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We explore adhesive loose packings of dry small spherical particles of micrometer size using 3D
discrete-element simulations with adhesive contact mechanics. A dimensionless adhesion parameter
(Ad) successfully combines the effects of particle velocities, sizes and the work of adhesion, identifying
a universal regime of adhesive packings for Ad > 1. The structural properties of the packings in
this regime are well described by an ensemble approach based on a coarse-grained volume function
that includes correlations between bulk and contact spheres. Our theoretical and numerical results
predict: (i) An equation of state for adhesive loose packings that appears as a continuation from the
frictionless random close packing (RCP) point in the jamming phase diagram; (ii) The existence of a
maximal loose packing point at the coordination number Z = 2 and packing fraction φ = 1/23. Our
results highlight that adhesion leads to a universal packing regime at packing fractions much smaller
than the random loose packing, which can be described within a statistical mechanical framework.
We present a general phase diagram of jammed matter comprising frictionless, frictional, adhesive
as well as non-spherical particles, providing a classification of packings in terms of their continuation
from the spherical frictionless RCP.

Jammed particle packings have been studied to under-
stand the microstructure and bulk properties of liquids,
glasses and crystals [1, 2] and frictional granular mate-
rials [3, 4]. Two packing limits have been identified for
disordered uniform spheres: The random close packing
(RCP) and random loose packing (RLP) limits [1, 5–
11]. The upper RCP limit is reproduced for frictionless
spheres at volume fractions φ ≈ 0.64 and has been asso-
ciated with a freezing point of a 1st order phase transi-
tion [12–15], among other interpretations [2, 16]. In the
presence of friction, packings reach lower volume fraction
up to the RLP limit φRLP ≈ 0.55 for mechanically sta-
ble packings [6, 8, 11]. However, most packings of dry
small micrometer-sized particles in nature are not only
subject to friction, but also adhesion forces. In fact, van
der Waals forces generally dominate interactions between
particles with diameters of around 10µm or smaller. In
this case, the adhesive forces begin to overcome the grav-
itational and elastic contact forces acting on the particles
and change macroscopic structural properties [17, 18].

Despite the ubiquity of adhesive particle packings in
almost all areas of engineering, biology, agriculture and
physical sciences [18–21], these packings have so far not
been systematically investigated. The multi-coupling of
adhesion, elastic contact forces and friction within the
short-range particle-particle interaction zone and their
further couplings with fluid forces (e.g., buoyancy, drag
and lubrication) across long-range scales make it highly
difficult to single out the effect of the adhesion forces
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alone. Previous studies have found packing fractions of
adhesive microparticles in a wide range of φ = 0.07−0.33
for both uncompressed and compressed samples using a
random ballistic deposition technique [22]. A similarly
broad range of φ = 0.23 − 0.41 was found for particles
with diameter of 7.8 − 19.1µm using fluidized bed tech-
niques [23].

In this letter, a prototypical packing system is intro-
duced for the simulation of random loose packings of
soft-sphere, non-Brownian, adhesive particles with a dis-
crete element method (DEM). Here, the fluid effect is
filtered out by assuming the gravitational sediment un-
der a vacuum condition. Most importantly, the gravita-
tional effect can be neglected when the system satisfies
Fr = U0/

√
gH >> 1, where Fr is the Froude number

(ratio of inertia to gravity), H the characteristic height
of the deposition control volume and U0 the initial parti-
cle velocity at the upper inlet boundary. For all runs in
the numerical simulations, we ensure that gravitational
effects with respect to initial particle inertia are less than
3%. Therefore, the adhesive packings simply arise due to
the competition between the particle inertia and particle-
particle interactions (e.g., adhesion, elasticity and fric-
tions).

