
A Deterministic Annealing EM Algorithm for Automatic Music Transcription
Cheng, T; Dixon, S; Mauch, M

 

 

 

 

 

 

 

For additional information about this publication click this link.

http://qmro.qmul.ac.uk/jspui/handle/123456789/6059

 

 

 

Information about this research object was correct at the time of download; we occasionally

make corrections to records, please therefore check the published record when citing. For

more information contact scholarlycommunications@qmul.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen Mary Research Online

https://core.ac.uk/display/30696898?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://qmro.qmul.ac.uk/jspui/handle/123456789/6059


A DETERMINISTIC ANNEALING EM ALGORITHM FOR
AUTOMATIC MUSIC TRANSCRIPTION

Tian Cheng, Simon Dixon and Matthias Mauch

Centre for Digital Music, Queen Mary University of London

{tian.cheng, simon.dixon, matthias.mauch} @eecs.qmul.ac.uk

ABSTRACT

In the past decade, non-negative matrix factorisation (NMF)

and probabilistic latent component analysis (PLCA) have

been used widely in automatic music transcription. De-

spite their successes, these methods only guarantee that

the decomposition converges to a local minimum in the

cost function. In order to find better local minima, we

propose to extend an existing PLCA-based transcription

method with the deterministic annealing EM (DAEM) al-

gorithm. The PLCA update rules are modified by intro-

ducing a “temperature” parameter. At higher temperatures,

general areas of the search space containing good solutions

are found. As the temperature is gradually decreased, dis-

tinctions in the data are sharpened, resulting in a more fine-

grained optimisation at each successive temperature. This

process reduces the dependence on the initialisation, which

is otherwise a limitation of NMF and PLCA approaches.

The method was tested on two standard multi-instrument

transcription data sets (MIREX and Bach10). Experimen-

tal results show that the proposed method significantly out-

performs a state-of-the-art reference method, according to

both frame-based and note-based metrics. An additional

analysis of instrument assignment results shows that in-

strument spectra are typically modelled as mixtures of tem-

plates from several instruments.

1. INTRODUCTION

Automatic music transcription is the process of transcrib-

ing audio into a symbolic music representation. To date,

non-negative matrix factorisation (NMF) [15] and its prob-

abilistic counterpart, probabilistic latent component analy-

sis (PLCA) [17], have been used extensively for this task.

These methods treat the spectrogram as a matrix, and de-

compose it into spectral bases, gain functions, and in-

strument distributions (when considering different instru-

ments). Although not yet providing the best transcription

results, they provide a powerful mathematical model which

can lead to a meaningful decomposition, using the con-

straints of non-negativity and sparsity. Another advantage
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of these methods is that they are easy to extend, by formu-

lating a more complex model, adding variables or combin-

ing them with other models.

One obvious problem of non-negative matrix decompo-

sition methods (such as NMF and PLCA) is that they are

initialisation-sensitive and tend to converge to a local mini-

mum. Training instrument templates is an effective way to

initialise the spectral bases. By fixing the templates during

the updating, we obtain a stable output for the gain func-

tion, independent of its initialisation. But when the model

becomes more complicated, as by introducing an instru-

ment variable into the model, which is used widely nowa-

days, it is not possible for us to find good initialisations for

all variables.

In this paper, we tackle the local minimum problem

by introducing an optimisation method. When using non-

negative matrix decomposition methods, the transcription

result is related to the cost function, the update rules and

also the constraints. Here, we particularly focus on PLCA,

which utilises the Kullback-Leibler (KL) divergence as the

cost function and derives the update rules based on the EM

algorithm [16]. To address the local minimum problem of

the EM algorithm, we make use of the deterministic an-

nealing EM algorithm [18] by introducing a temperature

parameter into an existing PLCA-based model [2]. The

proposed method is tested on the Bach10 dataset [5] and

the MIREX multi-F0 development dataset [1]. In com-

parison to the original PLCA-based model, the proposed

method improves the results of multi-F0 estimation and

note tracking, while the instrument assignment results vary

for each individual instrument.

