
Self-composition by Symbolic Execution
Phan, Q-S

Quoc-Sang Phan

For additional information about this publication click this link.

http://qmro.qmul.ac.uk/jspui/handle/123456789/6121

Information about this research object was correct at the time of download; we occasionally

make corrections to records, please therefore check the published record when citing. For

more information contact scholarlycommunications@qmul.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen Mary Research Online

https://core.ac.uk/display/30696904?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://qmro.qmul.ac.uk/jspui/handle/123456789/6121

Self-composition by Symbolic Execution
Quoc-Sang Phan

Queen Mary University of London
qsp30@eecs.qmul.ac.uk

Abstract
Self-composition is a logical formulation of non-interference, a high-level security property that
guarantees the absence of illicit information leakages through executing programs. In order to
capture program executions, self-composition has been expressed in Hoare or modal logic, and
has been proved (or refuted) by using theorem provers. These approaches require considerable
user interaction, and verification expertise. This paper presents an automated technique to prove
self-composition. We reformulate the idea of self-composition into comparing pairs of symbolic
paths of the same program; the symbolic paths are given by Symbolic Execution. The result of
our analysis is a logical formula expressing self-composition in first-order theories, which can be
solved by off-the-shelf Satisfiability Modulo Theories solvers.

1998 ACM Subject Classification D.2.4 Software/Program Verification

Keywords and phrases Information Flow, Symbolic Execution, Satisfiability Modulo Theories

Digital Object Identifier 10.4230/OASIcs.ICCSW.2013.95

1 Secure information flow: from non-interference to self-composition

Information flow in an information theoretical context is the transfer of information from
a variable H to a variable O in a given process. The simplest case of information flow is
explicit flow (or direct flow) where the whole or partial value of H is copied directly to O,
for example:

O = H + 3;

There are more subtle cases, which are categorized as implicit flow (or indirect flow). Consider,
for example, the program below, which simulates a common password checking procedure:

Listing 1 a password checking program
if (H == L)

O = true;
else

O = false;

H is the password, i.e. the confidential data; L is the public input provided by the user; O is
the observable output, O = true means the password is accepted. Although H is not directly
copied to O, there is still information flow leaked H → O. This information is “small”, but
one can reveal all information about H if he is allowed to make enough attempts.

Obviously, information flow from confidential data to observable output is not desirable,
which is the motivation of research in secure information flow. Dating back to the pioneering
work of the Dennings in the 1970s [4], secure information flow analysis has been an active
research topic for the last four decades.

© Quoc-Sang Phan;
licensed under Creative Commons License CC-BY

2013 Imperial College Computing Student Workshop (ICCSW’13).
Editors: Andrew V. Jones, Nicholas Ng; pp. 95–102

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICCSW.2013.95
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

96 Self-composition by Symbolic Execution

Non-interference. A popular security policy that guarantees the absence of information
flow leaks is non-interference [2, 5]. It is stated as follows: suppose a program P takes secret
input H, public input L and produces public output O. Then P satisfies the non-interference
property iff the value of O does not depend on H.

There has been a large body of work that has used type systems for validating non-
interference, following the idea of Volpano et al. [10]. Type systems are fast and the analysis
is safe, which means a program is classified as “secure”, then it is actually secure, there are
no false negatives. However, they also return too many false positives, which means secure
programs can be classified as “insecure”. For example, consider again the two examples with
a small modification to make them satisfy non-interference:

Listing 2 A trivial secure program
O = H - H + 3;

Listing 3 An “always-reject” password checking program
if (H == L)

O = false;
else

O = false;

Typing rules would always classify programs like the above as insecure. Another tricky case
is of programs that leak information in the intermediate states, but sanitize information at
the end, for example:

O = H + 3;
O = 3;

Given that the attacker can only observe the final value of the output O, the program is
secure. However, it would be classified as insecure by type systems.

Self-composition. Another prominent approach for secure information flow is to use theorem
proving, in which non-interference is logically formulated as self-composition [3, 1], as non-
interference itself is not a logical property.

