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Abstract

The rigidity of a scene observed by a camera is often the fundamentahpissn used to infer
3-D information automatically from the images taken by that camera. Howevielea sequence
of a natural scene often contains objects that modify their topology (ftanos, a smiling face or
a beating heart) thus violating the rigidity assumption necessary to recdrtbieug-D structure
of the object. In this thesis, we address the challenging problem of néeg\the 3-D model of a
deforming object and the motion of the camera observing it purely from imageesices, when
nothing is known in advance about the observed object, the internahptees of the camera or
its motion.

Previous solutions to thison-rigid structure from motioproblem have either provided ap-
proximate solutions using linear approaches to a problem that is intrinsicalimear or re-
quired strong assumptions about the nature of the 3-D deformations. bhélsis, we propose a
non-linear framework based on bundle adjustment to estimate model anchgaan@meters. We
then upgrade the proposed framework to deal with the case of a sterewacaetup. We show
that when the deforming object is not performing a significant overall mgadion a monocular
approach leads to poor reconstructions, and only by fusing the informfon both cameras
can the correct 3-D shape be extracted.

However, the problem of 3-D reconstruction of deformable objects is stillamentally
ambiguous: given a specific camera motion, different non-rigid shapebe found that fit the
observed 2-D image data. In order to reduce this effect, we introdwqeegtriors based on the
observation that often not all the points on a deforming object are movingigally but some
tend to lie on rigid parts of the structure. First, we propose motion segmentdtjoritams
to divide the scene automatically into the rigid and non-rigid point sets. Sicamel use this
information to provide priors on the degree of deformability of each pointciaily all the above
methods only work under the assumption of orthographic viewing conditehaps the most
valuable contribution of this thesis is to provide a new algorithm to obtain metrimstictions
of deformable objects observed by a perspective camera.
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Chapter 1

Introduction: Deformable Structure from Motion

One of the central interests of the Computer Vision community in recent yeardden the
inference of 3-D information about the world directly from image sequgteden from a moving
video camera, when the specific details of the camera and its motion are atlovat kn advance.
Such free-form inference can only succeed if certain assumptionsade, the standard one
being that the scene observed by the camera is rigid: its geometry is staticamuytimotion is
that of the camera. However, deformations which vary the structure lofjgesare, on the other
hand, constantly appearing. The human body itself is a remarkable examyseles and bones
stretch and tend the skin of the face to perform an incredible variety oésgjpns. Even at the
organic level shapes are far from being rigid: hearts beat and luagoatinuously inflating and
deflating. In this thesis we explore the challenging case of scenes thadtatempletely rigid,
but which have certain degrees of flexibility or deformation.

The problem of 3-D inference from image sequences, generically kramastructure from
motion, was originally considered in the context of mobile robots, which caarngeras when
navigating in cluttered environments and use the data received to build midwesrsurroundings
and improve their movement estimates. However, the algorithms developeddtaady found
more immediate demand in areas such as multimedia, the entertainment industry,dicidene
To address the problem of 3-D reconstruction from video sequericemerigid scenes, we will
relax the previous assumption of a static world and instead aim to recovenlyathe essential
shape of objects but also information about their deformation.

The approach used in this thesis will extend recent work in non-rigid ffiaetiion [19, 16,
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141], which has demonstrated that it is possible under certain viewingtmorglto infer the
principal modes of deformation of an object alongside its 3-D shape withinuatsre from
motion estimation framework. The models recovered by these algorithms, baacgiently be
used as compact representations of the objects suitable for use in traakingation or other
analysis. There have been other computer vision systems able to build similainabte 3-D
models of non-rigid objects. However, most of them rely on having additiof@mation — for
instance depth estimates available from 3-D scanning devices [151] —verbeen refined to
represent the specific object under observation: for example phiysi@sed human face models
[41]. Crucially, factorization methods work purely from video in an unstosined case: a single
camera viewing an arbitrary 3-D surface which is moving and articulating.o@ifjh there are
no constraints as to the type of objects that may be modelled, this thesis hasddcnainly on

the domain of human motion analysis — in particular 3-D reconstruction of faciabmo

1.1 Structure from motion: the rigid case

A camera is a projective device, which converts incoming rays of light into @naagitions
depending only on the direction of the rays when they strike the lens: novaton is gained
directly about the depth of the objects viewed. To recover depth informatimessential to
make use of multiple images of an object from different viewpoints: if theralg one camera,
it must move relative to the object. If the motion of the camera were known xamele if it
were attached to a precisely-driven robot arm) then calculating deptidwelwa simple matter
of triangulation. In most interesting scenarios, however, this is not the the camera motion
itself is also uncertain. It was shown by [94] that in fact with certain asslampit is possible
to simultaneously estimate both the motion of a camera and the geometry of the sdens.it
Structure from motion has since been defined as this problem of combiredring of the 3-D
motion of a camera and the geometry of the scene it views solely from a ssEgokimages.
The underlying assumption which has allowed solutions to structure from mtdidre
achieved is that of scene rigidity: if objects are known not to change forrde their shapes
are invariant entities of which estimates can be gradually refined. In tymietdods, large num-
bers of well-localised features of high image salience — usualiyer points — are detected in
each image of a video sequence. Postulating that each is associated \withtalty identifiable

3-D entity in the environment, the features are then matched between eachquaisecutive (or
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close) video frames. The assumption of rigidity in the scene [150] transtdtemathematical
constraints on the parameters describing camera motion, and many featunesraavide suf-
ficient constraint equations such that solutions for both the motion and tatdos of the 3-D
features may be obtained.

There has been a great deal of work in rigid structure from motion in thédasdecades. Of
particular importance to its wide application has been the development of teelsnidnich work
even when the camera is uncalibrated: the specifics of its focal lengthlaedmiernal parame-
ters are not known in advance. These self-calibration algorithms, folgpanfrom the seminal
work of Faugeras et al. [44], provide the flexibility of being applicablerein cases where little
is known about the details of image capture. Solutions to the problem ofadifation have
been given in the case where camera motion is general — it exercisestaldefyrees of free-
dom [60, 146] and also to more specific scenarios: where the cameravisilanly to rotate on
the spot [63, 3], only to translate without rotation [105], or even wheeecimera has a zoom
lens [119, 71], all of which call for slightly different algorithms which tedecount of this extra
prior knowledge.