Although not much attention has been paid to the local

minimum problem of automatic music transcription meth-

ods, there is still some related work. Bertin et al. [3] used

a tempering scheme to favour the convergence of Itakura-

Saito (IS) divergence to global minima. Experiments on

music transcription show that IS-NMF can provide a good

result by choosing a suitable temperature parameter. Hof-

mann [9] proposed a model based on the tempered EM al-

gorithm to avoid overfitting in probabilistic latent semantic

analysis. Kameoka et al. [11] introduced the DAEM al-

gorithm into the harmonic-temporal-structured clustering

(HTC) model for audio feature extraction. The HTC model

is represented by a Gaussian kernel, and the DAEM algo-

rithm is used to optimise the parameter convergence. Itaya

et al. [10] used the DAEM algorithm to estimate the pa-

rameters of Gaussian mixture models (GMMs) and hidden



Markov models (HMMs). Experiments on speaker recog-

nition and speech recognition show that DAEM is an ef-

fective method for GMM- and HMM-based acoustic mod-

eling. Finally, Smaragdis et al. [16] stated that it is more

likely to get “meaningful” decompositions and quick con-

vergence by using “annealing” in PLCA.

The rest of this paper is organised as follows. In Section

2, we describe the PLCA model and the local minimum

problem of this model. In Section 3, the update rules of a

PLCA-based model are modified according to the DAEM

algorithm. The results for three transcription subtasks are

presented in Section 4. Finally discussion and conclusions

are indicated in Section 5 and 6, respectively.

2. PLCA AND SHIFT-INVARIANT PLCA

Two basic PLCA models, PLCA and Shift-invariant

PLCA, are presented in [17]. For automatic music tran-

scription, the spectrogram is formulated by PLCA as:

V (ω, t) ≈ P (ω, t) = P (t)
∑

p

P (ω|p)P (p|t) (1)

where V (ω, t) is the input spectrogram, P (ω, t) the ap-

proximated spectrogram, ω is the frequency bin, t the

frame number. P (t) is the energy of each time frame,

P (ω|p) is the spectral bases corresponding to pitch p, and

P (p|t) the gain function.

To build a shift-invariant PLCA model, the spectrogram

needs to be presented on a logarithmic frequency scale,

such as the constant-Q transform. Assuming that the en-

ergy distributions of adjacent pitches are similar for any

given instrument, the spectral basis can be shifted in fre-

quency very easily, as the pattern of partial spacings is the

same for all pitches, due to the logarithmic frequency axis.

The spectrogram is formulated as:

V (ω, t) ≈ P (ω, t) =
∑

z

P (z)P (ω|z) ∗ω P (f, t|z)

=
∑

z

P (z)
∑

f

P (ω − f |z)P (f, t|z)

(2)

where P (ω|z) and P (f, t|z) are the spectral templates

and time-dependent shifted variant f of component z, and

P (z) is the prior distribution of the components.

In many recent systems the PLCA model is extended

by introducing an instrument distribution, with templates

trained per pitch per instrument. The spectrogram is for-

mulated as:

V (ω, t) ≈ P (ω, t) = P (t)
∑

p,s

P (ω|s, p)P (s|p, t)P (p|t)

(3)

where P (ω|s, p) represents the spectral templates corre-

sponding to each instrument s and pitch p, P (s|p, t) the

instrument contribution to each pitch in the tth frame, and

P (p|t) the pitch probability distribution for each frame.

The parameters of the PLCA models are estimated by

iteratively decreasing the KL divergence of the input spec-

trogram V (ω, t) and the synthetic spectrogram P (ω, t) us-

ing the EM algorithm. The KL divergence is convex in

one variable, but not convex in multiple variables [12]. In

this case, the EM algorithm can only guarantee to find a

local minimum for these parameters, so the results depend

on the initialisation. The use of instrument templates is

an effective way to deal with the initialisation sensitivity

of the algorithm. Taking the model described in Eqn. (1)

for example, if the templates are fixed as a constant, the

gain function will be convex. This means that when we

formulate the model as the product of the spectral bases

and a gain function, we obtain a unique gain function cor-

responding to a fixed set of templates. On the one hand,

the templates lead to a stable decomposition for automatic

music transcription; on the other hand, the templates also

limit the performance of the transcription. However, when

encountering the extended model as described in Eqn. (3),

the instrument contribution and the pitch contribution still

face the risk of converging to local minima, even with fixed

templates.