We assume a similar setting as in the case of non-interference: given a program P that
takes secret input H, public input L and producing public output O, we denote by P1 the
same program as P , with all variables renamed: H as H1, L as L1 and O as O1. For example,
consider again the password checking program P in Listing 1, the composition of P and its
copy P1 is as follows:

if (H == L)
O = true;

else
O = false;

/* copy of the same program with all variables renamed */
if (H1 == L1)

O1 = true;
else

O1 = false;

Self-composition is expressed in Hoare-style framework as [1]:

{L = L1}P ;P1{O = O1} (1)

Q. Phan 97

The Hoare triple states that if the precondition L = L1 holds, then after the execution of
P ;P1, the postcondition O = O1 also holds. Recall that non-interference requires the output
O not to depend on the secret input H, which means that for any pair of possible executions
of P that only differ in H, they have to agree on the public output O. In self-composition,
the purpose of having the copy P1 with all variables renamed is to have another P to compare
with P , so self-composition is logical formulation of non-interference.

For the example above, by choosing H = L∧H1 6= L1, it is easy to find a counterexample
for the Hoare triple in (1), such that L = L1 holds and O = O1 does not hold. Therefore,
the password checking program violates self-composition, and hence there is information
leaked H → O.

Compared to type system approach, the theorem proving approach is much more precise,
returning no false positives. However, it is impractical in reality, as elegantly put in [9] by
Terauchi and Aiken:

“When we actually applied the self-composition approach, we found that not only are the
existing automatic safety analysis tools not powerful enough to verify many realistic problem
instances efficiently (or at all), but also that there are strong reasons to believe that it is
unlikely to expect any future advance.”

Terauchi and Aiken also pointed out that the limitations of self-composition come from
the symmetry and redundancy of the self-composed program, which lead to some partial-
correctness conditions that hold between P and P1. To find these conditions is crucial for
the effectiveness of the analysis, however, finding them is in general impractical.

Moreover, to prove (or refute) self-composition with theorem provers requires considerable
user interaction and verification expertise [3].

Contribution. This paper presents an automated technique for non-interference based on
self-composition. The self-composition approach can be divided into two steps: first, to
compose the program with a copy of itself; second, to perform analysis on the self-composed
program. Our approach is to delay self-composing to the second step: first, we perform
analysis on the original program with Symbolic Execution; second, we self-compose the
result of the analysis to get the formula of self-composition. The idea of self-composition
is to have a copy P1 of P to compare with itself. We expand this idea into comparing all
pairs of executions ρ of P and ρ1 of P1. Since it is impossible to enumerate all possible
executions, we use Symbolic Execution to synthesize the symbolic paths that represents a set
of concrete executions, and perform comparison on these symbolic paths, which we formulate
as path-equivalence.

The delay of self-composing after performing the analysis is the main novelty of our
approach. In this way, we could avoid the symmetry and redundancy of the self-composed
program. Moreover, the symbolic paths synthesized by Symbolic Execution are presented
by first-order theories, just as the generated formula of self-composition. The validity of
this formula can be automatically and efficiently checked by powerful Satisfiability Modulo
Theories (SMT) solvers.

2 Preliminaries

A deterministic program is modelled as a transition system:

P = (Σ, I, F, T)

where Σ is the set of program states; I ⊆ Σ is the set of initial states; F ⊆ Σ is the set of final
states; and T ⊆ Σ× Σ is the transition function. Under this setting, a trace of (concrete)

ICCSW’13

98 Self-composition by Symbolic Execution

execution of program P is represented by a sequence of states:

ρ = σ0σ1..σn

such that σ0 ∈ I, σn ∈ F and 〈σi, σi+1〉 ∈ T for all i ∈ {0, .., n− 1}. We define two functions
init and fin to get the initial state and final state of ρ:

init(ρ) = σ0 and fin(ρ) = σn

The semantics of P is then defined as the set R of all possible traces.
We assume that each initial state σ ∈ I is a pair 〈H,L〉, i.e. I = IH × IL, in which H

is the confidential component to be protected and L is the public component that may be
controlled by an attacker.

