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Abstract. Transformation optics has led the way in the development
of electromagnetic invisibility cloaks from science fiction to engineering
practice. Invisibility cloaks have been demonstrated over a wide range of the
electromagnetic spectrum, and with a variety of different fabrication techniques.
However, all previous schemes have relied on the use of metamaterials consisting
of arrays of sub-wavelength inclusions. We report on the first cloaking structure
made of a high-κ dielectric-loaded foam mixture. A polyurethane foam mixed
with different ratios of barium titanate is used to produce the required range
of permittivities, and the invisibility cloak is demonstrated to work for all
incident angles over a wide range of microwave frequencies. This method will
greatly facilitate the development and large-scale manufacture of a wide range
of transformation optics-based structures.
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1. Introduction

Transformation optics provides the framework to manipulate electromagnetic fields, by
modifying the material properties of a structure. The application of transformation optics to
the burgeoning field of metamaterials has led to a number of novel applications, most notable
among them being the recent pioneering work on the development of invisibility cloaks [1, 2],
but also including spacetime cloaks and other time-dependent metrics [3, 4], beam manipulation
[5, 6] and rotation [7], illusion optics [8, 9], superscatterers [10] and extraordinary transmission
devices [11] and planar lens antennas [12–14]. An invisibility cloak is a structure that is designed
to electromagnetically hide a region of space from an impinging wave within a defined part of
the electromagnetic spectrum. Theoretically, coordinate transformations are applied to map the
relevant region of space to a domain that would in effect appear negligible, such as a point or
a line. In practice, advances in computational electromagnetics theory coupled to significant
enhancements in computational processing power have enabled the numerical analysis and
confirmation of the properties of these structures [15]. Recently, a number of research groups
have demonstrated realizations of invisibility cloaks at microwave [16–20], terahertz [21, 22]
and optical [23–26] regions of the electromagnetic spectrum. The earlier demonstrations were
developed using transformation optics that led to anisotropic and spatially dispersive material
properties which were composed of tensors—both electric and magnetic—with metamaterial
properties that are not known to occur naturally. These metamaterials would therefore have to be
created artificially using composites of substructured metallo-dielectrics that would exhibit the
desired properties only at a resonant frequency. Although successful in proving the concept of
the invisibility cloak, these initial realizations proved to be narrow banded and highly lossy, and
certainly not ideal for any practical application. A significant breakthrough was the theoretical
description of the so-called ground plane, or carpet cloak, in which the cloaked region was
mapped to a line on the ground plane [27]. Perhaps most importantly, it was shown that an
almost ideal version of this particular cloak can be implemented using non-magnetic, isotropic
dielectrics—materials exhibiting only slight dispersion and low loss; these materials are, of
course, commonly available in nature and are easily controlled and produced.

Although still spatially dispersive, the dielectric material would be discretized so that a
cloaked region could be segmented into a number of blocks with a finite possibility of different
permittivities. Realizations of these ground-plane cloaks were soon produced and have proven
to be successful in their aim of hiding a region over a broad range of frequencies. However, these
ground-plane cloaks, as with the earlier iterations of the invisibility cloak, were again formed
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with sub-structured composites of metallo-dielectrics, metal–air or all-dielectrics of high-
κ/low-κ arrays. A drawback of these approaches is that, with a discretized cell that is a fraction
of a wavelength in dimension, these sub-structured geometries will require micro-structuring,
even at microwave frequencies where the wavelength is comparatively long. Scattering may also
reduce the performance of the cloaks.

In this paper, we report on the first cloaking structure made of a high-κ dielectric-loaded
foam mixture. Polyurethane foam mixed with different ratios of barium titanate is used to
produce the required range of permittivities, and the invisibility cloak is demonstrated to
work for all incident angles over a wide range of microwave frequencies. The key advantages
of this technique are that, due to the lack of metal or dense materials, the resulting cloaks
are lightweight and low loss, and are easily fabricated. This method will greatly facilitate
the development and large-scale manufacture of a wide range of transformation optics-based
structures.

