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We discuss how structural disorder and amorphization affect solid-state diffusion, and consider

zirconolite as a currently important case study. By performing extensive molecular dynamics simu-

lations, we disentangle the effects of amorphization and density, and show that a profound increase

of solid-state diffusion takes place as a result of amorphization. Importantly, this can take place at

the same density as in the crystal, representing an interesting general insight regarding solid-state

diffusion. We find that decreasing the density in the amorphous system increases pre-factors of

diffusion constants, but does not change the activation energy in the density range considered. We

also find that atomic species in zirconolite are affected differently by amorphization and density

change. Our microscopic insights are relevant for understanding how solid-state diffusion changes

due to disorder and for building predictive models of operation of materials to be used to encapsu-

late nuclear waste. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4901326]

I. INTRODUCTION

A variety of radiation sources are created and used in

science and technology. This includes an important area of

energy generation in nuclear power stations, where kinetic

energy of fission products is converted into heat and electric-

ity. In this and other applications, the energy of emitted par-

ticles often has a two-fold effect. On one hand, this energy is

converted into useful energy, by heating the material around

the particle tracks. On the other hand, this energy damages

the material and degrades its important properties, including

mechanical, thermal, transport, and so on, to the point that a

material might lose its functional purpose. A problem in fis-

sion and future fusion reactors,1 this issue is particularly

acute in the process of safe immobilization of nuclear waste,

and constitutes one of the pressing issues that modern society

faces.2,3 The issue is closely related to public acceptance of

nuclear industry and therefore to the future of nuclear power.

Regardless of the future of nuclear industry, the amount of

accumulated nuclear waste is very large and is steadily grow-

ing while no acceptable solution of its safe storage exists.

Crystalline ceramics have been proposed to immobilize

highly radioactive nuclear waste.2–6 The main requirement

for the immobilization matrix, the waste form, is to prevent

the radioactive isotopes from leaking and polluting the envi-

ronment. This is perceived to be a very challenging require-

ment, given the high radioactivity of the nuclear waste and

the long radioactivity time spans that extend from several

thousand years for fission products to several million years

for actinides. As recently observed,4 nuclear waste encapsu-

lation involves “design problem the likes of which humanity

had never before attempted, because it involved a time scale

that required predictions of material and system behavior

tens and hundreds of thousands of years into the future.

Some perspective on the uniqueness of this temporal projec-

tion comes from the realization that the most ancient monu-

ments of past engineering achievement, such as Stonehenge

and the Pyramids, are barely five thousand years old.” With

no direct testing possible over long periods of time, the deci-

sion of using a particular wasteform needs to be informed by

indirect simulated experiments as well as detailed theoretical

understanding of how irradiation affects the ability of the

waste form to remain an effective immobilization barrier.

Waste form alteration, the main concern for the safe

encapsulation of nuclear waste, is a complex phenomenon

involving diffusion, leaching, and dissolution.7,8

Understanding the effects of irradiation on waste form dura-

bility is challenging because the process is complex and

includes many mechanisms at work.2,3,7 Generally, waste-

form alteration as a result of irradiation can include chemical

changes at the surface, reactions with water and other envi-

ronmental agents, increase of solid-state diffusion of atoms

in the bulk due to radiation damage, increased defect mobil-

ity, defects interaction, and so on. The above processes can

be system specific, yet have a common underlying mecha-

nism, thermal diffusion. It is therefore important to under-

stand diffusion in waste forms and its changes due to

radiation damage.

An important effect of irradiation on the waste form is

the remarkable increase of diffusion as a result of radiation-

induced amorphization.9,10 Seen in easily amorphizable

materials, this effect has been thought to be either absent or

reduced in materials resistant to amorphization by radiation

damage.11 However, even most resistant materials such as
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ZrO2 still show considerable damage in the form of a large

