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Highlights 

 Consumption of polyphenol-rich foods has demonstrated their beneficial role in the 

prevention and treatment of hypertension. 

 Curcumin, a principle polyphenolic compound of turmeric, blunts the increase in blood 

pressure and improves endothelial function and vascular remodeling in 2kidney-1clip 

renovascular hypertensive rats. 

 The mechanisms of curcumin involve an increase in nitric oxide bioavailability and 

antioxidant activity, together with a decrease in angiotensin converting enzyme, MMP-2 and 

MMP-9 levels.  

 Supplementation of curcumin in the daily diet may be useful for the prevention of 

hypertension. 

 

Abstract  

Oxidative stress plays a role in maintaining high arterial blood pressure and contributes to 

the vascular changes that lead to hypertension. Consumption of polyphenol-rich foods has 

demonstrated their beneficial role in the prevention and treatment of hypertension.  Curcumin 

(CUR), a phenolic compound present in the rhizomes of turmeric, possesses cardiovascular 

protective, anti-inflammatory and antioxidant properties.  The present study was designed to 

investigate the protective effect of CUR on 2 kidney-1clip (2K-1C)-induced hypertension, 

endothelial dysfunction, vascular remodeling and oxidative stress in male Sprague-Dawley rats. 

Sham operated or 2K-1C rats were treated with CUR at dose of 50 or 100 mg/kg/day (or 

vehicle).  After 6 weeks of treatment, CUR ameliorated hemodynamic performance in 2K-1C 

hypertensive rats (P <0.05), by reducing blood pressure, increasing hindlimb blood flow and 

decreasing hindlimb vascular resistance.  Hemodynamic restoration was associated with a 

reduction in plasma angiotensin converting enzyme level.  Endothelium-dependent 

vasorelaxation, in response to acetylcholine, of aortic rings isolated from 2K-1C hypertensive 

rats-treated with CUR was significantly increased (P <0.05).  CUR also attenuated hypertension-
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induced oxidative stress and vascular structural modifications. These effects were associated 

with elevated plasma nitrate/nitrite, upregulated eNOS expression, downregulated p47phox 

NADPH oxidase and decreased superoxide production in the vascular tissues. The overall 

findings of this study suggest the mechanisms responsible for the antihypertensive action of 

CUR in 2K-1C hypertension-induced endothelial dysfunction and vascular remodeling involve 

the improvement NO bioavailability and a reduction in oxidative stress.  

Keywords: curcumin, 2K-1C hypertension, endothelial dysfunction, nitric oxide, oxidative stress, 

vascular remodeling  

Introduction 

Hypertension is a risk factor for cardiovascular disease that is strongly associated with 

vascular dysfunction and remodeling [1-3].  In both animal models and in man, increased blood 

pressure has been associated with oxidative stress in the vascular system which, in turn, may be 

both a cause and an effect of hypertension [4]. Reactive oxygen species (ROS) play a 

physiological role in controlling endothelial function, vascular tone and cardiac function, and a 

pathophysiological role in inflammation, hypertrophy, proliferation, apoptosis, migration, 

fibrosis and angiogenesis, all of which are important processes contributing to endothelial 

dysfunction, increased contraction of vascular smooth muscle and structural remodeling causing 

increased peripheral resistance and elevated blood pressure [5-7]. 

Previous studies have demonstrated that a group of zinc-endopeptidases called matrix 

metalloproteinases (MMPs) play an important role in vascular dysfunction and remodeling in 

many types of cardiovascular disease including hypertension [8-10]. Increased MMP activation 

leads to the degradation of extracellular matrix (ECM) proteins in the blood vessels and 

promotes the migration and proliferation of vascular smooth muscle cells (VSMCs) [11].
 
ROS-
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induced MMP-2 and MMP-9 activation have been of particular interest in investigations into the 

role of vascular remodeling in hypertension [8,12-13]. 

In 2K-1C renovascular hypertension, development and maintenance of increased pressure 

is not only due to angiotensin II (Ang II)-induced vasoconstriction, released through activation of 

the renin angiotensin aldosterone system (RAAS), but is also associated with oxidative stress, 

endothelial dysfunction and vascular remodeling [14]. It has been demonstrated that excessive 

vascular NADPH oxidase expression, induced by Ang II, leads to increased superoxide 

production (O2
•-
) and contributes to endothelial nitric oxide synthase (eNOS) downregulation and 

endothelial dysfunction [14-15]. Moreover, Ang II activation in 2K-1C hypertension also 

promotes vascular remodeling as indicated by arterial wall thickening and increased MMP-2 

expression and activity [9,16]. 

