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Abstract

Connections between music artists or songs provide a context and lineage
for music and form the basis for recommendation, playlist generation, and
general navigation of the musical universe. We examine the structure of
the connections between music artists found on the web. It is shown that
different methods of finding associations between artists yeild different net-
work structures - the details of associations and how these associations are
discovered impact the global structure of the artist network.

This realization informs our associations framework - based on seman-
tic web technologies and centered around a small RDF/OWL ontology that
emphasizes the provenance and transparency of association statements. We
develop the MuSim Similarity Ontology and show how, combined with the
concepts of linked data, it can be used to create a distributed web-scale
ecosystem for music similarity.

The Similarity Ontology is evaluated against psychological models for
similarity and shown to be flexible enough to accommodate each model ex-
amined. Several applications are developed based on the visualization of
music artist network structures and the utilization of our associations frame-
work along with other music-related linked data.
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Chapter 1

Introduction

Disco is James Brown, hip-hop is James Brown, rap is James
Brown; you know what I’m saying? You hear all the rappers,
90% of their music is me.

–James Brown, American composer and entertainer, (1933-2006)

There’s a story in all music. Not just in the music, but in how it is connected
- the culture and context, the history of the music. The more we know about
these connections the better we can tell the stories about music. And it is
these stories that make music most human. In a sense, this thesis is about
making steps towards telling these stories to computers.

Increasingly we can find stories about music on the web - not just in the
writings of music bloggers and reviewers, but in the data that is scattered
about the web. Sometimes this music-related information is made salient
with structured or semi-structured data, and sometimes it is more obfus-
cated. The work of Raimond [2009] has enabled a distributed web-scale
information space for music-related data that provides explicit structure and
precise semantics. We build on this work by extending this modeling to en-
compass what is perhaps the most compelling type of information related to
music found on the web: information about connections - connections be-
tween music artists, connections between songs, connections between record
labels, etc. These connections expound the story of music by giving us a
history, a lineage, and a path to follow. And it is these connections that
provide a foundation for music recommendation and playlist generation. As
the title suggests, this work focuses on connections in music. Our goal is to
work towards a web-scale distributed framework for modeling and re-using
knowledge about musical associations. Note that throughout this work the
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terms “I” and “we” are used to refer to the work of the author as supported
by his advisors, University faculty, and colleagues.

1.1 Acid Brass

In 1997 British artist Jeremy Deller began a project based on a meandring
lager-fueled pub conversation. The idea was to have a traditional British
brass band perform some of the repetitive synth-driven acid house anthems
that had become a staple of early ’90s underground music. Deller’s musical
collaboration with the Faiery Brass Band became known as Acid Brass.1 As
a means of expounding the strange musical juxtaposition of the Acid Brass
project, Deller created a sort-of mind map drawing to which he applied the
grandiose titled A History of the World. This drawing is reproduced here in
figure 1.1.

Figure 1.1: Jeremy Deller’s “A History of the World” which is the basis for the
Acid Brass project

The work is essentially a labeled graph of associations. Concepts includ-
ing musical genre, music artists, geographical locations, electronic instru-
ments, emotional states, and even economic systems are bound together by
arrowed lines indicating some inter-concept association. Deller writes:

1for more information on Acid Brass see www.jeremydeller.org/ and http://www.
faireyband.com/acidbrass.html
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“[A History of the World ] stands as both the musical and
social justification for the project. It’s a personal interpretation
but I’d like to think that we all have similar maps somewhere in
our heads.”

Although Deller’s work makes extensive use of artistic license and some of
the connections in the drawing perhaps warrant additional explanation, it
shows how this simple yet powerful model - the graph model - allows us to
enumerate complex associations between seemingly diparate musical styles.
In our work on connections in music we make use of the graph model exten-
sively. The graph model - containing nodes connected by edges - provides a
flexible modeling framework that is easily comprehensible to both people and
computers. Deller alludes to “maps somewhere in our heads”. People often
find graph structures an intuitive means of developing and communicating
ideas, for example when creating a mind map diagram [Buzan and Buzan,
1996]. Furthermore, graph theory has been developing as a formal branch of
mathematics since Leonhard Euler showed the Seven Bridges of Königsberg
problem - in which a path crossing each bridge exactly once was desired - had
no solution [Euler, 1741]. Today, efficient data models allow graph structures
to be stored and manipulated by computers with ease [Angles and Gutierrez,
2008]. We leverage these powerful technologies to analyze music-related con-
nections and to develop a framework for modeling connections with precise
semantics.

1.2 Research Objectives

In this work, our research objectives are two-fold:

• Survey the types of music-related connections that can currently be
identified on the web and examine the structure of the resulting net-
works of associations.

• Work towards a solution for describing music-related connections uti-
lizing semantic web techonologies.

1.3 Requirements

Our end goal in this work is to develop a framework which embraces the
diversity and complexity inherent in musical associations while providing a
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computationally tractable means of leveraging these associations for music
informatics tasks. The task of surveying what types of music-related con-
nections can be discovered on the web is meant to inform the design of our
associations system. Even before this survey we can specify a set of require-
ments for our framework for associations:

• Heterogeneous - A wide variety of similarities and associations re-
lated to music can already be found on the web. Our framework must
be capable of expressing these connections and extensible enough to
accommodate new types of connections.

• Expressive - Similarity and associations are often complex and multi-
faceted. Any pair of entities potentially have an infinite number of
distinct associations between them. Our framework must accommo-
date the compound associations between entities and be capable of
expressing the details of these associations.

• Explicit - The meaning of our associations should be explicit or un-
derstandable to both human users and computers and have precise
semantics.

• Auditable - Some connections are grounded in indisputable facts while
other connections are grounded in opinion while still others are the
result of some algorithmic recommendation process. In our framework
we must be able know who made a given association and why.

• Distributed - Our framework is intended to be an extension of the
web and as such it must allow for a distributed information space that
joins multiple data sources hosted in multiple places.

• Queryable - We must be able to ask questions about associations in
our framework and compute answers in a reasonable amount of time.

1.4 Organization of this Work

In an effort to develop our web-scale framework for modeling musical associa-
tions in a distributed, extensible and explicit manner, this thesis is organized
as follows. In chapter 2 we review some of the formalities of the graph model
and some of the complex network metrics used in this work. In chapter 3
we examine a variety of music artist networks on the web. Focusing on this
one specific type of musical association - the artist-to-artist connection - we
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get a sense of the diversity in structure and function of musical associations
that can already be found in semi-structured data on the web. In chapter
4 we review semantic web technologies and how they have been applied to
the domain of music. We leverage the power of these semantic web technolo-
gies in chapter 5 in developing an association modeling framework centered
around the Similarity Ontology. In chapter 6 we evaluate our association
modeling framework by applying it to various cognitive models of similarity
and to the concrete task of modeling a wide variety of music artist networks.
In chapter 7 we describe several applications developed as part of this work
and in chapter 8 we provide some conclusions and directions for future work.

1.5 Contributions of this Work

The contributions of the present work can be summarized as follows:

• A formal analysis of various types of structured music artist networks
available on the web (see chapter 3)

• A framework for describing multifaceted similarity and association in-
formation (see chapter 5)

• An implementation of this association framework as a web ontology in
the OWL Web Ontology Language published on the semantic web as
the MuSim Similarity Ontology (see chapter 5)

• A method for evaluating a framework for associations based on models
of similarity judgment from cognitive psychology (see chapter 6)

• A novel method for visualizing large labeled networks called K-Pie vi-
sualization (see section 7.2)

1.6 Published Works

• Jacobson, K, Raimond, Y, Fazekas, G, Smethurst, M. 2009. Share and
Share alike, You can say anything about music on the web of data.
Tutorial for the 10th Conference of the International Society of Music
Information Retrieval.

• Jacobson, K, Sandler M. 2009. Interacting With Linked Data About
Music. International Conference on Web Science.
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Chapter 2

Network Analysis and
Popularity Metrics

Networks are by their very nature the fabric of most complex sys-
tems, and nodes and links deeply infuse all strategies aimed at
approaching our interlocked universe.

– Albert-László Barabási, Linked, 2003

As discussed in chapter 1, the graph model is of fundamental importance to
our work. A graph is an abstract representation of a set of objects where
some pairs of objects are connected by links. A vast variety of constructs
can be modeled as graphs. For example, the Königsberg Bridge Problem
mentioned in section 1.1 can be modeled as a graph where each landmass is
a node and each bridge is link between nodes. Similarly, the History of the
World painting can be represented as a graph where each concept is a node
with links drawn between concepts. We can also consider the web a graph,
where pages are nodes and links are, well, links between nodes.

Often the term graph and the term network are used interchangeably. In
this work we use graph to refer to the abstract model and network to refer to
some concrete instantiation of the graph model with non-trivial topological
features. In this chapter we will discuss various methods of measuring net-
work topology that have been developed in a body of work commonly referred
to as complex network theory [Costa et al., 2007; Newman, 2003b; Barabási
and Crandall, 2003; Watts and Strogatz, 1998]. Complex network theory
deals with the structure of relationships in complex systems. Using the tools
of graph theory and statistical mechanics, physicists have developed models
and metrics for describing a diverse set of real-world networks - including
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social networks, academic citation networks, biological protein networks, the
Internet and the web. Many of these diverse networks exhibit several uni-
fying characteristics such as small worldness, scale-free degree distributions,
and community structure [Costa et al., 2007; Newman, 2003b; Albert and
Barabási, 2002]. Some network properties and metrics we will apply to our
analysis are described in section 2.1.

We will also discuss notions of artist popularity and the long tail model.
These analysis techniques are described in section 2.2.

2.1 Network Properties

A given network G is described by a set of nodes or vertices V connected
by a set of edges or links E. Each edge is defined by the pair of nodes it
connects (i, j). The network can also be defined in terms of the adjacency
matrix G ≡ A where the elements of A are

Aij =

{
1 if nodes i and j are connected,
0 otherwise.

(2.1)

Also, we can modify the adjacency matrix to create a weighted graph - where
each edge has a weight associated with it usually corresponding to inter-
node similarity - that is a higher weight value indicates a greater level of
similarity between the nodes. To represent a weighted graph we simply
replace 1 values in the matrix with some positive real number corresponding
to the appropriate weight value.

If the edges imply directionality, (i, j) 6= (j, i), the network is a directed
network. Otherwise, it is an undirected network and the adjacency matrix is
symmetric about the main diagonal.

The number of edges incident to the a node i is the degree ki. In a directed
network there will be an indegree kini and an outdegree kouti corresponding
to the number of edges pointing into the node and away from the node
respectively. In an undirected network we can simply refer to the overall
degree of a node i as ki. Degree can have important implications in a variety
of contexts. Returning to the Königsberg Bridge Problem, Euler showed
that because each node (landmass) in the network had an odd degree (an
odd number of bridges attached), a path crossing each bridge exactly once
was impossible. For such a path to exist (called a Eulerian path) the network
must contain only nodes with even degrees or exactly two nodes with odd
degrees [Euler, 1741].
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2.1.1 Degree Distribution

The degree distribution P (k) is the proportion of nodes that have a degree
k. The shape of the degree distribution is an important metric for classi-
fying a network - “scale-free networks” have a power-law distribution while
“random networks” have a Poisson distribution [Barabási and Albert, 1999].
That is the fraction of nodes P (k) in the network having degree k follows
the relationship P (k) ∼ k−α where α is a constant whose value is typically
(but not strictly) in the range of 2 < α < 3 [Newman, 2003b]. The scale-
free degree distribution is a property common to many real-world networks.
Conceptually, a scale-free distribution indicates the presence of a few very-
popular hubs that tend to attract more links as the network evolves. These
hubs are created because of cumulative advantage or preferential attachment
- new nodes in the network have a tendency to form edges with nodes that
already have a high degree. A scale-free distribution is most easily identi-
fied by plotting the cumulative degree distribution Pc(k) (the proportion of
nodes that have ki >= k) on a log-log scale. A perfect scale-free distribution
will appear as a straight line in the log-log plot [Barabási and Albert, 1999].
Scale-free distributions have implications for search [Adamic et al., 2001] and
error and attack tolerance [Albert et al., 2000]. Although these implications
are important we are more concerned with the intuitions we can draw from
the presence (or absence) of hubs.

Alternative degree distributions also appear in many networks. An ex-
ponential distribution where P (k) ∼ e−k/κ is also commonly reported [Cano
et al., 2005a; Costa et al., 2007; Stumpf et al., 2005]. Such a distribution
follows a straight line on a log-normal scale and indicates high-degree hubs
are not present in the network. Exponential distributions can occur naturally
or they can be artifacts of randomly sampled sub-networks [Stumpf et al.,
2005] or information filtering [Mossa et al., 2002].

2.1.2 Average Shortest Path

Two nodes i and j are connected if a path exists between them following the
edges in the network. The path from i to j may not be unique. The geodesic
path dij is the shortest path distance from i to j in number of edges traversed.
For the entire network, the average shortest path or mean geodesic distance
is 〈d〉.

〈d〉 =
1

1
2
n(n+ 1)

∑
i≥j

dij (2.2)
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where dij is the geodesic distance from node i to node j and n is the to-
tal number of nodes in the network. In a “small-world network” the mean
geodesic distance is small relative to the number of nodes in the network
[Watts and Strogatz, 1998]. The largest geodesic distance in a network is
known as the diameter or dmax.

2.1.3 Connected Components

It is not uncommon to find a network where nodes or groups of nodes exist
disconnected from the rest of the network. Not all nodes are reachable by
traversing the edges of the network. We refer to each disconnected island
of nodes as a connected component of the network. It is common to find
one component that is much larger (includes more nodes) than the other
components of the network. This largest component is referred to as the
giant connected component.

2.1.4 Network Models

Many attempts have been made to model how a complex network forms. The
first formal model was the random graph model [Erdős and Rényi, 1959]. In
this model edges between nodes are formed uniformly at random. This repli-
cates the small-world phenomenon found in many real-world networks but
not the scale-free degree distribution. Models that involve preferential at-
tachment - where nodes “prefer” to form edges with other nodes that already
have many edges - are able to replicate both the small-world and scale-free
phenomenon found in real-world networks [Barabási and Crandall, 2003]. It
is a common practice to compare a real-world network to an equivalent ran-
dom network - one with the same number of nodes and edges. For example to
determine small-worldness as the described in section 2.1.2, the values of 〈d〉
and dmax for a real-world network are often compared to the same values for
an equivalent algorithmically-generated random network. If the values are in
the same approximate range, the real-world network is generally considered
small-world.

2.1.5 Transitivity

The transitivity or clustering coefficient estimates the probability that two
neighboring nodes of a given node are neighbors themselves. In the terms
of social networks, the friend of your friend is also likely to be your friend.
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In terms of network topology, transitivity means a heightened number of
triangles exist - sets of three nodes that are each connected to each other.
For a given undirected unweighted network the transitivity is defined as

T =
3N4
N3

(2.3)

where N4 is the number of triangles in the network and N3 is the number
of connected triples. A connected triple is a set of three nodes where each
node can be reached from every other node. The clustering coefficient is
only defined for an undirected network because the definition of a triangle
becomes ambiguous for the directed case Newman [2003b].

2.1.6 Betweenness

Betweenness is a measure of the number of geodesic paths that run through
an edge or a node in a network. It serves as an alternative measure of a node’s
importance in the network structure. Betweenness can also be calculated for
edges and edge betweenness is the foundation of many community detection
algorithms [Girvan and Newman, 2001]. Although betweenness is more ex-
pensive to calculate, it provides a more global measure of importance where
node degree only accounts for local network information [Freeman, 1977].
Betweenness is defined as:

Bu =
∑
ij

σ(i, u, j)

σ(i, j)
(2.4)

where σ(i, u, j) is the number of shortest paths between nodes i and j that
pass through node or edge u, and σ(i, j) is the total number of shortest
paths between i and j. An efficient implmentation can be used to calculate
betweenness in O(nm) time [Brandes, 2001].

2.1.7 Assortativity

Assortativity or homophilly relates to the tendency of nodes in a network to
form connections with other nodes that share similar attributes. If a network
exhibits assortative mixing, nodes tend to form links with nodes of the same
type, for example, artists might tend to form friendships with other artists of
the same genre. We can calculate an assortativity coefficient for an arbitrary
attribute following [Newman, 2003a].
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Let E be an N ×N matrix with elements Eγiγj. For labels γ1, γ2, . . . , γN ,
let Eγiγj be the number of edges in a network that connect vertices of genre
γi and γj. The normalized mixing matrix is defined as

e =
E

‖E‖
(2.5)

where ‖x‖ means the sum of all elements in the matrix x. The elements eγiγj
measure the fraction of edges that fall between nodes of label γi and γj. The
assortativity coefficient r is then defined as

r =
Tr(e)− ‖e2‖

1− ‖e2‖
(2.6)

where Tr(x) is the trace (sum along main diagnol) of the square matrix x
and x2 is the matrix resulting from the squaring of all elements in x.

The assortativity coefficient will be nearly 0 in a randomly mixed net-
work, 1 in a perfectly assortative network, and negative for a dissassortative
network where nodes more often connect with nodes of different types.

A similar but distinct form of assortative mixing relates to scalar proper-
ties of the nodes in a network. For example, in a social network, it is common
to see assortative mixing with respect to age - older people tend to befriend
other older people while younger people tend to befriend other younger peo-
ple [Newman, 2003a]. We can calculate an assortativity coefficient for a scalar
value similar to the manner in which we calculated a coefficient for labels.
We define a quantity exy which is the faction of all edges in the network that
join together vertices with values x and y for the scalar of interest. We will
assume discrete values for x and y making exy a matrix, but the continuous
case can also be accommodated. As before exy satisfies the sum rules∑

xy

exy = 1,
∑
y

exy = ax,
∑
x

exy = by, (2.7)

where ax and by are the fraction of edges that start and end at vertices with
values x and y respectively. For an undirected graph where ax = bx the as-
sortative mixing coefficient is then given by the standard Pearson correlation
coefficient:

r =

∑
xy xy(exy − axby)

σaσb
(2.8)

where σa and σb are the standard deviations of the distributions ax and
by respectively. Again, the value of r lies in the range of −1 ≥ r ≥ 1,
with r = 1 indicating perfect assortativity and r = −1 indicating perfect
disassortativity.
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Assortativity is often discussed with respect to degree. We will denote
assortativity with respect to degree as rk. It has been shown that in many
social networks, nodes with higher degree values tend to form connections
with other high-degree nodes or, to use more colloquial terms, popular peo-
ple tend to befriend other popular people and conversely less-popular people
tend to befriend other less-popular people [Newman and Park, 2003; New-
man, 2003a]. Some music recommendation networks have also been found to
exhibit assortativity with respect to degree and it has been shown this has
dramatic effects on the accessibility of “long tail” artists in the recommen-
dation network [Celma, 2008]. We will discuss these findings in more detail
in section 3.3.2.

It is also important to know the expected statistical error on the value
of r so that we can evaluate the significance of our results. Newman [2003a]
applies the jackknife method to calculate the standard deviation σr. Regard-
ing each of the m edges in a network as an independent measurement of the
contributions to the elements of the matrix e, the standard deviation for r is
given by

σr =

√√√√ m∑
i=1

(ri − r)2 (2.9)

where ri is the value for r when the ith edge is removed. We will use this mea-
sure of standard deviation to show the statistical significance of assortativity
calculations in chapter 3. We will call an assortativity value statistically sig-
nificant if it is at least twice the standard deviation away from zero (recall
zero is the expected assortativity value for a randomly mixed network).

We will use assortativity coefficients to relate artist node attributes to
the network structures we find.

2.2 Popularity Analysis

Popularity is a nebulous concept that can be defined in a number of dif-
ferent ways. In our analysis of music artist networks we have a number of
different metrics for popularity but the most ubiquitous metric available is
that of play counts - how many times has a given music artist’s tracks been
played. It has been shown that play counts from different sources pertaining
to the same artist can be highly inconsistent [Celma, 2008]. We attempt
to side-step this issue by (1) comparing popularity distributions to network
structure rather than other popularity distributions and (2) using alternative
popularity metrics such as profile views, downloads, or friend counts as well.
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2.2.1 Long Tail Analysis

We will apply some analysis related to the Long Tail model of popularity.
The concept of the Long Tail was popularized by Anderson and Andersson
[2006] where it is argued that products in low demand or that have a low sales
volume can collectively make up a market share that rivals or exceeds the
relatively few current bestsellers. A more rigorous mathematical definition
of the model is given by Kilkki [2007]. Kilkki purposes a formula to fit long
tail distributions of the form

F (x) =
β

(N50

x
)α + 1

(2.10)

Where F (x) is the share of total volume covered by objects up to rank x,
N50 is the number of objects that cover half of the entire volume, α is a factor
that determines the form of the function, and β is the total volume. We make
use of this model when considering music artist networks. In particular we
repeat some of the analysis of the Last.fm music artist similarity network
presented by Celma [2008] across several additional music artist networks.
In this analysis the artist nodes are divided into three sections - the head,
mid, and tail - using the following boundary definitions:

Nhead/mid = N
2/3
50 , Nmid/tail = N

4/3
50 (2.11)

We will refer to this grouping into head, mid, or tail categories as the
long tail location. After applying a long tail location label to each node in
the network, it is possible to use these labels for an assortativity coefficient
calculation using equation (2.6). This calculation gives us a sense for how
much mobility exists between the various popularity tiers. A value near
zero indicates there are many connections between popular and less-popular
artists. Celma argues quite compellingly that this has significant ramifica-
tions in terms of recommendation - a system with a high rlt coefficient will
have a bias towards recommending popular artists and in effect neglect the
long tail. The results of Celma’s Last.fm analysis are discussed in more detail
in section 3.3.2.

2.2.2 Popularity Correlation Coefficient

In addition to using the Pearson correlation coefficient as a basis for scalar
assortativity measures we will use at as the basis for another measure we will
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refer to as the popularity correlation coefficient. For some networks, we have
scalar values that indicate some notion of an artist’s popularity (e.g. the
number of times a given artist’s tracks have been played). It is interesting
to see if these values are correlated with the artist’s degree in the network.
We will refer to the Pearson correlation coefficient between node degree and
some popularity metric as the popularity correlation coefficient ρ given by:

ρ =

∑n
i (ki − 〈k〉)(pi − 〈p〉)√∑n

i (ki − 〈k〉)2
√∑n

i (pi − 〈p〉)2
(2.12)

where p is some popularity metric.

In combination with the assortativity with respect to the popularity met-
ric, the popularity correlation coefficient gives us some notion of how the
network structure relates to popularity. Although Pearson correlation coef-
ficients are traditionally represented by r, we identify the popularity corre-
lation coefficient at ρ to avoid confusion with the assortativity coefficient.
Note the distinction between the assortativity coefficient with respect to a
popularity metric rpopularity and ρ might become more clear when you con-
sider that rpopularity is the Pearson correlation coefficient calculated across
two one-dimensional arrays of popularity metrics that have a length exactly
equal to the number of edges in the network and ρ is simply the Pearson cor-
relation coefficient calculated between values of degree and some popularity
metric (two one-dimensional arrays that have a length equal to the number
of nodes).

2.3 Summary of Network Metrics

We have reviewed a variety of tools for measuring the structure of complex
networks. The various network metrics and notations we will use in this work
are summarized in table 2.1 for the convenience of the reader.

k degree rx assortativity with respect to x
n number of nodes σr error in the assortativity measure
m number of edges ρ popularity correlation coefficient
〈d〉 average shortest path length B betweenness centrality
dmax the diameter or largest geodesic

distance
T transitivity clustering coefficient

Table 2.1: A summary of the notation used for describing network properties.
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In chapter 3 we will apply some of these metrics to analyze a series of
music artist networks found on the web.
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Chapter 3

Music Artist Networks on the
Web

The difficulty seems to be, not so much that we publish unduly in
view of the extent and variety of present day interests, but rather
that publication has been extended far beyond our present ability
to make real use of the record.

–Vannevar Bush, As We May Think, 1945

In this chapter we focus on a particular type of music-related entity found
on the web - the music artist. Of course other music-related entities are
described on the web - for example music tracks, record labels, albums, in-
struments, etc. - but we choose to focus on artists as they are the most
central element to musical networks. Also, data about music artists on the
web tends to be more readily available and easier to disambiguate than data
about individual songs. We examine what sort of structured data about
music artists and their relationships can be found on the web and we use
the techniques detailed in chapter 2 to formalize our analysis. We discuss
networks that were explicitly created by music experts for publication on
the web including the Classical Music Navigator in section 3.4 and the All
Music Guide in section 3.3.1. We sift through artist networks that are the
result of crowd-sourcing massive amounts of user generated content such as
the Discogs artist-release network in section 3.5. We examine online social
networks of artists such as the MySpace artist network in section 3.6 and the
Soundcloud artist network in section 3.7. Finally we examine networks that
are the result of music informatics processing such as the Echo Nest artist
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recommendation network in section 3.8 and the Last.fm artist recommenda-
tion network in section 3.3.2. But first we provide some history and context
in sections 3.1 and 3.2.

3.1 Music on the Web

Music has been a part of the web almost since the web’s inception. One
of the earliest music-centric websites to gain real traction was the Internet
Underground Music Archive or IUMA 1 which was started by Rob Lord, Jeff
Patterson, and Jon Luini from the University of California, Santa Cruz in
1993 [Maurer, 1995]. Originally existing in the form of a Usenet newsgroup,
IUMA quickly evolved into a website as its creators recognized the emerging
power of the web. IUMA’s goal was to help independent artists use the Inter-
net and the web to connect with fans directly - circumventing the traditional
record labels and giving unknown music artists increased exposure.

Perhaps more significantly, IUMA envisioned and created a new digital
music distribution chain that involved no physical product - the artist’s music
and album art work were distributed directly to the consumer via the Internet
as digital files. Artists were given an intuitive interface to create and maintain
their own webpages and listeners were able comment on the artists’ releases
in a manner strikingly similar to that of today’s most successful “Web 2.0”
online music promotion websites [Cox, 1998]. IUMA was acquired by eMusic
in June of 1999 and continued to operate for sometime. Unfortunately budget
cuts and backlash from the entrenched recording industry forced IUMA to
scale back its services and eventually close completely in 2006.

IUMA’s webpages are no longer available, but its legacy lives on. In
addition to pioneering the modern digital music distribution model, IUMA
showed how the emerging technology of the web could be used to foster con-
nections between music artists and music fans. A myriad of new music-centric
websites have emerged since IUMA and the amount of music-related data on
the web has exploded. Increasingly this data is being actively collected and
leveraged by websites like Last.fm2 and The Echo Nest3 to create improved
music listening experiences and to generate even more music-related data.

1formerly available at http://www.iuma.com archived content is available at http:
//web.archive.org/web/19961228135955/http://www2.iuma.com/

2http://last.fm
3http://the.echonest.com/
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3.2 An Abridged History of Music Informat-

ics

As the amount of content on the web exploded, improved methods for nav-
igating that content became a necessity. The search engine was born and
began to evolve - first using methods like inverse-document-frequency term-
frequency indexing (IDF-TF) [Salton and McGill, 1983] and later incorpo-
rating increasingly advanced methods like Google’s now famous PageRank
algorithm which uses a network-based approach to ranking documents as-
suming the more relevant pages tend to be linked-to more often [Brin and
Page, 1998]. Modern search engines are an advanced mix of these and other
proprietary methods but are still based on the idea of crawling and indexing
the web.

But these search engines focus on text. The field of music information
retrieval (MIR) was born as it became evident that navigating music con-
tent was a significantly different information retrieval task with some unique
challenges. The most obvious distinction being that music is manifested on
the web as not just text, but as digitally-encoded audio signals or symbolic
music representations - as multimedia. Researchers began to develop metrics
for content-based music similarity. Using digital signal processing methods
adapted from the rich history of speech recognition research, methods for cal-
culating audio-based similarity enjoyed some success and became the focus
of music information retrieval research [Logan, 2000; Tzanetakis and Cook,
2002a; Pampalk, 2006]. In short, the frame-based spectral features of an au-
dio signal are somehow clustered to create a song-level representation. Then
some distance function is applied to these song-level representations to gen-
erate a similarity score. We will discuss some audio-based similarity methods
in more detail in section 3.6.4.

In parallel - in fact somewhat prior to the rise of MIR - the science
of recommendation began to evolve. Recommender systems grew not out
of interest in music explicitly but out of the desire to improve the online
retail experience. As retailers moved their wares to web-based stores the
limitations of the brick-and-mortar physical store no longer applied. As
Chris Anderson describes in his popular book The Long Tail, this meant
online retailers could stock a nearly infinite variety of goods - increasing
the availability of specialty and niche products [Anderson and Andersson,
2006]. Although in retrospect, Anderson’s prediction regarding the demise
of mainstream hits seems to run contrary to some more recently observed
trends [Elberse, 2008], he was correct in many respects. For one, shoppers
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in the web world have become spoiled for choice and now need assistance
finding products they might want to purchase. Of course this emerging trend
was evident long before Anderson published his book and several practical
solutions had already been developed. The collaborative filtering approach
to recommendation was first suggested in the mid 1990s [Resnick et al., 1994]
and continues to be the basis of many recommender systems to this day.

The intuition behind the collaborative filtering approach is that if a given
user X expresses interest in items a,b, and c; and a second user Y expresses
interest in items a and b; then user Y might also have and interest in item
c. A Pearson correlation coefficient or some other calculation can be used
to apply this intuition to large amounts of data - perhaps user ratings or
customer purchases - to create a recommendation system.

As MIR researchers primarily focused on signals and recommender sys-
tems engineers focused on ratings data, some researchers began to recognize
there is more to music. The cultural context of a piece of music can be
extremely important and the nature of this context can be difficult if not im-
possible to tease out of signals or ratings. Increasingly people began to write
about music and publish these writings on the web. The rise of user-generated
content on the web meant there was an increasing amount of information
about an increasing number of music-related topics. Researchers developed
new approaches to music information retrieval by mining the text of these
music-related webpages and blogs for key concepts and even matching these
concepts with audio signal features [Whitman and Lawrence, 2002; Whitman
et al., 2003]. With this web mining approach to music informatics we can, in
a sense, determine similar music artists by algorithmically “reading” about
music artists on the web - an approach that, arguably, encapsulates some
of the cultural context and musical meaning not present in the audio signal
itself.

These varied approaches to music informatics all generate a similar result
on the web - some type of network - whether a network of songs connected
by audio-based similarity measures or a network or listeners connected by
collaborative filtering or a network of music artists connected by web docu-
ment mining. It is through this lens - the lens of complex network analysis -
that we will begin to study music on the web as it exists today.

3.3 Previous Artist Network Analysis

We will begin by reviewing previous analyses of music artist networks found
on the web. In section 3.3.1 we discuss previous work related to the artist
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networks associated with the Allmusic Guide. In section 3.3.2 we discuss
previous work related to the last.fm artist recommendation network.

3.3.1 Allmusic Guide Artist Network

The All Music Guide website (AMG)4 provides information about directed
influence relationships. AMG focuses on contemporary popular music but
also contains information about classical composers. There is a wealth of
additional data in the AMG website including relational data like “similar
artists” and “member of” relations connecting artists with other artists as
well as data about albums, tracks, genres, and styles.

The AMG website is curated by experts - professional music critics paid to
collect and edit information. AMG has been a part of the Internet for a long
time - in fact predating the web as a Gopher site started in 1991 by popular-
culture archivist Michael Erlewine. The AMG site is actively maintained and
updated to this day. AMG licenses their proprietary database to partners
for a fee, funding the maintenance of the site and paying their expert content
creators. This data licensing scheme makes the AMG data less attractive in
the context of this thesis. Such licensing schemes prohibit us from applying
our own modeling to the data and re-publishing or re-purposing the data
(at least without paying a fee). Therefore we present no new analysis of the
AMG networks here.

