

A MACHINE LEARNING APPROACH TO VOICE

SEPARATION IN LUTE TABLATURE

Reinier de Valk Tillman Weyde Emmanouil Benetos

Music Informatics Research Group

 Department of Computer Science

City University London
{r.f.de.valk,t.e.weyde,Emmanouil.Benetos.1}@city.ac.uk

ABSTRACT

In this paper, we propose a machine learning model for

voice separation in lute tablature. Lute tablature is a

practical notation that reveals only very limited
information about polyphonic structure. This has

complicated research into the large surviving corpus of

lute music, notated exclusively in tablature. A solution

may be found in automatic transcription, of which voice

separation is a necessary step. During the last decade,

several methods for separating voices in symbolic

polyphonic music formats have been developed.

However, all but two of these methods adopt a rule-based

approach; moreover, none of them is designed for

tablature. Our method differs on both these points. First,

rather than using fixed rules, we use a model that learns
from data: a neural network that predicts voice

assignments for notes. Second, our method is specifically

designed for tablature—tablature information is included

in the features used as input for the models—but it can

also be applied to other music corpora. We have

experimented on a dataset containing tablature pieces of

different polyphonic textures, and compare the results

against those obtained from a baseline hidden Markov

model (HMM) model. Additionally, we have performed a

preliminary comparison of the neural network model with

several existing methods for voice separation on a small

dataset. We have found that the neural network model
performs clearly better than the baseline model, and

competitively with the existing methods.

1. INTRODUCTION

The lute, an instrument widely used from the early

sixteenth to the mid-eighteenth century, has left us with a

considerable corpus of instrumental polyphonic music:

over 860 print and manuscript sources survive, containing

approximately 60,000 pieces [12]. This music is notated

exclusively in lute tablature. Lute tablature is a practical
notation that provides no direct pitch information and

only limited rhythmic information, but instead instructs

the player where to place the fingers on the fretboard and

which strings to pluck (see Figure 1). It reveals very little

about the polyphonic structure of the music it encodes,

since it specifies neither to which polyphonic voice the

tablature notes belong, nor what their individual durations

are. Lute tablature’s “alien nature” [5] is the principal

reason why, apart from a number of specialist studies,

this large and important corpus has so far escaped

systematic musicological research.

Figure 1. Excerpt of lute tablature in Italian style.

Transcription into modern music notation—a format

much more familiar to the twenty-first-century scholar or

musician—will increase the accessibility of the corpus,
and, in fact, is the current modus operandi among those

studying lute music. Transcribing tablature, however, is a

time-consuming and specialist enterprise. Automatic

transcription into modern music notation may provide a

solution. An important step in the process of (automatic)

transcription of polyphonic music is voice separation, i.e.,

the separation of the individual melodic lines (‘voices’)

that together constitute the polyphonic fabric. Using

machine learning techniques, we have developed two

models for voice separation in lute tablature—a neural

network model and a baseline hidden Markov model
(HMM) model—which, with some modifications, can

also be applied to other music corpora.

The outline of this paper is as follows: in Section 2, the

existing methods for voice separation are discussed. In

Section 3 the proposed models are introduced, and in

Section 4 the dataset is presented. Section 5 is dedicated

to the evaluation of the models; in Section 6 the results

are discussed; and in Section 7 the performance of the

neural network model is compared with that of several

existing methods. Concluding thoughts are presented in

Section 8.

2. RELATED WORK

During the last decade, several methods for separating

voices in symbolic polyphonic music formats have been

developed.1 Except for two, described further below, all

of these methods are rule-based. More concretely, they

are based on at least one of two fundamental perceptual

principles that group notes into voices, which have been

1
 In addition, a number of methods for voice separation in music in

audio format exist—these, however, are left out of consideration here.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page.

