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Abstract

For the recognition of speech, in particular spoken digitgtured in
video with poor sound due to noise, we develop a novel auioaV fu-
sion technique that performs significantly better thariqitigy either audio
or video signal alone. Specifically, we present an audiaali;itermediate
fusion strategy to locate speaker dependant pronouncéd gligcontinuous
video recorded with sound. A model template for each digkmesented in
a single audio-visual feature space using a set of spatipdeal visual fea-
tures at multiple scales together with a set of thirteen MetjEency Cepstral
Coefficients as audio features. Using a unified structurddth visual and
audio feature selection and extraction, we solve the proldéone-to-one
correspondence between the audio and visual spaces causkftelences
in data sampling rates. To combine the two modalities, wetédo inter-
mediate fusion strategy by combining the two modalities pra@babilistic
sequence matching function, permitting automatic segatient of a contin-
uous probe video sequence and matching with available medwglates.
For experiments, the CUAVE [17] database was used to congparscheme
with two alternative methods. The evaluation shows thatpitoposed ap-
proach outperforms the others both in recognition accuaadyrobustness in
coping with variations in probe sequences.

1 Introduction

For perceiving facial emotion and behaviour, humans comthia acoustic waveform (au-
dio information) and the movements of the lips, tongue ameotacial muscles (visual
information) generated by a speaker. The McGurk effect Eis2hblishes this bimodal
speech perception by showing that, when conflicting audb\asual stimuli are pre-

sented to an individual, the latter may assimilate a newdtis) different from the other
two. This implies an increase of the importance of the visofairmation, especially in

noisy environments, quantified by Sumby and Pollack [21thabservations have moti-
vated interest in developing systems for automatic redimgmof audio-visual speech. To
that end, a fundamental challenge is how to combine effelgtizudio and visual signals



in such a way that visual information can assist audio eafigavhen its signal-noise
ratio is low.

In this work we aim to address the issue of recognising spdligits in a noisy en-
vironment with the aid of visual input. We consider a intedia¢e fusion strategy and
we address the problem of synchronisation between audiwiandl signals. A linear
interpolation based approach adopted by existing teclesif®, 23] does not secure suf-
ficient one-to-one correspondences and risks in insertirgyse Instead, we consider
constructing a similar structure for both audio and viseatdire selection and extraction.
As speech perception and audio features are time relateddo a space-time volume
based feature representation based on our previous wdtKitién instead of using a sin-
gle joint audio-visual feature, we formulate an interméslifusion strategy, which uses
models that infer the synchrony at the phoneme or word baiggjdo perform automatic
audio-visual speech recognition under significant audisendOur approach aims to im-
prove recognition rate compared to that of using eitheralisiformation alone or audio
alone, especially with poor sound.

Our aim is to build a set of model templates consisting of alsige of all the visemes
of a studied language. These templates can then be deploy®dvide a concise and
generative representation at an atomic level, e.g. theignginguage is composed of
only about fifteen visemes. To begin, we focus in this papdrlding model templates
for automatically segmenting and recognising 10 digitseaping randomly in continuous
probe video sequences with spoken sound.

2 Related Work

There are two fusion strategies that have been adopted biinextechniques aiming to
combine audio and visual modalities: feature space fusioergva single feature space is
constructed by concatenating audio and visual featuressida level fusion where sep-
arate recognisers are trained for the two modalities bedfgoént likelihood function is
designed for a final decision making. In particular, eargstfusion in feature space is
used in [4, 8, 9, 14, 23] and is optimal when the modalitieshéglly correlated. Three
major techniques are used to perform feature fusion: Hiddarkov Model (HMM),
Gaussian Mixture Model (GMM) and Coinertia Analysis (COl®ne of the problems in
feature fusion strategy is to retain the one-to-one comedences between the audio and
the video signal, which have often different sampling ratésynak et al. [9] use a four
dimensional visual geometric feature vectors like ougmk inner-lip parameters and
thirteen Mel Frequency Ceptsral Coefficients (MFCC, auéitire coefficients). The
synchronization between the two modalities is assured mphBag the visual features
with a low-pass interpolation. Then they concatenate the feature vectors to form
a sixteen dimensional joint feature vector, which is usedram six different HMMs
with four, five states and eight, sixteen and thirty-two Gaars mixtures for each word.
Chen [4] extracts three visual features (the mouth widté hikight of the upper lip, and
the height of the lower lip) and converts each time windowe isixteenth-order Linear
Prediction Coding (LPC) coefficients. The cascaded and htetgaudio-visual feature
vector fed either a GMM or a HMM. A distributiopy,video,audio) iS modelled as a GMM

