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ABSTRACT: We generalize S-duality to N/ = 2 superconformal field theories (SCFTs)
with Coulomb branch operators of non-integer scaling dimension. As simple examples, we
find minimal generalizations of the S-dualities discovered in SU(2) gauge theory with four
fundamental flavors by Seiberg and Witten and in SU(3) gauge theory with six fundamental
flavors by Argyres and Seiberg. Our constructions start by weakly gauging diagonal SU(2)
and SU(3) flavor symmetry subgroups of two copies of a particular rank-one Argyres-
Douglas theory (along with sufficient numbers of hypermultiplets to guarantee conformality
of the gauging). As we explore the resulting conformal manifold of the SU(2) SCFT, we
find an action of S-duality on the parameters of the theory that is reminiscent of Spin(8)
triality. On the other hand, as we explore the conformal manifold of the SU(3) theory, we
find that an exotic rank-two SCFT emerges in a dual SU(2) description.
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1 Introduction and summary

N = 2 superconformal field theories (SCFTs) often have exactly marginal deformations
that preserve N' = 2 supersymmetry (SUSY). Such deformations are descendants of di-
mension two operators that we can add to the prepotential

§S = /d291d292 NO; +h.c., (1.1)



where the integration is taken over the N’ = 2 chiral Grassmann parameters. The A’
parameterize spaces commonly referred to as “conformal manifolds”.! Simple examples of
theories with exactly marginal couplings include all the Lagrangian theories (e.g., N' = 4
Super Yang-Mills, SU(N.) gauge theory with Ny = 2N, fundamental flavors, etc.).

Often, the A\’ can be interpreted as gauge couplings with vanishing beta functions:
the resulting conformal manifolds have cusps where perturbative gauge fields emerge and
couple various isolated theories.? By definition, the isolated SCFT sectors do not have
their own exactly marginal deformations. Instead, they have global symmetries that are
weakly gauged.

The simplest isolated SCFTs we can consider gauging are just collections of free hy-
permultiplets. For example, taking a collection of eight hypermultiplets and gauging an
SU(2) € Sp(8) flavor subgroup, we construct the SU(2) theory with Ny = 4 and SO(8)
flavor symmetry. As we vary the resulting exactly marginal coupling, 7 = g + %, the
theory becomes strongly coupled. However, if we tune the coupling appropriately, a new
weakly coupled S-dual description emerges at another cusp[2] which looks like the original
theory up to an Sj triality outer automorphism of the flavor Spin(8). The duality group
in this case is SL(2,Z), and this construction extends the notion of N' = 4 duality [3-6] to
an N = 2 theory.

More generally, if one starts from a Lagrangian theory and tunes the gauge coupling to
another cusp, one often finds that a new isolated interacting SCFT emerges. For example,
in [7], Argyres and Seiberg found that, by starting with the weakly coupled SU(3) gauge
theory with six fundamental flavors and varying the gauge coupling, a new cusp emerges
with an S-dual description in which the Minahan-Nemeschansky (MN) theory with Fg
global symmetry [8] is weakly coupled to a doublet of SU(2) via an SU(2) C Eg gauging.
This type of duality has been generalized by Gaiotto [9] and many other authors (see,
e.g., [10] and [11]).

All other examples of S-duality discussed in the literature essentially share the general
characteristics of the above two cases, but with varying numbers of cusps and isolated
sectors of varying ranks (i.e., varying dimensions of their Coulomb branches). In particular,
all the instances of S-duality that we are aware of involve N’ = 2 scalar chiral primaries (we
mean operators annihilated by all the anti-chiral Poincaré supercharges; these operators
are often called “Coulomb branch” operators) of integer dimension.

In this paper, we will generalize S-duality to theories with non-integer scaling dimen-
sion Coulomb branch primaries. Since Lagrangian theories have only integer dimension
N = 2 chiral operators, our theories of interest are never completely weakly coupled.
Instead, we will find various cusps where weakly coupled gauge fields emerge and couple
various isolated strongly coupled sectors that are related to each other in interesting ways.?

1On general grounds, such conformal manifolds are Kihler [1].

2They can also couple sectors with co-dimension one or higher conformal manifolds. However, we can
often continue this process iteratively until we have a collection of isolated theories.

3Note that there can be conformal manifolds with only integer dimension Coulomb branch operators
that do not have a Lagrangian limit because they have some exceptional flavor symmetry (for example, one
can gauge an SU(3) subgroup of the flavor symmetry of the Es SCFT as in [10]).



The original examples of theories with non-integer dimension chiral operators were
discovered as special points in the Coulomb branch of SU(3) super Yang-Mills by Argyres
and Douglas [12] and in SU(2) SQCD with Ny = 1,2, 3 flavors in [13] (the Ny = 1 SCFT is
the same as the one in [12]). Following the notation of [14], we will refer to these theories
as the Io3, I>4, and I3 3 SCFTs respectively.® These theories are believed to be the only
rank-one SCFTs with non-integer dimension N = 2 chiral operators.® Of course, there are
also many higher-rank Argyres-Douglas (AD) theories (e.g., see the review in [17]).

Although the above AD theories are isolated, they typically inherit some flavor sym-
metry from the UV gauge theories in which they are embedded. For example, the 5 4 and
I3 3 theories have SU(2) and SU(3) flavor symmetry respectively (the I3 theory has no
flavor symmetry). Therefore, we can try gauging the flavor symmetries of the I 4 or I3 3
theories in an exactly marginal fashion (adding additional sectors charged under a diagonal
combination of flavor symmetries as necessary), studying the resulting conformal manifold,
and finding the various S-dual frames.

To that end, in the first part of this paper, we will study a particular rank three theory,
which we denote as 7; 3 3. This theory consists of SU(2) gauge fields coupled to two I3 3
theories and a doublet of hypermultiplets. As a result, T2 3 3 has one marginal coupling.
We will see that this marginal coupling parameterizes a conformal manifold with three
S-dual cusps, and that, at each of these cusps, SU(2) gauge fields emerge and couple two
I3 3 theories and a doublet of hypermultiplets (with the parameters of the theory mixed
in interesting ways). After appropriately taking into account the mixing of the different
parameters, we will find an analog of the triality discussed in [2]. Furthermore, subject to
some assumptions, we will prove that the ’7'2 33 theory is the minimal (i.e., lowest-rank)
theory with non-integer dimensional Coulomb branch operators that has a marginal gauge
coupling and exhibits S-duality. As such, our discussion of the ’75 33 SCFT represents the
minimal generalization of Seiberg and Witten’s analysis of SU(2) with Ny =4 [2].

In the second part of the paper, we look for the lowest-rank generalization of Argyres-
Seiberg duality. We will argue that such a generalization is given by a rank four theory
we call 73, 33 (note that there may be other rank four generalizations). It consists of
an SU(3) gauge theory coupled to two I33 theories with three fundamental flavors of
SU(3) (i.e., we replace half the fundamentals of the Ny = 6 SU(3) gauge theory with I3 3
sectors). Interestingly, at another cusp, 752%% has an SU(2) gauge theory realization
in which the gauge group is coupled to a single I3 3 theory and a more exotic theory of
rank two with Coulomb branch spectrum® {3, %} that we will call 7}) 3 (this theory plays

4These SCFTs also go under many different names. For example, they are sometimes referred to as the
(A1, Az), (A1, As), and (A1, D4) theories [15] (this notation arises from the fact that the BPS quivers of
these theories are the products of the corresponding ADE Dynkin diagrams).

5More precisely, Kodaira’s classification of elliptic fibrations over the complex plane [16] implies that
the only consistent non-integer scaling dimensions of N' = 2 Coulomb branch generators describing a rank
one theory are 6/5, 4/3, or 3/2. These scaling dimensions are realized, respectively, by the I> 3, I2 4, and
I5 3 theories [13]. While it is not inconceivable that other inequivalent theories have the same spectrum, no
such theories have been found to date.

SThroughout this paper, we take the term “spectrum” in this context to mean the spectrum of generators
of the Coulomb branch chiral ring.



the role of the Eg SCFT in our duality). The latter has a G7, , D SU(3) x SU(2) flavor
3

symmetry, of which we gauge the SU(2) factor. 753 has not been explicitly discussed in the
literature (although it appears implicitly in the classification of [14, 18]), and our analysis
will elucidate some of its interesting properties. For example, our results imply that the
SU(2) C G, s flavor symmetry does not suffer from Witten’s anomaly [19]. Moreover, it

follows from our analysis that the SU(2) and SU(3) flavor central charges are

T, 3

RS NS N 1.2
su(2) =9 kgui =0- (1.2)

T3
The result for ksfj’é) is somewhat unconventional, since it does not follow from the usual
rule of thumb for relating flavor central charges to (in our normalization) twice the scaling
dimension of some Coulomb branch generator in the theory; indeed, the 7}) 3 SCFT has

no Coulomb branch generator of dimension-3. Also, using the results of [20], we can
immediately conclude that since the I3 3 theory does not have exotic N' = 2 chiral primaries,
neither does the 7:’3 s theory.

The rest of this paper is organized as follows: in section 2 we describe the tools that
let us identify the AD building blocks in the various S-dual frames. In section 3 we give
the details of the rank three example generalizing the S-duality of SU(2) with Ny = 4,
while in section 4 we discuss the rank four generalization of Argyres-Seiberg duality. We
briefly conclude in section 5. In appendix A, we sketch out the Hitchin system derivation
of the various Seiberg-Witten curves we use in the main part of the paper. Appendix B
exhibits the equivalence of the (I11. g’é [2’1], F') theory to I3 3 plus a triplet of hypermultiplets.

Finally, in appendix C, we give an independent derivation of the 7; 33 and 75, curves.

3 3
IR

2 The strategy

The idea of using isolated sectors to construct conformal manifolds of N' = 2 SCFTs by
weakly gauging flavor symmetry subgroups is rather general. In order to make sense of
the vast set of possible building blocks and the S-dual cusps that can emerge, we should
find some simple, universal, and invariant characterizations of the physics on an N/ = 2
conformal manifold, M. For example, we can study:

(i) The a and ¢ conformal anomalies.

(ii) The set of flavor symmetries (in our conventions, these are symmetries commuting
with the A/ = 2 superconformal algebra and not related by supersymmetry to higher-
spin symmetries), G = [[, G;, and the corresponding flavor central charges, k;.

(iii) The spectrum, S, of Coulomb branch operators.

These quantities do not change as we travel along M.”

"The a and ¢ central charges are invariant under exactly marginal deformations by the usual anomaly
matching arguments (conformal symmetry is unbroken as we move along M). The flavor symmetries
are also invariant (at the cusps, where weakly coupled gauge fields emerge, we also have emergent flavor
symmetries; however, these symmetries are arbitrarily weakly gauged) since the exactly marginal primaries,



As we go between different cusps of the conformal manifold, the various quantities in
(i), (ii), and (iii) are “partitioned” among the different emergent sectors. One interesting
aspect of the Argyres-Seiberg-like dualities is that, unlike in the case of SU(2) gauge theory
with Ny = 4, these quantities are generally distributed differently at the different cusps.
For example, in the case of [7], at the SU(3) cusp we have

3 8§ 127 3 46
G =5U(6) x U(1), ksue)y =0+6=6, kyy=0+6-6 =36,
S=1{2,3t00. (2.1)

The first contributions in a and ¢ come from the SU(3) gauge sector, while the remaining
contributions come from the six flavors (this partition reflects the fact that there are seven
corresponding N = 2 stress tensor multiplets and hence seven different N = 2 sectors).®
Finally, the flavor symmetry comes from the hypermultiplets, and the gauge sector gives
all the contributions to S (the elements of S are the scaling dimensions of the generators
of the N/ = 2 chiral ring — in this case the Casimirs of SU(3)). On the other hand, at the
SU(2) cusp, we find three distinct N' = 2 sectors (with three independent N = 2 stress

tensor multiplets)

_o M 129 _l B 117
T8 T T 12 T 12 T2 6 6
G =SU(6) x U(1), ksug) = 0+6+0=6, k) =0+0+2-18 = 36,
S={2}e{3}e0. (2.2)

The first contributions in the above partitions are from the gauge sector, the second contri-
butions come from the MN theory, which has rank one (its Coulomb branch chiral ring has
a single generator of dimension three), and the third contributions come from the doublet
of hypermultiplets.

