
Separation of line drawings based on split faces for 3D object

reconstruction
Zou, C; Yang, H; Liu, J

 

 

 

 

 

 

 

For additional information about this publication click this link.

http://qmro.qmul.ac.uk/jspui/handle/123456789/6299

 

 

 

Information about this research object was correct at the time of download; we occasionally

make corrections to records, please therefore check the published record when citing. For

more information contact scholarlycommunications@qmul.ac.uk

http://qmro.qmul.ac.uk/jspui/handle/123456789/6299


Separation of Line Drawings Based on Split Faces for 3D Object Reconstruction

Changqing Zou1,2,3, Heng Yang4, Jianzhuang Liu1,5,6

1Shenzhen Key Lab for CVPR, Shenzhen Institutes of Advanced Technology, China
2Department of Physics and Electronic Information Science, Hengyang Normal University, Hengyang, China

3University of Chinese Academy of Sciences, Beijing, China
4Queen Mary University of London, London, UK

5Department of Information Engineering, The Chinese University of Hong Kong, Hong Kong
6Media Lab, Huawei Technologies Co. Ltd., China

aaronzou1125@gmail.com, heng.yang@qmul.ac.uk, liu.jianzhuang@huawei.com

Abstract

Reconstructing 3D objects from single line drawings is
often desirable in computer vision and graphics applica-
tions. If the line drawing of a complex 3D object is de-
composed into primitives of simple shape, the object can
be easily reconstructed. We propose an effective method
to conduct the line drawing separation and turn a complex
line drawing into parametric 3D models. This is achieved
by recursively separating the line drawing using two type-
s of split faces. Our experiments show that the proposed
separation method can generate more basic and simple line
drawings, and its combination with the example-based re-
construction can robustly recover wider range of complex
parametric 3D objects than previous methods.

1. Introduction

Reconstructing 3D objects from single line drawings
is one of the important research topics in computer vi-
sion. The related applications of 3D reconstruction from
line drawings include: providing flexible sketching inter-
faces for conceptual designers who prefer the pencil and
paper over the mouse and keyword in current CAD system-
s [3, 4, 9] (the pipeline of a typical sketch-based modeling
system is shown in Fig. 1), interactively generating 3D mod-
els from images [5, 12, 19, 22], automatically converting
existing industrial wireframe models to solid models [2, 3],
and providing user-friendly query input interface for 3D ob-
ject retrieval from large 3D object databases and the Internet
[14, 16].

Many methods have been proposed for automatical-
ly reconstructing 3D objects from single line drawings
[5, 7, 9, 10, 11, 15, 17, 19, 20]. Among these methods,
the two in [11] and [20] can handle more complex object-
s than the others. In [11], the authors propose to separate

a complex line drawing into simpler line drawings by the
internal faces within the line drawing, then independently
reconstruct the 3D shapes from these simpler ones using an
optimization-based algorithm, finally obtaining a complete
object by merging these 3D shapes together. The authors
in [20] recover parametric 3D models from line drawings
using the similar steps as that of [11]. The method first de-
composes a line drawing into simpler ones using the algo-
rithm in [11], then matches each decomposed line drawing
with several basic 3D models in a database, finally uses a
graphical model based algorithm to derive the complete 3D
model that fits the input line drawing best.

In general, both of the above two methods benefit from
the line drawing decomposition based on internal faces.
However, internal faces do not appear frequently in some
line drawings. One example is given in Fig. 2(a) where
there is only one internal face (Fig. 2(b)). Its separation is
shown in Fig. 2(c). We can see that there still exist complex
line drawings (partitions) after decomposition, which lim-
its the application of the reconstruction methods. To solve
the problem, Xue et al. [21] proposed an object cut based
line drawing separation algorithm. Compared to the inter-
nal face method in [11] that only includes original edges
in the input line drawing, an object cut may include new-
ly generated edges (i.e., an internal face is a special case
of an object cut), hence can decompose wider range of line

Fig. 1. A 3D modeling system based on sketching interfaces
[5]. In this modeling system, 3D objects are reconstructed from
line drawings, which are obtained by processing users’ freehand
sketches.



