

A CD3-specific Antibody Reduces Cytokine Production and Alters Phospho-protein Profiles in Intestinal Tissues from Patients with Inflammatory Bowel Disease

Vossenkämper, A; Hundsrucker, C; Page, K; van Maurik, A; Sanders, TJ; Stagg, AJ; Das, L; Macdonald, TT

For additional information about this publication click this link. http://qmro.qmul.ac.uk/jspui/handle/123456789/5879

Information about this research object was correct at the time of download; we occasionally make corrections to records, please therefore check the published record when citing. For more information contact scholarlycommunications@qmul.ac.uk

Accepted Manuscript

A CD3-specific Antibody Reduces Cytokine Production and Alters Phospho-protein Profiles in Intestinal Tissues from Patients with Inflammatory Bowel Disease

Anna Vossenkämper, Christian Hundsrucker, Kevin Page, André van Maurik, Theodore J. Sanders, Andrew J. Stagg, Lisa Das, Thomas T. MacDonald

 PII:
 S0016-5085(14)00446-6

 DOI:
 10.1053/j.gastro.2014.03.049

 Reference:
 YGAST 59066

To appear in: *Gastroenterology* Accepted Date: 27 March 2014

Please cite this article as: Vossenkämper A, Hundsrucker C, Page K, van Maurik A, Sanders TJ, Stagg AJ, Das L, MacDonald TT, A CD3-specific Antibody Reduces Cytokine Production and Alters Phosphoprotein Profiles in Intestinal Tissues from Patients with Inflammatory Bowel Disease, *Gastroenterology* (2014), doi: 10.1053/j.gastro.2014.03.049.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

All studies published in Gastroenterology are embargoed until 3PM ET of the day they are published as corrected proofs on-line. Studies cannot be publicized as accepted manuscripts or uncorrected proofs.

A CD3-specific Antibody Reduces Cytokine Production and Alters Phospho-protein

Profiles in Intestinal Tissues from Patients with Inflammatory Bowel Disease

Short title: Anti-CD3 in inflammatory bowel disease tissue

Authors: Anna Vossenkämper¹, Christian Hundsrucker², Kevin Page³, André van Maurik³, Theodore J. Sanders¹, Andrew J. Stagg¹, Lisa Das⁴, and Thomas T. MacDonald¹

¹ Centre for Immunology and Infectious Disease, Barts and The London School of Medicine and Dentistry, Blizard Institute, E1 2AT London, UK. ² Institute for Functional Genomics, Computational Diagnostics Group, University of Regensburg, 93053 Regensburg, Germany. ³ GlaxoSmithKline, pharmaceuticals R&D facility, Gunnels Wood Road, Stevenage Herts, SG1 2NY, UK. ⁴Centre for Digestive Diseases, Barts and London School of Medicine and Dentistry, E1 2AT London, UK.

Grant support: This work was supported by the Medical Research Council, UK.

Abbreviations: Ab, antibody; CD, Crohn's disease; FcR, Fc gamma Receptor; IBD, inflammatory bowel disease; IFN, interferon; IL, interleukin; LPMCs, lamina propria mononuclear cells; TCR, T cell receptor; UC, ulcerative colitis

Correspondence:

Anna Vossenkämper, Centre for Immunology and Infectious Disease, Blizard Institute, Barts and The London School of Medicine and Dentistry, London E1 2AT, UK.

a.vossenkaemper@qmul.ac.uk; Tel +44-20-78822311; Fax +44-20-78822181

Disclosure: AV and TTM receive financial support from GlaxoSmithKline related to a different research programme. KP and AvM are employees of GlaxoSmithKline. CH, TJS, AJS and LS have nothing to disclose.

Contributions: AV and TTM designed the study, performed most experiments and wrote the manuscript. CH analysed the array data and created heatmaps. TJS and AJS performed the qRT-PCR. LD provided intestinal specimens, analysed data and reviewed the manuscript. KP and AvM performed experiments and reviewed the manuscript. Otelixizumab was provided by GlaxoSmithKline.

Abstract

Background & Aims: T cells mediate the development of inflammation in inflammatory bowel disease (IBD). We investigated the effects of an antibody against CD3 called otelixizumab, which induces immune tolerance, in intestinal mucosa samples from patients. Methods: Intestinal tissues were isolated from individuals undergoing routine endoscopy or from patients undergoing intestinal surgery for colon cancer or IBD; healthy surrounding tissues were collected as controls. Isolated lamina propria mononuclear cells (LPMC) and mucosal tissue explants were incubated with otelixizumab for 24 or 48 hours. Production of inflammatory cytokines was determined by ELISA. Levels of 36 cytokines and chemokines and phosphorylation of 39 receptor tyrosine kinases and signaling molecules were measured using protein arrays. Immunoblot analysis was used to analyze T-cell transcription factors. Results: Incubation of intestinal tissues or LPMC with otelixizumab reduced production of interferon γ , interleukin (IL)17A, and other inflammatory cytokines and chemokines, simultaneously increasing production of IL10. Mucosal biopsies from patients with IBD retained inflammation-associated tyrosine phospho-protein profiles ex vivo. Incubation of the inflamed tissue with otelixizumab reduced phosphorylation of these proteins to levels observed in control tissues. Otelixizumab also markedly reduced phosphorylation of proteins associated with T-cell receptor activation. Neutralization of IL10 blocked the anti-inflammatory effects of otelixizumab. Conclusions: We observed anti-inflammatory effects of anti-CD3 in inflamed intestinal tissues from patients with IBD. The antibody appears to downregulate T-cell activation via IL10.

Keywords: Crohn's disease, ulcerative colitis, immune regulation, IFN

Introduction

Since the first anti-CD3 antibody, muromonab (OKT3), was developed more than 30 years ago to prevent transplant rejection and graft versus host disease ¹, considerable progress has been made in the development and engineering of anti-CD3 antibodies for the treatment of immune disorders. OKT3 induces a cytokine storm, which obviates its use in the treatment of autoimmune conditions ²⁻⁴. This cytokine storm is a consequence of the cross-linking of the CD3/T cell receptor (TcR) on T cells, coupled with Fc binding to the Fc gamma Receptor (FcR) on other immune cells. To reduce toxicity of anti-CD3 antibodies, F(ab)₂ fragments ⁵ and mutated, humanized Abs, which did not bind FcR, have been developed ⁶. It is thought that these tolerising anti-CD3 antibodies function by driving the internalization of the TcR/CD3 complex so that signaling via peptide/MHC is abolished^{7, 8}. In addition, the antibodies when binding to CD3/TcR may signal to the cell and drive differentiation along a tolerogenic pathway ⁷. Finally, there is some evidence that tolerising anti-T cell antibodies can cause T cell apoptosis⁹.

Tissue injury in inflammatory bowel disease is driven by T cells ¹⁰ and is therefore a disease target for T cell therapies. Initial studies in ulcerative colitis (UC) with the anti-CD3 antibody visilizumab showed clinical benefit ^{11, 12}, however, a randomized, placebocontrolled trial gave negative results ¹³. In Crohn's disease (CD), a phase I study of the anti-CD3 antibody NI-0401 showed no improvement in Crohn's disease activity index,

but there was significant endoscopic improvement¹⁴. Further clinical studies are clearly needed, however, what remains lacking is any evidence that anti-CD3 antibodies have an effect on pro-inflammatory T cells in the mucosa of patients with IBD.

Otelixizumab (TRX4 or ChAglyCD3), is an Fc-engineered, chimeric/humanized monoclonal IgG1 antibody against human CD3-epsilon which showed promising early results in Type I diabetes^{15, 16} but was not superior to placebo in Phase 3 studies when given at a lower dose than the earlier work ¹⁷. We have developed *ex vivo* assays where T cell activity in inflamed bowel tissue can be accurately studied¹⁸⁻²⁰, and so we have investigated for the first time if anti-CD3 antibodies change T cell function in human tissues.

Materials and Methods

Reagents and Antibodies

All reagents were purchased from Sigma Aldrich (Gillingham, UK) unless otherwise stated. Anti-human CD28 was purchased from R&D systems (Abingdon, UK). Otelixizumab (Tolerx, Cambridge, MA, USA) is an aglycosylated chimeric/humanized monoclonal antibody (IgG1 lambda) directed against human CD3/epsilon (generously provided by GlaxoSmithKline). YTH12.5 is a mitogenic rat anti-human CD3 antibody (IgG2b lambda; provided by Tolerx) and the parental Ab of otelixizumab. Purified human IgG1 lambda was used for control purposes (Sigma Aldrich). IL-10 was neutralized with rat anti-IL-10 (used at 10µg/ml; BioLegend, Cambridge, UK).

Patient samples

Tissue was obtained during routine endoscopy or from surgical specimens of patients undergoing intestinal surgery because of colon cancer or IBD. Healthy intestinal tissue surrounding malignant tumors was sampled and used as control. All patients took part in this study after informed written consent. The study was approved by the local ethics committee. Patient characteristics are listed in supplementary table SI.

Isolation of peripheral blood mononuclear cells

Peripheral blood was obtained from healthy volunteers after informed consent, diluted with PBS 1:1 and layered on top of Ficoll Paque solution (GE Healthcare, Amersham, UK). After centrifugation at 21°C for 30min, 300g without break, the buffy coat was aspirated and washed once in PBS. Cells were cultured in RPMI/ 10% human serum/ Pen/Strep/ L-Glutamine or subjected to immunostaining.

Processing of tissue specimens

With surgical specimens, the mucosa was cut off the submucosa and cut into 2mm²-sized pieces. Epithelial cells of biopsies or mucosal pieces were removed with 1 mM EDTA in HBSS containing 100 U/ml penicillin and 100 µg/ml streptomycin (Pen/Strep) for 30min. A single cell suspension was prepared in RPMI/ 10% FBS/ L-Glutamine/ Pen/Strep/ 50µg/ml gentamicin/ 5µg/ml amphotericin B with collagenase D (1mg/ml) and DNase (10U/ml; Roche, Burgess Hill, UK) for 1h. Cells were passed through a cell strainer and subjected to density centrifugation with Ficoll Paque (GE Healthcare, Amersham, UK) by layering the cell suspension on top of the Ficoll. After centrifugation at 21°C for 30min, 300g without break, the buffy coat was aspirated and washed once in PBS. Cells were cultured in RPMI/ 10% human serum/ Pen/Strep/ L-Glutamine.

Organ culture of mucosal explants

The mucosa of intestinal surgical specimens was cut into 3mm² pieces and cultured in 24-well plates in 300µl serum-free HL1-medium (Lonza, Cambridge, UK) containing glutamine, Pen/Strep, and 50µg/ml gentamicin. Mucosal samples were emerged in liquid and culture was performed for up to 48h at 37°C, 5% CO₂. For antibody experiments, the respective antibody was added to the culture medium. Supernatants and tissue samples were snap-frozen and stored at -70C.