Previous studies have shown that increased production of oxidants, reduced nitric oxide 

(NO) bioavailability, and reduced activity of antioxidants in the vascular system are involved in 

hypertension and cardiovascular disease [17-18]. Interestingly, treatment with tempol and the 

polyphenol-rich plant Euterpe oleracea Mart. were associated with decreased concentration of 

O2
•-
 in vascular tissues and inhibition of MMP-2-induced vascular changes in 2K-1C 

hypertension [12,19]. These results and those of many other studies in which polyphenols have 

been used in the treatment of cardiovascular disease [20] suggest that administration of 

antioxidants may be useful for the treatment of hypertension.  

Polyphenols play an important role in the maintenance of health and prevention of 

diseases. CUR (diferuloymethane) is an active ingredient of polyphenolic curcuminoids 

extracted from the rhizomes of turmeric (Curcuma longa Linn) of the Zingiberaceae family. 

CUR has been well recognized as a dietary spice for centuries and its pharmacological activity 
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have been studied in various animal models and clinical investigations into, among others, its 

anti-inflammatory, anti-cancer, anti-diabetic, anti-hypertensive, anti-dementia and antioxidant 

properties [21-26]. Previous studies have demonstrated that CUR inhibits VSMC migration and 

proliferation and collagen synthesis in vascular cell cultures stimulated with platelet-derived 

growth factor and in the experimental model of L-NAME-induced hypertension [27-28]. 

Furthermore, recent studies have shown that CUR reduces oxidative stress in a rat model of L-

NAME hypertension [23,27]. However, there are no reports about the activity of CUR in 2K-1C 

hypertension-induced endothelial dysfunction and vascular remodeling. Therefore, the aim of 

this study was to determine whether the antioxidant CUR could reverse the hypertension, 

endothelial dysfunction, vascular structural changes and remodeling induced in 2K-1C 

hypertensive rats.  

 

Material and Methods 

Animals and Treatments  

We used the model of 2K-1C renovascular hypertension in male Sprague-Dawley rats. 

The experimental protocols were reviewed and approved by the Institutional Animal Ethics 

Committee of Khon Kaen University (AEKKU 66/2555).  The CUR (total curcuminoids > 98% 

by HPLC) was generously provided by the Research and Development Institute, The 

Government Pharmaceutical Organization (Bangkok, Thailand).   

Male Sprague-Dawley rats weighing between160 and180 g, obtained from the National 

Laboratory Animal Center, Mahidol University, Salaya (Nakornpathom, Thailand), were used in 

this study. The animals were housed at The Northeast Laboratory Animal Center (Khon Kaen 

University, Thailand) and maintained on a 12-h dark/light cycle at room temperature (25 ± 2 °C) 

with free access to standard rat chow and water.  After one week of acclimatization, rats were 
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anesthetized with pentobarbital sodium (60 mg/kg i.p.). Hypertension was induced by clipping 

the left renal artery with a silver clip (spacing, 0.2 mm). Sham-operated rats underwent the same 

surgical procedure except for the clip placement. After recovery from surgery for five days, 

animals were randomly assigned to five groups of sixteen animals in each. Ten animals were 

used for functional and biochemical evaluations and the aortas of the remaining six were fixed in 

formaldehyde and used for morphometric analysis. Groups 1 and 2 were sham operated rats that 

received propylene glycol (PG), a vehicle, at 1.5 ml/kg/day (group 1), and CUR 100 mg/kg/day 

by gavage (group 2). Groups 3-5 were clipped rats that received PG alone, CUR 50 and 100 

mg/kg/day by gavage, respectively. The doses of CUR were based on the results of a previous 

study which showed that they were sufficient to reduce blood pressure in L-NAME hypertensive 

rats [23]. Based on the use of body surface area for dose translation from rat to human [29], the 

high dose of CUR (100 mg/kg) used in this study corresponds approximately to a 950 mg dose 

for a 60 kg person. It has been reported that oral administration of CUR at dose up to 8 g/day for 

3 months did not cause any toxicity in humans [30].  

Treatment was started after the five day post-surgery recovery period and maintained for 

six weeks. Systolic blood pressure (SBP) was measured on the day before renal artery clipping 

(regarded as baseline data), five days after surgery and weekly during treatment, using tail-cuff 

plethysmography (Blood pressure analyzer, model 179; IITC Life Science Inc., CA, USA).  

Hemodynamic Measurements 

After six weeks of treatment, rats were anesthetized with pentobarbital sodium (60 

mg/kg; i.p.) and a tracheotomy was performed to allow spontaneous breathing. The femoral 

artery was cannulated and connected to a pressure transducer for monitoring blood pressure (BP) 

and heart rate (HR), using the Acqknowledge data acquisition system, (BIOPAC Systems Inc., 
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California, USA).  Hindlimb blood flow (HBF) was continuously measured by placing a cuff 

type electromagnetic flow probe (4 mm internal circumference) around the abdominal aorta, 

accessed through a laparotomy, just below the branches of renal arteries. The electromagnetic 

flow probe was connected to an electromagnetic flowmeter (Carolina Medical Electronics, North 

Carolina, USA). Hindlimb vascular resistance (HVR) was calculated from the mean arterial 

pressure (MAP) divided by HBF.  Blood samples were withdrawn from the abdominal aorta for 

assays of angiotensin converting enzyme (ACE) level and oxidative stress makers. Following the 

hemodynamic measurements, the aortas and carotid arteries were rapidly excised from the 

animals and used for vascular reactivity testing, analysis of eNOS and p47
phox

 NADPH oxidase 

expression, and O2
•− 

production. 