Fortunately, several formal analyses of various views of the AMG artist
network have already been performed [Park et al., 2006; Cano and Koppen-
berger, 2004; Cano et al., 2005a; Giaquinto et al., 2007; Celma, 2008]. All of
these analyses deal with the artist similarity network and some exclusively
so [Cano and Koppenberger, 2004; Cano et al., 2005a; Celma, 2008]. In the
artist similarity network each node represents a music artist or music group
and each edge represents a similarity relationship as prescribed by the AMG
editors. Because the AMG data also includes additional relational informa-
tion different networks can be constructed where, instead of using similarity
as the edges, influence or collaboration relationships can be used to construct
edges between artist nodes.

In [Giaquinto et al., 2007] a sub-sample of the AMG artist network is
examined. This network is sampled by selecting only artists that are labeled
as “contemporary jazz”. The authors examine the directed influence network
and find that it is sparsely connected and contains many fractured compo-
nents. This is contrary to the Classical Music Navigator influence network

4available at http://allmusic.com/
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which is made up of one connected component as we will discuss in section
3.4. This contradiction demonstrates the subjectivity of such relational data
- the structure of any “musical influence” network is highly dependent on
the definition of influence used to construct the network and the breadth
of artist coverage. For a moment, let us assume infinite breadth of artist
coverage - we have an army of tireless music critics creating our influence
network using their expert knowledge and they’ve managed to cover every
known music artist that ever was or ever will be. Depending on the criteria
used to determine an influence relationship, we might find that all music
artists across all musical styles, periods, and genres are somehow part of a
giant connected network. Or with more conservative criteria for influence
we might still find a fractured network with many smaller components. In
reality we will never have infinite coverage and incomplete coverage will often
result in a fractured network with many disconnected components. However,
the tendency of these networks to contain hubs favors the existence of a giant
connected component.

An exhaustive crawl of the artist similarity network reveals that it too is
fractured but to a lesser extent. In [Park et al., 2006] the authors observe
that the size of the giant connected component of the AMG artist similarity
network is 94% of the entire network in terms of nodes. This fits with our in-
tuition that as coverage increases, the proportional size of the giant connected
component increases. The AMG similarity network exhibits an exponential
decay in the cumulative degree distribution instead of conforming to the more
common “scale-free” power-law distribution [Cano et al., 2005a]. However,
it is possible that the expert editors are actually truncating what is actually
a scale-free distribution by filtering links between normal artists and hub
artists to achieve the desired web page characteristics. The truncating of
scale-free distributions into exponential decays has been described by Mossa
et al. [2002].

Park et al. [2006] also provide an analysis of the collaboration network.
This is an undirected network where music artists are considered to be con-
nected if they have worked together. The collaboration network is similar in
many respects to the similarity network - it exhibits a high level of transitivity
(T = 0.182) and there exists a giant connected component comprising 89%
of the network in terms of nodes. However the collaboration network does
exhibit a power-law degree distribution following the more common scale-free
structure. In practical terms this means that there are music artists that act
as hubs and have collaborated with many other artists - orders of magnitude
more than the average. This conforms to the structures we find when inves-
tigating the Discogs artist-release network (very similar to a collaboration
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network) in section 3.5. Using both node degree and betweenness centrality
as measures in the AMG collaboration network, the Park et al. [2006] show
that the most collaborative artists tend to be rhythm section players such as
Paulinho Da Costa and Jim Keltner [Park et al., 2006].

In the AMG website we find structured data about music artists that
allows us to build an artist network with at least three distinct edge types
- “similar”, “influence”, and “member of” relations. The previous work we
have discussed here shows how utilizing different edge types for artist network
construction yields different network structures.

3.3.2 Last.fm Artist Network

Last.fm5 is a website that allows users to record their listening habits us-
ing a light-weight client application. Users can also apply free-text tags to
artists and tracks using a web interface. A proprietary mix of collaborative
filtering over listening habits data and tag aggregation are used to create
artist recommendations. These artist recommendations give rise to a music
artist network where the nodes are music artists and the edges denote an
inter-artist recommendation or similarity.

Several studies have examined data associated with Last.fm. Jäschke
et al. [2007] focus on the tagging features and discusses tag recommendation
in folksonomies. Using data about listening habits from Last.fm Lambiotte
and Ausloos [2005] treats listeners and music artists as nodes in a bipartite
graph and develops a percolation-based approach to community detection.
Teitelbaum et al. [2008] examines the Last.fm artist similarity network look-
ing for community structures and applying a method for role detection.

However, here we will focus on the analysis of the Last.fm artist similarity
network presented by Celma [2008]. Some of the network statistics reported
by Celma are presented in table 3.1.

The average geodesic distance is small relative to the size of the network
(〈d〉 = 5.64) as is the diameter (dmax = 10) indicating the last.fm artist
recommendation network is a small-world network. We see a high level of
clustering significantly greater than that of an equivalent random network
and assortative mixing with respect to genre. Celma [2008] also reports a
power-law degree distribution in the last.fm artist recommendation network
with α = 2.31.

Interestingly, a very high assortativity coefficient with respect to degree

5see http://last.fm/
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n m 〈d〉 dmax T (Trandom) rk rγ
122,801 1,735,179 5.64 10 0.230(1× 10−4) 0.920 0.343

Table 3.1: Network statistics from the Last.fm artist network from Celma [2008]
including the number of nodes n, the number of edges m, size of the
giant component nS0 , average shortest path length 〈d〉, diameter dmax,
clustering coefficient for the undirected view of the network T and
clustering coefficient for an equivalent random graph, the assortativity
with respect to degree rk, and the assortativity wrt to genre rγ

(rk = 0.92) is reported. This means that in the Last.fm artist recommenda-
tion network artists with high degree values (artists that are recommended
often) tend to connect with other high degree artists. Conversely low-degree
artists tend to connect with other low-degree artists. Celma suggested this
has implications for the artist recommendation process. Using an artist’s
play counts as a measure of popularity, artists in the Last.fm network sam-
ple were classified as either part of the head, mid, or tail of the popularity
curve. Then an assortativity calculation was performed with respect to seg-
ment of the popularity curve (as we described in section 2.2.1. It was found
that zero links existed from the head directly into the tail. Therefore the
last.fm recommeder system generally fails to present unknown or new “long
tail” artists to the user. Celma reports that the Last.fm artist network has
an assortativity with respect to long tail location of rlt = 0.397.

3.4 The Classical Music Navigator

Let us begin discussing our original analysis of music artists on the web with
one of the earlier collections of music-related structured data to appear on
the web. The Classical Music Navigator6 (CMN) is a website that maps
the influence connections between a collection of classical music composers.
The CMN website was conceived by Charles H. Smith, a professor of library
studies at Western Kentucky University, in 1993 as a resource for discovering
classical composers and their works. The intuition was, if a listener enjoyed
a particular composer x she might also enjoy composers that influenced x or
that were influenced by x.

With the help of his colleagues, Smith created a directed network of clas-
sical composers where each node represents a composer and each edge rep-

6available at http://people.wku.edu/charles.smith/music/index2.htm
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resents a directed relationship of influence. The directed network is encoded
as a series of static HTML pages and published on the web. According to
Smith the network was constructed using purely objective criteria including:

• number of available recordings of the composers’ music as listed in sev-
eral standard music recordings catalogs (Schwann, Gramophone, etc.);

• number of items on and by the composers held by participating insti-
tutions in the OCLC “WorldCat” database (the combined holdings of
over 20,000 libraries);

• overall size/length of entries on the composers in about a dozen stan-
dard reference works

However, this brief description of the process seems to be the limit of the
transparency of the network construction process Smith [1993]. The original
network contains 444 composers but after removing entries encoded with
problematically ambiguous HTML we are left with 426 composers for our
network analysis. The network statistics derived from our original analysis
of the Classical Music Navigator composer network are summarized in table
3.2.

n m 〈d〉 dmax T (Trandom) rk(σr)
426 1780 3.39 (3.06) 10 (6) 0.144 (0.019) −0.161(5.29× 10−3)

Table 3.2: Table of network statistics for the Classical Music Navigator composer
network including the number of nodes n, the number of edges m,
size of the giant component nS0 , average shortest path 〈d〉, diameter
dmax, clustering coefficient for the undirected view of the network T
and clustering coefficient for an equivalent random graph, and the
assortativity with respect to degree rk.

This network is comprised of one large connected component - probably
an artifact of the network construction methodology. Perhaps Smith et al.
only included composers for which they could make an influence connection
to their existing collection of composers. Both the average geodesic distance
〈d〉 and the maximum geodesic distance dmax are slightly larger than that of
an equivalent random network but still small enough to consider indicative of
a small-world network. The clustering coefficient T is an order of magnitude
higher than that of a random network. This coupled with the relatively large
diameter of the network suggests a structure with clearly defined communi-
ties, however explicit community structure analysis is left to future work. We
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also find the network is slightly dissassortative with respect to degree with
rk having a negative value. This means composers have a some tendency
towards forming influence connections with other composers that have a dif-
ferent degree value. The corollary to this finding is that influential composers
do not have a tendency to influence each other.

We can also examine the network in terms of degree values. In table 3.3
we list the composers with the highest degree values in terms of overall degree
k, in degree kin, and out degree kout. Since the edges in the CMN network
correspond to an “influenced by” relation where the source is influenced by
the target, we can infer that the most influential composers have the highest
in-degree values of kin. Not surprisingly the list of composers with the largest
values of kin as shown in table 3.3 roughly corresponds to the list of most
influential composers generated by Smith [1993].

k artist kin artist kout artist
83 Debussy, Achille-Claude 68 Wagner, Richard 18 Ravel, Maurice
82 Wagner, Richard 66 Debussy, Achille-Claude 17 Debussy, Achille-Claude
79 Stravinsky, Igor 66 Stravinsky, Igor 14 Wagner, Richard
70 Bach, Johann Sebastian 58 Bach, Johann Sebastian 14 Liszt, Franz
61 Mozart, Wolfgang Amadeus 48 Mozart, Wolfgang Amadeus 13 Mozart, Wolfgang Amadeus
55 Liszt, Franz 44 Beethoven, Ludwig van 13 Stravinsky, Igor
55 Beethoven, Ludwig van 42 Schoenberg, Arnold 13 Britten, Benjamin
54 Schoenberg, Arnold 41 Liszt, Franz 12 Reger, Max
48 Ravel, Maurice 32 Schumann, Robert Alexander 12 Ligeti, György
42 Brahms, Johannes 32 Chopin, Frédéric 12 Bach, Johann Sebastian

Table 3.3: Highest degree nodes for the CMN network by overall degree k, out
degree kin, and in degree kout

We can also quantify a composer’s importance in the network with the
betweenness measure as described in section 2.1.6. Recall that a node with
a higher betweenness value has a higher number of geodesic paths that pass
through it. A listing of the composers with the highest betweenness values is
given in table 3.4: We see that many of the same composers with the highest
kin values also appear in our list of composers with the highest betweenness
values. Given that Wagner has the highest value for kin and Bach has the
highest betweenness, we could say that Wagner has the highest level of direct
influence but Bach is more important in the propagation of influence - at least
according to the structure of the CMN network. We leave it to the musicology
community to judge the validity of this statement.

Finally, we examine the degree distributions for the CMN network. The
cumulative degree distribution for the CMN network is shown in figure 3.8.
A log-normal scale is used to plot the distribution of kin which most closely
approximates an exponential distribution while a log-log scale is used to show
the approximation of a power-law distribution for nominal values of kout.
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B artist
9540.07 Bach, Johann Sebastian
5315.73 Stravinsky, Igor
5179.48 Debussy, Achille-Claude
4978.14 Mozart, Wolfgang Amadeus
3986.95 Beethoven, Ludwig van
3686.27 Wagner, Richard
3617.96 Schoenberg, Arnold
2903.47 Handel, George Frideric
2685.47 Sweelinck, Jan Pieterszoon
2460.29 Ravel, Maurice

Table 3.4: Classical composers with the highest betweenness values
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Figure 3.1: The cumulative degree distribution for the CMN composer network

3.5 Discogs Artist-Release Network

Discogs7 is a community-built database containing information on artists, la-
bels, and recordings. Discogs primary function is to maintain artist discogra-
phies - listings of all the releases associated with a particular artist - with a
special emphasis on vinyl releases.

The Discogs artist-release network is defined in a slightly different manner

7available at http://discogs.com/
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than the AMG collaboration network we discussed in section 3.3.1. Two
artist nodes are considered to be connected by an edge if they have appeared
together on an album or release. This definition of an edge is in some sense
broader than that used in the AMG collaboration network. In our Discogs
artist-release network an edge between artists might indicate collaboration,
but it might also indicate they appeared on the same compilation release and
never collaborated directly.

The Discogs artist-release network is constructed using an RDF transla-
tion of the Discogs database8 and a SPARQL query against the RDF trans-
lation is used to find all releases that have two or more artists listed as con-
tributors. We will discuss RDF and the SPARQL query language in depth
in chapter 4 but we will list the SPARQL query here for completeness:

SELECT DISTINCT ?release ?artist WHERE

{

?release a mo:Record ;

foaf:maker ?a, ?b ;

foaf:maker ?artist .

FILTER ( ?a != ?b ) .

}

Listing 3.1: SPARQL query for constructing the Discogs artist-release network

This query returns any release that has two or more artists credited with
its creation. The results of this query are parsed such that for each value
of release we create a fully-connected network from the associated values
of artist. Thus we build the Discogs artist-release network. Note that
we also remove the “place holder” artists “various” and “unknown artist.”
We summarize some of the network statistics for the Discogs artist-release
network in table 3.5.

The Discogs artist-release network is highly fragmented. The giant con-
nected component contains only 49.4% of the nodes in the network and there
are a total of 25,647 disconnected components in the network. However, the
second largest component is orders of magnitude smaller than the giant com-
ponent consisting of only 46 artist nodes. Of the 25,647 components, 19,156
(about 75%) contain only two artist nodes. If we sum all these two-artist
components we see that 30.5% of the artists in the Discogs artist-release net-
work have only appeared on a release with one other artist (or they have

8available at http://api.talis.com/stores/discogs/services/sparql
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n m mmultiple nS0 |S| 〈nS〉
125,498 161,967 476,931 62,043 (49.4%) 25,647 4.93

Table 3.5: Table of network statistics for the Discogs artist-release network where
n is the number of artist nodes, m is the number of release edges, nS0

is the number of nodes in the largest connected component, |S| is the
total number of components and 〈nS〉 is the average number of nodes
in each connected component in the network.

appeared on several different collaborative releases but always with the same
artist). This is a rather stark contrast to the AMG collaboration network
where the largest connected component contained 89% of the artist nodes in
the network. Recall that the AMG collaboration network was hand-curated
by a team of professional music critics with the purpose of allowing users to
navigate from artist to artist. The Discogs website is entirely crowd-sourced
with the aim of providing free and open metadata for music artists and
releases. There is no explicit impetus to provide a navigable artist collabora-
tion network. In fact, we went to considerable effort to extract this data from
the Discogs website. In this sense we can assume that the Discogs coverage
might be broader but the AMG coverage is certainly deeper. The avail-
able network statistics support this assumption - the Discogs artist-release
network has considerably more artist nodes (125,500 in Discogs vs. 34,724
in AMG) but, when we collapse multiple edges in the Discogs artist-release
network, the AMG collaboration network contains a comparable number of
edges (161,967 in Discogs vs. 123,122 in AMG).

We have mentioned that the Discogs artist-release edges do not directly
correspond to collaboration - they correspond to artists appearing on the
same release. The release could be a collaborative efforts between the artists
or the release could be a compilation where the artists are not directly col-
laborating at all. We can gleam some more insight by examining how many
artists appear on each release. Figure 3.2 shows a cumulative distribution
for the number of artists appearing on each release η: We can see that 99.4%
of releases actually have 5 or fewer contributors. This suggests that the vast
majority of the releases in our data set are either direct collaborations or
compilations with a rather narrow focus containing multiple songs from each
artist. As it turns out, there is a third scenario that is abundantly common in
the Discogs artist-release network - the composer-performer-conductor sce-
nario.

In the Discogs data the role of a particular contributor is not always
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Figure 3.2: The cumulative distribution for η the number of artists appearing
on each release for the Discogs artist-release network. We see that
99.4% of releases have 5 or fewer contributors.

clearly demarcated. In our modeling we assume only one type of artist-
release relationship exists which is clearly not the case. In classical music, it
is common to have a performer (i.e. The London Symphony Orchestra), a
conductor (i.e. Sir Eugene Goossens), and a composer (i.e. Hector Berlioz).
In our overly simplistic scheme these three entities are all considered as con-
tributing artists for the release in question. If we examine the list of the
highest degree artists we can infer this scenario had a big impact on our
network structure. The list of artists with the highest degrees and highest
betweenness values in the Discogs artist-release network is given in table 3.6.
We can see that classical composers dominate the highest-degree list. This is
of course an artifact of the composer-conductor-performer scenario. Filtering
out this artifact is left to future work. We see some more variation in the high-
betweenness list which includes pop legends like David Bowie and Michael
Jackson, hip-hop stars like Jay-Z and Missy Elliott, and even the avantgarde
noise artist Merzbow. Intuitively one would expect genre-spanning artists
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k artist B × 107 artist
661 Johann Sebastian Bach 12.0 David Bowie
654 Ludwig van Beethoven 9.1 Merzbow
638 Wolfgang Amadeus Mozart 8.4 Jay-Z
353 Piotr Illitch Tchaikovsky 8.3 Missy Elliott
340 Johannes Brahms 7.3 Michael Jackson
301 Franz Schubert 7.0 Elephant Man
275 The London Symphony Orchestra 6.0 Thurston Moore
273 Antonio Vivaldi 5.9 RedSK
260 Georg Friedrich Händel 5.8 The London Symphony Orchestra
250 Maurice Ravel 5.8 Beck

Table 3.6: Artists with highest degree k and betweenness B values in the Discogs
artist-release network after removal of multiple edges

to have the highest betweenness values in the Discogs artist-release network
- connecting clusters of otherwise genre-specific co-releasing artist. This is
perhaps what we see with the likes of David Bowie, Jay-Z, and Beck. Also,
consider that inter-generational artists with a long career would potentially
have a higher betweenness (perhaps David Bowie and Michael Jackson fit
this description). However, we also see more obscure but highly collabora-
tive artists that serve as a conduit connecting clusters of artists specializing
in smaller niche genres to the giant connected component of collaborative
artists. This is what we see in Merzbow - who collaborates mostly with
Japanese musicians and obscure electronica artists - and RedSK - a genre-
hopping electronica serial-collaborator who as of this writing has fewer than
20,000 plays9 on Last.fm.

If we examine some of the network statistics for the giant connected com-
ponent of the Discogs artist-release network we see some familiar patterns.
The network statistics for the giant connected component are summarized
in table 3.7. We see a diameter dmax and an average geodesic distance 〈d〉
that can be considered in the small-world range. The clustering coefficient
is orders of magnitude higher than that of an equivalent random graph. No-
tably we see the assortativity coefficient rk is slightly positive but close to
zero indicating a network where highly collaborative artists have no strong
tendency to preferentially collaborate with other highly collaborative artists.

In figure 3.3 we plot the cumulative degree distribution of the giant con-
nected component. In the log-log plot we can see the distribution approxi-

9see http://www.last.fm/music/RedSK
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n m 〈d〉 dmax T rk(σr)
62,043 118,290 9.04 (8.35) 31 (17) 0.110 4.0×10−5 0.066(2.4× 10−3)

Table 3.7: Network statistics for the giant connected component of the Discogs
artist-release network where n is the number of nodes, m is the number
of edges, 〈d〉 is the average geodesic distance, dmax is the diameter,
T is the clustering coefficient, rk is the assortativity coefficient with
respect to degree, and σr is the error in the assortativity coefficient
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Figure 3.3: The cumulative degree distribution for the Discogs artist-release net-
work and the power-law fit approximation where α = 2.83 plotted
on a log-log scale

mates a straight line indicating a power-law distribution with an exponent of
α = 2.83. For degrees above k = 400 we see some deviance from the power-
law fit. Note this plot is for the network after collapsing multiple edges into
single edges. If we keep multiple edges we see a very similar distribution.

In the Discogs artist-release network we see a network that is largely
fragmented with one giant component and many very small components.

47



The largest connected component conforms to the small-world and scale-free
structures found in most real-world networks. We now turn our attention to
another crowd-sourced artist network - the MySpace artist network.

3.6 MySpace Artist Network

MySpace10 is a social networking website that allows users to maintain pro-
files of personal information and specify friendship relationships. Although
the site’s popularity has waned somewhat recently, it continues to provide
a standard format for music artist promotion. Although exact figures are
not made public, recent blog chatter suggests there are over 7 million artist
pages11 on MySpace.

Artists ranging from bedroom electronica amateurs to multi-platinum
mega-stars publish MySpace pages. These MySpace artist pages typically
include some media - usually streaming audio, video, or both - and a list
of “friends” specifying social connections. This combination of media and a
user-specified social network provides a unique data set that is unprecedented
in both scope and scale.

3.6.1 Sampling MySpace

The MySpace social network presents a variety of challenges. For one, the
massive size prohibits analyzing the graph in its entirety, even when con-
sidering only the artist pages. Therefore we sample a small yet sufficiently
large portion of the network as described in section 3.6.2. Also, the MySpace
social network is filled with noisy data - plagued by spammers and orphaned
accounts. We limit the scope of our sampling in a way that minimizes this
noise. Our data is collected using web crawling and screen scraping tech-
niques.

Artist Pages

Again, it is important to note we are only concerned with a subset of the
MySpace social network - the MySpace artist network. MySpace artist pages
are different from standard MySpace pages in that they include a distinct

10available at http://www.myspace.com/
11http://scottelkin.com/archive/2007/05/11/Myspace-Statistics.aspx
∼25 million songs, ∼3.5 songs/artist, ∼7 million artists - last accessed 26/11/2008
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audio player application. We use the presence or absence of this player to
determine whether or not a given page is an artist page.

A MySpace page will most often include a top friends list. This is a
hyperlinked list of other MySpace accounts explicitly specified by the user as
friends to highlight on the user’s page. The top friends list is limited in length
with a maximum length of 40 friends (the default length is 16 friends). In
constructing our sampled artist network, we use the top friends list to create
a set of directed edges between artists. Only top friends who also have
artist pages are added to the sampled network; standard MySpace pages are
ignored. We also ignore the remainder of the friends list (i.e. friends that
are not specified by the user as top friends), assuming these relationships are
not as relevant. This reduces the amount of noise in the sampled network
but also artificially limits the out degree of each node. Our sampling method
is based on the assumption that artists specified as top friends have some
meaningful musical connection for the user - whether through collaboration,
stylistic similarity, friendship, or artistic influence.

Each MySpace artist page includes between zero and three genre tags.
The artist selects from a list of 119 genres specified by MySpace. These
genre label associations were also collected. In our sample set, around 2.6%
of artists specified no genre tags. We also collect the country, number of
profile views, and total number of friends associated with each MySpace
artist in the sample12

The audio files associated with each artist page in the sampled network
are also collected for feature extraction. Cached versions of the audio files
are downloaded and audio features are extracted.

3.6.2 Snowball Sampling

For the MySpace artist network, snowball sampling is the most appropriate
method [Ahn et al., 2007]. Alternative methods such as random edge sam-
pling and random node sampling would result in many small disconnected
components and not provide any insight to the structure of the entire net-
work [Lee et al., 2006]. In snowball sampling, a first seed node (artist page)
is included in the sample. Then the seed node’s neighbors (top friends) are
included in the sample. Then the neighbors’ neighbors. This breadth-first
sampling is continued until a particular sampling ratio is achieved. We ran-

12this data was collected approximately 8 months after the original sample, ideally it
would have been collected at the same time
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domly select one seed node13 and perform 6 levels of sampling - such that
in an undirected view of the network, no artist can have a geodesic distance
greater than 6 with respect to the seed artist - to collect 15,478 nodes. If the
size of the MySpace artist network is around 7 million, then this is close to
the 0.25% sampling ratio suggested in [Kwak et al., 2006].

With snowball sampling there is a tendency to over-sample hubs because
they have many links and are easily picked up early in the breadth-first
sampling. This property would reduce the degree distribution exponent and
produce a heavier tail but preserve the power-law nature of the network [Lee
et al., 2006].

3.6.3 Network Topology

Our MySpace artist network samples exhibit many of the network character-
istics common to social networks and other real-world networks [Newman,
2003b]. Some of the network topological metrics are summarized in table
3.8.

n m 〈d〉 dmax T
directed 15,478 120,487 6.43 (4.93) 16 (10) -
undirected 15,478 91,362 4.48 (4.18) 9 (7) 0.219 (7.1× 10−4)

Table 3.8: The network statistics for the MySpace artist network sample where
n is the number of nodes, m is the number of edges, 〈k〉 is the average
degree, 〈d〉 is the mean geodesic distance, dmax is the diameter, and
T is the clustering coefficient. The clustering coefficient is undefined
for directed networks

Given our sampling method dictates that only top friend relationships
are included, the network samples are directed and each edge implies direc-
tionality. This is because the top-friend relationship may not be reciprocated
– node j might be a top friend of i but i might not be a top-friend of j. If
we define edges in terms of the nodes they connect this means (i, j) 6= (j, i).
Recall that in a directed graph each node i will have an in-degree kini - indi-
cating the number of edges terminating at node i – and an out-degree kouti -
indicating the number of edges that originate at node i.

13our randomly selected artist is French rapper Karna Zoo http://www.myspace.com/
karnazoo
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To simplify analysis we can convert to an undirected network. Each edge
is then considered bi-directional, that is (i, j) = (j, i), and if a reflexive pair
of edges existed in the directed graph, only one bi-directional edge exists
in the undirected graph. In our primary sample, when converting to an
undirected network we see the number of edges decrease by about 25%. This
means that nearly half of all top friend relationships are reciprocated in our
primary network sample and slightly less for the auxiliary sample.

The value of the clustering coefficient T = 0.219 indicates a high level
community structure - an equivalent random network would have a transi-
tivity of Trand = 〈k〉

n
= 7.1 × 10−4. It should be noted that it is impossible

to say whether or not this value is indicative for the entire MySpace artist
network because of our limited sample size [Kwak et al., 2006].

The cumulative degree distributions for the network sample are plotted
in figure 3.4. Both the in-degree and out-degree distributions are plotted.
Notice the in-degree distribution is plotted on a log-log scale. For moderate
degree values (35 < kin < 200), the in-degree distribution follows a power-
law decay with an exponent of α = 3.39 indicated by the fit of a straight line
in the log-log scale. The power-law fit breaks down for high and low values
of kin. Due to finite size, the power-law is expected to break down for high
values of kin. Similar “multi-scale” degree distributions have been reported
for citation networks and movie actor networks [Amaral et al., 2000] as well
as in online social networks [Ahn et al., 2007].

The cumulative out-degree distribution is plotted on a linear-log scale.
For moderate values of follows of kout we see an exponential decay indicated
by the fit of a straight line in the linear-log scale. Such distributions have been
reported in a variety of networks including some music artist networks such
as the AMG artist similarity network [Cano et al., 2005a]. Recall that there
is an out-degree limit imposed by MySpace which restricts the maximum
number of top friends (kout ≤ 40). This type of information filtering could
actually be truncating a power-law decay [Mossa et al., 2002].

The cumulative combined degree (k = kin + kout) distribution exhibits a
multi-scaling behavior very similar to the in-degree distribution – following
a power-law for moderate values of k.

From the in-degree distribution, we can see that there exists a few very
well-connected hub artists with an in-degree much higher than the average.
The artist with the most in-links (kin = 222) is Grammy-award-winning rap-
per T.I.14 immediately followed by Grammy-award-winning producer Tim-

14http://www.myspace.com/trapmuzik
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Figure 3.4: The cumulative degree distributions for (a) the in degree plotted on
a log-log scale and (b) the out degree plotted on a log-linear scale in
the MySpace artist network

baland.15 The 10 artists with the highest degree values in the sample are
exclusively popular American and French rap artists as shown in table 3.9.

k artist B × 106 artist
243 T.I. 9.5 GEE FUTURISTIC
227 Timbaland 8.8 Eko du 94
215 DJ KHALED 7.6 X-plosive Beats Production
208 RIM’K 5.4 Beat Maker Naiche
204 BOOBA 5.3 Cool & Dre
192 Jay-Z 4.9 Aiko Rohd Infrarohd Music
183 oxmO.Puccino 4.5 DJ KHALED
179 The Game 4.0 Brisk Fingaz
178 J DILLA 3.7 Prince NegaaFellaga
170 DJ PREMIER 3.2 Akon

Table 3.9: Artists with highest degree and betweenness in the MySpace artist
network sample

We see some more variation in the highest betweenness artists but the
list is still dominated by “hip-hop” and “rap” artists. Many of the high be-
tweenness artists are German (Gee Futuristic, Eko du 94, X-plosive Beats)

15http://www.myspace.com/timbaland
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or Swiss (Beat Maker Naiche, Prince NegaaFellaga) artists. The listings in
table 3.9 suggest that our network structure may be correlated with both the
geographic locations of artists and artist genre. We can examine the assorta-
tivity coefficients to further test this assumption. A variety of assortativity
coefficients for the MySpace artist network are presented in table 3.10.

rk rviews rfriends rplays rcountry rgenre σr
-0.0326 0.0173 0.0132 0.0152 0.729 0.350 1.79× 10−3

Table 3.10: Assortativity coefficients for the MySpace top-friend artist network
where rk is assortativity with respect to degree, rviews is assortativity
wrt number of profile views, rfriends is assortativity with respect
to total number of friends, rplays is the assortativity wrt to plays,
rcountry is assortativity wrt the country, and rgenre is the assortativity
wrt to genre using a truncated genre list

In addition to collecting the top friends and genre labels for the artists
in the MySpace artist network sample, we collect the artist’s country, total
number of profile views, total number of times an artist’s tracks have been
played and total number of friends (recall this is distinct from “top friends”).
We can calculate assortativity coefficients for each of these properties to see
how they relate to the network structure.

We see that the assortativity wrt degree rk is actually very slightly neg-
ative indicating that artists have tendency to specify top friends who have
different in-degree values. Intuitively, we might expect many obscure artists
to include popular or influential artists in their top friend list - creating
many links between low-degree artists and high-degree artists. Perhaps this
phenomenon counter balances the gregarious node homophily commonly ex-
pected in social networks where popular (high-degree) people preferentially
connect to other popular people [Newman, 2003a]. This results in a rk value
that is very close to that of a randomly mixed network where rk = 0.

The assortativity coefficient for genre rgenre gives a positive value. To
calculate the genre assortativity we truncate the list of 0-3 genres to include
only the one genre listed first. Artists who specify no genre are excluded from
the calculation. A more in depth analysis of the genre assortativity for this
network sample and alternative approaches to calculating genre assortativity
are presented in [Jacobson and Sandler, 2008]. The network sample clearly
demonstrates assortative mixing with respect to genre indicating the network
structure is relevant in the context of musical studies.

The assortativity coefficient for the artist’s country rcountry is also positive,
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with a rather high value of rcountry = 0.727 indicating that artists have a
strong tendancy to prefer to form connections with other artists in the same
country. This shows the network structure is highly correlated with the
country location of the artists.