In a certain relatively common scenario — that when the range of deptltené®bjects is
much smaller than their distance from the camera — a linear approximation to cgetmetry
known as an affine projection is valid, and in this case a direct linear metioestimating
camera motion and scene geometry over long image sequences can beousasi.and Kanade'’s
factorisation algorithm [138], developed in the early 90’s, has beerobitee most influential
works in structure from motion. The algorithm takes a set of image coordiredita number of
features which can be matched in each image of a sequence of arbitrgtly, land performs a
direct singular value decomposition (SVD) to recover its affine shaparattbn components,
taking advantage of the bilinear form of the shape and motion parametees2-Thmatches
observed in an image sequence are stacked in an observation matrix @hibl shown to have
rank 3. It was consideration of such issues of rank which led to the a#alisthat not only
rigid motion, but also a certain class of deformations could be dealt with withifatiterisation

framework, as will be discussed later.
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1.2 Classification of non-rigid shapes

Biological shapes through their inherent nature are non-rigid. Softess$ike the skin and
muscles vary their shape under stress and pressure. This effectily @bvious when one
examines the rich and complex set of expressions that can be exhibitelunyaa face simply
by actuating different groups of muscles. These combinations of complegutau actions have
been studied and modelled with particular care, not only from a physiologidat of view but
also with the aim of creating realistic computer generated animations from whialessipe

results are available nowadays, as shown in figure 1.1.

Figure 1.1: A computer animated character performing different facjalessions.

Similarly, non-rigidity and deformation are common properties of biologicakstines both
at the cellular and organic levels. Cells may constantly vary their morphologficedture under
the effect of physical and chemical interactions. Figure 1.2 shows am@e of the temporal
evolution of a murine chondrocyte cell. On the other hand, organs maglriteresting facts
about their function with careful analysis of the the deformations thatappéeheir motion. For
instance, anomalies in the heart may be detected by inspecting the repetgw@pihne cardiac

muscles.

Figure 1.2: A live cell moving and deforming. The sample is taken from an immedilsrain

of murine chondrocytes. The purpose of the experiment is to obtain liveaesnafjthe varying

cytoskeleton of the cell [89Courtesy of Dr J. Campbell and Dr M. Knight
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Given the wide range of possible degrees of non-rigidity present inraadn effort to clas-
sify the type of motion of an object is necessary to understand which modebmapplied
to efficiently describe the shape variations. A first attempt was presegtétuéng [75] and

resulted in three generic classes of non-rigid motion:

o Articulated motion appears when an object is made up of a series of codieetewise
rigidly moving parts. A clear example is the collection of articulations of a humaly bo

connected by several joints with different degrees of freedom.

o Fluid motion is represented by structures which can freely vary their sisagh a flame,
water flow or clouds. They involve strong topological changes in theictra such that

they appear not to have any relevant continuity in their deformations.

e Elastic motion is distinguished from fluid motion by a continuity in the deformations that
appear in the motion. The shapes presented in figure 1.1 and figure tv2lsissic exam-

ples of elastic motion.

This classification has been further refined by Goldgof et al. [50] aachithamettu et al.
[81] by introducing specific measures for the non-rigidity of the objecthéscope of this work,
we focus particularly on elastic motion that will be referred to more generaligefsrmable
motion throughout this thesis.

Given a deformable motion, our aim is to estimate the underlying 3-D structutteedah-
spected object using a structure from motion approach to the analysis iofidige data. Thus,
we seek a description of the visual motion in terms of a deformable 3-D modehanglobal
rigid transformations that affect the shape. Given the complexity of thelgmy deformable
3-D models have been studied extensively over the last two decade® fpuihoses of detect-
ing, tracking and analysing the non-rigid motion appearing in an image. 8efonducing the
3-D deformable model used in this thesis, we proceed first with a geresatidtion of different

non-rigid models that have been proposed within the Computer Vision community.

1.3 Deformable shape models

As previously stated, a deformable object is a shape which varies its tgpwitiy continuity.
Accordingly, a deformable model of an object is one which has parameggsigibing not just

its shape but also the possible ways that the shape can change. Cargridphical model of a
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human skeleton to be used in animation: by setting the values of a list of parammeterspond-
ing to the angles at each of its joints, it can be put into different configuration computer
vision, there has been a large amount of work involving deformable mo#flelgjects, but with
certain restrictions. In many cases the models used have been definaddyperhaps bene-
fiting from some automatic refinement) or using sensing systems other than ntermasion,
such as 3-D scanning devices [151], structured light, markers, caibstereo [49] or multiview
reconstruction [115]. Often the models are specialised to represanifispgpes of objects. As
an example, elaborate 3-D face models have been constructed to obteiiertdize tracking
systems [32, 72, 116, 125] and, for instance, in the domain of medical iavedgsis, complex
models of the left ventricle of the heart have been applied to diagnosedoeaiitions [4, 48].

In an attempt to classify deformable shape models, the literature generaltifiedethree
main categories according to the mathematical description used to represdafdhming struc-

ture:

e Parametric deformable models. The non-rigid object shape is modelled hyoé [z&
rameters which explicitly vary the structure of a contour/surface. Parammtdels are
generally constructed a priori to suit the specific type of deforming sliiege human

faces, hearts, cells, etc).

o Implicit deformable models. A specific deformation is represented as a fanittad is
directly estimated from the image data. This function is defined as a level-agtigher

dimensional scalar function whose levels can adapt to a larger rangdashwhtions.

e Generative models. The model is extracted using statistical techniques feovge collec-
tion (data-set) of examples showing all the possible changes in topology objact. The

model is therefore a compact description of the given data-set.

These models have been successfully applied to different domains of anatyesis, detec-
tion, tracking and recognition of deformable shapes. In the following setie present detailed

descriptions and relevant examples of each class.

1.3.1 Parametric deformable models

Kass et al. [86] were the first to introduce 2-D parametric deformable medecesfully in

an image analysis domain. The problem addressed was to estimate the shagefaimable
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(@) (b)

Figure 1.3: An example of anakecontour (in black) with control points (in blue) which define

its shape. Asnakeis moved to match the image contour of the object (in grey) using external
forces (red arrows) which attract the model to image edges as shown Intgxnal forces assure

the smoothness of the contour whose position is iteratively estimated untilrgemee (b).

object using a parameterized planar contour cafiedke The parameters of the model are
estimated such that the snake fits the deforming image contour accuratelgeht@ compute
the parameters, the algorithm gradually iterates to fitshaketo the deformable shape under
the influence of external image forces (for instance, image edges) tardahforces given by
smoothness constraints of the model as shown in figure 1.3. A 2-D conasilg generalizable
to deal with 3-D images, leading to the definition by Cohen [22] bAHloon Further research
improved the performance ahakecurves introducing robustness to the measured image data
[136] and specific priors over the modelled objects [123, 165], resuitirg very successful
approach for medical applications.