Now let us turn to theories with non-integer dimensional operators. In the case of the

7T, 3 3 theory mentioned in the introduction, we have
79219
15 49 7 1 15 1 i 2 n 1 5
Qa = — o — —_— = — C = — Ppp— —_ =
gy 247 127127 8 g2 7376 7
GTZ%,% = U(1)37 kU(1)3 - (37 3, 3) )
3 3
57-33:{2}69 St ®95090, (2.3)
2,5:3 2 2

O;, are uncharged under the flavor symmetries (this follows, e.g., from the analysis of the O; O;. OPE in [21]).
As a result, by anomaly matching arguments, the k; are constant on M. The invariance of the N = 2 chiral
spectrum follows from [22], which shows that the number of such operators cannot change as we traverse
the conformal manifold, and from [23], which shows that the dimensions of these operators do not change
either. Note that this reasoning applies also to the “exotic” higher-spin N’ = 2 chiral primaries considered
in [20].

8In our conventions, a = % (3Tr]~%3 — TrR) and ¢ = % (3Trli23 - %Tr}:?,), where R = %R]\[:Q + %Ig is
the =1 C N = 2 superconformal R charge, Ra=2 is the A' = 2 superconformal U(1)r C U(1)r x SU(2)r
charge, and I3 is the Cartan of SU(2)r (a free N' =2 U(1) vector multiplet scalar primary has I3 = 0 and
Ry=2 =2).



where the first contributions are from the SU(2) gauge sector, the second and third
contributions are from the two I33 SCFTs, and the final contributions are from the
hypermultiplets. The remaining flavor symmetry is U(1)3 since we gauge a diagonal
SU(2) € SU(3) x SU(3) x Sp(2), where the SU(3) factors come from the I3 3 sectors and
the Sp(2) factor comes from the two hypermultiplets. This gauging is marginal since
]{ISU(Q) kSU(?) + koge =2-34+2= 8.9

On the other hand, in the case of the 75233 SCFT, we have

5, T, 1T 4,2 1 4
M08 ~ 3 12 8 24” “Toogd ~ 3 3 17127
G7'3’2‘%!%:U(3), kSU(S):O+O+3'2:67 kU(l) 04+04+3=3,

37;72%,% :{3,2}@{2}@{2}@@, (2.4)

where the first contributions are from the SU(3) gauge sector, the second and third contri-
butions are from the two I3 3 SCFTs, and the final contributions are from the hypermulti-
plets. The flavor symmetry is U(3) since we gauge a diagonal SU(3) C SU(3) x SU(3) x
Sp(9), where the last factor comes from the hypermultiplets. We again have a marginal
gauging since kgy3) = 2k13’? 3) +3k3p3 =2-3+3-2=12.

Our strategy for exploring the various cusps of the T 33 and T 32,33 conformal man-
ifolds is simple. We first take the data in eq. (2.3) and eq (2.4) and match it to data
for the corresponding theories in the infinite class of AD SCFTs described in [14, 18]. In

particular, we will argue that

5= gt (2.5)
where the theories listed on the r.h.s. of eq. (2.5) are defined in [14, 18].19 Using our
methods, it is clear that one can explore infinitely many generalizations of the conformal
manifolds we will discuss in this text.
In eq. (2.5), Iyq and I11%""
wrapping a Riemann sphere Wlth one irregular puncture (they can be thought of as twisted

are low-energy theories coming from M 5-branes

compactifications of the Ay (2,0) theory and are therefore referred to as being of class
S).!' These theories can be succinctly described in terms of Hitchin systems,'? and the
corresponding Seiberg-Witten (SW) curves come from the spectral covers of these Hitchin
systems. Using the resulting curves, we can then explore the various cusps of the conformal

9Here we use the fact that SU(3) flavor central charge is kSU(3) = 3 [24]. Furthermore, we have ksi}?z)

kéU(s), since the embedding index of SU(2) C SU(3) is unity.

%Evidence for the first equality in eq. (2.5) was presented at the level of the BPS spectra in [25] (note
that the methods in [26] are also useful for finding the BPS spectrum in this case). We will describe
how S-duality works in this theory. Note also that, as we explain in more detail below, the superscript
“3x[2,2,1,1]” in the second equality refers to certain Young tableaux that define the 1113,2[2’2*1’” SCFT.

11n fact, there is some redundancy in this description, and, as we will see, both the 7;% 8 and 7;72‘% 3
theories can also be realized as the IR description of M5 branes wrapping a sphere with one irregular and
one regular puncture.

12Gee [27] for a beautiful account of the relationship between theories of class S and Hitchin systems.



manifolds and find new S-dual frames. As an alternate derivation, we will also show how
to obtain the SW curves directly from certain UV-complete linear quiver theories.

Crucially, the Hitchin systems also give us direct access to the quantities (i)-(iii)
without the need to fully analyze the SW curves.!> As a result, we can immediately
generate conjectures about different S-dual frames and perform some checks on our guesses
before verifying them by analyzing the SW curve. Indeed, in the examples below, we will
essentially be able to conjecture the S-dualities from studying the different ways in which
the quantities in (i)-(iii) can be partitioned. To confirm these guesses, we then study
various limits of the SW curve.

The reasons we can proceed in this way are as follows:

e The Casimirs of the adjoint Higgs field in the Hitchin system description allow us to
find the Coulomb branch spectrum, S = {Aq, -+, Ax}. By the results of [28], this
data also fixes'*

2a—c—;§:<Ai—;> . (2.6)

=1

e Using the recipes in [14, 18, 29] (see also the discussion in [30] and [31]), we can give
a Lagrangian description of the three-dimensional mirror of the S' compactification
of our theory, T3qm. Although this description is not always “good” (in the sense
that the IR superconformal R-symmetry can mix with accidental symmetries), we
can unambiguously compute the dimension of the corresponding Coulomb branch,
dim/\/lgdm, and hence a — ¢ via the relation

L. L. 3dm
a—c= —ﬂdlmMH = —ﬂdlm/\/lc . (2.7)
We expect eq. (2.7) to hold in all theories that have a genuine Higgs branch (all the
superconformal theories of class S discussed in [14, 18] with non-integer dimension
Coulomb branch operators come from genus zero compactifications of the (2, 0) theory
and therefore have Higgs branches).!®
e The three-dimensional mirror often allows us (as long as the IR behavior is under
sufficient control) to fix the precise flavor symmetry of the theory via the monopole
analysis of [32] or, sometimes, from applying mirror symmetry again and reading off
the flavor symmetry directly.'6

130ne possible exception to this statement might be the set of flavor anomalies.

1A condition for using the results in [28] is that our theory has a freely generated Coulomb branch. All
the theories we study in this paper satisfy this condition.

15The first equality in eq. (2.7) is a natural generalization, to strongly coupled theories with a Higgs
branch, of the weakly coupled result that a —c = fi(nH —ny ), where ng is the number of hypermultiplets
and ny is the number of vector multiplets. The second equality in eq. (2.7) follows from mirror symmetry
(in particular, the exchange of Higgs and Coulomb branches under this duality) and the fact that the Higgs
branch does not receive quantum corrections as we go to long distances compared to the S! radius.

16 As we will discuss, in the case of the T3 3 theory, this analysis is somewhat more subtle.



We should note that from the perspective of the compactification of the Ay (2,0)
theory, it may be somewhat surprising that we have an exactly marginal parameter at all.
Indeed, in the case of Gaiotto’s theories [9], marginal parameters in the four-dimensional
field theory are identified with complex structure deformations of the Riemann surfaces on
which the parent six-dimensional theory is compactified. Clearly, the punctured spheres
we consider do not have any complex structure deformations. Instead, it turns out that the
exactly marginal deformations in our theories arise from certain dimensionless parameters
of the co-dimension two defects used in defining the six-dimensional parent theory.'”

Finally, before we proceed, we should also note that in studying the behavior of our
theories at different cusps in the marginal coupling space, we will often find it necessary to
renormalize some of our parameters by multiplying them by functions that either vanish
or diverge at a given cusp. The reason we do this is simple. We must demand that our
parameterization of the Coulomb branch is non-singular so that the BPS masses are finite
and non-trivial functions of the Coulomb branch coordinates. Presumably this criterion can
be also understood as the necessity of renormalizing the operators whose vevs parameterize
the Coulomb branch as we traverse the conformal manifold. In [23], this renormalization
was interpreted as the statement that operators can pick up non-trivial phases or mix
in interesting ways as we travel along closed loops in the marginal coupling space (i.e.,
operators transform as sections of certain bundles over the conformal manifold). We will
find some evidence for this picture, since our normalizations introduce monodromies in the
marginal parameter space.

3 A minimal generalization of Seiberg and Witten’s S-duality

In this section, we will study the ’7'2 33 theory introduced above. In the first subsection,
we find the invariant quantities (i)—(iii) of the I 4 theory [18] and show that they match
those of ’7'2 8 %.18 We also argue that, subject to some assumptions, the only potential
cusps of the 7; 33 theory involve an SU(2) gauge sector coupled to two I3 3 sectors and a
doublet of hypermultiplets (in other words, we argue that there is no emergent rank-two
sector with Coulomb branch spectrum {%, %})

We then find further evidence for this picture by analyzing the SW curve of the I 4
theory. Moreover, we find an S-duality action on the parameters of the theory that is
reminiscent of the Spin(8) triality of the SU(2) gauge theory with Ny = 4. As a result,
this discussion represents a simple generalization of Seiberg and Witten’s analysis [2]. In
the final subsection, we show how 7; 3 3 can be derived from a UV-complete linear quiver.

Before proceeding to the calculations, let us show that our theory is the simplest (i.e.,
lowest-rank) example of an S-duality with non-integer dimension Coulomb branch opera-
tors under certain reasonable assumptions: (a) the only rank-zero theories are collections of
free hypermultiplets and (b) the only rank-one theories with non-integer scaling dimension

primaries are the Is 3, I2 4, and I33 theories.!?

1"We thank G. Moore for a discussion of this point.

8Note that we can also realize our theory in terms of the (I53,.S) Hitchin system. This system has lower
rank than the I4 4 Hitchin system, but it also has an additional regular singularity.

19Tt might be possible to prove assumption (a) by generalizing [28] and using the A" = 2 version of the
arguments presented in [33].



Under these assumptions, it follows from the fact that I5 3 has no flavor symmetry and
the fact that kéi’f@) = % [24] that the lowest rank theory we can imagine constructing — let
us call it Tyo — involves an SU(2) gauge theory coupled to one copy of the I3 3 theory (via
a gauging of the SU(2) € SU(3) flavor symmetry) and five hypermultiplets (via a gauging
of SU(2) C Sp(5)) so that kgy(2) = k:é%?’(m +5ke = 8. However, Tks is inconsistent, because
the gauged SU(2) suffers from Witten’s SU(2) anomaly [19].

To understand this last statement, note that the I33 theory cannot have such an
anomaly. Indeed, as we described above, the I3 3 theory can be obtained as the IR endpoint
of an RG flow from the asymptotically free limit of SU(2) SQCD with Ny = 3 [13] (the
short-distance limit clearly has vanishing Witten anomaly since we can give SU(2) C SO(6)-
preserving masses to the squarks). This flow preserves an SU(3) C SO(6) flavor symmetry
of the gauge theory, and, moreover, this symmetry is identified with the flavor symmetry
of the I3 3 theory in the deep IR. Since the RG flow does not leave any additional massless
matter besides the I3 3 theory at long distances, it must be the case that the Witten anomaly
for the I3 3 theory matches the (vanishing) Witten anomaly for the UV theory. Therefore,
Tiko has the same Witten anomaly as the five half-hypermultiplet doublets. This anomaly
is clearly non-vanishing, and so the 7o theory is inconsistent. On the other hand, since

our ’T2 3 theory has an even number of hypermultiplet doublets, it is a consistent theory.

3
2

3.1 Evidence that 7, s 3 = I44, and a check of potential cusps
’2

3
2
Let us check that the invariant quantities in eq, (2.3) for the TQ% 3 theory match the
corresponding quantities for the I, 4 theory (evidence for the equivalence of the BPS spectra
of these theories was given in [25]). To that end, we first note that, as desired, the I 4
SCFT has the following N' = 2 chiral spectrum [14, 18]

3 3
814’4:{2,2,2}287’2,%7% . (31)
As a result, using eq. (2.6), we find [14]

2a1,, — C14 = 5 = 2a7, (3.2)

1 R

o
[[eV)
[[eV)
o

Next, we can write down a good UV description of the three dimensional mirror the-
ory.?? According to [14], this theory is described by a quiver involving four U(1) nodes
with a bifundamental between each node and the overall U(1) decoupled.?! Deleting a

20By this we mean a theory in which the IR superconformal R symmetry is visible in the UV. More
precisely, we have in mind a theory in which the IR superconformal R-symmetry (or R-symmetries if there
are multiple sectors) descends from a symmetry (or symmetries if there are multiple sectors) of the RG flow.