In a novel DEM framework specifically developed for
adhesive grains [17, 18], both the transitional and rota-
tional motions of each particle in the system are consid-
ered on the basis of Newton’s second law (see Supple-
mentary Information, Section I). The adhesive contact
forces FA include three terms, the normal adhesive con-
tact force Fne, the normal damping force Fnd validated
by classic particle-surface impact experiments [17, 18],
and the tangential force due to the sliding friction. A
JKR (Johnson-Kendall-Roberts) model is employed to
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account for Fne between the relatively compliant micro-
particles, implying the length scale of elastic deforma-
tion is large compared to the length scale of the adhesive
force (with the particles’ Tabor parameter larger than
unity) [18]. The dissipation terms, including the sliding,
twisting and rolling frictions in the presence of adhesion,
are all approximated by a linear spring–dashpot–slider
model with model parameters given in [24]. The slider
considerations mean that the sliding, twisting and rolling
resistances all reach critical values, Fs,crit, Mt,crit and
Mr,crit, as three related displacements exceed the certain
limits. For displacements larger than those limits, the
resistances stay constant and the particles start to slide
or spin. The critical limits in presence of adhesion are
given in the following equations [18, 19, 25],

Fs,crit = µf |Fne + 2FC | (1)

Mt,crit = 3πaFs,crit/16 (2)

Mr,crit = −4FC(a/a0)3/2ΘcritR, (3)

where µf is the friction coefficient, Θcrit is the critical an-
gle for the relative rolling of two particles, and FC is the
critical pull-off force expressed by the work of adhesion
(twice the surface energy, w = 2γ): FC = 1.5πwR. Here,
R is the effective radius between two contacting parti-
cles (1/R = 1/rp1 + 1/rp2), a is the radius of the contact
area with a0 at equilibrium in the JKR model. The val-
ues or ranges of µf , Θcrit and FC are selected according
to the data from atomic force microscopy measurements
[25–27].

The adhesive DEM simulation starts with the random
free falling of 1,000 spheres with an initial velocity U0

at a height H (see the Supplementary Information, Sec-
tion II, for detailed physical and geometrical parame-
ters). The horizontal plane for particle deposition has
two equal edges of length L, with periodic boundary con-
ditions along the two horizontal directions. Here we focus
on uniformly sized particles, with particle radius rang-
ing from rp = 1 to 50µm. A sensitivity analysis shows
that the difference in φRLP between the cases L = 20rp
and L = 40rp is negligible, indicating the L = 20rp is
large enough to reproduce bulk properties. Then, we set
L = 20rp. The work of adhesion, e.g., for silica micro-
spheres is reported at 20 − 30mJ/m2 [18, 25]. Setting
w = 30mJ/m2, the simulations indicate that both par-
ticle deposition velocities and particle sizes significantly
affect packing structures. As shown in Fig. 1 (more de-
tails in supplementary Fig. S2), either large velocity and
small size, or small velocity and large size can produce a
relatively dense packing. A dimensionless adhesion pa-
rameter Ad = w/(2ρpU

2
0 rp), defined as the ratio between

interparticle adhesion and particle inertia by Li and Mar-
shall [28], can be used to quantify the combined effect of
velocity and size. Figure 2 shows the variation of pack-
ing volume fraction as a function of Ad for packings with
rp = 1, 5, 10, 50µm with w ranging from 5−30mJ/m2. In

FIG. 1: (Colors online) Typical packing structure: different
colors represent different coordination numbers Z. (a)(b)(c)
stand for U0 = 0.5, 2 and 6m/s, respectively with particle ra-
dius rp = 1µm and work of adhesion w = 30mJ/m2. (d)(e)(f)
stand for rp = 1, 5 and 10µm, respectively with U0 = 1m/s
and w = 30mJ/m2.

the case of Ad < 1, the data points are scattered between
RLP (0.55) and RCP (0.64), since particle inertia domi-
nates the adhesion and frictions. However, when Ad > 1,
we obtain an adhesion-controlled regime, in which the
volume fraction decreases exponentially with increasing
Ad, becoming linear at large Ad ∼ 10. The lowest pack-
ing density achieved is at φ = 0.154 when Ad is as high
as 96, which agrees well with the data from a random
ballistic deposition experiment [22].