3. PROPOSED METHOD

To deal with the local minimum problem of PLCA models,

we derive the update rules according to the deterministic

annealing EM algorithm [18], which introduces a temper-

ature parameter into the EM algorithm. The temperature

parameter is employed on the posterior probability density

in the E-step. Then by gradually reducing the temperature,

the EM steps are iteratively executed until convergence at

each temperature, leading the result to a global or better lo-

cal minimum. We apply this method to a baseline PLCA-

based model proposed in [2]. Since the templates are kept

fixed, the temperature parameter is applied to the posterior

probability density of the instrument distribution. In this

way, we can enjoy the benefits of the DAEM algorithm

and the templates.

3.1 The Baseline PLCA Model

Benetos and Dixon [2] proposed a model that adds an in-

strument distribution variable to shift-invariant PLCA. The

time-frequency representation of the input signal was com-

puted with the Constant-Q Transform [14] using 120 bins

per octave. Templates were trained for 10 instruments al-

lowing shifts within a semitone range, in order to deal with

arbitrary tuning and frequency modulation. The model is

formulated as:

P (ω, t) = P (t)
∑

p,s

P (ω|s, p)∗ωP (f |p, t)P (s|p, t)P (p|t)

(4)

where P (ω, t) is the approximated spectrogram, P (t) is

the energy distribution of spectrogram. P (ω|s, p) are the

templates of instrument s and pitch p, P (f |p, t) is the shift-

ed variant for each p, P (s|p, t) is the instrument contribu-

tion for each pitch, and P (p|t) is the pitch probability dis-

tribution for each time frame. The templates P (ω|s, p) are

trained using the MAPS dataset [6] and RWC dataset [7].

The update rules are derived from the EM algorithm.



instrument lowest note highest note

1 Bassoon 34 72
2 Cello 26 81
3 Clarinet 50 89
4 Flute 60 96
5 Guitar 40 76
6 Horn 41 77
7 Oboe 58 91
8 Piano 21 108
9 Tenor Sax 44 75

10 Violin 55 100

Table 1: Instrument ranges, adapted from [1]

For the E-step, the posterior probability density is:

P (p, f, s|ω, t) =

P (ω − f |s, p)P (f |p, t)P (s|p, t)P (p|t)∑
p,f,s P (ω − f |s, p)P (f |p, t)P (s|p, t)P (p|t)

(5)

For the M-step, each parameter is estimated.

P (f |p, t) =

∑
ω,s P (p, f, s|ω, t)P (ω, t)

∑
f,ω,s P (p, f, s|ω, t)P (ω, t)

(6)

P (s|p, t) =
(
∑

ω,f P (p, f, s|ω, t)P (ω, t))α1

∑
s(
∑

ω,f P (p, f, s|ω, t)P (ω, t))α1

(7)

P (p|t) =
(
∑

ω,f,s P (p, f, s|ω, t)P (ω, t))α2

∑
p(
∑

ω,f,s P (p, f, s|ω, t)P (ω, t))α2

(8)

The templates P (ω|s, p) are not updated as they are pre-

viously trained and kept fixed. The parameters α1 and α2

used in Eqn. (7) and (8) are used to enforce sparsity, where

α1, α2 > 1. We set α1 = 1.3 and α2 = 1.1. The final

piano-roll matrix P (p, t) and the pitches assigned to each

instrument P (p, t, s) are given by:

P (p, t) = P (p|t)P (t) (9)

P (p, t, s) = P (s|p, t)P (p|t)P (t) (10)

For post-processing, instead of using an HMM, the note

events are extracted by performing thresholding on P (p, t)
and using minimum-length pruning (deleting notes shorter

than 50ms). The instrument-wise note events are detected

in the same way using P (p, t, s).

3.2 The DAEM-based Model

To modify the update rules according to the DAEM algo-

rithm, in the E-step, the posterior probability density in

Eqn. (5) is modified by introducing a temperature parame-

ter τ 1 :

Pτ (p, f, s|ω, t) =

(P (ω − f |s, p)P (f |p, t)P (s|p, t)P (p|t))1/τ∑
p,f,s(P (ω − f |s, p)P (f |p, t)P (s|p, t)P (p|t))1/τ

(11)

And the update rules are extended by adding a τ -loop:

1 The parameter used in [18] is β, and the temperature is indicated
by 1/β. The reason of using τ here is because we want to indicate the
temperature directly by τ and distinguish the proposed method from the
β-divergence.