2Tn the prescription of [14, 18], this statement follows from the fact that the irregular singularity of the
corresponding Hitchin system has boundary conditions specified by three 4 x 4 matrices whose eigenvalues
are generically different (and whose degeneracies are therefore in one-to-one correspondence with three
Young tableaux of the form [1,1,1,1]). Note also that we have written the remaining U(1) factors in
certain linear combinations that are convenient for applying the mirror symmetry algorithm in [34].



redundant U(1) factor, we find the theory

UMa | UM)s | U)e
Q1 1 0 0
Q2 0 1 0
Q| 0 0 1 (3.3)
Q4 1 -1 0
Qs 0 1 -1
Qs | -1 0 1
As a result, we conclude that dimMZ™ = 3 and therefore [14]
1
Ups = Claia = —g =0T, 55 ~CT, 4 (3.4)

Finally, we can check that the flavor symmetries match. One way to do this is to take
the mirror transform of the above theory (using the algorithm in [34])

Ul); | UML) | UD)e
Q1 1 0 0
Q.| 0 1 0
Qs 0 0 1 (3.5)
Qs -1 0 1
Qs 1 -1 0
Qs| O 1 -1

We see that this theory has a U(1)? flavor symmetry, and so

G, =U(1)* = GT, 44 - (3.6)

[ 1Y)
(1Y)

Alternatively, we can find the same result directly in the mirror theory by noting that there
are three U(1) Coulomb branch symmetries that shift the three independent dual photons
by constants. Any additional symmetries would correspond to currents that sit in monopole
multiplets of dimension one [32]. However, the monopole multiplets have dimension

A(ﬁ): (|a1\+]a1—a2|+\a2|+|a2—a3]+|a3|+\a3—a1|) >1, (3.7)

N

where @ = (a1, ag,a3) € Z3 is a magnetic U(1)3 charge vector. Note also that eq. (3.7) is
consistent with the claim that we have a good description of the IR theory since there are
no free (or unitarity bound violating) monopole operators in our microscopic description.
These results strongly indicate that 7'2%% =1I44.

Let us now ask about possible S-dual descriptions. Omne possibility is that we have
various dual descriptions involving an SU(2) gauge group coupled to two I3 3 sectors and
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a doublet of hypermultiplets. A more exotic possibility would involve a dual description
with an SU(2) gauge group coupled to a rank-two theory with Coulomb branch spectrum
{%, %} While we cannot prove that this second possibility does not occur without the
SW analysis of the next section, we can already see it is unlikely. Indeed, it is reasonable
to assume that any of the sectors that emerge at the cusps of the conformal manifold are
also of class S and can be realized as compactifications of the (2,0) Ay theory (since the
parent Iy 4 theory is in this class). However, there are no rank-two theories with spectrum
{%, %} that can be built from the recipes in [14, 18] (besides two decoupled copies of the
I3 3 theory). In the next subsection, we will demonstrate that the first option described in
this paragraph is indeed realized.

3.2 Analysis of the SW curve

We begin by writing down the Seiberg-Witten curve for the I, 4 theory
0=zt + qx222 + 2 + 630333 + 0032:3 + 020.732 + c11xz + 0022’2 + C10Z + €co12 + Coo - (38)

The Seiberg-Witten 1-form is given by A = xzdz. Since the mass of a BPS state is given by

¢ A, the 1-form A has scaling dimension one. This observation fixes the scaling dimensions

of x,z,¢;; and ¢ as

i+ J
2 b

[z] = [z] =1/2, [ej]l =2 - [q] =0. (3.9)
The ¢;; with 0 < [¢;;] < 1 correspond to relevant couplings of the theory while those with
[cij] > 1 are regarded as vevs of Coulomb branch operators. The ¢;; of dimension one
are mass-deformation parameters, and the dimensionless parameter ¢ is interpreted as an
exactly marginal coupling of the theory.

In order to make contact with the 7; 83 theory discussed above, we should first show
that an SU(2) gauge symmetry emerges. To that end, let us turn off all the ¢;; except for
coo- The SW curve is given by

0=a"4 qz?2* + 2* + cgo - (3.10)

In terms of y = fi(coo)%/(q:vQ), T =1ico0z/(V2x), f =1—4/¢% and u = cg/q, this curve
is expressed as

y? = (2% —u)? — fit, (3.11)

with the 1-form now A = udz/y. The equation (3.11) is precisely the curve for SU(2) with
Ny =42, 35], where u is the Coulomb branch parameter of dimension 2. The parameter f
is related to the exactly marginal gauge coupling 7 = g + %.22 The equivalence of (3.10)
and (3.11) suggests that the I 4 curve contains a sector described by a conformal SU(2)
vector multiplet.

4 4 .
22Without loss of generality, we can take /I — f = 2 = 92+% with 6, = Y onez ™+ 5 and 0y =

q 03—0%
ez (—1)mem
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The above SU(2) gauge theory has cusps at ¢ = oo and ¢ = £2 where the curve (3.11)
degenerates and different S-dual descriptions of the theory become weakly coupled. We
can go between the cusps via the transformations T': 7 — 7+ 1and S: 7 — —1/7 [2]. In
terms of ¢, these are expressed as T : ¢ — lglzq , S:q— —q. It turns out that S and T

can be extended to the full I4 4 curve (3.8). To that end, first consider

St g —q, ou— TNy (3.12)

The equation (3.8) is invariant under this transformation after we perform a one-form-
preserving coordinate transformation z — e Tzand x — e1 .

Next, consider the T' transformation. We first shift * — x + ¢30/(2¢ — 4) and z —
z 4 co3/(2g — 4) so that the curve (3.8) is

0= .1'4 + qx2z2 + 2’4 + (1'2 + 22)(53033 + 5032) + 620932 + 511.%'2:

+ 50222 + ¢ + Co12 + Coo - (3.13)

This shift keeps A invariant up to an exact term. While the relation between cp, and
Cre is generically complicated, it reduces to ¢y = ciy when ¢ — oco. Now consider the
following transformation:

12 — 2g

T: —
4 24gq

4
, Crp — — g(Cry) 3.14
Kl 2+q9( k@) ( )

where ¢ is a linear map defined by g(¢s0) = %(530 + ¢o3), g(Co3) = %(503 —¢30), g(Ca0) =
5(G20 + 11 + @2), g(ci1) = (Goz — €20), 9(Co2) = 3(G20 — 11 + Co2), 9(C10) = %(510 +
¢o1), g(éo1) = %(Em — ¢10) and ¢(Géoo) = ¢oo. The equation (3.13) is invariant under

this transformation after performing a coordinate transformation z — - (z + z) and

2
z — %(z — ), which keeps the 1-form invariant up to an exact term. I—\{;nce, the Iy 4
curve is invariant under the transformations generated by S and 7.

As we will show in the remaining parts of this subsection, the cusps of the conformal
SU(2) gauge theory persist in the presence of the fractional dimensional operators, and,
at each of the cusps ¢ = 0o,%2, a weakly coupled SU(2) gauge group couples two I33
theories and a doublet of hypermultiplets. We go between the cusps via the S and T
transformations (and we use this freedom to study the cusp at ¢ = oo and then study the
q = %2 cusps via these symmetries).

Moreover, we see in (3.12) and (3.14) that these transformations act non-trivially on
the various parameters and vevs. Note that the S and T transformations take a partic-
ularly simple form when acting on the independent physical mass parameters (i.e., the
independent residues of the one-form), m; (i = 1,2, 3), of the theory

S mip — mi, Mg —m3, M3— Mo,
T: mip — ms, Mo —mi, M3—m3, (3.15)

- 12 —



where the m; are the independent eigenvalues of the simple poles in the Hitchin field at
z = 00.23 As a result, we see that the duality group acts on the residues via S3.

This situation is somewhat reminiscent of the action of the SL(2,Z) duality group of
the SU(2) Ny = 4 gauge theory on the mass parameters via triality [2] (although here we
only have a U(1)3 flavor symmetry instead of SO(8), and we have a non-trivial action of
the duality group on the various non-integer dimension parameters of the theory). Indeed,

it would be interesting to make this analogy more precise.?*

3.2.1 Cusp at g = ©

Consider the I 4 curve (3.8) near ¢ = oo. Since one of the coefficients is divergent in
this limit, it is not clear whether our parameterization of the curve describes the Coulomb
branch in a non-singular fashion. As discussed in the introduction, we should normalize
the ¢;; so that the masses of BPS states are non-trivial functions of these quantities.

Let us first consider the Coulomb branch parameter ciy of dimension % When all
the other deformations of the conformal point are turned off, the curve is given by 0 =
zt + 2222 + 2% + crox. To evaluate the periods of this curve, let us change variables as

(z,2) = (x,w) with w = z/x. Neglecting a trivial branch (x = 0), we find

3 C10
=, 3.16
1+ quw? + w? (3.16)
The 1-form is A = %a:2dw up to exact terms. The curve (3.16) is a triple covering of the
w-plane with branch points at the roots of 1 + qw? + w* and at w = oco. Let us define
the roots wy = i\/%(—q +1/¢% —4). In the limit ¢ — oo, the 1-cycle with the largest

absolute value of the period of the one-form is the one around w = oo and w = wy (or

w_). Its period behaves in the limit as

win

1
— P A~ /i(cl(i)
21 qz

, (3.17)

with a g-independent constant k. Since (3.17) vanishes in the limit ¢ — oo, all the periods
are vanishing in the limit ¢ — oo if c19 is finite. As a result, our parameterization of
the Coulomb branch is singular since all finite values of ¢1y are mapped to the origin of
the moduli space (i.e., the scale-invariant point). To parameterize the Coulomb branch
correctly near g ~ oo, we should normalize cjg as

c10 — q%clo, (318)

so that the period with the largest absolute value remains finite and non-vanishing in the
limit ¢ — co. We renormalize all the ¢;; except for cgp in the same way (i.e., we demand

ZIn particular, we have M3 = diag(—mi — ma — ma, m1,me, m3) and M; = diag(a, —a,a™*, —a™")
in (A.3). Turning off the other parameters of the Hitchin system for simplicity, we find cao = a~*(ms —
ma) + a(2m1 + ma +ma3), c11 = (a® — a " ?)(ma +m3), co2 = —a”*(2m1 + ma + m3) + a(m2 — m3), and
q= —(a2 + afz).

24In particular, it would be interesting to determine the duality group and any homomorphisms between
this group and the group that acts on the parameters of the theory as in (3.12) and (3.14).
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that the largest period created by each c;; # 0 remains finite and non-vanishing in the
limit ¢ — 00).

The only deformation we need to study more carefully is cgg. When only cqg is turned
on, the curve is the genus one curve (3.10). With an appropriate choice of two independent
1-cycles A and B, their periods behave in the limit ¢ — oo as

1 / 1 1
2me J 4 q 2mi I T\ q

Since the ratio of the two periods is divergent, the curve is pinched in the limit ¢ —
o0o. This is the signature of a light W-boson and an infinitely massive monopole. A
natural normalization in this case is cgg — gcgo so that 2%” 3@ A)‘ ~ +/coo and %m fB)\ ~
L /oo log ¢.