Flow cytometry

Antibodies were used at the concentrations recommended by the manufacturer: anti-CD4-FITC; anti-CD25-PE, CD2-APC, IFN-γ-PECy7, IL-10-PE, and matched isotype controls (BD Bioscience, Oxford, UK). PBS/20% human serum was used to block nonspecific binding and cell surface staining was performed for 30min on ice. For intracellular cytokine staining, cells were cultured overnight with otelixizumab or human IgG. For the last 4h of culture, 2 mM monensin was added. After surface staining, cells were fixed in Leucoperm (AbD Serotec, Oxford, UK) solution A, followed by permeabilization in solution B and intracellularly stained for 30min. Intracellular staining of Foxp3 was performed with the Alexa Fluor 647 anti-human Foxp3 flow kit from BioLegend (London, UK). Cell viability was assessed by annexin V-FITC and propidium iodide (PI) staining (BD Bioscience) as previously described ²¹. For multi-colour flow cytometry, all analyses included the appropriate fluorescence-minus-one controls (i.e. samples stained with every reagent except for the one of interest to guide compensation. Flow cytometry was performed using the LSRII analyzer (Becton Dickinson), data were analyzed with FACS Diva software.

Quantification of CD3/TCR modulation by flow cytometry

PBMC (1x10⁶/mL) were cultured in RPMI + 10% AB serum in the presence or absence of otelixizumab. At indicated time points cells were removed, washed with FACS buffer (PBS + 1% FCS + sodium azide 0.1%) After Fc blocking for 5min with TruStain FcX (BioLegend) cells were stained with: CD4-PerCP-Cy5.5(clone RPA-T4), CD8-APC (clone RPA-T8), CD3-FITC(clone SK7), TCRab-PE (clone IP26) or anti-Human IgG Fc-PE (clone

HP6017) (all BioLegend). After washing with 3ml FACS buffer the cells were resuspended in 300µl Cytofix (BD Biosciences). Lymphocytes were gated on FSC v SSC and 50,000 events were acquired. The Mean Fluorescence Intensity (MFI) data for PE and FITC fluorescence for gated CD4 and CD8 cells were converted to Molecules of Equivalent Soluble Fluorochrome (MESF) values using Quantum Simply Cellular beads (Bangs Laboratories) as per the manufacturer's instructions.

Western blotting

Whole cell lysates were subjected to SDS-PAGE and immunoblotting as previously described ²¹. Anti-T-bet (Santa Cruz, Heidelberg, Germany), anti-RORgt and anti- β -actin (Abcam, Cambridge, UK) were used according to manufacturer's instructions. Intensities of the protein bands were measured using Image J software and relative values were calculated by dividing the IgG and otelixizumab values by the untreated control.

Signaling arrays and cytokine arrays

Phosphorylation status of receptor tyrosine kinases and signaling molecules was determined by employing PathScan RTK signaling arrays (Cell Signaling, Danvers, MA, USA). Seventy-five µg protein of whole cell lysates were probed onto the array. Cytokine arrays were purchased from R&D Systems ("Proteome Profiler Cytokine array kit, Panel A") and performed with 100 µl of supernatants according to instructions. The chemiluminescent signals of all arrays were detected on X-ray films and the pixel intensities measured using ImageJ software. Heatmaps of relative pixel intensities were generated with R (v. 2.15.0) and the compdiagTools package (v. 1.8.2) ^{22, 23}. For

consistency and easier data presentation, the intensity values >1700 were given the same dark red colour. When otelixizumab reduced cytokines to undetectable levels, the fold reduction was given an arbitrary value of 10.

ELISA

Cytokine concentrations in culture supernatants were determined by enzyme linked immunosorbent assay (ELISA) using kits from R&D Systems (IL-17A), ImmunoTools (Friesoythe, Germany; IFN-γ) and ebioscience (Hatfield, UK; IL-2) according to manufacturer's instructions.

Quantitative real-time PCR

Tissue was sonicated in Trizol reagent (Life Technologies, Paisley, UK) and RNA isolated with the Direct-Zol kit (Zymo Research, Irvine, CA, USA). Reverse transcription was performed using QuantiTect Reverse Transcription Kit (Qiagen, Manchester, UK). Quantitative RT- PCR was performed using QuantiFast SYBR Green PCR Kit (Qiagen) on a 7500 Real-Time PCR System (Applied Biosystems, Paisley, UK). IL-10 expression was determined as the geometric mean of IL10 normalized to GAPDH, RPL30 and PGK1 using the 2^{-ΔCt} method ²⁴. Primers: IL10 (QT00041685), PGK1 (QT00013776), RPL30 (QT00056651) (Qiagen). GAPDH: (forward) TGCACCACCAACTGCTTAGC; (reverse) GCATGGACTGTGGTCATGAG.

Statistical testing

Statistical analysis was performed with GraphPad Prism or InStat software. Twotailed Student t-test was used to compare two independent values and the One-way ANOVA with post-test was used for multiple comparisons. Array data were statistically

analysed by calculating the average of all individual proteins in the individual groups and the sums of the resulting two data sets were then compared to each other with the Wilcoxon rank-sum test (in GraphPad Prism). For example, the intensity values of the individual cytokines in the group "CD treated with IgG" were averaged and the whole set of values then statistically compared to all cytokine averages in group "CD treated with otelixizumab". Tables used for calculations are shown in the supplementary material. A p value < 0.05 was considered significant.

Results

Otelixizumab dramatically reduces surface CD3 in blood and mucosal T cells.

We aimed to use concentrations of otelixizumab which caused internalization of surface CD3. With one million blood T cells, a concentration of 1µg/ml otelixizumab reduced CD3 sites from around 200,000 per cell to < 5,000 (Fig 1A). This effect persisted for 24h. Otelixizumab caused the internalization of surface CD3 as well as disappearance of the $\alpha\beta$ T cell receptor from the cell surface. Otelixizumab bound to CD3 blocked the binding of all available anti-TCR and anti-CD3 detection antibodies we have tested. As a consequence down-modulation of the CD3/TCR complex could only be measured by detection of bound otelixizumab with secondary detection antibodies. Downmodulation was evident after 4h (data not shown) and by 24h less than 50% of CD3/TCR molecules remained (Fig 1A). By day 4 almost 90% of the complexes had been internalized (data not shown). When biopsies from UC patients were cultured with 1µg/ml otelixizumab for 16h, rapidly dispersed without collagenase treatment between

two glass slides and incubated with FITC-anti-CD3, CD3 expression was greatly reduced on the cells from biopsies treated with otelixizumab. Strong CD3 expression was observed in cells isolated from biopsies treated with a control IgG (Fig 1B).

Otelixizumab is non-mitogenic and does not affect cell viability

T cells in both normal and inflamed human gut are in an activated state ¹⁰, therefore the first experiments were designed to ensure that otelixizumab was neither mitogenic nor increased pro-inflammatory cytokine production by normal and IBD lamina propria mononuclear cells (LPMC). The rat YTH12.5 antibody, from which otelixizumab was derived, induced proliferation of T cells from normal human gut and from IBD mucosa. In contrast, otelixizumab was non-mitogenic, even in the presence of anti-CD28 (Fig 1C). In terms of cytokine production, YTH12.5 induced high levels of IFN-y and IL-17A, both being important cytokines in IBD²⁵, by both normal and IBD LPMC. While there was some spontaneous IFN-y and IL-17A production by IBD LPMC, cytokine production was reduced by otelixizumab (Fig 1D). Crohn's disease and control LPMCs were next cultured with plate-bound anti-CD3 Ab and anti-CD28 Ab in the culture medium. When otelixizumab was added at the onset of the cultures, IFN-y and IL-17A production were significantly reduced. We also added otelixizumab after 16h to α CD3/CD28 stimulated LPMC. IFN- γ and IL-17A concentrations were reduced, but significance was only reached for control LPMCs (Fig 1E). To test if otelixizumab treatment can reduce the stimulatory capacity of a subsequent YTH12.5 treatment, we

cultured LPMCs from normal and inflamed mucosa for 3h with otelixizumab, changed the medium, then added YTH12.5 for 21h. Pre-treatment with otelixizumab before YTH12.5 was added strongly diminished IFN- γ production by LPMCs. We observed that LPMCs pre-treated with YTH for 3h, then cultured with otelixizumab show a reduced IFN- γ response **(Fig 1E,** for IL-17A and IL-2 data see **supplementary figure S1)**.

We determined if the inhibitory effects of otelixizumab were due to T cell death since an earlier *in vitro* study had indicated that the anti-CD3 antibody visilizumab rapidly induced apoptosis in gut T cells in IBD ⁹. LPMCs were cultured with otelixizumab for 48h and stained with annexin V and propidium iodide. Otelixizumab at concentrations of up to 10µg/ml did not increase the number of apoptotic or dead cells in LPMCs from healthy gut or from CD and UC mucosa (**Fig 1F**). Crohn's disease and UC LPMCs were more resistant to cell death than cells from healthy colon, confirming a previous study ²⁶.

Otelixizumab decreases proinflammatory cytokine production in inflamed mucosa

We next examined T cell responses in CD and UC mucosal biopsies cultured *ex vivo*. Otelixizumab reduced the concentrations of IFN- γ and IL-17A in CD and UC explant culture supernatants compared to the IgG control (**Fig 2A**). The transcription factors T-bet and ROR γ T, the main regulators of IFN- γ and IL17 expression, respectively, were also reduced in CD explants treated with otelixizumab (**Fig 2B**). Supernatants of inflamed CD and UC explants were further subjected to a protein array to measures relative levels of

36 cytokines and chemokines (Fig 2C, D, E). Otelixizumab in CD and UC organ cultures had strong global effects. For Crohn's disease there was a 2-5 fold decrease in C5a, sCD40L, G-CSF, GRO-α, ICAM-1, IFN-γ, IL-1α, IL-1β, IL-2, IL-4, IL-5, IL-12, IL-13, IL-16, IL-27, CXCL11, CCL2, CCL3, TNF- α , RANTES, CCL4, sTREM-1, and a 5-10 fold decrease in GM-CSF, CCL-1, IL-6, IL-17A, IL-23, IL-32a, CXCL10, CXCL12. For ulcerative colitis there was a 2-5 fold decrease in C5a, ICAM-1, IFN-y, IL-12, IL-13, IL-27, CXCL11, CCL2, CCL3, CCL4, RANTES, a 5-10 fold decrease in GM-CSF, IL-1β, IL-2, IL-4, IL-5, IL-17A, IL-32α, CXCL10, CXCL12, and sTREM-1, and a greater than ten-fold decrease in TNF- α and IL-1 α . Cytokines which changed less than two-fold were IL-1RA, IL-8, MIF, and Serpin E1, in CD, and sCD40L, G-CSF, GRO-a, IL-1RA, IL-16, IL-8, IL-23, MIF, and Serpin E1 in UC. The average value of all cytokines of IgG-treated vs. otelixizumab-treated samples were significantly different for CD as well as for UC (Figures 2C, D showing representative cases). IgG (green bars), otelixizumab (red bars). Fig 2E shows heatmaps of all 12 cases. The individual values are listed in supplementary table SII and III. Otelixizumab significantly increased the levels of IL-10 in IBD mucosa supernatants (supplementary tables II and III).

