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Abstract— Learning visual words from video frames is chal-
lenging because deciding which word to assign to each subset
of frames is a difficult task. For example, two similar frames
may have different meanings in describing human actions such
as starting to run and starting to walk. In order to associate
richer information to vector-quantization and generate visual
words, several approaches have been proposed recently that use
complex algorithms to extract or learn spatio-temporal features
from 3-D volumes of video frames. In this paper, we propose
an efficient method to use Gaussian RBM for learning motion-
difference features from actions in videos. The difference
between two video frames is defined by a subtraction function
of one frame by another that preserves positive and nega-
tive changes, thus creating a simple spatio-temporal saliency
map for an action. This subtraction function removes, by
construction, the common shapes and background images that
should not be relevant for action learning and recognition, and
highlights the movement patterns in space, making it easier to
learn the actions from such saliency maps using shallow feature
learning models such as RBMs. In the experiments reported in
this paper, we used a Gaussian restricted Boltzmann machine to
learn the actions from saliency maps of different motion images.
Despite its simplicity, the motion-difference method achieved
very good performance in benchmark datasets, specifically the
Weizmann dataset (98.81%) and the KTH dataset (88.89%). A
comparative analysis with hand-crafted and learned features
using similar classifiers indicates that motion-difference can be
competitive and very efficient.

I. INTRODUCTION

Human action recognition is considered to be a funda-
mental topic in computer vision research, with numerous
applications in surveillance and retrieval systems [5], [13].
However, action recognition is still an open problem due to
numerous associated challenges, including camera motion,
occlusion, and cluttered background [26].

Typically, action recognition systems model video record-
ings as collections of visual words, which are estimated
using hand-crafted features. Extracting features from each
frame image to build codewords has been proved an efficient
and useful approach. Zhang and Gong [28] used visual
words generated from local shape context descriptors [1]
to evaluate their proposed variant of Probabilistic Latent
Semantic Analysis (PLSA) [12], namely structural PLSA.
Wang and Mori [24] showed that motion descriptors [8]
work perfectly on the Weizmann human action dataset [3].
Lin et al. [16] combine shape and motion descriptors to
generate visual words and represent an action as a sequence
of prototypes.
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However, spatial features alone, such as shape descriptors,
are not sufficient since visual words from video should
be characterized by both spatial and temporal information.
Schuldt et al. [19] use local space-time features with support
vector machines (SVMs) to recognize human actions in the
proposed KTH dataset. Xu et al. [26] employed the incremen-
tal expectation-maximization algorithm to improve PLSA
performance for action classification with the use of colour-
coded space-time features. Niebles et al. [17] utilized spatio-
temporal features to generate visual words and performed
action modelling using PLSA.

Recently, unsupervised learning algorithms have been em-
ployed to learn spatio-temporal features from video for visual
word construction. In [6], Bo et al. proposed the Space-
Time Deep Belief Network, a model based on Convolutional
Deep Belief Networks (CDBNs) [15] to aggregate spatial
and temporal information. Le et al. [14] also applied the
idea of convolution and stacking in CDBNs [15] to build
a deep network that can be trained efficiently. Taylor et
al. [22] employed convolutional gated Restricted Boltzmann
Machines (RBMs) for learning low-level spatio-temporal
features in a multi-stage architecture for action recognition.

Despite achieving good performance on benchmark
datasets, per-frame visual word approaches need to extract
large-scale features from every single image in the video. For
example, in [28], the features extracted from a frame have
dimensionality of 100×60 for 100 interest points, where the
dimensionality of each point is 60. The motion descriptor
[8] is a set of four channels computed from optical flow at
a frame in a stabilized video sequence, with each channel
having the same size as the frame. For spatio-temporal
features, the data structure of video is quite complex. In
unsupervised learning, it can be said that if one has good
features, one only needs a simple classifier to achieve a good
performance. However, learning good features from complex
structures such as shape and movement in videos normally
requires a complex algorithm [15], [6], [22].