As a result, the curve near g ~ oo is written as
1 1 1
0=z*+ qx222 + 24+ q1030x3 + ch()gz?’ + q5020x2
1 3 3
+ ge117z + q2 ez + qicioz + g1z + qeoo - (3.20)

Let us now study the behavior of this curve in the limit ¢ — oco. It turns out that the
curve splits into three sectors.

e In the region |z/z| ~ 1/,/q, the curve is well-described by the new set of variables

Z= qiz and T = qfix. In the limit ¢ — oo, the curve reduces to
_ A 252 ~3 ~2 ~ = ~
0=2"+Z°Z° + c302° + Cco0T” + 1122 + 10T + cgo - (3.21)

By shifting Z — Z — ¢11/(2%), the curve is written as

2
- 9~ - - - C
0=z + 7252 + 0303;3 + 020332 + c10x + (Coo — lel) . (3.22)

The Seiberg-Witten 1-form is now given by A = —zdZ up to exact terms. This is
exactly the expression for the SW curve of an I3 3 theory (under the identifications
(%,%) ~ (2,7)), as given in eq. (A.4).26 The parameters c3g, cag, c19 are the relevant
coupling of dimension %, a mass parameter, and the vev of the Coulomb branch
operator of dimension %, respectively. The combination \/coy — c%l /4 corresponds to

the mass parameter associated with an SU(2) subgroup of the SU(3) flavor symmetry.

e In the region |z/x| ~ /g, the curve is well-described by the new variables z = qfiz
and T = qix. The 1-form is now A = Zdz. After shifting & — & — ¢11/(2%), the curve
in the limit ¢ — oo is written as

2
- -9~ - ~ - C
0=z3* + 7252 + 003z3 + C0222 + co12z + (CO(] — r) . (3.23)

25We could also normalize coo as coo — g(log q)? so that ﬁ fA A ~ /coo/ log g and ﬁ fB A~ ﬁ\/@
Here we use the traditional normalization in which the period of the pinched cycle is finite and non-vanishing.
Note that for ¢;; # coo there is a unique renormalization up to g-independent rescaling. The reason for this
is that no 1-cycle created by c¢;; # coo is pinched in the limit ¢ — oo.

2The minus sign in the 1-form is absorbed by U(1)z rotation.
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This is again an I33 curve, but now depends on different parameters. The only
parameter shared with the previous I3 3 curve is the mass y/cop — c11/4 associated
with an SU(2) subgroup of the flavor symmetry. This result suggests that we have
gauged a diagonal SU(2) C SU(3) of the two I3 3 SCFTs.

e In the region |z/x| ~ 1, the curve in the limit ¢ — oo is given by
0=2%22 + crizz + cgo - (3.24)

This curve describes the SU(2) superconformal QCD in the weak coupling limit with
c11 a mass parameter for a fundamental hypermultiplet. We can eliminate this term
by shifting * — x—c11/(22). The curve after the shift is 0 = 2222+ (coo—c?, /4), which
describes the pinched W-boson cycle of the weak-coupling SU(2) curve. The mass of
the W-boson is proportional to \/cog — c%l/ 4.27 The monopole cycle is overlapping
between |z/x| ~ /q ~ o0 and |z/x| ~ 1/,/q ~ 0; its period is divergent.

To recapitulate: the first two sectors describe two I3 3 theories while the third sector
describes an SU(2) vector multiplet coupled to a fundamental hypermultiplet. The W-
boson mass implies that the SU(2) sector is gauging the SU(2) flavor subgroups of the I3 3
sectors. Hence, the I 4 curve (3.8) near g ~ oo describes the Coulomb branch of the weak
coupling limit of the 7; 33 theory defined in the introduction.

3.2.2 Cusps at g = £+2

Let us briefly discuss the other cusps at ¢ = £2. Since they are mapped to ¢ = co by the
symmetry transformations S and T described in (3.12) and (3.14), the theory again splits
into two I3 3 theories weakly gauged by an SU(2) vectormultiplet coupled to a fundamental
hypermultiplet. From (3.12) and (3.14), we can read off the renormalized curve near
q~ £2 as

3 3
0=z*+ qz:22;2 + 244 e1c30z> + €1y’
1 ) 1 2 1 1
+ €2Co0X” + C11X2 + €2Cp22” + €4C10X + €4C012 + Coo (3.25)

where € = ¢ F 2. It is straightforward to show that, in the limit ¢ — £2, the curve splits
into two I3 3 curves connected by an SU(2) curve. A difference from the previous cusp is
that the parameters c;; are now mixed among the three sectors. In terms of the linear map
g defined below (3.14), one of the I3 3 curves is characterized by g(cs0), g(c20), g(c10) and
9(co0) — g(c11)?/4 while the other is governed by g(co3), g(co2), g(co1) and g(coo) — g(c11)? /4.
The SU(2) vector multiplet and a fundamental hypermultiplet are characterized by g(co)
and g(c11).

3.3 The linear quiver

In this section, we would like to demonstrate how the 7'2% 3 theory can be engineered from
a UV-complete linear quiver. To that end, consider the theory in figure 1. Following [36],

2"The shift of the W-boson mass squared by a hypermultiplet mass squared is a common phenomenon.
See for example [2].
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Figure 1. A UV linear quiver embedding of the 7, s s theory.

25

we can write the corresponding SW curve as follows:

@t? (v +my) + (v + pro + a2) + (V3 + ugv + uz)

2 / (3.26)
LU TR +p2v u2A(v +mg) + ! —{;ng @A (v+mo)? =0.

t

The SW differential has the form A = dt. In the above formula wu;, uly, and Uy are the
Coulomb branch coordinates of the theory, m; and ms encode the mass parameters for the
two SU(2) doublets, ms is related to the mass of the fundamental hypermultiplet of SU(3),
w1 and po are associated with the mass parameters of the bifundamental hypermultiplets.?®
q1, g2 and A are, respectively, the marginal couplings of the SU(2) gauge groups and the
dynamical scale of the SU(3) group. If we send one of the ¢; couplings to zero, the curve
reduces to that of the linear quiver with the SU(2) group replaced by two hypers in the
fundamental of SU(3), which is indeed the expected degeneration in the “ungauging” limit.
Setting ¢1 = g2 = 0 the curve reduces to that of SU(3) SQCD with Ny = 5. If we send to
zero A, thus ungauging SU(3), the quiver breaks into two pieces, each describing a scale
invariant SU(2) theory. Depending on how we write the curve, in the degeneration limit
we are left with the curve for one of these two sectors. For example, in the above formula,
only the terms proportional to a positive power of ¢ remain. We can change description
and keep the other sector simply with the redefinition ¢ — ¢/A. With a constant shift of
v, which does not affect the form of the SW differential, and a suitable redefinition of the
parameters, we can bring the curve to the following form, which is more convenient for our
later discussion:

qt*(v+my) + t(0* + prv + G2) + (02 + mav? + ugv + u3)

V3 + pov? + uhv A2 v3 + mav?

A
+ t t2

qo = 0. (3.27)

We are interested in the origin of the moduli space of this theory (i.e., the point in the
moduli space we get by setting all the parameters in (3.27) to zero except ¢;) where the
curve reduces to

2 3 2V _Y
@it*v +v° + @A 2 =0, A= tdt. (3.28)

Z8Notice that the above curve is schematic: the parameters m; are not the physical masses (i.e., the
residues of the SW differential) but are instead combinations of the mass parameters and the dynamical
scale of the theory.
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The resulting curve is singular and, as usually happens in N' = 2 theories, the degeneration
of the curve signals the presence of a superconformal fixed point, whose SW curve can be
extracted starting from (3.27) by taking a suitable scaling limit. First of all we define
new variables

t=vAz, = \ﬂam, p2 = \/th/z’ usy = \FAU3/2, up = \/Kﬂ3/27

(3.29)
mo = Acy us = Am, uz = Au .
In terms of these variables, (3.27) becomes
2 3
2 v ~ v 2
A<qlz (v+mq) + Z<\ﬂ +ayjov +u3/2> + <A + c1v” + mw +u>
3.30)
V3 /A + by 902 + Us v 3 2 (
n / 1/2 3/2 +q211 +72ngv>:0‘
z z
The SW differential is A = (v/z)dz. Then, sending A to infinity, we get the curve
220+ ma) + 2(vay s + Gigpe) — (1+ g) (v + mo + u)
by jov? + Uiz jov 3 2
12 320 L YT (3.31)

22
To obtain this formula we divided the whole curve by a constant and rescaled z to set
to one the coefficient of z?v and to —1 — ¢ and g the coefficients of the terms v? and
v3/2? respectively. This manipulation is also accompanied by the proper redefinition of
the parameters. Notice that this transformation does not affect the SW differential.

Since we are discussing a superconformal theory, all the parameters appearing in (3.31)
should have a definite scaling dimension. This can be read from (3.29) using the UV dimen-
sion of the parameters appearing in (3.27). Notice that the above curve is homogeneous,
in the sense that assigning dimension one to v (which is consistent with the constraint on
the SW differential) and 1/2 to z we find that all the terms in (3.31) have dimension two.
This is precisely the property we expect for the curve describing an SCFT.

It is straightforward to see that (3.31) matches the curve describing the I 4 theory
in (3.8) (clearly the number and dimensions of the parameters match). To that end, we
take v — zz and make the following transformation which preserves the one-form up to
exact terms:

(x,2) = (Az + Bz + Ky, Cx + Dz + K3)

(1+v9)

=

with A= VI BoAYVIZI C = A,
V2(/g—g)igs 91y/1+/g
- b
D= _aYYI_I = 2 LY
1+ g 2(1+g) 2(1+g)

Dividing the resulting equation by (¢ — 1)/4 and labeling the coefficients of the various
dimensionful terms as in (3.8), we recover

2 2
0=2z+ <;_+1> 2222 4 21 + e300 + 32> + cop?

+ci1xz + 0022’2 + ¢c10x + ¢co12 + Coo (332)
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which we recognize as (3.8) with the identification

29+ 2
g—1"~

q= (3.33)

4 A minimal generalization of Argyres and Seiberg’s S-duality

In this section, we turn our attention to the rank four 7})2 33 theory described in the
introduction and argue that it exhibits Argyres-Seiberg-like duahty (i.e., the quantities (i)—

(iii) defined in section 2 are partitioned differently at the different cusps). In subsection 4.1

we give strong evidence that 7}, 983 = IIIBX[2 2.L1]
1272
(i)—(iii). In subsection 4.2 we then study the possible partitions of these quantities and

by matching the invariant quantities

find two potential S-dual descriptions.
In subsection 4.3 we use the SW curve of the I11; 1 theory to show that both
descriptions we find are indeed realized: at one cusp, we have a perturbative SU(3) gauge

3><[2 2,1,

group coupled to two I3 3 theories and three fundamental flavors (this is our definition of

the 7y 5 33 theory), while, at another cusp, we find a description with perturbative SU(2)

gauge fields coupled to an I3 3 theory and an exotic rank two theory we call 7; s (in the
2

2>< 2,2,2],[2,2,1,1
(2,2,2][ ])_ One consequence of our

language of [14], this theory can be written as I1I{
study is a derivation of eq. (1.2). In the final subsection, we show that 7'32%% can be
embedded in a UV-complete linear quiver.

Before proceeding to the calculations, let us show that — under the same assumptions
we used at the beginning of section 3 to demonstrate the minimality of our first example
— there are no rank three theories that exhibit Argyres-Seiberg-like duality.

We can prove this statement as follows. Let us consider the possible rank three theories.
They break up into two cases: (a) a rank one gauge theory coupled to either a rank two
sector or to two rank one sectors, and (b) a rank two gauge theory coupled to a rank one
sector. Let us consider (a) first. In this case, the gauge theory must be SU(2). Let us
suppose that it is coupled to two rank one sectors. Vanishing of the one-loop beta function
implies that the only possibility is that SU(2) is coupled to two copies of the I35 theory
with an additional doublet. This is the 7; 33 = = I44 theory we studied in section 3 and
showed did not exhibit Argyres- Selberg—hke behav1or Next let us suppose that the SU(2)
gauge theory is coupled to a rank two sector. In order to have an Argyres-Seiberg-like
duality, such a theory must be dual to a rank two gauge theory coupled to a rank one
sector with a non-integer dimension Coulomb branch operator as in (b). The possible
rank two gauge groups are: SU(2) x SU(2), SU(3), Sp(2), and G3. We can rule out Sp(2)
and Go immediately since the I5 4 and I3 3 theories do not have such symmetry groups.
The SU(3) case rules out Iz 4 as well, since it only has SU(2) flavor symmetry. Moreover,
the I3 3 theory contributes dkgsy(3) = 3 to the flavor anomaly. There are no hypermultiplet
representations that can contribute dkgy(3) = 9 in order to make the gauging marginal. As
a result, we should consider the SU(2) x SU(2) gauge theory. We cannot use the I 4 theory
because it contributes dkgy(2) = % to the flavor anomaly and there are no representations
of hypermultiplets that can then make this gauging marginal. On the other hand, if we
use the I3 3 theory, then we again run into the Witten anomaly we discussed in section 3.
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Therefore, the simplest generalization of Argyres-Seiberg duality has rank four (like the
7}) o 3 3 theory we are about to study).
b 7272

4.1 Preliminary evidence that 7?,, 9.3 8 = IIIgE[Z’z’l’I]
9 ’272 9

We will now compute the quantities (i)—(iii) described in section 2 for the 17 Ig’; [2:2,1,1]

theory and show that they match the quantities given in eq. (2.4) for the 7;2%% SCFT.
We will then motivate the existence of an SU(2) gauge theory cusp and demonstrate how
these quantities are partitioned at such a point on the conformal manifold.

