, which reflects the performance of the model when 

‘perfect’ context information—context information 

derived directly from the ground truth voice 

assignments—is provided. A comparison of the test and 

application mode informs us about error propagation in 

the application mode. On the individual pieces, the test 



  

 

errors are approximately between one half and two-thirds 

the size of the application errors, meaning that each 

misassigned note propagates 0.5-1.0 times. The high 

application errors might be explained at least partly by 

the observation that the pieces with high application 

errors contain many longer ornamental runs consisting of 

single notes, which are highly characteristic for lute 

music. Thus, when the first note of such a run is assigned 

to an incorrect voice, the following notes are very likely 

to be assigned to that voice as well. Because in such cases 

all notes are considered incorrect, single errors can 
propagate dramatically. However, the run as a whole will 

be assigned to a single voice, which is still a musically 

reasonable choice. This can be reflected using different 

evaluation metrics such as soundness and completeness 

(see Section 7).  

We also observe that both models have problems 

handling shared single notes. In the NN model, 118 of the 

129 shared single notes in the ground truth are assigned 

to only a single voice in test mode, and 114 in application 

mode. Moreover, 120 notes are superfluously assigned to 

a second voice in test mode, and 117 in application mode. 
We are currently using a simple heuristic to determine 

whether a note should be assigned to two voices: if the 

second highest activation value in the network output 

does not deviate more than 5.0% (the ‘deviation 

threshold’) from the highest activation value, the note is 

assigned to both corresponding voices. Although the 

current threshold leads to balanced results (118/114 

shared single notes assigned erroneously to a single 

voice, versus 120/117 non-shared notes assigned 

superfluously to two), the method for determining shared 

single notes could be improved. In the HMM model, 

then, the number of shared single notes assigned 
erroneously to a single voice is in the same range (95); 

the number of notes assigned superfluously to two voices, 

however, is much lower (27). With respect to handling 

shared single notes, the HMM model overall thus 

performs better. 

Voice crossings constitute another problem. An 

informal inspection shows that, in both models, most 

voice crossings are not detected. In the NN model, the 

main reason for this is that our features by design provide 

little support for voice crossings. This might be improved 

by including a ‘melodic Gestalt criterion’ in the form of 
features that represent melodic shape in the model. The 

inclusion of such features goes hand in hand with an 

increase of the information extraction window. 

7. COMPARISON 

We have compared our NN model with several of the 

existing methods for voice separation for which results 

and evaluation metrics are documented [4, 7, 10, 11, 14]. 

Using the same cross-validated procedure as above, but 

now excluding tablature-specific features such as course 
and fret, we have trained and tested the NN model on a 

small dataset that is comparable to those used in the 

above methods, and then evaluated the results using the 

different evaluation metrics proposed. It must be noted 

that the results of the comparison are only indicative, as 

the datasets used are similar but not identical and not all 

evaluation metrics are defined in detail.  

Our dataset consists of the first five three-voice and 

the first five four-voice fugues of book I of Johann 

Sebastian Bach’s Wohltemperirtes Clavier. 4  This 

collection of 48 preludes and fugues has been used, in 

total or in part, as the test set in most other methods we 

compare with—the only exception being the one 

described in [10], where the model is trained and tested 

on excerpts of the (stylistically comparable) chaconne 

from Bach’s second violin partita (BWV 1004).  
To enable a comparison we use five evaluation 

metrics: precision and recall, defined in [7] as “the 

percentage of notes allocated to a voice that correctly 

belong to that voice” (precision) and “the percentage of 

notes in the voice that are successfully allocated to that 

voice” (recall); soundness and completeness, defined in 

[10] as the percentage of adjacent note pairs in a 

predicted voice of which both notes belong to the same 

ground truth voice (soundness) and, conversely, the 

percentage of adjacent note pairs in a ground truth voice 

of which both notes have been assigned to the same 
predicted voice (completeness); and Average Voice 

Consistency (AVC) as used by [4], which measures, “on 

average, the proportion of notes from the same voice that 

have been assigned . . . to the same voice.”  

 

Evaluation metric (%)  Dataset 

P R S C A 

NN 10 fugues  

(3-4vv) 

83.12 

 

83.12 

 

94.07 

 

93.42 

 

82.67 

 

[4]  48 fugues 
(3-5vv) 

    84.39 

[7]  45 fugues 
(3-4vv) 

80.88 80.85    

[10]  Bach 

chaconne 

  88.65 65.57  

[11] 30 Bach 
Inventions 
(2-3vv);  
48 fugues 
(3-5vv) 

  95.94 70.11  

[14]  4 fugues 

(3-4vv) 

 92.50    

Table 5. Comparison of the NN model with other 

methods (P = precision; R = recall; S = soundness; C = 

completeness; A = Average Voice Consistency).5  

As can be seen in Table 5, the results obtained by our NN 

model are in a similar range as those reported for the 
other models, and at times better. Moreover, with an 

application error of 16.87% (and a test error of 4.00%), 

the NN model performs better than on tablature (cf. Table 

4).  

                                                        
4

 The dataset (in the form of MIDI files) was retrieved from 

www.musedata.org (accessed July 2013). 
5
 In [11] it is stated that soundness and completeness “as suggested by 

Kirlin [and Utgoff]” were used as evaluation metrics; however, the 

textual definitions given differ. We have not yet been able to clarify this 

inconsistency, so we present the numbers and metrics exactly as in [11]. 

[14] use ‘accuracy’ as metric, whose definition matches that of recall. 



  

 

8. CONCLUSIONS AND FUTURE WORK 

In this paper we propose a neural network model for 

voice separation in lute tablature. This model is more 

flexible than the existing rule-based models in that it 

adapts to the data, and thus is less restricted with regard 

to what needs to be fixed as a priori rules. The model 

clearly outperforms the baseline HMM model and also 

seems to be more robust. In addition, it performs 

apparently competitively with the existing voice 
separation methods we have compared it with; however, 

extended tests will be needed for a systematic 

comparison. Although there is still room for 

improvement, the results are sufficiently promising to 

continue experimenting—not only with NN models, but 

also with different HMM models. Issues that need to be 

solved in particular are the high error propagation in the 

NN model’s application mode, which currently 

complicates a real-world application, the handling of 

shared single notes, and the detection of voice crossings.     

In future work, we will therefore extend the current 
NN model by including more features and by expanding 

the information extraction window. Additionally, we 

have started working on an approach that does not assign 

individual notes, but rather complete chords, to voices. 

With regard to the HMM model, we will experiment with 

more complex models using Gaussian mixture HMMs 

and factorial HMMs. Lastly, we are planning to work 

towards a more comprehensive and rigorous comparison 

of voice separation methods.      
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