Fig. 2. Illustration of the proposed method. (a) A line drawing.
(b) One internal face found by [11], also an object cut in [21].
(c) Separation results by the algorithms based on the internal face
[11], or the object cut [21]. (d) Four split faces obtained by our
method (new edges are marked with dotted lines, split faces are
marked with shadows), a new vertex circled by⃝. (e) Separation
result derived from the split faces.

drawings. However, the object cut based separation algo-
rithm still does not completely resolve the problem of the
separation of a complex line drawing that represents a solid
object, since it is conditioned on at least the following two
situations: 1) both of the endpoints of a new edge should
be the original vertices in the input line drawing, and 2) a
new edge should be parallel (or near parallel) to an original
edge. As shown in Fig. 2b, the partition representing a desk
(i.e. the partial line drawing consisting of partitions (1)–(4)
in Fig. 2e) cannot be further separated by this method since
no object cut can be generated.

In this work, we propose a new approach, which lever-
ages split faces (see the next section for its definition) to
separate a complex line drawing. Different from the inter-
nal face of which the edges and vertices are all from the
input line drawing, an edge or vertex in a split face can be
either newly generated or original. In fact, both the internal
face in [11] and the object cut in [21] are only two spe-
cial cases of our proposed split face. Compared to [11] and
[21], the proposed split face based method can obtain bet-
ter decomposition results (i.e. it handles wider range of line
drawings). One example is shown in Fig. 2(e), 5 simpler
partitions which represent 5 regular objects are obtained by
the proposed algorithm, while only two partitions are ob-
tained by [11] or [21]. In addition, our proposed method
outperforms both [11] and [21] in terms of efficiency in the
experiments.

2. Assumption, Terminology and Preprocess-
ing

Similar to [11], the paper focuses on the 3D reconstruc-
tion of manifolds. On the surface of a manifold, every point
has a neighborhood topologically, that is equivalent to an
open disk in the 2D Euclidean space [1]. A line drawing in
this paper is assumed to be an orthogonal projection of the
edges of a 3D planar-faced manifold in a generic view, with

Fig. 3. Visualization of terms. In (a), cycle (c, d, e, f, c) and
(h, k, b, a, h) are two split faces, (g, q, p, o) is a chain consist-
ing of three edges, Internal split edges {c, d} and {d, e} in red
are of type I and type II, respectively. New edges {a, b} is an
external split edge. Vertices d and e are two split vertices. Face
(g, q, p, o, c, n,m, l, k, j, i, h, g) is a concave face. Vertex m is a
boundary vertex of the three planes on which face (m, l, z, t,m),
face (m,n, s, t,m), and face (g, q, p, o, c, n,m, l, k, j, i, h, g) re-
spectively lie. Hence, g is also a 3D-convex vertex. Edges {u, v}
and {w, x} are two artificial lines indicating that the two cycles
connected by them are coplanar. (b) shows the resulted sub-
manifolds after removing these artificial lines.

hidden lines and vertices visible. For better understanding
of the contents, here we give some terms that are used in the
rest of the paper.

1. Cycle. A cycle is formed by a sequence of vertices
v0, ...vn, where n ≥ 3, v0 = vn, the n vertices are dis-
tinct, and there exists an edge connecting vi and vi+1

for i = 0, 1, ..., n−1. A cycle is denoted by (v0, ..., vn)
[11] [13].

2. Face (real face). A face is a flat patch of a manifold
bounded by a cycle. A face can be denoted by the same
way as a cycle [9, 10, 11].

3. Chain. A continuous part of a cycle is called a chain
[9].

4. Artificial line. An artificial line is a line used to indi-
cate the coplanarity of two cycles [2][13].

5. Degree of a vertex. The degree Degree(v) of a vertex
v is the number of edges adjacent to v [13].

6. Internal Face. An internal face is a face inside a man-
ifold only with its edges visible on the surface. It is
not a real face but is formed by gluing two manifolds
together [11].

7. Cut-set. Let P (G) = {G0, G1, ..., Gn} be a partition
of the vertex set V of a graph G = (V,E), the cut-set
of P (G) is the set of edges with endpoints in different
subsets of P (G).

8. Vertex set of a face. The vertex set V er(f) of a face
f is the set of all the vertices of f .

9. Edge set of a face. The set of all the edges of a face f
is denoted by Edge(f).

10. Neighboring face. Two faces fa and fb are called two
neighboring faces if Edge(fa) ∩ Edge(fb) ̸= ∅.

11. Split face. A split face is either (1) a planar cycle on
the surface of a manifold M , formed by cutting M
with a plane, consisting of some edges of Mand/or



new edges on the surface of M , with its enclosed re-
gion not on the surface of M , or (2) a planar cycle lo-
cating outside a manifold M , consisting of some edges
of the manifold, into which another manifold can be
formed by merging a part of M . A split face can al-
so be classified into two types: 1) the ones without
new edges, and 2) the ones with new edges. These t-
wo types of split faces are denoted by NS-Faces and
S-Faces, respectively.