Vascular Reactivity Testing  

The isolated thoracic aortas were cleaned of surrounding fat and connective tissues, and 

cut into rings 4 mm in length.  The aortic rings were mounted for isometric tension recording in 

the chambers of an organ bath containing modified Krebs salt solution of the following 

concentration (mM): NaCl 119, KCl 4.7, KH2PO4 1.2, MgSO4.7H2O 1.18, Glucose 11, NaHCO3 

25 and CaCl2.2H2O 2.5, which was maintained at 37 °C, pH 7.4, and bubbled with 95% O2 and 

5% CO2.  The system was connected to an isometric force transducer and aortic responses were 

recorded on a computer using LabChart V 7.0 (PowerLab System, AD Instruments, Australia).  

A load of 1 g was initially applied to the aortic ring which was equilibrated for 90 min.  To 

examine endothelium-dependent and endothelium-independent relaxation, the cumulative 

concentration-response curves to ACh and sodium nitroprusside (SNP) ranging from 10
-9

 to 10
-5

 

M were obtained after pre-contraction with phenylephrine (1 µM).  

Assays of O2
•−

 Production, Malondialdehyde, Protein Carbonyl and Nitrate/Nitrite   
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The isolated carotid arteries were immediately placed in ice-cold Krebs salt solution and 

dissected free of fat and adhering tissue.  The arterial segments were cut into rings 4 mm in 

length and incubated with Krebs salt solution. O2
•−

 production in the carotid artery was measured 

using a lucigenin-enhanced chemiluminescence method as previously described [23].  Plasma 

malondialdehyde (MDA) was determined by measuring thiobarbituric acid reactive substances 

and oxidizing protein damage was assessed by measuring the formation of carbonyl groups, by 

reaction with 2,4-dinitrophenylhydrazine, again following a previously described method [31]. 

The level of plasma nitrate/nitrite, the end products of NO metabolism, was measured as 

previously described [23]. 

Assay of Angiotensin Converting Enzyme Activity 

The level of ACE activity in plasma was determined using the o-phthalaldehyde (OPA)-

chromogenic reaction for histidyl-leucine following a previously described method [32] with 

slight modifications. In brief, 25 μL sample of plasma and 50 μL of 15 mM Hip-His-Leu 

solution were mixed in 100 μL buffer (20 mM sodium borate and 300 mM NaCl, pH 8.3), and 

incubated at 37 °C for 30 min. Background absorbance was determined from a plasma sample 

diluted in 150 uL buffer.  The color reaction was formed by adding OPA reagent (1 mM OPA 

and 1 mM 2-meraptoethanol in buffer containing 0.1M sodium borate and 0.2 M NaOH, pH 12). 

After incubation at room temperature for 20 min, the absorbance was measured at 390 nm with a 

spectrophotometer (Ultrospec 6300 pro. Bichrom Ltd., UK). Results were calibrated according 

to a standard curve of ACE solution (15- 120 mU/mL). 

Western Blot Analysis 

Western blotting was performed on aortic homogenates in order to detect the protein 

expressions of eNOS and the p47
phox

 NADPH oxidase subunit following previously described 
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methods [23,33]. In brief, the rat thoracic aortas were homogenized in cell lysis buffer (Cell 

Signaling Technology, Inc., MA, USA) and centrifuged at 4 °C and 12000 rpm for 30 min.  The 

supernatant was collected and the protein content was analyzed by the Bradford dye-binding 

method [34].  A total of 30 µg of protein per sample was separated on 10% sodium dodecyl 

sulfate polyacrylamide gel by an electrophoresis system. The proteins were transferred 

electrophoretically onto a polyvinylidene difluoride membrane, blocked with 5% skimmed milk 

in Tris buffer saline with 0.1% Tween-20 and incubated overnight with primary antibody of 

either mouse monoclonal anti-eNOS (1:2000 dilution; BD Biosciences, CA, USA) or mouse 

monoclonal anti-p47
phox

 (1:1500 dilution; Santa Cruz Biotechnology, Indian Gulch, CA, USA). 

The membranes were repeatedly washed with TBS and incubated for 2 h at room temperature 

with the secondary antibody horseradish peroxidase goat anti-mouse IgG (1:2000 dilution; Santa 

Cruz Biotechnology). The blots were incubated in the enhanced chemiluminescent substrate 

solution (Thermo Fisher Scientific Inc., IL, USA). The intensity of specific eNOS or p47
phox

 

NADPH oxidase and β-actin bands were imaged and captured using a digital imaging system for 

quantitative imaging of gels and blots (Imagequant 400, GE Healthcare Pittsburgh, PA, USA). 