We see slightly positive values for assortativity with respect to the to-
tal number of profile views, the total number of friends, and total plays.
These properties can be considered a measure of popularity. In a pure so-
cial network, the degree of a node is the authoritative measure of popularity.
However, because of our “top friends” sampling methodology and our criteria
of only including artist nodes in our sample, we resort to these alternative
measures of popularity assuming “top friend” artist popularity to be distinct
from general popularity. We can use our popularity correlation coefficient to
better measure the correlation of degree in the top-friend network to general
popularity. We find values of ρviews = 0.22, ρfriends = 0.27, and ρplays = 0.18
showing degree in top-friend artist network is actually nominally correlated
with our metrics for general popularity.

It should be noted that all three metrics for popularity in the myspace
artist network are highly correlated. The Pearson correlation coefficient cal-
culated between total friends and profile views has a value of r = 0.80 while
the correlation between plays and profile views of r = 0.71. It is significant
that these popularity measures have a much higher correlation between them-
selves than with the degree values in the network (measure by the popularity
correlation coefficient ρ).

We argue that this supports our original assumption that the top friend
relationship for a MySpace artist implies something slightly different from a
social connection. If the top friend relation were simply equivalent to a social
connection we would expect a stronger correlation between nodes degrees and
popularity. The top friend relation for MySpace artists is perhaps closer to a
music-related association such as collaboration or influence. Then we might
infer that the overall degree of an artist in our sample relates to something
like musical influence rather than raw popularity (which is better represented
in terms of total friends, profile views, or total plays). We can examine the
list of artists with the highest numbers of total friends and profile views in
table 3.11 and the artists with the most plays in 3.12.

Many of the same names appear in all three lists which is expected given
our three popularity metrics are highly correlated. The presence of the artist
Tila Tequila16 and other very popular artists suggests that our sample in fact

16Tila Tequila was the most popular artist on MySpace in terms of profile views in 2006
see http://www.slate.com/id/2139691/
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views(×107) artist total friends (×106) artist
31.85 Akon 3.88 Tila Tequila
20.47 Lil Wayne 2.64 T.I.
20.06 Tila Tequila 1.90 Lil Wayne
11.80 T.I. 1.80 Rihanna
11.64 Chris Brown 1.74 Fall Out Boy
11.38 Colby O’Donis 1.63 Chris Brown
9.86 Colby O’Donis (2nd profile) 1.62 Beyonce
9.61 Rihanna 1.30 Avril Lavigne
8.45 Soulja Boy Tell ’Em 1.30 Soulja Boy Tell ’Em
8.02 Beyonce 1.26 50 Cent

Table 3.11: Artists with the most views and most total friends in the MySpace
artist network

total plays ×107 artist
3.82 Lil Wayne
3.49 T.I.
3.32 Akon
3.08 Jim Jones
2.99 My Chemical Romance
2.76 Nelly Furtado
2.57 Beyonce
2.52 Danity Kane
2.41 Pretty Ricky
2.35 Sean Paul

Table 3.12: Artists with the most plays in the MySpace artist network

does include many of the most popular artists on MySpace. Note the lists in
table 3.11 and table 3.12 include only American pop and rap artists unlike
the highest degree and betweenness lists in table 3.9 which also include many
acts from continental Europe. This further supports the assertion that top-
friend network structure is reflecting something other than raw popularity.

3.6.4 Audio-based Analysis

As mentioned in section 3.6.1 we also collect the audio files associated with
each artist in our network. We use measures of audio-based similarity to build
an alternative network of artists and compare this network to the original
MySpace top-friends artist network.
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A variety of methods have been developed for signal-based music analy-
sis, characterizing a music signal by its timbre [Logan and Salomon, 2001],
harmony [Bello, 2003], rhythm [Gouyon and Dixon, 2005], or structure [Levy
et al., 2006]. We can apply some of these automatic methods to the audio
associated with our artist nodes and ask: Are audio-based music similar-
ity measures correlated with the structure of the artist social network? This
question was first addressed in [Fields et al., 2008] where it was shown that
the geodesic distance of two artists in the top-friend network is not correlated
with the audio-based similarity scores.

One of the most widely used methods in audio-based music similarity is
the application of Mel-frequency cepstral coefficients (MFCC) to the mod-
eling of timbre [Logan, 2000]. In combination with various statistical tech-
niques, MFCCs have been successfully applied to music similarity and genre
classification tasks [Tzanetakis and Cook, 2002a; Pampalk, 2006; Logan and
Salomon, 2001; Berenzweig et al., 2004; Jacobson, 2006]. MFCCs are a rep-
resentation of the short-term power spectrum of a sound, based on a linear
cosine transform of a log power spectrum on a nonlinear mel scale of fre-
quency. In this sense they represent the “frequency of frequencies”. MFCCs
are actually intended to be pitch invariant and most closely represent the
timbre of an audio signal.

We apply the approach outlined by [Tzanetakis, 2009] to determine a set
of audio-based similarity measures for the MySpace artist network. In addi-
tion to MFCCs this method incorporates spectral centroid, spectral rolloff,
and spectral flux features. The spectral centroid is defined as the center
of gravity for the spectral magnitudes of a frame of the short-time Fourier
transform. The spectral rolloff is defined as the frequency below which 85%
of the magnitude spectrum is concentrated. Spectral flux is defined as the
squared difference between normalized magnitudes of successive spectral dis-
tributions. Additional details about these features are available in [Tzane-
takis and Cook, 2002b]. These features are concatenated and a running mean
and standard deviation is calculated of the previous M = 40 frames result-
ing in a sequence of 32-dimensional feature vectors. Finally the mean and
standard deviation is calculated across these feature vectors to create a sin-
gle 64-dimensional feature vector representing a given audio file. A simple
Euclidean distance is used to determine the similarity between any pair of
audio files. This approach has been shown to perform well in the MIREX17

audio similarity task consistently scoring among the top entries. We make
use of the open-source MARSYAS18 audio similarity implementation.

17see http://www.music-ir.org/mirex/ for a history of competition results
18see http://marsyas.info/
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Each artist might have several audio files associated with their MySpace
profile. If this is the case, we select the audio file that has received the
most plays as representative of the artist. Note that for 238 artists the
audio was either missing or corrupted. These artists were left out of the
audio-based analysis. Given a list of representative songs for each artist,
we calculate the pair-wise artist similarity distance using the approach from
[Tzanetakis, 2009]. A new graph is constructed by first removing every edge
in our original top-friend MySpace network sample, setting a threshold value,
and creating an edge between each pair of artists whose inter-artist distance
is below the threshold. The threshold value was selected to obtain a network
with approximately the same number of edges as were present in the original
MySpace artist network. For our network sample a threshold of t = 0.395
on the inter-artist audio distances resulted in a network with m = 127, 824
edges - slightly more than the m = 120, 487 edges found in the top-friends
network sample.

However, the audio-based artist network is drastically different in almost
every other respect. Some of the network statistics for the audio-based sim-
ilarity MySpace artist network are provided in table 3.13.

n m nS0 |S| 〈nS〉
15,240 127,802 6,552 (43.0%) 8,539 1.81

Table 3.13: Table of network statistics for the audio-based similarity MySpace
artist network where n is the number of artist nodes, m is the number
of edges, nS0 is the number of nodes in the largest connected compo-
nent, |S| is the total number of components and 〈nS〉 is the average
number of nodes in each connected component in the network.

Because the audio-based similarity measure is symmetric, our new net-
work is undirected. The audio-based similarity network is highly fragmented
- of the 8, 539 components 96.4% of them consist of single nodes. These types
of outliers are common in audio-based similarity measures. Some audio sig-
nals are found to have a very low similarity to other signals while some signals
actually act as similarity hubs [Aucouturier and Pachet, 2008]. However, we
see a degree distribution for the audio-based similarity network that better
approximates an exponential distribution as indicated by the log-normal plot
in figure 3.5.

In table 3.14 we see some statistics related to the largest connected com-
ponent of the audio-based similarity network.

The average shortest path and network diameter are both larger than
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Figure 3.5: Cumulative degree distributions for the MySpace audio-based simi-
larity artist network

n m 〈d〉 dmax T
6,552 112,462 4.65 (2.82) 23 (4) 0.27 (5.0× 10−3)

Table 3.14: Network statistics for the largest connected component of the MyS-
pace audio-based similarity artist network where n is the number of
nodes, m is the number of edges, 〈d〉 is the average geodesic distance,
dmax is the diameter and T is the clustering coefficient.

that of an equivalent random network - a stark divergence from the small-
world nature of the top-friends network. The audio-based network does have
a transitivity value that is significantly higher than that of an equivalent
random network.

We see some of the most interesting statistics in the assortativity measures
for the audio-based network shown in table 3.15.

All of the assortativity measures are positive. Interestingly we see sig-
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rk rplays rviews rfriends rcountry rgenre σr
0.214 0.216 0.248 0.192 0.314 0.252 2.68× 10−3

Table 3.15: Assortativity coefficients for the MySpace audio-based artist network
where rk is assortativity with respect to degree, rplays is assortativity
wrt number of song plays, rviews is assortativity wrt number of profile
views, rfriends is assortativity with respect to total number of friends,
rcountry is assortativity wrt the country, and rgenre is the assortativity
wrt to genre using a truncated genre list

nificantly higher assortativity with respect to our popularity metrics than
observed in the MySpace top-friends network. The values of rviews and
rfriends are both an order of magnitude larger than their respective values
in the top-friends network. At first this seems counter-intuitive: we would
expect the audio-based similarity network to be less correlated with popu-
larity. However, if we examine our popularity correlation coefficient for the
audio-based network, this is exactly what we find: ρplays = −7.0 × 10−3,
ρviews = −5.1×10−3 and ρfriends = 6.3×10−3 show that degree in the audio-
based network is completely orthogonal to our popularity metrics. Yet, we
have some clear assortativity with respect popularity in the audio-based net-
work. What we see then, is that popular artists have a tendency to sound
similar (at least by our audio-based metric) to other popular artists. Popu-
lar artists perhaps tend to use the same timbres and production techniques
employed by other popular artists causing popular artists to be preferen-
tially similar to other popular artists. Likewise, unpopular artists might
use lower-quality production techniques and lack a mastering stage in their
production process, causing unpopular artists to sound like other unpopular
artists. These findings give some credence to the gripe music purists often
make: “All popular music sounds the same!”

This correlation between the structure of an audio-based artist similarity
network and artist popularity runs contrary to the results reported by Celma
[2008] where an artist network constructed using audio-based similarity tech-
niques was shown to have almost no correlation with popularity metrics. For
Celma’s network rplays = 0.080 and rgenre = 0.089. Additional statistics
reported by Celma are re-printed in table 3.26. Celma’s network was consid-
erably larger with n = 59, 583 and m = 1, 79, 743 and a different audio-based
analysis was applied [Cano et al., 2005b] against a much larger corpus of
audio files (1.3 million audio files compared to just over 15 thousand). Fur-
thermore, Celma uses play count data from last.fm which is distinct from
play counts collected on MySpace (used in our analysis) and Celma assigns
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genre labels based on a last.fm tag aggregation following [Sordo et al., 2008]
while we simply use MySpace genre labels. It is not clear which of these
discrepancies is responsible for the disparity in network structures.

In the MySpace audio-based network we see significant assortativity with
respect to country and genre although both values are lower than the respec-
tive values in the top-friends network.

Finally we can simply examine the list of the highest degree artists in
the audio-based artist network shown in table 3.16 and see that these names
appear in neither the top-friends, highest views, highest plays or highest
total friends lists. We can be more quantitative by calculating the Pearson

k artist name
576 Kevin Reveyrand
562 Deonna Martin
560 Grizzly
487 DJ Sense
475 Seesha
457 La Dinastia Nueva Cancion
454 noar
448 Kidrass
443 Mioritza
433 9th Wonder

Table 3.16: Highest degree artists in the MySpace audio-based similarity network

correleation between the degree values in the top-friend network and the
degree values in the audio-based similarity network. Doing so results in a
value very near zero r = 4.1 × 10−3 suggesting the degree values in the two
networks are orthogonal. In short, other than sharing the same set of nodes,
the audio-based artist network and the top friends artist network have very
distinct structures.

However, we must qualify our findings with a brief discussion of lossy
audio encodings. The audio files collected from MySpace are encoded in a
uniform format - 96kbps MP3. However, MySpace users may upload files
in a variety of formats and therefore the audio presumably under goes some
transcoding process. It has been shown that MP3 encoding at a rate of
96kbps hinders the accuracy of an audio-based classification task when com-
pared to the same task on lossless encoded audio [Jacobson et al., 2008a]. In
Jacobson et al. [2008a] the degradation in classification performance reported
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for a 96kbps encodings was small but statistically significant. Furthermore,
a set of heterogeneous encodings caused even greater degradation of classifi-
cation performance. However, we are applying a more advanced audio-based
analysis here and we are performing a similarity task rather than a classifi-
cation task. It seems unlikely that the use of moderately low-bit-rate audio
encodings could somehow artificially induce a network structure with the
assortativity characteristics we have observed.

3.6.5 MySpace Summary

We have presented two distinct views of the MySpace artist network - one
where the edges represent the directed “top-friend” relationship as speci-
fied on the MySpace website and a second where the edges represent an
inter-artist audio-based similarity. The two networks are almost entirely or-
thogonal. The MySpace top-friend network is small-world and exhibits a
multi-scaling degree distribution that closely follows a power-law for moder-
ate degrees. Notably, the top-friend network exhibits slightly dissassortative
mixing with respect to degree - an interesting divergence from the structures
expected in social networks. The MySpace audio-based similarity network
is highly fragmented, not small-world, and exhibits an exponential degree
distribution. Furthermore, the audio-based similarity network does exhibit
a nominal level of assortative mixing with respect to degree.

3.7 Soundcloud Artist Network

Soundcloud19 provides a platform for sending, receiving, and distributing
audio files. Where MySpace is an online social network that became a vehi-
cle for music artist promotion Soundcloud was purpose-built for musicians,
record labels, and music producers. Users can upload audio content to share
privately or publicly. A user can also “follow” another user to receive notifi-
cations and updates about that user’s activity. This creates a directed social
network of music artists similar to the MySpace top-friend artist network.

The Soundcloud artist network was crawled during the week of July 13th
2009 by collecting all the data available through the site’s newly released
API20. This includes each user’s list of followers, country, city, and user

19see http://soundcloud.com/
20see http://soundcloud.com/developers for details on the API, Ben Fields was re-

sponsible for the original crawl
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name. Later in February of 2010 additional information about each artist was
collected via web-scraping including the number of track plays and number
of track downloads. We summarize the properties of the Soundcloud artist
network in table 3.17.

n m nS0 |S| 〈nS〉
285,002 2,477,999 107,802 (37.8%) 174,882 1.24

Table 3.17: Network statistics for the Soundcloud artist network where n is the
number of artist nodes, m is the number of release edges, nS0 is the
number of nodes in the largest connected component, |S| is the total
number of components and 〈nS〉 is the average number of nodes in
each connected component in the network.

We see that the Soundcloud artist network is highly fragmented. There
are many solitary artist nodes and many very small components with an av-
erage component size of 〈nS〉 = 1.24. This suggests many users ignore the
social networking aspect of the site and only use the audio sharing functional-
ity. In this sense the Soundcloud network is quite different from the MySpace
network where the specification of “friendship” is the primary function. How-
ever, in almost every other respect the network structure of the Soundcloud
network is very similar to that of the MySpace top-friend network.

The cumulative degree distribution is plotted in figure 3.6. In the log-log
plot we can clearly see a very close approximation of a power-law as the
distribution follows a straight line for both the in-degree and the out-degree.
Again this demonstrates the existence of hub artists who have many more
followers than the average. Note the brick-wall cutoff of the out-degree dis-
tribution resulting from the limitation of kout ≤ 2000 imposed by a maximum
number of artists a given user can follow.

In the Soundcloud network each artist node has a number of plays indi-
cating the total number of times the artist’s tracks have been played, a total
number of track downloads indicating how many times an artist’s tracks
have been downloaded, and a label indicating the artist’s country. We can
use these attributes to calculate assortativity coefficients for the Soundcloud
network. The results of the assortativity calculations are shown in table 3.18.

Again, we see clear assortative mixing with respect to country - artists
more often tend to follow other artists from the same country. This same
mixing pattern was seen in the MySpace artist network but to a greater ex-
tent (for the MySpace artist network rcountry = 0.729). Again, similar to the
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Figure 3.6: The cumulative degree distributions for the Soundcloud artist net-
work with (a) the in-degree cummulative distribution plotted on a
log-log scale showing a power-law fit with α = 2.69 and (b) the out-
degree cummulative distribution plotted on a log-log scale showing
a power-law fist with exponentα = 2.01

rk rplays rdownloads rcountry σr
−0.137 3.9× 10−3 0.0113 0.201 3.9× 10−3

Table 3.18: Assortativity coefficients for the Soundcloud artist network where
rk is assortativity with respect to degree, rplays is assortativity with
respect to number of plays, rdownloads is assortativity with respect to
total number of downloads, rcountry is assortativity with respect to
country, and σr is the error in the assortativity coefficient calculation.

MySpace network, in the Soundcloud artist network we see slightly dissassor-
tative mixing with respect to degree. This divergence from the assortative
degree mixing expected in pure social networks [Newman, 2003a] suggests
that the “following” relationship in the Soundcloud network is perhaps more
indicative of influence rather than friendship. As mentioned in the context
of the MySpace top-friend network, the dissassortative degree mixing in the
Soundcloud network is likely the result of lower-degree artists having a ten-
dency to follow high-degree artists who are well-known and influential.

For the Soundcloud network, we have two scalar attributes that serve as
indicators of artist popularity - the number of times an artist’s tracks have
been downloaded, and the number of times an artist’s tracks have been played
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streaming. Note that Soundcloud artists have the option to not make their
audio material available for download and many artists exercise this option
preferring to only offer streaming audio. In this sense the number of plays is
the more appropriate measure of popularity because it applies to nearly all
artists in the network. We see that the value for assortativity with respect
to plays rplays = 3.94× 10−3 is slightly positive but almost equivalent to the
error σ = 3.90× 10−3. The value for assortativity with respect to downloads
is an order of magnitude larger, but still relatively close to zero. These
values suggest that the Soundcloud network is randomly mixed with respect
to popularity. Furthermore, the popularity correlation coefficient for both
popularity metrics is close to zero with ρdownloads = 0.026 and ρplays = 0.055
showing that the node in-degree (number of followers) is orthogonal to these
popularity metrics. As in the MySpace artist network, the combination of
popularity-based assortativity near zero and negative values for rk suggests
that the Soundcloud artist network structure is more closely tied to some
notion of musical influence rather than general popularity.

3.8 Echo Nest Artist Network

Co-founded by music informatics researchers Brian Whitman and Tristan Je-
han, Echo Nest21 is a company providing a variety of services based on a ma-
chine learning platform for music. As stated on the website Echo Nest “com-
bines large-scale data mining, natural language processing, acoustic analysis
and machine learning to automatically listen to music, read about music, and
learn music trends (on the web).” Echo Nest provides a dizzying array of
music informatics services through a web API22 including artist information,
high-level audio-based song analysis, and listener demographics. We focus on
the artist similarity data provided by Echo Nest which allows us to construct
yet another artist network.

A sample of the Echo Nest artist similarity dataset23 was made available
by the Echo Nest as part of Paul Lamere and Justin Donaldson’s tutorial
on visual interfaces for music collection navigation at the ISMIR conference
in October 2009. This dataset contains approximately 70,000 artists (nodes)
and 270,000 similar artist relations (edges). We provide a summary of the
network statistics for the Echo Nest artist network in table 3.19.

We see the network contains some fragmented components. Upon closer

21see http://echonest.com/
22see http://developer.echonest.com/
23available at http://sites.google.com/site/musicviz2/datasets
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n m nS0 |S| 〈nS〉
68,527 268,734 52,643 (76.8%) 15,870 1.35

Table 3.19: Network statistics for the Echo Nest artist recommendation network
including the number of nodes n, the number of edges m, the number
of nodes in the largest connected component nS0 , the total number of
components |S| and the average number of nodes in each connected
component in the network 〈nS〉.

examination we see that all but two of these components contain only one
artist node. The second largest component contains only 15 artist nodes.
This is likely a result of the provided data being truncated. The data is
provided as a list of artists and associated metadata followed by a list of
edges. It is likely not all the edges intended were included in the final output.
We will therefore focus on the largest connected component assuming the
fragmentation is an artifact of some truncation of a much larger data set.
Some network statistics for the largest connected component are provided
in table 3.20. We see many of the features we have come to expect - small

n m 〈d〉 dmax T
52,643 268,719 7.22 (6.85) 19 (14) 0.157 (1.9× 10−4)

Table 3.20: Network statistics for the largest connected component of the Echo
Nest artist recommendation network n is the number of nodes, m
is the number of edges, 〈d〉 is the average geodesic distance, dmax is
the diameter, and T is the clustering coefficient.

worldness in terms of average geodesic distance and diameter and a high
clustering coefficient.

By design, every artist node (with the exception of the singleton nodes)
has an out-degree of kout = 15. The cumulative distribution of the in-degree is
plotted in figure 3.7. Instead of the more common power-law distribution, we
see an exponential distribution indicated by the approximately straight line
distribution appearing when plotted on the log-normal scale. If we assume
that Echo Nest indexes less than 21 million artists, we might infer that we
have met the 0.25% threshold specified by Kwak et al. [2006] and believe we
have accurately estimated the degree distribution for the entire Echo Nest
artist network. However, the sampling method employed to collect this data
was not made explicit and the fragmented nature of the network tells us that
a snowball sampling was not the method used (or if snowball sampling was
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used the results were somehow truncated). Therefore we cannot make any
conclusions about the degree distributions of the entire network because even
if we assume we have an appropriate fraction of nodes, we cannot know if we
have all the corresponding edges in our sample. And as stated before, the
high number of singleton components suggest we are actually missing some
portion of relevant edges for the Echo Nest sample.
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Figure 3.7: The cumulative in-degree distributions for the Echo Nest artist net-
work plotted on a log-normal scale

But consider that an exponential distribution - lacking in hubs with ex-
traordinarily high degree values - might be a beneficial characteristic for a
recommendation network. A recommendation network with a power-law dis-
tribution would have hub artists that appear in recommendations much more
often than other artists. For the end user, this could result in recommenda-
tions that are cyclical or uninteresting with the same hub artists appearing
over and over again - a phenomenon explained in depth by Celma [2008]. A
network with an exponential distribution would, to some extent, avoid such
problems. Whether this is actually a design principal of the Echo Nest artist
recommendation network is not disclosed.
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In addition to the artist similarity relations, the dataset also includes
hotttness and familiarity attributes for each artist. These are proprietary
scalar metrics created by Echo Nest. The hotttness metric is a “numerical
description of how hottt (sic) an artist currently is” - presumably based on
the mining of time-varying data from the web. The familiarity metric is a
“numerical estimation of how familiar an artist currently is to the world”
- again presumably based on data from the web and for our purposes we
will assume the familiarity scalar roughly corresponds to an artist popularity
metric. We can use these attributes for assortativity calculations.

We also collect additional data about each artist from Last.fm (we dis-
cussed the Last.fm artist recommendation network in section 3.3.2). For
each artist we collected the number of plays, the number of unique listeners,
and the most commonly applied tag from the Last.fm API24. The plays and
listeners count give us some indicator of an artist’s popularity. The artist’s
tags give us some idea about the artist’s genre. Although more sophisticated
methods of mapping tags to genres have been applied [Sordo et al., 2008] we
simply select the most commonly applied tag for the artist as representative
for that artist. We apply all these artist node attributes to assortativity cal-
culations and the results are shown in table 3.21. We see that this network

rk rplays rlisteners rfamiliarity rhotness rtag σr
0.232 0.203 0.291 0.177 0.171 0.444 2.1× 10−3

Table 3.21: Assortativity coefficients for the Echo Nest artist network where rk
is assortativity with respect to degree, rplays is assortativity with
respect to number of plays, rdownloads is assortativity with respect to
total number of downloads, rcountry is assortativity with respect to
country, and σr is the error in the assortativity coefficient calculation.

does exhibit assortative mixing with respect to degree contrary to most of
the other artist networks we have discussed. We see the strongest assortative
mixing is related to the top tag rtag = 0.444. Despite having just over 3,000
distinct top tags in our Echo Nest sample, we still see strong assortative
mixing. We also see assortative mixing for our popularity indicators rplays
and rlisteners. The weakest assortative mixing is seen for the familiarity and
hotttness attributes although these values are still significantly positive at
> 80 ∗ σ.

Together these assortativity measures suggest that the structure of the
Echo Nest artist similarity network is at least nominally correlated with

24see http://last.fm/api/
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notions of artist popularity - popular artists tend to be connected to other
popular artists. We can also examine the popularity correlation coefficients
listed in table 3.22.

ρplays ρlisteners ρfamiliarity ρhotness
0.297 0.480 0.717 0.453

Table 3.22: Popularity correlation coefficients for the Echo Nest artist similarity
network.

We can see that the degree values for the Echo Nest artist similarity
network are most strongly correlated with proprietary familiarity metric.
Artists that are considered familiar are recommended most often, perhaps
by design. A positive correlation is seen for all of the available popularity
metrics.

The Echo Nest artist similarity network sample is a small-world network
that follows an exponential degree distribution (possibly by design, possibly
because of truncation). Its structure is moderately to strongly correlated
with the available popularity metrics.

We can also apply Celma’s long-tail assortativity analysis described in
section 3.3.2 to the Echo Nest network. We divide artist nodes into either the
“head”, “mid”, or “tail” sections based on a given popularity metric (here we
follow Celma and use Last.fm play counts) and apply an appropriate label.
We can now calculate assortativity with respect to these long tail labels.
We find that the Echo Nest artist similarity network exhibits rather strong
assortativity with respect to long tail popularity with rlt = 0.453. While the
Echo Nest artist network sample avoids a power-law degree distribution it
seems to suffer from some of same popularity bias that Celma found in the
Last.fm artist recommendation network.

3.9 MusicBrainz artist network

MusicBrainz25 is a user-maintained open community that collects, edits, and
publishes music metadata on the web. The MusicBrainz project was started
by Robert Kaye in 2000 as a response to a set of restrictive licensing terms
imposed by CDDB26. The data collected by CDDB was largely crowd-sourced

25see http://musicbrainz.org/
26CDDB is a data service for identifying compact discs, see http://www.gracenote.

com/
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data. MusicBrainz was created to provide an alternative where contributors
could be sure that open licensing terms would be applied to their contri-
butions. MusicBrainz evolved into a very rich data service that provides a
wide array of music-related metadata currated by an active community of
contributors.

3.9.1 Identifiers

One of MusicBrainz most appealing features is its use of unique identi-
fiers for music artists, albums, recordings, musical works, and record la-
bels. MusicBrainz generates identifiers using the universally-unique iden-
tifier (uuid) approach [Leach et al., 2005]. While the 36 character codes
that make up a uuid are not particularly easy for humans to parse, they al-
low applications to deal with music metadata unambiguously. For example,
there exists several music artists named James Brown - James Brown “The
Godfather of Soul”, James Brown the Canadian drummer for Veil Marker,
James “Razors” Brown the indie-rock recording engineer, James Brown the
British Oboe player, and several others. An application that attempts to
use the name “James Brown” as an identifier for an artist will potentially
run into problems. However, an application that uses MusicBrainz iden-
tifiers will know that James Brown “The Godfather of Soul” identified by
20ff3303-4fe2-4a47-a1b6-291e26aa3438 is distinct from James “Razors”
Brown identified by 206028fc-e674-40b6-b1b5-c60bd9e12455. In section
4.6.1 we will discuss how these identifiers are useful for creating URIs for
music-related entities.

3.9.2 Advanced Relationships

MusicBrainz also includes a set of Advanced Relationships that enable the
description of inter-connections between music-related entities. For example,
it is possible to specify that two artists are married to each other or that they
share some other familial relationship. It is also possible to specify that a
recording is a performance of a particular work or that one recording samples
another recording. As of this writing, there are just over 300 Advanced
Relationship types in the MusicBrainz database.
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3.9.3 The Six Degrees Application

The Six Degrees of Black Sabbath27 web application created by Paul Lamere
of Echo Nest leverages the Advanced Relationships in MusicBrainz to find
paths between music artists. Users enter a pair of artist names and the
application finds a path between the two artists following a wide range of
artist relations.

In addition to including artist-to-artist relations for MusicBrainz, the
application collapses artist-to-album, artist-to-track, and track-to-track re-
lationships into artist-to-artist relationships. The result is a directed artist
network with 95 distinct edge types - a multiplex network. We present a brief
analysis of this network and save a more complete analysis of MusicBrainz
Advanced Relationships for future work. Some of the network statistics for
the Six Degrees artist network are summarized in table 3.23:

n m nS0 |S| 〈nS〉
219,246 1,092,085 186,509 (85.1%) 10,128 21.65

Table 3.23: Network statistics for the MusicBrainz Six Degrees artist network
where n is the number of artist nodes, m is the number of release
edges, nS0 is the number of nodes in the largest connected compo-
nent, |S| is the total number of components and 〈nS〉 is the average
number of nodes in each connected component in the network.

The Six Degrees artist network has one large connected component with
many smaller connected components. Excluding the giant component, all
components have less than 75 artist nodes. Some statistics for the largest
connected component are presented in table 3.24.

n m 〈d〉 dmax T
186,509 356,179 7.29 (9.17) 29 (19) 6.6×10−3 (1.98×10−5)

Table 3.24: Network statistics for the largest connected component of the Mu-
sicBrainz Six Degrees artist network n is the number of nodes, m
is the number of edges, 〈d〉 is the average geodesic distance, dmax is
the diameter, and T is the clustering coefficient.

The giant connected component has a rather large diameter and a very

27see http://labs.echonest.com/SixDegrees
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low clustering coefficient - diverging somewhat from the small-world network
model. However, it does exhibit a relatively small average geodesic distance.

It can be seen that both the in degree and out degree distributions for
the Six Degrees artist network approximate a power law by examining the
distributions in figure 3.8.

100 101 102 103 104 105

kin

10-6

10-5

10-4

10-3

10-2

10-1

100

P
c(
k
in
)

100 101 102 103 104 105

kout

10-6

10-5

10-4

10-3

10-2

10-1

100

P
c(
k
ou

t)

Figure 3.8: The cumulative degree distributions for MusicBrainz artist network.

The artists in the MusicBrainz Six Degrees network are also matched
against Last.fm to obtain play count, number of listeners, and top tag data.
However, less than half of the artists in the Six Degrees network were suc-
cessfully matched to Last.fm (for the Echo Nest artist network that also
includes data from Last.fm matching, a success rate of 96% was achieved).
This is presumably because Last.fm does not seem to utilize MusicBrainz
identifiers for more obscure artists. The Six Degrees network is an order of
magnitude larger than the Echo Nest artist recommendation network sample
and presumably contains many more obscure artists.

We still calculate assortativity values related to the Last.fm alignment
by ignoring unmatched nodes. These values are reported in table 3.25 but
should be treated with some trepidation.