12. Internal split edge. An internal split edge is a new
edge on the surface of a manifold, formed by cutting
the manifold with a split face. A split edge can be of
two types: 1) at most one of its endpoints is a new
vertex, and 2) both of its endpoints are new vertices.
These two types of split edges are called type I and
type II split edges, respectively.

13. External split edge. An internal split edge is a
new edge outside the surface of a manifold, formed by
merging a part of the manifold with a split face which
locates outside the manifold.

14. Split vertex. The intersection of a split edge and an
edge in a face f is called an split vertex if v /∈ V er(f).

15. Concave face. A concave face is a face whose cycle is
a concave polygon.

16. Boundary vertex of a plane. A vertex v is called a
boundary vertex of a plane P if v lies on the convex
hull of all the vertices of the faces lying on P .

17. 3D-convex vertex. A vertex v is called a 3D-convex
vertex if v is a boundary vertex of each of the planes
that intersect at v.

18. Extended line drawing. A line drawing added with
new generated edges are called an extended line draw-
ing.

In this work, we utilize the method in [13] to automati-
cally obtain the faces in a line drawing before the line draw-
ing decomposition. Artificial lines, added by the designer,
are used to indicate the coplanarity of two cycles in solid
modeling. Detecting artificial lines is an easy task based
on the connection between an artificial line and the edges
it connects to [11]. After removing the artificial lines in
Fig. 3(a), the line drawing becomes two line drawings with-
out artificial lines (Fig. 3(b)). We call the face identification,
the detection and the removal of artificial lines preprocess-
ing.

3. Pipeline for line drawing Separation
After preprocessing, a line drawing is separated into

one or multiple line drawings (a line drawing remains un-
decomposed if it has no artificial lines). And then simper
line drawings are obtained by executing such steps on each
decomposed line drawing G of the preprocessing stage:

1. identifying NS-Faces in G,

2. decomposing G using the NS-Faces of Step 1,
3. generating S-Faces for each separated line drawing of

Step 2,
4. decomposing each separated line drawing of Step 2 us-

ing the S-Faces of Step 3.
These four steps are detailed in the next two sections as fol-
lows: Step 1 and Step 2 in Section 4, Step 3 and Step 4 in
Section 5.

4. Decomposition by NS-Faces
4.1. Searching for NSFaces

A NS-Face in this work is equivalent to an internal face
in [11], which is a face (not a real face) inside a manifold
only with its edges visible on the surface. A NS-Face can
also be regarded to be formed by gluing two faces belong-
ing to two manifolds together. According to the topological
structure of a line drawing, a NS-Face can be further clas-
sified into one of two types: 1) two cycles of the two glued
faces have no contact, and 2) two cycles of the two glued
faces have contact (partly or completely) [11]. In this pa-
per, the NS-Faces of type 1, which use additional artificial
lines to indicate the coplanarity of the two glued faces, have
been removed in the preprocessing stage (i.e. the line draw-
ing has been separated into multiple line drawings using the
NS-Faces of type 1 in the preprocessing stage). Next, we
discuss how to identify the NS-Faces of type 2 in a line
drawing. For concision, “NS-Faces” is used to denote “NS-
Faces of type 2” in the remainder of this section.

Detecting NS-Faces in a line drawing is not a trivial
problem. In this work, the searching for NS-Faces is pre-
formed through a cycle searching scheme. To obtain an ef-
ficient searching, 6 properties related to NS-Face are used
to eliminate the cycles that cannot be NS-Faces. Among
these 6 properties, Properties 4-6 come from [11]. These
three properties are developed based on the definition of an
internal face, which also consist with that of a NS-Face in
this work. Properties 1-3 are derived from the definition that
a NS-Face is a planar cycle and some other properties of a
manifold.

Proposition 1. A cycle of a NS-Face has at least one vertex
of degree n(n ≥ 4).

Proposition 2. A cycle cannot be a NS-Face if the cycle has
a 3D-convex vertex of degree 3.