Otelixizumab reduces phosphorylation in IBD tissue to levels observed in healthy mucosa

Because phosphorylation of receptors and signaling molecules is an important mechanism for cells to respond to inflammation and other extracellular stimuli, we analysed the phosphorylation status of 39 receptor tyrosine kinases and signaling

molecules in freshly isolated colonic mucosa of healthy individuals and IBD patients by employing a phosphorylation-specific protein array. Molecules on the array included growth factor receptors, Ephrin family members, ERK, Zap70, Lck, Src, and Stat1 and Stat3. Very few phosphorylation events were detectable in lysates of freshly isolated healthy colonic mucosa (Fig 3A, single representative cases). In contrast, inflamed CD mucosa and UC mucosa showed high relative intensity of phosphorylation of the majority of analysed kinases (Fig 3A, B). There was variation between individual patients, especially in Crohn's disease, probably reflecting the patchy nature of the lesions. Average intensity values of phospho-proteins of IgG-treated vs. otelixizumabtreated samples were significantly different for CD and UC.

When phosphorylation status was measured in lysates of CD mucosal explants cultured with IgG for 48h, the strong level of phosphorylation was maintained, indicating the continuing persistence of the inflammatory process *ex vivo* (Fig 3C showing single representative cases). Addition of otelixizumab to CD explants for 48h strongly reduced the phosphorylation of the majority of kinases (green bars in Fig 3C). Similar results were observed for UC explants cultured with IgG or otelixizumab for 48h (green bars in Fig 3C). By 48h, the phosphorylation status of IBD biopsies cultured with otelixizumab had returned to about the same level as fresh normal mucosa. Notably, otelixizumab strongly inhibited phospho-proteins associated with T cell receptor signaling. Fig 3D shows a heatmap of the relative intensities of the phosphorylation status of receptor tyrosine kinases in biopsies from 6 CD and 6 UC cases, cultured with IgG or otelixizumab for 48h. Relative intensity values are shown in supplementary table

SIV, V and VI. While there was some variation between patients, overall the effects at 48h were strong. For example in Crohn's disease patient 1, only 1 of the 39 kinases had a value of zero when cultured with IgG whereas in the biopsy cultured with otelixizumab, 26 of 39 kinases gave no signal. Likewise in ulcerative colitis patient 2, the biopsy treated with IgG gave a positive signal for all 39 kinases while the biopsy treated with otelixizumab gave no signal for 26 kinases. The average intensity values of phospho-proteins of IgG-treated vs. otelixizumab-treated samples were significantly different for the 48h values.

Otelixizumab's effects are dependent on interleukin-10

Next, we focused on the role of IL-10 since in the array it was the only cytokine which increased with otelixizumab treatment. Supernatants of IBD LPMCs and explants cultured with otelixizumab showed increased IL-10 concentrations (Fig 4A). Biopsies of inflamed mucosa cultured with otelixizumab had higher relative IL-10 mRNA expression than the IgG treated biopsies as measured by RT-PCR (Fig 4A). When CD explants were cultured with otelixizumab and IL-10-neutralizing Ab, the IFN-γ concentration exceeded basal levels (Fig 4B). Unstimulated Crohn's disease LPMCs cultured with otelixizumab showed reduced intracellular IFN-γ and increased intracellular IL-10 (Fig 4C). We next determined if the reduction in the phospho-protein profile in IBD mucosa cultured *exvivo* with otelixizumab was IL-10-dependent. Consistent with our earlier experiments, otelixizumab treatment reduced the phosphorylation levels in CD explants (Fig 4D showing one representative experiment); however, adding IL-10 neutralizing antibody along with otelixizumab inhibited this effect and the tissue maintained a high

phosphorylation status, far in excess of IgG control (**Fig 4D, E showing the heatmaps of 5 cases; supplementary table VII**). We confirmed the importance of IL-10 in our explant culture system by adding exogenous IL-10 to CD biopsies. IFN-γ and IL-17A levels were reduced in cultures treated with IL-10 (**Fig 4F**).

Discussion

Our results show that otelixizumab is profoundly anti-inflammatory when added to IBD LPMC and mucosal tissues from IBD patients. We must emphasize that this study was designed to show proof of principal that tolerising anti-CD3 antibodies have effects on T cells in inflamed tissue, and did not attempt to address why visilizumab, another tolerising anti-CD3 antibody, was not effective in ulcerative colitis in a randomized placebo controlled study¹³. We were well aware of the issues regarding the potential effects of dose of anti-CD3 antibodies and so we chose a dose of 1µg/ml for most of our studies since at this dose there was almost complete internalization of surface CD3 in blood T cells and in T cells in biopsies. The functional effects of otelixizumab were evidenced by the broad down-regulatory effects on pro-inflammatory cytokine and chemokine production, and even more remarkably, the reduction in phospho-protein levels in pathways unrelated to immune cells. For example, TrkA and TrkB are receptors for nerve growth factor and neurotrophins, ephrin receptors are involved in cell migration in many cell types, FGF receptors are involved in angiogenesis and wound healing, and HER2, HER3 and EGFR are involved in epithelial renewal. Since we can be

completely sure otelixizumab only targets T cells, these data show that T cell activation drives these myriad increased signaling pathways in IBD.

We also show that otelixizumab increases IL-10 production by IBD biopsies and that the inhibitory effects of otelixizumab on phospho-protein reduction are IL-10 dependent. This is very similar to previous studies where patients with type I diabetes treated with a tolerising anti-CD3 antibody showed increases in serum IL-10, and activation of blood T cells also increased IL-10 production ²⁷. The new data that we present here show that the same effect occurs in activated T cells in tissues. It is very well established that IL-10 is a potent inhibitor of antigen presentation and the fact that we were able to show that otelixizumab reduced phosphorylated Lck and Zap70 in explants is consistent with both a decrease in antigen presentation and a loss of TcR signaling caused by the internalization of the TcR/CD3 complex. However, we must emphasize that we do not know if there is some signaling when otelixizumab binds to the CD3/TcR complex which delivers a signal to the T cell to shut down pro-inflammatory cytokines and produce IL-10, similar to the effects of anti-CD46 and anti-CD55 ^{28, 29}.

An obvious question is whether otelixizumab is activating nascent IL-10 secreting regulatory T cells or whether it is driving Th1 or Th17 cells to produce IL-10. Our intracellular staining suggests the latter. However, we did examine if otelixizumab increased the number of CD4+, CD25+, FoxP3+ cells (**Supplementary Figure 1**), and indeed this was the case. Further studies are needed to define exactly the pathways by which otelixizumab is having such powerful effects and importantly, whether the effects

we have identified here are seen at lower doses of antibody. Although systemic and mucosal delivery of IL-10 for IBD therapy failed ^{30, 31}, our study does re-inforce the important role of IL-10 in controlling inflammation in the human gut, and is consistent with reports on children with mutations in IL-10R who develop severe gut inflammation ^{32, 33}. In addition, studies in humanized mice have shown that treatment with the tolerising anti-CD3 antibody teplizumab induces T cells which home to the gut and secrete IL-10 ³⁴. This study, however, was markedly different to ours because we investigated resident cells in human tissues.

Our present work also builds on animal models of inflammatory disease where anti-CD3 antibodies have proved to be beneficial. For example, in mouse models of systemic lupus erythematosus, nasal and oral administration of anti-CD3 antibody results in decreased numbers of IL17+ follicular T helper cells and an increase in IL10-producing CD4+CD25+ T cells ^{35, 36}. Likewise, intravenous administration of anti-CD3 antibodies in murine experimental autoimmune encephalomyelitis (EAE) is helpful by the induction of regulatory T cells ³⁷; and intraperitoneal treatment with an Fc-engineered anti-CD3 antibody showed beneficial effects with regard to symptoms, cytokine levels and T cell numbers in EAE³⁸.

We appreciate that a limitation of our study was the inability to track the fate and responsiveness of mucosal T cells treated with otelixizumab for prolonged periods of time because of the need to activate T cells in long-term culture to prevent cell death. Also, the often limited availability of biopsies and surgical specimens prevented us from working with a larger number of cases. Further, we used only one dose of antibody

throughout our study. Therefore the focus of future studies will be to evaluate the effect of different otelixizumab doses on mucosal T cells as the issue of the optimal anti-CD3 in patients dose remains. For example, with regard to the failed clinical studies with visilizumab, it is not at all clear that 5 μ g/kg for two days is a high enough dose to drive the internalization of the TcR/CD3 complex on all T cells in the tissues ^{11, 12}. Our *in vitro* studies had on the other hand the advantage that we could interrogate closely how otelixizumab affects cytokines and phosphorylation patterns in the inflamed mucosa; something which would be difficult to do during a clinical trial.

In conclusion, we show here by various experimental approaches that the anti-CD3 antibody otelixizumab dampens inflammation in human tissue by a mechanism involving the induction of IL-10. Overall, we consider it premature to think tolerising anti-CD3 antibodies may not be a potential therapy for IBD on the basis of the previously failed clinical studies. Since otelixizumab can be given safely at much higher doses than other anti-CD3 antibodies, consideration should be given as to whether a clinical trial of this particular antibody in IBD may be justified.

Acknowledgements

This work was supported by the Medical Research Council, UK. We thank Drs. Sean Preston, Andrew Rochford, Philip Woodland, Shafi Ahmed, Cian McGuire, John Broad, Christopher Chan, Paolo Biancheri for help with tissue collection. We thank all patients who took part in this study.

Legends to figures

Fig 1. Otelixizumab leads to CD3/ TCR internalization, but does not induce proliferation, inflammatory cytokine production, or cell death. A. Normal PBMCs were cultured with/ without otelixizumab for indicated times, stained with α CD4, α CD3, $\alpha TCR\alpha/\beta$ or α human IgG Fc-PE and expression determined by flow cytometry. Culture with otelixizumab reduced expression of CD3 and TCR α/β on blood T cells. Graphs show the results of two experiments. B. UC biopsies were cultured with otelixizumab or IgG (1µg/ml) for 16h, tissue was manually disintegrated by rubbing it between frosted glass slides and repeated aspiration through a needle. Cells were stained and expression of CD3 analysed by flow cytometry. Data from one of two experiments with similar results. C. Normal LPMCs, CD LPMCs, and UC LPMCs were labeled with CFSE and cultured with indicated treatments for 96h. Histograms show CFSE dilutions indicating cell proliferation (gate set on CD2+ cells). Histograms show one of three experiments with similar results. D. IFN-y and IL-17A concentrations in supernatants of LPMCs from healthy, inflamed CD and UC mucosa that were cultured with otelixizumab or YTH12.5. N=3 samples per group; Two-tailed paired t-test. Mean + SEM. E. Normal LPMCs and CD LPMCs were cultured in the presence of plate-bound α CD3 and soluble α CD28. Otelixizumab and IgG (1µg/ml) were added to the cultures immediately or after 16h of culture. IFN-y concentration in the supernatants was measured after 48 hours of culture. Even when added at 16 hours, otelixizumab decreased IFN-y production although statistical significance was only achieved for the former. n=3 per group, two-

tailed paired Student t-test. Mean + SEM. In addition, normal LPMCs and CD LPMCs were cultured in the presence of otelixizumab, IgG and YTH (all 1µg/ml) as indicated. The second antibody was added after 3h and a wash-out of the first Ab. IFN- γ in the supernatant was measured by ELISA. HC n=4; CD n=3. One-way ANOVA with post-test. Mean + SEM. **F.** Percentages of apoptotic and dead LPMCs (from normal, CD and UC mucosa) after culture with indicated treatments for 48h. Normal LPMCs n=4, CD LPMCs n=5, and UC LPMCs n=5.