We see what is essentially random mixing with respect to degree (the value
of rk is of course unaffected by deficiencies in the Last.fm artist matching).
We also see that the portion of the network that is matched exhibits nearly
random mixing with respect to play counts and number of listeners. There
is some minor assortative mixing with respect to top tag. The network
exhibits some small positive correlation between play count and degree with
ρplays = 0.182.
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rk rplays rlisteners rtag
−0.0199 0.0114 0.0205 0.187

Table 3.25: Assortativity coefficients for the MusicBrainz Six Degrees artist net-
work where rk is assortativity with respect to degree, rplays is assor-
tativity with respect to number of plays, rtag is assortativity with
respect to most frequently applied tag, and σr is the error in the
assortativity coefficient calculation. It should be noted that values
for rplays, rlistners, and rtag are based on calculations using only 46%
of the total nodes due to deficiencies in matching artists to Last.fm

3.10 Summary of Artist Network Analysis

We have reviewed the structure of several artist networks found on the web.
We examined two expert curated resources - the Classical Music Navigator
(original analysis) and the All Music Guide (a survey of previous work). We
see that hubs exist in the composer influence network as well as in the AMG
artist collaboration network. However, the AMG artist similarity network fol-
lows an exponential degree distribution lacking hubs. In the AMG network
we see a variety of relationships that can exist between artists - collaboration,
similarity, influence, and membership. This multiplex of edge types mirrors
the reality of inter-artist associations - a wide variety of inter-artist connec-
tions are possible. The MusicBrainz database contains 13 distinct types of
artist-to-artist relationships and over 305 types of relationships when artist,
recording, release, and label nodes are included - again reflecting the diversity
of possible connections found between musical entities. In this chapter, we
have shown that for artist networks, the source of the inter-artist connections
and the type of the inter-artist connections has a measurable effect on the
network structures that arise.

The Discogs artist-release network was highly fragmented - consisting
of one large connected component and many smaller components. It also
followed a scale-free degree distribution. The other crowd-sourced artist net-
works - the MySpace artist network and the Soundcloud artist network -
also approximated power-law distributions. In the artist recommendation
networks from The Echo Nest and Last.fm we see an exponential decay and
a power-law decay respectively for degree distributions - an interesting result
that could have implications for the utility of these networks. However, both
network structures seem to have significant correlations with artist popular-
ity measures and have relatively few inter-artist connections crossing from
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the popularity head to the long tail.

We have seen values very near zero or slightly negative values for rk in
most of the networks we have examined including the classical composer influ-
ence network, the Discogs artist-release network, the MySpace artist network,
and the Soundcloud artist network. This means there is no clear tendancy
for high-degree nodes to prefferentially connect to other high-degree nodes.
Now consider that the MySpace network and (perhaps to a lesser extent)
the Soundcloud network are both social networks - the edges imply “friend-
ship” in some broad and loosely defined sense and these edges are created
by the artists themselves. It has been reported that social networks usually
have positive degree correlations and therefore positive values for rk [New-
man, 2003a]. These artist networks are exhibiting a structure that is distinct
from most social networks. This is perhaps because artists maintain social
relationships differently than normal people. We are using the term “social
relationship” very broadly here. The term “following” used by the Sound-
cloud website is perhaps more appropriate than the term “top friend” used
in MySpace. The lack of assortative mixing with respect to degree suggests
that music artists use these connections to “cite” influences as well as for
specifying collaborators or friendships. The result is there exists many con-
nections between low-degree artists and high-degree artists which balances
the homophily tendancy of the social component. This means in addition to
a social element, these networks have an information component.

Whenever data was available, we have seen assortative mixing with re-
spect to country. Perhaps not surprisingly, artists’ choice of other artists to
form relationships with seems to be highly influenced by nationality. This
is probably because shared culture and language and geographic proximity
tends to correlate with nationality.

Similarly whenever genre or genre-like data (tags) were available we see
assortative mixing. This confirms that these network structures have some
grounding in traditional music-related concepts.

Using audio-based analysis on audio from the MySpace artists an artist
similarity network was also constructed. The structure of this network was
not only distinct from that of the MySpace top-friend but also different from
other audio-based similarity networks described in the literature.

For each network examined, music artists are the nodes. Different sources
of inter-artist connections are used to create the network edges. Depending
on the type and the provenance of the inter-artist connections used to cre-
ate the network, we see a variety of distinct network structures emerge. In
this sense we see the folly of treating an inter-artist connection as a one-
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dimensional property. In chapter 5 we develop a framework that models the
diversity and complexity of inter-entity connections in a uniform way but first
we will discuss semantic web technologies and how they have been applied
to music informatics in chapter 4.
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Chapter 4

Music and Semantic Web
Technology

Consciousness is connected with one unity. A machine is com-
posed of parts.

–Kurt Gödel, as recorded in A Logical Journey, 1996

As we saw in chapter 3 there is a lot of structure inherent in the music-
related data that can be found on the web. However, for the most part, this
structure is somewhat obfuscated - especially from the perspective of the
machine. Much of this structured data is formatted for human consumption
- as pictures and text - and not provided in a format that is easy for a
computer program to parse.

To illustrate this point, let us suppose, whether out of morbid musical
curiosity, some socio-musicological undertaking or perhaps simply to settle
some bet, we want to answer the following query:

Show me a list of deceased jazz piano players and their respective
causes of death.

Surely the data to satisfactorily answer this query exists somewhere on the
web. In fact the information needed to answer this question could likely
be found on one website - Wikipedia. However, to answer the query we
would have to visit thousands of webpages on that site, scanning the text
of each page to find information about cause-of-death, instruments-played,
and musical genre. Of course, this is the sort of task we would rather have a
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computer program perform. Unfortunately, with traditional web technologies
the computer can not answer this query, at least not without some consid-
erable programming effort. This is simply because the data on Wikipedia
is not easy for a computer program to parse. The data is more-or-less free
text intended for human consumption. Even the database software backing
Wikipedia would be of little help answering this query - the data modeling
approach used in the software powering Wikipedia focuses on managing users
and page edits not on the actual meaning of the content. Furthermore, the
relational database powering Wikipedia is not exposed on the web - we can
not make some arbitrary Structured Query Language (SQL) query against
the database and to expect that we should be allowed to do such a thing
would seem ludicrous from a security perspective.

It should be noted that many websites have taken to sharing their database
contents to some extent through a web application programming interface
or web API. These web APIs generally provide the results of some predefined
database queries over a RESTful1 or semi-RESTful http interface. And these
result sets are provided in some convenient machine readable format (most
often some ad-hoc ex tensible markup language (XML) format or j avascript
object notation (JSON)). Such APIs solve part of our problem - we now
have data formatted for computer consumption and we are one step closer
to answering our jazz-pianist-deaths question. However, it is highly unlikely
that our rather obscure and esoteric query is covered in the set of predefined
database queries that make up the web API. We must resort to crawling the
API and making thousands of hyper text transport protocol (http) requests
to answer our query. Writing a computer program to do this is easy - as-
suming we know what set of API calls to make - the problem is that this
program will take a long time to execute. Each http request takes some time
to complete as any casual web user knows. Furthermore the host of the web
API would likely place some restrictions on how many http requests we can
make in a given time window.

The difficulty we find in programming a computer to use the web to
answer questions like our jazz-pianist-deaths question has motivated the de-
velopment of an array of technologies intended to realize the vision of the
semantic web [Berners-Lee and Fischetti, 1999; Berners-Lee et al., 2001]. Tim
Berners-Lee, the inventor of the web, writes:

“The Semantic web is not a separate web but an extension of the
current one, in which information is given well-defined meaning,

1the details of the REST (REpresentational S tate T ransfer) architecture are described
by Fielding [2000]
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better enabling computers and people to work in cooperation.”

In this chapter we will discuss some of these technologies and how they
can be applied to music-related data on the web. In section 4.1 we discuss the
URI concept - the backbone of the web - and how its role is extended in the
semantic web. In section 4.2 we discuss the Resource Description Framework
- the data modeling approach at center of Semantic web technologies. In
section 4.3 we discuss the role of ontologies in the Semantic web and section
4.4 we discuss the Music Ontology. In section 4.6 we discuss the linked data
approach to the semantic web and how it has been a boon for music-related
data on the web. We discuss the SPARQL protocol and RDF query language
in section 4.5 and show how it can be used to answer our jazz-pianist-deaths
query. Finally in section 4.8 we discuss some limitations of current semantic
web technologies.

4.1 The Uniform Resource Identifier

The Uniform Resource Identifier or URI provides the foundation for the web.
The URI is a superset of the more familiar Uniform Resource Locator or URL.
As the name implies, URIs are simply strings meant to identify resources.
Most commonly URIs relate to the hyper text transfer protocol (http) and
are prefixed with “http://” although other prefixes can be used as well (for
example the file transfer protocol prefix “ftp://” is also common).

In their most intuitive form, URIs refer to things that are available on
the web and can be retrieved directly via http (e.g. html documents). These
things are information resources. However, URIs and http URIs in particu-
lar can be used to refer to things that can not literally be retrieved via http
such as people, places, or events. These things are called non-information
resources. We will revisit this distinction when we discuss linked data in
section 4.6 but for now it is sufficient to understand that a URI is a unique
web name for some thing or concept that may or may not actually be part
of the web. This somewhat liberal usage of the URI enables some interesting
features as we will see as we continue our discussion of Semantic web tech-
nologies. First we will discuss how URIs are used in the Resource Description
Framework.
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4.2 The Resource Description Framework

The Resource Description Framework or RDF is simply a language for rep-
resenting information about resources. Because of its well-specified design
and incredible level of extensibility RDF has been a W3C recommendation
since 1999 [Lassila and Swick, 1999; Beckett, 2004a].

In RDF data is encoded as triples. These triples have the form of subject,
property, object. Most commonly each element of the triple is a URI or
a literal (a string, number, etc). However it is often convenient to have
unnamed or blank nodes in an RDF graph. A collection of triples results
in a directed labeled graph where the nodes are subjects and objects and
the edges are properties. In this sense RDF shares the same graph theoretic
model we applied for our artist network analysis in chapter 3.

These concepts are perhaps best illustrated with some simple examples.
Let us suppose we want to encode the following statement in RDF:

There is a person identified by http://dbpedia.org/resource/

Bill_Evans whose name is Bill Evans and who plays the piano.

We will encode this statement as a series of triples using URIs for each
element as shown in listing 4.1:

<http://dbpedia.org/resource/Bill_Evans>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://xmlns.com/foaf/0.1/Person> .

<http://dbpedia.org/resource/Bill_Evans>

<http://xmlns.com/foaf/0.1/name>

"Bill Evans" .

<http://dbpedia.org/resource/Bill_Evans>

<http://dbpedia.org/property/instrument>

<http://dbpedia.org/resource/Piano> .

Listing 4.1: An NTriples listing of an RDF graph encoding that a person identi-
fied by http://dbpedia.org/resource/Bill_Evans has the name
is Bill Evans and also plays the piano.

In listing 4.1 each triple consists of three URIs in angle brackets termi-
nated by a period. The exception is the second triple in our listing which
consists of two URIs for the subject and property and then a literal “Bill
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Evans” as the object. This listing is similar to the NTriples serialization for-
mat for RDF2 although strictly speaking in NTriples one triple should appear
on one line - here each triple is broken up into three lines to more clearly fit
on the printed page.

We can see that the above statement was encoded using three triples. It
is often helpful when thinking about RDF graphs to translate these triples
into a sort-of “caveman English” where, as humans, we mentally parse some
pronounceable fragment of each element of the triple and string these frag-
ments together into a broken sentence. From listing 4.1 we might mentally
create a sentence like, “Bill Evans type Person. Bill Evans name Bill Evans.
Bill Evans instrument Piano.” Hopefully this makes it clear that we’ve been
successful in encoding our target set of facts. What is probably not clear is
exactly where all these URIs came from and why they have any meaning.
The origins of these URIs will become clear as we discuss ontologies in sec-
tion 4.3 and linked data in section 4.6. For now just understand that we are
using URIs from the DBpedia project which is discussed in section 4.6.2.

Note that we can also visualize this RDF segment as a directed labeled
graph as shown in figure 4.1.

Figure 4.1: An RDF graph encoding that a person identified by http://
dbpedia.org/resource/Bill_Evans has the name is Bill Evans and
also plays the piano.

In figure 4.1 we see the same three triples expressed in 4.1. We can imagine

2http://www.w3.org/TR/rdf-testcases/#ntriples
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encoding additional facts and expanding this RDF graph with additional
nodes and edges. Of course the graph would become very large rather quickly
so the approaches for serializing RDF graphs or visualizing the graphs we’ve
seen so far would become rather cumbersome. For this reason we will be
working with alternative RDF syntaxes.

4.2.1 RDF Syntaxes

There are several ways to serialize RDF. The RDF/XML serialization is
based on the extensible markup language (XML) and is described in section
4.2.2. All other RDF serializations are based on some subset of Notation 3
(N3). Turtle described in section 4.2.3 provides expressiveness equivalent to
the RDF model while N3 described in section 4.2.4 provides some extensions
to the RDF model.

4.2.2 RDF/XML

The RDF/XML syntax is a W3C recommendation that is based on XML
syntax and provides a widely-supported interchange format for RDF. We
can encode the same RDF graph about Bill Evans in RDF/XML as follows:

<?xml version="1.0"?>
<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:foaf="http://xmlns.com/foaf/0.1/"
xmlns:property="http://dbpedia.org/property/">
<foaf:Person rdf:about="http://dbpedia.org/resource/Bill_Evans">
<foaf:name>Bill Evans</foaf:name>
<property:instrument rdf:resource="http://dbpedia.org/resource/Piano"/>

</foaf:Person>
</rdf:RDF>

Listing 4.2: An RDF/XML encoding of an RDF graph encoding that a person
identified by http://dbpedia.org/page/Bill_Evans has the name
is Bill Evans and also plays the piano.

In listing 4.2 we have encoded the same three triples we introduced in list-
ing 4.1. The two RDF graphs are identical, only the serialization syntax is dif-
ferent. In listing 4.2 we use the XML namespace directive to introduce some
prefixes. For example the xmlns:foaf="http://xmlns.com/foaf/0.1/" di-
rective allows us to use the prefix “foaf:” as an abbreviation. We will discuss
prefixes more as we discuss other serialization formats.
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While RDF/XML is widely-supported and easily parsed by machines it
can be a bit verbose and not very human-readable. For this reason we will
only provide this mention of RDF/XML and focus on other serialization op-
tions. Additional details about RDF/XML can be found in W3C RDF/XML
Syntax Specification Document [Beckett, 2004b].

4.2.3 Turtle

Turtle or Terse RDF Triple Language is an RDF serialization format that
is more human-readable than RDF/XML. It is a subset of the N3 language
(which is described in section 4.2.4) and matches exactly the expressiveness
of the RDF model. As of this writing turtle is a W3C team submission
awaiting recommendation status although it is already widely supported by
semantic web applications and libraries [Beckett and Berners-Lee, 2008].

Let us encode the same RDF graph about Bill Evans in Turtle:

@base <http://dbpedia.org/resource/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix property: <http://dbpedia.org/property/> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

:Bill_Evans rdf:type foaf:Person ;
foaf:name "Bill Evans" ;
property:instrument :Piano .

Listing 4.3: An Turtle encoding of an RDF graph encoding that a person iden-
tified by http://dbpedia.org/page/Bill_Evans has the name is
Bill Evans and also plays the piano

Here the @base directive is used to abbreviate our data URIs replacing
http://dbpedia.org/resource/ with :. If the @base is omitted, the :

symbol refers to the context of the current document. Similarly the @prefix

directive allows us to abbreviate additional URI namespaces. By convention
the @prefix directive is used for vocabulary or ontology namespaces. When
we use an abbreviation defined by the @base or @prefix directive we are
creating a qualified name or qname. These qnames are distinguished from
unabbreviated URIs by their lack of enclosing angle brackets. For the sake
of brevity and clarity we will assume a number of prefixes in the listings
throughout the remainder of this thesis. These assumed prefixes are listed
in appendix A.
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As in the NTriples syntax in listing 4.1, triples in the Turtle syntax consist
of three elements terminated by a period. However, the semicolon character
“;” can be used to group triples that share the same subject. This is done
in listing 4.3. Similarly the “,” character can be used to group triples that
share both the same subject and same property element.

Also note the special property rdf:type. This property is used to specify
instances of a class - something we will discuss more in section 4.3. In the
Turtle syntax the rdf:type property can be and often is abbreviated simply
as “a”.

Blank nodes can be expressed in Turtle as :x where x is some arbi-
trary identifier used in the serialization. Alternatively, blank nodes can be
expressed as a list of property object pairs applying to that blank node en-
closed in square brackets. Additional details of the RDF Turtle syntax are
available in [Beckett and Berners-Lee, 2008].

4.2.4 Notation 3

Notation 3 is both an RDF syntax and an extension of the RDF model.
As mentioned before the syntax for N3 is a superset of the Turtle syntax
(Turtle was actually developed after N3 as a subset of N3 that matches
exactly the expressiveness of the RDF model). N3 includes several additional
facets including paths, additional keywords, and the ability to quote formulæ
[Berners-Lee, 1998; Berners-Lee et al., 2007]. We may treat a list of triples -
a formula - as a literal value or a graph literal. This effectively allows us to
nest RDF graphs and enables us to make statements about an entire RDF
graph. This approach is similar to the named graphs approach described in
[Carroll et al., 2005]. The primary difference is that in N3 formulæ quoting,
the name of the graph is its value rather than an additional minted URI.

In N3 quoting is accomplished by enclosing a set of triples inside curly
brackets. An example is given in listing 4.4:

{ [ foaf:name "Bill Evans" ] foaf:made [ dc:title "Blue in Green"] }
a log:Truth .

Listing 4.4: An N3 encoding of the statement “it is true that there is someone
named Bill Evans who made something titled Blue in Green.”

This listing states, “It is true that there is someone named Bill Evans
who made something titled Blue in Green.” As in turtle, web identifiers are
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either between angle brackets or in a prefix:name qname notation. The
square brackets denote an existentially quantified entity or blank node. The
contents between are predicate object pairs that apply to the blank node
(note this syntax is also allowed in turtle). Curly brackets denote a literal
resource corresponding to a particular RDF graph. This is an extension to
turtle available in N3 that allows us to make statements about a collection
of triples.

Another extension of the RDF model provided by N3 is that of the uni-
versally quantified variable. Universal quantification formalizes the notion
that something is true for every relevant value of the variable. This is con-
trary to existential quantification which is the predication of a property or
relation to at least one value for the variable. Existential quantification is
provided in both RDF and N3 and is modeled using the blank node concept
described in section 4.2.3. In summary universal quantification relates to the
notion of “for all” while existential quantification relates to the notion of “for
some”. In the N3 syntax the keywords @forAll and @forSome can be used
to specify universal quantification and existential quantification respectively.
However, it is more common to simply prefix a universally quantified vari-
able with ? (e.g. ?x) and an existentially quantified variable with the blank
node notation : (e.g. :x). The use of an universally quantified variable is
demonstrated in listing 4.5:

?x a mo:SoloMusicArtist, foaf:Person .

Listing 4.5: An N3 encoding of the statement “all values of x are both solo music
artists and persons.”

This simply expresses that all values of ?x are both solo music artists and
persons. Additional details about the N3 syntax are available at [Berners-Lee
et al., 2007; Berners-Lee, 1998].

4.2.5 Other RDF Syntaxes

There are additional syntaxes for the serialization of RDF. In listing 4.1 we
showed the basic aspects of the NTriples3 format. NTriples is a subset of the
Turtle syntax which does not make use of prefixes or other abbreviations. The
RDFa4 syntax allows the embedding of RDF data within XHTML documents

3see http://www.w3.org/TR/rdf-testcases/#ntriples
4see http://rdfa.info
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and is becoming an increasingly popular method of integrating semnatic web
technologies into existing websites. Details of the syntax are not provided
here as we do not make use of the RDFa syntax in this work.

This is not to discount the importance of this technology. In allowing de-
velopers to embed the rich semantic information of RDF directly into existing
HTML web pages, RDFa is probably one of the most import semantic web
technologies from the perspective of fostering uptake. Note that the recent
OpenGraph protocol5 that allows rich content integration between 3rd-party
websites and the FaceBook platform is based on RDFa.

4.3 Ontologies

We have seen how RDF and URIs can be used to encode data. But how is
meaning ascribed to those URIs? How does this data become useful infor-
mation or knowledge? The answer is through the use of ontologies. Semantic
web ontologies ascribe meaning to URIs via relational semantics. These
ontologies define classes and properties. Resources are declared instances
of classes and appropriate properties are associated with those instances as
triples. In this sense the semantic web is essentially an attempt at building a
distributed web-scale knowledge representation framework where agents can
reason against the knowledge of the web.

4.3.1 RDF Schema

The RDF Schema or RDFS is a vocabulary for describing classes and prop-
erties related to various resources in RDF [Brickley and Guha, 2004]. RDFS
is itself authored in RDF demonstrating the extensibility of the RDF model.
A given ontology will generally consist of a set of rdfs:Class instances and
rdfs:Property instances. Then related RDF data which makes use of this
ontology will consist of instances of the rdfs:Class instances specified in
the ontology.

For example we might extend the RDF model in listing 4.3 with some
ontological information as follows:

RDFS also provides specifying class hierarchies through the rdfs:subClassOf
property. Declaring hierarchies of classes can enable inferencing through sub-
sumption. For example, if we know that We can then infer that the prop-

5see http://developers.facebook.com/docs/opengraph
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foaf:Person a rdfs:Class .

:Bill_Evans a foaf:Person .

Listing 4.6: A turtle listing defining a class for Person and :Bill Evans as an
instance of that class.

mo:MusicArtist rdfs:subClassOf foaf:Person .

Listing 4.7: A turtle listing defining mo:MusicArtist as a subclass of
foaf:Person

erties of foaf:Person also apply to mo:MusicArtist. We know that since
a foaf:Person has a foaf:birthday, a mo:MusicArtist must also have a
birthday.

RDFS also allows us to scope a property by explicitly specifying which
class instances can be the subject of the given property (rdfs:domain) and
which class instances can be the object of the given property (rdfs:range).

Additional details about RDFS can be found in the W3C Recommenda-
tion [Brickley and Guha, 2004].

4.3.2 The Web Ontology Language

The Web Ontology Language or OWL is another W3C Recommendation that
relates to the creation of ontologies and knowledge representation. OWL is
actually a family of languages based on two largely but not entirely compat-
ible semantics: the OWL DL/Lite semantics are based on Description Logic
and have well-understood computational properties while OWL Full is based
on a semantic model that provides compatibility with RDFS.

In particular OWL allows modelers to express detailed constraints be-
tween classes, entities, and properties. For example we could use OWL to
add some restrictions to a particular ontological definition.

In listing 4.8 we specify an owl:equivalentClass to the mo:Conductor

class that imposes an owl:Restriction (which is modeled as a blank node
here). This restriction uses the owl:someValuesFrom property to specify that
a mo:Conductor must have mo:conducted at least one mo:Performance.

OWL also provides full facilities for describing set theory including inter-
sections, unions, and complements. For example a new class can be defined
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mo:Conductor owl:equivalentClass [

a owl:Restriction;

owl:onProperty mo:conducted;

owl:someValuesFrom mo:Performance

] .

Listing 4.8: Adding a restriction to the conductor class specifying that a con-
ductor must have conducted a performance.

as a union or intersection of previously defined classes.

The OWL vocabulary also provides a simple but important facility for
stating that two resources are actually one-in-the-same. The owl:sameAs

predicate can be used to make such statements. For example we might
use this predicate to indicate a music artist identified by a DBPedia URI
is the same as a music artist identified by a DBTune URI. In this way we
can reconcile information from multiple sources which use distinct URIs to
identify the same thing. This also enables the most basic, but perhaps most
important, inferencing. A reasoning engine can infer that triples pertaining
to the subject of an owl:sameAs predicate also apply to the object and vice
versa.

Additional details about OWL are available in the W3C recommendation
document [Bechhofer et al., 2004].

4.4 The Music Ontology

As the name implies, the Music Ontology6 is a web ontology for describ-
ing resources in the music domain. By focusing on temporal annotations
and even decomposition the Music Ontology provides what is arguably one
of the most expressive and complete approaches to encoding music-related
knowledge [Raimond et al., 2007; Abdallah et al., 2006; Raimond, 2009].

In the music domain there is a variety of complex scenarios that require
a flexible modeling framework. Consider the composition “Caravan” - a jazz
standard composed by Juan Tizol and first popularized by Duke Ellington.
Countless musical acts have since performed their own versions of this song
and Ellington himself recorded over 80 versions. Some of these versions were
recorded live some were recorded in the studio. To add even more complexity,

6specification available at http://musicontology.com
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rap artist Redman later sampled an Ellington recording of “Caravan” in his
1998 song “Da Goodness”. The artist name, track name, and album title
fields often found attached as metadata for digital audio files only encode a
small fraction of the information related to our Caravan scenario. With the
Music Ontology we can embrace the complexity of this scenario and encode
much of the knowledge related to this particular composition using a flexible
and extensible RDF model.

To model such complexity the Music Ontology combines the layered ab-
straction approach outlined in the Functional Requirements for Bibliographic
Records (FRBR) [on the Functional Requirements for Bibliographic Records,
1998; Davis and Newman, 2005] with a modeling mechanism for describing
timelines and events.

4.4.1 Functional Requirements for Bibliographic Records

Four layers of abstraction are described in FRBR. These include:

• Work – A distinct intellectual creation;

• Expression – An artistic realisation, for example the product of a mu-
sical performance;

• Manifestation – A group of similar items embodying an expression, for
example an album;

• Item – A single exemplar of a manifestation, for example an audio file
or a copy of an album.

FRBR helps us to capture additional details of our Caravan scenario. We
can model “Caravan” the composition as an FRBR Work and the various
performances of “Caravan” can be modeled as FRBR Expressions. How-
ever, we are still unable to model the complexity of the relationship between
Redman’s “Da Goodness” and “Caravan”. FRBR alone does not allow us
to model which segment of which recording of “Caravan” was used in “Da
Goodness”.

4.4.2 Timeline Ontology

To effectively model the music domain the Music Ontology must deal with the
temporal aspects of music. The OWL-Time ontology provides some formal
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modeling of time on the semantic web [Hobbs and Pan, 2004; Pan, 2007].
However, in the music domain it is necessary to consider multiple timelines
(e.g. the timeline corresponding to the recording of “Da Goodness” and
the timeline corresponding to a particular the recording of “Caravan”). For
this reason Raimond et al. extend OWL-Time with the Timeline Ontology7

[Raimond and Abdallah, 2006b].

The Timeline Ontology adds concepts like tl:TimeLine and tl:TimeLineMap

which not only allow us to model multiple timelines but also model the map-
ping between two timelines. Additional Detail of the Timeline Ontology are
available in [Raimond and Abdallah, 2006b; Raimond, 2009].

4.4.3 Event Ontology

In addition to specifying timelines, we want to specify regions on timelines.
Revisiting our Caravan scenario we might want to specify, “the saxophone
solo on this particular recording of Caravan appears here.” The Event On-
tology [Raimond and Abdallah, 2006a] defines event tokens which can then
be associated with a given timeline.

4.4.4 Caravan Modeling

With the FRBR abstraction layering and the event decomposition capabili-
ties we can use the Music Ontology to model the Caravan scenario mentioned
at the beginning of this section.

In listing 4.9 we provide a Turtle RDF model describing the composition
of Caravan, a particular recording of Caravan by Duke Ellington, and the
subsequent sampling of that recording by Redman.

Note we do not specify an @base parameter so our qnames beginning sim-
ply with the prefix : are defined only in the context of the listing. We specify
a composition event with the blank node :Composition of Caravan that
produced the work identified as dbpedia:Caravan (song). We then have
a performance of that work identified as :Ellington Performance which is
subsequently recorded as a mo:Signal. We then use the mo:sampled prop-
erty to relate the artist dbpedia:Redman to the sampled signal.

7The Timeline Ontology namespace is http://purl.org/NET/c4dm/timeline.owl#
and an ontology specification document can be retrieved at the same URL
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dbpedia:Juan_Tizol a mo:MusicArtist.

_:Composition_of_Caravan a mo:Composition ;

dc:date "1936"^^xsd:Date ;

mo:composer dbpedia:Juan_Tizol ;

mo:produced_work dbpedia:Caravan_(song) .

dbpedia:Caravan_(song) a mo:MusicalWork .

:Ellington_Performance a mo:Performance ;

dc:date "1962"^^xsd:Date ;

mo:performance_of dbpedia:Caravan_(song) ;

mo:recorded_as :Signal_of_Ellington_Performance .

:Signal_of_Ellington_Performance a mo:Signal ;

mo:published_as :Money_Jungle_Caravan .

discogs:release/1852044 a mo:Record ;

mo:track :Money_Jungle_Caravan ;

dc:created "1962"^^xsd:Date ;

dc:Title "Money Jungle" .

dbpedia:Redman mo:sampled :Signal_of_Ellington_Performance .

Listing 4.9: A Turtle RDF model describing the composition of Caravan, a par-
ticular recording of Caravan by Duke Ellington, and the subsequent
sampling of that recording by Redman.

4.4.5 Adoption

There has been some significant adoption of the Music Ontology in the
broader web community. The BBC now models information about music
artists using the Music Ontology for their website. The Music Ontology
has also been used in the RDF translation of MetaWeb’s Freebase8, Talis’s
Dataincubator9 projects, and a variety of other projects that are part of the
linked data movement we will discuss in section 4.6.

8see http://rdf.freebase.com/
9see http://dataincubator.org/
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4.5 SPARQL an RDF Query Language

We have seen how semantic web technologies can be used to model complex
scenarios in music and other domains. But how do we use these models?
How can we query the knowledge we’ve worked so hard to encode? The
answer lies in what is arguably the most exciting semantic web technology
SPARQL (pronounced “sparkle”). SPARQL is a recursive acronym that
stands for SPARQL Protocol and RDF Query Language and it is an official
W3C Recommendation [Prud’hommeaux and Seaborne, 2008].

SPARQL allows us to query an RDF graph using triple patterns, con-
junctions, disjunctions, and optional patterns. The query syntax is derived
from N3 syntax (discussed in section 4.2.4) and allows for the creation of im-
pressively expressive queries. Variables in triple patterns are specified using
the same notation for universal quantification that is used in N3 - that is
variable names are prefixed with a “?”. The keywords SELECT and WHERE to
specify the variables of interest and the triple pattern query respectively.

In listing 4.10 we construct a simple query to retrieve a list of music
artists and their names from an arbitrary RDF graph.

SELECT ?artist ?name WHERE {
?artist a mo:MusicArtist;

foaf:name ?name .
}

Listing 4.10: A SPARQL query for retrieving a list music artists and their names

Note that the variables in which we are interested are specified in the
SELECT clause in this case we are selecting ?artist and ?name. Also note
these same variables are used in the triple patterns in the WHERE clause. We
will use SPARQL to answer the jazz-pianst-deaths query in section 4.7.

4.6 Linked Data

Even proponents acknowledge that the realization of the semantic web vision
is not complete and that uptake of semantic web technologies has been slower
than some expected [Feigenbaum et al., 2007]. The linked data movement
has revitalized semantic web technology.

The traditional “top-down” approach of designing an ontology first and
then developing the data breaks down at the scale of the web. The linked
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data approach allows for a more incremental and grass-roots development
of the semantic web. This collaborative approach allows for ambiguity and
inconsistency while providing data provenance and implicit knowledge in a
uniform manner. In some respects, the linked data movement represents a
shift in focus with respect to the semantic web - away from reasoning and
inference and towards data modeling and practical utility. Although this
is not strictly the case. Many linked data projects have a grounding in
description logics and inferencing.