© 2013 International Society for Music Information Retrieval

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen Mary Research Online

https://core.ac.uk/display/30697609?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

labelled the Pitch Proximity Principle and the Temporal

Continuity Principle by Huron [6]. These principles

imply that the closer notes are to one another in terms of

pitch or time, respectively, the more likely they are

perceived as belonging to the same voice. In addition,

some of the methods include supplementary perceptual

principles. Although these methods vary considerably in

their approach, in each of them, the perceptual principles

it is based on guide the voice assignment procedure.

Temperley [17] adopts an approach based on four

‘preference rules,’ i.e., criteria to evaluate a possible
analysis. Two of these match the abovementioned

principles; the other two prescribe to minimise the

number of voices (New Stream Rule) and to avoid shared

notes (Collision Rule). Cambouropoulos [1] briefly

describes an elementary version of a voice separation

algorithm based on the (Gestalt) principle of pitch

proximity only. Chew and Wu [4] use a ‘contig’

approach, in which the music is divided into segments

where a constant number of voices is active (the contigs).

The voice fragments in the segments are then connected

on the basis of pitch proximity; voice crossings are
forbidden. Szeto and Wong [16] consider voices to be

clusters containing events proximal in the pitch and time

dimensions, and model voice separation as a clustering

problem. The aim of their research, however, is to design

a system for pattern matching, and not one for voice

separation. In their method, voice separation is only a

pre-processing step that prevents “perceptually

insignificant stream-crossing patterns” from being

returned by the system. Kilian and Hoos [9] present an

algorithm that is not intended primarily for correct voice

separation, but rather for creating “reasonable and

flexible score notation.” Their method allows for
complete chords in a single voice. In the method

presented by Karydis et. al [8], too, a ‘voice’ is not

necessarily a “monophonic sequence of successive non-

overlapping notes” [2]. Rather, they prefer to use the term

‘stream,’ which they define as “a perceptually

independent voice consisting of single or multi-note

sonorities.” Hence, in addition to the ‘horizontal’ pitch

and time proximity principles, they include two ‘vertical

integration’ principles into their method: the Synchronous

Note Principle (based on Huron’s Onset Synchrony

Principle) and the Principle of Tonal Fusion (based on
Huron’s Tonal Fusion Principle). A new version of this

algorithm is described in Rafailidis et al. [14]. Madsen

and Widmer [11], lastly, present an algorithm based

primarily on the pitch proximity principle, with some

heuristics added to handle unsolved situations.

In the remaining two methods, then, machine learning

techniques are used. Kirlin and Utgoff [10] describe a

system that consists of two components: a ‘predicate,’

implemented as a learned decision tree, that determines

whether or not two notes belong to the same voice, and a

hard-coded algorithm that then maps notes to voices.

Jordanous [7] adopts a probabilistic approach based on a
Markov model, and presents a system that learns the

probability of each note belonging to each voice, as well

as the probability of successive note pairs belonging to

the same voice.

In addition to these more recent methods, another rule-

based method—one designed specifically for automatic

transcription of German lute tablature—was developed as

early as the 1980s by Charnassé and Stepien [3]. In their

research an approach was followed that combines expert

knowledge encoded as rules with simpler heuristics.

Although the results appear to be promising, the research

seems to have ended prematurely.

3. PROPOSED MODELS

We have implemented two models for voice separation in

tablature. The first uses a discrete hidden Markov model

[13] to predict voice assignments for complete chords;

the second uses a neural network (NN) to predict voice

assignments for individual notes. The HMM model, in

which the tablature chords are the only observations, is

straightforward and functions as a baseline model to

compare the neural network model against.

In our method, as in most existing methods, we use the
notion of voice as a monophonic sequence of notes. In

contrast to most rule-based methods, however, we allow

voice crossings and shared notes (notes where two voices

meet at the unison), both of which are perceptually

problematic, but encountered frequently in polyphonic

lute music. (This goes in particular for shared notes,

which, especially in denser polyphony, are difficult to

realise technically on the lute. Although actual unisons

are sometimes used, a more idiomatic solution is to finger

only one note of the unison—a technique also witnessed

in keyboard music. Such notes shall henceforth be

referred to as ‘shared single notes.’) Furthermore, unlike
most existing methods, we assume in advance a

maximum number of possible voices (five).2

3.1 HMM Model

We have used an HMM model in which the observations

are the tablature chords, and the hidden states are the

voice assignments. Each chord c is represented by a

vector of pitches (MIDI numbers), depending on the

number of notes in the chord ranging in length from 1 to

4; each voice assignment qt for a given time frame t is
represented by a vector of length 4. Here, each vector

index represents a voice and can take the values -1, … , 3,

where -1 denotes inactivity of the voice, and one of the

other numbers the sequence number in the chord of the

pitch that is assigned to that voice.