2. Cloak design

Two-dimensional (2D) ground-plane cloaks made up of spatially dispersive dielectrics have
been described that effectively reduce the electromagnetic scattering signature of an object over
a specific frequency band [17, 23, 24, 27]. Specifically, it was shown by Kallos et al [28] that the
spatially dispersive dielectrics can be down-sampled to relatively few dielectric blocks, while
still maintaining the overall performance characteristics of the dielectric cloak in minimizing
the scattering signature of the object.

The cloak presented in this paper consists of a down-sampled selection of six dielectric
blocks, with refractive indexes of 1.08, 1.14 and 1.21, corresponding to relative permittivities
of 1.17, 1.30 and 1.46. In figure 1(a), the permittivity map of the dielectrics is shown, which
forms a cloak that surrounds a metallic perturbation that is to be ‘hidden’ from the incident
electromagnetic waves. The dielectric blocks are each of dimension 34.25 × 30 mm2 (1.14λ × λ

at 10 GHz), with the dielectric blocks in contact with the perturbation cut appropriately, as in the
figure. The perturbation is an electrically large aluminium triangle with a base of 144 mm and a
height of 16 mm (b = 4.8λ and h = 0.53λ at 10 GHz). At the base of the triangle is a metallic
ground plane, and metal plates enclose the structures along the z-axis, in order to preserve the
two-dimensionality of the system. Along the xy-plane the structures are surrounded by air. The
fabricated cloak is shown in figure 1(b). For details of the fabrication process, see section 3.

3. Cloak fabrication

The first stage in the realization of the cloak is the development and full characterization of the
dielectric mixtures. The requirements for the materials are that they exhibit low loss and low
dispersion at microwave frequencies. Homogeneous composites of polyurethane and ceramic
particles are required, with strong bonding between ceramic particles and the polymer matrix,
and reasonably good mechanical properties. Additionally, composites with the requisite range
of dielectric properties must be easily fabricated on demand.

A dielectric mixture of polyurethane with high-κ barium titanate (BaTiO3) was found to be
suitable for this purpose. Polyurethane was used to create a low-κ foam matrix, and BaTiO3

was used to load the foam in order to increase the effective permittivity while not greatly
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(a) 

(b) 

Figure 1. The perturbation bounded by the composite dielectrics. The
perturbation is an aluminium triangle of height 16 mm and base 144 mm. At
the base of the triangle is a metal boundary. In (a), the dielectric 2D map of
the 4 × 2 blocks is shown. The dielectric blocks are rectangles of dimension
34.25 × 30 mm2. The fabricated cloak is shown in (b). In practice, a metallic
ground plane is located at the base of the triangular perturbation, while the entire
structure is enclosed within parallel metallic plates.

altering the mechanical properties of the structure. The density of BaTiO3 powder is low, and
the small particle size is advantageous when used in a dispersion system and is less likely to
affect the polymer matrix structure. This results in less damage to the mechanical properties
of the composite material. Both substances exhibit low loss and low dispersion at microwave
frequencies, and are thus suitable for our requirements.

Samples of the composite bulk were prepared for dielectric characterization. Due to gravity,
the ceramic particles tend to settle down in the composite. So the samples for analysis were
cut in the middle of the composite bulk to minimize the effect of sedimentation. Knowing the
weight of a sample and the weight ratio of the ceramic powder to the polyurethane used in the
composite, the weight of ceramic powder in the cut sample could then be calculated. Further, if
the density of the ceramic and the volume of the sample were known, the volume percentage of
ceramic particles in the composite could be derived. As a result, when the permittivities of those
samples were measured, the relationship between the ceramic content and the dielectric constant
of the composite could be obtained. The mass quantity of BaTiO3 in a sample is calculated as

mBT = ms ×
mB

mB + mP
,

New Journal of Physics 13 (2011) 103023 (http://www.njp.org/)

http://www.njp.org/


5

Figure 2. Measured relative permittivity versus BaTiO3 volume fraction of the
BaTiO3/polyurethane composite, at 1 MHz and 10 GHz. Measured points are
plotted and compared with the Maxwell–Garnett (· · ·) and Bruggeman (- - -)
effective medium relationships for three-phase mixtures.

where mBT is the mass of BaTiO3 in the sample and ms, mB and mP indicate the mass of the
sample, the total input mass of BaTiO3 and the input mass of polyurethane, respectively.