We first note that the Hitchin system description of IT Ig”z 2211 4 specified by three
6 x 6 matrices whose eigenvalue degeneracies are encoded in three copies of the Young
tableaux [2,2,1,1] (i.e., each matrix has two sets of two-fold degenerate eigenvalues, see
appendix A.2).2Y Tt is straightforward to check that the Coulomb-branch spectrum of the

theory is

33
SI]I‘S’E[?,ZI,I] - {3,2, 5, 2} == 87;’27%7% . (41)
It then follows from eq. (2.6) that

2a1[[§7§[2’2’1’1] — €y pxiz2an = 3 = 2a7, (4.2)

— CT
3 3
6,6 »2,5,5 3,

33 °
29,5

Next, from the three Young tableaux [2,2,1, 1], we use the rules described in [18] to
write down the three-dimensional mirror

U(); | U2 | U(2)a | U©2)B
QaB 0 0 241 2.4
Qpr | -1 0 1 2.1
Q2 | +1 -1 1 1 (4.3)
Q24 0 +1 2.1 1
Qa1 -1 0 241 1
B2 0 -1 1 2.1

where the subscripts in the U(2)4 p representations are charges under the corresponding
U(1) subgroups. Note that the overall U(1) is decoupled and should be eliminated.
As a result, we see that dim./\/l%dm =5, and so

5

a. . 3x[2,2,1,1] —C, ,3x[2,2,1,1]] = —— = @ .
AR 15 A 24 T32,3.3

— 675727 (4.4)

[N
(VY

2This construction is a rank five Hitchin system realization of the theory. It also turns out there
is an equivalent rank three realization of the theory: (I]Iii[z’l’l], [2,2]). This theory has an irregular
singularity labeled by the three Young tableaux [2,1,1] (again describing the degeneracy of the eigenvalues
of the Hitchin field at the irregular singularity) and a regular singularity labeled by the Young tableau [2, 2].
Finally, there is also a rank four realization of the theory: (III?E [2’2’1]7 S), where the theory has an irregular
singularity labeled by the three Young tableaux [2,2,1] combined with a simple regular singularity.
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To read off the symmetries of the theory, we can apply mirror symmetry again and find

Ul); | UD)s | U2
qi=1,2,3 0 0 21
q 0 -1 2.1 (4.5)
Q -1 1 1
Q 1 0 21

This theory has a U(3) flavor symmetry, and so we conclude that

(4.6)

3 3 °
2,5,

GHISE[Q,Q,LH =U@3) = GTS

Alternatively, we can work directly in the mirror theory. Clearly, there is a Coulomb
branch symmetry that shifts the three dual photons by independent constants. To see the
symmetry enhancement to U(3) in the IR, we should study the monopole operators with
dimension one [32]. The general formula for the dimensions of the monopole operators is

1 1
A(T) = 5(\01,1 +laai| +laaz| + lapa| + !aB,2|> + §<|GL1 —aaa|+la1 —aasl

+larg —apal+lag —apa| +laar —apa| +laa1 —apa| +laaz —ap|

+laaz — ale) - (\aA,l —aaz|+lap;1 — aB,z\) ; (4.7)

where @ = (a11,a41,a42,a51,ap2) € Z° is a U(1) x U(2)? magnetic charge vector. In
writing eq. (4.7), we have used the fact that we can shift the magnetic charge by a vector
corresponding to the overall decoupled U(1) to set the magnetic flux from the U(1)s node
to zero. It is straightforward to check that, up to unimportant Zs x Zo permutations,
the dimension one monopoles have charges ]\41jE = (0,4£1,0,0,0), M;E = (0,0,0,+£1,0),
M = 4(0,1,0,1,0), which complete the enhancement of U(1)? — U(3) in the IR.

4.2 A first look at the SU(2) cusp and the 73’% SCFT

Let us motivate the existence of an SU(2) cusp in the conformal manifold. One way to
see such a point should exist is to recall the SW discussion in section 3. Just as we saw
the curve for SU(2) with Ny = 4 emerge when we turned off all the fractional dimensional
couplings and vevs, so too we expect the curve for SU(3) with Ny = 6 to emerge when we
turn off the fractional dimensional quantities in the curve of the 75’2’ 33 theory. From the
discussion in [7], we then expect that there should be a degeneration limit where an SU(2)
gauge group emerges. As we will see, the presence of fractional dimensional operators does
not spoil this picture, although the emergent sectors that appear are quite different than
in [7].

What can this cusp look like? We again expect a decomposition into sectors of class S
(of type Ax). One possibility is an SU(2) gauge group coupled to a rank one theory with a
dimension three Coulomb branch operator, a rank two theory with spectrum {%, %}, and
some number of fundamentals. However, as we argued in the previous section, such a rank
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two sector is unlikely to exist in the Ay theories of class S, and, since our parent theory is
of this type, such an option should not be realized. Another possibility is an SU(2) gauge
group coupled to a rank three theory with spectrum {3, 35 2} However, just as in the case
of the rank two theory with spectrum {2, 2} such a theory cannot be constructed from
the recipes in [14, 18]. As a result, the last possibility is an SU(2) gauge group coupled to
a rank two theory with Coulomb branch spectrum, {3, %}, and a copy of the I3 3 theory.
We denote this rank two theory, 7;) 3
Consistency of our picture demands

aT, 4 =2, °T, 3 :%, (4.8)
G@,g D SU(3) x SU(2), ksu@) = 6, ksue) =5, (4.9)
ST,% = {3, g} , (4.10)
where the SU(3) flavor symmetry of the T3, 3 theory supplies SU(3) - G7;72’%7%, and the

U@l) c GT 33 for the total theory is supphed by the I3 3 sector.?

We Wlll now argue that the 753 theory exists since it can be identified with the
’2
following class & SCFT

2x[2,2,2],12,2,1,1]

Ty = 1115 g 222220 (4.11)

3
In other words, we claim that the irregular singularity of the Hitchin system describing
this theory has three 6 x 6 matrices with the first two (i.e., those multiplying the third and
second order poles at z = oo in the Higgs field) having three doubly degenerate eigenvalues
and the last one (controlling the mass parameters) having two pairs of doubly degenerate
eigenvalues. Indeed, from the discussion in appendix A.3, it is straightforward to check
that this theory has SIHzx 2,2,2],[2,2,1,1] {3, %} and so, from eq. (2.6), it has the same 2a—c

as the 75% SCFT.

390ne nice check of our discussion is the following. If our conjecture is correct, then the fundamental
hypermultiplets at the SU(3) cusp are monopoles in the SU(2) gauge theory description (our argument is
similar in spirit to the argument in [7]). With this understanding, let us consider ky(y. On the SU(2) gauge

theory side of the duality, it is natural to take ky(1) = k23 = = 3, while on the SU(3) gauge theory side of

SU(3
the duality, ky(1) = 9¢° +9(—¢)?, with g the U(1) charge of the hypermultiplets. In order to have matching,
we need ¢ = i@,. Can we show that such a charge suggests that the fundamentals of SU(3) are monopoles
of SU(2)? Let us consider a monopole state, |M), dressed with SU(3) flavor-singlet fermionic zero modes,
(c,c!), from the I3 3 sector (on the SU( ) gauge theory side of the duality) and SU(3)-charged fermionic

zero modes from the 7’3% sector, (d;,d!). Note that the (¢, c) are charged under the U(1) flavor symmetry

while the (d;,d!) are not. Indeed, using the fact that the U(1) C SU(3) generator of the I3 3’s SU(3) flavor
symmetry left over after gauging SU(2) is T = %diag(L 1,—2) (so that Tr T2 = 1), we see that the U(1)
charge of c is —%; we observe there is only one massless hyper left over when we turn on the dimension
two vev, since the Is 3 theory has a mutually local triplet of charged hypermultiplets. Taking |M) to be an

SU(3) singlet with some non-zero U(1) charge, and noting that (H d:) c'|M) and (H/ dj) |[M) are CPT
conjugates with opposite U(1) charge, we find that the U(1) charge of the monopole state is % as desired.
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The three dimensional mirror of the I7 Ig 2[2’2’2}’[2’2’1’1] theory is somewhat more subtle

than the three dimensional mirrors encountered above. From the Hitchin system, we can
deduce the following UV description of the three dimensional mirror

U1 | U@2)a | UQ2)B | U22)c
QaB 0 24 2.4 1
Qpc| 0 1 241 2.4 (4.12)
Qca 0 2. 1 24
Qa1 +1 24 1 1

where the subscripts in the U(2) g ¢ representations denote charges under the corresponding
U(1) subgroups.

Note that all of the nodes in this description are “good” in the sense of [32]. In
particular, the U(1); node has Ny — 2N, = 0 and so too do the U(2)p,c nodes. The
U(2)4 node is also good since it has Ny — 2N, = 1. Therefore, it is natural to guess
that this theory should have no monopole operators of dimension A < % and that the
flavor symmetry should be SU(3) x SU(2).3! We also find dimMZ™ = 6 and therefore
a—c=—3%

This result is certainly compatible with what we expect from eq. (4.10). However, there
is a wrinkle (note that we do not expect the discussion that follows to affect dimM™ or

therefore a — ¢). Indeed, we can compute the dimensions of the monopole operators [32]

1 1
A(d) = §<\aA,1| + IaA,zl) +3 (IaA,1 —api|+aaz2—api|+laa1 —ap2

+lap2 —aca|+ a1 —ac2| + lap2 — ace

)

+ laca — ac,2|) ; (4.13)

+laa2 —app|+lap1 — ac

+laa1 —aca|+laas —aci|+laan —acp| + |laaz —ace

—(|aA,1 —aaz2|+lap1 —aB2

where @ = (aa1,a42,aB1,aB2,ac,1,0C,2) € Z% is a U(2)® magnetic charge vector (we
have used the freedom of shifting the flux by a charge corresponding to the overall U(1) in
order to set the magnetic flux from the U(1); node to zero). It is easy to check that, up to
Z% permutations, the dimension one monopole operators are ]\41i = (0,0,£1,0,0,0), ]\42i =
(0,0,0,0,+1,0), M = +(0,0,1,0,1,0), M = +(1,1,1,1,1,1), M5 = £(2,0,2,0,2,0),
Mg = (1,-1,1,—1,1,—1). However, there is also a dimension half monopole operator,
My = +(1,0,1,0,1,0). The heuristic reason for this result is that the extra U(2) 4 we have
added to connect the two linear quivers that produce the SU(3) and SU(2) symmetries
gives large quantum corrections to the theory. Therefore, even though the quiver is “good”
by the usual tests, it actually has an apparent dimension half free monopole operator!

3Mf we regard the theory as an N = 1 theory, then the flavor symmetry would, intriguingly, be SU(3) x
SU(2) x U(1).

32Note that this value of @ — ¢ rules out another potential candidate for describing ’7'3% the

115577 theory.
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If we simply make the assumption that the IR theory consists of a decoupled free
multiplet tensored with the remainder of the theory (whose superconformal R-symmetry is
visible in the UV), then we find that the IR global symmetry group is SU(2)? x SU(3) (see
also the discussion in [37]). In this case, either the extra SU(2) is an accidental symmetry
that appears only upon compactifying our four-dimensional theory on S' and flowing to
the IR, or, if it is not, then the SU(2) symmetry that we gauge in the next section should
be thought of as a diagonal subgroup of SU(2)2.