Fig 2. Otelixizumab modulates the inflammatory cytokine response in inflamed IBD tissue. A. IFN-γ and IL-17 concentrations in supernatants of mucosal explants of inflamed CD colon and UC colon. Explants were cultured with IgG or otelixizumab (both 1µg/ml) for 16h. CD, n=20; UC, n=14. Two-tailed paired t-test. Mean + SEM. **B**. Mucosal explants from active CD colon were cultured with IgG or otelixizumab for 16 h and then lysed. T-bet, RORγt and β-actin (loading control) were determined by western blot. Shown is one representative blot of 5 experiments with similar result. The graph shows the relative optical density of the bands (n=5 blots). Values are the ratios between IgG or otelixizumab-treated samples and the untreated control. Mean +SD. The * indicates p<0.0001. Two-tailed paired Student's t-test. **C**, **D**. Inflamed CD mucosal explants (**C**) and UC colon (**D**) explants were cultured with IgG or otelixizumab for 16h. Supernatants were probed onto a multiplex cytokine array. Relative pixel intensities of cytokine levels of one representative array of a single Crohn's patient and a single UC patient are shown. **E**. Heatmaps showing the relative signal intensities for the analysed cytokines. Plotted are the results from 6 inflamed CD samples and 6 UC inflamed samples which

had been cultured with IgG or otelixizumab for 16h; the data of the 6 cases each were averaged for each cytokine and all average values were analysed by comparing them with the Wilcoxon rank-sum test (i.e. all cytokine averages of CD IgG vs all cytokine averages of CD otelix). CD n=6, UC n=6. CD IgG vs. CD otelix p=0.0004; UC IgG vs UC otelix p= $3.4x \ 10^{-5}$.

Fig 3. Otelixizumab alters the kinase phosphorylation status in inflamed Crohn's disease and ulcerative colitis tissue. A. Representative phosphorylation levels of various receptor-tyrosine kinases and signaling molecules in lysates of healthy colonic mucosa, inflamed CD mucosa, and inflamed UC mucosa as analysed by a multiplex phosphorylation array. Biopsies were immediately snap frozen after being taken from the patient. B. Heatmap showing the relative signal intensities of the phospho-proteins in 4 normal colon samples, 7 CD and 6 UC samples. The relative values between 1700-4000 were given the same red colour to simplify the heatmap. The phospho-intensities of all values of the 4 controls, 7 CD, and 6 UC, respectively, were averaged for the particular group and analysed by comparing them with the Wilcoxon rank-sum test. Control vs. CD p=1.08x10-¹³; Control vs. UC p=2.910-¹⁴. C. Representative phosphorylation levels of kinases in lysates of one inflamed CD explants and one inflamed UC explants cultured for 48h with either IgG or otelixizumab (both $1\mu g/ml$). **D**. Heatmap showing the relative signal intensities for the analysed phosphorylated kinases. Plotted are the results of inflamed samples from six Crohn's patients (CD1, CD2, etc.) and six UC patients (UC1, UC2, etc.) at 48h culture with otelixizumab. The relative

values between 1700-4000 were given the same red colour to simplify the heatmap. All samples show a reduction in phosphoproteins at 48h; Wilcoxon rank-sum test, n=6. CD IgG vs otelix p=1.08x10-⁷; UC IgG vs. otelix p=1.4 x10-⁶.

Fig 4. Otelixizumab promotes an anti-inflammatory response via IL-10. A. LPMCs from normal, CD and UC mucosa were cultured with IgG or otelixizumab (both 1µg/ml) for 48h as indicated. CD and UC explants were cultured for 16h with IgG or otelixizumab. IL-10 concentrations in supernatants were measured. LPMCs n=4; explants n=18 (CD) and n=14 (UC). Two-tailed t-test. Mean + SEM. To measure the relative expression of IL-10 mRNA by qRT-PCR, mucosal biopsies of inflamed CD and UC colon were cultured with IgG, otelixizumab (both 1μ g/ml) for 24h. UC cases in blue n=6; CD cases in black n=5. p=0.04, Wilcoxon rank sum test. B. Mucosal biopsies of inflamed CD colon were cultured with IgG, otelixizumab (1µg/ml), neutralizing anti-IL-10 (10µg/ml) or the matching isotype Ab for 16h. IL-10 in supernatants was measured by ELISA. Otelixizumab abolished the spontaneous IFN- γ production, but this effect was reversed by anti-IL-10. Shown are the means + SEM of three independent experiments. One way ANOVA with post-test. C. Unstimulated CD LPMCs were cultured as indicated for 16h, then for further 4h with monensin before intracellular staining of IFN-y and IL-10 was performed. Plots show cytokine expression in CD2+ LPMCs and demonstrate one of two experiments. D. Explants of cultures like shown in (A) were subjected to the RTKphospho-array. Shown is the result of one of five independent experiments. E. The heatmap summarizes the data of the five separate samples. Wilcoxon rank-sum test,

otelix + anti-IL10 vs. otelix + isotype, p= 6.6×10^{-8} . F. CD explants were cultured for 16h as indicated. Recombinant IL-10 was used at 10ng/ml, antibodies at 1µg/ml. IFN- γ and IL-17A were determined by ELISA in supernatants. Exogenously added IL-10 clearly diminishes IFN- γ and IL-17A production. N=3. One way ANOVA with post-test. Mean +SEM.

References

- Van Wauwe JP, De Mey JR, Goossens JG. OKT3: a monoclonal anti-human T lymphocyte antibody with potent mitogenic properties. J Immunol 1980;124:2708-13.
- 2. Filipovich AH, McGlave PB, Ramsay NK, et al. Pretreatment of donor bone marrow with monoclonal antibody OKT3 for prevention of acute graft-versus-host disease in allogeneic histocompatible bone-marrow transplantation. Lancet 1982;1:1266-9.
- 3. Prentice HG, Blacklock HA, Janossy G, et al. Use of anti-T-cell monoclonal antibody OKT3 to prevent acute graft-versus-host disease in allogeneic bone-marrow transplantation for acute leukaemia. Lancet 1982;1:700-3.
- 4. Chang TW, Gingras SP. OKT3 monoclonal antibody inhibits cytotoxic T lymphocyte mediated cell lysis. Int J Immunopharmacol 1981;3:183-6.

- 5. Hirsch R, Bluestone JA, DeNenno L, et al. Anti-CD3 F(ab')2 fragments are immunosuppressive in vivo without evoking either the strong humoral response or morbidity associated with whole mAb. Transplantation 1990;49:1117-23.
- Alegre ML, Peterson LJ, Xu D, et al. A non-activating "humanized" anti-CD3 monoclonal antibody retains immunosuppressive properties in vivo. Transplantation 1994;57:1537-43.
- 7. Mehta DS, Christmas RA, Waldmann H, et al. Partial and transient modulation of the CD3-T-cell receptor complex, elicited by low-dose regimens of monoclonal anti-CD3, is sufficient to induce disease remission in non-obese diabetic mice. Immunology 2010.
- Wiczling P, Rosenzweig M, Vaickus L, et al. Pharmacokinetics and Pharmacodynamics of a Chimeric/Humanized Anti-CD3 Monoclonal Antibody, Otelixizumab (TRX4), in Subjects With Psoriasis and With Type 1 Diabetes Mellitus. J Clin Pharmacol 2009.
- Yu QT, Saruta M, Papadakis KA. Visilizumab induces apoptosis of mucosal T lymphocytes in ulcerative colitis through activation of caspase 3 and 8 dependent pathways. Clin Immunol 2008;127:322-9.
- 10. Macdonald TT, Monteleone G. Immunity, inflammation, and allergy in the gut. Science 2005;307:1920-5.
- 11. Baumgart DC, Targan SR, Dignass AU, et al. Prospective randomized open-label multicenter phase I/II dose escalation trial of visilizumab (HuM291) in severe steroid-refractory ulcerative colitis. Inflamm Bowel Dis 2009.

- 12. Plevy S, Salzberg B, Van Assche G, et al. A phase I study of visilizumab, a humanized anti-CD3 monoclonal antibody, in severe steroid-refractory ulcerative colitis. Gastroenterology 2007;133:1414-22.
- Sandborn WJ, Colombel JF, Frankel M, et al. Anti-CD3 antibody visilizumab is not effective in patients with intravenous corticosteroid-refractory ulcerative colitis. Gut 2010;59:1485-92.
- 14. van der Woude CJ, Stokkers P, van Bodegraven AA, et al. Phase I, double-blind, randomized, placebo-controlled, dose-escalation study of NI-0401 (a fully human anti-CD3 monoclonal antibody) in patients with moderate to severe active Crohn's disease. Inflamm Bowel Dis 2010;16:1708-16.
- Keymeulen B, Vandemeulebroucke E, Ziegler AG, et al. Insulin needs after CD3antibody therapy in new-onset type 1 diabetes. N Engl J Med 2005;352:2598-608.
- Keymeulen B, Walter M, Mathieu C, et al. Four-year metabolic outcome of a randomised controlled CD3-antibody trial in recent-onset type 1 diabetic patients depends on their age and baseline residual beta cell mass. Diabetologia 2010.
- 17. GSK. http://us.gsk.com/html/medianews/pressreleases/2011/2011_pressrelease_10039.htm accessed 1st Feb, 2014.
- 18. Di Sabatino A, Rovedatti L, Kaur R, et al. Targeting gut T cell Ca2+ releaseactivated Ca2+ channels inhibits T cell cytokine production and T-box

transcription factor T-bet in inflammatory bowel disease. J Immunol 2009;183:3454-62.

- 19. Monteleone G, Kumberova A, Croft NM, et al. Blocking Smad7 restores TGFbeta1 signaling in chronic inflammatory bowel disease. J Clin Invest 2001;108:601-9.
- 20. Monteleone I, Federici M, Sarra M, et al. Tissue inhibitor of metalloproteinase-3 regulates inflammation in human and mouse intestine. Gastroenterology 2012;143:1277-87 e1-4.
- 21. **Vossenkämper A, Marches O**, Fairclough PD, et al. Inhibition of NF-kappaB signaling in human dendritic cells by the enteropathogenic Escherichia coli effector protein NIeE. J Immunol 2010;185:4118-27.
- 22. Held M, Bentink S, Kostka D, et al. compdiagTools: Toolbox for performing and illustrating microarray data analyses. R package version 1.8.2 2012.
- 23. Team RDC. R: A Language and Environment for Statistical Computing. MANUAL RDevelopmentCoreTeam_R_2012 2012.
- 24. Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001;29:e45.
- 25. Rovedatti L, Kudo T, Biancheri P, et al. Differential regulation of interleukin 17 and interferon gamma production in inflammatory bowel disease. Gut 2009;58:1629-36.