A range of BaTiO3/polyurethane composites were fabricated in order to investigate the
effects of the changing BaTiO3 particle loading. In figure 2, the relative permittivity of the
composite at 1 MHz and 10 GHz is plotted against the volume percentage of BaTiO3. At 1 MHz,
the data were obtained with an Agilent 4294 A Impedance Analyser and an Agilent 16453
parallel-plate dielectric test fixture. For characterization at 10 GHz, the samples were cut to
fit an X-band waveguide. Reflection and transmission measurements were carried out with an
Agilent performance network analyser, and dielectric properties were subsequently retrieved
using the well-known Nicolson–Ross–Weir reflection/transmission techniques [29, 30]. It is
noted that the retrieval techniques at both 1 MHz and 10 GHz are inherently broadband (from
40 Hz to 30 MHz and from 8.2 to 12.4 GHz, respectively). The measured dielectric properties
were, for our purposes, dispersionless over each of these frequency ranges, and so those two
frequency points were selected for representation. Furthermore, as the measured permittivities
at both frequencies agree relatively well, it would imply that there is little dispersion between
the bands. It is clear that a large range of permittivity values can be attained by controlling the
volume percentage of BaTiO3.

The requisite material samples were fabricated for the cloaking material. Recalling that the
refractive indexes for the four different regions are 1.01, 1.08, 1.14 and 1.21, these correspond to
relative permittivities of 1.02, 1.17, 1.30 and 1.46. The first region is represented by air, while
polyurethane/BaTiO3 composites were fabricated for three other higher-permittivity regions.
The measured permittivities of the samples are shown in the inset to figure 2. The measured
permittivities showed very good agreement with the specified values, with errors of up to
about 2%.
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(b)(a) 

Figure 3. The cloak-measurement system. (a) Near-field scanning system in
the anechoic chamber. The incident wave is launched from an X-band horn
waveguide. (b) Monopole for probing the electric field.

4. Experimental setup

A near-field scanner system is designed and built to operate at frequencies between 6 and
12 GHz. It is composed of two parallel conducting plates, each with a diameter of 1 m and
spaced 15 mm apart. Holes have been drilled in the top plate, which rotates at intervals that
give a resolution of 5 mm. A monopole measures the fields between the two plates at each
interval, while a wave is incident from a fixed X-band waveguide (single-mode operational
frequency range: 8.2–12.4 GHz; cutoff frequency: 6.557 GHz). Due to diffraction, the wave will
be incident on the perturbation from a range of incident angles. A lensing system would mitigate
this and allow incidence from a single direction; however, for the purpose of demonstrating
multi-incidence cloaking, this setup is suitable. Absorber material is present at the boundaries
of the system in order to reduce scattering and reflections from the edges. The experimental
setup is shown in figure 3.

5. Results and discussion

Simulations are first used to test the performance of the cloak. A waveguide is used to feed the
incident wave, with the amplitude and phase of the fields measured throughout the 2D plane.
The wavefronts are clearly visible, with a slight diffraction due to the edges of the waveguide.
Simulations are then run with the perturbation—an electrically large metallic object exposed
and finally cloaked within the system. The simulated scattered fields over a range of angles are
shown in figure 4, at both 4 and 9 GHz. Figures 4(a) and (d) compare the fields for the empty
system to those of the perturbed system, with the differences between the two cases shaded. It
is evident that there is a significant change in the scattered field due to the perturbation. In the
cloaked cases, however, shown in figures 4(b) and (e), the scattering profile is reformed to very
closely match that of the empty system. Furthermore, the 2D field amplitude plots in figures 4(c)
and (f) show little distortion due to the cloaked perturbation, with the wavefronts clearly visible.
This confirms the properties of the electromagnetic cloak in simulation.