For each training set used in cross-validation, we have

created a transition probability matrix P(qt+1|qt), denoting

the probability of having transitions between various

voice assignments, an observation probability matrix

P(ct|qt), denoting the probability of encountering chord ct

given voice assignment qt, and an initial state distribution
P(q1). Since a training set might contain no instances of

certain chord-voice assignment combinations, we have

modified P(ct|qt) by including a small non-zero

2
 Because of technical and physical limitations of lute and lutenist, more

voices are rare in lute music.

probability for all cases where the number of pitches in a

chord is the same as the number of assigned pitches in a

voice assignment. This way, we discourage the prediction

of voice assignments in which too few or too many

pitches are assigned. Finally, the optimal voice

assignment sequence is computed using the Viterbi

algorithm [13].
It should be noted here that our HMM model is similar

to Jordanous’s system, as described in [7]. Firstly, both

are probabilistic approaches, and second, only pitch-

related observations from the training data are used. The
main difference between her system and our HMM model

is that in the former, a Markov chain with an ad-hoc cost

function based on learned transition probabilities is used.

Jordanous herself notes that “[i]t would be interesting to

apply Hidden Markov Models . . . so that more of the

previously allocated notes can be used to assist in voice

allocation.”

3.2 Neural Network Model

In the neural network model, the task of voice separation
is modelled as a classification problem where every

tablature note is assigned to a voice—or, in the case of a

shared single note, to two voices. We used a standard

feed-forward neural network with resilient

backpropagation (Rprop) [15] and sigmoid activation

function, which provides a proven fast and robust

learning model.3 The network consists of an input layer

of 32 neurons, one hidden layer of 8 neurons, and an

output layer of five neurons, each of which represents a

voice. Having five output neurons enables us to use the

network for five-voice lute music; however, because we

are currently using a four-voice dataset, at the moment
the fifth neuron is never activated. Using the sigmoid

function, the individual output neurons all have activation

values between 0 and 1; the neuron that gives the highest

activation value determines the voice assignment

decision. Prior to the actual training and testing, we have

optimised the regularisation parameter λ (0.00003) and

the number of hidden neurons (8) using a cross-validated

grid search.

Using cross-validation and regularisation, we have

trained in three runs, where each run consisted of 200

training epochs and the network weights were re-
initialised randomly at the start of each run. The model

from the training run in which the lowest error rate (see

Section 5) was obtained, was selected for the validation

stage.

In the validation stage, the model traverses the

tablature note by note, from left to right (always starting

with the lowest note in a chord), and assigns the notes to

voices. The test process is linear, and previous voice

assignments are not revised—except when an assignment

conflict arises within a chord, i.e., when a note is

assigned to a voice that was already assigned a note in the
chord. Because we do not allow two notes within a chord

to be assigned to the same voice, conflicts are solved

using a heuristic that reassigns the current note to a yet

3
 We use the implementation provided by the Encog framework. See

http://www.heatonresearch.com/encog (accessed May 2013).

unassigned voice. Since we have encountered only two

conflicts in our experiments, we will not go into further

details on this heuristic here. We assume that the low

number of conflicts is due to the fact that the voices

already assigned in the chord are given as a feature to the

network (see next section).