1A viseme is a basic unit of speech in the visual domain that spmeds to phoneme (which is the basic
unit of speech in the acoustic domain).



to then estimate the conditional expectation of video gmedio, i.e.E|videojaudio]. In
the second case, each word is trained in a five states andGlaressian mixtures HMM.
Active Appearance Model (AAM) [5] is used to provide the \asdieature vectors in
[23]. Twelve MFCCs are used to form a twenty-two dimensianadio-visual space. A
linear interpolation is applied to the visual appearanaampeters to reduce the dimen-
sion and to guarantee the correspondence. Then the augmyseaHMM or GMM to
calculate the joint probability of the audio-visual feagpace distribution. Nefiaret
al. [14] create a fifteen coefficients visual feature vector gisi. DA and a 2D-DCT and
form a joint audio-visual vector with thirteen MFCCs. Thédre tauthors compare two
types of dynamic Bayesian networks, the factorial and thupleml HMM. They conclude
that the coupled HMM performs better than the factorial dRmally a Coinertia Anal-
ysis (COIA) is applied in [8], in which a joint audio-visuaddture vector with thirteen
MFCCs is formed. Their delta and delta-delta parameters@neatenated with visual
feature vector derived from mouth colour information andmetric features. To en-
sure the synchronization between the audio and video sigtrad latter is resampled to
a higher frequency. COIA is then used to model linear contlina between the two
modalities. The major issue, with the methods explained@bis the one-to-one corre-
spondence between the audio and visual spaces. Usingdtaton of the video signal,
some useful and discriminative information are lost. Ondtieer hand, late stage fusion
algorithms [1, 10] utilise the two single-modality classifioutputs, often multi-stream
HMMs, to recognize audio-visual speech. In [1], the visealtfire vector consists of pro-
jections weights (snake of the lip contours) and the firstssswbnd order derivative, while
the audio feature vector contains twelve MFCCs and the firdtsecond order derivative
too. To match the sampling rate , the visual features arepiolgted. Then using a
multi-stream HMMs, audio and visual log-likelihoods arentmned using weights that
capture their reliability. Decision fusion strategies,drg definition, pretty straightfor-
ward however they are highly dependant on the respectivghtsefor the audio and the
visual modalities, which can become arduous when the algialss very noisy. Bring-
ing those two strategies together, Sarginal. [20] combine decision and feature fusion
following canonical correlation analysis. This methodat them to manage the syn-
chronisation and the fusion of the two modalities. A sumnwrljp-reading approaches
is shown in Table 1.

3 Sequence matching for digitsrecognition

For recognising spoken digits through audio (speech) adéov(lip movements) infor-
mation, we propose here an audio-visual extension of thealsgnly system reported in
[16]. Their system is based on extracting a set of video moidéltemplates representing
digits 0 to 9 separately, before matching any probe videoesecp against these model
templates. In a probe sequence, the order and the numbeoradyprced digits are un-
known. In contrast, our model consists of two major part3:afidio and visual feature
selection and extraction, (2) intermediate fusion strat®gcombining audio and video
features in a probabilistic sequence matching functionr st step automatically de-
fines and extracts sets of audio and visual features withutreanual labelling of feature
points, alignment between frames and samples, or scaleatieation in space or in time.