The measurement setup is then used to verify the performance of the cloak. Due to
the limitations of the scanning system and specifically the use of an X-band waveguide,
the performance of the cloak could only be tested from 7 GHz (limitation due to the cutoff
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(a) 

(b) 

(c) (f) 

(e) 

(d) 

Figure 4. Simulated cloaking performance. The performance of the cloak
has been tested with full-wave simulations at 4 GHz (a–c) and 9 GHz (d–f).
The normalized electric field (solid line) in decibel scale is shown with the
perturbation only (a, d) and with the cloaked perturbation (b, e). The dashed
line in both cases represents the empty system (no perturbation). To highlight
the variations between the cases, the area between the curves has been shaded.
It is evident that the structure is successful in cloaking the perturbation. 2D
electric field plots are also shown of the cloaked perturbation (c, f), where
again it is evident that there is little distortion of the incident electromagnetic
waves. Linear scale plots are shown in supplementary figure S6 available from
stacks.iop.org/NJP/13/103023/mmedia.

frequency) to 12 GHz (due to multi-mode operation). The near-field scanner is tested first with
an empty setup. The measured 2D field amplitude plot is shown in figure 5(a), with the well-
formed wavefronts visible. Figure 5(b) represents the measured fields when the perturbation has
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(a) 

(b) 

(c) 

Figure 5. Measured electric fields. The electric fields measured in the near-
field scanning system are shown. Due to the setup of the scanning system, a
semicircular region in which the perturbation and cloak are placed cannot be
scanned and is left blank. (a) The empty system (no perturbation or cloak),
showing only the incident wave reflecting off of the metallic ground plane.
(b) The perturbation resting on the ground plane. (c) The cloaked perturbation.
Strong scattering is evident with the perturbation. The cloak significantly reduces
the scattering due to the perturbation, with the resulting field distribution similar
to that of the perturbation-free system.

been introduced. In this case, the effect on the incoming wave is clearly evident, with scattering
and diffraction leading to at least two visibly separate paths of the reflected waves.

The goal of the cloaking material is to ‘hide’ the electrically large metallic perturbation;
reconstructing the scattered waves so that they appear identical to those of the empty scanner.
To accomplish this, the dielectric materials are ordered around the object, as in figure 1(b). In
the measurements shown in figure 5(c), it is clear that, in contrast to the perturbed case, the
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(a) (c) 

(d) (b) 

Figure 6. Measured cloaking performance at 7–9 GHz (decibel scale). The
performance of the fabricated cloaking structure was tested using the described
system. The performance at the lower operating frequency range of the near-
field scanning system is shown here. The normalized electric fields are plotted
at 7 GHz (a, b) and 9 GHz (c, d). Scattering with the perturbation (solid) is
compared with that in the empty system (dashed) in (a, c), where in both cases
the differences are shaded, and the effects of the perturbation are clearly evident.
Similarly, in (b, d) the cloaked perturbation (solid) is compared with the empty
system, with significant improvement over the uncloaked case, over almost the
entire range of incident angles. Linear scale plots are shown in supplementary
figure S7 available from stacks.iop.org/NJP/13/103023/mmedia.

scattered fields appear less affected by the block; the two separate scattered beams are no longer
visible, and the wavefront profile appears very similar to that of the empty scanner.

To better analyse the performance of the cloak, the fields are plotted as a function of the
scattering angle at the lower half of the frequency band (7 and 9 GHz) in figure 6 and then
at the upper range of the frequency band (11 and 12 GHz) in figure 7. Again, the perturbed
and the cloaked cases are compared with the empty scanner, with the differences in the field
profiles shaded. In figure 6, the measured field profile of the perturbation changes significantly
over the range of incidences, as compared to the empty scanner. However, the improvement
due to the introduction of the cloak is clearly evident. At the higher frequencies in figure 7,
the cloak is again successful in reconstructing the scattering profile of the empty scanner,
although performance degrades at more oblique incidences (θ ≈ 0–45◦), in common with
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Figure 7. Measured cloaking performance at 11–12 GHz (decibel scale).
The performance of the fabricated cloaking structure at the higher operating
frequency range of the near-field scanning system is shown here. The normalized
electric fields are plotted at 11 GHz (a, b) and 12 GHz (c, d). Scattering
with the perturbation (solid) is compared with that in the empty system
(dashed) in (a, c), where in both cases the differences are shaded, and again
the effects of the perturbation are clearly evident. Similarly, in (b, d) the
cloaked perturbation (solid) is compared with the empty system. Again, there
is significant improvement over the uncloaked case over a large range of
incident angles. However, at oblique incidences below about 45◦, the cloak
does not significantly improve performance as compared to the uncloaked
perturbation. Linear scale plots are shown in supplementary figure S8 available
from stacks.iop.org/NJP/13/103023/mmedia.