In this paper, we propose a new approach to learn spatio-
temporal features using a difference measure between frames
in a video sequence, called motion-difference, and applying
Gaussian RBMs. Motion-difference removes the common
shapes and background images that should not be relevant for
action learning and recognition, and highlights the movement
patterns in space, making it easier to learn the actions from
such saliency maps using a simple classifier. Our motion-
difference is similar to motion-history [4] in that the images
are constructed from sequence of frames, and therefore, be
able to capture moving information of the human in a video.
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Fig. 1. Learning Motion-Difference Features for Action Recognition

However, in [4] a motion-history is an accumulative merging
of every shape in consecutive frames, while in motion-
difference common shapes between frames are removed. Our
approach is also different from [27] in that their difference
function only produces absolute values after subtraction for
the purpose of edge detection. Motion-difference is able to
represent both spatial information and temporal relations in
a video frame by preserving negative and positive pixels
in the resulting saliency map, thus indicating movement
patterns and removing unnecessary common shapes and
background between two frames. Despite its simplicity, the
motion-difference method achieved very good performance
in benchmark dataset such as the Weizmann dataset (98.81%)
and the KTH dataset (88.89%). A comparative analysis
with other features using simple classifiers such as Naive-
Bayes and PLSA indicates that the motion-difference with
Gaussian RBM is competitive with shape descriptor [28],
motion descriptor [24], hand-crafted spatio-temporal features
[17], [19], [26], and spatio-temporal features learned by Deep
Networks [6]. In addition to good performance, our approach
shows more efficicent than many other approaches [28], [24],
[17], [19], [26], [6], [14], [16].

The outline of the paper is as follows. In Section II, the
motion difference method is introduced and a Gaussian RBM
is used to learn movement patterns from videos. Section
III describes the action modelling procedure, including the
bounding box extraction and classification algorithms em-
ployed. Section IV contains the experimental results and
their evaluation. Section V concludes the paper and discusses
directions for future work.

II. LEARNING MOVEMENT FEATURES FROM
MOTION-DIFFERENCE

In this section, we introduce the definition of motion-
difference and the use of Gaussian Restricted Boltzmann
Machines (Gaussian RBMs) to learn moving patterns from
these images. The whole model is decribed in Figure 1.

A. Motion-Difference

An action video sequence consists of static images. Each
of them represents a spatial distribution of the human body,
however it fails to represent the temporal meaning of the
action. As an example, Figure 2 shows two groups of images
from video sequences of different actions. In Figures 2a
and 2c, it would not be easy even for a human to know
what action that the actor is going to perform from one
of the images. There are alternative approaches to obtain
richer information such as spatio-temporal features, however,
instead of treating a video as a sequence of images, in this
work we consider the video sequence as a 3-D volume image.

Recently, feature learning shows improvement in many
computer vision problems [11], [15], [18]. For video image,
however, learning shape is difficult to standard unsuper-
vised models such as Restracted Boltzmann Machine [20],
Deep Belief Networks [11], Deep Boltzmann Machine [18],
Stacked Auto-Encoder [2]. The reason is that complex shapes
such as images of people are more difficult to learn than, for
example, images of characters, for which the above methods
have been shown very good, in that the former have more
density of foreground and different shapes share a large
number of common pixels. In order to solve this problem,
these models should be modified to learn small regions in
images. Variant models such as convolutional approaches
[15], [14] learn overlapped regions, and ShapeBM[9] learns
separated image blocks. In this paper, we propose the use
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Fig. 2. Original images from four different actions. (a) Hand waving and
Hand Clapping; (c) Jogging and Running (from left to right). On the right
side are corresponding motion-difference images)

of motion-difference (MD),a simple method for dealing with
the problem of representing temporal information and feature
learning in complex video streams. A motion-difference is
the subtraction of It+κ by It, two images at positions t+ κ
and t in a video sequence respectively, κ is frame distance.As
result, in motion-difference the negative pixels show the part
of an actor which only appears in the previous frame (t) while
the positive pixels show the portion only in the future frame
(t+κ). In other words, a motion-difference represents moving
patterns as the location of negative and positive pixels. In
addition, by using subtraction, the common parts between
two images (including background) have been removed and
therefore the motion-difference only keeps the important
information which can be easily learned by feature learning
models. In Figure 2, by looking at the motion-difference



one can easily understand the meaning of the movements
performed by the actors.