- 26. **Monteleone I, Monteleone G**, Fina D, et al. A functional role of flip in conferring resistance of Crohn's disease lamina propria lymphocytes to FAS-mediated apoptosis. Gastroenterology 2006;130:389-97.
- Herold KC, Burton JB, Francois F, et al. Activation of human T cells by FcR nonbinding anti-CD3 mAb, hOKT3gamma1(Ala-Ala). J Clin Invest 2003;111:409-18.
- Capasso M, Durrant LG, Stacey M, et al. Costimulation via CD55 on human CD4+
 T cells mediated by CD97. J Immunol 2006;177:1070-7.
- 29. Cardone J, Le Friec G, Vantourout P, et al. Complement regulator CD46 temporally regulates cytokine production by conventional and unconventional T cells. Nat Immunol 2010;11:862-71.
- Fedorak RN, Gangl A, Elson CO, et al. Recombinant human interleukin 10 in the treatment of patients with mild to moderately active Crohn's disease. The Interleukin 10 Inflammatory Bowel Disease Cooperative Study Group. Gastroenterology 2000;119:1473-82.
- Schreiber S, Fedorak RN, Nielsen OH, et al. Safety and efficacy of recombinant human interleukin 10 in chronic active Crohn's disease. Crohn's Disease IL-10 Cooperative Study Group. Gastroenterology 2000;119:1461-72.
- 32. **Glocker EO, Kotlarz D, Boztug K**, et al. Inflammatory bowel disease and mutations affecting the interleukin-10 receptor. N Engl J Med 2009;361:2033-45.

- 33. Kotlarz D, Beier R, Murugan D, et al. Loss of interleukin-10 signaling and infantile inflammatory bowel disease: implications for diagnosis and therapy. Gastroenterology 2012;143:347-55.
- 34. Waldron-Lynch F, Henegariu O, Deng S, et al. Teplizumab induces human guttropic regulatory cells in humanized mice and patients. Sci Transl Med 2012;4:118ra12.
- 35. Wu HY, Center EM, Tsokos GC, et al. Suppression of murine SLE by oral anti-CD3: inducible CD4+CD25-LAP+ regulatory T cells control the expansion of IL-17+ follicular helper T cells. Lupus 2009;18:586-96.
- 36. Wu HY, Quintana FJ, Weiner HL. Nasal anti-CD3 antibody ameliorates lupus by inducing an IL-10-secreting CD4+ CD25- LAP+ regulatory T cell and is associated with down-regulation of IL-17+ CD4+ ICOS+ CXCR5+ follicular helper T cells. J Immunol 2008;181:6038-50.
- 37. Belmar NA, Lombardo JR, Chao DT, et al. Dissociation of efficacy and cytokine release mediated by an Fc-modified anti-CD3 mAb in a chronic experimental autoimmune encephalomyelitis model. J Neuroimmunol 2009;212:65-73.
- 38. Tran GT, Carter N, He XY, et al. Reversal of experimental allergic encephalomyelitis with non-mitogenic, non-depleting anti-CD3 mAb therapy with a preferential effect on T(h)1 cells that is augmented by IL-4. Int Immunol 2001;13:1109-20.

Author names in bold designate shared co-first authors.

A

ACCEPTED MANUSCR

UC IgG 48h vs. otelix 48h *

Legends to Supplementary Materials

Supplementary Figure 1.

A. Normal LPMCs and **B.** CD LPMCs were cultured in the presence of otelixizumab, IgG and YTH $(1\mu g/ml)$ as indicated. The second antibody was added after 3h and a wash-out of the first Ab. IL-17A and IL-2 levels in the supernatants were measured by ELISA. HC n=4; CD n=3. One-way ANOVA with post-test. Mean + SD.

Supplementary Figure 2. A. LPMCs from CD mucosa were cultured with IgG or otelixizumab for 24h. Foxp3 was stained intracellularly. Histograms show Foxp3 signal in the CD4+ CD25+ population. Histograms show one of six experiments. **B, C.** Graphs show percentage (**B**) of CD4+CD25+Foxp3+ cells and mean fluorescence intensity (**C**) in three CD as well as three healthy LPMCs cultured with either IgG or otelixizumab (both 1µg/ml) for 24h. Mann-Whitney-test. Depicted is the median.

Supplementary Table I

Patient and disease characteristics of the CD and UC patients recruited for this study.

Supplementary Table II

Relative cytokine values that were measured in the explant supernatants by protein array. Shown are the relative pixel intensities of the dots on the array (mean of duplicates per analyte). Explants of six Crohn's disease patients had been cultured for 16h with IgG or otelixizumab. Shown is also the table used for statistical testing.

Supplementary Table III

Relative cytokine values that were measured in the explant supernatants by protein array. Shown are the relative pixel intensities of the dots on the array (mean of dublicates per analyte). Explants of six ulcerative colitis patients had been cultured for 16h with IgG or otelixizumab. Shown is also the table used for statistical testing.

Supplementary Table IV

Relative phosphorylation levels that were measured in the explant lysates by phospho-protein array. Analysed were four healthy colon specimens, seven inflamed CD and six inflamed UC specimens. Specimens were immediately snap-frozen and untreated. Shown is also the table used for statistical testing.

Supplementary Table V

Relative phosphorylation levels that were measured in the explant lysates by phospho-protein array. Explants of six Crohn's disease patients had been cultured for 48h with IgG or otelixizumab. Lysates were subjected to the phospho-protein array and relative intensities of the dots (in duplicates) were measured. Shown is also the table used for statistical testing.

Supplementary Table VI

Relative phosphorylation levels that were measured in the explant lysates by phospho-protein array. Explants of six ulcerative colitis patients had been cultured for 48h with IgG or otelixizumab. Lysates were subjected to the phospho-protein array and relative intensities of the dots (in duplicates) were measured. Shown is also the table used for statistical testing.

Supplementary Table VII

Relative phosphorylation levels that were measured in the explant lysates by phospho-protein array. Explants of five Crohn's disease patients had been cultured for 24h as indicated. Lysates were subjected to the phospho-protein array and relative intensities of the dots (in duplicates) were measured. Shown is also the table used for statistical testing.

Supplementary Figure 2

Supplementary Table I

Patient characteristics

Crohn's	s disease n=85	Nr	Median (range)
Age		85	31.1 (15-57)
Female		45	
Male		40	
Disease	location		
-	lleum & colon	38	
-	colon only	47	5
Treatm	ent		
-	5-AZAs	21	
-	5-AZAs & steroids	35	
-	5-AZAs & azathioprine/methotrexate/other	29	

Y

Ulcerative colitis n=61	Nr	Median (range)
Age	61	34.5 (13-65)
Female	29	
Male	32	
Disease location		
- distal colon	39	
- pan-colitis	22	
Treatment		
- 5-AZAs	16	
- 5-AZAs & steroids	30	
- 5-AZAs & azathioprine/methotrexate/other	15	

Note: patients on anti-TNF drugs were not recruited for this study

Supplementary Table II

Crohn's disease explant supernatants cytokines

	CD1		CD2		CD3		CD4			CD5		. (CD6		A	VERAGE	<u>.</u>
	16h + IgG	16h + Otelix	16h + IgG	16h + Otelix	16h + IgG	16h + Otelix	16h + lgG	16h + Otelix		16h + IgG	16h + Otelix	7	l 6h + IgG	16h + Otelix	10	6h + IgG	16h + Otelix
C5a	23656.5	23574.5	5079.5	5 2877	8577.5	2111.5	10224	5679		8179.5	1689.5		3809.5	575.5	9	9921.08333	6084.5
CD40 ligand	4518	3388	2483.5	3354.5	8167.5	0	5546	1023		4436.5	0		1862.5	670.5	4	4502.33333	1406
G-CSF	25618	10045.5	4608	3 1024.5	12575.5	7290.5	8221.5	2346		6577	5832		3456	204.5		10176	4457.16667
GM-CSF	5713	1183.5	1638	3 1000	7002.5	806.5	6798.5	631		5438	645		1228.5	200	4	4636.41667	744.333333
GROalpha	25507	10396.5	5466.5	5 486.5	14656.5	17691.5	18996.5	9446		151970	14153		4099.5	97	3	36782.6667	8711.75
I-309/CCL1	2213	1600.5	1844.5	5 574	1616.5	0	9765	27		7812	0		1383.5	114		4105.75	385.916667
sICAM-1	23166.5	26668.5	15217.	5 14182	17553	2080.5	14665	2289.5		11732	1664		11413	2836		15624.5	8286.75
IFNg	8544.5	6704	6250	4110	6331	1033.5	7746	550		6196.5	826.5		4687.5	822	e	6625.91667	2341
IL1 alpha	67.5	976.5	1934	1 586	11186.5	0	5679	225		4543	0		1450.5	117	4	4143.41667	317.416667
IL1 beta	19663	4999.5	6878.	5 4162.5	11185.5	7065.5	16447	2346		131570	0		5158	832.5		31817	3234.33333
IL1ra	25463	28341	16973	8 18143.5	21239	17516	15446.5	10166		123570	14012		12729.5	3628.5		35903.5	15301.1667
IL2	2900	1421	1311.	5 3292.5	2367.5	0	4022	1344		32170	5652		983	658.5	7	7292.33333	2061.33333
IL4	1382.5	655	680	621	2279	0	1079	0		863.5	0		510	124.5	-	1132.33333	233.416667
IL5	2277.5	1002	968.5	5 448	1532.5	0	1163	267		930	0		726	89.5		1266.25	301.083333
IL6	25298	6631.5	15938	3 1424	20742.5	15264	22679	6021.5	Y	18143	12211		11953.5	284	-	19125.6667	6972.66667
IL8	25394.5	28285	17219.	5 12031.5	21378	18580	26449	4990		21159	14864		12914.5	2406	2	20752.4167	13526.0833
IL10	0	3964	396.5	5 2129.5	2774.5	3681.5	336	1977.5		268	2945		297.5	825		678.75	2587.08333
IL12 p70	0	1070	300	292	3948.5	0	4679	223		3743	0		225	58		2149.25	273.833333
IL13	3261.5	3478.5	1393	3 2857	5972	0	279	0		223	0		1044.5	571	2	2028.83333	1151.08333
IL16	7644	4285.5	691	2862	6287.5	168.5	5467.5	344		4374	134		5187.5	572	ŧ	5979.58333	1394.33333
IL17	10795	3246	6884	4 3950	7237.5	0	8877	578.5		7101	0		5163	790		7676.25	1427.41667
IL25	3870.5	1639	1668.	5 1151	3043.5	0	2264	0		1811	0		1251.5	230	2	2318.16667	503.333333
IL23	12422	5479	4600.5	3021.5	8224.5	600	4479	548		3583	0		3450.5	604	e	6126.58333	1708.75
IL27	18485.5	9713	4167.5	5 1140.5	14732	7209	16344	805		13075	5767.2		3125.5	228		11654.9167	4143.78333
IL32alpha	0	848	521.	5 0	4152.5	0	468	0		374	480		391	0		984.5	221.333333
IP-10/CXCL10	0	684	10	7 0	2629.5	0	5590	664		4472	0		80	0	2	2146.41667	224.666667
I-TAC/CXCL11	1492.5	1394.5	153.5	634.5	2113	0	1645	1554		1316	0		115	126.5		1139.16667	618.25
MCP-1/CCL2	2240.5	892	583	659	1195	0	997	0		797	0		437	131.5		1041.58333	280.416667
MIF	25220	28171.5	17226.5	5 18094	21262.5	18416	23445.5	19778		18756	14732.5		12919	3618		19804.9167	17135
MIP-1alpha/CCL3	5144.5	1843.5	3502.5	5 2951.5	2499.5	0	2246	244		1796	0		2626	590	2	2969.08333	938.166667
MIP-1beta/CCL4	3783	2005	852	2 332	2488.5	0	1922	134		1537	0		639	66		1870.25	422.833333
Serpin E1	25454.5	27976.5	17198.	5 10010	21277	18333.5	879	746		703	14666		12898.5	2002	-	13068.4167	12289
RANTES/CCL5	736	2462	3624.5	5 2017	6609	0	8799	640.5		7039.5	0		2718.5	403	4	4921.08333	920.416667
CXCL12	0	498	39	9 0	3033.5	0	6643	446		5314.5	0		29.5	0	2	2509.91667	157.333333
TNFa	111	398	(0 0	1594.5	0	645	213		516	0		0	0		477.75	101.833333
sTREM1	1146.5	479.5	255.5	5 560.5	937	0	1044	879		835	0		191.5	112.5	7	734.916667	338.583333
					Y I												

