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Abstract
We show how Symbolic Execution can be understood as a variant of the DPLL(T ) algorithm,
which is the dominant technique for the Satisfiability Modulo Theories (SMT) problem. In other
words, Symbolic Executors are SMT solvers. This view enables us to use an SMT solver, with
the ability of generating all models with respect to a set of Boolean atoms, to explore all symbolic
paths of a program. This results in a more lightweight approach for Symbolic Execution.
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1 Introduction

Symbolic Execution (SE) [11] is now popular. It is increasingly used not only in academic
settings but also in industry, such as in Microsoft, NASA, IBM and Fujitsu [4]. In the success
of SE, the efficiency of SMT solvers [9] is a key factor. In fact, while SE was introduced
more than three decades ago, it had not been made practical until research in SMT made
significant advances [5].

State-of-the-art SMT solvers, e.g. [8, 2], implement the DPLL(T ) algorithm [15] which
is an integration of two components as follows. The first component is a propositional
satisfiability (SAT) solver, based on the Davis-Putnam-Logemann-Loveland (DPLL) algorithm
[7], to search on the Boolean skeleton of the formula. The second component is a decision
procedure, called the T -solver, to check the consistency w.r.t. the theory T of conjunctions
of literals, each literal is an atomic formula or the negation of an atomic formula. The path
conditions generated by a Symbolic Executor, e.g. Symbolic PathFinder (SPF) [14], are also
conjunctions of literals. Therefore, when an SMT solver checks such a path condition, only
the T -solver works on it, and the SAT component is not used.

On the other hand, a classical Symbolic Executor [11] can be divided into two components.
The first component, dubbed as Boolean Executor hereafter, executes the instructions, and
updates the path condition. The second component is a T -solver (since the SAT solver is not
used) to validate the consistency of the path condition. This paper shows that a Boolean
Executor does the same work as the DPLL algorithm. Thus, SE is a variant of DPLL(T ).
This view is important since it connects two communities and can give an insight for future
research.

Based on this new insight, we propose a lightweight approach for SE which uses the
DPLL component of an SMT solver to explore symbolic paths instead of a Boolean Executor.
Our approach relies on an SMT solver with the ability of generating all models w.r.t. a set
of Boolean atoms.
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2 Background

Before showing the correspondence between a Symbolic Executor and an SMT solver, we
recall some background on Symbolic Execution and the SMT problem.

2.1 Symbolic Execution
Symbolic Execution [11] (SE) is a programming analysis technique which executes programs
on unspecified inputs, by using symbolic values instead of concrete data. For each executed
program path, SE builds a path condition pc which represents the condition on the inputs
for the execution to follow that path.

function Executor(Program P ){
PathCondition pc = True;
InstructionPointer i = Null;
update(P, i);
if (i == Return) return;
while (True) {

l = chooseLiteral(i);
pc = pc ∧ l;
update(P, i);
if (i == Return)

if (allStatesAreExplored())
return;

else backtrack(pc, i);
} }

Figure 1 A simplified Boolean Executor.

For an if statement with condition c, there are three possible cases: (i) pc ` c: SE chooses
the then path; (ii) pc ` ¬c: SE chooses the else path; (iii) (pc 0 c) ∧ (pc 0 ¬c): SE executes
both paths: in the then path, it updates the path condition pc1 = pc∧ c, in the else path it
updates the path condition pc2 = pc ∧ ¬c. The satisfiability of the path condition is checked
by SMT solvers, for example the symbolic executor KLEE [3] uses the SMT solver STP [10],
while SPF provides a parameter to select one of the SMT solvers: CVC3, Yices, Z3. In this
way, only feasible program paths are explored. Test generation is performed by solving the
path conditions.

2.2 SMT and DPLL(T )
Satisfiability Modulo Theories (SMT) is the problem of checking the satisfiability of logical
formulas over one or more first-order theories T .