In what follows, we apply a feature learning algorithm
to motion-difference. Our expectation is that the features
learned from motion-difference would capture the relations
between separated movement patterns, and therefore offer a
better representation.

B. Learning Movement Features With Gaussian RBM

The Gaussian RBM [25] is an RBM [20] with Gaussian
visible units and binary hidden units. We denote v and h
as units in visible and hidden layer respectively; W is the
weight matrix of the model and σ is standard deviation of
Gaussian noise for visible unit. The energy function of the
Gaussian RBM is defined as:

E(v, h) =
∑
i

(vi − a)2

2σ2
− 1

σ2
(
∑
j

hjbj+
∑
ij

wijvihj) (1)

Given a state of a layer, we can infer the state of units in the
other layer by sampling the conditional distributions.

P (hj |v) = sigmoid(
∑
i

viwij + bj) (2)

P (vi|h) = N (
∑
j

wijhj , σ
2) (3)

Where sigmoid(x) = (1 + e−x)−1 is the sigmoid function
and N is a normal distribution. Training a Gaussian RBM is
similar as training an RBM by using Contrastive Divergence
(CD) [10]. However, learning a and σ is difficult in CD with
one step and requires more computational power. Fortunately,
it is possible to normalize the data to zero mean and unit
variance and train the model with a = 0, σ2 = 1.

From what has been discussed in the previous subsection,
learning motion-difference can be considered as learning the
distribution of movement patterns P (It+κ − It). Compared
to learning conditional distributions P (It+κ|It) to represent
relation between two images in video sequence, approximate
the joint distribution of motion-difference is more feasible. It
is also worth noting that the features learned from Gaussian
RBMs are low-level features. According to [11], the high-
level features, which are as good or better than lower-level
features, can be learned by stacking the shallow networks one
on another. In our experiments, we apply a shallow network
to learn from spatio-temporal features, and already obtain
competitive results. Given the theory and recent results from
deep networks, we would expect that our results could be
improved further by the use of deep Gaussian RBMs. This
is left as future work though

III. ACTION MODELLING

We adopt a common pipeline to model video actions [23].
At first, we stabilize the video image by extracting the bound-
ing box surrounding the actor and apply Gaussian RBMs
to learn movement features motion-difference as described
in Section II-A. The features are then converted to visual
words by vector quantization with KNN. After representing

each video as a ”bag of words” we learn efficient classifiers
using Naive Bayes with smoothing and PLSA described in
what follows.

A. Bounding Box Extraction

For an image with low variant background we can use
gradient intensity projection to extract the bounding box
surrounding an actor. In particular, to extract a bounding box
from an image I we use Canny edge detection method to
find the image I ′ that contains only the edges in I . Such a
simple method is suitable with our comparative evaluation
on benchmark datasets. We can use a method which is more
general such as [21] for the datasets with unstable and clutter
background. Let gx and gy denote the horizontal and vertical
gradient of GN (K), a 2-D Gaussian matrix of size K. The
smoothing edge image I ′ is computed as root sum square
of the images generated by convoluting the original image I
with gx, gy .