number of well-separated point defects.12

An interesting possibility is having a waste form which is

amorphized by radiation damage yet still shows low levels of

alteration and continues to be an effective immobilization bar-

rier. Zirconolite, ZrCaTi2O7, is one of the phases in SYNROC

mixture of different ceramics each tailored to immobilize dif-

ferent ions present in the highly radioactive nuclear waste,5,6

and is currently the preferred waste form by the UK National

Decommissioning Agency for immobilization of actinides. In

more recent experiments,8,13,14 zirconolite has been rendered

X-ray amorphous by alpha-decay processes of Pu and, surpris-

ingly and contrary to other materials, did not reveal significant

chemical and physical alterations, witnessed by the absence of

phase changes and microcracks even at fairly large volume

increases. Furthermore, zirconolite maintained strong elastic

response and overall chemical durability,8,13,15 in contrast to

other materials studied. At the same time, the aqueous dura-

bility of zirconolite is strongly affected by radiation damage,15

with the evidence supporting diffusion-controlled ion

exchange as the main mechanism of alteration of radiation-

damaged zirconolite. These results call for further detailed

investigation of the mechanisms involved in the alteration of

this wasteform and diffusion mechanism in particular.

According to current understanding, the increase of diffu-

sion due to radiation-damaged system is due to the associated

density decrease. Indeed, apart from rare examples such as Si,

radiation-induced structural changes and amorphization are

accompanied by density decrease. The effect of density on the

activation energy for diffusion U (the energy needed by an

atom to jump from its surrounding cage to the neighbouring

quasi-equilibrium location) has been well understood since

the early work of Frenkel.16 When interatomic separations are

at their equilibrium values in a solid, U is too high for the

jump event to take place during any feasible time. However,

if the cage can increase its size (for example, due to thermal

fluctuations) and open up a low-energy local diffusion path-

way, the jump can proceed much faster. If Dr is the increase

of the cage size required for the jump to take place, U is equal

to the work required to expand the change elastically, and is

U ¼ 8pGrDr2; (1)

where G is shear modulus and r is the cage radius.16 Note

that the elastic energy to expand the sphere of radius r by

amount Dr depends on shear modulus G only because no

compression takes place at any point. Instead, the system

expands by the amount equal to the increase of the sphere

volume,16 resulting in a pure shear deformation. Indeed, the

strain components u from an expanding sphere (noting that

u! 0 as r !1) are urr ¼ �2b=r3; uhh ¼ u// ¼ b=r3,17

giving pure shear uii¼ 0.

From a theoretical standpoint, density is considered to be

the main factor governing G and hence U.16 Indeed, when

density decreases as a result of radiation-induced structural

changes, the interatomic interaction strength decreases,

reducing G. Further, Dr decreases due to the increase of the

cage volume. Therefore, if G is constant at constant density,

Eq. (1) makes two predictions. First, U reduces due to density

decrease, the widely anticipated result corroborated by more

recent work on diffusion processes in glasses and viscous

liquids.18 Second, U does not change at constant density.

In contrast to the density effect, the consequences of

amorphization at constant density for diffusion are not

understood. Indeed, if a structural change (e.g., amorphiza-

tion or large accumulation of point defects and their clusters

as in ZrO2 (Ref. 12)) takes place at constant density, the vol-

ume of the atomic cage around the diffusing atom does not

change on average. However, the wide distribution of intera-

tomic angles in the disordered structure leads to the appear-

ance of both faster and slower local diffusion pathways (see

Fig. 1), even if this structure is of the same density as the

parent crystal, with the net effect of increasing the diffusion.

This is an agreement with experimental results reporting the

decrease of G as a result of amorphization at the same

density.19

Hard to estimate theoretically, the combined effect of

local fast and slow diffusion pathways at the same density is

important to understand from the waste form perspective7 as

well as from the general point of view of properties of disor-

dered state. Indeed, since the early work,20 the extent to

which structural disorder affects system properties remains

widely debated. For example, recent work aiming at resolv-

ing the long-standing debate about the origin of the Boson

peak in the energy spectrum of glasses has found that, con-

trary to earlier expectations, the difference of vibrational

spectra and other important properties between the amor-

phous system and its parent crystal disappears once the den-

sities of both systems are taken to be the same.21 Generally,

recently accumulated evidence suggests that disorder leaves

FIG. 1. Schematic picture showing

equivalent interatomic distances and

local diffusion pathways in the crystal-

line structure (left). The disordered

structure with the same density as the

parent crystal has a wide distribution

of interatomic distances and angles

and gives rise to both faster (solid line)

and slower (dashed line) local diffu-

sion pathways.