At the most basic level, linked data simply outlines a set of best prac-
tices for publishing data on the semantic web [Berners-Lee, 2006; Bizer et al.,
2008]. Linked data URIs must dereference via http and provide useful infor-
mation in an appropriate web standards-based format. This process usually
involves some content negotiation and the details of the http request header.
And the dereferenced information should include links to additional http
URIs that also dereference fostering the discovery of additional information.
The result is a mesh of web-accessible resource descriptions that can span
the boundaries of organizations, hardware infrastructure, and domains of
discourse.

The Linking Open Data (LOD) project aims to publish open data sets
on the semantic web following linked data recommendations and appropriate
web standards. A diagram of some of the linked data sets maintained by the
LOD community can be seen in figure 4.2. Note the pale blue circles indicate
data sets that are related to music.

Many of these music-related LOD datasets are hosted by the DBTune
project.

4.6.1 The DBTune Project

The DBTune10 website has been serving music-related linked data sine early
2007 [Raimond, 2009; Bizer et al., 2007]. As part of the Linking Open Data
project DBTune hosts several music-related RDF datasets. These include
the Jamendo dataset, the Magnatune dataset, the John Peel sessions dataset,
the AudioScrobbler wrapper, a MusicBrainz translation, the BBC playcounts
dataset, and Henry. New contributions to the DBTune project made as part
of our work include the MySpace wrapper, the last.fm artist similarity service,
the Echonest artist similarity service, and the Classical Composers dataset.

10http://dbtune.org/
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Figure 4.2: Linking Open Data cloud as of November 2009 where the pale blue
circles indicate data sets related to music.

Jamendo Dataset

The DBTune Jamendo dataset11 includes information about Jamendo music
artists, their geographic locations, and their works expressed in RDF using
Music Ontology concepts and appropriate concepts from other ontologies.
Jamendo 12 is a website that enables music artists to publish music under a
creative commons license that allows listeners to download and share music
legally.

Magnatune Dataset

The DBTune Magnatune dataset13 includes information about Magnatune
music artists and their works expressed in RDF using Music Ontology con-

11see http://dbtune.org/jamendo/
12see http://www.jamendo.com/
13see http://dbtune.org/magnatune/
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cepts and appropriate concepts form other ontologies. Like Jamendo, Mag-
natune14 enables music artists to publish their works under a creative com-
mons license. While Jamendo is more of an open platform, Magnatune is
more like a traditional record label that hand-picks artists and content for
publication.

John Peel Sessions

The DBTune John Peel sessions dataset15 describes metadata related to the
various recordings associated with the long-running John Peel BBC 1 radio
show in RDF.

AudioScrobbler Wrapper

The DBTune AudioScrobbler wrapper16 provides information for a given
last.fm user about the last 10 played tracks as RDF linked to DBTune Mu-
sicBrainz dereferencable URIs.

MusicBrainz Dataset

The DBTune MusicBrainz dataset17 provides an RDF mapping of the exten-
sive music metadata database maintained by the MusicBrainz community
(discussed in section 3.9). As described in section 3.9.1 MusicBrainz provides
unique identifiers for music-related data including music artists, tracks, and
albums making it an ideal resource for creating linked data URIs for music-
related entities. A dump from the MusicBrainz Postgres database is used
to power a D2R server18, which, given the appropriate mappings, provides
the data in the relational database as RDF and makes available a SPARQL
end-point.

BBC Playcount Dataset

The BBC playcount dataset19 contains information about which music artists
are played on which BBC Programmes as RDF with links to the DBTune

14see http://magnatune.com/
15see http://dbtune.org/bbc/peel/
16see http://dbtune.org/last-fm/
17see http://dbtune.org/musicbrainz/
18see http://www4.wiwiss.fu-berlin.de/bizer/d2r-server/
19see http://dbtune.org/bbc/playcount/
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Musicbrainz data set.

Henry

The DBTune Henry server is a workflow processor for audio processing tasks
that builds on the expressiveness of Notation 3 (see section 4.2.4) with the
state-changing awareness of transaction logic. We will discuss Henry and the
associated N3-Tr syntax in more detail in section 5.2.5.

New Contributions

As part of the work supporting this thesis we have created or helped to create
the following extensions to the DBTune project:

• The MySpace wrapper20 provides URIs and associated RDF representa-
tions for top-friends, country of origin and available tracks by scraping
MySpace web pages. The results of page scrapings are also cached in
a triple store to enable a SPARQL endpoint.

• The last.fm artists wrapper21 uses the MuSim ontological framework we
develop in chapter 5 to describe inter-artist similarities from the last.fm
API and includes inter-linking to the DBTune/MusicBrainz data set
and BBC/Music.

• The Echonest artists wrapper22 uses the MuSim ontological framework
developed in chapter 5 to describe inter-artist similarities from the
Echonest API and includes inter-linking to the DBTune/MusicBrainz
data set and BBC/Music.

• The Classical Composer data set23 provides an array of information
about concepts and individuals related to the canon of Western Clas-
sical Music. This includes the composer influence relations from the
Classical Music Navigator discussed in section 3.4 as well as data ag-
gregated from around the web. This data set is, to some extent, hand
curated by Chris Cannam and provides appropriate links to resources
in DBpedia, DBTune/MusicBrainz, and BBC/Music.

20see http://dbtune.org/myspace/
21see http://dbtune.org/artists/last-fm
22see http://dbtune.org/artists/echonet/
23see http://dbtune.org/classical/

95

http://dbtune.org/myspace/
http://dbtune.org/artists/last-fm
http://dbtune.org/artists/echonet/
http://dbtune.org/classical/


4.6.2 The DBPedia Project

The DBPedia24 project provides a rich mapping of concepts and topics from
Wikipedia into RDF. DBpedia provides a rich corpus of diverse data by
leveraging the crowd-sourced “web 2.0” content of Wikipedia with semantic
web technologies. The DBpedia project provides a extensible information
extraction framework that operates on the Wikipedia database dumps. Se-
mantic relationships are extracted from tables in the relational database and
directly from the article texts, infobox templates and categorization infor-
mation. The DBpedia data set currently provides information about more
than 1.95 million “things” including at least 80,000 persons, 70,000 places,
35,000 music albums, 12,000 films and many other topics [Auer et al., 2007].

The DBPedia resources serve as the defacto hub for dataset interlinking
as is apparent from Linking Open Data diagram in figure 4.2. The breadth of
the DBpedia dataset makes it an easy target for interlinking and the depth
of the information makes it an attractive target as well. In our work, we
provide links to the DBpedia dataset whenever possible.

Of course many music-related topics are covered in Wikipedia and hence
encoded as RDF in DBPedia. We will show how we can use the data in
DBPedia to answer our jazz-pianist-deaths query as we discuss SPARQL in
the section 4.7.

4.7 Answers from Linked Data and SPARQL

Recall our jazz-pianist-deaths query from the beginning of this chapter:
“Show me a list of deceased jazz piano players and their respective causes
of death”. With SPARQL, we can use the RDF graphs in DBPedia (de-
scribed in section 4.6.2) to answer this query. DBPedia provides a SPARQL
Endpoint25 which allows an arbitrary agent to make SPARQL queries against
the DBPedia RDF. We can get some results for our jazz-pianist-deaths query
from the DBPedia endpoint with the following SPARQL query:

DBPedia uses the Simple Knowledge Organizational Scheme (SKOS) on-
tology to encode the heirarchical structure of the Wikipedia categories into
RDF. We use the dbpedia:Category:Deaths by cause, which is an instance
of skos:Concept, as our top concept and retrieve a variety of subconcepts
using the skos:broader property. However, SPARQL, as of this writing,

24http://dbpedia.org/
25 the DBPedia SPARQL endpoint is available at http://dbpedia.org/sparql
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SELECT DISTINCT ?name ?cause_of_death ?date_of_death
WHERE {
?artist skos:subject ?cause_of_death ;

foaf:name ?name ;
dbpedia2:instrument dbpedia:Piano ;
dbpedia-owl:genre dbpedia:Jazz ;
dbpedia-owl:deathDate ?date_of_death .

?cause_of_death skos:broader ?d .
{ ?d skos:broader dbpedia:Category:Deaths_by_cause . }
UNION
{ ?d skos:broader ?dd .
?dd skos:broader dbpedia:Category:Deaths_by_cause . }

UNION
{ ?d skos:broader ?dd . ?dd skos:broader ?ddd.
?ddd skos:broader dbpedia:Category:Deaths_by_cause . }

UNION
{ ?d skos:broader ?dd . ?dd skos:broader ?ddd.
?ddd skos:broader ?dddd.
?dddd skos:broader dbpedia:Category:Deaths_by_cause . }

}

Listing 4.11: A SPARQL query against DBPedia for retrieving a list of dead jazz
pianists and their respects causes of death

does not support transitive closure. That is, we can not accommodate hier-
archies of an arbitrary length. Some extensions to the SPARQL do support
transitive paths but for our example we use a series of UNION statements to
explicitly traverse a transitive path with four steps. This brings us to some
of the limitations of current semantic web technologies.

4.8 Limitations of Current Semantic Web Tech-

nology

As mentioned in the previous section, SPARQL currently has no support for
transitive closure. This turns out to be a rather significant limitation. Con-
sider the music artist networks we discussed in chapter 3. Suppose we have
modeled inter-artist connections using a simple property such as foaf:knows.
Given a specific artist, it is simple enough to find the list of artists that are
immediately adjacent in the network. But suppose we want to continue to
find all the artists that belong to this connected component. We can create
a set of UNION clauses as we did in listing 4.11 or make repeated queries to
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achieve a fixed depth. In addition to being verbose, a bit ugly, and poten-
tially very inefficient, this approach forces us to specify a specific fixed depth
- if we do not know anything about the network a priori it becomes quite
complicated to deal with arbitrary path lengths. The sort of analysis we
present in chapter 3 is possible with semantic technologies but not trivial.

Some solutions to the transitive closure problem have been suggested. In
an environment which supports querying over an inferred graph, inference
rules can be used to specify transitive closures or hierarchy membership re-
lations that can then be queried with SPARQL. Some such inference engines
exist, for example the Closed World Machine26 allows the parsing of full N3
and supports some “magic predicates” which trigger the inference of addi-
tional triples. Also, the Virtuoso software supports a variety of extensions to
SPARQL27 that allow an inference context for inferring triples that are not
explicitly stored in the RDF store.

Additional difficulties found in applying semantic web technologies to the
domain of music have been discussed by [Cannam et al., 2010]. For example,
RDF data is often distributed between several different SPARQL endpoints.
While distinct data sets may (or may not) contain RDF that uses compat-
ible ontologies and URI schemes, querying across multiple endpoints with
one federated query is currently not well-supported. The current SPARQL
recommendation does not support federated queries, and there are no stan-
dard means of discovering, pooling, and caching multiple documents about
a subject. However the pending SPARQL 1.1 working draft28 includes a
specification for federated queries.

Simple RDF literals are sometimes encoded using inconsistent data types.
This is problematic because ‘‘67’’ is not equivalent to ‘‘67’’xsd:int in
the SPARQL specification. This makes queries hard to write and, more
seriously, unreliable when used with real-world data from multiple sources.

Furthermore, no efficient means of structuring numerical data such as
vectors or matrices exists in RDF. This becomes a problem when dealing with
dense numerical data such as audio-based analysis features. The Opaque
Features Files Ontology29 has been created to partially address this issue,
however this project is incomplete as of this writing.

There are also some very basic issues inherent to semantic web technolo-
gies that are worth mentioning. The process of ontology creation and on-

26see http://www.w3.org/2000/10/swap/doc/cwm.html
27see http://docs.openlinksw.com/virtuoso/rdfsparqlrule.html
28see http://www.w3.org/TR/2010/WD-sparql11-federated-query-20100601/
29see http://purl.org/ontology/off/
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tology maintenance requires considerable time and effort [Hepp, 2007; Bizer
et al., 2009; Vrandečić, 2009]. In some scenarios it is not clear that this effort
is warranted. For example, the dynamics of a given domain might require a
dynamic ontology - one that evolves and adapts over time. This introduces
a variety of design challenges and requires an engineer or team on engineers
to constantly update a model while ensuring backwards compatibility or ad-
justing datasets to deal with a lack-there-of.

The gap between the ontology creation community and the (intended)
ontology user community is another concern. An ontology can be very com-
plete and expressive in terms of ontological design principles, but if the user
community is unable to leverage this ontology due to a lack of documen-
tation or even disparate views of the domain in question; opportunities for
ontology re-use can be lost. This may result in several disparate ontologies
describing the same domain [Hepp, 2007]. It can be argued the ability to ac-
commodate contrasting models of the same domain is a strength of semantic
web technologies. However in practice disparate models make data fusion an
issue (something semantic web technologies are meant to alleviate) and gives
rise to the problem of ontology alignment [Stoilos et al., 2005; Euzenat and
Valtchev, 2004].

4.9 Summary

In this chapter we have discussed semantic web technologies and how they
have been applied to music-related information. Despite some of the diffi-
culties we mention in section 4.8, the utility of semantic web technologies
for modeling the complexity of the music domain is unparalleled as demon-
strated by the success of the DBTune project and adoption of the Music
Ontology. In chapter 5 we will discuss the subtleties of musical associations
and how the semantic web technologies we discussed in this chapter can be
used to model connections between music artists, compositions, and other
entities.
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Chapter 5

A Framework for Associations

Some things share a complicated network of similarities over-
lapping and criss-crossing: sometimes overall similarities, some-
times similarities of detail.

– Ludwig Wittgenstein, Philosophical Investigations, 1953

In chapter 3 we saw the wide variety of music-related connections that can
be found on the web - focusing on music artist networks. In chapter 4 we saw
how semantic web technologies can be used to provide a rich and thorough
modeling of music-related knowledge on the web. Now we will propose a
distributed framework based on semantic web technologies for modeling the
wide variety of music-related connections that can be found on the web and
in the real world with an emphasis on transparency and provenance. At the
heart of this framework is the Similarity Ontology [Jacobson, 2009] which
is often referred to as MuSim - a concatenation of music and s imilarity.
But before developing our ontological framework let us discuss the nature of
associations, similarity, and, in particular, music similarity.

5.1 On Similarity

At an intuitive level, similarity is a very simple concept. We all have some
general sense about what it means for two things to be similar. But at an
analytical level it becomes more difficult. Judgments of similarity are so
fundamental to our cognitive process that a concrete definition of the term
becomes somewhat elusive and even circular. So let us briefly develop our
own definition for the context of this thesis.
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In music informatics we are interested in music-related entities - primar-
ily music artists, songs, and audio signals although we are also potentially
interested in albums, record labels, segments of songs, chords, melodies, in-
strumentations, listeners, and other objects in the vast variety of concepts
related to the music domain. Many of these concepts are handled quite
well by the event decomposition approach of the Music Ontology (see sec-
tion 4.4). However we are particularly interested in the connections between
these music-related entities. For some of these inter-concept connections,
the Music Ontology and other existing ontologies provide a clear modeling
methodology. For example, with the Music Ontology we can make explicit
the connections between a composition, a performance of that composition,
and a recording of a performance of a given composition (see the Caravan
example in section 4.4.4). However we are often interested in connections
that are more nebulous and beyond the scope of current ontological model-
ing. For example we might want to model the similarity between two music
artists based on a particular algorithm that analyzed specific audio signals
selected from the respective artists’ catalogs of songs - similar to the analysis
we discussed in section 3.6.4.

We are interested in these extraordinary inter-entity connections for two
fundamental reasons: (1) to obtain a better understanding of the cultural and
contextual aspects of music and how music is evolving on the web and (2)
to facilitate the navigation of the ever-expanding universe of music. We can
consider music recommendation as the canonical application of the later. For
example to navigate a collection of music artists, we want to be recommended
new music artists based on a list of artists we like. We argue that similarity
is factotum to recommendation - we want to be recommended items that are
somehow similar to the items we like. It is assumed the similar items will
share some of the traits that the user finds appealing. This brings us to the
definition of similarity we will use in this work and in our framework:

Entities share a similarity if they share some common charac-
teristics of interest.

As a broader concept that encompasses similarity we define association as
follows:

Entities share an association if they are somehow inter-connected.
A similarity is a special type of association.

This broader association concept will lend our framework a larger degree of
flexibility. Note that in this work, what we say about association also holds
true for similarity.
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Our definition for similarity is perhaps most in accord with the featural
model of similarity proposed by psychologists such as Amos Tversky [Tversky
and Gati, 1982]. We will discuss various psychological models of similarity
in our evaluation in chapter 6.

When we consider our definition for similarity it becomes evident that
similarity is both multifaceted and context dependent. Two items might
share a variety of characteristics making their similarity a complex network
of individual similarities. And in different applications different facets of
a similarity might be more salient than others. For example two pieces
of music might share the same metrical structure and rhythmic feel, while
having distinct key signatures and melodies and being composed by artists
on opposite sides of the globe. If we are interested in constructing a beat-
matched DJ mix of these pieces of music, the fact that they share metrical and
rhythmic similarities is probably most important. But if we are composing
a playlist representative of the music of a specific region, the rhythmic facet
of this compound similarity becomes unimportant to us.

Any pair of entities potentially have an infinite number of distinct associa-
tions between them. Our framework must accommodate the compound asso-
ciations between entities and be capable of expressing the details of these as-
sociations. Some connections are grounded in indisputable facts (e.g. “Both
James Brown and Bill Withers performed at the 1973 Ziare Soul Power con-
cert”) while other connections are grounded in opinion (e.g. “David Bowie
and Bob Marley are the two best artists of all time”) while still others are
the result of some algorithmic recommendation process (e.g. “The White
Stripes and The Black Keys are similar artists on last.fm”). In a framework
for describing connections, we must provide a means of annotating who made
an association statement and why.

It is these intuitions that motivate our Similarity Ontology. Most search
and recommendation applications treat inter-item similarity as a single scalar
value in a metric space [Chávez et al., 2001] although this is contrary to
some of the prevailing psychological models of similarity [Goldstone and Son,
2005]. In this chapter we develop a Similarity Ontology that embraces the
multifaceted complexity of similarity and allows for distinct similarities to be
specified for distinct contexts.

5.2 The Similarity Ontology

Because of its decentralized nature, wide deployment base, and robust tech-
nological underpinnings we use the RDF/OWL framework [Beckett, 2004a;
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Bechhofer et al., 2004; Brickley and Guha, 2004] for defining our Similarity
Ontology. This allows us to use the concepts, practices, and resources of
linked data as discussed in section 4.6.

5.2.1 Association as a concept

In the Music Ontology, similarity is defined as a property mo:similar to.
This allows for very simple similarity statements that involve only one triple
as illustrated in figure 5.1.

:TrackA a mo:Track :TrackB a mo:Track

mo:similar_to

Figure 5.1: Property-based similarity allows us to make similarity statements
with one triple

Instead of treating similarity or, to use the broader term, association as a
property, we treat association as a class concept. This allows for easy reifica-
tion of similarity statements. We introduce the class sim:Association and a
sub-class sim:Similarity as the key concepts in our ontology. We then de-
fine the class sim:AssociationMethod for describing a method for determin-
ing similarity. By associating a similarity statement of type sim:Similarity
with an instance of sim:AssociationMethod we are describing in what sense
the elements involved in our statement are similar. We can further reify our
method by providing provenance (as discussed in section 5.2.4) and even fully
disclose our method by pointing to a graph describing our workflow (as dis-
cussed in section 5.2.5). The diagram in figure 5.2 illustrates a basic example
involving two music tracks.

Again, we use the top-level concept of sim:Association to provide a
higher level of abstraction that covers inter-entity connections not necessar-
ily based on similarity. The sim:Association concept assumes a definition
of association and the concept sim:Similarity assumes our definition of
similarity, both of which are stated earlier in section 5.1. However, the ex-
act boundary between what should be modeled as a sim:Association and
what should be modeled as a sim:Similarity can be considered application-
dependent. For some datasets this distinction might be important be in gen-
eral the use of the sim:method predicate and the sim:AssociationMethod

modeling paradigm makes these distinctions unimportant.
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_:SimilarityStatement a 

sim:Similarity

:TrackA a mo:Track

:TrackB a mo:Track

:Agent a foaf:Agent

:TimbreSim a 

sim:AssociationMethod

sim:element

sim:element

Workflow 

graph

sim:method

foaf:maker

sim:workflow

Figure 5.2: A graph visualization of how MuSim concepts are intended to be
used. A similarity statement of type sim:Similarity is associated
with an instance of sim:AssociationMethod which in turn leads to
more information about the similarity derivation process

Let us begin to develop the details of the Similarity Ontology by exam-
ining the very simple similarity example presented in listing 5.1

We introduce the namespace sim to refer to our Similarity Ontology (re-
call a complete listing of the namespaces assumed throughout this work is
available in appendix A). First we define two tracks using the correspond-
ing Music Ontology concept mo:Track. The identifiers of these tracks can
give entry points to additional information in other data sets (i.e. linking to
dbpedia.org1 URIs or MusicBrainz2 identifiers). We define :mySimilarity

as the actual similarity statement. The sim:element property is used to
refer to the tracks involved in this similarity and the foaf:maker property
refers to the agent which asserted this similarity. Also note we can assign a
numerical weight value to the similarity using the sim:weight property.

1http://dbpedia.org
2http://musicbrainz.org/
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:track01 a mo:Track .

:track02 a mo:Track .

:me a foaf:Person .

:mySimilarity a

sim:Similarity ;

sim:element :track01 ;

sim:element :track02 ;

sim:weight "0.90" ;

foaf:maker :me .

Listing 5.1: A simple example of a similarity statement using MuSim.

Now we have a method for asserting a similarity statement and reifying
that statement to some extent. However, in the above example we only know
who is making the similarity statement, we do not know how or why. But
before we extend our modeling to better deal with these questions, let us
further discuss reification.

Reification of statements

It is worth noting that our approach to association reification is closely related
to the reification approach provided by the rdf:Statement concept where
a triple with a subject, property, and object is modeled as a single entity.
An rdf:Statement instance must have a rdf:subject, rdf:property, and
rdf:object property. What would normally be a single triple is modeled as
a set of four triples. This is illustrated in listing 5.2.

This overhead allows us to bind additional information to a statement for
example attributing the statement to a particular individual or assigning a
time stamp to the statement. However, this approach to reification brings
about some problems as discussed by Miller [2000]. For one, although the
two statements in listing 5.2 are syntactically unique, in the RDF model they
are exactly equivalent. And in the RDF model all statements are considered
members of the set of statements. By definition, sets cannot contain du-
plicates. In this sense the will to use RDF as its own meta-system begets
an implementation paradox that would result in the loss of information -
what happens to additional properties we bind to :Statement when it is
necessarily reconciled with the simple triple syntax?
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# simple triple

:Galactic mo:similar_to :TheMeters .

# reified triple

:Statement a rdf:Statement;

rdf:subject :Galactic ;

rdf:property mo:similar_to ;

rdf:object :TheMeters .

Listing 5.2: A simple triple and a reified triple statement

The solution most widely adopted for this problem is related to named
graphs where a given set of triples is grouped together and assigned some
identifier. Then statements about that set of triples can be made using the
identifier in additional triple statements. This means in many implementa-
tions a triple is actually stored as a quad, adding the name of the graph to
which the triple belongs [Carroll et al., 2005].

The use of rdf:Statement has largely fallen out of favor although it is still
part of the official W3C recommendation [Beckett, 2004a]. The Similarity
Ontology enables a syntax that is reminiscent of rdf:Statement reification
especially when talking about a directed association. An example of directed
similarity modeling in MuSim is given in listing 5.3.

:DirectedAssoc a sim:Association ;

sim:subject :TheMeters ;

sim:object :FunkyMeters .

Listing 5.3: Basic directed similarity in MuSim.

This syntax resembles an rdf:Statement where the rdf:property is
implicit. However, we must note that sim:Association is not a sub-class
of rdf:Statement and does not inherit any of its characteristics. There-
fore a sim:Association is not equivalent to some singular triple statement,
avoiding the duplication problems inherent to rdf:Statement. Furthermore,
sim:subject is not a sub-property of rdf:subject and sim:object is not
a sub-property of rdf:object.

So why use a syntax reminiscent of an unpopular modeling paradigm that
has fallen out of favor? Why not simply use the more fashionable named
graphs approach?
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Although reification of similarity statements is possible with named graphs,
in our model we enable a different approach that, as we will see later, still
employs named graphs but not in the context of association statement reifi-
cation. Instead we apply the sim:Association concept for reification. As
we will see the two approaches turn out to be nearly equivalent in terms
of complexity and the MuSim approach tends to be more “implementation
friendly”. The named graph approach and the MuSim approach to modeling
an undirected similarity are compared in listing 5.4.

# (a) named graphs similarity

:NGSim { :Galactic mo:similar_to :TheMeters .

:TheMeters mo:similar_to :Galactic . }

:NGSim foaf:maker :me ;

sim:distance "3".

# (b) MuSim similarity

:MuSimSim a sim:Similarity ;

sim:element :Galactic ;

sim:element :TheMeters ;

foaf:maker :me ;

sim:distance "3" .

Listing 5.4: Reification of similarity with (a) named graphs and (b) MuSim

In this example the named graphs approach results in four triples and one
graph specification, while the MuSim approach results in five triples and no
named graphs. If, for the purposes of complexity measurement, we consider a
named graph specification approximately equivalent to a triple specification,
the two approaches have roughly equivalent complexity. The named graphs
approach results in a valid RDF dataset that can be queried by SPARQL as
does the MuSim approach. However the addition of the graph specification
means that listing 5.4 (a) is not valid Turtle syntax. The TriG3 syntax
extends Turtle with facilities for named graphs and listing 5.4 is valid TriG
while listing 5.4 (b) is valid in Turtle and TriG.

The advantages of MuSim reification become more clear when we consider
triple store implementations. Consider we have N entities and we want to
specify (N − 1)2/2 undirected associations. Furthermore we want to bind a
sim:distance value to each association. With the named graphs approach

3see http://www4.wiwiss.fu-berlin.de/bizer/TriG/Spec/
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we would end up specifying (N−1)2/2 graphs and with the MuSim approach
we would specify as many sim:Associations. In the triple store implemen-
tation each named graph would require an explicit name that must be stored
as some hash along with references to the triples in the graph and refer-
ences to triples involving the graph name. The sim:Associations would
simply require references to triples involving the given association. Further-
more, if we assume we will refer to associations not by some arbitrary name,
but by the identifiers of the entities involved in the association statement,
all sim:Associations can be unnamed blank nodes. By definition, named
graphs cannot be blank nodes. This means in the triple store implementation
our association statements can be stored with a simple and scalable integer
index rather than some hashing method. Such an approach is employed by
the popular 4Store4 triple store software.

5.2.2 Association Networks

Note there is a strong analogy between our ontological framework for associ-
ation and the complex network modeling approach we discussed in chapter
2 and applied in chapter 3. An instance of sim:Association is analogous
to an edge in a network. The entities bound to the sim:Association in-
stance are analogous to nodes. Nodes can be any RDF resource. The use
of the sim:element predicate implies an undirected edge while the use of
the sim:subject and sim:object predicates imply a directed edge. Associ-
ations that involve more than two entities are possible in our framework. In
complex network parlance these are called hyper edges.

To affirm this analogy we create the sim:Network concept which defines
a network by simply specifying a collection of sim:Association instances.
The sim:Association statements in turn specify the RDF nodes involved
in the network. In this way, we can use the graph-based structure of RDF to
enable the specification and annotation of network structures - we are using
a graph model to describe another graph at a higher level of abstraction. In
addition to providing this wonderfully meta network description framework,
the sim:Network concept provide a convenient container for grouping a set
of sim:Association statements.

4see http://4store.org/
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5.2.3 Association Methods

With the sim:Association concept and its sub-concept sim:Similarity we
have developed our approach to reification of connections between entities.
We now introduce the sim:AssocationMethod concept to identify the pro-
cess used to derive association and similarity statements. It is here that we
can tailor our framework to the domain of music. By describing the methods
used to derive associations we make our very general approach more domain-
specific. As we will see this approach allows us to encode a significant amount
of detail, while maintaining the ability to write concise and efficient SPARQL
queries against our data. We instantiate sim:AssociationMethods that de-
scribe certain approaches to music similarity. This concept enables some
interesting functionality when consuming the associations data - a consumer
application can elect to include only similarity statements that are derived
by a particular process. Consumption of MuSim data is discussed further in
section 5.3.1. For now let us consider listing 5.5.

:timbreSimilarityStatement a sim:Similarity ;

sim:element :track01 ;

sim:element :track02 ;

sim:weight "0.9" ;

sim:method :timbreBasedSimilarity .

:timbreBasedSimilarity a sim:AssociationMethod ;

foaf:maker :me ;

sim:scope mo:Track ;

dc:description """An algorithmic method for audio-based

similarity based on timbre""" .

Listing 5.5: An example of a similarity statement bound to an association
method.

Here :timbreBasedSimilarity is the entity that describes our process
for deriving similarity statements. Note that this entity is only described by
three triples - its class type, a property for the creator (foaf:maker) and
a brief textual description (dc:description). In a real-world application,
a potentially large plurality of association statements would be bound to
a single sim:AssociationMethod instance. Instead of binding various in-
formation about who is responsible for the association statements and how
they were derived to each individual statement, we create an instance of
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sim:AssociationMethod and bind the appropriate statements to this in-
stance.

In a sense an instance of sim:AssociationMethod is analogous to defin-
ing a class of similarity statements. We extend this analogy by allowing
the specification of the scope of a particular sim:AssociationMethod. For
example, some methods will only apply to recorded audio signals and other
methods will only apply to music artists. This can be specified by bind-
ing a sim:scope predicate to a particular sim:AssociationMethod instance
as shown in listing 5.5. The use of the sim:scope predicate implies that
a particular method yields undirected association statements. For directed
methods, the sim:domain and sim:range predicates are applied. Note that
while these properties resemble rdfs:domain and rdfs:range in name and
function, they are not sub-properties of these properties. This avoids some
of the reification issues described in section 5.2.1.

5.2.4 Provenance

We can use the sim:AssociationMethod concept introduced in section 5.2.3
to provide provenance for similarity statements.

Provenance, from the French word “provenir” meaning “to come from”,
descibes the origin and lineage of an entity. Provenance has become a very
important topic for the web and it has become a topic of acute interest with
respect to semantic web and linked data technologies. If automated software
agents are to make use of linked data, the provenance of the data consumed
becomes of utmost importance. A software agent that consumes the linked
data equivalent of spam will likely have its utility undermined. We must
be able to automatically follow the provenance of statements from various
knowledge bases within a provenance ecosystem that is resilient to spam and
forgery.

As of this writing there are a variety of purposed provenance solutions
for the linked data web in the form of web ontologies. Examples of prove-
nance ontologies and frameworks include the Open Provenance Model5, the
Provenir Ontology6, the Provenance Vocabulary7, and elements of the Proof
Markup Language8. The W3C has formed an incubator group9 to work to-
wards recommendations for provenance on the semantic web. The group

5see http://openprovenance.org/
6see http://wiki.knoesis.org/index.php/Provenir_Ontology
7see http://trdf.sourceforge.net/provenance/ns.html
8see http://tw.rpi.edu/portal/Proof_Markup_Language
9see http://www.w3.org/blog/SW/2010/04/14/first_reports_of_the_w3c_
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has purposed a set of provenance dimensions, more than 30 use cases and
over 250 technical requirements. However, no candidate recommendation has
been drafted as of this writing.