Ix = conv2(I, gx)

Iy = conv2(I, gy)

I ′ =
√

(Ix ∗ Ix + Iy ∗ Iy)
(4)

As a result, the transformed image I ′ contains only edges
from the original image I since all pixels in I whose
neighbours have similar value to it would be converted to
∼ zeros in image I ′. We futher reduce the noise in the edge
image I ′ by setting all pixels with small values to zero.
We project the accumulative sum of the pixels in I ′ onto

(a) (b) (c)

Fig. 3. Bounding box extraction process from (a): Original image to (b):
edge image and projection on horizontal and vertical axes and (c): bounded
image (resized)

horizontal and vertical axes and then compare the values with
thresholds (τx, τy) to extract the limits of the bounding box
as:

Y = {y|
∑
x

I ′(x, y) > τy}

X = {x|
∑
y

I ′(x, y) > τx}
(5)

The bounding box is a rectangle drawn from
(min(X ),min(Y)) to (max(X ),max(Y))

B. Classification

For classification, we employ Naive Bayes and PLSA-
based classifiers because of the efficiency in their learning
algorithms. In action recognition, we consider each video
as a document containing visual words. More formally, we
denote d as the video recording index, w as the visual word
index, and z as the topic index. We also denote n(d,w) as the



occurrence of visual word w in video document d, n(z, w)
as the occurrence of visual word w in all video documents
of topic z, and n(z) as the number of video documents in
topic z.
Naive Bayes

By assuming that the visual words in a video document are
independent given a topic, a Naive Bayes model models the
conditional distribution of topic z given a video document d
as:

P (z|d) ∝ P (z)
∏
w

P (w|z)n(d,w) (6)

in which P (z) and P (w|z) are computed as follows (with
additive smoothing to prevent zero probabilities) to maximize
the log-likelihood L = log(

∏
z,d P (z, d)):

P (z) =
n(d)∑
d′ n(d

′)

P (w|z) = n(z, w) + α∑
w′ n(z, w′) + α‖Z‖

(7)

For classification of a new video document dtest, we search
for the topic ẑ such that:

ẑ = argmax
z

P (z|dtest) (8)

PLSA
An alternative classifier is employed which is based on

probabilistic latent semantic analysis (PLSA) [12]. PLSA is
a probabilistic generative model that has sucessfully been
applied to action recognition (e.g. [26], [28]), and represents
each video recording as a bag of words, decomposed into
a probability distribution of words per ‘topic’ (which repre-
sents the action class) and a probability of a topic occurring
in the input recording.

Given as input a word occurrence matrix n(d,w), PLSA
approximates it as a bivariate probability distribution P (d,w)
of videos and words, which is decomposed as:

P (d,w) = P (d)P (w|d) = P (d)
∑
z

P (w|z)P (z|d) (9)

where P (d) is the prior probability of d (known quantity,
modelled as

∑
w n(d,w)), P (w|z) is the probability of a

word given a topic, and P (z|d) is the probability of a class
given a document (i.e. video). The unknown parameters
P (z|d) and P (w|z) can be estimated using the expectation-
maximization (EM) algorithm [7]. In our case, P (w|z) is
computed during training, and only P (z|d) needs to be
estimated.

In specific, for the expectation step, we compute the
posterior of the latent variable:

P (z|d,w) = P (w|z)P (z|d)∑
z′ P (w|z′)P (z′|d)

(10)

and for the maximization step, the update equation for
P (z|d) is:

P (z|d) =
∑
w n(d,w)P (z|d,w)∑

z′,w′ n(d,w′)P (z′|d,w′)
(11)

Equations (10)-(11) are iterated until convergence. Finally,
for a test recording dtest , the action category is given by:

ẑ = argmax
z

P (z|dtest) (12)

IV. EXPERIMENTS

In this section we empirically investigate the use of visual
words learned from motion-difference to recognize actions
in Weizmann [3] and KTH [19] datasets. In the Weizmann
dataset, since the bounding box notations are already pro-
vided, we only apply the extraction method of Section III-
A to the KTH dataset. After training a Gaussian RBM,
the output of the hidden layer is taken as learned features
for clustering visual words. We evaluate the visual words
using the Naive Bayes and PLSA classifiers as described
earlier. We report our results along with results from other
approaches regarding to different classes of features such as
shape descriptor (SD), motion descriptor (MF), hand-crafted
spatio-temporal (HST), and learned spatio-temporal (LST)
descriptor. In order to make a fair comparison, here we
emphasise the approachs that use similar classification mod-
els such as Naive Bayes and PLSA or their invariants. For
completeness, we also include the recent approaches which
achieve state-of-the-art performance. Significance compar-
isons between the approaches is not possible since each em-
ployed different reprocessing and classification techniques.
In addition, each approach adopts different method such as
split or leave-one-out (l-o-o) for experimental evaluation.