184901-2 Yang et al. J. Appl. Phys. 116, 184901 (2014)
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some important properties of the system surprisingly unaf-

fected, but modifies other properties substantially.22

In this paper, we address an important element of waste

form alteration, the change of thermal diffusion due to radia-

tion damage in the waste form. We use molecular dynamics

(MD) simulations to study the change of diffusion of differ-

ent atomic species in zirconolite as a result of structural dis-

order. Importantly, MD simulations enable us to disentangle

the effects of amorphization and density increase on diffu-

sion and discuss these effects separately. Such a separation is

very hard to achieve in experimental radiation-damaged

samples. We find that a profound increase of solid-state dif-

fusion takes place as a result of amorphization. Importantly,

this can take place at the same density as in the crystal, rep-

resenting an interesting general insight regarding solid-state

diffusion. We find that increasing the volume in the amor-

phous system increases pre-factors of diffusion constants.

We also find that atomic species in zirconolite are affected

differently by amorphization and density change. Our find-

ings are relevant for both understanding solid-state diffusion

in the presence of disorder and for building predictive mod-

els of operation of nuclear waste forms.

II. RESULTS

There are several ways in which structural disorder can

be introduced. Although direct simulation of collision cas-

cades gives detailed information about the nature of the dam-

age, producing completely disordered structures by multiple

cascade overlaps is not practical, especially for realistic

high-energy events and large system sizes.23 We prepared

the amorphous structures by first melting the system at

5000 K, equilibrating the high-temperature liquid for 100 ps

and subsequently quenched the liquid slowly to room tem-

perature, 300 K. We note that amorphization by quenching

the liquid can be different from radiation-induced amorph-

ization in several respects;9,10,24,25 however, our main moti-

vation is to address a fundamental question of how diffusion

is affected by topological disorder in general.

We use DL_POLY MD simulation package27 and the

system of 1056 atoms with the recent interatomic potential

fitted to zirconolite properties.28 We have simulated and

relaxed three different zirconolite structures: crystalline,

high-density amorphous with density equal to the crystal,

and low-density amorphous zirconolite with 5% decreased

density as in the experimental samples damaged by the radia-

tion damage.2,26 10% of U atoms were introduced as a sub-

stitution for Zr atom, representing a typical waste load in

waste forms. The interatomic potential for the U–O interac-

tion was taken from Ref. 29.

Experiments on alteration of damaged waste forms are

conducted at high temperature in order to observe alteration

and diffusion during laboratory time scale.7–10,13,14,26

Similarly, we performed several MD simulations at tempera-

ture high enough to observe diffusion. Diffusion was observed

as the linear time dependence of the mean square displace-

ment, hr2i ¼ 6Dt, where D is the diffusion coefficient.

In Figure 2, we show representative hr2i calculated for

crystalline and amorphous zirconolite. We note that at short

time, hr2i crosses over from the oscillatory to the diffusive

regime, acquiring the linear time dependence characteristic

of diffusion (see Figures 2 and 3). We perform our subse-

quent analysis on the basis of the linear hr2i / t diffusive re-

gime at long times. We limit the analysis to 5 ns in time

since at longer times at high temperature we observe the sig-

natures of recrystallization, witnessed by the appearance of

peaks in Zr–Zr and Ti–Ti sublattices beyond the medium-

range order. For the following analysis, we will use two

equations for temperature dependence of diffusion

FIG. 2. Mean-squared displacement of O atoms (averaged over all atoms) in

crystalline and amorphous zirconolites of two different densities at 2000 K.

FIG. 3. Mean-squared displacement of Zr, Ti, Ca, and U atoms (averaged

over all atoms) in amorphous zirconolites of two different densities at

2000 K.

184901-3 Yang et al. J. Appl. Phys. 116, 184901 (2014)
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coefficient D and hopping time s, the average time between

two consecutive atomic jumps at one point in space16

D ¼ D0 exp � U

kBT

� �
; (2)

s ¼ sD exp
U

kBT

� �
; (3)

where U is the activation barrier for the diffusion event, sD is

the shortest (Debye) vibration period of about 0.1 ps, and

pre-factor D0 is the high-temperature limit of the diffusion

coefficient when s! sD.