The intensity of the bands was normalized to β-actin expression from the same sample. The 

intensities were expressed as percentages of those from the aorta of normal controls. 

Morphometric Analysis and Composition of the Vascular Wall 

The animals were sacrificed by an overdose of anesthetic drug, thoracic aortas were 

cleaned of loosely adhering fibrous tissue and fixed with 4% phosphate-buffered formaldehyde.  

The vessels were cut to 5 mm in length, and embedded vertically in paraffin blocks using 

standard histological procedures. Five-m-thick sections were cut and stained with hematoxylin 

and eosin (H&E), Picrosirius Red, and Miller’s elastic stain to determine the number of VSMCs 
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and the area fraction of collagen and elastin in the aortic media layer, these being taken as 

measures of their concentration in the specimens.  Medial cross-sectional area (CSA) was 

calculated by subtracting the lumen internal area (Ai) from the external area (Ae), which was 

measured in tissue sections (×40).  The external radius (Re) and the internal radius (Ri) were 

calculated as the square root of Ae/π and Ai/π, respectively. Medial thickness (M) was calculated 

as Re minus Ri. Finally, media to lumen ratio (M/L) was calculated as the wall thickness divided 

by radius of the lumen [12]. 

The stained sections were examined with light microscopy (Nikon ECLIPSE Ni-u, Nikon 

Instruments Inc., NY, USA) and the images were captured at ×200 with a digital microscope 

camera (Nikon DS-Ri1 Camera).  Twelve images from three non-consecutive sections per 

animal were captured and used to count the number of VSMCs and measure the lumen and 

medial areas and the areas within the media of stained collagen and elastin by means of image 

analysis software (Image-Pro Plus, Media Cybernetics, MD, USA). The number of VSMCs was 

obtained by counting their nuclei of in the sections stained with H&E.  The area fraction of 

collagen or elastin in the aortic medial layer was assessed by automatically counting thresholded 

pixels stained with Picrosirius Red or Miller’s elastic staining and dividing by the total number 

of medial pixels.  All measurements were made by one observer and preliminary observations of 

intra-observer repeatability showed a coefficient of variation of less than 5% for all estimations 

of thresholded area. 

Immunohistochemistry 

To determine the amount of smooth muscle -actin (SMA) and the levels of MMP-2 and 

MMP-9  in the thoracic aortas, the de-waxed aortic sections were stained with antibodies specific 

to each: (ab5694; Abcam, for SMA, ab37150; Abcam, for MMP-2 and AB19016; Millipore, for 
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MMP-9) and the R.T.U. Vectastain ABC kit (Vector Laboratories, Inc., CA, USA) as 

recommended by the manufacture. The percentage of immunohistochemically stained SMA, 

MMP-2 or MMP-9 in the aortic wall was quantified in a similar way as collagen and elastin, by 

counting the thresholded pixels stained for SMA, MMP-2 or MMP-9 using the Image-Pro Plus 

Program.  

Assessment of the immunoreactivity for both MMP-2 and MMP-9 was quantified by 

grading the immunohistochemical staining intensity [12] into one of 3 categories: weak (+1) for 

light brown to yellow, moderate (+2) for brown, and strong (+3) for dark brown.  The level of 

MMP-2 or MMP-9 was expressed in arbitrary units, obtained by multiplying the percentage of 

area fraction and the intensity score. 

Statistical Analysis 

Results are expressed as mean ± standard error of the mean (SEM), and n refers to the 

number of animals used. Multiple comparisons between groups were made with one-way 

analysis of variance (ANOVA) followed by Student Newman–Keuls post-hoc test. A probability 

value < 0.05 was considered significant.  

 

Results 

CUR Attenuates Hypertension and Hemodynamic Disturbances  

Systolic blood pressure (SBP) was significantly increased in 2K-1C rats after renal artery 

clipping for five days and continued to increase throughout the study period (P <0.05).  When 

compared to untreated controls, CUR at the two doses used moderates the SBP in 2K-1C rats in a 

dose dependent manner (P <0.05, Fig. 1). With regard to the hemodynamic data, increased 

arterial blood pressure (systolic, diastolic and mean arterial blood pressure), decreased HBF and 

increased HVR were found in 2K-1C hypertensive rats, and this hemodynamic disturbance was 
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significantly alleviated after CUR treatment (P <0.05, Table 1). The hemodynamic statuses of 

the sham groups with or without CUR treatment were not different (Table 1), suggesting that 

CUR had no hypotensive effect on normotensive animals. Moreover, heart rates and body weight 

were not different among all groups throughout the duration of experiment (Table 1). 

CUR Improves Hypertension-Induced Endothelial Dysfunction 

To examine the effect of CUR on 2K-1C hypertension-induced endothelial dysfunction, 

aortic rings were isolated and their vascular reactivity was assessed in organ bath experiments.  