A. Weizmann Dataset

The Weizmann dataset has 10 actions ”Walk”, ”Run”,
”Jump”, ”Gallop sideways”, ”Bend”, ”One-hand wave”,
”Two-hands wave”, ”Jump in place”, ”Jumping Jack”,
”Skip” from 9 actors. In this experiment, we use the bound-
ing box annotations on silhouette video images provided
from the source. For evaluation, we divide the dataset into
a training set consisting of actions from 4 actors and a test
set with actions from the other 5 actors as similar as what
has been done in [28]. Figure 4 shows the original images
and the motion-difference in a video clip. In this experiment,

Fig. 4. Top row: Original video images from ”jack” action; Bottom row:
Motion-difference (κ=2)

we resize the motion-difference to 54× 54 pixels and learn
the features using a Gaussian RBM with 500 hidden units.
To guarantee the generality of the performance, we run our
experiment 50 times and report the average result as shown
in Table I. Since the dataset is small, we did not split the
data for a validation set to select a feature learning model.
Instead, we fixed a Gaussian RBM with 500 units in hidden
layer train it within 300 epochs. For the Naive Bayes, we



use a uniform distribution for prior and set the smoothing
parameter α = 1. With both NB and PLSA, we achieve

Method Evaluation Recog.rate(%)
MD + Gaussian RBM + NB split 98.81
MD + Gaussian RBM + PLSA split 98.77
SD + pLSA [28] split 92.3
SD + s-pLSA [28] split 93.00
ST + pLSA [17] l-o-o 90.00
MF + SVM [24] l-o-o 98.80
SD & MF + prototype tree[16] l-o-o 100.0

TABLE I
PERFORMANCE ON WEIZMANN DATASET. THE RESULTS OF [28], [17],

[24], [16] ARE COPIED FROM THE ORIGINAL PAPERS

perfect 100% accuracy in 26 out of 50 runs. The results show
that good representation of data can simplify the process to
model the data distribution.

B. KTH Dataset

The KTH dataset [] includes 25 actors performing 6 ac-
tions: ”boxing”, ”hand clapping”, ”hand waving”, ”jogging”,
”running”, and ”walking” in 4 scenarios: ”Static homoge-
neous background”, ”Scale variations”, ”Different clothes”,
”Lighting variations”. In general, leave-one-out evaluation
method may be more comprehensive, however it would be
highly likely that the evaluated actor has similar features
to one or more actors in training set, thus, reduce the
evaluation reality. In addition, we would like to evaluate the
robustness of features learned from motion-difference where
some actors in the test set have different ”shape” and/or
colour of clothes from all other actors in training set. In
this experiment, we use the split of training, validation and
test sets following the procedure in [19]. The validation set
is used for model selection.

We show an example of KTH video images and the
corresponding difference motion images in Figure 5. It is
worth noting that even though the bounding box extraction
is not perfect (see the distortion in the top row images) and
the background has not been removed, the different images
in bottom row are able to represent interesting movement
patterns.

Fig. 5. (Top) Original video images from KTH dataset; (Bottom) Different
motion images (κ= 2)

In this experiment we also use an uniform prior and
smoothing parameter α = 1 for Naive Bayes classifier. The
PLSA is implemented following standard model [12] without
the need for any hyper-parameter tuning. The Gaussian
RBM is selected using validation set and average results

Approach Evaluation Recog.rate(%)
MD + Gaussian RBM + NB split 85.65
MD + Gaussian RBM + pLSA split 88.89
HST + pLSA [17] l-o-o 83.33
MF + SVM [24] l-o-o 83.31
HST + SVM [19] split 71.72
HST + iEM+PLSA [26] l-o-o 82.33
LST + SVM [6] split 86.6
SD + S-LDA [24] l-o-o 91.20
LST + SVM [14] split 93.9

TABLE II
PERFORMANCE ON KTH DATASET. RESULTS OF [17], [24], [19], [26],

[6], [14] ARE COPIED FROM THE ORIGINAL PAPERS

are reported along with results from [17], [24], [19], [26],
[6], [14] as in Table II. Despite the simplicity, our approach
is able to achieve good performance among state-of-the-art
approaches.