Symbolic Execution. Symbolic Execution (SE), first introduced by King in the 1970s [6], is
a technique widely used in verification and testing. The key idea is the following. Instead of
taking inputs to be concrete values, SE takes inputs to be symbols, e.g. α, β, which represent
sets of concrete input values; the program is then executed just like in normal execution. In
the setting of SE, the program P is modelled as a transition system:

P = (Σs, Is, F s, T s)

where Σs is the set of symbolic states; each σs ∈ Σs represents a set of concrete states σ ∈ Σ.
Is ⊆ Σs is the set of initial symbolic states; F s ⊆ Σs is the set of final symbolic states; and
T s ⊆ Σs ×Σs is the transition function. A symbolic path (symbolic trace) of the program P

is represented by a sequence of symbolic states:

ρs = σs0σ
s
1..σ

s
n

such that σs0 ∈ Is, σsn ∈ F s and 〈σsi , σsi+1〉 ∈ T s for all i ∈ {0, . . . , n − 1}. The symbolic
semantics of P is then defined as the set of all symbolic paths Rs, which is also called as the
symbolic execution tree. Likewise, each ρs ∈ Rs represents a set of traces ρ ∈ R.

We denote by X|y the value of the variable X at the state y. After symbolically executing
the program P with initial input symbols H = α,L = β, for each σsi ∈ F s, i.e. each leaf of
the symbolic execution tree, we have a symbolic formula for the value of the output O in the
symbolic environment:

O|σs
i

= fi(α, β)

Another product of SE is the path condition pci ≡ ci(α, β) for σsi to be reachable. Each pci
corresponds to a symbolic path ρsi . The following theorem was also proved by King [6]:

I Theorem 1.
∀i, j ∈ [1, n] ∧ i 6= j.pci ∧ pcj = ⊥

We define the function path such that:

path(ρsi) = pci

The output O can be considered as a result of the following function:

O =


f1(α, β) if c1(α, β)
f2(α, β) if c2(α, β)
.

fn(α, β) if cn(α, β)

 (2)

Or the following always holds:

Q. Phan 99

I Corollary 2.
∀i ∈ [1, n].ci(α, β)→ O = fi(α, β)

fi and ci are in general combination of first-order theories, e.g. linear arithmetic, bit vector
and so on. SE tools make use of off-the-shelf SMT solvers to check the satisfiability of ci,
and eliminate unreachable paths (which may appear in the control flow graph).

3 Self-composition by Symbolic Execution

To avoid the limitation of the theorem proving approach, we need to reformulate the self-
composition formula into a simpler logic which does not contain the program P . This is
made possible by using the trace semantics of programs.

3.1 Self-composition as path-equivalence
Given a program P that takes secret input H, public input L and producing public output
O; P1 is the same program as P , with all variables renamed: H as H1, L as L1 and O as O1.
The trace semantics of P and P1 are R and R1 respectively.

I Definition 3 (trace-equivalence). The program P satisfies non-interference if:

∀ρ ∈ R, ρ1 ∈ R1.L|init(ρ) = L1|init(ρ1) → O|fin(ρ) = O1|fin(ρ1) (3)

It is stated similarly to the Hoare triple in (1): for all possible pairs of traces ρ of P , and ρ1
of P1: if L = L1 at the initial states, then O = O1 at the final states. At this point, we have
a formulation of self-composition that does not involve the programs P and P1.

However, even with simple programs, it is impossible to compute all the traces. Our
solution is to use trace-equivalence with SE. Recall that each symbolic path represents a
set of traces, and it is possible to build a complete symbolic execution tree (here we only
consider bounded programs). Following Corollary 2, trace-equivalence in the context of SE
is redefined as follows:

I Definition 4 (path-equivalence). The program P satisfies non-interference if:

∀ρs ∈ Rs, ρs1 ∈ Rs1.(L|init(ρs) = L1|init(ρs
1))∧path(ρs)∧path(ρs1)→ (O|fin(ρs) = O1|fin(ρs

1))
(4)

In this way, we have an SMT formula, i.e. a combination of first-order theories. This is the
key novelty of our approach, since the formulation of self-composition in first-order theories
enables us to solve it efficiently using off-the-shelf SMT solvers.