We can examine the dimensions specified by the W3C incubator group
and the concepts that are common across the variety provenance ontologies
already published. At the most abstract level we have three key concepts in
provenance:

• the Artifact - some immutable piece of state that will most commonly
refer to some digital representation of data

• the Process - some action or series of actions performed on or caused
by artifacts and resulting in new artifacts

• the Agent - some contextual entity (i.e. a person or institution) acting
as a catalyst enabling, facilitating, controlling or somehow affecting the
execution of a process

The details of how these concepts inter-relate vary somewhat from imple-
mentation to implementation but these concepts are present in some form in
all the aforementioned frameworks.

Given that the topic of provenance with respect to the linked data web
is currently in a state of flux, we leave a full and rigorous integration of the
Similarity Ontology with a provenance framework to future work. However,
such integration can be considered rather trivial if we consider that the Ar-
tifact, Process, and Agent concepts will be a part of any useful provenance
framework. The sim:AssociationMethod concept corresponds to a Process
in a provenance framework and the sim:Association concept corresponds
to an Artifact. We would simply treat the sim:AssociationMethod con-
cept as a Process concept in the given provenance framework and treat the
sim:Association concept as analogous to the Artifact concept in the given
provenance framework.

In the interim, we provide a very basic method for dealing with prove-
nance in the Similarity Ontology by employing some simple concepts from
the FOAF Ontology10. We quite simply bind some foaf:Agent to a given
sim:AssociationMethod using the the foaf:maker property. In this way
we simply state who is behind a given similarity derivation process. This ap-
proach is practical but simplistic and provides very little recourse for avoid-
ing spam or forgery of similarity statements. However, this simple approach

provenance_incu
10see http://xmlns.com/foaf/0.1/
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could perhaps be sufficient in combination with the WOT RDF vocabulary11

which allows agents to sign statements using Public Key Cryptography. Fur-
ther explorations of provenance issues are beyond the scope of this thesis and
left to future work.

5.2.5 Workflows

With the sim:AssociationMethod concept we have seen how we can make
statements about the nature and provenance of a large plurality of asso-
ciation statements. We can potentially go even further and make these
methods transparent by including information about the association deriva-
tion workflow. We will bind a description of a workflow to an instance of
sim:AssociationMethod using the sim:workflow property. First we will
discuss some previous work related to workflow modeling.

Workflow Modeling Frameworks

Workflow systems have attracted considerable attention in the research com-
munity [Taylor, 2007]. Scientific workflows that enable in silico experimenta-
tion are of paramount interest. The science of workflow management began
with the automation of business processes and has evolved into one of the
most important areas of e-science with an emphasis on the facilitation of
process re-use, the leveraging of distributed resources, and the sharing of
practical know-how. A recent informal search discovered over 75 unique
workflow management systems on the web [De Roure et al., 2009]. We will
only review a handful of the most relevant of these systems here.

Many of the most popular workflow management systems provide a rich
graphical user interface allowing users to author workflows visually. Exam-
ples include the Kepler Project12 [Altintas et al., 2004], Taverna [Oinn et al.,
2004], and Trident [Barga et al., 2008]. These projects are of particular note
as they excel at the creation of workflow templates and the translation of
these templates to workflow instances. A workflow template describes the
steps and order of the process without identifying particular end points of
service or execution code while a workflow instance binds to concrete exe-
cutions. The Kepler Project provides a java-based application that allows
the user to specify a workflow involving remote data sources and compu-
tational resources and then execute the workflow. The Taverna framework

11http://xmlns.com/wot/0.1/
12see http://kepler-project.org
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has a focus on bioinformatics and facilitates the use of open resources avail-
able on the web. These resources tend to be highly heterogeneous and there
is no contract in place to ensure quality of service. However, the Taverna
framework is able to accommodate this heterogeneity and provides over 3500
bioinformatics-oriented operations.

While the frameworks mentioned so far focus on constructing workflow
templates and executing workflow instances, the myExperiment Virtual Re-
search Environment focuses on sharing and re-using workflows [De Roure
et al., 2009]. The myExperiment site leverages some semantic web technolo-
gies to enable a scientific workflow-centric social network where users publish,
share, and re-use scientific workflows. A multiworkflow approach is adopted
allowing users to specify workflows in any manner they deem appropriate.
This approach anticipates a future where workflows from various frameworks
can be reconciled providing maximum interoperability. However, at the time
of writing, most myExperiment users seem to favor the Taverna workflow
modeling approach and, to the best knowledge of the authors, very little
inter-framework interoperability currently exists.

A variety of workflow frameworks with an emphasis on music analysis
have been developed. The knowledge management system purposed by Pa-
chet [2005] makes use of a data model very similar to that of RDF and
allows for fields13 to be computable. However, the system is not explicitly
intended for workflow modeling and it is a centralized system. The music-to-
knowledge (M2K) provides a music informatics prototyping and evaluation
platform that allows for the graphical specification of workflows operating on
multimedia data [Downie et al., 2005]. Operations are visualized as nodes
in a graph structure with inbound and outbound links specifying data flows.
Workflows can be executed within the M2K system, however the sharing of
workflows externally is not possible. The MARSYAS framework provides
robust facilities for distributed music processing. However the dataflow net-
works used in MARSYAS are closely coupled to implementation details and
do not provide an abstract workflow model.

The music knowledge management framework first purposed by Abdallah
et al. [2006] is centered around a “knowledge machine” that can execute
various processing steps on demand and table the results for later re-use.
This system later evolved into a concrete workflow representation framework
based on an extension of N3 called N3-Tr [Raimond, 2009]. Recall that N3
(discussed in section 4.2.4) is an extension of the RDF model that allows for
the existence of RDF graphs (a set of triple statements) as quoted of formulæ.

13Here a field corresponds to an object in an RDF triple statement.
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In N3-Tr, special “built-in” predicates specify a workflow process. The inputs
and outputs of processes are specified along side these built-in predicates
and grouped together as graphs. Concepts from concurrent transaction logic
[Bonner and Kifer, 1996] are added to N3 to allow for operations within a
graph to occur concurrently using the predicate ctr:cc. The Henry resource
described in section 4.6.1 is an implementation of an N3-Tr agent. We make
use of the N3-Tr framework in the example workflows we present here.

Rules and Proofs

In some instances an association is based on a complex workflow for example
in the context of audio-based similarity between audio signals. In other
instances an association is based on something much simpler, for example two
music artists might share an association based on the fact they are from the
same hometown. In these simpler scenarios a full-blown workflow framework
is probably not appropriate.

The extensions of the RDF model provided by N3 allow for the specifica-
tion of inference rules using the predicate log:implies. We have described
the N3 model in section 4.2.4 and additional information can be found in
Berners-Lee et al. [2007]. We make use of N3 rules in chapter 6 for evaluat-
ing our framework against similarity models from cognitive psychology.

In addition to N3 rules, a vast variety of rule languages exist and many are
intended to interoperate with RDF. The Rule Markup Language (RuleML) is
a markup language developed to express rules in XML for deduction, rewrit-
ing, and inferential transformations [Boley et al., 2001]. The SWRL frame-
work [Horrocks et al., 2004] is a W3C submission which combines OWL and
RuleML to provide a rules language for the semantic web. The Proof Markup
Language provides a sort-of middle ground allowing for a simplified workflow
modeling in that it allows us to relate a conclusion with the corresponding
premises and axioms used to derive the conclusion [da Silva et al., 2006].
More recently, the Rules Interchange Format (RIF) has become a W3C rec-
ommendation. The aim of RIF is to provide a means for exchanging rules
between the multitude of rule languages and systems that already exist [Bo-
ley et al., 2010]. The rule languages we’ve mentioned here are all based on
the XML syntax and other rule languages can be specified using some di-
alect of RIF. This means any of these rule languages could be applied to our
associations framework using the rdf:XMLLiteral type.
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Workflows and MuSim

We use the sim:workflow property to bind an association method to a work-
flow template. Similar to the open-ended approach adopted by myExperi-
ment [De Roure et al., 2009], we do not place explicit restrictions on how the
workflow should be specified. However, in this work we make use of N3 rules
for simpler scenarios and N3-Tr for more complex workflows.

We can extend listing 5.5 by binding a workflow template to the associ-
ation method. This is done in listing 5.6:

:timbreSimilarityStatement a sim:Similarity ;

sim:element :track01 ;

sim:element :track02 ;

sim:weight "0.9" ;

sim:method :timbreBasedSimilarity .

:timbreBasedSimilarity a sim:AssociationMethod ;

foaf:maker :me ;

dc:description """An algorithmic method for audio-based

similarity based on timbre""" ;

sim:workflow :algorithm .

:algorithm = {

{ { ?signal1 mo:published_as ?track01 .

?signal1 sig:mfcc ?mfcc1 .

?mfcc1 sig:gaussian ?model1 }

ctr:cc

{ ?signal2 mo:published_as ?track02 .

?signal2 sig:mfcc ?mfcc2 .

?mfcc2 sig:gaussian ?model2 } .

(?model1 ?model2) sig:emd ?div .

?div math:lessThan "0.2" } =>

{ _:timbreSimilarityStatement

a sim:Similarity ;

sim:element ?track01 ;

sim:element ?track02 }

}

Listing 5.6: An association method described by a workflow graph.
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In the above example, when we follow the sim:workflow property we
see an RDF graph :algorithm denoted by the { and } characters. This
N3-Tr graph provides a disclosure of the algorithm used in the similarity
derivation process. In this case, Mel-frequency cepstral coefficients (MFCCs)
are extracted and Gaussian mixture models are created concurrently for the
two signals, and an earth mover’s distance is calculated between models. This
is a method commonly used in audio-based signal analysis to derive some
measure of timbre similarity [Logan and Salomon, 2001]. Depending on that
distance, we output a similarity statement. If more details are needed about
a particular computational step, e.g. if we want to gather more information
about the MFCC extraction step, we can look-up the corresponding web
identifier, in this case sig:mfcc.

Here, the N3-Tr formulæ describe the workflow supporting the similarity
statement. Given we are already using a superset of N3, we could fore-go the
use of the sim:AssociationMethod concept and use the log:supports pred-
icate in the N3 framework [Berners-Lee et al., 2007]. However, as we will dis-
cuss in section 5.3.1, binding similarity workflows to the sim:AssociationMethod
concept allows us to make simple, useful queries (i.e.“show me all similarity
derivation methods available in the system”). Furthermore processing work-
flows as part of a query can be complicated due to the lack of interoperability
between workflow frameworks as we discussed in section 5.2.5.

In listing 5.6 we make our association method transparent by specifying
an appropriate N3-Tr workflow. Alternatively we can provide a minimum
amount of information when dealing with a “black box” similarity derivation
processes. Various levels of transparency are illustrated in figure 5.3.

As indicated in 5.3, our framework also supports the grounding of similar-
ity statements directly through the property sim:grounding. This property
associates a similarity statement with the instantiated workflow. When us-
ing sim:grounding we link our association statements directly to a specific
workflow instance with references to the calculated values at each step. Such
a grounding allows us to filter similarity statements on the basis of specific
features of their computation. In the grounded case, we detail explicitly
the results obtained at each step of the workflow. An example of grounded
similarity statement is provided in listing 5.7.

Again, we are using the audio-based timbre similarity workflow but in
this case we know the numerical values of the intermediate calculations. For
example, we can see that the result of the earth mover’s distance calculation
is 0.1.
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:timbreSimilarityStatement sim:grounding

{

{ _:signal1 mo:published_as :track01 .

_:signal1 sig:mfcc _:mfcc1 .

_:mfcc1 sig:gaussian _:model1 }

ctr:cc

{ _:signal2 mo:published_as :track02 .

_:signal2 sig:mfcc _:mfcc2 .

_:mfcc2 sig:gaussian _:model2 } .

(_:model1 _:model2) sig:emd 0.1 .

0.1 math:lessThan 0.2 }

}

Listing 5.7: An example of a similarity statement with some provenance and
transparency.

5.3 A Similarity Commons

The data model provided by the Similarity Ontology allows for lots of flex-
ibility in specifying similarity statements. This flexibility is balanced by
the inclusion of provenance tracking and transparency. By following the
sim:method property in a similarity statement we can find information about
who made the statement and why. When consuming similarity data, we se-
lect statements by deciding which agents and algorithms to trust. While
it is entirely possible to make a similarity statement within this framework
completely anonymously, such statements are likely to be ignored by data
consumers. Instead the statements from trusted agents or transparent algo-
rithmic processes are likely to be selected by data consumers. In a music
recommendation application, this allows for more transparent recommenda-
tions - providing the end user with the source or process used to make the
recommendation. Intuition as well as recommender system research suggest
users are more likely to trust transparent recommendation processes [Celma,
2008].

Beyond the specification of the Similarity Ontology, we envision a broader
music similarity commons where autonomous, semi-autonomous, and human
agents operate in tandem, making similarity statements about music tracks
and artists while providing provenance and justification for these statements.
A simple diagram illustrating how this commons might be structured is pro-
vided in 5.4.
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sim:Association sim:AssociationMethod
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workflow graph

sim:workflow
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sim:grounding

sim:method

nearly

opaque

some
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complete
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Figure 5.3: Using the Similarity Ontology. As additional properties are bound
to our association and association method statements, we achieve
greater transparency.

An enabled client music application publishes the end user’s listening
habits to the web. Similarity agents operate on the web and publish their
own music similarity statements - perhaps consuming the listening habits of
end users as well as other data. These statements refer to specific URIs for
each track and artist. Similarly, the client music application links the content
in the user’s personal collection to URIs using methods such as those detailed
in [Raimond et al., 2008]. This avoids ambiguity - we can be sure that the
similarity statements are referring to the specific resource in which we are
interested. The similarity statements made by various agents are aggregated
into one or more data stores for querying. The client music application,
perhaps responding to a user request, can query the data store for similarity
statements from trusted agents involving the target resource (e.g. a track or
artist). The query returns similarity information that can be used for content
recommendations or playlist generation.
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Figure 5.4: The music similarity commons. Similarity agents operate on struc-
tured data to create similarity statements. Such statements are ag-
gregated in a data store and queried by a client music application to
provide recommendations, playlists, and other functionality.

5.3.1 Similarity Queries

Queries in this similarity commons would be made using the SPARQL query
language which we discussed in section 4.5. The SPARQL specification is a
W3C recommendation and the preferred method for querying RDF graphs.
As mentioned before, the design of the Similarity Ontology allows for the
construction of simple queries to retrieve similarity information. The query
in listing 5.8 retrieves artists similar to a target artist as stated by a specific
trusted method.

Notice we only have to include a triple pattern for our target resource,
a triple pattern for our trusted agent, and a triple pattern to select the
similar artists. Of course this is a very simple example and in real-world
applications we include additional optional patterns and conjunctions for a
more expressive query.

In an initialization step, an application could query available data sources
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PREFIX sim: <http://purl.org/ontology/similarity/>

SELECT ?artists WHERE {

?statement sim:method <http://trusted.method/uri> ;

sim:element <http://target.artist/uri> ;

sim:element ?artists .

}

Listing 5.8: A SPARQL query for similarity statements specifying a trusted
derivation method.

to determine exactly what association methods and asserting agents are avail-
able. The application would use a query similar to that in listing 5.9.

PREFIX sim: <http://purl.org/ontology/similarity/>

SELECT DISTINCT ?method WHERE{

?method a sim:AssociationMethod .

}

Listing 5.9: A SPARQL query to retrieve a list of available association methods.

The application could then filter through the results and, perhaps with
some input from the end-user, decide which similarity agents to trust.

5.3.2 Similarity and Recommendation

While we hold that similarity is the basis of recommendation, we also ac-
knowledge that similarity and recommendation are not identical. By no
means does the similarity commons proposed here solve the problems of
recommender systems - rather it provides a new distributed cross-domain
platform on which future recommender systems might be built.

While an item-to-item recommendation system fits quite naturally into
this similarity commons, we can also imagine a collaborative filtering-style
user-item recommendation system. Each user in the system is treated as an
sim:AssocationMethod instance. Each user’s method makes a set of state-
ments asserting that the tracks found in that user’s personal collection are
similar to each other. Then an additional sim:AssocationMethod instance is
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used to match users with each other based on the contents of their respective
music libraries. Finally, for a given user, the recommendations for that user
are an aggregation of the similarity statements derived from the association
methods bound to the most similar users.

Also note that the similarity commons fosters hybrid recommendation
approaches. Because the similarity statements are made using common se-
mantics and syntax, we can easily combine and compare these statements to
derive recommendations or new similarity statements.

5.4 Summary

We have presented an ontological framework for describing similarity state-
ments on the web of data. This ontology is extremely flexible and capable
of expressing a similarity between any set of resources. This expressiveness
is balanced by transparency and provenance, allowing the data consumer to
decide what similarity statements to trust. We have shown hows this frame-
work could exist as the foundation for a broader music similarity commons
where autonomous, semi-autonomous, and human agents publish a wealth of
similarity statements which are combined, consumed, and re-used based on
provenance, trust, and application appropriateness.

We have suggested how similarity algorithms can be made transparent.
We have adopted the N3-Tr syntax for describing similarity derivation work-
flows. In future work we plan to extend this syntax and the supporting on-
tologies to better enable the publication of similarity derivation workflows.
Furthermore we hope to develop a series of recommendations for best prac-
tice when publishing such workflows to maximize their usefulness and query-
ability.

While our Similarity Ontology was designed with music similarity in
mind, it is by no means limited to the domain of music. We leave it to
future work to explore how this framework might be applied in different
domains and across domains. The similarity framework described here is
made specific to music in the instantiation of sim:AssociationMethods and
other supporting concepts that further define a similarity statement. The
same approach could be applied to other domains such as literature, film, or
entertainment.

An evaluation of the Similarity Ontology and our associations framework
is provided in chapter 6.
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Chapter 6

Evaluation

Whenever there is a simple error that most laymen fall for, there
is always a slightly more sophisticated version of the same problem
that experts fall for

–Amos Tversky, Israeli cognitive psychologies (1937-1996)

In chapter 5 we developed the Similarity Ontology and presented our vision
for a web-scale similarity commons. Here we provide some evaluation of this
ontology and the similarity framework. The design of the Similarity Ontol-
ogy is minimalistic and it provides only a very few broad concepts. Of course
this can be viewed as both a strength and weakness of the ontology. When
discussing the similarity framework we include the formalisms, methodolo-
gies, and some of the additional vocabularies that exist in the linked data
world. In this sense our evaluation is still an ontology evaluation but now
includes not only the Similarity Ontology but additional ontologies as well.

We briefly review a variety of ontology evaluation methods in section 6.1
and then adopt a task-based approach to show how the Similarity Ontology,
along with the expressiveness of N3, is flexible enough to accommodate the
most popular psychological models for similarity perception in section 6.2.
In section 6.4 we show how the music artist networks described in chapter 3
could be modeled in a uniform manner in our similarity ecosystem.

While we provide a direct task-based evaluation of our similarity frame-
work in this chapter, we provide an indirect evaluation of our framework in
section 7.5.3 via a system usability scale survey for an end-user application
based on the Similarity Ontology.
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6.1 Ontology Evaluation Techniques

Ontology evaluation is an important topic with respect to the semantic web
- we must have some notion of which ontologies are most appropriate to use
and re-use for particular applications. To this end a variety of domain and
task-independent evaluation methodologies have been developed [Vrandečić,
2009]. These methods focus on the structure of ontologies and develop met-
rics based on network analysis tools similar to those we applied to music
artist networks in chapter 3. For example the AKTiveRank system develops
a set of metrics based on the number of property edges incident to a concept
(degree) and the centrality of concepts in the ontology structure (betwee-
ness) [Alani and Brewster, 2006]. However, these methods necessarily ignore
the quality of the domain modeling. Given our ontology is very small and
minimalistic such evaluation methodologies are not particularly apt.

Alternatively domain-specific ontology evaluation methods focus on how
well a given ontology models the target domain. A variety of domain-specific
ontology evaluation methods are surveyed in [Obrst et al., 2007]. For example
we might use a set of criteria to have humans assess an ontology by hand as in
[Smith et al., 2005]. However, this is a time consuming process that involves
human subjects and the minimalistic nature of the Similarity Ontology would
make formulating appropriate questionnaires difficult.

Instead we focus on a task-driven evaluation of MuSim as advocated by
[Brewster et al., 2004]. We use two major tasks for this evaluation. First
in section 6.2 we attempt to compare our modeling to the reality of similar-
ity perception as described in the psychology literature. We describe four
different models of similarity cognition pulled from the cognitive psychology
literature and show how the Similarity Ontology can accommodate these
models. Second we revisit the variety of music artist networks found on the
web that we discussed in chapter 3 and show how MuSim can be used to
model these artist networks.

6.2 MuSim and Psychological Models of Sim-

ilarity

Similarity has long been an important topic in experimental psychology. Hu-
man judgements of similarity are a fundamental part of cognition - our sense
of similarity allows us to order things in to kinds and in this respect is similar-
ity judgements enable learning, knowledge, and thought. This philosophical
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perspective on the importance of similarity is better articulated in a variety
of important works [Shepard, 1982; Tversky and Gati, 1982; Quine, 1969;
Tenenbaum, 1996].

A multitude of experimental studies have examined the topic of human
similarity judgements [Heit and Rubinstein, 1994]. These experimental stud-
ies have given rise to a variety of models that explain human similarity judge-
ments. We will examine the four most pervasive models of similarity as
selected by [Goldstone and Son, 2005]: geometric models, featural models,
alignment-based models, and transformational models.

As a means of evaluating the flexibility of our similarity framework, we
attempt to impose the constraints of each psychological model with the tools
available in our framework. It should be noted that the modeling examples
provided here are probably not in-line with what a pratical application might
employ. Instead, these are intended to demonstrate the flexibility of the
system.

6.2.1 Geometric Models

Geometric models of similarity have been perhaps the most influential ap-
proaches to analyzing similarity. In geometric models relations between en-
tities are modeled with some distance function that satisfies the triangle
inequality. That is where A, B, and C are some entities and d(A,B) is
dissimilarity between A and B we have

d(A,B) + d(B,C) ≥ d(A,C) (6.1)

The statistical techniques of multidimensional scaling are often applied to
a set of empirical pairwise dissimilarity judgements to attempt to determine
the dimensions and dimensional values that subjects use to make similarity
judgements [Richardson, 1938; Torgerson, 1965; Shepard, 1982].

Note that a set of entities and an inter-entity distance function that sat-
isfies the triangle inequality constitutes a metric space. There is a wide body
of research and some very important applications in computer science that
involve searching over metric spaces [Chávez et al., 2001].

We can partially model a metric space scenario quite easily using MuSim
RDF. Let us suppose we have a set of three entities we’ll call :A, :B, and :C.

However, this modeling does not impose the triangle inequality require-
ment. We can use the added expressiveness of N3 to impose the triangle
inequality as in listing 6.2.
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:Similarity0 a sim:Similarity;

sim:element :A ;

sim:element :B ;

sim:distance "5.0"^^xsd:float .

:Similarity1 a sim:Similarity;

sim:element :B ;

sim:element :C ;

sim:distance "4.0"^^xsd:float .

:Similarity2 a sim:Similarity;

sim:element :A ;

sim:element :C ;

sim:distance "3.0"^^xsd:float .

Listing 6.1: Geometric similarity in MuSim is modeled simply by including an
appropriate sim:distance value for each similarity statement. How-
ever without the expressiveness of N3 we cannot impose the triangle
inequality restriction

Note that in our approach to modeling metric spaces with MuSim we are
modeling distances between entities rather than modeling positions in the
space. A special case of the metric space is the vector space where each entity
can be modeled as a set of k real-valued coordinates in the space. A vector
space approach is favored in many similarity search applications because the
geometric properties of the space can be exploited. Only coordinate positions
are stored and a series of inexpensive distance functions are calculated at
query time [Chávez et al., 2001]. The Similarity Ontology does not provide a
mechanism for modeling coordinates in a vector space. However, as we will
see in section 7.4 it is quite possible to use MuSim RDF as an output layer
for a vector space similarity database.

In summary, we can say that our similarity framework is capable of mod-
eling geometric similarities but fails for the special case of vector space sim-
ilarities.
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{

?similarity0 sim:distance ?dAB .

?similarity1 sim:distance ?dBC .

?similarity2 sim:distance ?dAC .

(?dAB, ?dBC) math:sum ?dAB_dBC .

{ {?dAB_dBC math:greaterThan ?dAC .}

log:or

{?dAB_dBC math:equalTo ?dAC . } } a log:Truth .

}

Listing 6.2: Using an N3 rule to impose the triangle inequality requirement.

6.2.2 Featural Models

Although geometric models of similarity provide an intuitive approach that
enables some interesting and useful applications, there is a rather large body
of empirical evidence that suggests human perception of similarity is actu-
ally incompatible with the geometric model assumptions. In addition to
the triangle inequality restriction, the geometric model assumes minimality
(d(A,B) ≥ d(A,A) = 0) and symmetry (d(A,B) = d(B,A)).

Systematic violations of these assumptions have been found in experi-
ments on human perception. For example, minimality requires that all ob-
jects are equally similar to themselves. But it has been shown that printed
letters violate this assumption in terms of confusion rates [Nickerson, 1972].
It has also been shown that a non prominent item is perceived as more sim-
ilar to a prominent item than vice versa [Tversky, 1977]. This violates the
symmetry assumption of the geometric model. Finally, it has been shown
that pair-wise similarity judgments simply do not conform to the triangle
inequality assumption [Tversky and Gati, 1982].

These problems with the geometric model gave rise to a set of featu-
ral models for similarity. Similarity is characterized in terms of a feature-
matching process based on weighting common and distinctive features [Tver-
sky, 1977]. If we have entities A and B the similarity between these entities
s(A,B) is given by:

s(A,B) = θf(A ∩B)− af(A−B)− bf(B − A) (6.2)

where (A ∩ B) represents the features A and B have in common, (A −
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B) represents the features A has but B does not, and (B − A) represents
the features that B has but A does not. Similarity is modeled as a linear
combination of the measure of common and distinctive features where θ, a,
and b are weight values that are context dependent. This specific formulation
of the featural model is referred to as the linear contrast model. Alternative
featural models formulate similarity as a ratio function rather than a linear
contrast of features [Eisler and Ekman, 1959], however, here we will focus on
the linear contrast model.

Let us now assume we have two entities identified by :A and :B and we
want to make some assertions about their similarity that conforms with the
linear contrast model. We can model this using the similarity ontology as
shown in listing 6.3:

:Similarity a sim:Similarity;

sim:subject :A ;

sim:object :B ;

sim:weight :SimilarityWeight ;

sim:grounding :FeatureContrasts .

:FeatureContrasts = {

{

:A ?pCommon ?oCommon .

:B ?pCommon ?oCommon .

:A ?pA ?oA .

?pA owl:differentFrom ?pCommon .

?oA owl:differentFrom ?oCommon .

:B ?pB ?pB .

?pB owl:differentFrom ?pCommon .

?oB owl:differentFrom ?oCommon .

:ABcommon a log:List;

log:includes ?pCommon, ?oCommon .

:AminusB a log:List;

log:includes ?pA, ?oA .

:BminusA a log:List;

log:includes ?pB, ?oB .
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:ABcommon :f _:CommonFeaturesScore .

:AminusB :f _:AFeatureScore .

:BminusA :f _:BFeatureScore .

(_:CommonFeaturesScore, _:AFeatureScore) math:difference _:diff .

(_:diff, _:BFeatureScore) math:difference :SimilarityWeight .

} => :Similarity a sim:Similarity;

sim:subject :A ;

sim:object :B ;

sim:weight :SimilarityWeight . }

:f a :builtInPredicate ;

rdfs:comment """a function that returns a similarity score based on a

the size of a list of predicates and objects""" ;

rdfs:range xsd:float .

Listing 6.3: Modeling featural similarity with the Similarity Ontology

The actual similarity statement itself is rather simple - a directed state-
ment is made using the sim:subject and sim:object properties, some
weight value is included, and an N3 graph is provided grounding our simi-
larity statement. However, the grounding graph is somewhat involved. This
graph is simply an implementation of the equation (6.2) in the N3 syntax.
For simplicity we have assumed the weight values θ = a = b = 1 and omitted
them from the N3 graph - including weights would simply require a series of
additional triples involving the math:product property. The property func-
tion :f is analogous to the f function in equation (6.2) and here is simply
specified as a count of predicate-object pairs.

In summary, with the support of some basic N3-enabled algebra, our sim-
ilarity framework is capable of accommodating featural models for similarity
cognition.

6.2.3 Alignment-based Models

Both geometric and featural models neglect the structure of the features
of the entities in question. Geometric models simply focus on inter-item
similarity judgments and treat entities as monotonic. Featural models treat
entities as a “bag of features” and neglect how these features are structured.
More recent empirical data suggests that the structure of features within
entities plays an important role in inter-item similarity [Holyoak and Koh,
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1987; Goldstone, 1996; Markman and Gentner, 1993]. This has given rise to
alignment-based models for similarity where features must not only match
but also correspond, or align somehow to contribute to similarity.

The alignment-based view of similarity is perhaps the most compatible
with the Similarity Ontology modeling. With MuSim we are quite capable of
specifying a multitude of distinct similarities between a pair of items. Again,
consider two entities identified by :A and :B respectively. We can satisfy the
alignment-based model of similarity by simply modeling each aligned feature
as an individual similarity statement as shown in listing 6.4.

:Similarity0 a sim:Similarity;

sim:element :A ;

sim:element :B ;

sim:grounding :Sim0Grounding .

:Similarity1 a sim:Similarity;

sim:element :A ;

sim:element :B ;

sim:grounding :Sim1Grounding .

:Sim0Grounding = {

{ :A :feature0 ?x .

:B :feature0 ?x . } =>

:Similarity0 a sim:Similarity;

sim:element :A ;

sim:element :B .

}

:Sim1Grounding = {

{ :A :feature1 ?y .

:B :feature1 ?y . } =>

:Similarity1 a sim:Similarity;

sim:element :A ;

sim:element :B .

}

Listing 6.4: Modeling alignment-based similarity with the Similarity Ontology
and N3.

In listing 6.4 we see two distinct similarity statements identified by
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:Similarity0 and :Similarity1 respectively. Both statements involve the
same elements :A and :B and both statements are bound to a grounding
graph. In the :Sim0Grounding we see that :A and :B share a common
triple that involves the hypothetical property :feature0 and this implies a
similarity. The :Sim1Grounding graph follows an almost identical pattern
but applies to a distinct hypothetical property :feature1. Modeling these
atomic similarities individually allows us to accommodate the alignment-
based similarity model.

6.2.4 Tranformational Models

A final model for similarity judgments is the transformational model where
similarity is modeled as the cost required to transform one stimuli into an-
other. While this approach has some support from experimental psychology
[Garner, 1974; Wiener-Ehrlrich et al., 1980; Imai, 1977], it is often more
closely associated with artificial intelligence research [Ullman, 1996].

We can create a simple transformation cost function in an N3 graph.
We simply model the transformation cost as the number of triples that are
distinct for the entities in question. If we have items identified by :A and :B,
how many triples must we add or subtract to make :B identical to :A. Such
a formulation is shown in listing 6.5.

:Similarity a sim:Similarity ;

sim:element :A ;

sim:element :B ;

sim:distance :transformation_cost ;

sim:grounding :TransCalc .

:TransCalc = {

{

:A ?pA ?oA .

:B ?pB ?oB .

(?pA, ?oA) owl:differentFrom (?pB, ?oB) .

_:triplesA a log:List ;

log:includes (?pA, ?oA) ;

list:length _:lenA .
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_:triplesB a log:List ;

log:includes (?pB, ?oB) .

list:length _:lenB .