We show the filter bases learned from motion-difference
of Weizmann dataset and KTH dataset in Figure 6. Different
from other approaches [26], [14] which extracted or learn
local Gabor filters from video images, we learn movement
patterns as visualized as pairs of back and white lines and
curves.

C. Model Complexity

Comparing our features with those of other methods, the
features learned from motion-difference seem to have a more
compact representation. For example, the dimensionality of
the features learned from Weizmann and KTH datasets in our
experiments have dimensionality less than or equal to 500.
For other handcrafted features, the local shape contex used
in [28] has the dimensionality of 6000, the dimensionality
of motion descriptor [8], [24] for our 54× 54 frames would
be more than 10000. In [26] the spatio-temporal descriptors
are so large that only two videos of each action from three
actors are selected for training.

In general, learning a shallow network such as Gaussian
RBM is not as computationally expensive as the convolu-
tional variant of an RBM and other deep networks. In our
experiment, it took less than 30 minutes to train a Gaussian
RBM with 300 hidden units on 55000 training samples
from 54× 54 resized motion-difference1. As what has been
mentioned in [14], the convolutional GRBM proposed by
[22] take 2-3 days to train. The stacked convolutional ISA
[14] takes 1-2 hours for 200000 input samples, each of them
has the size 20× 20 (spatial) and 14 (temporal).

In addition, our feature extraction from a one-layer unsu-
pervised model is very efficient. In 0.1 seconds, the Gaussian
RBM is able to extract features from 1000 frames each has
54 pixels (totalling 2916000 pixels) . At the same amount
of time, stacked convolutional ISA with GPU sport can only
extract features from dense samples of a single 360 × 288
frame (totalling103680 pixels)

1Our system is implemented in MATLAB without using parallel comput-
ing support



(a) Weizmman dataset (b) KTH dataset

Fig. 6. Visualization of 24 filter bases from GRBMs trained on motion-difference of (a) Weizmann and (b) KTH datasets

(a) Weizmann dataset (b) KTH dataset

Fig. 7. Classification accuracy with Naive Bayes versus codebook size and frame distance of motion-difference

In what concerns the use of different codebook sizes,
according to the evaluations among difference approach
[23], a codebook size of 4000 is applicable to wide range
of datasets. In our experiment as shown in Figure 7, for
Weizmann dataset, the system achieved decent performance
with number of codewords less than or equal to 2000. For
KTH dataset, the best results has been achieved from the
codebook size of 4000 but with 1000 codewords the system
can already produce reasonable levels of accuracy. Finally,
in our system, we use very efficient classifiers. With Naive
Bayes and standard PLSA, a newly arrived video document
can be categorized in matters of second.

V. CONCLUSIONS

We proposed a new approach to learn spatio-temporal
features using a difference measure between frames in
a video sequence, called motion-difference, and applying
Gaussian RBMs. Motion-difference is able to represent both
spatial information and temporal relations in a video frame
by preserving negative and positive pixels in the resulting
saliency map, thus indicating movement patterns and remov-
ing unnecessary common shapes and background between
two frames. To our best knowledge, this is the first work on
frame-based feature learning for action recognition. Despite
its simplicity, the motion-difference method achieved very
good performance in the Weizmann dataset and the KTH
dataset.

In our approach, the motion-difference is sparse and
then easier to learn using standard model such as RBM

than denser shape images. Its efficiency shows considerable
promise to application to larger datasets and the use of deeper
models in learning movement features.
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