• Set τ ← τmax(τmax > 1).

• Iterate the following EM-steps until convergence:

E-step: calculate Pτ (p, f, s|ω, t).

M-step: estimated P (f |p, t), P (s|p, t) and P (p|t)
by replacing P (p, f, s|ω, t) with Pτ (p, f, s|ω, t).

• Decrease τ .

• If τ ≥ 1, repeat from step 2; otherwise stop.

By gradually decreasing τ , the temperature is cooling

down. At higher temperatures, the distributions are

smoothed and general areas of the search space containing

good solutions are found. As the temperature is gradually

decreased, distinctions in the data are sharpened, resulting

in a more fine-grained optimisation at each successive tem-

perature.

Considering the properties of this particular model, we

simplify the posterior probability density to:

Pτ (p, f, s|ω, t) =

P (ω − f |s, p)P (f |p, t)P (s|p, t)1/τP (p|t)∑
p,f,s P (ω − f |s, p)P (f |p, t)P (s|p, t)1/τP (p|t)

(12)

The convolution of the templates and the pitch impulse dis-

tribution, giving the terms P (ω − f |s, p)P (f |p, t), works

as the shift-invariant templates here. These are not mod-

ified by the temperature parameter, as the templates are

fixed during the iterative process 2 . In addition, having

observed that the pitch distribution P (p|t) is dependent on

the instrument distribution P (s|p, t) in this model, we only

need to modify P (s|p, t) in the posterior probability den-

sity.

In the experiment, the parameter τ took the values

10/i, i ∈ {8, 9, 10}. When τ finally decreases to 1, the

update rules agree with the original ones.

4. EVALUATION

4.1 Datasets

We used the Bach10 Dataset [5] and the MIREX Multi-

F0 Development Dataset (MIREX dataset) [1] to test the

performance of the proposed method. The Bach10 dataset

consists of 10 quartet recordings performed on violin, clar-

inet, saxophone and bassoon. The MIREX dataset is an

excerpt from a woodwind quintet recording, played on bas-

soon, clarinet, flute, horn, oboe.

4.2 Evaluation Metrics

The performance of the proposed system is evaluated on

three subtasks of automatic music transcription. The first

two, multiple F0 estimation and note tracking, are very

commonly used. The third subtask, instrument assign-

ment, evaluates the algorithms’ ability to assign the notes

to corresponding instruments.

2 This was also confirmed by test experiments where the power 1/τ
was also applied to the pitch impulse distribution P (f |p, t), giving simi-
lar transcription results.



Dataset Methods P R F Acc Etot Esubs Emiss Efa

Bach10 BD(2012) 0.784 0.791 0.787 0.650 0.311 0.116 0.093 0.102

Proposed 0.819 0.796 0.807 0.677 0.282 0.098 0.106 0.078

MIREX BD(2012) 0.748 0.537 0.625 0.455 0.486 0.158 0.305 0.023

Proposed 0.769 0.561 0.649 0.480 0.461 0.146 0.292 0.023

Both BD(2012) 0.781 0.768 0.772 0.632 0.327 0.120 0.112 0.094

Proposed 0.814 0.775 0.793 0.659 0.299 0.102 0.123 0.074

Table 2: Multiple F0 estimation results (see text for explanation of symbols).

In the multiple F0 estimation subtask, performance is

evaluated frame by frame with an interval of 10ms. The

accuracy metrics are precision (P ), recall (R), F-measure

(F ) [19] and the overall accuracy (Acc) [4], defined as fol-

lows:

P =
Ntp

Nsys

, R =
Ntp

Nref

, F =
2 ·R · P

R+ P
(13)

Acc =
Ntp

Ntp +Nfp +Nfn

(14)

where Ntp is the number of true positives, Nsys and Nref

denote the number of the detected pitches and the ground-

truth pitches, Nfp and Nfn are the number of false positives

and false negatives respectively. The error metrics are the

rates of total error (Etot), substitution error (Esubs), missed

detections (Emiss) and false alarms (Efa). See the defini-

tions in [13].