In addition to φ, a reproducible observable of the pack-
ing is the coordination number Z, which denotes the av-
erage number of contacts of a sphere in the packing. The
isostatic conjecture predicts the upper and lower bounds
of Z = 2df and Z = df + 1 for frictionless and infinitely
rough hard-spheres, respectively, with df = 3 degrees
of freedom. In Fig. 2 (inset) we see that for Ad < 1 the
packings lie indeed within the isostatic limits reaching the
infinitely rough value Z = 4 at Ad ≈ 1. This indicates
that weak adhesion has a similar effect on the packing as
strong friction. For Ad > 1 the adhesive packings fall on
a unique curve, analogous to the φ dependence. The low-
est Z reached in our simulations is Z = 2.25. Combining
our results for φ and Z thus highlights a universal adhe-
sive regime characterized by the dimensionless parameter
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FIG. 2: (Colors online) Semi-log plot of the packing volume
fraction as a function of adhesion parameter. The horizontal
red dash line indicates the limitation of φRCP = 0.64 and the
vertical one is the separation of Ad = 1. The inset shows the
variation of the coordination number Z with Ad.

Ad. The resulting curve in the Z-φ plane, parametrized
by Ad, can be considered as an equation of state of pack-
ings dominated by adhesion (see Fig. 3).

We now derive an analytical representation of the ad-
hesive equation of state. To this end we introduce a sta-
tistical mechanical framework for particles with adhesive
interactions in the spirit of Edwards’ ensemble approach
[10, 29, 30]. We start with the Voronoi volume Wi of a
reference particle i, which provides a tessellation of the
total volume of the packing: V =

∑N
i=1Wi. The key step

is to use a statistical mechanical description, where we
consider the average Voronoi volume W = 〈Wi〉. This
implies that V = NW and the packing fraction follows
as φ = V0/W . Here, V0 is the volume of a sphere with
radius rp in the packing. In turn, W can be expressed
exactly in terms of the pdf p(c, Z) for finding the bound-
ary of the Voronoi volume at a distance c from the sphere
centre for a given z. We have [10, 29]

W = V0 + 4π

∫ ∞
rp

dc c2P (c, Z), (4)

where P (c, Z) is the CDF; p(c, Z) = − d
dcP (c, Z). For

P (c, Z) one can derive a Boltzmann-like form using a
factorization assumption of the multi-particle correlation
function into pair correlations [30]

P (c, Z) = exp

{
−ρ

∫
Ω(c)

dr g2(r, Z)

}
. (5)

Here, ρ = N/V = 1/W is the number density and
g2(r, Z) the pair correlation function of two spheres sep-
arated by r. The volume Ω(c) is an excluded volume
for the N − 1 spheres outside of the reference sphere,

since otherwise they would contribute a Voronoi bound-
ary smaller than c. Typical models for g2 consist of a
step function plus a delta-peak to model the contribu-
tion of bulk and contacting particles (with a given co-
ordination number Z), respectively [30, 31]: g2(r, Z) =
Θ(r−2rp)+ Z

ρλδ(r−2rp), where λ is an appropriate con-
stant. In order to describe the effect of correlations due
to adhesion, we assume a gap of width b(Z) that mod-
els the increased porosity at a given Z compared with
adhesion-less packings. This suggests to express g2 as

g2(r, Z) = Θ(r − (2rp + b(Z))) +
Z

ρλ
δ(r − 2rp). (6)

Clearly, b(Z) is a smoothly decreasing function, so that
we can assume, e.g., the simple parametric form b(Z) =
c1 + c2e

−c3Z . There are then two natural boundary con-
ditions that constrain (c1, c2, c3), the three parameters in
the theory: (i) At the isostatic limit Z = 6, we expect
to recover the frictionless RCP value, since this value of
Z represents a maximally dense disordered packing of
spheres. We obtain from Eqs. (4)–(6) indeed the predic-
tion of Ref. [10] for RCP at φ =