3.2.1 Features

A 32-dimensional feature vector is generated for each

tablature note, which contains two types of information
(see Table 1). Features 1-12 contain only tablature

information, and consist of (a) features encoding

instrument-technical properties of the note (1-8), and (b)

features encoding information about the position of the

note within the chord (9-12). Features 13-32 contain

information about the note’s polyphonic embedding: (c)

pitch and time proximities of the note to the previous note

in each voice at the current onset time (13-27), and (d)

the voices that have already been assigned to previous

notes in the chord (28-32).

Three things should be noted here. First, features 13-
27 encode, in essence, the principles that were labelled

Pitch Proximity- and Temporal Continuity Principle by

Huron [6]. Second, for the calculation of features 13-32,

in addition to tablature information, voice assignment

information is needed. Third, the time window within

which the information is extracted that is used for the

voice assignment decision, is presently still rather limited

as it reaches back only one note per voice.

Tablature information

Note information 7. isOrnamentation

1. pitch 8. isOpenCourse

2. course Chord information

3. fret 9. numberOfNotesBelow

4. minDuration 10. numberOfNotesAbove

5. maxDuration 11. pitchDistanceToNoteBelow

6. chordSize 12. pitchDistanceToNoteAbove

Polyphonic embedding information

Pitch/time proximities 23-27. offsetOnsetProx

13-17. pitchProx Voices already assigned

18-22. interOnsetProx 28-32. voicesAlreadyAssigned

Table 1. Features for the NN model.

4. DATASET

At the moment, we are focusing on sixteenth-century lute

music—more specifically, on intabulations, lute

arrangements of polyphonic vocal pieces. There are three

reasons for this choice. First, intabulations are highly

representative of the entire sixteenth-century corpus since

they then formed the predominant lute genre. Second,

since the densest polyphonic structures in lute music are

found in intabulations, they constitute a sub-corpus that is

challenging for our research. Third, the use of

intabulations provides an objective way of devising a
ground truth by polyphonically aligning the tablature and

the vocal pieces, whose voices are always notated

separately. We have thus transcribed a number of

carefully selected intabulations into modern music

notation, and then converted these to MIDI, storing each

voice in a separate file. The tablature encoding (in .txt

format), together with the MIDI representation of the

ground truth, are given as input to the model.

The dataset currently consists of nine intabulations, all

for four voices (the most common intabulation format),

and contains pieces of different polyphonic texture: three

imitative pieces, three ‘semi-imitative’ pieces (pieces that

contain points of imitation, but whose structure is not

governed by them), and three free pieces. It comprises a

total of 8892 notes divided over 5156 chords, single-note
chords included (Table 2).

Piece Texture Notes Chords

Ochsenkun 1558,

Absolon fili mi

imitative 1184 727

Ochsenkun 1558, In exitu

Israel de Egipto
imitative 1974 1296

Ochsenkun 1558, Qui

habitat

imitative 2238 1443

Rotta 1546, Bramo morir free 708 322

Phalèse 1547, Tant que

uiuray
free 457 228

Ochsenkun1558, Herr

Gott laß dich erbarmen
free 371 195

Abondante1548, Mais

mamignone

semi-
imitative

705 316

Phalèse 1563, Las on

peult

semi-
imitative

777 395

Barbetta 1582, Il nest

plaisir

semi-
imitative

478 234

Totals 8892 5156

Table 2. The dataset used for the experiments.

5. EVALUATION

5.1 Evaluation Metrics

Our main evaluation metric is the error rate, which is the

percentage of notes assigned to an incorrect voice. The

error rate is calculated by comparing, for each note, the

predicted voice assignment with the ground truth voice

assignment. For the NN model, we use two modes of

evaluation. In test mode, we calculate the feature vectors

with which the model is evaluated using the ground truth

voice assignments. In application mode, which

corresponds to the ‘real-world situation’ where the

ground truth voice assignments are not provided, we
calculate the feature vectors using the voice assignments

predicted by the model. In application mode errors can

propagate—once a note has been assigned to the wrong

voice(s), this will influence the decision process for the

assignment of the following notes or chords—typically

resulting in higher error values. We thus distinguish

between the test error, which is the error rate in test

mode, and the application error, the error rate in

application mode. For the HMM model, we evaluate

using only a single metric that corresponds to the

application error in the NN model.