For the note tracking task, a note is considered cor-

rectly detected if the note is within the following ranges

of ground truth.

pitch range ±3%

onset range ±50ms

offset range ± max {20% of the duration, 50ms}

The algorithms are evaluated in terms of onset-only and

onset-offset accuracies, which are denoted by Pon, Ron,

Fon, Accon and Poff, Roff, Foff, Accoff respectively.

The instrument assignment task assesses whether the

transcription not only identifies the correct pitch, but also

the correct instrument. First, pitches are detected for each

individual instrument. Then instruments actually occurring

in the piece are evaluated according to the frame-based F-

measure (13), whereas for the other instruments we calcu-

late the false positive rate.

4.3 Results

We compare the performance of the proposed method to

that of the baseline PLCA model introduced in Section 3.1

(mentioned as BD(2012) below). Here, we provide results

for three subtasks on two different datasets.

4.3.1 Multiple F0 Estimation

The results for multiple F0 estimation using the Bach10

and MIREX datasets for two methods are shown in Table

2. It can be seen that the proposed method outperforms the

Dataset Methods Pon Ron Fon Accon

Bach10 BD(2012) 0.319 0.339 0.328 0.197
Proposed 0.399 0.354 0.374 0.231

MIREX BD(2012) 0.628 0.420 0.503 0.336
Proposed 0.690 0.459 0.551 0.380

Both BD(2012) 0.347 0.346 0.344 0.209
Proposed 0.427 0.364 0.391 0.245

(a) onset-only accuracy

Dataset Methods Poff Roff Foff Accoff

Bach10 BD(2012) 0.217 0.230 0.223 0.126
Proposed 0.281 0.249 0.263 0.152

MIREX BD(2012) 0.487 0.326 0.391 0.243
Proposed 0.537 0.357 0.429 0.273

Both BD(2012) 0.242 0.239 0.238 0.137
Proposed 0.305 0.259 0.279 0.163

(b) onset and offset

Table 3: Note-tracking results

BD(2012) method in terms of accuracy (Acc) on both in-

dividual datasets by at least 2.5 percentage points, leading

to an increased overall accuracy of 0.659 (up 2.7 percent-

age points). The total error decreases by 2.8 percentage

points. On the Bach10 dataset improvements are mainly

due to a reduced false alarm rate (Efa), which decreases

from 10.2% to 7.8%. This is also reflected by increased

precision (P ) and stable recall (R). The improvement for

the MIREX dataset mainly comes from reduction in both

substitution error (Esubs) and missed detection error (Emiss)

rates, leading to higher precision and recall.

In order to determine if the increase in accuracy (Acc)

is significant we ran a Friedman test for this subtask. The

resulting p-value of 0.0009 < 0.01 indicates that the dif-

ference is highly significant. The distribution of Acc of the

ten files in the Bach10 dataset is shown in Figure 1a.

4.3.2 Note Tracking

For the note tracking subtask, we found that the F-measure

was improved by almost 5 percentage points for onset-only

evaluation and around 4 percentage points for onset-offset

evaluation for both datasets, as shown in Table 3. We ran a

Friedman test with regard to the F-measures (Fon and Foff)

for this subtask. For both onset-only and onset-offset met-

rics, the p-values are less than 0.01, showing that—here,
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Figure 1: Box-and-whisker plots of (a) accuracy; (b)

onset-only F-measure; and (c) onset-offset F-measure; for

the Bach10 dataset.

too—the differences are significant. The distributions of

Fon and Foff for the Bach10 dataset are shown in Figures 1b

and 1c.

The note tracking evaluation shows that both meth-

ods under consideration perform better on the MIREX

dataset, whereas according to the frame-based evaluation

(see Section 4.3.1) they perform better on the Bach10

dataset. This result is in line with the results from other

methods on the same data, 3 and is likely to stem from the

unusual co-occurrence of trills and legato notes that domi-

nates the MIREX piece.

4.3.3 Instrument Assignment

The results for instrument assignment for the two datasets

are shown in Table 4. In this subtask, we cannot identify a

systematic advantage of either method, with the F-measure

means over all instruments being very close (20.7% and

20.9% on the Bach10 dataset, and 35.1% and 34.3% on

the MIREX dataset). Slight differences between the meth-

ods for particular instruments do not show a consistent ad-

vantage of one method either; we will therefore focus on

the proposed method in the rest of the discussion. The

most obvious differences in F-measure occur between in-

struments. For example, the results for the Bach10 dataset

show that instrument assignment works better for the clar-

inet and bassoon than for the violin and saxophone. Also,

since the note templates include instruments not present

in the pieces, false positives occur for these instruments,

with the largest ratio of false positives occurring for horn

(18.6%) and piano (16.4%). The problem instrument in

the MIREX dataset is the oboe, to which few notes are

assigned, leading to a low F-measure of around 12-13%.