0.0004 U-test

Supplementary Table III

cytokines Ulcerative colitis explant supernatants

	UC1	
	16h + IgG	16h + Otelix
C5a	5140.5	2283
CD40 ligand	9186.5	5959.5
G-CSF	3946.5	2655
GM-CSF	2701	1760
GROalpha	16799.5	16179.5
I-309/CCL1	2757.5	2522.5
sICAM-1	17107.5	16181
IFNg	7015.5	2986.5
IL1 alpha	7030.5	5719.5
IL1 beta	2814	1947.5
IL1ra	17163	15458
IL2	3726	0
IL4	1709.5	529.5
IL5	1676.5	350.5
IL6	4592.5	7362.5
IL8	17035	16205.5
IL10	3676	5092
IL12 p70	1644.5	386
IL13	5924.5	1856
IL16	15861.5	12426.5
IL17	5117	1035.5
IL25	3745	1685
IL23	12505	9936
IL27	4496	4066.5
IL32alpha	3266.5	1081.5
IP-10/CXCL10	1507	699.5
I-TAC/CXCL11	3310	1318
MCP-1/CCL2	3773.5	1293
MIF	17143.5	16149
MIP-1alpha/CCL3	6330	3241.5
MIP-1beta/CCL4	2995	960.5
Serpin E1	16434	16263.5
RANTES/CCL5	8521.5	14547.5
CXCL12	767.5	695
TNFa	1237.5	0
sTREM1	2344	839.5

UC2		UC3
16h + IgG	16h + Otelix	16h + IgG
5060.5	1100.5	11644
6730.5	3807	4295
11759	6272	19103
4909.5	0	1243
11498.5	7859	1343
4927.5	0	9478
9139	1765.5	1671
8998	2593	1155
5129	1365	6360
3371.5	0	2540
8460.5	5863	1627
2225.5	0	3863
3833.5	0	491
4852	0	598
11814.5	6833	20816
11577.5	7448.5	2454
1566.5	4173	361
2499	0	421
2645.5	274.5	3012
5060.5	7491	14839
6656.5	2213.5	728
6520	669.5	8072
9175.5	4480.5	1267
10304	2510.5	20048
5335.5	1285	1143
2361.5	0	4284
2514.5	0	304
2407.5	14.5	621
11298	7667	2600
5947	1585	16469
6221	1022.5	18286
11656.5	7125.5	31253
9559	4502.5	12788
3422	0	497
1489	0	378
2050.5	0	698

3			UC4	
+ lgG	16h + Otelix		16h + IgG	16ŀ
11644.5	7747		5654.5	
4295.5	1863		10105	
19103.5	11453		4341.5	
12435	0		2971	
13439	8866.5		18479.5	
9478.5	0		3033.5	
16714	10819		18818	
11553	7481		7717	
6360.5	178		7733	
2540.5	356		3095	
16278	11361		18879	
3863.5	1032.5		4098	
4918	2551		1880.5	
5985	0		1844	
20816.5	14639.5		5051.5	
24541	17286.5		18738.5	
3613	0		4043	-
4212	0		1808.5	K
3012.5	2073.5		6516.5	
14839.5	13397.5		17447.5	
7282	1037.5		5628	
8072.5	0		4119	
12674	5736.5		13755.5	
20048.5	12106.5		4945	4
11438	0		3593.5	
4284.5	0		1657	
3043	6249		3641	
6218	4869		4150.5	
26003	21605	×7-	18857	
16469.5	4527		6963	
18286.5	5039		3294.5	
31253.5	17033		18077	
12788.5	3041.5		9373.5	
4972	0		844.5	
3784	97.5		1361.5	
6983	6093.5		2578	

		UC5	
6h + Otelix		16h + IgG	16h + Otelix
2385.5		4554.0	880.0
6227.5		6057.0	3045.0
2774.5		10583.0	5017.0
1839		4418.0	0.0
16907		10348.5	6287.0
2636		4434.5	0.0
16909		8225.0	1412.0
3120		8098.0	2074.0
5976		4616.0	0.0
2035		3034.5	0.0
16153		7614.5	4690.0
0		2002.5	0.0
553		3450.5	0.0
366.5		4366.0	0.0
7693.5		10633.0	5466.0
16934.5		10419.5	5958.0
6321	7	1409.5	4338.0
403		2249.1	0.0
1939		2380.5	219.0
12985.5		4554.5	0.0
1082		5990.0	1770.0
1760.5		5868.0	535.0
10383		8257.0	3584.0
4249.4925		9273.0	2008.0
1130.5		4801.5	0.0
730		2125.5	0.0
1377		2263.0	0.0
1351.5		2166.0	11.0
16875.5		10168.0	6133.0
3387		5352.0	1268.0
1003.5		5598.0	0.0
16995		10490.5	5700.0
15202		8603.0	3602.0
726		3079.0	0.0
0		1340.0	0.0
877		1845.0	0.0

UC6	
16h + IgG	16h + Otelix
8849	484
3264.5	1675
14518	2759
9450	0
10213	3457.5
7203	0
12702.5	776
8780	1140
4833	55.5
1930	0
12371	2579
2936	0
3737.5	0
4548	0
15820.5	3006.5
18651	3277
1836	3745
3201	0
2289	120
11278.02	3296
5534	973
6135.5	294.5
9632	1971
15236	1104
8692	0
3256	0
2312.5	0
4725	6
19762.5	3373.5
12516	697.5
13897	449
23752	3135
9719	0
3778	1981
2875	0
5307	0

880.0

3045.0 5017.0

2074.0

4690.0

5958.0 4338.0

0.0

0.0

1770.0

0.0

0.0 0.0

11.0 6133.0

1268.0

0.0

0.0

0.0

0.0

0.0 0.0 0.0

0.0 0.0

0.0

AVERAGE	
16h + IgG	16h + Otelix
6817.2	2480.0
6606.5	3762.8
10708.6	5155.1
6147.4	599.8
13463.0	9926.1
5305.8	859.8
13784.3	7977.1
8693.6	3232.4
5950.3	2215.7
2797.6	723.1
13461.0	9350.7
3141.9	172.1
3254.9	605.6
3878.6	119.5
11454.8	7500.2
16827.1	11185.0
2842.2	3293.3
2602.4	131.5
3794.8	1080.3
11506.9	8266.1
6034.6	1351.9
5743.3	824.1
10999.8	6015.2
10717.1	4340.8
6187.8	582.8
2531.9	238.3
2847.3	1490.7
3906.8	1257.5
17205.3	11967.2
8929.6	2451.0
8382.0	1412.4
18610.6	11042.0
9760.8	6815.9
2810.5	567.0
2014.5	16.3
3517.9	1301.7

0.000034 U-test

Supplementary Table IV

Phosphorylation in untreated explants

	Healthy1	Healthy2	Healthy 3	Healthy 4	CD1	CD2	CD3	CD4	CD5	CD6	CD7	UC1	UC2	UC3	UC4	UC5	UC6
EGFR/ErbB1	0	105	0	0	1195	202	636	1168	1102.5	247	1032.5	691.5	3177	2736.5	2478	2451.5	2536.5
HER2/ErbB2	0	0	0	0	1457.5	339	710	1219	1344.5	414	1077	837.5	2877	1696.5	2244	2351.5	2295.5
HER3/ErbB3	0	220.5	0	35	1551	343.5	495.5	1102	1430	465	974	1017	2798	752	2182.5	2150	2356
FGFR1	0	0	37.5	69	872.5	243.5	352.5	780.5	804	298.5	689	691.5	2951.5	3649.5	2302.5	2359	2392.5
FGFR3	0	0	85.5	57.5	720	193	382.5	568	664	236.5	502	512	2443.5	1996.5	1905	2018	1656
FGFR4	0	0	0	0	710.5	247.5	358.5	588	655	302.5	519	376	3074	1432.5	2397	2018	1670
InsR	0	5.5	0	0	1172	192.5	381.5	700	1080	246	618	637	2897	462.5	2259	1660.5	1615.5
IGF-IR	0	58	66	23.5	918	147	188	749.5	846.5	179.5	662	464	2347	285.5	1830.5	1962.5	1718
TrkA/NTRK1	0	0	0	0	1321.5	101	554	596	1218.5	123.5	526	756	1544	1943.5	1204	889.5	778
TrkB/NTRK2	0	0	0	0	928	140	321.5	579	855	171.5	511	355	1127.5	1346	879	838	1018
Met/HGFR	0	0	0	0	176.5	14	0	267	162	167.5	236	163	1770.5	634.5	1380	737	803
Ron/MST1R	0	0	0	0	236.5	0	0	255	218	0	225	113	910	673	709	780	959.5
Ret	0	0	0	0	241	105	0	293.5	222	128.52	259	115	1573	847.5	1226	1117	1814.5
ALK	0	0	0	0	469.5	0	0	435	433	0	384.5	175	1264	3349	985	987.5	2858
PDGFR	0	0	0	0	807	0	30.5	499	744.5	0	441	351	875	2242	682.5	564.5	1901
c-kit/SCFR	0	0	0	0	1468	25.5	258	620.5	1353.5	31.5	548.5	519	430	1035.5	335.4	345	1729
FLT3/Flk2	0	0	0	0	844.5	0	27	386.5	778	0	341	375.5	472.5	617.5	368.5	311.5	1527
M-CSFR/CSF-1R	0	0	0	0	691	0	0	355	637	0	313	263.5	411.5	289	320	260.5	1137
EphA1	0	0	0	0	713.5	0	0	673.5	658.5	24.5	595	518	180	2291	140	134.5	1158
EphA2	0	0	0	0	461	20	0	477	425	0	421	404	75	1747.5	0	64	1394
EphA3	0	0	0	0	338.5	0	0	296.5	312	76.5	262	302.5	187	1374	145	138	994.5
EphB1	0	0	0	0	352.5	0	0	304	325	0	268.5	290	190	866	148	156	727.5
EphB3	0	0	0	0	527.5	80	0	386.5	486.5	97.5	341	566	299	604.5	233	189	678.5
EphB4	0	0	0	0	156.5	3	0	363.5	144	3.5	321.5	233	25	1920.5	0	67	108.35
Tyro3/Dtk	0	0	0	0	0	0.5	0	316.5	0	0	279.5	122	144	1346.5	112	33	0
AxI	0	0	0	0	159	28	0	184	146	34.5	162	152	101	1227	78	90	396
Tie2/TEK	0	0	0	0	773	208.5	227	385	712	255.5	340	561.5	428	1270.5	333.5	290	857
VEGFR2/KDR	0	0	0	0	598.5	118	282	319.5	551.5	134	282.5	552	119.5	726.5	93	73	444
Akt/PKB/Rac Thr308	0	0	0	0	1513	475.5	843.5	1097	1395	582	969.5	1147.5	1396	3874	1088	824	2743
Akt/PKB/Rac Ser473	0	0	0	0	1443.5	460.5	725.5	1117	1331	563	987	1262.5	1374	3815.5	1071	821	2960
p44/42 MAPK (ERK1/2)	32.5	0	33.5	64.5	1923	682	617.5	856	1773.5	834	756	980.5	466	3597	363	332	1955
S6 ribos. Protein	0	0	0	0	1349	358.5	618.5	677.5	1244	438	598	867.5	991.5	3998	773	717	2160.5
c-Abl	0	0	0	0	686	214.5	314	492.5	632	279	435	434.5	639	1409	498	304	963.5
IRS-1	0	120.5	0	0	1197	304	641.5	1226.5	1103	372	1084	793	646.5	2803	504.5	453.5	696.5
Zap-70	220	333.5	115.5	87.5	1673.5	629	972.5	1280	1543	769	1131.5	1311.5	987	3304.5	769	676.5	1801.5
Src	131.5	147	203	0	1591.5	590.5	845	1211	1467.5	722	1070.5	1186	876	3113	683	667.5	2020
Lck	75	34	110	112	1207.5	454	677.5	879	1113	555.5	777	815.5	1023	2854	797.5	912.5	2223
Stat1	37.5	213.5	67	179	1610	547	862.5	946.5	1484	669	836.5	1068.5	1899	3533	1481.5	1382.5	2555
Stat3	173	301	69	98.5	1598.5	686.5	1023.5	1202.5	1474	840.5	1063	1390.5	2448	3976	1909	1817.5	2811.5