cloaking structures presented in other studies. We note that as the perturbation appears larger
electrically at these frequencies, the scattering it causes is more pronounced. The scattered beam
at about 60◦ is particularly visible at 11 GHz, but is well hidden once the cloaking composites are
introduced, demonstrating the effectiveness of this scheme, even at higher frequencies. Table 1
quantifies the differences between the measured field profiles, over the two angular ranges:
0–45◦ and 45–90◦. It is evident that while the improvement is not significant at the oblique
angles, the cloak successfully and consistently hides the perturbation in the 45–90◦ range and at
all measured frequencies.
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Table 1. Maximum difference (a.u.) over an angular range between the reference
(empty system) and the perturbation (uncloaked and cloaked). A moving average
is performed over a waveform (the distance between two peaks), and the
maximum over 0–45◦ and 45–90◦ is given below.

f (GHz) 0–45◦ 45–90◦

Perturbation Cloak Perturbation Cloak

7 0.08 0.08 0.13 0.03
9 0.11 0.10 0.13 0.03

11 0.13 0.12 0.13 0.03
12 0.14 0.13 0.13 0.03

Furthermore, a higher-resolution discretization may be used to diminish the performance
reduction at the more oblique incident angles. Thus, we can conclude that the cloaking material
is successful in hiding a wavelength-sized metallic object from an incoming electromagnetic
wave. Furthermore, as these dielectrics are non-dispersive (as confirmed by our measurements)
and isotropic, this cloaking scheme works over a wide band of frequencies, and for a range of
incident angles.

Using the principles of transformation optics, a broadband all-dielectric cloaking device
was designed, fabricated and tested for operation at microwave frequencies. The principal
advantage of this cloak is that it does not require small-scale substructuring, but is instead made
of blocks of polyurethane/BaTiO3 foam composites. Hence, the resulting structure is both low
loss and easily fabricated in bulk. Furthermore, due to the random nature and inherently small
correlation lengths of the composites, unwanted scattering from the structure of the material is
reduced, and effective media approximations for graded dielectrics that are necessary in other
approaches (e.g. cylinders or split-ring resonators that are of the order of about λ/10) are not
required.

The dielectric map has been down-sampled to achieve a low-resolution map with a
few different dielectric permittivity values. This reduces performance slightly, but simplifies
fabrication for practical applications while still providing good cloaking performance over a
large range of frequencies. Nevertheless, if the band of operation is to be raised to higher
frequencies, the resolution can easily be increased. Furthermore, the procedure presented in
this paper may be applied to the development of a range of other transformation optics-based
devices. Some optical transformation devices, such as beam expanders [5] and rotators [7],
require extreme material properties (less than one), which admittedly may not be realized with
the method presented in this paper. However, for many other transformation devices, where no
extreme electromagnetic wave behaviour is required, there may only be a small spatial region
with dispersive values (less than unity). It has been shown that it will not affect performance
significantly if these areas are replaced by air [14, 23]. Furthermore, for certain structures only
(approximately) isotropic material parameters may be required, subject to the selection of a
proper grid. In this way, it is possible to build optical transformation devices such as planar lens
antenna [12–14] and an extraordinary transmission device [11] using the technique presented
in this paper. We also note that no truly 3D, perfect electromagnetic cloak has been realized.
However, the technique we have presented may be used to produce the 3D cloak in [20].
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