Another class of parametric models which has received considerablé¢iaitém the past
is the family of shapes callesuperquadrics[114, 56, 103, 45, 15, 104]. Initially introduced

in computer graphics by Barr [7kuperquadricsare essentially derived from the parametric

a4

_

Figure 1.4: An example of differesuperquadric®llipsoids used to model deforming shapes in

images. The different shapes are obtained by varying the parametbesrofithematical model.
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Figure 1.5: A simple level-set parameterisation of a circle contour using @ asrihe scalar
function. Circles of different radius (right) can be obtained by intdisgca cone (left) with

planes (the levels) at different heights.

forms of quadric surfaces (see figure 1.4 for an example), and atktadit a deformable object
globally. However, they are not very accurate in describing naturapeh since the quadric

surfaces may result in too coarse an approximation of the real shape.

1.3.2 Implicit deformable models

A crucial drawback of parametric deformable models is their difficulty to atmpnexpected
changes in the modes of variation in the given image data. The contosnakamodel has to be
constructed accurately to be able to cope with all possible deformationobjeat. However, in
some cases, complete knowledge of all the possible shape variations \aitalbla in advance.
For instance in the medical domain, diseases like a tumor may change the strictugans
and cells unexpectedly. If the parameterized model does not accouhese deformations, the
result of the fitting procedure will be inaccurate.

A formulation of deformable models without an explicit parametrization of thepashveas
introduced by Osher and Sethian [111] using front propagation. Irafipsoach, the deforming
shape (or contour) is considered as a particular level-set of a scaletidn. Thus each level
corresponds to a particular deforming surface/contour which has tdtee fo the image data
(see figure 1.5 for an example). Since the level-set approach doeslyain a fixed set of
parameters but on a family of curves, the representation power of an inggiftitmable model

is higher than that of a parametric one.
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However, the computations necessary to estimate the level-set are codtigeaiickeraction,
if required, is problematic to implement since there are no evident paramesaigtd for driving
the convergence. Nevertheless, implicit deformable models have beessstudly applied in

stereo vision [43], detection and tracking [112] and computer graph&#] |

1.3.3 Generative models

Generative or statistical models are obtained from a large set of olisevaf the deformations
appearing in the inspected object. For instance, 2-D deformable modelssfiiave been gen-
erated from large training sets of images of different people with a rahgrpressions. These
models, determined for example via principal component analysis (PCAXdR& advantage
of the fact that a head-on view of a face is reasonably approximatedirasaa combination of
the learned basis components. Such linear models have since been éxtecdpe with the
non-linearities introduced by significant variations of face orientatiomssatf-occlusion [52]
and with local deformation [23] . However, they still suffer from requiritarge amounts of
specialised training data and can fail to encode non-linear deformatiquesuapg from very
different views. Other learned 2-D deformable models have included moti#e outline or
contour of moving human figures [11, 124, 9].

Specifically tuned to facial analysis, Vetter and Blanz [13, 12] have iotted elaborate
techniques to create photorealistic 3-D morphable models. The shape @ fexxe model
is derived using hundreds of 3-D laser scans of subjects of diffegs sex and ethnic origin.
After a preprocessing stage which cleans and aligns the mesh and tekbunesition, the model
is extracted from the collection of data using PCA producing a statisticafiggen of the data-
set in terms of linear basis shapes which represent the principal modagaifon of the model.
The 3-D shape and texture model can then be applied to fit a new subjggusngle image as
input, as shown in figure 1.6.

Similarly, active shape mode(®\SM) [91, 25, 28, 90, 31] parameterize the 2-D shape vari-
ations of a deforming object. Each object is represented using a seatofdepoints which
usually corresponds to key points on the object (such as the corniies miouth or the eyebrows
in the case of facial analysis). The shape is then described as a s& b&gis shapes which
are fitted to obtain the principal modes of deformation of the large set of tpimiage data (see
figure 1.7 for an example). An advantage of such models is that they tameth directly from

images (there is no need for expensive instrumentation such as lasaegcaHowever, 2-D
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(@) (b) (€)
Figure 1.6: The figure shows how 3-D morphable models can be usedicergbe 3-D structure
and texture of faces in images. The image data (a) is fitted using the lineadbasri#ption for
the 3-D shape and 2-D texture in the model. The result (b) is the extraddeg2ure from the
image plus a 3-D mesh of the face which are combined to obtain the final 3-LxHi¢ dace (c).

Courtesy of E. Miloz, Dr J. M. Buenaposada and Dr L. Baumela
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<—— First Basis———>
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<—Second Basis———>

() (b)
Figure 1.7: An example of active shape models (ASM) (b) used to modelEhst&pe variations

of the left ventricle of the heart in an echocardiogram (a). The leftricda is located at the top
right of figure (a). The ASM model consists of a set of 2-D basis sheypese linear combination
describes the deforming shape. Figure (b) presents the first two daddheir variations with

respect to the mean shape of the ventri€leurtesy of Dr T. Cootes



1.4. Alinear model for 3-D deformable shape23

models have difficulties in coping with strong pose variations which redueeagblicability
of the approach. The shape of the non-rigid object appearing in a negeioan then be fitted
by computing the weights assigned to each basis which result in the beskimpgtion of the
object contour. Of more recent introducticactive appearance mode{dAM) [24, 100] are a
generalisation of active shape models which also incorporate the texttire déforming shape
to obtain a statistical description of the object’s 2-D shape and appearance

The advantage of statistical models compared to parametric ones is that ¢hdgraved
solely from real observations and thus encapsulate the deformatiorepiber in the non-rigid
object. Often an a priori model of a surface such asgerquadrichas less representation power
since it is not able to accurately describe a real world object. As a dckwlzage data-sets from

which to extract a comprehensive statistical model are not easy to collect.

1.4 A linear model for 3-D deformable shapes

As we have stated in the previous section, it is possible to generate acstatidéical models
from either 2-D or 3-D large collections of data. The approach followetisthesis is of similar
nature but differs in a fundamental aspect: given a set of 2-D imageumegasnts extracted from
an uncalibrated video sequence, we seek to obtain a full 3-D deformalulel rmbthe scene.
Thus, the problem is not only restricted to the statistical inference of then8+rigid model
from 2-D data but also to the estimation of the camera matrices which projeatthegid object
onto the image plane.