Fig. 2 shows endothelially-dependent and -independent vasorelaxation induced by ACh and SNP 

(dose range: 10
-9

 - 10
-5

 M). A significant impairment of the vascular response to ACh was found 

in the aortic rings of 2K-1C rats when compared with those isolated from the sham group (P < 

0.05, Fig. 2A). In contrast, the vasorelaxant responses to SNP were not different among the 

groups (Fig. 2B).  These results reflect endothelial dysfunction in 2K-1C hypertension. The 

impairment of endothelial vasorelaxation is confirmed by a reduction of plasma nitrate/nitrite 

concentration (P < 0.05, Table 2) and a downregulation of eNOS protein expression in the aortas 

of 2K-1C hypertensive rats (P < 0.05, Fig. 3). Treatment with CUR in a dose-dependent manner 

significantly enhanced endothelial-dependent vasorelaxation induced by ACh (P < 0.05, Fig. 

2A), but had no effect on the endothelial-independent response induced by SNP (Fig. 2B). The 

improvement of endothelial dysfunction in 2K-1C rats-treated with CUR was associated with 

increased nitrate/nitrite levels (P < 0.05, Table 2) and also upregulated eNOS expressions (P < 

0.05, Fig. 3). 

CUR Improves Hypertension-Induced Vascular Structural Changes and Remodeling 

2K-1C renovascular hypertension was associated with arterial wall hypertrophy, with 

significant increases in wall thickness, aortic medial CSA and M/L ratio after 6 weeks of 
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hypertension compared to sham operated animals (P< 0.001, Fig. 4A, B and C), whereas there 

were no significant differences in the lumen areas between the 2K-1C and the sham groups (Fig. 

4D).  Cell counting showed increased an increased number of VSMCs per medial CSA, 

suggesting medial hyperplasia in the 2K-1C group compared with the sham group (P< 0.05, Fig. 

5A). In addition, a significant increase in the number of VSMCs and the relative amounts of 

SMA, collagen and elastin in the aortic wall of 2K-1C rats were also seen (P< 0.05, Fig. 5B, C 

and D). Treatment with CUR prevented the morphological changes of the aortic wall seen in the 

2K-1C hypertensive rats (P < 0.05, Fig. 4 and 5) although only at the high dose did it 

significantly moderate the increase in SMA, elastin and collagen associated with the 2K-1C 

treatment.  It was found that the contents of SMA, collagen and elastin in the aortic media of 

sham controls were unaltered by vehicle or CUR treatment. 

 Representative immunohistochemistry photomicrographs showing MMP-2 and MMP-9 

staining in the aortas are seen in Figure 6A and B.  We found higher MMP-2 (Fig. 6A) and 

MMP-9 (Fig. 6B) levels in the aortas of 2K-1C hypertensive rats compared with sham controls 

(P < 0.05).  CUR, especially at high dose, significantly attenuated the 2K-1C hypertension-

induced increase in MMP-2 and MMP-9 levels in the aortic walls, whereas no changes in the 

MMP levels were observed in the sham + CUR group (P < 0.05, Figs. 6A and B). 

CUR Reduces ACE Activity and Oxidative Stress 

Plasma ACE levels were increased in 2K-1C rats compared to sham-operated animals (P 

< 0.05, Table 2). Treatment with CUR 100 mg/kg significantly reduced the plasma   ACE level 

(P = 0.05, Table 2). CUR did not affect plasma ACE activity in sham-operated controls.  

Increased superoxide level was found in the arteries of 2K-1C rats when compared with 

sham groups (P < 0.05, Table 2).   In parallel with these results, we found increased p47
phox 
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NADPH oxidase subunit in the aortas from the clipped animals (P < 0.05, Fig. 7), indicating 

increased ROS production in renovascular hypertension.  Further confirming increased oxidative 

stress associated with hypertension, we found that 2K-1C rats had higher levels of plasma MDA 

and protein carbonyl than respective sham controls (P < 0.05, Table 2).  Treatment with CUR 

significantly attenuated superoxide production, MDA and protein carbonyl levels in 2K-1C rats 

(P < 0.05, Table 2), and these deleterious effects were associated with a downregulation of 

p47
phox

 NADPH oxidase subunit (Fig. 7).  

Discussion 

The main findings of this study are that treatment with CUR blunts the increase in blood 

pressure and improves endothelial dysfunction and vascular remodeling in 2K-1C renovascular 

hypertension.  These beneficial effects of CUR may contribute to the improvement of 

hemodynamic status, attenuation of vascular structural alterations, reduction in ACE and MMP 

levels, alleviation of oxidative stress, and increase in NO bioavailability.   