Proposition 3. A cycle cannot be a NS-Face if the cycle
shares two or more non-collinear edges with two neighbor-
ing faces.

The proofs of Proposition 1, 2, and 3 can be found in
[23].

Proposition 4. A cycle cannot be a NS-Face if it is self-
intersecting [11].



Fig. 4. Illustration of searching a NS-Face. The cycle C of a NS-
Face is grown from edge {k, j} with k as the start vertex. The
edges marked by × belong to the chains which cannot form a
valid NS-Face, since these chains contradict one or more proposed
propositions.

Proposition 5. A cycle cannot be a NS-Face if it has a chord
inside it and the chord is on the surface of the manifold [11].
Proposition 6. A cycle cannot be a NS-Face if it has two
non-collinear edges belonging to a face and there is an
overlapping region between it and the face in the 2D line
drawing plane [11].

With these properties, we develop an algorithm to detect
NS-Faces of a line drawing, which is summarized in Algo-
rithm 1. It is a depth-first search algorithm with the prop-
erties incorporated to guide the search of valid NS-Faces.
The properties can cut most fruitless branches during the
search, and greatly speed up the algorithm. In the Algorith-
m 1, an array C is used to keep the vertices of a chain ,and
C(0) and C(last) denote the first and the last vertex, re-
spectively. According to Proposition 1, the algorithm starts
the search from the edges which contains a vertex of degree
more than 3. Then a chain is grown to form the cycle of a
NS-Face candidate under Proposition 2-5. Finally, Proposi-
tion 6 is used to remove invalid NS-Faces from the NS-Face
candidates.

We take the line drawing in Fig. 4 to illustrate Algorith-
m 1. According to Proposition 1, two vertices k and j of
edge {k, j} are selected as the first and the second vertices
to grow the cycle of a possible NS-Face. Then, the chain-
s passing through vertices s and a are omitted from the
valid ones which can form NS-Faces according to Propo-
sition 2, since s and a are both 3D-convex vertices. After
this step, only one valid chain (k, j,m) is obtained. Nex-
t, the chain (k, j,m) is grown up to (k, j,m, l), since n is
also a 3D-convex vertex and (k, j,m, n) is regarded as an
invalid chain. Finally, we exclude the chain (k, j,m, l, o)
according to Proposition 2 or Proposition 3, and obtain the
cycle of a valid NS-Face (k, j,m, l, k), since it is compati-
ble with Proposition 6. The example demonstrates that the
proposed propositions are very efficient to achieve a valid
NS-Face.

4.2. Decomposition based on NSFaces

Given a line drawing and the identified split faces and re-
al faces (see Fig. 5(a) and (b)), an efficient algorithm, which
is conducted on the dual graph of an input line drawing, is

Algorithm 1: Finding NS-Faces
Input: A Line Drawing G = (V, E ,F) where V , E , and F
are the sets of vertices, edges, and faces, respectively.
Initialization: F∗ ← ∅;

1. find the set of edges Ec where each edge ei = (vi0 , vi1) has
Degree(vi1) ≥ 4;

2. for each edge ei = (vi0 , vi1) ∈ Ec
3. C(0)← vi0 ; C(1)← vi1 ;
4. grow the chain C which are compatible with

Propositions 2-5 until C(last) = vi0
5. add C into F∗;
6. end for
7. remove the cycles which are incompatible with

Proposition 6 from F∗

Output: A set of split faces F∗

Fig. 5. An example of decomposing a line drawing using split
faces. (1) The line drawing with four split faces shadowed. (2)
18 faces of the line drawing found in the preprocessing stage. (3)
The built dual graph of the line drawing, with the edges of the
split faces (marked by dotted lines) added into a cut-set. (4) The
decomposed partitions with the split faces merged with their copla-
nar original faces.

used to decompose the line drawing into simpler partition-
s. Our decomposition algorithm is similar to the graph cut
in graph theory [6], which separates a graph into two dis-
joint subsets. In this work, to facilitate the design of the
decomposition algorithm, the dual graph G of an input line
drawing G0 is firstly built, where each vertex denotes a face
of G0 and each edge of G denotes the shared edge by t-
wo adjacent faces. Then all the edges of the split faces are
mapped into a cut-set which is used to cut G (see the exam-
ple in Fig 5(c)), Finally isolated subsets, which correspond-
s to the decomposed partitions of the input line drawing,
are obtained by removing the edges in the cut-set out of
G. Algorithm 2 shows the steps of separating an input line



Algorithm 2: Decomposition based on split faces
Input: A line drawing G0 = (V0, E0,F0) and its cut-set
Ec = Edge(Fp) which consists of the edges of the set of
split faces Fp.