Notes are detected in three instruments that do not feature

in the music, with the largest ratio of false positives found

in the piano (47.9%) and guitar (34.5%). No false positives

were detected for saxophone or violin.

The discrepancy between the satisfactory multiple F0

3 as published on the MIREX website [1].

F-measure Violin Clarinet Saxophone Bassoon Mean

BD(2012) 0.175 0.313 0.092 0.246 0.207
Proposed 0.190 0.275 0.127 0.243 0.209

(a) Bach10

F-measure Bassoon Clarinet Flute Horn Oboe Mean

BD(2012) 0.292 0.444 0.485 0.409 0.125 0.351
Proposed 0.294 0.420 0.489 0.385 0.129 0.343

(b) MIREX

Table 4: Instrument assignment results

estimation results and the comparatively low results for in-

strument assignment is due to the fact that often the correct

pitch is detected, but assigned to a wrong instrument or

combination of instruments. That is, note templates from

different instruments are combined to approximate the ob-

served spectra. The proposed method provides a better re-

construction of the observed data using combinations of

templates at the correct pitches, resulting in better perfor-

mance for frame level and note tracking tasks.

5. DISCUSSION

The use of the temperature parameter τ that is central to

the DAEM algorithm in Eqn. (11) is similar to the use of

the sparsity parameters in Eqn. (7) and Eqn. (8). In fact,

the sparsity method used here is related to the Tempered

EM algorithm [8]. Both the DAEM and sparsity equations

‘put an exponent on a distribution’. When the exponent

is larger than one, the distribution becomes sharper and

sparser; when the exponent is smaller than one, the dis-

tribution is smoothed, as in the case of high-temperature

stages of DAEM.

So far we have used DAEM with only one configuration

of three temperature steps. In the future, we would like

to explore different configurations to see whether we can

further improve the results of multiple F0 estimation and

note tracking.

We have shown that DAEM can improve the per-

formance of an EM-based model, but further investiga-

tions are needed to show how well this result generalises.

For example, preliminary tests have shown that applying

DAEM directly in the standard PLCA model in Eqn. (1)

without templates, fails to provide better results.

We observe that the previously-trained templates are

very important and work as an excellent initialisation for

the spectral bases in the PLCA models. On the other hand,

they also influence the result of the gain functions, which

means that the transcription result will be poor if we use

poor or inappropriate templates. The risk of updating the

templates during the iteration is that an updated template

might no longer accord with its labels (pitch, instrument).

Due to the different ways a note can be played and differ-

ences in sound transmission, templates will never match

observations precisely. Spectral decomposition algorithms

compensate for this mismatch by finding mixtures of tem-

plates which provide a better approximation of the data



(see Section 4.3.3). In order to capture the variations of

instrument sounds in a single model, we intend to explore

physical modelling for time-varying templates in future

work.

6. CONCLUSIONS

In this paper, we modified a baseline PLCA model for

automatic music transcription. The model’s update rules

were changed according to the DAEM algorithm to tackle

the local minimum problem. The DAEM algorithm intro-

duces a temperature parameter to the update rules and leads

the decomposition to converge to a global or better local

minimum by gradually lowering the temperature. The pro-

posed method was tested using two standard transcription

datasets, the Bach10 dataset and the MIREX dataset. The

results show that the proposed method significantly outper-

forms the baseline method in multiple F0 estimation (accu-

racy increases by 2.7 percentage points) and note tracking

(F-measure increases by 4 percentage points). Although

results on an additional instrument assignment task show

no significant difference between the methods, they reveal

that both methods use mixtures of instrument templates to

approximate observed spectra in the test data. We noted

several aspects that call for further study: DAEM temper-

ature configurations, the extension of DAEM to more gen-

eral PLCA models, and the use of physical modelling to

generate more flexible instrument templates.
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