Furthermore, for both models we use a tolerant and a
strict approach for calculating errors—a distinction that

applies to how shared single notes are handled. We

distinguish between fully correct assignments (C), fully

incorrect assignments (I) and three additional mixed

categories: one voice assigned correctly but the other

overlooked (O); one voice assigned correctly but another

assigned superfluously (S); and one voice assigned

correctly but the other assigned incorrectly (CI). All

possibilities are listed in Table 3. In the tolerant

evaluation approach, then, O, S, and CI are not counted

as errors; in the strict approach they are counted as 0.5

errors.

Error category P(n) G(n) Possibility

C O S CI I

P is G X 1 1

P is not G X

P is one of G X 1 2

P is none of G X

one of P is G X 2 1

none of P is G X

both P are G X

one of P is G X

2 2

none of P are G X

Table 3. Error categories (P(n) = predicted voice(s) for

note n; G(n) = ground truth voice(s) for note n).

5.2 Results

We have trained and evaluated both models on the
complete dataset using nine-fold cross-validation, where

the folds correspond to the individual pieces in the dataset

and each piece serves as test set once. The results are

given in Table 4.

Tolerant approach Strict approach

Error (%) Std. dev. Error (%) Std. dev.

NN model, test error

11.52 3.41 12.87 3.63

NN model, application error

19.37 5.43 20.67 5.61

HMM model, application error

24.95 6.59 25.64 6.69

Table 4. Averaged error rates (weighted) and standard

deviation in cross-validation.

6. DISCUSSION

The performance of the models is compared by means of

the application error rates. We see that the NN model

outperforms the HMM model by about 5 percentage

points—both when the tolerant and when the strict

approach is applied. While the application error gives a
realistic idea of how well the NN model actually

performs, it is also interesting to have a look at the test

error, which reflects the performance of the model when

‘perfect’ context information—context information

derived directly from the ground truth voice

assignments—is provided. A comparison of the test and

application mode informs us about error propagation in

the application mode. On the individual pieces, the test

errors are approximately between one half and two-thirds

the size of the application errors, meaning that each

misassigned note propagates 0.5-1.0 times. The high

application errors might be explained at least partly by

the observation that the pieces with high application

errors contain many longer ornamental runs consisting of

single notes, which are highly characteristic for lute

music. Thus, when the first note of such a run is assigned

to an incorrect voice, the following notes are very likely

to be assigned to that voice as well. Because in such cases

all notes are considered incorrect, single errors can
propagate dramatically. However, the run as a whole will

be assigned to a single voice, which is still a musically

reasonable choice. This can be reflected using different

evaluation metrics such as soundness and completeness

(see Section 7).

We also observe that both models have problems

handling shared single notes. In the NN model, 118 of the

129 shared single notes in the ground truth are assigned

to only a single voice in test mode, and 114 in application

mode. Moreover, 120 notes are superfluously assigned to

a second voice in test mode, and 117 in application mode.
We are currently using a simple heuristic to determine

whether a note should be assigned to two voices: if the

second highest activation value in the network output

does not deviate more than 5.0% (the ‘deviation

threshold’) from the highest activation value, the note is

assigned to both corresponding voices. Although the

current threshold leads to balanced results (118/114

shared single notes assigned erroneously to a single

voice, versus 120/117 non-shared notes assigned

superfluously to two), the method for determining shared

single notes could be improved. In the HMM model,

then, the number of shared single notes assigned
erroneously to a single voice is in the same range (95);

the number of notes assigned superfluously to two voices,

however, is much lower (27). With respect to handling

shared single notes, the HMM model overall thus

performs better.

Voice crossings constitute another problem. An

informal inspection shows that, in both models, most

voice crossings are not detected. In the NN model, the

main reason for this is that our features by design provide

little support for voice crossings. This might be improved

by including a ‘melodic Gestalt criterion’ in the form of
features that represent melodic shape in the model. The

inclusion of such features goes hand in hand with an

increase of the information extraction window.