Ref Segmentation Feature extraction Fusion
audio visual
Decision
[10] MESH / DFT HMM PCA/LDA -
[1] - MFCC Snake and parabolas HMM
Feature
[9] MFCC height and width, HMM
area and angle
[14] colour information MFCC DCT/LDA modified HMM
[4] GMM LPC 1 width and 2 heights GMM/HMM
[23] - MFCC and PCA AAM GMM/HMM
[8] MFCC colour and geometric features COIA
Decision/Feature
[18, 19] DCT/DTW MFCC LDA/MLLT HMM
[22] - MFCC DCT HMM
[20] MFCC DCT CCA

Table 1: A summary of audio-visual speech reading appreadhided into two main
groups. AAM: Active Appearance Model; CCA: Canonical Ctation Analysis; COIA:

Coinertia Analysis; DCT: Discrete Cosine Transform; DFIsdete Fourier Transform;
GMM: Gaussian Mixture Model; HMM: Hidden Markov Model LDA:ihear Discrimi-

nant Analysis; LPC: Linear Predictive Coding; MESH: Cotlen of vertices and poly-
gons; MFCC: Mel Frequency Cepstral Coefficients; MLLT: Maxim Likelihood Data
Rotation; PCA: Principal Component Analysis.

The features, which are referred to as macro-tdd (MC), are defined in space and
over time. In the visual channel, the macro-cigsoare then divided into a set of ctibls,
covering at least some parts of the lip movement. Theseidalawe represented at mul-
tiple spatial scales. In the audio channel, thirteen Mettfemcy Cepstral Coefficients
are computed per time-windéWTW). The number and the length of the time-windows
correspond to the number and the scale over time of the ntadydds, hence we obtain
a similar dimension for the two modalities. This approadbved us to have the same
structure for the audio and the visual feature extractidrictvsolves the synchronisation
issue explained in Section 1. Then a kernel-based maxinkatiHood matching function
is utilised to find the best match of all the macro-cishcandidates in a probe sequence
for a model template. Digit recognition is determined by stdgram computed with the
highest probability of a model macro-cubldi.e. the biggest bin) indicating both the ex-
istence of a digit and its exact location in the probe segelehigure 1 gives an overview
of our approach. We shall describe the details in the folhgwi

3.1 Audio-visual feature selection and extraction

For visual features, instead of extracting the principahponents of lip movement in
order to establish a one-to-one correspondence betweeeptes of speech and visemes

2The term macro-cubid comes as a spatio-temporal extension of macroblock (16xi8spare used for
motion estimation and compensation in traditional video earoliker H.261 or MPEG-1/2), which is a widely
used term in video compression.

3The term time-window comes from the window function principleich is a function that is zero-valued
outside of some chosen interval, which is a widely used tersignal processing.
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Figure 1. Processing blocks of our digit recognition systétach digit model template
is represented by a set of spatio-temporal visual macre¥daly,, macro-cubdls) and
of acoustic time-windowsT, time-windows). Then for each macro-cidiaand time-
windows, we perform a feature difference through the pramsnce. A probabilistic
matching function is computed for each scan. Then a histedrased decision is made
to localise and recognise the model template.

of lip shape [19, 8, 14], we consider comparing the movemehtgps generated by a
speakerfrobe movements) with the movements of lips of particular wordgi{slonly in
this work) in a certain languagenfdel movements). This consideration induces space-
time features, which embed the lip movements. The idea okiwgrin space and over
time is exploited in [2, 3, 6, 15, 16]. These approaches asedaither on matching space-
time trajectories of moving regions or on detection of iagtrpoints (features) within a
stack of frames. Such an approach is in strong contrast to¢e traditional matching of
explicit landmark interest points (e.g. corners, edgebjchvis the basis of most existing
image-to-image matching techniques [9, 11]. More infoioraabout the selection and
extraction of the visual features is presented in [16].

For audio features, cepstral features are very widely usaddio speech recognition
systems. Here we use a variant of the standard cepstrum, ¢h&médquency Cepstral
Coefficients (MFCCs). To obtain MFCCs, a windowing functitimee popular Hamming
window in our case, is applied on the speech signal beforsttbg-term log-power spec-
trum is computed (using Discrete Fourier Transform). THes gpectrum is wrapped
along its frequency axi$ into the mel-frequency axis. This is to approximately reflec
the human’s ear perception. Then the resulting wrapped pspectrum is convolved
typically by a blank of triangular filters (between 30 and 4@fs). The latter is approxi-
mately linear below 1kHz and logarithmic above 1 kHz; the sualle effectively reduces
the contribution of higher frequencies to the recognitiéimally, the MFCCs are obtained
by computing the DCT using

M m
MFCC(n) = z XmCos [n(m—O.S)M] n=1,..N (1)
m=1

wheren is the index for cepstral coefficients amds the index for filters Xy, is the signal
after being convolved by the Mel filter bank.