(_:lenA, _:lenB) math:sum :transformation_cost .

} =>

:Similarity a sim:Similarity ;

sim:element :A ;

sim:element :B ;

sim:distance :transformation_cost .

}

Listing 6.5: Modeling transformation-based similarity with the Similarity Ontol-
ogy and N3

In summary, by modeling transformation cost as the difference between
the set of triples that apply to the entities in question, our similarity frame-
work can accommodate the transformational model for similarity cognition.

6.3 Similarity Scenarios

We can also imagine some music similarity scenarios that might be expressed
using our similarity framework. Many of these scenarios are drawn from the
use-cases developed as a roadmap for the ontological modeling. Although
they are included in this chapter, their only value with respect to evaluation
is to show that our framework satisfies the use cases to which it was designed.

6.3.1 Multifaceted Audio-based Similarities

As first mentioned in section 3.2, a variety of techniques for algorithmically
determining the musical similarities between audio signals have been devel-
oped [Logan and Salomon, 2001; Tzanetakis and Cook, 2002a; Berenzweig
et al., 2004; Cano et al., 2005b; Jacobson, 2006; Pampalk, 2006]. In addition
to methods for overall musical similarity, a variety of methods have been
developed for extracting high-level musical features from audio signals, char-
acterizing a music signal by its timbre [Logan, 2000], harmony [Bello, 2003],
rhythm [Gouyon and Dixon, 2005; Davies, 2007], or structure [Levy et al.,
2006].
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In our similarity framework, we can combine similarity statements from
a plurality of algorithms or even chain high-level musical features with a
set of rules to derive similarity statements. In section 7.3 we develop a
knowledge base that combines audio-based rhythmic similarity statements
[Foote et al., 2002] along with audio-based timbre similarity statements [Levy
and Sandler, 2006], and algorithmically derived tonality [Noland and Sandler,
2007] estimates to navigate a collection of public domain classical recordings.

6.3.2 Contextual Similarity

Because music is a complex construct deeply ingrained in culture and society,
we might want to make music similarity statements that relate to the context
of musical works rather than the content of the musical works themselves.
Similar scenarios exist in other domains as well, but for now let us consider
an example from popular rap music. In the mid to late 1980s a series of
songs were released disputing the place of origin of the musical genre hip hop
launching a multi-faceted feud that became colloquially referred to as The
Bridge Wars1. By simply creating an association method that asserts simi-
larities between artists and tracks related to this feud we can accommodate
this scenario.

For example, Marly Marl and MC Shan released a track entitled “The
Bridge” alleging hip hop started in Queens Bridge. South Bronx resident
KRS One disagreed and responded by releasing a track entitled “South
Bronx”. We could encode this situation as shown in listing 6.6.

:rapFeudTracks

a sim:Association ;

sim:element [dc:title "The Bridge"; a mo:Track] ;

sim:element [dc:title "South Bronx"; a mo:Track] ;

sim:method :rapFeudSimilarity .

:rapFeudSimilarity

a sim:AssociationMethod ;

foaf:maker [a foaf:Agent] ;

sim:description :algorithm ;

:algorithm = {

?track01 rap:response ?track02 }

1http://en.wikipedia.org/wiki/The_Bridge_Wars
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Listing 6.6: The Bridge Wars modeled using MuSim and N3.

where rap:response represents the common practice of releasing a track as
a response to another track.

6.3.3 Personal Associations

The emotional affect of music can be highly personal. A set of associations
between music artists or tracks might be unique for one particular individ-
ual. Consider the following statement, “When a first year student at college,
I dated a girl who listened to Bob Marley and David Bowie” - while this
association between David Bowie and Bob Marley might hold weight for the
narrator, it is likely that few other individuals would share this association.
However, the narrator, for any number of reasons, may wish to express this
association anyway. This is entirely possible in our ontological framework.
The narrator can simply create an sim:AssociationMethod that asserts sim-
ilarity statements based on the musical taste of his ex-girlfriend.

6.4 Artist Associations in the Similarity

Framework

In chapter 3 we reviewed seven distinct resources on the web that could be
used to construct music artist networks. In these networks a music artist
is modeled as a node. Edges are formed between music artists based on
the presence or absence of some relationship (e.g. collaboration, calculated
similarity, influence, etc.). The web resources and the associated relationships
between artists include:

• Classical Music Navigator - influence

• All Music Guide - editorial similarity, influence, collaboration

• Discogs - appeared on same release

• MySpace - top friend, audio-based similarity

• SoundCloud - following

• Echonest - web-mined similarity
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• Last.fm - collaborative-filtering derived similarity

Again, we have seven distinct sources of information but because some
websites provide multiple types of inter-artist relationships we have ten dis-
tinct relationship types. With the Similarity Ontology we model each re-
lationship type as a sim:AssociationMethod. We use the foaf:Agent

concept to model each source website and bind that to the appropriate
sim:AssociationMethod. Then for each artist graph, each edge becomes
a sim:Association statement (we use the broader sim:Association rather
than sim:Similarity to accommodate the influence and collaboration re-
lationships. Each association edge is then bound to the appropriate artist
nodes (modeled as mo:MusicArtist instances) using the sim:element prop-
erty for undirected edges or the sim:subject and sim:object properties if
the edges are directed. An example of this modeling is provided in appendix
B.

6.5 Summary

We have provided a task-based evaluation of the Similarity Ontology and
the proposed similarity framework. It is shown that, when coupled with the
expressiveness of N3, the Similarity Ontology can accommodate a plurality
of the purposed models human similarity perception. The notable exception
being the vector space approach - where items are modeled as points in
space rather than modeling inter-item dissimilarities. The modeling of the
various music artist networks found on the web using the Similarity Ontology
provides another important task-based evaluation.

Additional evaluation of our framework is provided via the evaluation
of a web application based on the Similarity Ontology. This user survey
evaluation is described in section 7.5.3 and a variety of applications based on
the work in this thesis are described in chapter 7.
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Chapter 7

Applications

The wise musicians are those who play what they can master.

–Duke Ellington, American composer and musician (1899-1974)

We now turn our attention to describing several applications that have been
enabled by the artist network analysis described in chapter 3, the seman-
tic web technologies described in chapter 4, and the similarity framework
described in chapters 5 and 6.

In section 7.1 we describe the Classical Music Universe application for
visualizing and exploring influences between classical composers. In section
7.2 we develop the k-pie graph visualization algorithm and apply to the
creation of an interface for exploring MySpace artists. In section 7.3 we
describe a data set of public domain classical music recordings where audio-
based similarities and composer influence have been modeled in MuSim. In
section 7.4 we describe how audioDB (not developed as part of this thesis)
utilizes the MuSim ontology. Section 7.5 describes the CatfishSmooth web
application which aggregates linked data and re-publishes MuSim statements.
In section 7.6 we further describe our extensions to the DBTune project.
Finally in section 7.7 we describe the on-going LinkedBrainz project and
describe how MuSim is applied to modeling Advanced Relationships from
MusicBrainz.
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7.1 The Classical Music Universe

The Classical Music Universe1 is a tool for visualizing relationships and in-
fluence between classical composers. An RDF translation of composer rela-
tionships are derived from Charles H. Smith’s Classical Music Navigator are
used to construct an influence network - essentially identical to the network
analyzed in section 3.4. The Classical Music Universe application leverages
linked data from DBpedia.org and DBtune.org to provide additional bio-
graphical information about each composer.

7.1.1 Motivation

The motivation for the Classical Music Universe application was mostly re-
lated to exploration. Through its development the application was intended
to explore several factors including:

• the challenges and advantages of building an application based on se-
mantic web technologies;

• the utility of a graph-based user interface for music artist network nav-
igation;

• the performance and utility of various graph layout techniques;

7.1.2 Implementation

The user interface for the Classical Music Universe is shown in figure 7.1.
The main window of the interface contains a visualization of the composer
influence network. Each circle represents a classical composer node. The
size of each circle is logarithmically proportional to the in-degree kin of the
node in the composer influence network. The user can navigate the network
by zooming and scrolling with the mouse and selecting focus on a composer
with a mouse-click. Additional information about the highlighted composer
is presented on the right hand column of the interface. This information
is retrieved by SPARQL queries to DBTune and DBpedia - the application
requires no database of its own relying instead on RDF graphs stored else-
where. Only the coordinates for the network visualization and URIs for each
node are stored locally by the client application.

1available at http://isophonics.net/cmu/ - note at the time of this writing this
application is only supported in the Chrome browser
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Figure 7.1: The Classical Music Universe composer influence visualization inter-
face where each node represents a composer and each edge between
nodes represents an influence relationship.

The first version of the application ran as Java stand-alone application
using the Processing2 visualization libraries. The final version is based on
Javascript and the ProcessingJS3 framework - running inside the web browser
and making asynchronous calls to a Python web server that aggregates linked
data.

In its original incarnation, the application was primarily a means of ex-
ploring the utility of different graph layout algorithms with respect to the
visualization of small music artist networks (recall the CMN network only
contains 426 nodes).

The Classical Music Universe implements three graph layout options.
The k-cores decomposition layout [Alvarez-Hamelin et al., 2006], the
Fruchterman-Reingold force-directed layout [Fruchterman and Reingold,

2see http://processing.org/
3see http://processingjs.org
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1991], and the Kamada-Kawai layout [Kamada and Kawai, 1989]. The k-
cores decomposition layout algorithm is based on dividing nodes into shells
according to their k-coreness and positioning nodes within a shell in a co-
centric circle. The k-core approach to graph decomposition is described in
detail in section 7.2.1. The Fruchterman-Reingold and Kamada-Kawai layout
algorithms are both examples of force-directed graph layout algorithms where
physical models of forces between edges and nodes are applied to “push” el-
ements of the graph into a state of equilibrium. In both algorithms, nodes
are represented as steel rings and edges are springs between them. The
attractive force is analogous to the spring force and the repulsive force is
analogous to the electrical force. In the Fruchterman-Reingold algorithm,
the sum of the force vectors determines the direction a node should move
and a step width constant is set to determine how far a node should move
in each iteration. A “global temperature” control is used to set the step
width and ensure the algorithm terminates. The Kamada-Kawai algorithm
achieves energy minimization by calculating the derivative of the force equa-
tions. When the derivative of the force equations are zero, minimum energy
has been achieved. Of course the force equations are not independent so only
the node with the maximum gradient value is moved in a single iteration.
The process is repeated until the total energy is minimized.

7.2 K-Pie Graph Visualization

The k-pie algorithm is a rather intuitive extension of the network visualiza-
tion algorithm k-core decomposition developed by Alvarez-Hamelin et. al in
[Alvarez-Hamelin et al., 2006]. The k-core decomposition algorithm begins
with a k-core analysis on a given graph structure and places vertices in a 2
dimensional space using a pair of polar coordinates - a radius related to the
shellness of a given vertex and an angle related to the cluster of that vertex
after k-cores analysis. We will review these concepts in more detail in section
7.2.1.

7.2.1 The K-Pie Algorithm

To describe the k-pie algorithm first we will provide some definitions and
concepts associated with the k-core decomposition algorithm.
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Definitions

Let us consider a graph G = (V,E) where |V | = n vertices and |E| = e
edges. As described in Batagelj and Zaversnik [2002], a k-core is defined as
follows:

• A subgraph H = (C,E|C) induced by the set C ⊆ V is a k-core or a
core of order k iff ∀v ∈ C : degreeH(v) ≤ k, and H is the maximum
subgraph with this property.

• A vertex i has a shellness c if it belongs to the c-core but not to the
(c+ 1)-core. We denote the shellness of vertex i by ci.

• A shell Cc is composed of all vertices whose shellness is c. The maxi-
mum value c such that Cc is not empty is denoted cmax. The k-core is
then the union of all Cc with c ≥ k.

It is important to note the distinction between a k-core and a k-shell - a
k-shell implies a certain range of vertex degrees while a k-core only implies
a lower limit to vertex degree. We are more interested in k-shells for our
visualization algorithm.

In the k-core analysis all vertices of a connected graph belong to the 1-
core. In figure 7.2 this is indicated by the largest line encircling the entire
graph. Then, all vertices of degree d < 2 are recursively cut out. In Figure
7.2 these are the blue vertices and they constitute the 1-shell. All other
vertices maintain a degree of d ≥ 2 after pruning the blue vertices, and are
not eliminated in this step. The remaining vertices form the 2-core, enclosed
by another dotted line. In the next step vertices with degree d < 3 are
pruned revealing the 3-core. Note that cmax = 3 in the graph in Figure 7.2
as after pruning no vertex has a degree d > 3. Also note that the coloring of
the vertices in the Figure indicate their shellness.

In addition to the above definitions, let us also consider that each vertex
i has a label associated with it li and L is the set of all labels found in the
graph G and s is the number of distinct labels found in L.

Layout Equations

The k-pie visualization algorithm positions vertices in 2 dimensional space.
The position of each vertex depends on its shellness and its semantic label.
Each vertex i is positioned using a pair of polar coordinates (ρi, αi). The
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Figure 7.2: The k-core decomposition for a small graph. Each closed line con-
tains the set of vertices belonging to a given k-core, and the color of
the vertices distinguish different k-shells.

radius ρi depends on the shellness of i and that of its neighbors while the
angle αi depends on the label associated with i. In the resulting visualiza-
tion, k-shells are presented as layers of concentric circles with the innermost
circle corresponding to the vertices with the highest shellness. Then vertices
sharing the same label are positioned within in a certain angular range. This
creates pie-like ‘slices’ of vertices sharing the same label across the k-shell
layers. Hence the name of the algorithm k-pie.

The calculation of ρi is as follows:

ρi = (1− ε)(cmax − ci) +
ε

|Vcj ≥ ci(i)|
∑

j∈Vcj≥ci(i)
(cmax − ci) (7.1)

where Vcj ≥ ci is the set of neighbors of i having shellness cj greater or equal
to ci. The parameter ε is a tuning parameter to control the possibility of
rings overlapping.

Then, the angle αi is calculated as follows:

αi = 2π
∑

1≤m<li

|Lm|
n

+N

(
|Lli |
2n

,
2π|Lli |
n

)
(7.2)

where L is an ordered list of the labels in the graph and |Lm| is the number of

vertices with the label m, N is a normal distribution of mean
|Lli |
2n

and width
2π|Lli |
n

. Assuming L is an ordered list of labels, referring to m < li allows us
to allocate the appropriate portion of the angular space to a given label.
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Color and Size of Vertices and Edges

The size of each vertex in the visualization corresponds to the logarithm of
its degree. Generally, the larger (higher degree) vertices be nearest the center
of the visualization although it is possible for a higher degree vertex to exist
in one of the more outer shells - this is especially true when the network does
not exhibit assortative mixing with respect to degree (see section 2.1.7 for
an explanation of assortativity).

The coloring of the vertices is related to the label associated with each
vertex. Each distinct label found in L is given a unique color.

The drawing of edges can be considered optional. In fact drawing all the
edges in a larger graph will result in an unintelligible tangle. With no edges
drawn at all, the resulting visualization is still useful. A homogeneously
randomly sampled fraction of edges can be drawn to help convey the sense
that the visualization is of a network, not just some grouping of nodes. This
approach does not add to computational cost significantly and is used in
[Alvarez-Hamelin et al., 2006]. A more computationally expensive approach
is to only draw edges with a higher betweenness centrality - those edges
which are found more often in the shortest paths between a pair of vertices
[Freeman, 1977].

Complexity

The k-pie algorithm has a complexity that is nearly identical to that of k-
core decomposition. If we assume no re-ordering of L we can index our list
of labels for the angular calculation in O(s ∗ n) where s is the number of
labels. Generally s will be small compared to n the number of vertices. The
k-core decomposition takes time O(n + e) - O(n) to build a list of vertex’s
degree and O(e) to perform the pruning in the recursive decomposition step
where e is the number of edges. So our total time complexity for k-pie is
O(s∗n+n+ e) or simply O(n+ e) if the number of distinct labels s is small.

7.2.2 K-Pie Music Artist Browser

The k-pie algorithm could be applied to most any graph-like data that in-
cludes vertex labels of some kind. Here we will discuss the application that
motivated our development of k-pie - visualization of the MySpace artist net-
work. This application was created as a demo and was never released and is
not currently maintained.
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As discussed in section 3.6 the MySpace artist network consists of a subset
of the MySpace social network that includes only users who specify that
they are “artists”. A network is constructed from the directed “top friend”
relationship between pairs of artists. This relation is chosen over the general
undirected “friend” relation because it is assumed to be more meaningful
and salient in terms of musical similarity. That is to say, a “top friend”
relationship is more likely to imply some musical relationship between two
artists - collaboration, co-membership, or stylistic influence.

Figure 7.3: k-pie layout visualization of a sample of the MySpace artist network
where the slices and vertex colors correspond to genre labels. Note
that genre label text is only printed for genre labels that constitute
> 1% of vertex labels.

We can see the results of the k-pie visualization of this data set in Fig-
ure 7.3. Each vertex represents a music artist and the color of each vertex
indicates the primary genre label associated with that artist. This data set
contains n = 15, 019 vertices (music artists) and e = 114, 606 edges (top
friend relations) and s = 106 labels (genre). Note in this visualization we
have opted not to draw edges at all as a stylistic choice. Notice that a few
highly connected music artists gravitate towards the center belonging to the
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highest k-shells around cmax = 29. However the shells immediately lower
than cmax are mostly empty. This behavior is indicative of scale-free net-
works where the cumulative degree distribution follows a power law decay -
Pc(d) ∼ d−(α−1) Newman [2003b]. Also note that the highly connected ver-
tices in the center k-shells constitute a “rich club” where the music artists
with the highest degree values are also connected to each other Costa et al.
[2007]. We can also get a sense for what musical genres dominate this sam-
ple of the MySpace artist network. We can see that “Hip Hop” (yellow) and
“Rap” (bright green) account for nearly half of all the genre labels in the
data set. We also see that the rich club in the center of the visualization in-
cludes vertices with genre labels “Hip Hop”, “Rap”, “Soul”, “Reggae”, and
“Hardcore” - a somewhat surprising addition to the list. Note that the genre
label appears as text only for those genre labels that are associated with
more than 1% of the vertices in the network. The data set actually includes
106 unique genre labels and therefore the visualization contains 106 distinct
colors. However, it can be exceedingly difficult for the viewer to accurately
distinguish between so many colors therefore text labels are used in favor of a
color legend. The vertices are drawn to be translucent so the viewer can get
a better sense vertex concentration where vertices fall on top of one another.

7.3 Public Domain Classical Recordings

As a proof-of-concept implementation for the similarity framework described
in chapter 5, we collect a small set of public domain classical music recordings
and some associated metadata, apply some similarity derivation methods,
and publish the data set in a SPARQL endpoint.4

The audio recordings were collected from the Musopen5 website which
curates a collection of public domain recordings of classical music. Unfortu-
nately, the metadata associated with these recordings was not very consis-
tent. Determining who composed the piece, who performed the piece, and
who conducted the piece was not straight-forward. For this application we
were primarily concerned with associating composers with audio recordings
and side-stepping the FRBR details of accurate Music Ontology modeling.
For this reason we introduce the ov:composer property which associates a
mo:Track with artist who is credited with the composition. The noisy and
incomplete metadata of the Musopen recordings was matched against the
list of classical composers from the Classical Music Navigator website dis-

4see http://classical.catfishsmooth.net/about/
5see http://musopen.org/
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cussed in section 3.4. These composers are in turn matched with appropriate
resources in the MusicBrainz database.

The CMN resource already provides us with influence relationships be-
tween composers. We model these relationships as blank nodes of type
sim:Association and bind these associations to a URI6 we mint ourselves
which identifies the Classical Music Navigator influence association method.

We apply two additional association methods that are based on audio
signal analysis. Audio signal analysis was performed on the audio files us-
ing the Sonic Annotator software7. Sonic Annotator allows for audio files
to be batch processed with any Vamp audio analysis plugin8. With Sonic
Annotator, the signal analysis results can be output in RDF [Cannam et al.,
2010].

Lightweight timbre features are calculated based on the means and vari-
ances of the audio signals’ mel-frequency cepstral coefficients (MFCCs). A
modified Kullback-Lieber divergence calculation is used to calculate an inter-
song similarity measure as described in [Levy and Sandler, 2006]. This com-
prises another sim:AssociationMethod for which we mint another URI.9

Dereferencing this we see the sim:description property pointing to an N3-
Tr graph that uses, among other things, Vamp plugin URIs to disclose the
similarity derivation workflow.

Because our data set is relatively small ( 800 audio files) we perform an
exhaustive comparison but only record similarities where the timbral distance
is below a give threshold.

In addition to timbre features, we use audio analysis to estimate the mu-
sical key of the song. This is done following the tonality estimation approach
outlined in [Noland and Sandler, 2007]. This approach results in a sequence
of key estimations across the entire song. We naively assume that the key
detected most frequently can be selected as the “global” key of the song.
We consider songs similar if they have the same global key giving us a sec-
ond sim:AssociationMethod which we assign a URI.10 Here we also use
the sim:description property to point to an N3-Tr graph disclosing the
workflow.

6the CMN influence association is identified by http://classical.catfishsmooth.
net/resource/cmn-influence

7http://www.omras2.org/SonicAnnotator
8http://www.vamp-plugins.org/
9 the timbre similarity association method is identified by http://classical.

catfishsmooth.net/resource/mv-timbre-sim
10the audio-based key analysis association is identified by http://classical.

catfishsmooth.net/resource/same-key-sim
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With these three sim:AssociationMethods we can make some rather
interesting queries. In listing 7.1 we combine all three notions of similarity
into one query.

SELECT DISTINCT ?dist ?composer_name ?title ?af WHERE

{

# find similarity statements involving timbre with the seed track

?s sim:method <http://classical.catfishsmooth.net/resource/mv-timbre-sim> ;

sim:element <http://classical.catfishsmooth.net/resource/track/362> ;

sim:element ?track ;

sim:distance ?dist .

?track mo:available_as ?af ;

dc:title ?title ;

ov:composer ?composer .

?composer foaf:name ?composer_name .

# must have same key as well

?s2 sim:method <http://classical.catfishsmooth.net/resource/same-key-sim> ;

sim:element <http://classical.catfishsmooth.net/resource/track/362>;

sim:element ?track .

# must have composer who influenced Wagner

<http://classical.catfishsmooth.net/resource/track/362> ov:composer ?c .

?s3 sim:method <http://classical.catfishsmooth.net/resource/cmn-influence> ;

sim:object ?c

sim:subject ?comp2 .

?track ov:composer ?comp2 .

# only return results with a distance less than 8.0

FILTER ( xsd:float(?dist) < "8.0"^^xsd:float ) .

}

ORDER BY ASC (?dist)

Listing 7.1: A query against the public domain classical music dataset involving
three distinct types of similarity.

Starting with a recording of Richard Wagner’s “Die Meistersinger von
Nurnberg” we query for other songs that are similar in terms of timbre, in the
same key, and composed by composers who have influenced Wagner. This
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query and additional queries can be executed using the interactive AJAX
client.11

7.4 MuSim and AudioDB

AudioDB12 is a feature-vector store and query engine for similarity match-
ing in vector spaces, developed from observations about effective methods
for performing similarity search on large collections of audio and other mul-
timedia [Casey et al., 2008; Casey and Slaney, 2006]. It is designed to be
highly scalable and to operate on audio segments - allowing for more gen-
eral searches than simple track-to-track matching. A probabilistic indexing
scheme based on Locality Sensitive Hashing is used such that a single linear
scan of the database can produce an index data structure where retrieval of
similarity results scales sub-linearly with respect to the number of items in
the database even for very high-dimensional spaces.

Although no part of audioDB was developed in support of this thesis, a
recent addition to the software makes use of the Similarity Ontology. In an
effort to incorporate the power of audioDB into the linked data ecosystem, an
RDF store facade was constructed that supports SPARQL queries [Cannam
et al., 2010]. Given that audioDB actually stores feature vectors and that
storing ′(n2) similarity statements would be impractical and unscalable -
the audioDB SPARQL interface actually calculates similarity judgments on
demand. An internal memory storage model is used as a cache to store results
and temporary objects for similarity queries, with audioDB itself accessed for
feature information and to perform similarity searches. The presence of an
triple pattern

However, the audioDB SPARQL support does have some significant is-
sues. In a divergence from the SPARQL recommendation, the ordering of
predicates is critical in the audioDB SPARQL implementation. Note that in
in listing 7.2 the sim:element predicates appear before the sim:distance

predicate. This is required in the current implementation.

Furthermore, the distance querying process compares tracks on an indi-
vidual basis, but for many queries (such as the one in listing 7.3), it would
be possible to perform the query with a single call to audioDB. Adapting the
storage module to support this form of optimization is difficult as statement
templates are supplied individually, and the results are expected immediately.

11see http://classical.catfishsmooth.net/snorql/
12available at http://omras2.doc.gold.ac.uk/software/audiodb/
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PREFIX sim: <http://purl.org/ontology/similarity/>

PREFIX ksa_charm: <http://omras2.gold.ac.uk/catalogue/ksa_charm/>

SELECT ?distance WHERE {

_:s a sim:Similarity;

sim:element ksa_charm:KSA_CHARM_339;

sim:element ksa_charm:KSA_CHARM_309;

sim:distance ?distance.

}

Listing 7.2: SPARQL query to retrieve the distance between two signals

This is particularly inefficient the query in listing 7.3, as every track must be
compared to every other track in separate calls to the backend database.

PREFIX mo: <http://purl.org/ontology/mo/>

PREFIX af: <http://purl.org/ontology/af/>

PREFIX sim: <http://purl.org/ontology/similarity/>

PREFIX ksa_charm: <http://omras2.gold.ac.uk/catalogue/ksa_charm/>

SELECT ?signal ?distance WHERE {

?signal a mo:Signal.

_:s a sim:Similarity;

sim:element ksa_charm:KSA_CHARM_339;

sim:element ?signal;

sim:distance ?distance.

}

ORDER BY (?distance) LIMIT 5

Listing 7.3: SPARQL query to retrieve the 5 signals closest to the input

Also, the query must be written in a specific order to ensure that the
storage model is able to perform the search. As such, sim:Similarity indi-
viduals must be declared prior to any elements, and element predicates must
be declared prior to the distance predicate. The sim:Similarity predicates
should be allowable in any order, but as the distance predicate relies on
knowing the two signals to compare, this is currently impossible.

It should also be noted that the feature import process disregards meta-
data about the feature extractor and source audio. This information must be
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obtained by querying against an additional metadata store. This is straight-
forward when using two queries with two separate SPARQL endpoints, but
techniques to execute queries against multiple endpoints are not yet stan-
dardized.

Although the audioDB SPARQL implementation is not without its faults,
it demonstrates how the Similarity Ontology can be applied to a vector space
query engine as a sort of output layer interfacing with the linked data world.

7.5 CatfishSmooth

CatfishSmooth13 is a web application for browsing the connections between
popular music artists. Connections that are somewhat tangential to music
are presented (e.g. connections related to geographic locations or religious
affiliations) alongside connections that are more music-related (e.g. artists
that play the same instrument).

7.5.1 Motivation

The CatfishSmooth application was motivated by a desire to apply linked
data to music exploration. The aim was to show how a series of relatively
simple SPARQL queries could be used to build a useful end-user application.

7.5.2 Implementation

Each music artist in the application is identified by a URI based on an
appropriate MusicBrainz identifier (these identifiers are described in section
3.9.1). When a music artist’s CatfishSmooth URI is dereferenced by a normal
web browser a user interface similar to that shown in figure 7.4 is presented.

The top section of the interface contains media related to the given music
artist. This media is collected from the YouTube API14 and the Echonest
API15. Then each box in the lower part of the interface represents a set of
associations with other artists. The top green section of the box contains
text that explains the association such as “artists that are also People From

13see http://catfishsmooth.net/
14see http://www.youtube.com/dev
15see http://developer.echonest.com/
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Figure 7.4: A screen shot of the CatfishSmooth web application user interface.

Memphis, Tennessee” or “artists that are also Incarcerated Celebrities”. The
lower gray area is a list of artists that share the given association. Each artist
name in the list links to that artist’s CatfishSmooth URI so the end user can
continue exploring for new artists.

When an artist’s webpage is loaded, data is asynchronously aggre-
gated from various SPARQL endpoints and RDF resources including DB-
pedia (described in section 4.6.2), DBTune (described in section 4.6.1), and
SameAs.org16. This means, in its current form, the CatfishSmooth web ap-
plication does not require any type of database backend. All the data is
stored remotely as linked data.

7.5.3 Evaluation

As a means of evaluating the CatfishSmooth website, and by proxy the simi-
larity framework powering it, a system usability survey was preformed. The

16see http://sameas.org
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Figure 7.5: A listing of music artists who are also incarcerated celebrities.

survey consisted of 10 simple questions based on the system usability scale
where users rate on a scale of 1 to 5 whether they disagree or agree with vari-
ous statements about the system under consideration [Brooke, 1996; Bangor
et al., 2008]. The survey was posted on the website for 30 days starting 2011-
1-19. In total 33 anonymous users participated in the survey. The survey
questions where as follows:

• I think that I would like to use this website frequently.

• I found this website unnecessarily complex.
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• I thought this website was easy to use.

• I think that I would need assistance to be able to use this website.

• I found the various functions in this website were well integrated.

• I thought there was too much inconsistency in this website.

• I would imagine that most people would learn to use this website very
quickly.

• I found this website very cumbersome/awkward to use.

• I felt very confident using this website.

• I needed to learn a lot of things before I could get going with this
website.

In accordance with the classic system usability scale design 10 state-
ments are included and positive statements are interleaved with negative
statements. The responses for the survey are shown in Figures 7.6 - 7.15.

Figure 7.6: Results for question 1 “I think that I would like to use this website
frequently.”

Figure 7.7: Results for question 2 “I found this website unnecessarily complex.”
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Figure 7.8: Results for question 3 “I thought this website was easy to use.”

Figure 7.9: Results for question 4 “I think that I would need assistance to be
able to use this website.”

Figure 7.10: Results for question 5 “I found the various functions in this website
were well integrated.”
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Figure 7.11: Results for question 6 “I thought there was too much inconsistency
in this website.”

Figure 7.12: Results for question 7 “I would imagine that most people would
learn to use this website very quickly.”

Figure 7.13: Results for question 8 “I found this website very cumbersome/awk-
ward to use.”
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Figure 7.14: Results for question 9 “I felt very confident using this website.”

Figure 7.15: Results for question 10 “I needed to learn a lot of things before I
could get going with this website.”
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Scores are summed following Brooke [1996]. Each item’s score contribu-
tion will range from 0 to 4. For items 1,3,5,7,and 9 the score contribution
is the scale position minus 1. For items 2,4,6,8 and 10, the contribution is 5
minus the scale position. We multiply the sum of the scores by 2.5 to obtain
the overall value of system usability (SU) which will be in the range of 0
to 100. For the 33 respondents to our survey the average SU is 75 with a
standard deviation of 18.4. This indicates a generally positive response for
the usability of the CatfishSmooth application.

7.5.4 Future work for CatfishSmooth

In future incarnations of the CatfishSmooth website a triple store backend
will be used. The data aggregated for each artist will be stored locally in
RDF and appropriate association statements will be generated. Each asso-
ciation box on the interface will correspond to a sim:Association state-
ment using the Similarity Ontology. An N3 graph that can be translated
into the SPARQL queries or series of SPARQL queries used to generate the
association box will be bound to the associations statement using as the
sim:grounding predicate. Ultimately, end-users will be able to add their
own associations between music artists with a read/write wiki-like interface.