7. COMPARISON

We have compared our NN model with several of the

existing methods for voice separation for which results

and evaluation metrics are documented [4, 7, 10, 11, 14].

Using the same cross-validated procedure as above, but

now excluding tablature-specific features such as course
and fret, we have trained and tested the NN model on a

small dataset that is comparable to those used in the

above methods, and then evaluated the results using the

different evaluation metrics proposed. It must be noted

that the results of the comparison are only indicative, as

the datasets used are similar but not identical and not all

evaluation metrics are defined in detail.

Our dataset consists of the first five three-voice and

the first five four-voice fugues of book I of Johann

Sebastian Bach’s Wohltemperirtes Clavier. 4 This

collection of 48 preludes and fugues has been used, in

total or in part, as the test set in most other methods we

compare with—the only exception being the one

described in [10], where the model is trained and tested

on excerpts of the (stylistically comparable) chaconne

from Bach’s second violin partita (BWV 1004).
To enable a comparison we use five evaluation

metrics: precision and recall, defined in [7] as “the

percentage of notes allocated to a voice that correctly

belong to that voice” (precision) and “the percentage of

notes in the voice that are successfully allocated to that

voice” (recall); soundness and completeness, defined in

[10] as the percentage of adjacent note pairs in a

predicted voice of which both notes belong to the same

ground truth voice (soundness) and, conversely, the

percentage of adjacent note pairs in a ground truth voice

of which both notes have been assigned to the same
predicted voice (completeness); and Average Voice

Consistency (AVC) as used by [4], which measures, “on

average, the proportion of notes from the same voice that

have been assigned . . . to the same voice.”

Evaluation metric (%) Dataset

P R S C A

NN 10 fugues

(3-4vv)

83.12

83.12

94.07

93.42

82.67

[4] 48 fugues
(3-5vv)

 84.39

[7] 45 fugues
(3-4vv)

80.88 80.85

[10] Bach

chaconne

 88.65 65.57

[11] 30 Bach
Inventions
(2-3vv);
48 fugues
(3-5vv)

 95.94 70.11

[14] 4 fugues

(3-4vv)

 92.50

Table 5. Comparison of the NN model with other

methods (P = precision; R = recall; S = soundness; C =

completeness; A = Average Voice Consistency).5

As can be seen in Table 5, the results obtained by our NN

model are in a similar range as those reported for the
other models, and at times better. Moreover, with an

application error of 16.87% (and a test error of 4.00%),

the NN model performs better than on tablature (cf. Table

4).

4

 The dataset (in the form of MIDI files) was retrieved from

www.musedata.org (accessed July 2013).
5
 In [11] it is stated that soundness and completeness “as suggested by

Kirlin [and Utgoff]” were used as evaluation metrics; however, the

textual definitions given differ. We have not yet been able to clarify this

inconsistency, so we present the numbers and metrics exactly as in [11].

[14] use ‘accuracy’ as metric, whose definition matches that of recall.

8. CONCLUSIONS AND FUTURE WORK

In this paper we propose a neural network model for

voice separation in lute tablature. This model is more

flexible than the existing rule-based models in that it

adapts to the data, and thus is less restricted with regard

to what needs to be fixed as a priori rules. The model

clearly outperforms the baseline HMM model and also

seems to be more robust. In addition, it performs

apparently competitively with the existing voice
separation methods we have compared it with; however,

extended tests will be needed for a systematic

comparison. Although there is still room for

improvement, the results are sufficiently promising to

continue experimenting—not only with NN models, but

also with different HMM models. Issues that need to be

solved in particular are the high error propagation in the

NN model’s application mode, which currently

complicates a real-world application, the handling of

shared single notes, and the detection of voice crossings.

In future work, we will therefore extend the current
NN model by including more features and by expanding

the information extraction window. Additionally, we

have started working on an approach that does not assign

individual notes, but rather complete chords, to voices.