In many automatic speech recognition system, tfecefficient of the MFCC is
ignored due to its unreliability. In [7], they demonstratatithe &' coefficient is regarded



as a collection of average energies of each frequency bantteiaudio signal. The
common number of coefficiendd is thirteen.

During the feature selection and extraction process, afsabdel digit templates is
divided into several macro-culits (MC) and time-windows (TW), which are automati-
cally selected to cover the whole space and time of the madiltdmplates (exhaustive
division). The division of the model templates is based an\ideo modality (macro-
cubdd). Then the audio speech is divided in time-windows adogrtb the scale over
time of the macro-culids, hence the same length in time of the TW than the MC. Fol-
lowing the feature selection and extraction, the matchietgvben a model template and a
probe sequence requires the computation of a probabilitgtion between the extracted
macro-cub@s and the corresponding time-window from each model withe probe
sequence. In the visual channel for each model templateptiération is performeld,
times (see Figure 1), whelg corresponds to the number of model macro-Gddbmver
multiple scales of thet" model template. Each model template, in the audio charmel, i
divided in Ty, time-windows to cover the whole model template. Qpdime-window is
always coupled with several macro-ciitd®as there are more than dii€ per time scale.

3.2 Featurefusion and probabilistic sequence matching

After the selection and the extraction of the audio and Vik&tures, a probabilistic se-
guence matching is performed. The probability of a modelrovaabdd and its respec-
tive time-windows P(AV)) to be matched with the probe sequerfes, is as follows:

2 2
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The first two exponential terms represent the visual modalid the last one represents
the audio channelAd; andAl; are respectively the differences and local displacements
between descriptors of the cute qr' and their correspondents in the probe sequedice.

is equal to the norm of the diagonal of macro- cmqu“ 0y is determined empirically

|AI |

to give an equivalent weight of ‘Ad' with — in Equation (2). An explanation of the
d

descriptors is given in [16].

The optimal alignmenb(MTW, PS) between the two MFCCs vectors in the model
time-window (MTW) and the probe one is computed following Bymamic Time Warp-
ing (DTW) principle [13]: at first the sum of local distancesween the elements of the
two MFCC vectorsi(MTW, PS;) is computed. Then the algorithm recursively calculates
the optimal alignmend(MTW, PS) for each point element while confirming to local con-
straints (heuristics) regarding how an optimum alignmesatpwreaches that point. In our
approach, we use the following local constraints of eacimetd(i, j):

D(i,j) =d(i,j)+min{D(i—1,j),D(i—1,j—1)+d(i,j),D(i, - 1)} 3
wherei=1,...,Nandj=1,...,M. Finally the optimal alignment is equal to:
D(MTW,PS) = D(1,3)/N(g) @)

whereN(g) is the path normalization factor , which allows comparisetween different
warps. In Equation (2)gpmrw,ps) is the variance of the sum of local distances between
the elements of the two MFCC vectattMTW, PS;).



3.3 Digit recognition by lip-reading

To allow the digit localisation and recognition, an histgrof theit" joint model macro-
cubdds and time-windows with the highest probability to be ie fhrobe sequence is
computed. The biggest bin indicates the position of the riksly match between a
model digit template and a segment in a probe sequence. ffbigriation gives us the
recognition and the localisation of digits in the probe s¥e. If we assume that a set
of model templates fully represents a language, then eatlopa probe sequence can
be decrypted. The model templates will consist of a databfsdl the visemes of the
language. The main advantage of this is that the databakkensbncise and generative,
because for instance, as mentioned earlier, the Engligluéaye is composed of fifteen
visemes only. For the examples used in this paper, we needdelMO digits only in
order to analyse any arbitrary combination of pronouncegdglin a video sequence.