√
3/(1 +

√
3) = 0.634

provided we have b(6) = 0 and λ assumes the value λ =
16πr2

p/
√

3. Moreover, we need to account for low dimen-
sional corrections due to the hard-core excluded volume
of the reference sphere, such that ρ → ρ = 1/(W − V0),
where V0 is the volume of a sphere with radius rp [30].
The constraint (i) thus fixes ρ and λ, as well as one of the
parameters in b(Z), say c1. (ii) In addition, we conjec-
ture the existence of a maximally loose packing (MLP)
at Z = 2 and φ = 1/23 which yields b(2) = 1.47 and
fixes a second parameter, c2. This is motivated by the
fact that φ = 1/2d is the well-known lower bound of sat-
urated sphere packings in d dimensions [31]. Moreover,
Z = 2 is the lowest possible value for a physical packing:
If Z < 2 there are more spheres with a single contact
(i.e., dimers) than with three or more contacts.

Solving Eqs. (4)–(6) numerically for W (and thus φ)
with the functional form of b(Z) leads to a family of
curves with a single free parameter, c3. Fitting this pa-
rameter to the available data yields c3 = 1. We then ob-
tain a unique equation of state φ(Z) for adhesive packings
as shown in Fig. 3 which agrees remarkably well with
the simulation data. Furthermore, the adhesive φ(Z)
equation of state appears as a continuation of the fric-
tionless RCP at (Z, φ) = (6, 0.634). For large Ad values
the MLP point at (2, 0.125) is indeed approached in the
Z-φ plane. A comparison of the theoretically obtained
P (c, Z) with simulation data is shown in the inset of
Fig. 3. We observe that the agreement is good for small c
values throughout the range of adhesive packings. Since
this range of c values provides the dominant contribution
to W in Eq. (4), we conclude that our phenomenologi-
cal approach captures well the microstructure of adhesive
packings in the first coordination shell, which provides a
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FIG. 3: (Colors online) Equation of state for adhesive
packings: Simulation data and theoretical prediction from
Eqs. (4)–(6) with a single fitting parameter (black dashed
line). The equation of state for frictional sphere packings
from Ref. [10] is indicated. Inset: Comparison of the CDF
P(c,Z) with simulation data (dots).

good first moment from P (c, Z) as compared with simu-
lations.

Including previous results from Refs. [10, 14, 29] in
the Z-φ plane leads to a phase diagram of packings of
frictionless, frictional, and adhesive spheres, as well as
non-spherical particles (see Fig. 4). The collection of
these results highlights the prominent role of the fric-
tionless RCP point in the phase-diagram, which appears
as a focal point of the different packing classes. We ob-
serve in particular that the equation of state of disor-
dered non-spherical packings is essentially smoothly con-
tinued at RCP into either the adhesive branch or the
frictional branch. By contrast, the coexistence line from
RCP to the melting point of crystalline packings, conjec-
tured in Ref. [14], does not connect smoothly to any of
these branches. The precise meaning of this crucial dis-
tinction is not entirely clear to us. It suggests that par-
ticle deformation (which parameterizes the non-spherical
branch) is a “natural” way to increase packing densities
in disordered arrangements. On the other hand, intro-
ducing order is a more drastic modification, similar to
a distinction between discontinuous 1st and continuous
higher-order phase transitions.

In summary, we have identified a universal packing
regime of adhesive small particles across 1 to 102 microns,
using both DEM simulations and a statistical mechani-
cal framework. We have shown that an equation of state
for adhesive loose packings can be derived connecting
the frictionless RCP with a conjectured universal MLP
point in the phase diagram. The picture that emerges is
that different classes of disordered packings are connected
smoothly via RCP, while partially ordered phases are not.
Clearly, further investigations are needed to understand

FIG. 4: (Colors online) The phase diagram of packings of dif-
ferent classes of monodisperse particles including the adhesive
packings. The equation of state for non-spherical particles is
smoothly continued at RCP into either the adhesive or the
frictional branch.

the nature of packings in the vicinity of RCP, e.g., by
probing the rheological properties of these packings close
to jamming or by considering non-spherical adhesive par-
ticles. The MLP also deserves further attention. Open
questions concern, e.g., the response of these packings to
local perturbations or shear stresses. It would be highly
interesting to find out whether a MLP is indeed observed
in a real physical system.
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