3.2 Path-equivalence generation
Suppose P is symbolically executed with H = α,L = β. To simplify the formula, we choose
the input symbols for P1 as H1 = α1, L1 = β so that L|init(ρs) = L1|init(ρs

1) is automatically
satisfied. That means:

(H|init(ρs) = α) ∧ (L|init(ρs) = β) ∧ (H1|init(ρs
1) = α1) ∧ (L1|init(ρs

1) = β)

Given the result of SE is a function of the output O as in (2), the path-equivalence in (4)
can be rewritten as:

PE ≡ DF ∧ IF

ICCSW’13

100 Self-composition by Symbolic Execution

where:

DF ≡
n∧
i=1

ci(α, β) ∧ ci(α1, β)→ (fi(α, β) = fi(α1, β)) (5)

IF ≡
n−1∧
i=1

n∧
j=i+1

ci(α, β) ∧ cj(α1, β)→ (fi(α, β) = fj(α1, β)) (6)

DF checks the path-equivalence when both P and P1 follow the same symbolic path, and thus
it guarantees the absence of direct flows. On the other hand, IF checks the path-equivalence
when P and P1 follow different symbolic paths, and it guarantees the absence of implicit
flows.

4 Case Studies

We illustrate the approach with some toy examples. Here we assume the same setting as
above: a program P with confidential input H, public input L, and output O. SE executes
P with input symbols H = α and L = β.

4.1 Implicit flow

Consider the password checking program in Listing 1. By SE, we have:

O =
{
true if α = β

false if α 6= β

}
DF and DF are generated as follows:

DF ≡ (α = β ∧ α1 = β → true = true) ∧ (α 6= β ∧ α1 6= β → false = false)
IF ≡ α = β ∧ α1 6= β → true = false

It is trivial to prove that DF is valid and IF is invalid, and thus the program violates
non-interference and leaks information via implicit flows.

4.2 No flow

Consider the modified version of the password checking procedure in Listing 3. By SE, we
have:

O =
{
false if α = β

false if α 6= β

}
DF and IF are generated as follows:

DF ≡ (α = β ∧ α1 = β → false = false) ∧ (α 6= β ∧ α1 6= β → false = false)
IF ≡ α = β ∧ α1 6= β → false = false

It is trivial to prove that both DF and IF are valid, and thus the program satisfies non-
interference. Note that this is the case that type systems, taint analysis would decide as
violating non-interference.

Q. Phan 101

No confidential data involved. Consider again the password checking program, with a
small modification to exclude the confidential data in its computation, i.e. to make it secure.

Listing 4 A program without confidential data
if (L == 3)

O = true;
else

O = false;

Similarly we have:

O =
{
true if β = 3
false if ¬(β = 3)

}
DF and IF are derived as:

DF ≡ (β = 3 ∧ β = 3→ true = true) ∧ (¬(β = 3) ∧ ¬(β = 3)→ false = false)
IF ≡ β = 3 ∧ ¬(β = 3)→ true = false

Both DF and IF are valid, which confirms the intuition that the program is secure.

4.3 Both implicit and explicit flows
Consider the following data sanitization program:

if (H < 16)
O = H + L;

else
O = L;

The summaries and path conditions returned by SE are as follows:

O =
{
α+ β if α < 16
β if ¬(α < 16)

}
DF and DF are generated similarly:

DF ≡ (α < 16 ∧ α1 < 16→ α+ β = α1 + β) ∧ (¬(α < 16) ∧ ¬(α1 < 16)→ β = β)
IF ≡ α < 16 ∧ ¬(α1 < 16)→ α+ β = β

It is easy to find counterexamples to make DF and IF invalid, for example: (α = 1;α1 = 2)
for DF and (α = 1;α1 = 17) for IF. So the program leaks via both implicit and explicit flows.