The shape at each time instance is formulated as a linear combination of a asiscstmpes
which describe the principal modes of deformation of the 3-D structure.ritdel parameters,
which we will refer to as configuration weights, are given by a set ofassdhat provide the
appropriate weight for each basis. In a geometric form, the 3-D shappliesented as a cloud
of points lying over the deforming surface. Mathematically, the 3-D shapepiesented as a
matrix S which contains the 3-D coordinates for each point of the object. Theméig shape
S at a certain frame is given by the linear combination of the basis st&pegighted by the

configuration weight$y such that:
D

s:dzldsd S,8¢ € 0¥P lgeD (1.1)
=1

whereD is the number of basis shapes @the number of points in the model.
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Each basis shape describes a particular mode of deformation of the obmcinstance,
in the face modelling domain, the basis shapes may represent specificefguiaksions like
surprise or a grin as presented in figure 1.8. Models created as a cdimbioba set of bases
have been previously used in many applications ranging from facial si8dB6, 151], tracking

[109, 49] and biomedical domains [79].

| =, BN
o oo

\E

First Basis Second Basis Third Basis
Figure 1.8: An example of the linear pointwise model used in this thesis. Thel isadenposed
of a set of 3-D basis shapes which are defined by a collection of 3-I poordinates. A
deformation is represented as a linear weighted combination of the setas. bHse first basis
usually represents a mean 3-D description of the shape (in green).ethredsand third bases
are showed in the figure as a 3-D displacement (blue lines) from the meapooent. The
resulting structure given the displacement for each basis (red pointa)ysefers to dominant

facial expressions (for instance, surprise and grin).

1.5 A factorization approach to 3-D deformable modelling

In this thesis we are interested in models which represent the full 3-D gepofetrdeformable
object, but in particular in acquiring these models automatically and only fromemeather
than having to use prior information or specialised sensors — a model fea@proach. The
nature of this problem leads us back to the original structure from motiostigne what can
be determined about the motion of a camera and the 3-D non-rigid shapesafahe when no
information about the camera or the structure is available?

Recent results have started to open up this research direction [191@}4droving that 2-D
point tracks in an image sequence are sufficient to recover 3-D nahshgpe and motion under
the same affine viewing conditions in which Tomasi and Kanade’s algoritbwegrsuccessful in

the rigid case. This novel non-rigid factorization approach assumethéh@tD non-rigid shape
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can be represented by the linear model described in the previous seftiein.insight was that

since this representation is linear, it fits naturally into the factorisation framew@nce more the

underlying geometric constraints are expressed as a rank constraghtiglised to factorise the
measurement matrix into two lower dimensional matrices that encode the motioneasiaise

of the object using singular value decompositi@n: M S.

However, in common with all factorization methods, the result is not uniquethec:
exists a full rank transformation matrig that gives the following alternative reconstruction:
W=MQ Q~1s = MS. The fundamental problem is to find the transformatipthat imposes the
correct structure on the camera matrices encodénand removes the ambiguity upgrading the
reconstruction to a metric one. Whereas in the rigid case the problem of timgthe transfor-
mation matrixq to upgrade the reconstruction from affine to metric can be solved linecd8},[1

in the non-rigid case it results in a non-linear problem.

1.6 Motivations for this thesis

Existing non-rigid factorization methods are very promising and do indeadljge models from
scratch that can be useful for tracking or animation in many domains, bt #nervarious lim-
itations which have led to interesting avenues of research in this thesis aadrivgivated our
work. The improvements we have proposed to some of the outstanding protdestiute the
main contribution of the work presented here. The three main issues whitlaveeaddressed
in this thesis are: the non-linearity of the non-rigid structure from motionlprabits inherent
ambiguous nature and the extension of the method to deal with perspectivagnoagditions.
Firstly, previous solutions to the non-rigid structure from motion problenetgither pro-
vided approximate solutions using linear approaches [19, 141, 16] toldepn that is intrin-
sically non-linear or required strong assumptions [17, 159, 161] atbmunhature of the 3-D
deformations. Theon-linearity of the problem stems from the fact that the parameters mod-
elling the camera motion and the 3-D deformations are strongly coupled. Mmtéo order to
obtain a valid solution, orthogonality constraints have to be forced on theéomdhcomponent
of the motion, thus introducing a further degree of non-linearity. In thisshes propose a non-
linear framework based on bundle adjustment to estimate model and camanaepens. The
advantage of this method is that it provides a maximum likelihood estimate in thenpeesé

Gaussian noise, and prior knowledge on any of the model parameteesisiynbe incorporated
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into the cost function in the form of penalty terms. The proposed frameisdHen upgraded to
deal with the case of a stereo camera setup. We show that when the defofjest is not per-
forming a significant overall rigid motion, a monocular approach leads to pmonstructions,
and only by fusing the information from both cameras can the correct Bapesbe extracted.

Secondly, non-rigid structure from motion continues to banaerently ambiguousproblem
since the contribution to the image motion caused by the deformations and rigid naogion
often difficult to disambiguate. Given a specific configuration of points @nitlage plane,
different 3-D non-rigid shapes and camera motions can be found tlae fineasurements. To
solve this ambiguity prior knowledge on the shape and motion should be useddtrain the
solution. Recently, Xiao et al. [159] proved that the orthogonality comigravere insufficient
to disambiguate rigid motion and deformations. They identified a new set ofraors on
the shape bases which, when used in addition to the rotation constrainislepacclosed form
solution to the problem of non-rigid structure from motion. However, thdintgmn requires that
there beD frames (wherd is the total number of basis shapes) in which the shapes are known
to be independent.

In this thesis we propose an alternative approach based on the dimetihat often not all
the points on a moving and deforming surface — such as a human facerdargoing non-rigid
motion. Frequently some of the points are on rigid parts of the structure —dtarioe the nose —
while others lie on deformable areas. Intuitively, if a segmentation of pointgigittly moving
and deforming ones is available, the rigid points can be used to estimate thé# ogat motion
and to constrain the underlying mean shape by estimating the local deformatadasively with
the parameters associated to the non-rigid component of the 3-D model.

Finally, all the methods cited previously rely on affine imaging conditions in wiiiehob-
jects viewed are relatively flat and distant from the camera — they cawpetwith theprojec-
tive distortions which become significant when the scene is closer (and focal lengtbsanter),
as may often be the case with PC-mounted “webcam” devices viewing uaees.f Xiao and
Kanade [161] were the first to develop a two step factorization algoritirmefmnstruction of
3-D deformable shapes under the full perspective camera model. In &sis thve present an
alternative approach to non-rigid shape and motion recovery undeuliheefspective camera
model. Once more, the solution is based on the assumption that the scenescantaitiure

of rigid and non-rigid points. First rigid and non-rigid motion segmentation réop@ed on the
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image data to separate both types of motion under perspective imaging condifiorobtain

the metric upgrade information we perform self-calibration on the rigid spbofts which pro-

vides estimates for the camera intrinsic parameters, the overall rigid motionentetn shape.

We then formalise the problem of non-rigid shape estimation as a constradnelghear mini-

mization using the estimates given by the self-calibration algorithm as the staciimgfqr the

minimization and providing priors on the degree of rigidity of each of the points.

1.7 Contributions of this Thesis

In the following section we describe the main contributions of this thesis, irdanoe with the

motivations exposed in the previous section:

e We propose a framework for non-linear estimation of the geometric parasnetehe

deformable model based on an adaptation of bundle adjustment techr8§u83] to the
non-rigid scenario. The non-linear optimization method is able to refine the matidn
shape estimates by minimizing image reprojection error, imposing the correciuséon

the motion components by choosing an appropriate parameterisation.