Apart from O atoms, we observe no diffusion in the

crystalline systems on the time scale of our simulations. On

the other hand, we observe the diffusion of all atoms in the

amorphous systems at the same temperature (see Figures 2

and 3). Importantly, this includes the diffusion in amorphous

structures of the same density as the parent crystal. We there-

fore find that structural disorder at the same density increases

the diffusion constant profoundly, an unexpected finding

since the early work,16 it was density which was believed to

govern the activation energy barrier for diffusion.18 This rep-

resents our first main result from this work.

We next calculate main parameters of diffusion, U and

D0, in amorphous systems and their change due to different

density. We calculate U by fitting the data in Figure 4 to

Eq. (2) as lnD ¼ lnD0 � U
T , (here and below, kB¼ 1), and

show the results in Table I. The calculated values of U in

amorphous zirconolite represent our next quantitative result

enabling future prediction of how the waste form will operate

during long time scales, as discussed below in more detail.

In Table I, we observe no appreciable differences of U
between amorphous structures of different densities within

the error due to scatter. The scatter is related to large fluctua-

tions in the system at very high temperature we simulated,

and is larger for the less numerous U atoms. We therefore

find that the considered moderate density decrease, corre-

sponding to the experimental swelling of radiation-damaged

zirconolite,2,26 does not have a significant effect on U.

Since we do not observe diffusion in the crystalline zir-

conolite apart from O atoms, we are unable to calculate U in

the crystal and compare it to the amorphous system.

However, we can estimate the lower bound of U in the crys-

tal, Ul, using Eq. (3): Ul ¼ Thln sl

sD
, where sl is the longest

simulation time and Th is the highest temperature simulated

in the crystal. Taking Tl¼ 2100 K and sl ¼ 130 ns, we find

Ul of about 3 eV. Ul is therefore of the same order of magni-

tude as typical U in crystals (typical U in crystals can be

larger by up to about a factor of 2 for different atoms).

A discernible trend in Figure 4 is the increase of pre-

factor D0 at smaller density. We estimate this increase using

two methods. First, we directly calculate the increase of D0

by fitting the MD data to lnD ¼ lnD0 � U
T . This gives D02

D01
in

the range of 2–3 for different atoms, where subscripts 1 and

2 refer to amorphous systems at larger (crystalline) and

smaller density, respectively (see Table I). Second, the range

of D02

D01
can be estimated by subtracting lnD1 ¼ lnD01 � U1

T and

lnD2 ¼ lnD02 � U2

T . Using our earlier result that U are the

same within the error, we find ln D02

D01
¼ ln D2

D1
. Then, the range

of ln D01

D02
can be evaluated by calculating ln D2

D1
at low and high

temperature in Figure 4, giving D02

D01
in the range similar to the

first method, as follows from Table I. We therefore find that

the increase of diffusion pre-factors with system’s volume is

appreciable.

As mentioned above, O atoms stand out from the rest of

atomic species in that their diffusion is seen in the crystalline

zirconolite, representing an interesting heterogeneity of

FIG. 4. lnðDÞ vs inverse temperature, 1
T for different atomic species. The

range of temperatures in the x-axis is 1400–2000 K for O and 1870–2000 K

for cation. The dashed lines are fits of both sets of points to the straight lines

assuming that the slopes are the same within the errors present.

184901-4 Yang et al. J. Appl. Phys. 116, 184901 (2014)
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atomic species in terms of diffusion. Weakly bound as com-

pared to other atomic species, O atoms do not show discerni-

ble decrease of U as a result of amorphization and density

decrease (with the error quantified in Table I and presented

in Figures 2 and 4). However, we observe the increase of D0

as a result of amorphization by the factor of about 3.

Contrary to other atoms, however, this factor is not sensitive

to density decrease (see Figure 4 and Table I).

III. DISCUSSION AND SUMMARY

There are several important insights from this work.

First, we find that structural disorder and amorphization in

particular, introduced to the system at the same density as

the parent crystal, can result in a profound increase of solid-

state diffusion. This is an interesting general insight in view

that both earlier and current theories emphasize density as

the main factor controlling the diffusion.16,18 Our finding

implies that the net effect of the appearance of slower and

faster local diffusion pathways in the disordered structure

(see Figure 1) is diffusion increase.