4.3 Analysis of the SW curve
The SW curve for the IIIE’E [2:2.1,1] theory is given by

z
0= 2222 (x + q2) (x + ) + 012322 + bex®2® + myxlz + moz2® + max?2?
q

b b 2 2
+ [(cl + 172nl> 2%z + <62 + 2?2) xzﬂ +uxrz + &:f + @22

4 4
pma, m262z+v, (4.14)
2 2
with 1-form A\ = xdz. For a derivation of this expression, see appendix A.2. The fact that
¢ A has scaling dimension one implies [z] = [z] = 1 and
1 3
lqf =0, [b]= 3 me] =1, [a] = 2 [ul =2, [v]=3. (4.15)

The theory has an exactly marginal coupling ¢ and three mass deformation parameters m;.
The b; are relevant couplings associated with two Coulomb branch operators of dimension
%, whose vevs are identified with ¢;. There are also Coulomb branch operators u,v of
integer dimensions.

In order to make contact with the ’75727 33 theory, we should first demonstrate that a
conformal SU(3) gauge group emerges in the curve (4.14). To that end, turning off all the

deformations except for v and v yields
2.2 z
0=2a"2 (x+qz)(w+>+uxz+v. (4.16)
q

In terms of @ = u/[2(q + é)], v = v/[2v2(q + %)], f=4/(¢+ 5)2, F=xz/v2and y =
3+ 22232/ (q + %) + uZ + v, the curve is expressed as

y? = (23 +ax +0)* — f2° . (4.17)

1
2v2
These are the one-form and curve for the SU(3) gauge theory with Ny = 6 [35]. The

parameter f is identified with a modular function of the exactly marginal gauge coupling

r=24 %.33 The emergence of (4.17) suggests that the 111572[2,2,1,1} curve contains a

The 1-form is written as A = zdlog (%) up to exact terms, where P = 3 + 4% + 9.

sector described by a conformal SU(3) vector multiplet.

Py 4 4 . .
330nce again, we take v/I— J = 2ok with 01 = 3, ., e™ 7"+ and 0o = 37, 5 (~1)"e™ ™.

4 4
02791

nez
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The curve (4.17) is known to be invariant under I'(2) C SL(2,Z), which is generated
by T2 : 7 — 7+2and S : 7 — —1/7 [35]. In terms of ¢, these correspond to T2 : ¢ —
q, S:q— 1/q. It is clear that the full IIIS’E[Q’Z’LH curve (4.14) is also invariant under

these transformations. Moreover, the curve (4.14) is invariant under

q — —q, by = iby, by — —iby, 1 — ic1, 3 = —ico, U — —U, V — —V, M3 — —M3,
(4.18)

as long as we also send = — iz, 2 — —iz (which keeps the 1-form invariant). The two
transformations ¢ — 1/q and ¢ — —¢ will be important later in this subsection.

The SU(3) superconformal QCD described by (4.17) has a weak-coupling cusp at
7 = 400 and a strong coupling cusp 7 = 1. In terms of ¢, these correspond to ¢ = 0, 00
and ¢ = £1, respectively. Below we study the behavior of the full IIIg’E 2201 cyrve (4.14)

near these points in the marginal coupling space.

4.3.1 Cusp at ¢ = 0,00

Let us first study the curve near ¢ = 0,00. Since ¢ = 0 and ¢ = co are related by ¢ — 1/q,
we have exactly the same physics at these points. Without loss of generality, we may
therefore focus on ¢ = 0.

We first renormalize all the deformations of the curve so that the largest period created
by each deformation is finite and non-vanishing in the limit ¢ — 0. The renormalized curve
is written as

0 =2%2% (z + ¢2) (:c + Z) gz (b12%2% + ba2®2%) + mia®z + moxz® 4+ ¢ 'mga®2?
q
2

b b 3

+qé<mlclx+ m2022> +q o, (4.19)

2 2

which turns out to split into three sectors as follows.

e In the region |z/z| ~ q, we define Z = qféz and T = q%a: so that |Z/%| ~ 1. In terms
of ¥ and z, the curve in the limit ¢ — 0 is written as

0=33%% (2 4 2) + 1 232% + m1 332 + m3i 5>

b 2
+ <01 + 1;'“) 725+ (ugzz + ”;f#) + %% (4.20)

and the 1-form is given by A = Zdz up to exact terms. Let us shift 2 — z — %(:ﬁ—i—bl +
m3 /). This curve can be identified with that of the (III;E [2’1], F) theory, as given in

eq. (A.12) of the appendix, with m = %(ml - Qng,)’ cijp = b1, ugpp =c1 — b1:73n37 =
2 3
u— "% and 0 = v — " 4 22% This means that the sector near |z/x| ~ ¢ describes

the Coulomb branch of the (111 3; [2’1], F) theory. In particular, ¢ and ¢ are identified
with the mass parameters associated with an SU(3) flavor subgroup.
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I33 (3) I33

3x[2,2,1,1]

Figure 2. The quiver diagram describing the 11l theory at ¢ ~ 0. The U(3) flavor

symmetry naturally appears from the three fundamental hypermultiplets.

e In the region |z/z| ~ 1/q, we define Z = q%z and T = qféa:. The curve in the limit
q — 0 is now written as

0=322% (2 4 2) 4 ba7?2% + moz2® + m3i® 5>

b 2
+ <cQ + 2;”2> 75+ (uxz + ”f?) + 22y (4.21)

2

By shifting Z, we again have the curve (A.12) for the (III;? [2’1], F) theory. However,

the curve now depends on a different set of parameters. The only parameters shared
with the previous (11 Igé [2’1], F) theory are the masses 4 and v associated with the
SU(3) subgroup of the flavor symmetry.

e In the region |z/x| ~ 1, the curve is

2323 4 maa?2® +uxz +0v =0, (4.22)

which describes the weak coupling limit of SU(3) superconformal QCD. There are two
independent pinched cycles with vanishing intersection, which is a signature of light
SU(3) W-bosons and infinitely massive monopoles. The parameter mg is identified
with the mass of a fundamental hypermultiplet. By the shift z — z — m3/(3z), the
curve is written as 0 = 2323 4 G2z + 0; the W-boson masses are then determined by
4 and 0.
Hence, in the limit ¢ — 0, the 1112’2[2’2’1’1] curve splits into two (III;’E[M],F) sectors
and an SU(3) gauge sector coupled to a fundamental hypermultiplet. In particular, the
SU(3) W-boson masses are associated with the SU(3) flavor subgroup of each (III;é [2,1] ,F)
theory. This result suggests that the SU(3) sector gauges a diagonal subgroup of the flavor
symmetry of each (17 I§§ [2’1], F) theory and the fundamental hypermultiplet.

Moreover, as we we explain in appendix B, each (I11. §’§ [2’1], F) theory can be identified
as an I3 3 theory with three hypermultiplets. The I3 3 theory with three hypermultiplets
has SU(3); x Sp(3) flavor symmetry which contains a subgroup SU(3); x SU(3)2 x U(1). On
the other hand, the above discussion shows that the (171 I§>§ [2’”, F) theory has a manifest
SU(3)3xU(1) flavor symmetry. We identify the SU(3)3 with the diagonal SU(3) of SU(3); x
SU(3)2. The three hypermultiplets are then in the fundamental representation of SU(3)s.
Since this SU(3)s is the one we are gauging in the above discussion, we see that the
IIIg; [2,2,11] theory is identical to the theory 73723} of two I3 3 theories gauged by a single
SU(3) vector multiplet with 3 fundamental hyperQIrfultiplets; see figure 2.
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4.3.2 Cusps at ¢ = *1

We now turn to the points ¢ = 1 in the marginal coupling space. Since these two points
are related by the symmetry transformation ¢ — —¢, we will, without loss of generality,
focus on ¢ = 1. Note that there is no symmetry transformation which maps ¢ = +1 to
q = 0, 00. Therefore, we expect to have a different weak coupling description in this case.

To understand the above statement, we first renormalize the deformations so that the
largest period created by each deformation is finite and non-vanishing in the limit ¢ — 1.
The correct renormalization turns out to be

(b1 + b2)2
16

Njw

by — by~ O(e2), c1—cy~ Ofe ~O(e),  (4.23)

), m3 —mp —mg —

where € = 1 — q. Therefore the renormalized curve is written as

0=a222%(z 4 ¢2) <x + ;) + 2222 <l~)1(z +x) + 6352(2 - x))

52
+az [miz(z +x) + mox(z +2) + | = + ems | x2

4
i (by + €2by) (by — €3by)
2 m 1 — €2 m 1
+xz <61+1 62 2 1+€252)Z+ (51—1—1 62 2 —6262> x]
- m? , mi , ml(él—l-e%éz) mz(él—ééég)
—I—uxz—i—jz —|—T:c + 5 z+ 5 x4+, (4.24)

where by = (b1 + b2)/2, E%EQ = (by — b2)/2, emz = m3 —mq —mg — 5%/4 Let us now define
¢ = Ttz

r—2z"

depending on [(].

In the limit ¢ — 1, or equivalently ¢ — 0, the curve splits into three sectors,

e In the region [(| ~ 1, the curve in the limit ¢ — 1 is given by

- b2
0=a%2%(x + 2)% + 012?22 (2 + o) + myz2?(z + ) + max?z(x + 2) + legzz

b b
+xz 1+ 1 zZ+ 514—17% x
2 2
e T2 M (e (4.25)
urz + —z°+ -2+ é| —z+ —=x v .
4 4 "\ 2 2 ’
This is precisely the curve for the 11122[2’2’2}’[2’2’1’1] theory, as given in eq. (A.9) of the
appendix. This suggests that the region |(| ~ 1 describes the Coulomb branch of the
2x[2,2,2],[2,2,1,1]

I theory.

e Now, let us look at the region || ~ e. We change variables as & = 6%(3} —2)/\V2i
and Z = ¢ 22 (z +x4b/2+ %) It follows that finite £ and Z correspond

to || ~ € in the limit ¢ — 1. The curve in the limit is now written as

0= &% + 2282 4 byi® + m32® + eoT + 41, (4.26)
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111622 [2,2,2],[2,2,1,1] 4@7 I3 3

Figure 3. The quiver diagram describing the IT Ig 2[2 211] theory at ¢ ~ 1. The manifest flavor

symmetry is SU(3) x U(1); the SU(3) comes from T3z = III2X[2 2,202, 2’1’1}, and the U(1) comes
from I3 3.

where by = 2(1 — )by, g = 2itng, éo = 4(1+14)¢, & = —4u+ 2myma + 2b1é. The 1-
form is given by A = ZdZ up to exact terms. Note that this is precisely the curve (A.4)
for the I3 3 theory. In particular, the mass associated with an SU(2) flavor subgroup
is given by .

e Finally, let us look at the region |{| ~ e%, which is between the above two regions.
We first define z = e_i(z +x+b1/2+ TL=T2) and T = e%(x — z). It follows that
finite z and Z correspond to |(| ~ €2 in the limit g — 1. The curve in terms of these
variables reduces to

0=3%(7%2* + 1), (4.27)

in the limit ¢ — 1. Apart from the trivial branch #? = 0, this is the weak coupling
limit of the SU(2) curve. The period of the pinched cycle is proportional to v/,
which is identified with the central charge of the SU(2) W-boson.

Hence, in the limit ¢ — 1, the 11122[2’2’1’1} curve splits into three sectors; a

IIIQX[Q’Z’Q]’[Q’ZLH sector, an Igg sector, and a perturbative SU(2) gauge sector. This

3X[2’2’1’1] theory at ¢ ~ 1 is described by a perturbative

2><[2,2,2] 2,2,1,1]

strongly suggests that the 111

SU(2) gauge group coupled to the s, 3 = =11l theory and an I3 3 theory; see
figure 3.

This completes our derivation of the Argyres—Seiberg—like duality in the 754 3 s SCFT.
< 2 b 2

We see that these results immediately imply that k: = 5, since the contribution of the

SU(Q)
I3 3 sector to the SU(2) beta function is kSU(z) 3. Moreover, kSU(3)

matching. As a result, we have verified equation (1.2) from the introduction.

6 by anomaly

4.4 The linear quiver

In this subsection, we will show that the 7; 4 s 3 theory can be embedded in a UV-complete
1< 2 b 2

linear quiver theory. To understand this claim, let us consider the theory in figure 4. The

SW curve can be written as follows [36]:

q1t2(v + m1)2 + t(v2 + v+ ag)(v+my) + v+ ugev? + ugsv + ugs
(4.28)
=0.

(v% + pov + uh) (v + ma) (v + ms3) A2 g2(v + ma)? (v + mg3)?

A
+ t 12
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Figure 4. A UV linear quiver embedding of the 7; 5 theory.