average CD	average HC
797.5714286	26.25
937.2857143	0
908.7142857	63.875
577.2142857	26.625
466.5714286	35.75
483	0
627.1428571	1.375
527.2142857	36.875
634.3571429	0
500.8571429	0
146.1428571	0
133.5	0
178.4314286	0
246	0
360.2857143	0
615.0714286	0
339.5714286	0
285.1428571	0
380.7142857	0
257.7142857	0
183.6428571	0
178.5714286	0
274.1428571	0
141.7142857	0
85.21428571	0
101.9285714	0
414.4285714	0
326.5714286	0
982.2142857	0
946.7857143	0
1063.142857	32.625
754.7857143	0
436.1428571	0
846.8571429	30.125
1142.642857	189.125
1071.142857	120.375
809.0714286	82.75
993.6428571	124.25
1126.928571	160.375

1.085326e-13*

U test

	-
iverage UC	average HC
2345.166667	26.25
2050.333333	0
1875.916667	63.875
2391.083333	26.625
1755.166667	35.75
1827.916667	0
1588.583333	1.375
1434.583333	36.875
1185.833333	0
927.25	0
914.6666667	0
690.75	0
1115.5	0
1603.083333	0
1102.666667	0
732.3166667	0
612.0833333	0
446.9166667	0
736.9166667	0
614.0833333	0
523.5	0
396.25	0
428.3333333	0
392.3083333	0
292.9166667	0
340.6666667	0
623.4166667	0
334.6666667	0
1845.416667	0
1884	0
1282.25	32.625
1584.583333	0
708	0
982.8333333	30.125
1475	189.125
1424.25	120.375
1437.583333	82.75
1986.583333	124.25
2392.083333	160.375

U test 2.9e-014*

Supplementary Table V

Phosphorylation levels in treated Crohn's disease explants

	004	004	000	000	000	000	004	004	0.05	005	0.00	000	Crahala
		Ote 48h	LaG48h	CD2 Ote 48h	LD3	CD3 Ote 48h	LD4	CD4 Ote 48h	LaC48b	CD5 Ote 48h	LD0	CD6 Ote 48h	Cronn's
EGER/ErbB1	2948	985	574.5	010 400	201	56	2734	1123	873	153	1172	153	1417 08333
HER2/ErbB2	2809.5	730	512.5	0	190	0	997	210	553	234	505	243	927 833333
HER3/ErbB3	2523	647	388	0	174.5	0	823	55	705	275.5	577	79.5	865.083333
FGFR1	2849	916	997.5	0	898.5	915.5	2661	522	1101	0	661	0	1528
FGFR3	2255	580	259	0	0	0	1105	0	314	0	1025	531	826.333333
FGFR4	2305	503.5	128.5	0	0	0	1002	0	115	0	1221	0	795.25
InsR	1817	90	47	0	0	0	396	110	75	0	1175.5	27	585.083333
IGF-IR	2144.5	300.5	155.5	0	0	0	301	0	177.5	0	620	305	566.416667
TrkA/NTRK1	856.5	0	242.5	0	0	101.5	1132	215.5	663	237	535	104	571.5
TrkB/NTRK2	954	41	27	0	0	0	775.5	101	113	0	67.5	37	322.833333
Met/HGFR	782	0	0	0	0	0	51	0	75.5	0	115.5	0	170.666667
Ron/MST1R	979	0	0	0	0	0	0	0	53	0	70.5	225	183.75
Ret	1616	0	223.5	0	0	0	223	0	117	27	663	0	473.75
ALK	843	267.5	398.5	0	297	647.5	3011	0	205	67.5	273	0	837.916667
PDGFR	253	0	219.5	0	0	432.5	231	0	245	51.5	117	0	177.583333
c-kit/SCFR	301	0	0	0	0	0	0	0	237	0	51	0	98.1666667
FLT3/Flk2	478	0	0	0	0	0	373.5	22	0	0	31.5	0	147.166667
M-CSFR/CSF-1R	801.5	0	0	0	0	0	225	0	0	0	0	0	171.083333
EphA1	0	0	249	0	0	266	93	32	145	0	67.5	0	92.4166667
EphA2	31.5	0	101	0	0	0	113	11	79.5	0	88.5	0	68.9166667
EphA3	215	0	0	0	0	0	0	0	533	0	103.5	23.5	141.916667
EphB1	294.5	0	35.5	0	0	0	227.5	0	24	0	0	0	96.9166667
EphB3	602.5	0	43	0	0	0	115.5	77.5	179	72	225	113	194.166667
EphB4	107.5	0	369	0	0	87	318.5	0	105.5	0	73	0	162.25
Tyro3/Dtk	158	0	324	0	0	0	443	72	279	51	124	0	221.333333
AxI	375.5	0	264.5	0	0	0	501	213	66.5	0	137.5	0	224.166667
Tie2/TEK	826.5	0	318.5	0	0	69.5	0	135	129	0	220	0	249
VEGFR2/KDR	594	0	67	0	0	0	0	0	345	125	257.5	0	210.583333
Akt/PKB/Rac Thr308	2276	392	1874	250	1489	693	1992	459.5	943	337	69	0	1440.5
Akt/PKB/Rac Ser473	1696.5	401	1688.5	137	1034.5	836.5	1883.5	123	201	0	88.5	27	1098.75
p44/42 MAPK (ERK1/2)	695	0	843.5	0	412	59	223	0	115	0	175	45.5	410.583333
S6 ribos. Protein	1384	0	1189.5	42	354	332	307	0	93	0	223	73	591.75
c-Abl	766	0	579.5	0	0	0	453.5	0	958	432.5	555	110	552
IRS-1	793	0	2383.5	928	1313.5	938	1195	504	1025	72	35.5	103	1124.25
Zap-70	1317.5	0	2518.5	1251	1422.5	865.5	2013	588	2537	304	103	0	1651.91667
Src	1131.5	0	1903	662	901	529.5	1122.5	337	1010	335	993	0	11/6.83333
Lck	1259	0	1886.5	433	614	483.5	657	228.5	/93	110	1150	23	1059.91667
Stat1	1636	0	1595.5	/09.5	/00	443	895	115	1887.5	62	/73	72	1247.83333
Stat3	2144	295.5	3374.5	2220	2283	1413.5	2245.5	259	2310	275	1095	554	2242

AVERAGE

Ote 48h

411.666667

236.166667

176.166667

392.25

6.333333 185.166667 795.25 83.9166667 35.083333 37.8333333 100.916667 6.416667 571.5 109.666667 2.833333 29.8333333 0.666667 ſ 183.75 37.5 473.75 4.5 37.916667 163.75 7.583333 80.6666667 .1666667 7.166667 3.66666667 1.083333 .4166667 49.6666667 .9166667 1.83333333 1.916667 3.91666667 .9166667 4.166667 43.75 162.25 14.5 20.5 1.333333 4.166667 35.5 249 34.0833333 0.583333 20.8333333 1440.5 355.25 1098.75 254.083333 0.583333 17.4166667 591.75 74.5 552 90.4166667 1124.25 424.166667 551.91667 501.416667 176.83333 310.583333 059.91667 213 247.83333 233.583333 2242 836.166667

U-test 1.08e-07*

Supplementary Table VI Phosphorylation levels in treated Ulcerative colitis explants