According to our result, faster local diffusion pathways

dominate over slower ones in the same-density disordered

structure. This is analogous to the well-known case of intro-

ducing equal amounts of harder and softer inclusions in an

elastic matrix, with the result that the overall elastic response

is mostly governed by the softer phase (in a simple example,

this is illustrated by the inverse sum rule for bulk or shear

moduli). The analogy is further relevant here because lower-

density faster diffusion pathways and higher-density slower

pathways can be approximately viewed as local regions that

are softer and harder, respectively (see Figure 1). Then, the

net effect is elastic softening of the system and hence smaller

G, in agreement with experimental results.19 This implies

smaller U according to Eq. (1) and hence larger D according

to Eq. (2), consistent with our current findings.

We note here that contrary to the role of density which

is well understood and quantified, the effect of disorder at

constant-density is not amenable to a simple treatment or a

model, but is important in a wider context of understanding

the essential differences between crystalline and amorphous

systems. For example, it has been long thought that amor-

phous systems are notably different in terms of their vibra-

tional spectra, yet recent evidence has found that this is not

the case if the amorphous system is at the same density.21

This is consistent with a wider picture emerging that many

important thermodynamic properties of the system are insen-

sitive to disorder due to the similarity of their spectra,

whereas other properties, namely the transport properties

such as thermal conductivity, are strongly affected.22

Second, the increase of diffusion due to amorphization

is important for the operation of waste forms. For example,

under the typical waste load zirconolite will become amor-

phous from irradiation after about 1000 years. Being a very

small fraction of time of operation of the waste form

(100 000–1 000 000 years), this implies that solid-state diffu-

sion will take place almost entirely in the amorphous state.

This will take place with the associated increased diffusion

constants that we have found in this work. Our results, and

the calculated values of U in particular, can therefore be

used to predict the solid-state diffusion in the waste form

during the most important period of its operation.

Third, we have found specifically that the combined

effect of amorphization and volume increase can affect both

the activation energy and diffusion pre-factors, but that dif-

ferent atomic species can be differently affected. For exam-

ple, the diffusion of most numerous and mobile O atoms is

not affected by amorphization to the same extent as in other

atomic species.

In summary, by using MD simulations we have disen-

tangled the effects of amorphization and density on solid-

state diffusion, and showed that contrary to existing theories,

a profound increase of diffusion takes place as a result of

amorphization at the same density. We have found that

decreasing the density in the amorphous system increases the

pre-factors of diffusion constants. We have also found that

atomic species in zirconolite are affected differently by

amorphization and density change. Our microscopic insights

are relevant for understanding how solid-state diffusion

changes due to disorder and for constructing predictive

physics-based models aimed at predicting the performance

of waste forms over long time scales.

TABLE I. Activation energy U (eV) of atomic species in the crystalline and amorphous zirconolite at two different densities. Pre-factors D0 (m2/s) are denoted

as D01 (amorphous system at larger crystalline density), D02 (amorphous system at smaller density), and Dcrystal (pre-factor of diffusion of O atoms in the crys-

tal). The change of diffusion pre-factors is evaluated using two methods discussed in the text: calculating D0 from direct fitting to calculated D (a) and estimat-

ing the range of D0 at different temperature (b). Subscripts 1 and 2 refer to amorphous systems at larger (crystalline) and smaller density, respectively.

Ca Zr Ti U O

U (amorphous, same density as crystal) 2.80 6 0.53 3.05 6 0.73 3.79 6 0.63 3.20 6 0.86 1.61 6 0.06

U (amorphous, smaller density) 2.80 6 0.20 3.05 6 0.71 3.79 6 0.55 3.20 6 0.54 1.61 6 0.15

U (crystal) 1.61 6 0.07

(a)

ln D02

D01
0.91 6 0.09 0.66 6 0.15 0.76 6 0.13 1.01 6 0.18 0.0 6 0.2

ln D01

Dcrystal
1.04 6 0.1

(b)

ln D02

D01
0.89–0.92 0.62–0.71 0.54–1.00 0.79–1.27

ln D01

Dcrystal
0.94–1.11

184901-5 Yang et al. J. Appl. Phys. 116, 184901 (2014)
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