1. build the dual graph G = (V, E) of G0; i = 0;
2. remove the edges in Ec from G;
3. randomly select a vertex v of G and obtain the maximum

connected subgraph Gpi which contains v;
4. i = i+ 1; G← G\Gpi ;
5. if G ̸= ∅ goto Step 3; else N = i;
6. for each subgraph Gpi

7. for each split face f in Fp

8. if Edge(f) ⊂ Edge(G̃pi)
9. Gpi ← {Gpi ∪ f}

10. end if
11. end for
12. end for

Output: The decomposed partitions G̃pi(i = 0, ..., N − 1)

drawing based on the split faces. In the Algorithm 2, G̃pi

and Gpi denote a common partition presented in graph G0

and its dual graph G, respectively. The variable i counts the
decomposed partitions, and the constant N saves the total
number of the decomposed partitions. Steps 1-5 are used
to find the decomposed partitions each of which contains
several real faces of the input line drawing. Steps 6-12 are
designed to merge split faces with the underlying partitions.
Note that in this step, a split face f is merged with the face
that is coplanar and adjacent with f . It is obvious that the
decomposition results with Algorithm 2 is unique, since the
dual graph is unique and its topology is fixed.

5. Decomposition by S-Faces
5.1. Criteria and Propositions for SFaces

Motivated by the methods proposed in the literatures on
convex decomposition of a polygon [8], which decompose
a polygon into simple primitives by new lines and vertices,
S-Faces in this work are also generated using new edges
(i.e. external split edges and internal split edges) and new
vertices (split vertices).

According to the definition of a split face, there are an
infinite number of split faces on a manifold. We need to
find those split faces that really simplify the reconstruction
problem. The split faces are desired to separate a complex
line drawing into a (approximate) minimal set of simple e-
nough ones. In this work, the generation of a good S-Face
follows these three criteria:
Criterion 1. A split edge added to form a good S-Face usu-
ally connects two collinear original edges of of the face
which the split edge is on.
Criterion 2. A split edge added to form a good S-Face is
usually parallel (or near parallel) to an original edge of the
face which the new edge is on.
Criterion 3. A real face should have as few split edges as
possible.

Algorithm 3: Obtaining split faces with Criterion 1
Input: A line drawing G = (V, E ,F)

1. generate an extended line drawing Ge1 of G by calling
SFaceCandidates1(G)

2. obtain S-Faces Fp1 in Ge1 using Algorithm 1;
3. delete reductant new edges of Ge1 ;
4. decompose Ge1 using Algorithm 2;

Output: decomposed partitions of G.
Procedure: SFaceCandidates1(G)

1. for each face fi in F of G
2. connect the edges of fi which are collinear;
3. end for

end of SFaceCandidates1(G)

Criterion 1 and 2 are based on the fact that a large man-
made object is usually formed by regular smaller object-
s. Criterion 3 comes from the observation that too many
split edges in a real face will introduce redundant split
faces, making the decomposition and reconstruction prob-
lem more complicated. Besides these criteria, we also de-
velop several propositions to guide the generation of the S-
Faces.
Proposition 7. The degree of a split vertex passed through
by one S-Face is 4;
Proof. Let e12 be an edge shared by two neighboring faces
f1 and f2, e1 be a split edge formed by S-Face C and f1,
v∗ be a split vertex formed by e1 ∩ e12, e′12 and e′′12 be two
new edges generated by dividing e12 with v∗, respectively,
e2 be an edge of C which connects e1 at v∗.

If e2 is inside f1 or coincides with one of e′12 and e′′12,
The region enclosed by chain {e1, e2} is on the surface of
the manifold, which contradicts the definition of a split face.
Therefore, e2 must be inside f2 and the degree of v∗ is 4.

Proposition 8. A type 2 split edge passed through by one
S-Face is coplanar with its adjacent split edges.