Our setting is standard first-order logic. Boolean variables are called Boolean atoms or
simply atoms, and atomic formulas are called theory atoms or T -atoms. A truth assignment
µ for a formula ϕ is a truth value assignment to the T -atoms of ϕ. We define a bijective
function BA (Boolean abstraction) which maps Boolean atoms into themselves and T -atoms
into fresh Boolean atoms. The Boolean refinement function BR is then defined as the inverse
of BA, which means BR = BA−1.

At a high level, an SMT solver is the integration of two components: a SAT solver and
T -solvers. SMT solving can be viewed as the iteration of the two following steps. First, the
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60 Symbolic Execution as DPLL Modulo Theories

SAT solver searches on the Boolean abstraction of the formula, ϕP = BA(ϕ), and returns
a (partial) truth assignment µP . The T -solvers then check the Boolean refinement of the
candidate, BR(µP ), whether it is consistent with the theories T .

function DPLL(BooleanFormula ϕ){
µ = True; status = propagate(ϕ, µ);
if (status == Sat) return Sat;
else if (status == UnSat) return UnSat;
while (True) {

l = chooseLiteral(ϕ);
µ = µ ∧ l;
status = propagate(ϕ, µ);
if (status == Sat) return Sat;
else if (status == UnSat)

if (allStatesAreExplored())
return UnSat;

else backtrack(ϕ, µ);
} }

Figure 2 DPLL algorithm.

The dominant approach for SAT solvers is the DPLL family of algorithms [7]. The
simplest form of DPLL is depicted in Figure 2, its input is a propositional formula ϕ in
Conjunctive Normal Form (CNF), which means ϕ takes the form:

ϕ =
∧

(l1 ∨ l2 · · · ∨ lk)

A (finite) disjunction of literals (l1 ∨ l2 · · · ∨ lk) is called a clause, and a literal li is an atom
or its negation. A clause that contains only one literal is called a unit clause. At a high
level, DPLL is a stack-based depth-first search procedure which iteratively performs the two
following steps: first choose a literal li from the remaining clause, and add it to the current
truth assignment; then apply Boolean Constraint Propagation (BCP), backtracking if there
is a conflict. These two steps are repeated until a model is found or all states are explored
without finding a model.

The procedure BCP for a literal li removes all the clauses containing li, and removes ¬li
from the remaining clauses. If the removal results an empty clause, the search encounters a
conflict.

3 Illustration of DPLL(T )

A complete formal description of first-order theories and the DPLL(T ) algorithm can be
found in, e.g., [15]. Here we briefly introduce necessary preliminaries via a running example
as follows.

ϕ := (¬(x0 > 5) ∨ T1) ∧ ((x0 > 5) ∨ T2) ∧ (¬(x0 > 5) ∨ (x1 = x0 + 1)) ∧
(¬(x1 < 3) ∨ T3) ∧ (¬(x1 < 3) ∨ (x2 = x1 − 1)) ∧
((x1 < 3) ∨ T4) ∧ ((x1 < 3) ∨ (y1 = x1 + 1))

(1)

ϕ is a Linear Arithmetic formula. Boolean variables, T1 . . . T4, are called Boolean atoms, and
atomic formulas, e.g. (x0 > 5), are called theory atoms or T -atoms. A first-order formula can
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be abstracted into a Boolean skeleton by replacing all the T -atoms with new Boolean atoms,
which is often called Boolean abstraction. For the example above, we define new Boolean
variables G1, G2, A1, A2, A3 for the Boolean abstraction of T -atoms, and the abstraction can
be expressed as:

BA := G1 = (x0 > 5) ∧G2 = (x1 < 3) ∧
A1 = (x1 = x0 + 1) ∧A2 = (x2 = x1 − 1) ∧A3 = (y1 = x1 + 1)

(2)

As the result, we obtain a formula ϕP (P stands for propositional) as the Boolean skeleton
of ϕ. Obviously, ϕ is logically equivalent to ϕP ∧ BA.