With regard to the HMM model, we will experiment with

more complex models using Gaussian mixture HMMs

and factorial HMMs. Lastly, we are planning to work

towards a more comprehensive and rigorous comparison

of voice separation methods.

9. ACKNOWLEDGEMENTS

Reinier de Valk is supported by a City University London

PhD Studentship and Emmanouil Benetos is supported by

a City University London Research Fellowship.

10. REFERENCES

[1] E. Cambouropoulos: “From MIDI to Traditional

Musical Notation,” Proceedings of the AAAI

Workshop on Artificial Intelligence and Music, n.p.,

2000.

[2] E. Cambouropoulos: “ʻVoice’ Separation: Theo-

retical, Perceptual and Computational Perspectives,”

Proceedings of the 9th International Conference on

Music Perception and Cognition, pp. 987-997, 2006.

[3] H. Charnassé and B. Stepien: “Automatic

Transcription of German Lute Tablatures: An

Artificial Intelligence Application,” Computer

Representations and Models in Music, Ed. A.

Marsden and A. Pople, Academic Press, London, pp.

144-70, 1992.

[4] E. Chew and X. Wu: “Separating Voices in

Polyphonic Music: A Contig Mapping Approach,ˮ

Computer Music Modeling and Retrieval: Second

International Symposium, Revised Papers, Ed. U. K.

Wiil, Springer, Berlin, pp. 1-20, 2004.

[5] J. Griffiths: “The Lute and the Polyphonist,” Studi

Musicali, Vol. 31, No. 1, pp. 89-108, 2002.

[6] D. Huron: “Tone and Voice: A Derivation of the

Rules of Voice-Leading from Perceptual Principles,”

Music Perception, Vol. 19, No. 1, pp. 1-64, 2001.

[7] A. Jordanous: “Voice Separation in Polyphonic

Music: A Data-Driven Approach,” Proceedings of

the International Computer Music Conference, n.p.,

2008.

[8] I. Karydis et al.: “Horizontal and Vertical

Integration/Segregation in Auditory Streaming: A

Voice Separation Algorithm for Symbolic Musical

Data,” Proceedings of the 4th Sound and Music

Computing Conference, pp. 299-306, 2007.

[9] J. Kilian and H. Hoos: “Voice separation—A Local

Optimisation Approach,” Proceedings of the 3rd

International Conference on Music Information

Retrieval, n.p., 2002.

[10] P. Kirlin and P. Utgoff: “VoiSe: Learning to

Segregate Voices in Explicit and Implicit

Polyphony,” Proceedings of the 6th International

Conference on Music Information Retrieval, pp.

552-557, 2005.

[11] S. T. Madsen and G. Widmer: “Separating Voices in

MIDI,” Proceedings of the 7th International

Conference on Music Information Retrieval, n.p.,

2006.

[12] A. J. Ness and C. A. Kolczynski: “Sources of Lute

Music,” The New Grove Dictionary of Music and

Musicians, 2nd ed., Ed. S. Sadie, Macmillan,

London, pp. 39-63, 2001.

[13] L. R. Rabiner: “A Tutorial on Hidden Markov

Models and Selected Applications in Speech

Recognition,” Proceedings of the IEEE, Vol. 77, No.

2, pp. 257-286, 1989.

[14] D. Rafailidis, E. Cambouropoulos, and Y.

Manolopoulos: “Musical Voice Integration/

Segregation: VISA Revisited,” Proceedings of the

6th Sound and Music Computing Conference, pp.

42-47, 2009.

[15] M. Riedmiller and H. Braun: “RPROP—A Fast

Adaptive Learning Algorithm,” Proceedings of the

International Symposium on Computer and

Information Science, n.p., 1992.

[16] W. M. Szeto and M. H. Wong: “Stream Segregation

Algorithm for Pattern Matching in Polyphonic

Music Databases,” Multimedia Tools and

Applications, Vol. 30, pp. 109-127, 2006.

[17] D. Temperley: The Cognition of Basic Musical

Structures, The MIT Press, Cambridge, MA, 2001.