The non-linear framework can easily be modified to include views taken €iffierent
cameras. We have extended existing non-rigid factorization algorithms ttetie® €amera
case and presented an algorithm to decompose the measurement matrix intdidhneofno
the left and right cameras and the 3-D shape [34, 33]. The addett@iotsin the stereo
camera case are that both cameras are viewing the same structure anc tiedatitie
orientation between both cameras is fixed. Our focus is on the recovdigxdile 3-D

shape rather than on the correspondence problem.

e \We have proposed two methods for automatic rigid and non-rigid motion segierita

the case of orthographic [35] and perspective [36] viewing condititmshe affine case,
our method follows asequential backward selection strategy initially considering all
the trajectories in the measurement matrix and iteratively deleting the points thibitex
the most non-rigid motion. As the stop criterion for the classification task, thieahthe
measurement matrix of the remaining points is computed, which will become 3 witen o

the rigid trajectories are left.

In the case where perspective distortions affect the measuremeragpyaach is based on
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the fact that rigid points will satisfy the epipolar geometry while the non-rigichsawill

give a high residual in the estimation of the fundamental matrix between pavisves$.

We use a RANSAC algorithm to estimate the fundamental matrices and to segment the

scene into rigid and non-rigid points. Additionally, we exploit a measure ofldwee
of deformability of a point to infer a prior distribution of the probability of a tretjgry
being rigid or non-rigid given that measure. These distributions are teed as priors
to perform guided sampling over the set of trajectories and lower the nuaflvandom

samples needed to be drawn from the data.

e The advantage of performing a prior segmentation of the image points into rididam
rigid trajectories is that this information can be used to constrain the solutior chidpe
and motion recovery. Firstly, the rigid points can be used to obtain an dedaitial esti-
mate of the overall rigid rotations, translations and mean shape. Secordkndtviedge
that some points on the object do not deform can be used to impose prittrs pon-rigid
shape. Our prior expectation is that the points detected as being rigid keve mon-rigid
component and can therefore be modelled entirely by the first basis. sShapgefine lin-
ear and non-linear methods to impose these priors [35] and we show thabisgle to
obtain exact reconstructions with noiseless data and improved recdiwsisugnd a higher

rate of convergence with real data.

e Finally, this thesis presents a novel approach for the 3-D Euclideamstoation of de-
formable objects observed by a full perspective camera [36, 93prGn automatic seg-
mentation of the scene into rigid and non-rigid point sets, using the algorithrtioned
above, the set of rigid points is used to estimate the internal camera calibratamegters
and the overall rigid motion. The problem of non-rigid shape estimation is tremafised
as a constrained non-linear minimization adding priors on the degree ahusbdity of

each point.

The contributions here exposed are presented in the thesis as folloeyste€h is a literature
review of the factorization framework for structure from motion recovany its application to
the case of rigid and non-rigid structure recovery under differentivig conditions. Chapter
3 describes our framework for non-linear estimation of the deformable haosdkcamera pa-

rameters. The framework can easily deal with the case of two or more came@esented in
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chapter 4. Chapter 5 describes the use of shape priors for deformablelling in the case of
affine viewing conditions. First we propose an automatic rigid/non-rigid mategmentation
algorithm. The results of the segmentation are then used to derive priore ateginee of de-
formability of each point in the 3-D object. Such priors are used to drivarifezence of the
parameters of the deformable model. In chapter 6 we propose a new sdhutiba problem
of metric structure recovery from perspective images. A new rigid/ngic-motion segmenta-
tion algorithm is derived which can deal with projective distortions. Thecsiine and motion
recovery is then formulated as a two step process where the metric uggaadérmation is
computed first using the rigid points and the deformable structure is then estiosiibg a non-
linear optimization approach. Chapter 7 ends this dissertation presentecfsspthe proposed
methods which may lead to future improvements and further avenues ofaleseahe domain

of deformable modelling.
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Chapter 2

Factorization methods for Structure from Motion

The geometry between two views taken either by a moving camera or by tweediffeameras
is nowadays a well understood concept. The fundamental matrix is the mditen@ol that
relates image coordinates between a pair of views [94, 95]. Similarly, theees\are related by
the trifocal tensor [130, 156, 61], which allows to transfer a point in thet ind second view
into the third view and, similarly, with lines. The constraints arising from foungief the same
scene are encapsulated by the quadrifocal tensor [144].

These multi-view tensors are used as a first step to obtain an initial projestioastruction
of the 3-D shape of an object. However, while these inter-image relatienslde to describe
the constraints between views of the same scene, they are not alwagstfgd use. A wide-
baseline between views is necessary for the estimate of the multi-view tenberatourate. On
the other hand, matching image points from very different views is a comp&that can easily
lead to outliers in the data used for estimation.

Matching image features becomes relatively simple when the images are takealfisely
spaced views. However, the overall small baseline affects the depth gstiroathe structure
negatively. In order to avoid critical configurations of views, the onlggible solution is to have
a large number of views for which the overall baseline is wide enough to @ioaccurate 3-D
reconstruction.

The described tradeoff is crucial for the 3-D reconstruction of germjects observed from
a video sequence. If we restrict the problem to the case of a single catmenmaultiple views

are given by a temporal sequence of images taken by a moving camera dixbyg camera and
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a moving object or by a combination of both. As a result, the distinguishablahise is the
motion of the projected 3-D object in the sequence of images. In this cadasierly using
the information of two, three or four views may give poor results as prelonoted. Thus, a

solution which uses the whole information of the entire sequence is alwafergile.

2.1 A factorization approach to Structure from Motion

In the early 90’s Tomasi and Kanade [139] found an elegant and sirojpigos to this problem
by analyzing the image measurements observed from different views asisgk perspective
camera model. Since the motion of each point is globally described by a pigmiseetric
model, the position of their projection on the image plane is constrained. Asil, iésll the
measurements (i.e. the image coordinates of all the points in all the views) lbretes in a
single matrix, the point trajectories will reside in a certain sub-space. Thendioeof the sub-
space in which the image data resides is a direct consequence of twa fdlatotype of camera
that projects the scene (for instance, affine or perspective) andtheerof the inspected object
(for instance, rigid or non-rigid).

The crucial advantage of this technique is in the fact that it provides anlilitégar and
global solution to the problem simply by factorizing the image measurements inteltiye
motion and 3-D structure using the aforementioned sub-space propehgsaf measurements.
This solution by factorization is given by the whole information of the measunésrand solved
using linear methods.