ϕP := (¬G1 ∨ T1) ∧ (G1 ∨ T2) ∧ (¬G1 ∨A1) ∧
(¬G2 ∨ T3) ∧ (¬G2 ∨A2) ∧
(G2 ∨ T4) ∧ (G2 ∨A3)

(3)

The DPLL(T ) algorithm is the integration of the DPLL algorithm with a T -solver. The
DPLL algorithm searches on ϕP , returning a conjunction of Boolean literal µP . Replacing
all the new Boolean atoms, Gi and Ai, in µP with their corresponding T -atoms, we obtain
the conjunction µ in T . The T -solver then checks whether µ is consistent with the theory T .
Below is the illustration of DPLL(T ) on ϕ (for the limit of space, only decision literals are
shown in µP ):

0. µP = True ϕP

1. µP = G1 ϕP = (¬G2 ∨ T3) ∧ (¬G2 ∨A2) ∧ (G2 ∨ T4) ∧ (G2 ∨A3)
2. µP = G1 ∧G2 ϕP = True ; T -solver(µ) = Inconsistent

3. µP = G1 ϕP = (¬G2 ∨ T3) ∧ (¬G2 ∨A2) ∧ (G2 ∨ T4) ∧ (G2 ∨A3)
4. µP = G1 ∧ ¬G2 ϕP = True ; T -solver(µ) = Consistent

The DPLL algorithm tries to build a model using three main operations: decide, propagate,
and backtrack [9]. The operation decide heuristically chooses a literal l (which is an
unassigned Boolean atom or its negation) for branching. The operation propagate then
removes all the clauses containing l, and deletes all occurrences of ¬l in the formula; this
procedure is also called Boolean Constraint Propagation (BCP). If after deleting a literal
from a clause, the clause only has only one literal left (unit clause), BCP assigns this literal
to True. If deleting a literal from a clause results in an empty clause, this is called a conflict.
In this case, the DPLL procedure must backtrack and try a different branch value.

At step 1, G1 is decided to be the branching literal, and the T -solver validates that
(x0 > 5) is consistent. BCP removes the clause (G1 ∨ T2), and deletes all occurrences of
¬G1. This results in two unit clauses T1 and A1, so they are assigned to True, which means
µP = G1 ∧ T1 ∧ A1. Similarly, at step 2 G2 is chosen, i.e. µP = G1 ∧ T1 ∧ A1 ∧ G2. The
T -solver checks the conjunction: µ = (x0 > 5) ∧ T1 ∧ (x1 < 3) ∧ (x1 = x0 + 1). This is
obviously inconsistent, thus DPLL(T ) backtracks and tries ¬G2, which leads to a consistent
model.

Note that DPLL(T ) refers to various procedures integrating DPLL and a T -solver. There
are procedures with an integration schema different from what we have described here. The
interested reader is pointed to [15] for further references.
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62 Symbolic Execution as DPLL Modulo Theories

4 Symbolic Execution as DPLL(T )

Intuitively, a program can be encoded into a (first-order) formula whose models correspond
to program traces. Symbolic Executors explore all program traces w.r.t. the set of program
conditions, therefore they can be viewed as SMT solvers that return all (partial) models
w.r.t. a set of Boolean atoms.

In this paper we only consider bounded programs, since this is the class of programs that
SE can analyse. This means every loop can be unwound into a sequence if statements. In
order to encode a program into a formula, all program variables are renamed in the manner
of Static Single Assignment form [6]: each variable is assigned exactly once, and it is renamed
into a new variable when being reassigned. In this way, assignments such as x = x+ 1 will
not be encoded into an unsatisfiable atomic formula. Under these settings, a program P can
be modelled by a Symbolic Transition System (STS) as follows:

P ≡ (S, I,G,A, T )

S is the set of program states, I ⊆ S is the set of initial states; each state in the STS models
the computer memory at a program point. G is the set of guards and A is the set of actions;
guards and actions are first-order formulas. An action models the effect of an instruction on
the computer memory. Actions that do not update the computer memory (e.g. conditional
jumps) are Boolean atoms, the others are T -atoms. T ⊆ S × G × A × S is the transition
function, tij = 〈si, gij , aij , sj〉 ∈ T models a transition from state si to state sj by taking
action aij under the guard gij . After a transition tij : si → sj , the state sj is exactly as the
state si apart from the variable updated by the action aij .