33
1202

The notation is identical to that of section 3.3.3% The SW differential is again A = (v/t)dt.
After the shift v — v — mg and a suitable redefinition of the parameters we find the curve

at?(v +m1)? + t(v? + g + a2) (v + my) + ot — dmge’
(4.29)

(v + mg)?v? _0.

2 /
(v* + v + uh) (v + mo)v n A2q2

+ up20? + uozv + ugs + A ; 2

By setting all the parameters to zero (apart from ¢ and g2) in (4.29) the curve becomes
singular. Our next task is to extract the SW curve describing the effective low-energy theory
at this singular point. As in the previous example, we extract the curve starting from (4.29)
and taking a scaling limit. We change variables as follows:

tz\/KZ, ulzx/Kbl, ,U/Q:\/KbQ, ﬂgz\/Kcl, UIQZ\/KCQ,

(4.30)
ms3 = ACO s up2 = Am, up3 = A’LL2 s Upg = A’LL3 .

Rewriting (4.29) in terms of the new variables and taking the limit A — oo we find the curve

1
22(v+m1)? + z(v +my)(bv + 1) + <q + q)vg + mo? + ugv + us
(4.31)
(v +ma)v(bov +c2) (v 4 ma)v?
+ z + 22

=0.

In the above formula we have divided everything by a constant and rescaled z to set to one

the coefficient of the terms 2%v? and v*/z2. This transformation does not change the SW

differential A = (v/z)dz. We are then left with a single marginal parameter that we call q.

We claim that the above curve describes the theory IT 1272[272,1,1].

Indeed, setting
x = v/z we bring the SW differential to the canonical form A = xdz. The resulting curve
is precisely (4.14) with the identification ug = w and uz = v. The only difference is a factor

of two in the definition of my and ms.

5 Conclusions

In this paper, we found minimal generalizations of Seiberg and Witten’s S-duality in
SU(2) gauge theory with four fundamental flavors and Argyres and Seiberg’s S-duality

34As in section 3.3, the above curve is schematic, and the parameters m;, i do not correspond to the
physical mass parameters of the theory.
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in SU(3) gauge theory with six fundamental flavors to theories with non-integer dimen-
sional Coulomb branch operators. Along the way, we found an S-duality action on the
parameters of the ’7'2 33 SCFT that was reminiscent of triality and the emergence of an
exotic rank two theory, 7:’3 3 in the case of the 7;),27 33 theory.

Many open questions remain. For example, it would be interesting to understand
the precise duality group in the case of the 7; 53 theory. More generally, it would be
interesting to see if we can find new phenomena on the conformal manifolds of NV = 2
theories. To study such phenomena, it might be necessary to get a handle on the global
properties of these conformal manifolds. For example, two of us recently initiated studies
of the global topology of conformal manifolds in certain theories with parametrically small
N =2 — N =1 breaking [38].

At a minimum, it is clear that one can construct many more complicated examples
of the S-dualities we have discussed in this paper. One promising avenue of investigation
would be to see if the type I11 Hitchin systems we saw naturally arise in our generalization
of Argyres-Seiberg duality play an important role in these further studies. We suspect that
the IR behavior of the three dimensional theories corresponding to these type I11 Hitchin
systems is typically quite subtle, and it would be useful to develop new tools to analyze
the resulting dynamics. Such work might lead to a simple mathematical language that
explains the dualities we discussed and points the way to new ones.
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A Hitchin system perspective

In this appendix we briefly review how one obtains the SW curves of various Argyres-
Douglas type theories from the corresponding Hitchin system [18, 27]. A class of Argyres-
Douglas theories are obtained by compactifying the 6d (2,0) theory on a punctured sphere.
The Coulomb branch of such a 4d theory (or more precisely its reduction to 3d) is described
by the Hitchin system on the sphere with appropriate BPS boundary conditions at the
punctures. The Ax_; Hitchin system on the punctured sphere involves an SU(NN) gauge
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field and an adjoint (1,0)-form ® = ®.dz on P!, which are constrained by the Hitchin
equations

F+4+[®,®] =0, 01® =0, 04®=0. (A1)

Here A and F are the gauge connection and the curvature, respectively. The differential
operator is defined by 94® = (9:®, + [A5, ®.])dz Adz. The Hitchin equations are basically
the BPS condition keeping a 4d A/ = 2 supersymmetry. In particular, the Seiberg-Witten
curve of the 4d theory is given by the spectral curve

det(xdz — ®(2)) =0, (A.2)

of the Hitchin system. The spectral curve depends on various parameters of the Hitchin
system. Some of them are completely fixed by boundary conditions at the punctures while
the others are not. From the 4d viewpoint, the former corresponds to couplings and masses
while the latter corresponds to the vevs of Coulomb branch operators.

At the punctures on P!, we impose BPS boundary conditions. Since we can trivialize
the gauge bundle around the puncture, the boundary condition is given by specifying the
singular behavior of ® near the puncture. For a trivialized gauge field, 94® = 0 implies ®
is meromorphic. The singularity at a puncture is called “regular” or “irregular” if ® has
a simple or higher-order pole there, respectively. It was shown in [18] that the resulting
4d theory is an Argyres-Douglas type theory only if there is a single irregular singularity
on P! with at most one additional regular singularity. Below, we review the SW curves of
several Argyres-Douglas theories of this type.

Al 1I,, theory

The I, ,, theory is obtained from the A, _; Hitchin system on P! with an irregular singu-
larity.?> Suppose that the singularity is at z = co. The boundary condition of the Higgs
field ®(z) is given by

®(2) =dz |Myz + My + % +0(z7?)] , (A.3)

where M; are traceless n-by-n matrices. By using gauge transformations, M; can be simul-
taneously diagonalized. For the I, ,, theory, the matrices M; can be any diagonal traceless
matrices. The lower-order terms of O(z2) are not fixed by the boundary condition at
z = oo but are subject to the constraint that ®(z) is not singular at z # oco. The SW curve
of the I, ,, theory is then given by the spectral curve det(zdz — ®(z)) = 0.

For example, for the I3 3 theory, the matrices M; are arbitrary traceless diagonal 3 x 3
matrices. Up to coordinate changes keeping xdz invariant, the corresponding spectral curve
is written as

0=z +2222 + 022 + m2® + cz + M2, (A.4)

35Here we use the notation of [14]. The same theory is called (A,—1, An—1) in the language of [15].
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where b, m, M are completely fixed by the boundary condition M;, while ¢ is not. Moreover,
the fact that [xvdz] = 1 implies [b] = %, [m] = [M] = 1 and [c¢] = 3. This implies that b
is a relevant coupling, m, M are mass parameters and c is the vev of a Coulomb branch
operator of dimension % The curve (A.4) is indeed identical to the curve for the Argyres-
Douglas theory obtained from SU(2) gauge theory with Ny = 3 flavors [13], which is known
to have an SU(3) flavor symmetry. In particular, M is identified with the mass parameter
associated with an SU(2) C SU(3).

The second non-trivial example is the Iy 4 theory. The boundary condition (A.3) is

now given by 4 x 4 matrices M;. Up to coordinate changes, the spectral curve is written as
0= a2t 4+ qr?2% + 2% + 302 + 032> + co02? + 1122 + 22 + 10 + o1z + oo - (A.5)

Here the dimensions of the parameters are given in (3.9). In particular, this theory has
a single exactly marginal coupling, q. The spectrum of the Coulomb branch operators

: 3 3
1S {2,5,5 .

A.2 IIIZ’,E [2,2,1,1] theory

Here we consider the I1 ISE [2.2,1,1] theory, which is obtained from the As Hitchin system on

P! with an irregular singularity. Suppose that the singularity is at z = co. The boundary
condition for the Higgs field is characterized by (A.3) with three six-by-six matrices M.
In the case of a type 111 theory, we specify the number of coincident eigenvalues of M; by
Young tableaux [18]. Since our Young tableaux are now [2,2,1, 1], we demand that M; are
of the form

M1 = diag(dl,dl, C~L2, C~L2, C~L3, C~L4) s
My = diag(by, by, ba, ba, b3, ba) ,

M3 = diag(ml,ml,mg,mg,mg,m4) s (AG)

up to gauge equivalence. Here we implicitly assume the tracelessness of the matrices. This
constraint reduces the number of couplings and masses of the corresponding 4d theory.

The SW curve for the 17 Ig’z 2:2.1.1] theory is then read off from the spectral curve of
the Hitchin system. Up to coordinate changes which keep the 1-form xdz invariant, the
spectral curve is written as

0=2222 (x 4+ qz) <x + Z) + 1232?24 box?2® + myxlz + moz2® + maa?2?
q

b b 2 2
+ (| c1+ 1 22z + Co + 212 22| +uzz + ﬁxz + @22
2 2 4 4
+ m;cl T+ mZCQz +v, (A.7)

where ¢, b;, m; are fixed by the boundary condition while ¢;,u,v are not. The fact that
[§ dz] = 1 implies [z] = [z] = 1/2. We then find that ¢ is a marginal coupling, b; are
relevant couplings of dimension 1/2 and m; are mass deformation parameters. The ¢;, u
and v are the vev’s of Coulomb branch operators of dimension %, 2, 3, respectively.
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A.3 III62,>(§ (2,2,2],(2,2,1,1] theory

2>< [2’272]7[272717

Let us now consider the I1lg U theory. The Young tableaux imply that the

boundary condition at z = co is given by

Ml — diag(alv &h ELQ; &Qa d3a d3) )

M2 = diag(i)l, i)l, 527 52, 63, [;3) N

M3 = diag(ml,ml,mg,mz,m?),ﬁu) s (A8)
up to gauge equivalence. We implicitly assume the tracelessness of these matrices. The

resulting spectral curve is written as

b2
0=2?2%(z +2)* + 222%(z + 2)b + 22 <m1z(x +2) + moz(z + ) + 4xz>

b b 2 2
+xz [<c+ ?)z—l— <c+ 77;2)4 + <7le2+nfx2+uz:r>

+ (m;Cz + m22695> + v, (A.9)

up to coordinate changes. Here b, m1, ms,u are fixed by boundary conditions while ¢, v

are not. It follows that mq,ms,/u are mass parameters and b is a relevant coupling of

dimension % The ¢ and v are vev’s of Coulomb branch operators of dimension % and 3.

A4 (III35PY F) theory

The (11 I§§ [2’1], F) theory is obtained from the Ay Hitchin system on P! with an irregular
singularity described by 3 x [2,1] Young tableaux and a regular full singularity. Suppose
that the irregular one is at z = co and the regular one at z = 0. The boundary condition
at z = oo is given by (A.3) with 3 x 3 matrices

M, = diag(a,a, —2a), M, = diag(h,b,—2b), Ms = diag(in,m, —2m), (A.10)
up to gauge equivalence. The boundary condition at z = 0 is given by
1 ~ 0
O(z) ~dz | = ma +0(z")]| . (A.11)
—my — Mo

Up to coordinate changes, the corresponding spectral curve is written as

N 2 . .
a  Cram 4 ug)y €1 /2 2c1pr 22 0 3mugjy — ¢y U
0=23 S e om — - - =
R v +(m 3 3 3| TE T 322
3m? — 2, m — ¢y 9usg/y — U 2¢3
1/2 1/243/2 1/2 ug /2
* 3z +< a7 V2T 3T

2¢2,, — 6m 21 o 23
1/2 o4 22 T

5 5 e (A.12)
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Here ¢y /5, m are fixed by the boundary condition at z = oo while 4, are fixed by the one
at z = 0. Therefore these are a relevant coupling and masses. The other parameter, uz /s,
is regarded as the Coulomb branch parameter. The fact [xdz] = 1 implies [c; /5] = 3, [m] =
L, [a] = 2, [0] = 3 and [ug)s] = 3. In particular, @ and 9 are mass parameters for the SU(3)
flavor subgroup associated with the full (regular) singularity at z = 0. In appendix B, we
argue that this theory is identical to the I3 3 SCFT with three hypermultiplets.

B Equivalence of (III;”); [2’1], F) and I3 3 with a triplet of hypermultiplets

In this appendix, we show that the (III;?)[Q’H,F) SCFT is equivalent to the I33 theory
with a triplet of hypermultiplets. In particular, in B.1 we demonstrate this claim at the
level of the SW curves, while in B.2 we demonstrate the equivalence at the levels of the
S1 reductions.