In agreement with previous observations [16,35], we found increased peripheral vascular 

resistance and reduced endothelium-dependent vasorelaxation-induced by ACh in 2K-1C 

hypertensive rats. These effects were evidently associated with a reduction in blood flow and 

suppression of eNOS expression, confirming the presence of endothelial dysfunction and 

reduced NO bioavailability in this hypertensive model.   

Endothelial dysfunction is often associated with pronounced oxidative stress that is due 

to, at least in part, to increase O2
●-

 from NADPH oxidase and increased degradation of NO by 

reaction with O2
●-

, thereby, reducing its bioavailability [15,18]. Thus, eNOS becomes uncoupled, 

causing O2
●-

 generation rather than NO production. NADPH oxidase is a multi-subunit 

enzymatic complex which has been shown to be one of the main sources of O2
●-

 in the vascular 

wall [36]. Upregulation of this oxidase, in particular p47
phox

 contributes to the pathogenesis of 
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oxidative stress in several animal models of hypertension [15,33,37]. In this study, increased O2
●-

 

production was associated with increased p47
phox 

expression in the vascular wall of 2K-1C rats. 

Moreover, increased oxidative stress as indicated by enhanced MDA and protein carbonyl levels 

was also found in 2K-1C hypertension.  Therefore, reduced NO bioavailability and enhanced 

oxidative stress in 2K-1C hypertension lead to less vasodilation, thereby contributing to 

endothelial dysfunction and increased vascular resistance in hypertension.  It has been reported 

that polyphenols present in fruits and vegetables are able to modulate the production of NO in 

vascular endothelium, contributing to the prevention of endothelial dysfunction [20]. We found 

that CUR, a strongly phenolic compound, restored hemodynamic status, enhanced ACh-induced 

vasodilation, upregulated eNOS expression and increased nitrate/nitrite concentration in 2K-1C 

hypertensive rats. Therefore, our findings suggest the beneficial effects of CUR on the 

improvement of vascular dysfunction and alleviation of oxidative stress in 2K-1C hypertensive 

rats. Further support for this suggestion comes from the observation that CUR treatment inhibits 

the increases in MDA and protein carbonyl levels, enhanced O2
●- 

production and p47
phox

 

expression in the arteries of 2K-1C hypertensive rats.   

Hypertension is strongly implicated in the progression of functional and structural 

alterations in the vascular system and vascular remodeling is an adaptive response to elevation of 

BP.  As we have found in this study, the process of vascular remodeling leads to increased aortic 

wall thickness which appears to be due to changes in VSMCs and ECM components [9,38].  

Consistent with this idea, we observed arterial wall hypertrophy, increased collagen and elastin 

deposition, VSMC hyperplasia and hypertrophy (as suggested by the increased area x staining-

intensity product) in the aortas of 2K-1C rats, and that these alterations are reversed by dietary 

supplementation with CUR. Since the lumen area of the aortas of 2K-1C rats did not alter, this 
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suggests that the aortic remodeling is eccentric, thus leaving the resistance of the aorta 

unchanged.   

The main function of MMPs, a family of structurally related, zinc-containing enzymes, 

has been reported to be the degradation and removal of ECM components from the tissue, 

encouraging VSMC migration and proliferation and the production of adhesion molecules 

[11,39]. The gelatinases MMP-2 and MMP-9, which cleave the basement membrane, type IV 

collagen, laminin and elastin, are the most studied MMPs in the vasculature [5]. Increased 

expression and activity of MMPs, especially MMP-2 and MMP-9 have been reported to induce 

vascular changes in animal models of hypertension [8-9,12], suggesting that MMP activation 

contributes to vascular remodeling associated with hypertension. The apparently paradoxical 

result that the scleroprotein content is raised in the hypertensive animals is associated with raised 

levels of the proteolytic enzymes MMP-2 and MMP-9 may be explained by the concept that 

hypertension-induced vascular remodeling is associated with increased MMP activity [8-

9,12,40]. Furthermore, there is evidence that MMPs are actually directly involved in the blood 

pressure increase [41-42]. Consistent with our results, increased MMP-2 expression and 

excessive collagen deposition have been found in the arterial wall of 2K-1C hypertensive rats, 

and the antioxidant therapy inhibited hypertension-induced upregulation of MMP-2 expression 

[9]. Moreover, it has been suggested that increased ROS levels in 2K-1C rats may produce 

vascular changes that are mediated by MMPs [43]. Our results support the interplay between 

MMP-2, MMP-9 and the extracellular matrix proteins during the remodeling process. However, 

more work is needed to identify their exact role. 

The expression of MMPs can be activated by Ang II [13] and ROS involved in 

preservation of MMP latency by reaction with thiol groups [44]. In fact, it has been shown that, 
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either increased Ang II or excessive vascular O2
.-
production are implicated in vascular cell 

growth, inflammation, increased ECM deposition, vascular remodeling, promotion of MMP-2 

expression and activity, and also reduced tissue inhibitor of MMP levels in 2K-1C rats [12,45]. 