One way to encode a transition tij into a first-order formula is to present it in the form:
tij ≡ gij → aij , or equally tij ≡ ¬gij ∨ aij . This encoding expresses that satisfying the guard
gij implies that the action aij is performed. In this way, a program trace is defined as a
sequence of transitions:

t01 ∧ t12 ∧ · · · ∧ t(k−1)k = (¬g01 ∨ a01) ∧ (¬g12 ∨ a12) · · · ∧ (¬g(k−1)k ∨ a(k−1)k)

The semantics of the program is then defined as the set of all possible traces, or equally the
set of all possible transitions, which can be represented as the following formula:

ϕ =
∧

tij∈T

tij =
∧

tij∈T

(¬gij ∨ aij) (4)

Fig. 3 depicts a simple example program and its associated STS. Encoding this STS following
(4) results in the formula (1) that we have illustrated with DPLL(T ) in the previous section.
We now illustrate this example with SE.

At a high level, a Symbolic Executor can be considered as the integration of two com-
ponents: a Boolean Executor (BE) to execute the instructions and a T -solver to check the
feasibility of path conditions. For example, SPF has a parameter symbolic.dp to customize
which decision procedure to use. If we set this parameter with the option no_solver then
SPF solely works on the BE.

A BE can be described as trying to build all path conditions using three main operations:
decide, update and backtrack. The operation decide chooses a literal l, a condition (or its
negation) of an if statement, for branching, adding it to the path condition. The operation
update then symbolically executes a block of statements, i.e. no branching statement
presents, updating the computer memory. When the BE reaches the end of a symbolic path,
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void test(int x, int y){
if(x > 5){

x++;
if (x < 3)

x--;
else

y = x + 1;
}

}

 

 

  

 

 

  

s0

s1 s2

s3

s4 s5

s6 s7

x0 > 5
T1

¬(x0 > 5)
T2

x0 > 5
x1 = x0 + 1

x1 < 3
T3

¬(x1 < 3)
T4

x1 < 3 ¬(x1 < 3)
y1 = x1 + 1x2 = x1 − 1

Figure 3 A simple program and its associated STS. The first if statement is modelled by
two transitions 〈s0, (x0 > 5), T1, s1〉 and 〈s0,¬(x0 > 5), T2, s2〉; the assignment x++ is modelled by
〈s1, (x0 > 5), x1 = x0 + 1, s3〉; similarly for the rest of the program.

it backtracks to explore other paths. A Symbolic Executor, which is the integration of a BE
and a T -solver, backtracks if the path condition is not satisfied.

Both DPLL and BE rely on Depth-First Search, they are similar in the way they decide
and backtrack1. After choosing a literal, e.g. (x0 > 5), BE executes the block it guards,
i.e. T1 and x1 = x0 + 1. This is exactly the same as in DPLL: after choosing gij , for all
the clauses (¬gij ∨ aij), BCP deletes ¬gij , assigning aij to True. Therefore, the operation
update does the same work as BCP, we can view a BE as implementing the DPLL algorithm,
and SE as DPLL(T ).

5 A lightweight approach for Symbolic Execution using All-SMT

While both Symbolic Executors and SMT solvers implement DPLL(T ), the main difference
between them is the models they return. Symbolic Executors explore all path conditions,
each path condition is identified by the values of the Boolean abstractions of its condition
constraints. For instance, although there are many values of x0 satisfying the path (x0 <

5) ∧ ¬(x1 < 3), it is identified by G1 = True and G2 = False. On the other hand, SMT
solvers in general stop searching when a model is found. However, the solver MathSAT
provides a functionality, called All-SMT [2], that given a formula and a set of Boolean atoms,
it returns all models of the formula w.r.t. this set. Hence, by asking MathSAT to find all
models w.r.t. the set of guards, we can explore all symbolic paths of the program.