5 Related Work

Self-composition was first introduced by Darvas et al. [3] who expressed it in dynamic
logic and proved information flow properties for Java CARD programs. Their approach is
not automated, requiring users to provide loop invariants, induction hypotheses and so on.
Barthe et al. [1] then coined the term “self-composition” and investigated its theoretical
aspects, extending the problem to non-deterministic and termination-sensitive cases.

Terauchi and Aiken [9] found that self-composition was problematic, since the self-
composed programs contains symmetry and redundancy. They proposed a type-directed
transformation for a simple imperative language to deal with the problem. Milushev et al.

ICCSW’13

102 Self-composition by Symbolic Execution

[7] implemented this type-directed transformation and used Dynamic Symbolic Execution
(also known as concolic testing) as a program analysis tool for non-interference.

To our knowledge, our technique is unique in that it only performs analysis on the original
program, rather than the self-composed program, the idea of self-composition is shown in
the way we rename the symbolic formula, not in the analysis stage.

In our previous work [8], we proposed Symbolic Quantitative Information Flow (SQIF), an
approach that uses Symbolic Execution to “measure” information flow leaks, i.e. quantitative
information flow.

6 Conclusion

We have presented an automated method for secure information flow analysis. We build
our work on the classical self-composition approach. However, instead of performing the
analysis on the self-composed program, we use SE on the original program. This is enabled by
reformulating self-composition into path-equivalence, a property for symbolic paths returned
by SE.

Acknowledgements. We thank Nikos Tzevelekos and the anonymous reviewers for con-
structive comments.

References
1 Gilles Barthe, Pedro R. D’Argenio, and Tamara Rezk. Secure information flow by self-

composition. In Proceedings of the 17th IEEE workshop on Computer Security Foundations,
CSFW ’04, pages 100–, Washington, DC, USA, 2004. IEEE Computer Society.

2 E. S. Cohen. Information transmission in sequential programs. In R. A. DeMillo, D. P.
Dobkin, A. K. Jones, and R. J. Lipton, editors, Foundations of Secure Computation, pages
297–335. Academic Press, 1978.

3 Ádám Darvas, Reiner Hähnle, and David Sands. A theorem proving approach to analysis of
secure information flow. In Proceedings of the Second international conference on Security
in Pervasive Computing, SPC’05, pages 193–209, Berlin, Heidelberg, 2005. Springer-Verlag.

4 Dorothy E. Denning and Peter J. Denning. Certification of programs for secure information
flow. Commun. ACM, 20(7):504–513, July 1977.

5 Joseph A. Goguen and José Meseguer. Security policies and security models. In IEEE
Symposium on Security and Privacy, pages 11–20, 1982.

6 James C. King. Symbolic execution and program testing. Commun. ACM, 19(7):385–394,
July 1976.

7 Dimiter Milushev, Wim Beck, and Dave Clarke. Noninterference via symbolic execution. In
Proceedings of the 14th joint IFIP WG 6.1 international conference and Proceedings of the
32nd IFIP WG 6.1 international conference on Formal Techniques for Distributed Systems,
FMOODS’12/FORTE’12, pages 152–168, Berlin, Heidelberg, 2012. Springer-Verlag.

8 Quoc-Sang Phan, Pasquale Malacaria, Oksana Tkachuk, and Corina S. Păsăreanu. Sym-
bolic quantitative information flow. SIGSOFT Softw. Eng. Notes, 37(6):1–5, November
2012.

9 Tachio Terauchi and Alex Aiken. Secure information flow as a safety problem. In Proceed-
ings of the 12th international conference on Static Analysis, SAS’05, pages 352–367, Berlin,
Heidelberg, 2005. Springer-Verlag.

10 Dennis Volpano, Cynthia Irvine, and Geoffrey Smith. A sound type system for secure flow
analysis. J. Comput. Secur., 4(2-3):167–187, January 1996.

	Secure information flow: from non-interference to self-composition
	Preliminaries
	Self-composition by Symbolic Execution
	Self-composition as path-equivalence
	Path-equivalence generation

	Case Studies
	Implicit flow
	No flow
	Both implicit and explicit flows

	Related Work
	Conclusion