Given the success and flexibility of Tomasi and Kanade’s bilinear formualatidhe shape
and motion components, we now describe the factorization approach amglicagion to dif-
ferent models of camera projection and types of object structure. Fimadlfpcus on existing

non-rigid factorization approaches and point to some unsolved issues.

2.1.1 The factorization framework: motion and 3-D structure

The rigid factorization method introduced by Tomasi and Kanade [139] islsiln powerful.

It provides a description of the 3-D structure of a rigid object in terms aftaoEfeature points
extracted from salient image features (for instance, image cornersgr #écking the points
throughout all the images composing the temporal sequence, a set dbniaets available (see

figure 2.1 for an example). These trajectories are constrained globafchtframe by the rigid
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Figure 2.1: The figure shows how point trajectories are extracted froiden sequence. First
row: four frames of the movid'Arrivée d’'un traina la Ciotat (1895, directed by Lungre
brothers). Second row: the image points (in red) are extracted in th&&insé and successively
tracked in the following frames. Third row: the measured image data is showheoimage
plane. Each point is defined by two image coordinates. The collection of thisjab each frame

composes a trajectory in time which describes the motion of the rigid point.

transformation which the shape is undergoing. Rigid factorization techajtectly factorize or
decompose the complete collection of image trajectories into the bilinear compohemson
and3-D structure The role of thanotioncomponents is to project tfgeD structureon the image
plane for each frame using a particular camera model.

In order to describe the framework in detail, we need to introduce the formdatizathe-
matical description of the trajectories that will subsequently be factorizeate @ trajectory is
extracted, the location of a pointin a certain frama can be defined as a hon-homogeneous
2-vectorwij = (Ujj vij)T or as a homogeneous 3-vect@ = (Ujj Vi nH’ whereu;; andy;; are
the horizontal and vertical image coordinates respectively.

A compact representation of these elements can be expressed colledtiegwalh-homogeneous
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coordinates in a single matrix, called theasurement matrix, such that:

W11 ... Wqp
WF1 WEp

Wis a F x P matrix whereF is the number of image frames aRdthe number of trajectories

extracted. Ideally, the measurement matrix should contain perfect informeiout the object

being tracked. However, in practice the measurements are corruptemdeyand outliers given

by mismatched points. Additionally, some element# afay not be available for some points in
particular frames due to occlusions. Nevertheless, we continue theifatimn problem assum-

ing there are no missing entriesin

It is possible to decomposkinto the product of two matrices as:
W=MS (2.2)

whereM andsS are respectively thenotionand 3-D structurecomponents of the measurement

matrix. The matrice®f ands can be further decomposed such that:

My
M2
M= ' S=|8S; S, -~ Sp (2.3)

Mr

whereM; withi = 1...F is the camera matrix that projects the 3-D metric shape onto image frame
i. The size and structure ®f generally depends on the type of camera that projects the scene.
The componens; with j = 1...P defines the 3-D structure for each pojrdnd its size depends
on the shape properties (for instance, whether it is rigid or non-rigithe ffamework is such

that the productvij = M;S; defines the projection of the poipbnto the image frame

2.1.2 The rank of the measurement matrix

An interesting property of the measurement matrix is that it is rank-deficiethtrasides in a
lower dimensional space. In fact the dimension is given by the size of the mramtid structure
matricesM andsS. This property was first used by Tomasi and Kanade [138] who firserved
and exploited the rank deficiency of measurement matrices storing imagedrags@xtracted

from a body undergoing a rigid transformation. Also known asrtrk constraint of a matrix
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Figure 2.2: The measurement matiixs decomposed into the product of thetionmatrix M

F

and the3-D structurematrix S. The matrixM contains the parameters of the model that vary
frame-wise (i.e. object motion and camera parameters) \@hientains the parameterisation of
the 3-D structure for each point. The sizeMaddndsS depend respectively on the camera model

and the 3-D point parameterisation.

this property may be exploited by using common techniques for matrix factomzg@tée section
2.1.3) to reduce the dimensionality of the mattiand factorize it into the product afands.
Further studies of the factorization framework have shown that trajestbem®nging to dif-
ferent deforming objects show similar rank constraints. Different ramisld be obtained de-
pending on the model used for the camera models observing the scend3P35considering
different rigid objects moving independently [29], dealing with non-rigigecks [19] or articu-
lated structures [143, 163, 107]. Moreover the rank constraint Bas bpplied successfully in
the work presented by Irani [77] to obtain an estimate of multi-frame optical fitw different

camera models and types of motion.

2.1.3 Singular Value Decomposition (SVD) and factorization

The rank-constraint can be efficiently used to obtain a decompositi@niroterms of motion
and structure. SVD is a rank revealing matrix decomposition algorithm thidriaes a generic

H x L matrixw into a product of 3 matrices:

WHxL = Unxl Zixl Vi o (2.4)

wherez is a diagonal matrix whose entries are the singular valu@s®fs anH x L orthogonal
matrix such thatu" = Iy andV is a square and orthogonal matrix such thay = vv' =

I «.. The number of singular values different from zero reveals the actudd of the data
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stored in the measurement matrix, and they are ordered from largest to Snaait®rding to
their magnitude.

If the L columns ofw are linearly dependent, each column can be obtained as a linear combi-
nation of a subgroup af columns withr < min{H,L}. The valuer is also called the rank of a

matrix and this property is directly related to the singular valugssach that:
di=0 Vi>r (2.5)

whered;; are the diagonal entries afandi = 1...L. As a consequence of the zero-entrieg,in

equation (2.4) can be rewritten as:
WHxL = Unxr Zrsr V] o (2.6)

Here,U andV are orthogonal matrices defining respectively thege andnull spaceof w. By
using the SVD, obtaining the closest rankaatrix in terms of the Frobenius norm to the original

matrix is guaranteed, if the noise contaminatinig isotropic and Gaussian [51].

2.2 Rigid factorization

A object moving rigidly enforces a rank constraint over the measuremetrzscted from the
image sequence capturing the motion of the object. The given rank depaniti® camera
model used to project the 3-D structure in the image plane. The following sectitow how
factorization methods can extract 3-D structure from sequences viettiedrthographic and

perspective cameras.