We illustrate the approach with our running example in Fig. 3. The formula ϕ in (1) is
expressed in SMT-LIB v2 format [1] as follows (for the limit of space variable declarations
are omitted):

1 (assert (= (> x0 5) G1)) 8 (assert (or (not G1) A1))
2 (assert (= (< x1 3) G2)) 9 (assert (or (not G2) T3))
3 (assert (= (= x1 (+ x0 1)) A1)) 10 (assert (or (not G2) A2))
4 (assert (= (= x2 (− x1 1)) A2)) 11 (assert (or G2 T4))
5 (assert (= (= y1 (+ x1 1)) A2)) 12 (assert (or G2 A3))
6 (assert (or (not G1) T1)) 13 (check-allsat (G1 G2))
7 (assert (or G1 T2))

1 We consider DPLL in its simplest form, without non-chronological backtracking.
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64 Symbolic Execution as DPLL Modulo Theories

Recall that ϕ = BA ∧ ϕP as defined in (2) and (3). Assertions from 1 to 5 are for BA, and
each assertion from 6 to 12 represents a clause of ϕP . The final command, check-allsat,
asks the solver to return all models w.r.t. the set (G1, G2). Note that check-allsat is not
included in standard SMT-LIB, and it is not supported by other solvers, e.g. Z3 [8].

Executing MathSAT on the example above, we obtain three models w.r.t. the set (G1, G2)
as follows: (True,False), (False,True) and (False,False), which correspond to two feasible
symbolic paths: (x0 > 5) ∧ ¬(x1 < 3) and ¬(x0 > 5). As we did not model integer overflow
rules, the path (G1, G2) as (True,True), i.e. (x0 > 5) ∧ (x1 < 3), is not feasible (this path is
feasible when the overflow in the assignment x1 = x0 + 1 changes a big integer into a small
one). The path ¬(x0 > 5) is listed twice, since in this case the value of G2, i.e. (x1 < 3), is
irrelevant, but the solver still considered it in two cases True and False.

6 Discussions and Future Work

In this paper, we show the correspondence between a Symbolic Executor and an SMT solver
implementing the DPLL(T ) framework [15]. Therefore, the claims in this paper do not
apply for the bit vector theory, since its solvers do not implement the DPLL(T ) framework.
Bit vector formulas are solved by flattening into propositional formulas, then the resulting
formulas are checked by a SAT solver [10].

A common problem for both SE and SMT is that there is a considerable amount of
redundancy in the queries to the T -solver. Because the BE and its counterpart in SMT, the
SAT component, build the conjunctions of literals in an incremental manner. To address
this problem, previous work in SE and SMT used different approaches. In SE, the BE often
uses the T -solver as a black box, thus most research on constraint redundancy problem
has focused on caching techniques. For example, KLEE [3] has a counterexample cache
that maps of sets of constraints to counterexamples, Green [16] can store the constraints
offline, reusing them in different runs of the Symbolic Executor. In SMT solver, there is a
tight synergy between the SAT component and the T -solver, and both are incremental and
backtrackable. Therefore, the T -solver do not start from scratch if the constraint is similar
to the previous query.

An immediate direction for investigation is whether the caching techniques in KLEE
and Green can improve the efficiency of SMT solvers. Conversely, it would be interesting to
investigate if techniques developed for SMT can be exploited for SE, for example to develop
a concurrent Symbolic Executor based on previous work in concurrent SMT solver [17].

7 Conclusion

We show the correspondence between Symbolic Execution and Satisfiability Modulo Theories.
This correspondence is important, as it enables us to migrate techniques developed in one
community to the other. Moreover, it can give an insight for future research. In our previous
work, we proposed a DPLL-based algorithm to tackle the quantitative information flow
problem, and implemented it using SPF [13, 12].

Based on the correspondence above, we propose a lightweight approach for SE, using the
DPLL component of an SMT solver to explore symbolic paths. The main limitation of our
approach is path redundancies, which is because the off-the-shelf All-SMT functionality is
not tailored for SE. Hence, future work also includes extending the open-source SMT solver
Z3 so that it can function as SE.
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