Proof. Let e2 be a split edge passed through by the cycle
C of a S-Face, e2 be inside a face f2, f1 and f3 be two
neighboring faces of f2 and f1 ∩ f3 = ∅, f1 and f3 respec-
tively contain one of two endpoints of e2. According to the
proof for Proposition 7, C must pass through a split edge in
each of f1 and f3. Then, e2 and its two adjacent split edges
are passed through by C. Therefore, e2 is coplanar with its
adjacent split edges since the cycle C of a S-Face must be
planar.

5.2. Algorithms for SFaceBased Decomposition

Further decomposition of the partitions Gpi , obtained by
the NS-Faces as described in Section 4, includes the follow-
ing two steps:

1. decomposing Gpi into simpler partitions G1
pj

using the
S-Faces whose new edges are generated based on Cri-
terion 1,



Algorithm 4: Obtaining split faces with Criterion 2
Input: A line drawing G = (V, E ,F)

1. generate an extended line drawing Ge2 of G by calling
SFaceCandidates2(G)

2. obtain S-Faces Fp2 in Ge2 using Algorithm 1;
3. delete reductant new edges of Ge2;
4. decompose Ge2 using Algorithm 2;

Output: decomposed partitions of G.
Procedure: SFaceCandidates2(G)

1. compute the set of the concave faces Fc of G;
2. for each face fi in Fc

3. generate type I internal split edges of fi such that they
pass through every concave vertex of fi in the direction(s)
of MainDir(Edge(fi));

4. end for
5. for each face fj in F\Fc

6. generate type II internal split edges of fj such that each
of them connects two coplanar split edges;

7. end for
8. delete the split edges if both of the degrees of their end

points are not more than or equal to 4;
end of SFaceCandidates2(G)

Fig. 6. S-Face-based decomposition steps. (a) A line drawing. (b)
External split edges generated by Criteria 1. (c) Partitions decom-
posed using the S-Faces identified from the extended line draw-
ing of Step b. (d) Internal split edges generated by Criteria 2 for
the decomposed partitions of Step c. (e) The valid S-Faces are
obtained with redundant new edges removed. (f) Decomposition
result based on the S-Faces obtained from Step e.

2. further decomposing G1
pj

using the S-Faces whose
new edges are generated based on Criterion 2.

These two steps are illustrated in Fig. 6 and their details
are presented in Algorithm 3 and Algorithm 4, respectively.
In the two algorithms, the procedures SFaceCandidates1
and SFaceCandidates2 are used to generate the S-Face
candidates based on Criterion 1 and Criterion 2 respective-
ly. After S-Face candidates are generated, the propositions
developed for NS-Faces are also applicable for the extend-
ed line drawings in this section. Therefore, after the steps
of SFaceCandidates1 and SFaceCandidates2, we uti-
lize Algorithm 1 to identify valid S-Faces, and employ Al-
gorithm 2 to decompose the extended line drawing in both

Algorithm 3 and 4.
In procedure SFaceCandidates1, we scan all the

faces and generate the new edges which connect two
collinear edges in a face. The main idea of procedure
SFaceCandidates2 is that: we first generate the type -I
internal split edges for all the concave faces, and then gen-
erate the type -II internal split edges for the remaining faces
to form S-Face candidates.

In Algorithm 4, MainDir(Edge(fi)) denotes the di-
rection(s) shared by the majority edges of fi, or the di-
rection(s) hold by the longest edge when each direction is
shared by equal number of edges. In SFaceCandidates2,
it is possible that there are multiple S-Faces passing through
one vertex, as shown in Fig 6d. According to Criterion 3,
we only preserve one of these S-Faces (in practical im-
plementation, only the S-Face with a minimum number of
new edges or a minimum sum of the length of new edges
of these S-Faces is preserved for the decomposition step).
In both SFaceCandidates1 and SFaceCandidates2, the
new edges of the removed S-Faces and those ones out-
side identified split faces are deleted before the decompo-
sition step. Note that Proposition 8 is used in Step 8 of
SFaceCandidates2 to avoid the generation of the S-Face
candidates which cannot be S-Faces, Proposition 7 is used
to delete the new edges which cannot form complete cycles
of S-Face candidates.