B.1 Seiberg-Witten analysis

We will now show that the curve for the I3 3 SCEFT plus a triplet of hypermultiplets agrees
with the curve of the (III;’E p’”,F) theory.
Let us start from SU(3) gauge fields coupled to the I33 theory. The corresponding
curve can be written in the form [39]
AV 5 dt
T—I—x +ux + v+ (ug) +xC1)2)t +1° =0, )\:2?7. (B.1)
In the above formula, u3/, and ¢y 5 represent the chiral operator of dimension 3 /2 and the
corresponding coupling constant of the I33 theory. A is the SU(3) dynamical scale, and
b is the corresponding beta function coefficient. As discussed in [39], the matter sector is
“localized” at t = oo, whereas the above curve near ¢ = 0 looks like the curve for SU(3)
SYM. Equivalently, we can say that at ¢ = 0 we have a trivial matter sector.
Let us consider an SU(3) gauge theory coupled to a fundamental and to the I3 3 theory.
In order to write down the SW curve, we can start from (B.1) and replace the trivial sector
at t = 0 with a hypermultiplet in the fundamental of SU(3). This modification leads to
the curve

APz +m) dt

, —|—x3+um+v+(u3/2+mcl/2)t+t2:O, )\:x7, (B.2)
We can now consider the redefinition z = ¢/(x + m), which brings the curve to the form
+2° +ur + v+ (ugpp + i) (r+m)z+ (x+m)2° =0, A=z—. (B.3)

z z

The SW curve describing the I3 3 theory plus three hypermultiplets can be identified just
by ungauging. The curve in the form (B.3) is particularly convenient to that end, since the
ungauging can be implemented simply by setting A to zero: in this limit u and v become
mass parameters, which is exactly what we expect in the ungauging limit. We are then
left with

. d
23 4 ux 4+ v+ (uz/o +xcy0)(x +m)z + (x +m)?22 =0, A= m?z . (B.4)
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In order to bring it to a “Gaiotto-inspired form”, we now shift the coordinate = in order
to eliminate the term proportional to 2. This is simply done by the redefinition

2
v — 2 (B.5)

which does not change the SW differential up to exact terms which are irrelevant. We can

now write the curve in the canonical form
N Ao (2) + ¢3(2) =0, (B.6)
where

2
Uz /9 + C1/0m c 2¢1 /9% 2
¢2:(U+M+2m_1/2_1/2_2>(dz)27

22 z 3 3 3
2 2
v Uz /9 — C1 /9t BM" — €T )M — U — C1 /2U3 /2
¢3:(3+ LU L 12 PBR L (B7)
z 3z 3z

22, —6m 2 022 9,3
1/2 1/2 z 3
+ 9 Z+ 9 o (dz)° .

In the above formulas we introduced the parameter

- 01/2m - . (BS)
We recognize the curve for the (III;’E [271],F) theory [14].

B.2 The S reduction of the (III33™", F) SCFT

Here we will briefly study the S' compactification of the (1T I§’§ [2’1], F) SCFT. We remind

the reader that in section 4.3, we saw that two copies of the (11 ]§§ [2’1], F) theory emerge

3x[2.2,1,1] 4

at the SU(3) cusp of the IIISE[Q’Q’I’I] theory. If our identification 75,3 s = I S
) LD )

correct, then it must be the case that that (III?‘?E [2’1], F') is equivalent to a copy of the I3 3
theory and a triplet of hypermultiplets, and we indeed saw this equivalence demonstrated
at the level of the respective Coulomb branches in the previous subsection. We will now
demonstrate the equivalence of the compactified three dimensional theories.

The S! reduction of (Illgé [2’1], F') can be constructed from the recipe in [18]

U@)a | UW)s [ U@)e | U,
Qa | 241 -1 0 0
Qpc| 0 +1 21 0 (B.9)
Qca | 21 0 2.1 0
Qa1 | 2.1 0 0 +1
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In the above table, the subscripts in the representations signify the charges of the fields
under the corresponding U(1) subgroups.

From this data, we can immediately compute the dimensions of the monopole opera-
tors [32]

1 1
A(d) = 5 (|CLA,1’ + |aA,2|> + 5(\%,1 —apa|+ |aa2 —api|+ |lap1 — ac,1|
+lap1 —aca| +laag —aci| + |laaz —aca| +laag —acz| +laaz — ac,2\)
— (!aA,1 —apo|+ lac — acg\) ; (B.10)

where @ = (aa1,a42,aB1,ac,,ac2) € Z° is a magnetic flux vector (we have used the
invariance of the theory under shifts by a charge vector corresponding to the overall de-
coupled U(1) to set the magnetic flux of the U(1); factor to zero). The dimension half
monopole operators are

Mjt = 4(1,0,1,1,0), M3 =+(1,0,0,1,0), M =4+(0,0,0,1,0).  (B.11)

These operators become three free twisted hypermultiplets in the IR and are the three-
dimensional incarnations of the decoupled triplet of hypermultiplets we described above.
Note that the existence of the M3i dimension half monopole operator follows imme-
diately from the fact that the U(2)c node is “ugly” in the classification of [32] (it
has Ny — 2N, = —1).

To find the remainder of the theory in the IR, we can follow [32] and move along the
Coulomb branch of the U(2)c node by taking (®¢) = diag(vi,0) (where the ®¢ is the
adjoint chiral multiplet of U(2)¢) and examine the remaining massless theory.*® Turning
on this vev in the N’ = 4 superpotential

W = Qap®aQap — Tr (‘PAQCAQCA) — Qn1®4Q1 +P5QpcQBc — PpQasQap
+Tr (‘I’CQCAQCA> — Qpc®cQnc, (B.12)

leaves (besides a decoupled U(1) parameterizing the moduli space of the free M?:—L the-
ory [32]) a massless theory with U(2)c — U(l)¢ and the following matter multiplets:
(QaB)a, (QBc)?, (Qca)d, (Qa1)® (along with the corresponding hypermultiplet partners;
here a is an SU(2) 4 index and 2 is a U(2)¢ index).

This operation turns the U(2)4 node “ugly”, since now Ny — 2N, = —1 at this node.
Therefore, following [32], we turn on a vev of the form (®4) = diag(vz,0) in the reduced
theory. This motion on the Coulomb branch leads to a new theory (again, dropping a de-
coupled U(1) as before) with U(2) 4 — U(1) 4 and the following massless matter multiplets:
(QaB)2, (QBc)?, (Qca)3, (Qa1)? (and hypermultiplet partners).

This second operation leaves the U(1); node ugly and so we can turn on a vev of the
form (®4) = (®p) = (®¢) = vs. This shift in vacuum gives mass to the (Qa1)?, (Qa1)2
hypermultiplet leaving over the S* reduction of the I3 3 theory as desired.

36This essentially amounts to performing a Seiberg-like duality on the U(2)¢ node. Such dualities have
been studied at the level of the S* partition function in [40].
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C An alternative derivation of the curves

The fact that (3.31) and (4.31) are the curves associated with the two models we have
studied could have been guessed without referring to the Hitchin system. We would now
like to illustrate a technique which can be applied in many cases to extract the SW curve
for an SU(N) gauge theory coupled to a number of hypermultiplets in the fundamental
representation and to two (generically) nonlagrangian sectors with SU(NN) global symmetry.
This strategy works (at least) when the matter sectors are theories of type D,(SU(N))
studied in [39].37 In what follows we will focus on this class of models. In the language
of [14], D,(SU(N)) theories with p > N correspond to (Iy, F') theories with k =p — N.
Let us start by recalling the SW curve for SU(N) SYM coupled to the D,(SU(N))

theory [39]3%
Ab

N N-2
7 +061(U + ugv

Fodun) oz =0, )\:gdz. (C.1)
Close to z = 0, the above curve has the same structure as the curve describing SYM
theory with group SU(NV). The parameter A plays the role of the SU(/N) dynamical scale,
and setting it to zero corresponds to ungauging: the u; parameters, which play the role
of SU(N) Coulomb branch coordinates, become mass parameters of the SU(N) global
symmetry that appears in the A — 0 limit. We are then left with the SW curve describing
the D,(SU(N)) theory.

To incorporate n fundamental hypermultiplets into the above discussion, we deform
the above equation as follows

AT (v 4 my)
z

+ a1 (0N +ugv™N b fuy) o+ agzf =0, /\:Edz, (C.2)
z

where m; are associated with the mass parameters of the fundamental matter fields. With
the one-form-preserving change of variable ¢ = z/ [\, (v + m;), we get the curve

Ab—n
t

+O[1('UN+U2’UN72+"'+UN)+"‘+042tpH('U+mz‘)p:07 /\:%dt. (C.3)
i=1

The structure of the curve close to ¢ = 0 is again that of SU(N) SYM theory. We can
thus think of the combined matter sector D,(SU(N)) plus n fundamentals as “localized”
at t = oo (by this we mean the terms in the above curve proportional to positive powers of
t). We can now introduce a second Dy(SU(N)) sector by replacing A’~"/t with the curve
of the Dy(SU(N)) theory (written now in terms of 1/t) [39]:
A N N-2 - v
—o troota( fugw +otun) oot [Jo+m)P =0, A= —dt . (C.4)
i=1

3"The same method works for theories with an SO(2N) gauge group and D, (SO(2N)) theories.

38The parameters a1 and as in (C.1) are redundant and do not appear in [39]. Indeed, with the redefini-
tion z — z(a1/az)"/? and then dividing the resulting equation by a1 we can eliminate them. Of course this
transformation will affect other terms as well, but this can be cured with a redefinition of the corresponding
parameters. For later convenience, we will keep them anyway.
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For generic choices of p, ¢ and n this theory is not conformal, so b’ # 0. We can then set
a1 = ag = 1 (see footnote 38), provided we redefine A accordingly. When the theory is
conformal, which is the case we are interested in, the story is different: AY is replaced by
a constant which we call ag. With a rescaling of ¢, and dividing the resulting equation by
a constant, we can reabsorb two of the coefficients aq23. The third one is physical and
cannot be removed: it parametrizes the marginal coupling moduli space.

Following this procedure, we can immediately rederive (3.31) and (4.31). Let us con-
sider the SU(3) theory first. The I35 theory coincides with the D2(SU(3)) model. Accord-
ing to the above procedure, the curve for an SU(3) theory coupled to three hypermultiplets
in the fundamental and two copies of I3 3 can be written in the form

1
t2 4 (byv + ¢1)t + (q + q) (v® 4 ugv + u3)

N (c2 + bav) (v + m1t)(v +m)(v + ms3) N (v +m1)?(v —;m)Q(v +mg3)?

-0, A=1Ydt,
t

where we have taken ¢t - 1/tandp=q¢=2,n=N =3, ao =az=1and oy = ¢+ 1/q
in (C.4) (the change in sign of the one-form can be absorbed by a U(1)p transformation).
After the redefinition z = t/(v + m;) and the shift v — v —m (and a suitable redefinition
of the parameters), we find precisely (4.31). The SW differential is, up to exact terms,
(v/z)dz as in (4.31).

In order to extract the curve for the model discussed in section 3, we first notice that
I3 3 is also equivalent to the Dy4(SU(2)) theory. The curve for SU(2) coupled to I33 can
then be written as (see (C.1))

5

2 v

(W Fug) fFaz+m2? Fedfanzt =0, A= -dz. (C.6)
z z
With a shift of v and by rescaling z we can bring it to the form
2 v
~ + oy (v 4+ ug) + (ug/2 + a1/9v)z + ap(my + v)22 =0, A= ;dz . (C.7)

Again following the above recipe, we find that the curve associated with an SU(2) gauge
theory coupled to two copies of I33 and to a doublet is

22(1) +m1) + 2(ugjp +ayov) — (1 + g)(v2 + ug)

n (3/9 + al/zzv)(v +m) n g(v + m:«‘ggv +m)?

=0. (C.8)

In the above formula we have chosen a3 = 1, o, = g and a; = —1 — g. After the shift
v — v — m this becomes precisely (3.31).
In fact, we can also use (C.6) directly. In this case our prescription leads to the curve

v+m
2122 4+ mi2? Farz + g 4 ug) + as

(v+m)? (v+m)®  (v+m)?
+mo 2 + co + 1

3 T =0. (C.9)
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After the shift v — v —m and the subsequent redefinition z = 7, which brings the SW
differential to the canonical form A\ = xdz, the curve becomes identical to (3.8) (which we
saw was, in turn, equivalent to (3.31)).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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