This study showed an increase in MMP-2 and MMP-9 expressions in the arterial wall of 2K-1C 

rats and these alterations are associated with increased ACE activity, thus indicating an important 

activation of the RAAS in the 2K-1C model [46]. Interestingly, we found that CUR significantly 

attenuated MMP-2 and MMP-9 expressions and reduced ACE activity in the clipped rats. 

Therefore, one of the possible mechanisms to explain the antihypertensive effect of CUR may be 

related to ACE- inhibitory activity since many ACE inhibitors inhibit MMPs. In addition, 

antioxidants can downregulate MMPs as previously shown in the 2K-1C hypertensive model 

[12],
 
suggesting a major role of ROS in MMP activity.   

Previous studies have demonstrated that CUR possesses antioxidant activity by directly 

scavenging free radicals and hydrogen donors and that it also exhibits anti-inflammatory 

properties [12,22,26]. Our previous results on L-NAME hypertensive rats demonstrated that 

CUR effectively restored NO production in association with a reduction of the over production 

of O2
•- 

in vascular tissue [23]. In addition, treatment with the antioxidant tempol and the 

polyphenol-rich plant Euterpe oleracea Mart, was associated with a downregulation of vascular 

MMP-2 expression and activity in 2K-1C hypertensive rat model [12,19]. The antioxidant effect 

of CUR is probably mediated by phenolic compounds in turmeric since recent evidence has 

demonstrated that polyphenols inhibit expression and activation of MMP-2 in VSMCs [7]. 

Increased MMP-2 expression and activity lead to less vasodilation or increased vasoconstriction, 

contributing to endothelial dysfunction and increased vascular resistance in hypertension [16,47-

48].  
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Some limitations of this study should be taken into consideration.   Firstly, 

histomorphometric analysis of scleroprotein can suffer from poor reproducibility unless suitable 

precautions are taken. With regard to the immunohistochemistry, we have optimized the 

experimental conditions to generate a strong and specific signal for the antigen of interest. The 

measurements were performed in the same batch and stained together with a positive control at 

the same time. Secondly, we note that for untreated 2K-1C animals the total area fraction of 

stained materials (elastin, collagen and the metalloproteinases) is slightly greater than 100%. We 

conclude, as others have done, that some of the components might be doubly stained. However, 

we believe that the results of the SMA staining together with the elastin and collagen data, while 

not providing absolute values of aortic composition, allow inter-group comparisons and clearly 

show how the changes in ECM proteins, VSMC and MMP content associated with hypertension 

are reduced in the animals treated with curcumin.  

In conclusion, the results of this study suggest that CUR moderates development of 

hypertension, endothelial dysfunction, vascular remodeling and oxidative stress in 2K-1C 

renovascular hypertension.  The mechanisms of these effects might involve an increase in 

antioxidant activity and NO bioavailability, together with a decrease in ACE, MMP-2 and MMP-

9 levels after CUR treatment. Our findings suggest that supplementation of CUR in the daily diet 

may be useful for the prevention of hypertension. Epidemiological and or clinical studies are 

needed to support this contention. Although the effects of dietary CUR on acute myocardial 

infarction after coronary artery bypass grafting , rheumatoid arthritis and cancer have been 

investigated [21,49-50], to our knowledge no such study into its antihypertensive effects have 

been performed to date. 
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Figure legends 

Fig. 1. Changes in systolic blood pressure before and after renal artery clipping measured by tail-

cuff plethysmography in all experimental groups. Curcumin, CUR; Systolic blood pressure, SBP. 

In this and all subsequent plots, data are means ± SEM. (n=10/group).  *P < 0.05 versus sham-

operated group, †P < 0.05 versus 2K-1C group and ‡P < 0.05 versus 2K-1C+CUR50 group. 

Fig. 2. Endothelial-dependent vasorelaxation induced by acetylcholine (A) and endothelial-

independent relaxation induced by sodium nitroprusside (B) in aortic rings pre-contracted with 

phenylephrine (1 μM). Curcumin, CUR. *P < 0.05 versus sham-operated group, †P < 0.05 

versus 2K-1C group and ‡P < 0.05 versus 2K-1C+CUR50 group. 

Fig. 3.  Effect of curcumin on eNOS protein expression in the aortas of all experimental groups.  

Height of bars represents densitometric values normalized to the corresponding β-actin. 

Curcumin, CUR. *P < 0.05 versus sham-operated group, †P < 0.05 versus 2K-1C group. 

Fig. 4. Effect of curcumin on structural modifications induced in the aortas of all experimental 

groups.  Representative photomicrographs of the aortic samples (×40) stained with H&E are 

shown together with histomorphometric data: the wall thickness (A), cross-sectional area (CSA) 

of the medial layer (B), media to lumen ratio (M/L) (C), and the lumen area (D) of the aortas. 