4 Experiments

For our experiments, we use the CUAVE database [17]. The BJ&dpus is a moving-
talker speaker-independent database, designed to sugpearch into audio-visual speech
recognition.

The database is converted into grey-level images and eantfefis cropped around
the mouth (ROI). We divided the dataset into two parts: oneipaised to generate the
model templates and the other is used for the probe sequeBkee$ digit from O to 9
consists to one model template separately. To legitimatéattt that our method does not
need any scale normalisation either in space or in time, e&terseveral samples of each
model digits. Hence each sample has a different size in sppatén time (according to
the pronunciation speed of the subjects).

The probe sequences have a variable length, ranging fron1@ ¢tigits in duration.
The sorting of the digits can be either in an increasing Qlidet decreasing order or at
random. As for the model digit templates, each digit can readiferent size in space
and duration over time.

4.1 Comparative evaluation

We evaluate our approach by comparing it with two other diife representations, audio
and video only. Figure 2 shows the confusion matrices fohtloedifferent methods with
different noise level. With video only, the model digit 8 istrcorrectly localised. This
error is due to the movements of the lip for the digit 8 to beyaeneral, extremely limited.
Consequently the matching is spread between every digitk. alidio only, the accuracy
of recognition rapidly decreases towards the point of cetepfailure as the quality of
audio worsens (signal-to-noise ratio (SNR) decreases tdhjs observation motivates
the integration between the audio and visual modalitiemfarove the recognition is any
situation.

Indeed, Figure 3 shows that video alone can do a better jolpamd to poor audio
alone. Moreover we observe that video plus noisy audio ieb#tan poor audio alone.
Finally, we can see that the combined model is significanigen than video alone in
terms of both localisation accuracy and reduced ambiguitgelecting the right digit
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Figure 2: Confusion matrices from using (a) video only, (§l} audio only with re-
spectively a signal-to-noise ratio equal to 20db, 8db arid Zthe columns represent the
model template indices whilst the rows account for corress$nof digit recognition and
localisation.

model template. Figure 4 shows several examples of expetaheesults with three dif-
ferent model templates on three different probe sequen€éesthose experiments, the
speaker is male and the probe sequences contain 4 digitsdtiatu In each plot, we can
see the probe sequence (shown by the biggest oblong), thre+tatodds with the high-
est probability to be in the probe sequence (the coloureahgis) and the corresponding
histogram. The biggest bin in each histogram indicates bwhexistence of the digit
and its exact location in the probe sequence. In each prajuesee, the frame slices (4
slices per sequence) represent the first frame of a digitreftie the representation of
the experiments is more apparent.

5 Conclusion

In this work we have shown the viability of a intermediatesgnation strategy. We address
the problem of synchronisation between audio and visualadég A linear interpolation
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Figure 3: Comparison of audio-only, video-only and audiual ASR. A SNR of 20db
means there is nearly no noise. 1db is a very noisy envirohmen

Figure 4: Experimental results using our approach. (a)afiol) (c) represent three differ-
ent samples of the model digit 3 on the probe sequence wittsd@ig 1, 5 and 9.

based approach adopted by existing techniques [9, 23] diesenure sufficient one-to-
one correspondences and risks in inserting errors. Insteadonsider to construct a
similar structure for both audio and visual feature setectind extraction.

Our systems consists of two major parts: (1) audio and viatlre selection and
extraction, (2) intermediate fusion strategy by combingnglio and video features in a
probabilistic sequence matching function. Our first stefinés and extracts automatically
features extracted from 10 digit model templates and mattem into a probe video
sequence. A model template for each digit is representeddst af audio and visual
features, using the same structure, which solves the synigation issue. Then a kernel-
based maximum likelihood matching function is utilised tadfthe best match of all the
audio-visual features candidates in a probe sequence fodaltemplate.

The comparative evaluation between audio only, video only audio-video ASR
shows that our method outperform the other approaches. rigxpetal results demon-
strate that the existence of a model digit and its exact imcatan be found in a probe
sequence in every situation.
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