2.2.1 Rigid Structure under orthographic projection

The first use of the rank constraints to solve multi-view problems was intemtlby Tomasi
and Kanade [138] to deal with the case of rigid objects under orthograpimera projection.
In this scenario, the measurement matrix consists of trajectories extraotacafsingle object
undergoing rigid rotations and translations as showed in figure 2.1. Fimgke dramei, the

measurements can be represented in matrix form such that:

W = [ Wi1 ... Wip :| (27)
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It is possible to obtain the measurement maitrby stacking they; for all F frames:

W1

T (2.8)

Wg

A single pointj belonging to a 3-D object in a generic frarhean be projected using an

orthographic camera such that:

%
ri1 li2 ri3 tui
Wi = Y + = RiXj +t; (2.9)
lia Tlis Tig tvi
Zj

whereR; contains the first two rows of a rotation matriX; is a 3-vector containing the metric
coordinates of the 3-D point, artdis a vector representing the translation component. Every
point belonging to the rigid structure shares the same rotation and transletios, the previous

expression is valid for every point in the generic frame

X1 Xo - Xp
lia Tri2 T3
Wi=1|wi ... wp |= Y. Yo - Yp | +Ti (2.10)
lia Tis Tie
Z Zo - Zp

whereT; is a 2x P matrix with the replicated translation vectipifor each point. It is possible to

rewrite the expression in a compact matrix form as:
Wi =Ri{S+T; (2.11)

Stacking the rows df; for every frame we obtain the complete measurement matrix:

W1 R1 Tq1
X; Xo - Xp
Wo Ro T>
W= _ = . i Y2 - Yo | +H]| =MS—+T (2.12)
. ' 21 Z, - Zp
Wi Re Tg

whereW is the F x P measurement matri¥, is the Z x 3 collection ofF rotation matricess is
the 3x P structure matrix containing the 3-D coordinates of all the world pointsTasd F x P
matrix with the translation for each frame.

It is easy to eliminate the translation component by determining the centroid of the imag

points for every frame and subtracting it from the image coordinates. loadiis, the components
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M andS are matrices of at most rank 3, thus Tomasi and Kanade’s algorithm olataiimstial

decomposition by performing a truncated SVD with 3 such that:

Wor «p = Uk x3 £3x3 Vpy3 (2.13)

It is then possible to rearrange the 3 products to obtain an initial affine estmadtibe motion

and structure components such that:
M=Uvz and § = Vv’ (2.14)

One important aspect that should be emphasized is that rank revealingecalrezhniques,
such as SVD, do not provide the solution to the 3-D reconstruction prof@&m The reason
is that the rank-3 decomposition is not unique, but up to a generic affinsforanation. Any
non-singular 3 3 full rank matrixQ and its inverse may be inserted in the decomposition giving
an equivalent result:

W= (MQ)(Q ') =M(aq ")S=ms (2.15)

The matrix product leads to the same measurement matrix, but the structMranafS has
clearly changed. This ambiguity may easily be eliminated by enforcing orthmadity of the
rotation matrices comprising (i.e., imposing the metric constraint) and, thus, upgrading the

decomposition from affine to metric.

Computing the transformatiof
A generic orthographic camera matrix at fraim@an be expressed in vector form as:
T
M1
R = (2.16)
rl
i2
Taking into account every=1...F, itis possible to write the following over-constrained system

of equations:

rhaQtrip =1
rlaQri;=0

which expresses the orthonormality of the rowsrpf The equations are quadratic in the un-
knowns which are the elements @f In order to solve the system linearly, Tomasi and Kanade

define the 3< 3 symmetric matrix8 = QQ”, solve the system for the 6 unknownsHrand then
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(a) (b)
Figure 2.3: (a) An orthographic camera projects the 3-D points lying on tjeziodurface onto

image planél. Orthographic projection assumes the object being far from the image glahe
that the projecting rays are all parallel to the optical axis and perpendicuiae image planél.
(b) A full perspective camera projects the 3-D points with rays passiogi¢hrthe optical center
C of the camera. The coordinates projected onto the image plane haverdiffesgye positions
depending on the depth of the pointsand the internal parameters of theacgmehn as the focal
lengthf).

extractQ using Cholesky decomposition. Finally, the correct matrix structure fordhtfiza-
tion of rigid shapes is obtained by applying the transformation to the affin¢iGolcomputed
via SVD:

M=MQ ands=Q 'S (2.18)

which ensures that containg- rotation matrices as shown in equation (2.12).

The orthographic camera is typically a good approximation when the objexgith ds small
in comparison to the distance from the camera. In this case depth recowfficisit and may
be sensitive to noise, so an orthographic model is more reliable. Nevesthéhe method has
been extended to more general affine camera models, such as the wspadcpee [82] and

paraperspective [117].

2.2.2 Perspective factorization

If we now assume a perspective projection model for the camera (see #dfor a comparison
with the orthographic case), a 3-D homogeneous pﬁ';mvill be projected onto image franie

according to the equation:

_ 1
Wij = N PiXj (2.19)

i
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wherew;; and)?ij are both expressed in homogeneous coordinateswie= [uij vij 1]7 and
)Zj = [X]Yj Zj 1J7), P; is the 3x 4 projection matrix and; is the projective depth for that point.
Scaling the image coordinates of all the points in all the views by their comnekiipg projective

depth gives aB x P measurement matrix:

A1aW11 ... A1pWip Py

=|
I
I

S=MS (2.20)

AFIWF1 ... AFpWEp Pr

whereV is the rescaled measurement matfix: [)Zl...fp] is a 4x P shape matrix which con-
tains the homogeneous coordinates of Bh@-D points and! contains the perspective cameras
for each frame. In the case of rigid structurveands are at most rank 4. Therefore, the rank of
the scaled measurement matiiiis constrained to be< 4.

If the true projective depths; were known it would be possible to factorize the measurement
matrix into two rank-4 matrice$] ands using SVD. Similarly to the orthographic case, the result
of the factorization would not be unique since any invertible 4t matrix @ and its inverse can
be inserted in the decomposition, leading to the alternative camera and shejoesig and
Q~1S. Therefore, without assuming any additional constraints on the camesastioe scene the
reconstruction can be calculated up to an overall projective transformdtiogeneral, the true
projective depths\j; are unknown so the essence of projective factorization methods is to deal
with the estimation of projective depths in order to obtain a measurement matrix which could
be decomposed into camera motion and shape in 3-D projective space @smagkiconstraint
described above. Variants of the projective factorization method hase p@posed so far for
the case of scenes with rigid objects.

The first work to extend Tomasi and Kanade's algorithm to the persgecdimera case was
by Sturm and Triggs [132] who proposed a non-iterative factorizatiothatefor uncalibrated
cameras. The method solves for the projective depths by calculating ttarfiemtal matrices
and epipoles between pairs of views. The overall accuracy of theiflgodepends greatly on
the estimation of the epipolar geometry, as large errors in the fundamental matrig affect
the measurement matrix and result in errors in the shape and motion. On thbartdeHan and
Kanade [57] perform a projective reconstruction using a bilinear fegettion algorithm without
calculating the fundamental matrices. Heyden's method [68] uses a diffezeative approach.

It relies on using sub-space constraints to perform projective steifriim motion. Ueshiba and
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Figure 2.4: Three independent objects are represented in an imagdusgea of feature points.
The motion of each object is defined on the image plane by the 2-D coordfatescentroid

(t1, t2 andt3) and the rotation matrice®{, R, andR3) which project it onto the image plane.