Curcumin, CUR. n=6/group. *P < 0.05 versus sham-operated group, †P < 0.05 versus 2K-1C 

group and ‡P < 0.05 versus 2K-1C+CUR50 group. 

Fig. 5. Effect of curcumin on vascular smooth muscle cells, smooth muscle actin, collagen and 

elastin content in the aortas of all experimental groups.  The representative photomicrographs of 

the aortic samples (×200) were stained with H&E, Picrosirius Red and Miller’s elastic stain for 

assessment of the number of vascular smooth muscle cells per cross-sectional area (panel A) and 

the area fractions of collagen (panel B), elastin (panel C) and smooth muscle actin (panel D) in 
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the aortic medial layer.  Curcumin, CUR; cross-sectional area, CSA; smooth muscle actin 

(SMA). n=6/group. *P < 0.05 versus sham-operated group, †P < 0.05 versus 2K-1C group and 

‡P < 0.05 versus 2K-1C+CUR50 group. 

Fig. 6. Effect of curcumin on MMP-2 (panel A) and MMP-9 (panel B) localization in the aortas 

of all experimental groups. Curcumin, CUR. n=6/group. *P < 0.05 versus sham-operated group, 

†P < 0.05 versus 2K-1C group and ‡P < 0.05 versus 2K-1C+CUR50 group. 

Fig. 7.  Effect of curcumin on p47
phox 

NADPH oxidase subunit in the rat aortas. Height of bars 

represents densitometric values normalized to the corresponding β-actin. Curcumin, CUR. *P < 

0.05 versus sham-operated group, †P < 0.05 versus 2K-1C group. 

 

 

 

 

Table 1 Effect of CUR on hemodynamic status in all experimental groups.  

 

Variable Sham Sham+CUR100 2K-1C 2K-1C+CUR50 2K-1C+CUR100 

BW (g) 400.1±2.6 404.4±2.1 391.4±10.0 391.8±7.5 391.5±4.9 

SBP (mmHg) 127.7±3.2 125.3±2.8 203.9±2.9
a
 177.2±7.0

a,b
 165.5±4.8

a,b
 

DBP (mmHg) 86.8±2.5 84.5±2.4 137.7±3.6
a
  119.9±6.8

a,b
 111.6±4.4

 a,b
 

MAP (mmHg) 103.4±2.8 101.3±2.5 165.6±2.8
a
  144.7±7.3

a,b
 134.3±4.6

a,b
 

HR (beats/min) 397.7±8.0 388.1±6.6 407.1±9.2 416.3±13.3 411.0±13.5 

HBF  

(ml/min/100 g 

tissue)                                      

6.0±0.4 6.1±0.4 3.5±0.4
a
 4.8±0.4

a
 5.6±0.5

a,b
 

HVR  

(mmHg/mL/min/ 

18.2±0.4 16.9±1.1 44.3±6.6
 a
 31.8±2.4

a,b
 28.1±2.6

a,b
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100 g tissue) 

Data are means ± SEM. (n=10/group), 
a
P < 0.05 versus sham-operated group, 

b
P < 0.05 versus 

2K-1C group. CUR, curcumin; BW, body weight; SBP, systolic blood pressure; DBP, diastolic 

blood pressure; MAP, mean arterial pressure; HR, heart rate; HBF, hindlimb blood flow; HVR, 

hindlimb vascular resistance. All hemodynamic variables refer to measurements made on 

anaesthetized animals 6 weeks after the start of the treatment period.  
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Table 2 Effect of CUR on the levels of oxidative stress markers, nitrate/nitrite and ACE activity 

in all experimental groups. 

Parameter Sham Sham+CUR100 2K-1C 2K-1C+CUR50 2K-1C+CUR100 

Vascular O2
.-
production 

(Count/min/mg dry weight) 

53.2±5.6 55.2±9.6 127.4±10.0
a
 91.6±6.1

a,b
 84.3±6.9

a,b
 

Plasma MDA (μM) 4.80±0.30 4.82±0.43 8.98±0.57
a
 6.44±0.46

a,b
 5.74±0.18

a,b,c
 

Plasma protein carbonyl 

(nmol/mg protein) 

1.18±0.04 1.16±0.12 2.33±0.24
a
 1.71±0.23

a,b
 1.51±0.11

a,b
 

Plasma nitrate/nitrite (μM) 18.6±1.8 18.7±1.5 9.3±0.9
a
 13.7±1.1

a,b
 15.5±1.7

a,b
 

Plasma ACE-activity 

(mU/mL) 

79.8±4.8 81.5±2.3 132.0±5.6
a
 121.9±7.6

a
 101.0±6.3

a,b,c
 

Curcumin, CUR; Malondialdehyde, MDA; Angiotensin converting enzyme, ACE. Data are 

means ± SEM. (n=10/group), 
a
P < 0.05 versus sham-operated group, 

b
P < 0.05 versus 2K-1C 

group, and 
c
P <0.05 versus 2K-1C+CUR50 group. 
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