7.6 DBTune Extensions

As mentioned in section 4.6.1, several extensions to the DBTune project were
implemented as part of this thesis work.

7.6.1 Artist Similarity

The CatfishSmooth web application described in section 7.5 makes use of two
artist similarity services that have been added to DBTune. These services
are both wrappers around web APIs.

Last.fm Artist Similarity

The last.fm artist similarity service17 provides the artist similarity statements
from last.fm as linked data. This is a wrapper around the last.fm API18 that

17see http://dbtune.org/artists/last-fm/
18see http://www.last.fm/api
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translates artist similarities into MuSim RDF. Since last.fm uses MusicBrainz
identifiers, the service makes use of MusicBrainz identifiers to mint URIs for
artists. This makes inter-linking to other artist data easy - links are provided
to the DBTune MusicBrainz service and BBC/music. When dereferenced the
last.fm service provides a series of similarity statements involving the target
artist in MuSim RDF.

Echonest Artist Similarity

The Echonest artist similarity service19 provides very similar functionality
but uses the Echonest artist similarity API20. Again, because Echonest makes
use of MusicBrainz identifiers we use these to mint artist URIs for our ser-
vice. A dereferenced URI returns a series of similarity statements involving
the target artist and links to other resources at DBTune/MusicBrainz and
BBC/music.

7.6.2 Classical Composers

The Classical Composer data set21 provides an array of information about
concepts and individuals related to the canon of Western Classical Music.
This includes the composer influence relations from the Classical Music Nav-
igator discussed in section 3.4 as well as data aggregated from around the
web. This data set is, to some extent, hand curated by Chris Cannam and
provides appropriate links to resources in DBpedia, DBTune/MusicBrainz,
and BBC/Music.

7.7 LinkedBrainz Advanced Relationships

The LinkedBrainz project22 is a JISC-funded project to provide the music
metadata from the MusicBrainz project (first discussed in section 3.9) us-
ing linked data techniques (as described in section 4.6. Although previous
translations of MusicBrainz data into RDF exist (see section 4.6.1) these
mappings do not deal with the Next Generation Schema or Advanced Re-

19see http://dbtune.org/artists/echonest/
20see http://developer.echonest.com/
21see http://dbtune.org/classical/
22see http://linkedbrainz.c4dmpresents.org/
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lationships. The Next Generation Schema or NGS23 is a significant update
to the MusicBrainz data model which, among other things, makes the dis-
tinction between music recordings (a mo:Signal in Music Ontology terms)
and a musical work (a mo:MusicalWork). In this way the Next Generation
Schema actually allows for better alignment of MusicBrainz entities to Music
Ontology concepts. Furthermore, with the LinkedBrainz project, linked data
will be served directly from the MusicBrainz servers - removing a replication
step and hopefully consolidating the variants of music-related URIs based on
MusicBrainz identifiers.

Although the Next Generation Schema maps readily to Music Ontology
concepts the Advanced Relationships present more of a challenge. Recall
that, as described in section 3.9.2, Advanced Relationships allow MusicBrainz
editors to specify associations between pairs of entities in the database. For
example, it is possible to specify that two artists are married to each other
or that they share some other familial relationship. It is also possible to
specify that a recording is a performance of a particular work or that one
recording samples another recording. As of this writing, there are just over
300 Advanced Relationship types in the MusicBrainz database. Some of these
relationships - for example marriage - can readily be described by properties
in existing ontologies24 however other relationships - for example “mashes
up” or “booking support” - are not readily covered by existing ontologies.
It has been proposed25 that such Advanced Relationships be modeled using
the MuSim ontology.

The relational database schema for Advanced Relationships in the Mu-
sicBrainz database is shown in figure 7.16.

In the RDF mapping, each entry in the link type table that does not
readily map to a property in some existing ontology becomes an instance of
type sim:AssociationMethod identified by a URI constructed from the cor-
responding MusicBrainz identifier (each Advanced Relationship has an MBID
that is stored in link type.gid). The values for link type.entitytype0

and link type.entitytype1 become the sim:domain and sim:range of the
sim:AssociationMethod assuming the relationship is directed. For the undi-
rected case, sim:scope is used. The MusicBrainz Advanced Relationships
schema does not clearly distinguish between directed and undirected rela-
tionships. However, a “link phrase” (link type.phrase) is provided in the

23details about NGS can be found at http://wiki.musicbrainz.org/Next_
Generation_Schema

24the rel:spouseOf property is defined in the relationship vocabulary at http://
vocab.org/relationship/

25see proposals at http://wiki.musicbrainz.org/NGS_to_RDF_mappings
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Figure 7.16: Advanced Relathionships database schema for MusicBrainz.

table along with a “reverse link phrase” (link type.r phrase) for present-
ing the relationships in natural language. We can assume that if the values
of these columns are equivalent the relationship is undirected and otherwise
the relationship is directed - although this is not an ideal solution.

To generate a set of association statements a join query is required.
For example a join on the link table and the l artist release table
returns all the associations between artists and releases. These are mod-
eled as a sim:Association and bound to the appropriate method using the
sim:method predicate. A similar approach can be applied to artist-artist re-
lationships, artist-recording relationships, artist-label relationships etc. This
approach has already been applied to create an experimental mapping that
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can be queried via SPARQL26.

Of course one migth argue that a relationship like booking support might
be outside of the scope of association. This can be addressed using the
sim:AssociationMethod modeling approach however as we describe above.
If a particular application or data consumer decides this type of relationship
is out of scope, they can simply exclude statements bound to these association

7.8 Summary

In this chapter we have described various applications developed as part of
this thesis. We begin by describing the Classical Music Universe application
in section 7.1 which uses linked data and graph layout algorithms to create
a browser for discovering classical composers. In section 7.2 we describe the
k-pie layout algorithm which is a graph layout algorithm for graphs with
labeled nodes. In section 7.3 we describe a linked data resource for public
domain classical music that leverages our similarity framework. In section
7.4 we describe the extensions to audioDB which express the results of metric
space similarities using MuSim. In section 7.5 we describe the CatfishSmooth
web application which is largely based on the MuSim model for associations.
Additionally we provide an evaluation in the form of a system usability sur-
vey. We describe various extensions to the DBTune linked data resource in
section 7.6 and finally show how the MuSim framework has been applied to
the LinkedBrainz project in section 7.7.

26see http://linkedbrainz.c4dmpresents.org/snorql
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Chapter 8

Conclusions

Below every tangled hierarchy lies an inviolate level.

– Douglas Hofstadter, Gödel Escher Bach, 1979

We have discussed connections in music. We have examined connections
between music artists as they are currently found on the web and we have
proposed a framework for describing inter-entity associations and similarities
in a distributed fashion as part of the web of data. We have presented
a method for evaluating our framework based on the models of cognitive
pschology and developed several applications for our framework.

In this chapter we will summarize our work, discuss its limitations, and
present ideas for future work.

8.1 Review of Contents

In order to better understand the nature of connections between music-
related entities we provide a survey of music artist networks found on the
web in chapter 3. A review of previous work that has analyzed artist net-
works including the Last.fm artist recommendation network and the various
All Music Guide networks is presented. We then provide original analy-
sis of seven distinct artist networks including the Classical Music Navigator
composer influence network (section 3.4), the Discogs artist-release network
(section 3.5), the MySpace artist top-friends network (section 3.6), the MyS-
pace artist audio-based similarity network (section 3.6.4), the Soundcloud
artist network (section 3.7), the Echonest artist similarity network (section

160



3.8), and the MusicBrainz Six Degrees artist network (section 3.9). All these
networks have some characteristics in common. Most notably they can all be
called “small world” networks in that they have relatively small values for av-
erage geodesic distance (〈d〉) and diameter (dmax) while having a high cluster-
ing coefficient (T ). Whenever the network construction methodology would
allow it, we find networks that are fragmented - with one giant connected
component and many smaller components. This has some strong implications
for using these networks for recommendation and navigation - some artists
will always be unreachable. Other aspects of artist network structure varied
considerably. Some degree distributions approximate a power-law while oth-
ers are closer to an exponential distribution. Some networks are assortative
with respect to degree, others exhibit random mixing or slightly dissassorta-
tive mixing. In some cases the network structure has a rather clear correlation
with popularity (measured in terms of play counts) and in other cases the
network structure is orthogonal to popularity. In summary, applying differ-
ent edge connection criteria to music artist networks can have a drastic effect
on the network structures that emerge. All inter-artist connections are not
created equal.

In chapter 4 we review semantic web technologies and how they have
been applied to the domain of music. We review the particulars of tech-
nologies like the URI (section 4.1), RDF (section 4.2), OWL/RDFS (section
4.3, and SPARQL (section 4.5). We describe the Music Ontology developed
by Raimond [2009] and how its event decomposition approach can be ap-
plied to modeling music-related knowledge. Then we show how linked data
methodologies have been applied to enable a distributed information space
for music-related knowledge.

In chapter 5 we develop our framework for describing inter-entity associa-
tions in this web of data. At the center is the MuSim ontology which adopts a
reification approach to describing similarities and associations. Associations
are treated as a concept rather than a property - allowing additional predi-
cates to be bound to an association and enabling an intuitive and efficient
querying paradigm. We describe how our framework could leverage existing
provenance frameworks and how transparency can be provided through the
enumeration of workflows.

Our association framework is evaluated in chapter 6. Cognitive models
for similarity from the cognitive psychology literature are modeled using our
framework. By combining a set of constraints expressed using Notation 3
logic and the MuSim ontology we are able to accommodate each of the four
cognitive models for similarity we explore. Additional qualitative evaluation
is provided by enumerating a series of use-case scenarios and describing how
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our framework can accommodate these scenarios.

Finally we present a series of applications developed as offshoots of this
thesis work. Some applications are enabled by our work in artist network
analysis, others are enabled by the web of linked data, and still others leverage
our association framework.

8.1.1 Satisfied Requirements

In section 1.3 we outlined a set of requirements for the associations framework
we develop in this thesis. Here we will review this list and discuss how we
have satisfied these requirements.

• Heterogeneous - A wide variety of similarities and associations re-
lated to music can already be found on the web. We surveyed networks
of inter-artist connections found on the web in chapter 3 and demon-
strated the diversity of these network structures. In section 6.4 we
applied our framework to modeling these various artist networks and
provide a proof-of-concept knowledge base.

• Expressive - Similarity and associations are often complex and multi-
faceted. Any pair of entities potentially have an infinite number of
distinct associations between them. Our framework accommodates
multifaceted similarity by allowing for multiple inter-entity associations
based on distinct association methods as demonstrated in section 6.2.3.

• Explicit - The meaning of our associations should be explicit to both
human users and computers and have precise semantics. We achieve
this through the use of the RDF/OWL technology stack with the
sim:AssociationMethod concept being the focal point of our semantic
model as developed in section 5.2.3.

• Auditable - Some connections are grounded in undisputtable facts
while other connections are grounded in opinion while still others are
the result of some algorithmic recommendation process. In our frame-
work we provide a mechanism for provenance as described in section
5.2.4 and for workflow transparency as described in section 5.2.5.

• Distributed - Our framework is intended to be an extension of the
web and as such it must allow for a distributed information space that
joins multiple data sources hosted in multiple places. By using linked
data technologies for our framework we allow for such distribution and
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we describe our vision for a similarity ecosystem in section 5.3 while
providing concrete implementations in sections 6.4, 7.3, 7.6.1, and 7.7.

• Queryable - We must be able to ask questions about associations in
our framework and compute answers in a reasonable amount of time.
This achieved with the SPARQL query language as described in section
5.3.1.

8.2 Limitations and Future Work

Of course, the work presented here is not without its limitations and there
are plenty of opportunities for future work.

8.2.1 Network Analysis

Our work analyzing music-related connections on the web only addresses
artist-to-artist connections. Obviously a much wider variety of node types
are possible when discussing networks of music-related entities. For example
we could consider connections between recordings and other recordings or
connections between artists and listeners. Some analysis of bipartite artist-
listener networks [Lambiotte and Ausloos, 2005] and bipartite artist-playlist
networks [Cano and Koppenberger, 2004; Baccigalupo and Plaza, 2007] has
been performed but these studies focus on one source of information rather
than providing a broad survey of information sources available on the web.

The MusicBrainz data was not analyzed directly in section 3.9. Instead an
artist network used for the Six Degrees web application that was constructed
using MusicBrainz data was analyzed. Future work warrants a more in-depth
examination of the connections found in the MusicBrainz database. This will
hopefully follow from the LinkedBrainz project discussed in section 7.7.

Also it should be noted that our work does not deal with network dy-
namics. We take a snapshot of the artist networks in time and analyze that
snapshot - a static view of the network. Network structures evolve over time
and our work does not address this evolution. Future work should address
this issue by examining variances in multiple static snapshots of the same
network taken over some period of time. Then, this analysis should be re-
peated for several distinct artist networks - as we have done for the static
case.
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Community detection in music artist networks is not addressed in this
thesis but has been addressed in other work [Teitelbaum et al., 2008; Jacob-
son et al., 2008b; Lambiotte and Ausloos, 2006; Gleiser and Danon, 2003].
Applying community detection analysis to the artist network datasets pre-
sented in this work is left to future work.

8.2.2 Parsing Workflows

In our proposed framework for describing inter-entity associations using se-
mantic web technologies we deal with the concept of workflows. The N3
model and the N3-Tr extension are used in this work for modeling work-
flows. However, our association framework does not mandate that these are
the only options for modeling workflows. One reason is that there is a dearth
of tools for parsing N3 and N3-Tr. While very many software libraries sup-
port the parsing of the Turtle RDF syntax, only a very few support full N3
parsing. Some tools that do support full N3 parsing include the Closed World
Machine [Berners-Lee and Connolly, 2000] which supports inferencing based
on N3 rules and Henry (described in section 4.6.1 and developed by Raimond
[2009]) which is a proof-of-concept N3-Tr agent for processing music-related
workflows. These tools could be modified to act as MuSim agents in a music
similarity ecosystem as described in section 5.3 but as of this writing, this
has not been implemented and is left as one of the most pressing items for
future work.

8.2.3 Ontological Extensions

Although implementations of MuSim workflow processing tools are lacking,
ontological developers have already begun to extend the Similarity Ontology
to enable some specific applications. Thomas Gängler has created the As-
sociations Ontology1 and the Recommendation Ontology2 in an effort to en-
able a specific music recommendation application. Both ontologies subclass
concepts from MuSim and use the same reification approach to modeling
associations.

1see http://purl.org/ontology/ao/associationontology.html
2see http://purl.org/ontology/rec/recommendationontology.html
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8.2.4 Visual Interfaces

As part of this thesis we have developed two distinct visual interfaces for
exploring music-related connections. The Classical Music Universe described
in section 7.1 leverages linked data and complex network layout algorithms
to present composer influence connections to the end user in a novel way.
The MySpace music artist explorer described in section 7.2.2 provides a very
similar functionality while implementing the k-pie semantic graph layout
algorithm. However, these interfaces have not been evaluated. An evaluation
of these interfaces and the construction of additional visual interfaces and
faceted browsing interfaces for music-related linked data are left to future
work.

8.3 Summary

We have explored the variety of inter-artist connections found on the web
and provided some insights into the implications of the this heterogeneity.
Semantic web technologies have been applied to the creation of a frame-
work for modeling association and similarity. Motivated by the diversity of
inter-artist connections found on the web, this framework embraces the com-
plexity of inter-entity relationships while providing precise semantics that
enable some interesting applications. We have shown how this framework is
compatible with the models for similarity found in cognitive psychology and
we have developed a series of applications that leverage this framework. Fi-
nally we have discussed the limitations of our present work and opportunities
for future work.

Whether or not the framework developed here will enjoy broad enough
uptake to realize the similarity ecosystem described in section 5.3 remains to
be seen. Convincing music recommendation providers to agree on using this
or any common model is a difficult proposition. Furthermore, such a proposi-
tion is contingent on broader uptake of semantic web technologies in general
- a process that has been slower than expected thus far. Regardless, it is our
hope that this work provides some useful insights into inter-entity connections
in music and has convinced the reader that similarities and associations are
most accurately modeled as compound things rather than one-dimensional
properties.
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Appendix A

Namespaces

The following namespaces are used throughout this work:

@prefix mo: <http://purl.org/ontology/mo/> .

@prefix sim: <http://purl.org/ontology/similarity/> .

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

@prefix dc: <http://purl.org/dc/terms/> .

@prefix math: <http://www.w3.org/2000/10/swap/math#> .

@prefix log: <http://www.w3.org/2000/10/swap/log#> .

@prefix sig: <http://purl.org/ontology/signal/> .

@prefix ctr: <http://purl.org/ontology/ctr/> .

@prefix dbpedia: <http://dbpedia.org/resource/> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

Listing A.1: The set of prefixes that are assumed in the turtle and N3 listings
throughout this work.
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Appendix B

Artist Networks as MuSim

Here we provide a turtle listing that models the music artist networks de-
scribed in chapter 3 using the MuSim ontology developed in chapter 5. Only
one edge from each network is modeled from brevity. The complete modeling
can be found at http://dbtune.org/musim-nets/.

# prefixes in Appendix A are assumed

@base <http://dbtune.org/artists/nets/resource/> .

# myspace top friend network

:myspace_top_friend_assoc_meth a sim:AssociationMethod ;

foaf:page <http://myspace.com> ;

sim:domain mo:MusicArtist ;

sim:range mo:MusicArtist ;

dc:description """Artists i and j share a directed association

(i,j) if i specifies j as a ’top friend’ in

the MySpace artist network.""" .

# randomly selected edge

_:b00 a sim:Association ;

sim:subject <http://dbtune.org/myspace/uid/72415440> .

sim:object <http://dbtune.org/myspace/uid/64991186> .

sim:method :myspace_top_friend_assoc_meth .

# myspace audio-based similarity network

:myspace_audio-based_assoc_meth a sim:AssociationMethod ;

foaf:page <http://myspace.com> ;

foaf:page <http://marsyas.info> ;
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sim:scope mo:MusicArtist ;

dc:description """Artists are associated if their most-played

tracks have an audio-based distance of less

than 0.395 as measured using the MARSYAS tools

on the MySpace artist network.""" .

# randomly selected edge

_:b07 a sim:Similarity ;

sim:element <http://dbtune.org/myspace/uid/203349310> ;

sim:element <http://dbtune.org/myspace/uid/63097726> ;

sim:distance "0.264"^^xsd:float ;

sim:mehtod :myspace_audio-based_assoc_meth .

# echonest artist recommendation network

:echonest_assoc_meth a sim:AssociationMethod ;

dc:source <http://sites.google.com/site/musicviz2/ArtistSimilarityDat.tar.gz> ;

foaf:page <http://echonest.com> ;

sim:domain mo:MusicArtist ;

sim:range mo:MusicArtist ;

dc:description """Artists are associated if they are listed as

similar by the Echonest artist recommendation

network sample.""" .

# randomly selected Echonest edge

_:b01 a sim:Association ;

sim:subject <http://dbtune.org/artists/echonest/AR/AR2W5931187FB3602C> .

sim:object <http://dbtune.org/artists/echonest/AR/AR9UCLS1187B9B9D35> .

sim:method :echonest_assoc_meth .

# Classical Music Navigator

:cmn_influence_assoc_meth a sim:AssociationMethod ;

foaf:page <http://people.wku.edu/charles.smith/music/index2.htm> ;

sim:domain mo:MusicArtist ;

sim:range mo:MusicArtist ;

dc:description """Artists share a directed association if it has

been specified that there exists an influence

connection between them on the Classical Music

Navigator website""" .

# randomly selected CMN edge
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_:b10 a sim:Association ;

sim:subject <http://dbtune.org/classical/resource/composer/nielsen_carl> ;

sim:object <http://dbtune.org/classical/resource/composer/holmboe_vagn> ;

sim:method :cmn_influence_assoc_meth .

# Discogs artist-release

:discogs_artist_release_assoc_meth a sim:AssociationMethod ;

foaf:page <http://discogs.com/> ;

sim:scope mo:MusicArtist ;

dc:description """Artists share an undirected association if they have

appeared together on a release in Discogs and the

weight of that association is equivalent to the number

of shared releases.""" .

# randomly selected Discogs edge

_:b11 a sim:Association ;

sim:element <http://discogs.dataincubator.org/artist/dj-damage> ;

sim:element <http://discogs.dataincubator.org/artist/justina-curtis> ;

sim:weight "2"^^xsd:int ;

sim:method :discogs_artist_release_assoc_meth .

# Soundcould artist-release

:soundcloud_assoc_meth a sim:AssociationMethod ;

foaf:page <http://soundcloud.com/> ;

sim:domain mo:MusicArtist ;

sim:range mo:MusicArtist ;

dc:description """Artists share a directed association if one artist

is ’following’ the other artist.""" .

# randomly selected Soundcloud edge

_:b12 a sim:Association ;

sim:subject <http://api.soundcloud.com/users/235> ;

sim:object <http://api.soundcloud.com/users/34725> ;

sim:method :soundcloud_assoc_meth .

# MusicBrainz 6 degrees associations

:six_degrees_assoc_meth a sim:AssociationMethod ;

foaf:page <http://labs.echonest.com/SixDegrees/> ;

foaf:page <http://musicbrainz.org/> ;

sim:domain mo:MusicArtist ;

sim:range mo:MusicArtist ;
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dc:description """Artists share a directed association based on

the relationships specified in the Six Degrees

of Black Sabbath web application based on data

from MusicBrainz.""" .

_:b13 a sim:Association ;

sim:subject mba:b84c9483-ae0d-4f14-86ff-04a72ceadf7b ;

sim:object mba:99002f2d-a7e4-49f4-824a-562cdb47a935 ;

sim:method :six_degrees_assoc_meth ;

rdfs:label "member of band" .

Listing B.1: The set of prefixes that are assumed in the turtle and N3 listings
throughout this work.
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Appendix C

The Similarity Ontology
Document

This is the Similarity Ontology document in turtle. The most up-to-
date version of the Similarity Ontology (aka MuSim) can be found at
http://purl.org/ontology/similarity/

@prefix sim: <http://purl.org/ontology/similarity/> .

@prefix owl2xml: <http://www.w3.org/2006/12/owl2-xml#> .

@prefix dc: <http://purl.org/dc/terms/> .

@prefix wordnet: <http://xmlns.com/wordnet/1.6/> .

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

@prefix mo: <http://purl.org/ontology/mo/> .

@prefix vs: <http://www.w3.org/2003/06/sw-vocab-status/ns#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix xml: <http://www.w3.org/XML/1998/namespace> .

@prefix log: <http://www.w3.org/2000/10/swap/log#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

sim: rdf:type owl:Ontology ;

dc:title "The Similarity Ontology" ;

rdfs:comment """This is an ontology to express associations

between entities whether artists, tracks,

albums, compositional styles, sections of

tracks, playing techniques or anything. It

is designed with the hope of being easily
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extensible, extremely flexible, and still

computationally reasonable."""@en ;

owl:versionInfo "Revision: 0.2.02" ;

vs:term_status "testing" ;

dc:creator <http://kurtisrandom.com/foaf.rdf#kurtjx> ,

<http://moustaki.org/foaf.rdf#moustaki> .

##################

# class concepts #

##################

sim:Association rdf:type rdfs:Class , owl:Class ;

rdfs:comment """An abstract class to define some association

between things. Entities share an association

if they are somehow inter-connected. Generally

a directed association should have at lease one

sim:subject property and one sim:object property

or an undirected association should have at least

two sim:element properties."""@en ;

rdfs:label "Association" ;

rdfs:subClassOf owl:Thing ;

rdfs:isDefinedBy sim: ;

vs:term_status "testing" ;

owl:equivalentClass [a owl:Restriction ;

owl:onProperty sim:method ;

owl:maxCardinality 1 ] ;

# must have either sim:subject/object or sim:element

owl:unionOf (

[a owl:Restriction;

owl:onProperty sim:elemet;

owl:minCardinality "2"^^xsd:nonNegativeInteger ]

[ owl:intersectionOf

( [a owl:Restriction;

owl:onProperty sim:subject;

owl:minCardinality "1"^^xsd:nonNegativeInteger ]

[a owl:Restriction;

owl:onProperty sim:object;

owl:minCardinality "1"^^xsd:nonNegativeInteger ] ) ]

).
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sim:AssociationMethod a rdfs:Class , owl:Class ;

rdfs:comment """A concept for representing the method used to

derive association or similarity statements."""@en ;

rdfs:label "Association Method" ;

rdfs:subClassOf owl:Thing ;

rdfs:isDefinedBy sim: ;

vs:term_status "testing" .

sim:Influence a rdfs:Class , owl:Class ;

rdfs:comment """An abstract class indicating a directed

association of influence where the subject

entity has influenced the object entity."""@en ;

rdfs:label "Influence" ;

rdfs:subClassOf sim:Association ;

rdfs:isDefinedBy sim: ;

vs:term_status "testing" .

sim:Similarity a rdfs:Class , owl:Class ;

rdfs:comment """An abstract class to define similarity between

two or more things.

Entities share a similarity

if they share some common characteristics of

interest. A similarity is a special type of

association."""@en ;

rdfs:label "Similarity" ;

rdfs:subClassOf sim:Association ;

rdfs:isDefinedBy sim: ;

vs:term_status "testing" .

sim:Network a rdfs:Class , owl:Class ;

rdfs:comment """A network is a grouping of sim:Associations. The

associations that comprise a network are specified

using a series of sim:edge predicates."""@en ;

rdfs:isDefinedBy sim: ;

rdfs:label "Network" ;

rdfs:subClassOf owl:Thing ;

vs:term_status "testing" .

#####################
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# object properties #

#####################

sim:domain a owl:ObjectProperty ;

rdfs:comment """Specifies appropriate object types for the

sim:subject predicate for sim:Associations

bound to the given sim:AssociationMethod. The

presence of this predicate implies the given

sim:AssociationMethod begets directed

associations.""" ;

rdfs:domain sim:AssociationMethod ;

rdfs:range owl:Thing ;

rdfs:isDefinedBy sim: ;

rdfs:label "domain" ;

vs:term_status "testing" .

sim:range a owl:ObjectProperty ;

rdfs:comment """Specifies appropriate object types for the

sim:object predicate for sim:Associations

bound to the given sim:AssociationMethod.

The presence of this predicate implies the

given sim:AssociationMethod begets directed

associations.""" ;

rdfs:domain sim:AssociationMethod ;

rdfs:range owl:Thing ;

rdfs:isDefinedBy sim: ;

rdfs:label "domain" ;

vs:term_status "testing" .

sim:scope a owl:ObjectProperty ;

rdfs:comment """Specifies appropriate object types for the

sim:element predicate for sim:Associations

bound to the given sim:AssociationMethod.

The presence of this predicate implies the

given sim:AssociationMethod begets undirected

associations.""" ;

rdfs:domain sim:AssociationMethod ;

rdfs:range owl:Thing ;

rdfs:isDefinedBy sim: ;

rdfs:label "domain" ;

vs:term_status "testing".
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sim:edge a owl:ObjectProperty ;

rdfs:comment "Specifies an edge in a sim:Network"@en ;

rdfs:domain sim:Network ;

rdfs:range sim:Association ;

rdfs:isDefinedBy sim: ;

rdfs:label "edge" ;

vs:term_status "testing" .

sim:association a owl:ObjectProperty ;

rdfs:comment "Binds a sim:Association to an arbitrary thing."@en ;

rdfs:domain owl:Thing ;

rdfs:isDefinedBy sim: ;

rdfs:label "association" ;

rdfs:range sim:Association ;

vs:term_status "testing" .

sim:description a owl:ObjectProperty ;

rdfs:comment """Specifies some description that discloses

the process or set of processes used to

derive association statements for the given

sim:AssociationMethod. This property is

depricated in favor of the more appropriately

named sim:workflow property."""@en ;

rdfs:domain sim:AssociationMethod ;

rdfs:label "description" ;

rdfs:isDefinedBy sim: ;

owl:equivalentProperty sim:workflow ;

vs:term_status "depricated" .

sim:workflow a owl:ObjectProperty ;

rdfs:comment """Specifies some description that discloses

the process or set of processes used to

derive association statements for the given

sim:AssociationMethod."""@en ;

rdfs:domain sim:AssociationMethod ;

rdfs:label "workflow" ;

rdfs:isDefinedBy sim: ;

vs:term_status "testing" .
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sim:element a owl:ObjectProperty ;

rdfs:comment """Specifies an entity involved in the given

sim:Association and implies the given

association is undirected."""@en ;

rdfs:domain sim:Association ;

rdfs:label "element" ;

rdfs:isDefinedBy sim: ;

vs:term_status "testing" .

sim:grounding a owl:ObjectProperty ;

rdfs:comment """Binds an sim:Association statement directly

to an instantiated N3-Tr formulae or some

other workflow graph which enabled

the association derivation."""@en ;

rdfs:domain sim:Association ;

rdfs:label "grounding" ;

rdfs:isDefinedBy sim: ;

vs:term_status "testing" .

sim:method a owl:ObjectProperty ;

rdfs:comment """Specifies the sim:AssociationMethod used to

derive a particular sim:Association statement.

This should be used when the process for

deriving association statements can be

described further."""@en ;

rdfs:domain sim:Association ;

rdfs:label "method" ;

rdfs:range sim:AssociationMethod ;

rdfs:isDefinedBy sim: ;

vs:term_status "testing" .

sim:object a owl:ObjectProperty ;

rdfs:comment "Specifies the object of a sim:Association implying a

directed association where \"subject is associated to

object\" but the reverse association does not necessarily

exist, and if it does exist, it is not an equivalent

association."@en ;

rdfs:domain sim:Association ;

rdfs:label "object" ;

rdfs:subPropertyOf sim:element ;

rdfs:isDefinedBy sim: ;
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vs:term_status "testing" .

sim:subject a owl:ObjectProperty ;

rdfs:comment "Specifies the subject of an sim:Association implying a

directed association where \"subject is associated to

object\" but the reverse association does not necessarily

exist, and if it does exist, it is not an equivalent

association."@en ;

rdfs:domain sim:Association ;

rdfs:label "subject" ;

rdfs:subPropertyOf sim:element ;

rdfs:isDefinedBy sim: ;

vs:term_status "testing" .

###################

# data properties #

###################

sim:weight a owl:DatatypeProperty ;

rdfs:comment "A weighting value bound to a sim:Association where a

value of 0 implies two elements are not at all associated

and a higher value implies a closer association."@en ;

rdfs:domain sim:Association ;

rdfs:label "weight" ;

rdfs:isDefinedBy sim: ;

vs:term_status "testing" .

sim:distance a owl:DatatypeProperty ;

rdfs:comment "A weighting value for an Association where a value of 0

implies two elements are the same individual."@en ;

rdfs:domain sim:Association ;

rdfs:label "distance" ;

rdfs:isDefinedBy sim: ;

vs:term_status "testing" .

####################

# credits and such #

####################

<http://moustaki.org/foaf.rdf#moustaki> a foaf:Person .

<http://kurtisrandom.com/foaf.rdf#kurtjx> a foaf:Person .
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owl:Thing a owl:Class ;

rdfs:isDefinedBy owl: .

foaf:Person a owl:Class, rdfs:Class ;

rdfs:isDefinedBy foaf: .

dc:creator a owl:ObjectProperty ;

rdfs:isDefinedBy dc: .

dc:title a owl:DatatypeProperty ;

rdfs:isDefinedBy dc: .

vs:term_status a owl:AnnotationProperty ;

rdfs:isDefinedBy vs: .
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