	UC1	UC1	UC2	UC2	UC3	UC3	UC4	UC4	UC5	UC5	UC6	UC6
	lgG48h	Ote 48h										
EGFR/ErbB1	2591	2024.5	881.5	457	903	980.5	773	331	905	278	2103	587
HER2/ErbB2	2403.5	1564	695.5	134	755	656.5	885	238.5	793	589	953.5	423
HER3/ErbB3	2567	1584.5	855	252.5	793	1148.5	893	593.5	845	347	1037	182
FGFR1	2449	1916.5	1052	560	1215.5	1686.5	1034	378	925	214	883	55
FGFR3	1851.5	1389.5	772.5	109	728	717.5	753	0	1235.5	663	766	32
FGFR4	1891	1293.5	714	79.5	639.5	507.5	554	0	598.5	0	778	C
InsR	1892	987	704	0	342	433.5	225	0	538	0	701	C
IGF-IR	1943	1080.5	648	106.5	447	308.5	543	138	201.5	0	331	325.5
TrkA/NTRK1	493.5	0	613.5	0	688	810	689	110.5	553	0	449	143
TrkB/NTRK2	568	0	566.5	0	491	432	223	73	493.5	113	661	37.5
Met/HGFR	407	0	495.5	0	196.5	0	239.5	65.5	117	72	338.5	145
Ron/MST1R	445	0	469	0	339	0	210	103	193	51.5	278	(
Ret	961.5	0	669.5	0	860	0	793	347	225	22.5	993	289
ALK	1124	0	957.5	323.5	1131	1103.5	885.5	0	554	173.5	1120	79
PDGFR	182.5	0	586	0	456	487.5	331	0	203	0	557.5	12
-kit/SCFR	0	0	633	0	0	0	0	0	0	0	301	
FLT3/Flk2	0	0	408	0	27	0	55	0	101	0	75	(
M-CSFR/CSF-1R	0	0	518	0	139	0	98.5	173	201	0	0	(
EphA1	0	0	506	0	404.5	447	320	0	102.5	0	71.5	(
EphA2	0	0	517.5	0	80	138	43	0	0	0	0	(
EphA3	0	0	444.5	0	35	0	27	0	45	0	75	1
EphB1	0	0	314.5	0	0	0	115	27.5	203	73	0	(
EphB3	0	0	252.5	0	0	0	105	0	0	0	0	(
EphB4	0	0	246.5	0	12	5	98	0	235	43.5	0	2
Tyro3/Dtk	0	0	185.5	0	0	0	128	0	98	0	0	(
AxI	0	0	224.5	0	0	>0	745	114	0	0	0	(
Tie2/TEK	0	0	337	0	0	0	332	88	1001	338.5	0	(
/EGFR2/KDR	0	0	206	0	0	. 0	405	0	205	75	88	(
Akt/PKB/Rac Thr308	0	0	666.5	0	739	674.5	287.5	0	67	0	237	
Akt/PKB/Rac Ser473	0	0	983	211.5	1057	528.5	118.5	31	103.5	0	244	
044/42 MAPK (ERK1/2)	0	0	964	0	0	0	345.5	70.5	245	0	178	(
S6 ribos. Protein	0	0	568	0	574.5	0	101	0	773	220	240	5
:-Abl	0	0	243	0	0	0	668.5	0	109.5	0	1041	178
RS-1	9.5	0	626	64	50	212.5	31	0	211	0	370.5	5
Zap-70	362.5	0	671	112.5	133.5	320.5	0	0	443	345	538	37.
; Src	0	0	694	1	0	0	0	28.5	887	287	110	,
Lck	0	0	565.5	0	0	0	102.5	375	1057	37	553	17
Stat1	0	0	569	0	93	100.5	1380	112	1288	244.5	2780	53
Stat3	522	0	852.5	206.5	307.5	425	558	37	775 5	184	1123	26

AVERAG	θE
--------	----

UC	
lgG48h	Ote 48h
1359.41667	776.333333
1080.91667	600.833333
1165	684.666667
1259.75	801.666667
1017.75	485.166667
862.5	313.416667
733.666667	236.75
685.583333	326.5
581	177.25
500.5	109.25
299	47.0833333
322.333333	25.75
750.333333	109.75
962	279.916667
386	101.75
155.666667	0
111	0
159.416667	28.8333333
234.083333	74.5
106.75	23
104.416667	1.83333333
105.416667	16.75
59.5833333	0
98.5833333	11.9166667
68.5833333	0
161.583333	19
278.333333	71.0833333
150.666667	12.5
332.833333	112.416667
417.666667	128.5
288.75	11.75
376.083333	45.5
343.666667	29.6666667
216.333333	55.5833333
358	135.916667
281.833333	52.75
379.666667	97.8333333
1018.33333	165.166667
689.75	186.75

U-test 1.4 -06*

Supplementary Table VII

Phosphorylation levels in anti-IL-10 treated Crohn's disease explants

	CD1			
	lgG	otelix	otelix +anti-IL10	otelix + isotyp
EGFR/ErbB1	869.5	542	1490.5	44.5
HER2/ErbB2	790.5	215	1056.5	0
HER3/ErbB3	1050.5	411.5	1310	373.5
FGFR1	1115.5	566.5	1436.5	177.5
FGFR3	663.5	137.5	867	0
FGFR4	514.5	95.5	833	0
InsR	601	11	848.5	0
IGF-IR	694	84	916.5	17
TrkA/NTRK1	453.5	0	658	0
TrkB/NTRK2	217.5	0	510.5	0
Met/HGFR	0	0	423.5	0
Ron/MST1R	314.5	0	539.5	0
Ret	460.5	0	587	0
ALK	848.5	516	1182.5	408
PDGFR	206	103.5	811.5	12
c-kit/SCFR	0	51.5	668.5	0
FLT3/Flk2	1	0	662	0
M-CSFR/CSF-1R	121	0	586.5	0
EphA1	0	0	595	0
EphA2	0	0	502.5	0
EphA3	0	0	338	0
EphB1	0	0	315.5	0
EphB3	0	0	447	0
EphB4	0	0	302.5	0
Tyro3/Dtk	0	0	115.5	0
Axl	0	0	140	0
Tie2/TEK	0	0	192.5	0
VEGFR2/KDR	0	0	132.5	0
Akt/PKB/Rac Thr308	460	0	795	302
Akt/PKB/Rac Ser473	778	0	697.5	236
p44/42 MAPK (ERK1/2)	18	0	376	39
S6 ribos. Protein	256	0	330	144
c-Abl	0	0	209.5	100
IRS-1	811.5	202.5	1187.5	702.5
Zap-70	783	449	1262	658.5
Src	792.5	392	949.5	626.5
Lck	758	598.5	852	628
Stat1	747.5	748	962	740.5
Stat2	902 E	964	1501	1047

lgG	otelix	otelix +anti-IL10	otelix + isoty
1118.5	243	1029	564
820.5	74.5	885.5	284.5
1153	594.5	1486.5	795
1281	831	1324	749
707.5	145.5	731	227.5
620	7.5	707.5	3
690	0	581	0
714	0	672.5	C
450	51.5	466	0
286	0	333	C
240.5	0	167	0
338	0	293	0
401.5	0	330	C
1312	793	1254	123.5
486	139	377	0
258	0	68.5	C
224.5	0	42.5	C
87.5	0	0	C
188.5	159	112.5	C
225.5	53	0	C
11.5	0	0	0
17.5	0	0	C
0	0	0	0
0	0	0	C
0	0	0	0
0	0	0	0
0	0	0	C
0	0	0	C
527	6	454.5	59.5
1083	67.5	772	339
319.5	0	143.5	C
454.5	0	304.5	C
14	0	86	C
611	210	889	364.5
800	465	914	416
760	176.5	814	254
646	115	691.5	72.5
890	138	800.5	124
1210	514	1410	899.5

		atalia . anti 11.40	
lgG	otelix	otelix +anti-IL10	otelix + isoty
1070.5	278.5	858.5	115
883.5	300	582	33.5
1677	830	984	119.5
1483	426.5	1236	115
820	32.5	592	0
634	108	532.5	0
722.5	176	235	0
775.5	362.5	312.5	0
513	0	343.5	0
381	0	128	0
308.5	0	38	0
444.5	0	57.5	60.5
494	83	160	0
1508.5	135.5	931.5	1159.5
767	0	184	367.5
379.5	0	0	241.5
322	0	0	191.5
264	31	0	242.5
523.5	0	404	147.5
480.5	0	170.5	226
84	0	133.5	209
0	0	0	233.5
247	0	178.5	263
0	0	160	0
0	0	0	0
0	0	0	0
85.5	0	124.5	41.5
26.5	0	0	12
446.5	0	828	0
965	0	1474	5
207	0	105.5	0
508	0	951.5	31.5
128 5	0	72 5	12.5
669 5	0	251	88.5
739.5	0	245.5	31.5
600 F	0	107 5	01.0
090.5	0	127.5	0
604.5	0	140	67.5
024.5	0	356.5	67.5
1207	19.5	318	

	CD4	1	1	1
	lgG	otelix	otelix +anti-IL10	otelix + isoty
EGFR/ErbB1	753.5	439	1292.5	38.5
HER2/ErbB2	685.5	174	915.5	0
HER3/ErbB3	910.5	333.5	1135	323.5
FGFR1	967	458	1245.5	153.5
FGFR3	575	111.5	751	0
FGFR4	446	77.5	722	0
InsR	521	8	735.5	0
IGF-IR	601	68	794.5	14
TrkA/NTRK1	393	0	570	0
TrkB/NTRK2	188	0	442.5	0
Met/HGFR	0	0	367.5	0
Ron/MST1R	272	0	467	0
Ret	399	0	508	0
ALK	735	417	1025.5	353
PDGFR	178	83.5	703	10
c-kit/SCFR	0	41.5	579	0
FLT3/Flk2	346	0	573	0
M-CSFR/CSF-1R	104	0	508.5	0
EphA1	0	0	515	22
EphA2	0	0	435.5	0
EphA3	0	0	293	0
EphB1	144	0	273	0
EphB3	0	0	387	0
EphB4	0	0	262.5	C
Tyro3/Dtk	0	0	100.5	0
Ax	0	0	121	0
Tie2/TEK	0	0	166.5	0
VEGFR2/KDR	0	0	114.5	0
Akt/PKB/Rac Thr308	398	0	689	261
Akt/PKB/Rac Ser473	674	0	604	204
p44/42 MAPK (ERK1/2)	15	0	325	33
S6 ribos. Protein	221	0	286	124
c-Abl	0	0	181	86
IRS-1	703	164.5	1029.5	609
Zap-70	678	363	1094	570.5
Src	687.5	317.5	823.5	543.5
Lck	657	484.5	738	544
Stat1	648.5	605	834	642
Stat3	774 5	699	1301	907

	otelix	otelix +anti-IL10	otelix + isotv
- 1140	247	1049 5	575.5
836	75	903	290
1176	606	1516	810
1306	847	1350	763
721	148	745	232.5
632	7.5	721.5	3
703	0	592	0
728	0	685.5	0
459	52.5	475	0
291	0	339	103
245	0	170	0
344.5	0	298	54
409.5	0	336	0
1338	808	1279	125
495	141	384.5	0
263	0	69	0
228	0	43.5	0
89.5	0	0	0
192	162	114.5	0
230	54	0	22
11	0	0	0
17.5	0	0	0
0	0	0	0
0	0	0	0
36	0	49.5	0
0	0	0	0
0	0	0	0
0	0	0	0
537.5	6.5	463	60
1104	68.5	787	345
325	i 0	146	0
463.5	0	310.5	0
14	0	87	0
623	214	906	371
816	474	932.5	424
775	i 180	830	259
658	117	705	73.5
907	140	816	126
1234	524	1438	917

otelix +anti-IL10	otelix + isotype
1144	267.5
868.5	121.6
1286.3	484.3
1318.4	391.6
737.2	92
703.3	1.2
598.4	C
676.3	6.2
502.5	0
350.6	20.6
233.2	(
331	22.9
384.2	(
1134.5	433.8
492	77.9
277	48.3
264.2	38.3
219	48.5
348.2	33.9
221.7	49.6
152.9	41.8
117.7	46.7
202.5	52.6
145	(
53.1	(
52.2	(
96.7	8.3
49.4	2.4
645.9	136.5
866.9	225.8
219.2	14.4
436.5	59.9
127.2	39.7
852.6	427.1
889.6	420.1
708.9	336.6
625.3	263.6
753.8	340
1193.6	754.1

U-test 6.61144e-08*