6. 3D Reconstruction from a Line Drawing
After separating a line drawing using its split faces, a

set of simpler line drawings is obtained. It is not difficult
to deal with 3D reconstruction from these separated simple
line drawings. Several framework, such as [11], [20], can be
used to further reconstruct a complete 3D object from these
simpler line drawings. In this work, we use the example-
based reconstruction method [20] to carry out the recon-
struction, since it is robust to sketch errors and can provide
a parametric 3D object. We reconstruct a 3D object from
these simpler line drawings by these steps:

1. selecting multiple 3D model candidates from the mod-
el database for each simpler line drawing,

2. deriving a complete 3D object using a maximum-a-
posteriori estimation that selects the best 3D model
candidates so that the reconstructed result fits the in-
put line drawing best.

Our experimental results show that the proposed decompo-
sition algorithm can well cooperate with the example-based
reconstruction method, since a complex line drawing can
usually be separated into simple enough ones, only a limited
number of examples in the 3D model database can handle
the reconstructions from most of the line drawings which
represent planar manmade manifolds.



Fig. 7. Decomposition results on line drawings (a) − (f). The second, third, and fourth columns show the separation results from SFM,
OCM, and IFM, respectively.

Tabel 1. Numbers of the separated partitions of
the examples in Fig. 7 by SFM, OCM, and IFM.

Algorithm (a) (b) (c) (d) (e) (f)
SFM 11 11 8 8 9 11
OCM 8 10 5 7 4 5
IFM 1 4 2 3 4 2

7. Experiments
In this section, we conduct experiments to evaluate the

effectiveness and efficiency of our split face based line
drawing separation method (SFM). The internal face based
separation method in [11] (IFM) and the object cut based
one in [21] (OCM) are used as the baselines. The proposed
method is implemented in C++ on a standard 2.53GHz i5
CPU machine and only one core is used.

In the experiment, we conduct the proposed method on
dozens of line drawings collected from [21] and other re-
lated literatures. Some example line drawings and their
separation results from the three separation methods (SFM,
OCM and IFM) are shown in Fig. 7 and Table 1. As can be
seen from the second column of Fig. 7 and Table 1, our algo-
rithm successfully separate line drawings into much simpler
partitions than IFM. Compared to the decomposed results
of OCM (the third column of Fig. 7), all the results of SFM
correspond to simple partitions that represent primitive 3D
shape parts, such as cuboid and prisms while some com-

plex partitions are still shown in the results of OCM (e.g.,
the partitions marked by red stars).

In Fig. 8, four other general line drawings and the num-
bers of the separation results are shown, together with the
reconstruction results from SFM. The results indicate that
SFM can separate more general line drawings, compared to
IFM and OCM (e.g, the line drawing in Fig. 8(c) can be
separated into 20 partitions by SFM, while that number by
IFM and OCM are 1 and 3, respectively). Therefore, we
can draw the conclusion that the combination of SFM and
the example-based reconstruction algorithm is able to ro-
bustly reconstruct wider range of parametric solid objects
than the method in [20] (the parametric 3D shape cannot
be achieved if its corresponding partition has no match in
the example database). The computational time of the pro-
posed separation algorithm depends on the complexity of
a line drawing. Each test line drawing in Fig. 7 is decom-
posed within 1 second, which is much more efficient than
both IFM and OCM.

8. Conclusions
In this paper, we propose a line drawing separation

method which uses split faces to decompose a line drawing
into simpler ones. A split face in this work is obtained
by both the topological information in an original line
drawing and the derived new topological information.
Therefore, it can be employed to obtain a better separation



Fig. 8. Four other example line drawings (note that the artificial
lines in the line drawings are hidden for concision), and the re-
constructed 3D objects, each shown from two views. The number
of the decomposed partitions based on IFM, OCM, and SFM are
respectively denoted by NIFM , NOCM , and NSFM .

of a complex line drawing than previous related methods.
The proposed separation method is important for the 3D
reconstruction from a complex line drawing, since the
task of recovering a complete 3D object will be very easy
when a complex line drawing is decomposed into simple
ones. The proposed line drawing decomposition method
can also be applied in other related applications, such as
model-based (sketch-based) 3D model retrieval. We also
develop efficient algorithms for identification of a split face
and decomposition based on split faces. The experiments
show that the proposed separation method combined with
the example-based reconstruction algorithm can robustly
reconstruct more complex parametric solid objects than
previous methods.

Acknowledgement.
This work was supported by grants from Science, In-
dustry, Trade, and Information Technology Commission
of Shenzhen Municipality (No. JC201005270378A),
Guangdong Innovative Research Team Program
(No. 201001D0104648280), Shenzhen Basic Research
Program (JCYJ20120617114614438, JC201005270350A,
JCYJ20120903092050890), Scientific Research Fund of
Hunan Provincial Education Department (No. 13C073),

Industrial Technology Research and Development Pro-
gram of Hengyang Science and Technology Bureau (No.
2013KG75), and the Construct Program of the Key Dis-
cipline in Hunan Province. The authors are thankful to
Huixuan Tang for her valuable suggestions.

References
[1] M. Armstrong. Basic Topology. Springer, 1983.
[2] S.C. Agarwal and J.W.N. Waggenspack. Decomposition Method for

Extracting Face Topologies from Wireframe Models, Computer- Aid-
ed Design, 24(3):123–140, 1922.

[3] S. Bagali and J. Waggenspack. A shortest path approach to wireframe
to solid model conversion. Proc. 3rd Symp. Solid Modeling and Ap-
plications, pp. 339–349, 1995.

[4] P. Company, A. Piquer, et al. A survey on geometrical reconstruc-
tion as a core technology to sketch-based modeling. Computer-
s&Graphics, 29(6):892–904, 2005.

[5] P. Company, M. Contero, J. Conesa, and A. Piquer. An Optimisation-
Based Reconstruction Engine for 3D Modeling by Sketching. Com-
puters & Graphics, vol. 28, pp. 955–979, 2004.

[6] M.R. Gary and D.S. David. Computers and Intractability: A Guide
to the Theory of NP-completeness. W. H. Freeman, 1979.

[7] I. Grimstead and R. Martin. Creating Solid Models from Single 2D
Sketches. Proc. 3th ACM symposium on Solid modeling and applica-
tions, pp. 323–337, 1995.

[8] J.M. Keil. Polygon decomposition. Handbook of Computational Ge-
ometry, vol. 2, pp. 491–518, 2000.

[9] H. Lipson and M. Shpitalni. Optimization-based reconstruction of
a 3D object from a single freehand line drawing. Computer-Aided
Design, 28(8):651–663, 1996.

[10] Y. Leclerc and M. Fischler. An Optimization-Based Approach to the
Interpretation of Single Line Drawings as 3D Wire Frames. Int’l
Journal of Computer Vision, 9(2):113–136, 1992.

[11] J. Liu, Y. Chen, and X. Tang. Decomposition of Complex Line Draw-
ings with Hidden Lines for 3D Planar-Faced Manifold Object Recon-
struction. PAMI, 33(1):3–15, 2011.

[12] J. Liu, L. Cao, Z. Li, and X. Tang. Plane-Based Optimization
for 3D Object Reconstruction from Single Line Drawings. PAMI,
30(2):315–327, 2008.

[13] J. Liu, Y. Lee, and W.-K. Cham. Identifying Faces in a 2D Line
Drawing Representing a Manifold Object. PAMI, 24(12):1579–1593,
2002.

[14] P. Min, J. Chen, and T. Funkhouser. A 2Dsketch interface for a 3D
model search engine. SIGGRAPH, Technical Sketches, 2002.

[15] T. Marill. Emulating the Human Interpretation of Line Drawings
as Three-Dimensional Objects. Int’l Journal of Computer Vision,
6(2):147–161, 1991.

[16] S. Ortiz. 3D searching starts to take shape. Computer, 37(8): 24–26,
2004.

[17] L. Ros and F. Thomas. Overcoming Superstrictness in Line Drawing
Interpretation. PAMI, 24(4):456–466, 2002.

[18] A. Shesh and B. Chen. Smartpaper: An interactive and user friendly
sketching system. Computer Graphics Forum, 23(3):301–310, 2004.

[19] A. Turner, D. Chapman, and A. Penn. Sketching Space. Computers
& Graphics, 24(6):869–879, 2000.

[20] T. Xue, J. Liu, and X. Tang. Example-based 3D object reconstruction
from line drawings. IEEE Proc. CVPR, 2012.

[21] T. Xue, J. Liu, and X. Tang. Object cut: Complex 3D object recon-
struction through line drawing separation. IEEE Proc. CVPR, 2010.

[22] C. Zou, J. Liu, and J. Liu. Precise 3D Reconstruction from a Single
Image. ACCV, 2012.

[23] C. Zou and J. Liu. The method for line drawing separation. Technicle
Report, the Media Lab, Shenzhen Institutes of Advanced Technolo-
gy, 2014.