Tomita [149] presented a method by which the projective depths are itdyatistimated so that
the measurement matrix is made close to rank 4. The authors also derived coestcaints
for a perspective camera model to upgrade the structure to Euclideantiénternal camera
parameters are known. Recently, Tang and Hung [137] proposedrativiéealgorithm for pro-
jective reconstruction based on minimizing an approximation of the 2-D regtiojeerrors using
weighted least-squares. The iterative nature of these algorithms leadsothemrone to falling
into local minima. Additionally, slow convergence rates are also reportgecesly in the case

of image noise affecting the trajectories.

2.3 Non-rigid factorization

The dimensionality of the sub-space in which the image trajectories lie doeslyotdepend
on the camera model that projects the 3-D structure. The rank may alsdepending on the
specific structure of the scene; for instance the object may changeits shthe scene could be

composed of different objects moving independently.

2.3.1 Multi-body factorization

Given multiple independently moving objects in a scene, it is possible to refornthtafactor-
ization framework to model the 3-D structure and motion components of eactt gejgarately.

In this case, the measurement matrix contains trajectories belonging to wiiffdsjects (see fig-
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ure 2.4). This scenario was extensively studied in the work of Costeit&anade [29]. Briefly,
N independent objects are present in a scene and, as a result, eachtetemedelled by a
specific 3-D structurs™ of size 4x P, wheren=1...N andy\_; P, = P. Each independent

shape can be arranged in a single structure using a block rsattigh that:

s® 0 0
0 s@ ... o
g — . _ . (2.21)
0 0 s(N)

Notice that in this case, the 3-D coordinates are homogeneous and geng@§ is of size

4N x P, yielding the following structure for each generic independent shape

X xm X ]

o VAR ALY 022)
Z0 ZW Lz
11 1|

Note that in this case the coordinates cannot be registered to a commoricteinice there are
multiple objects and the overall centroid will not be preserved by orthduecapojection. Thus,

the 2x 4 motion componermi(”) for each shape contains the rotation and translation parameters

for framei:
(m . (N (n
r I, r th
LAl I (2.23)
n n n
a Tis  Tig
The overall motion matri¥l can now be written as:
w u® o uY
1 42 (N)
M M ... M
M— 2 2 2 (2.24)
_ M(Fl) M(Fz) M(FN) _

This formulation implies that each trajectory has already been assigned torteetmbject. By

grouping together structure, motion and measurement matrices we obtain:

[ 2 N) ]
P w@ ™| s® o0 ... o0
MY M@ Y 0 s@ ... o0
[ ey ‘ e ‘ ‘ N ] I B 2 (2.25)
u w? oY [ o 0 sV
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where:
w:[wmmammm] (2.26)

is the & x P measurement matrix obtained by putting together the trajectories belonging to the
N independent objects.

Provided an initial grouping of the trajectories is given, it is possible to fitrdrassformation
Q that forces the particular structure Bfands for the multi-body factorization scenario. In
this case, the rank df is constrained to beM since the measurements are a product of full
rank matrices such that= Mok .an Sanxp. The task of correctly segmenting different objects
by observing their 2-D motion is not trivial [166], and this problem, esskfifaa correct 3-D
reconstruction, has triggered an active stream of research on mogoreséation. A complete

investigation of these issues is postponed until chapter 5 (section 5.2).

2.3.2 Articulated factorization

The dimensionality of the sub-space in which image trajectories reside iesrégsa quantity
proportional to the number of independently moving objects present in gresddowever, if
the objects share a dependency such as a joint or a common rotationadexxigglre 2.5) the
rank varies with the interdependency between the 3-D shapes.

When two independent objects are considered, the resulting rank of duneenent matrix
isr =8 . However, if for instance the shapes have a joint between them, thepsige-repre-
senting the trajectories will decrease by 1 or 2 dimensions depending omaperties of the
joint. This means that the sub-spaces of the two shapes intersect andklaf ¥awill reduce
respectively tor = 7 orr = 6. Therefore, if the trajectories of the first object are storedin

and for the second W@, and no degeneracies are present, it follows that:
rank(W?) = 4 and rank(w®?) = 4 (2.27)

However, by merging the data together into a single measurement matrix, theifgloank
property holds:
rmm<[mnma]>gs (2.28)
showing that a relation between the two shapes is present. Recent warticutated factoriza-
tion describes two types of joints: the universal joint and the hinge joirg,[183].
When two objects are linked by universal joint(see figure 2.5) the distance between the

two centers of mass is constant (for instance, the head and the torsaofamtbody) but they
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Figure 2.5: An articulated object composed of two shapes connectedibiyersal joint(rep-
resented by a circle). Shap#&) and shap€2) are projected onto the image plane and they are
composed of a set of feature points whose centroids are indicatedtigspyeby the 2-D-vectors
t( andt(@. Each object has independent rotational comporiéftandr (@, while the 3-vectors

d® andd? specify the translation between the centroid of each shape anmhidersal joint

have independent rotation components. At each frame the shapestmahby a joint satisfy the
following relation:

{0 L ROdD — @ L @R (2.29)

wheretd andt® are the 2-D image centroids of the two obje®$) andR(? the 2x 3 ortho-
graphic camera matrices anét) andd(® the 3-D displacement vectors of each shape from the
central joint. The constraint expressed in equation (2.29) is the reastirefreduced dimension-
ality of the joint sub-spaces. It is possible to refer the articulated motion to a cameference

frame centered on the centroid of the first object thus simplifying the shape&mauch that:

s 4o
s=| o g@_4® (2.30)
1 1

wheres is a full rank-7 matrix. The motion for a franmidnas to be arranged accordingly to satisfy
equation (2.29) as:
) a@ ] (2.31)
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Finally, we can write the full expression for the image coordinates of twoctbjinked by a

universal jointfor the framei as:

g1 d®
w= | [u? | = A 8?0 || o so_ge (2:32)
1 1

The image coordinates for every frame can then be stacked to form teeafjstructure of the
factorization framework and, once more, the problem is to fit the multi-view wathe model
expressed in equation (2.32).

In order to find the reduced sub-space for the measuremefitsaiiruncated SVD is used
to compute the initial solution far andS. In the case of aniversal joint the task is to find the
correct transformatioz«7 that determines the exact factorization in accordance with equation
(2.32). Similarly to the rigid and multi-body case, this problem can be neatlydalith a linear

system. Further details can be found in [143], alongside a descriptiaiddfanal joint models.

2.4 Deformable factorization methods: a review

In the case of deformable objects, a single object varies its 3-D strucithreegpect to a set
of deformation modes. The specific number of modes used to define the Ishaphe effect of
forcing a specific rank-constraint over the image trajectories stor@d Thus, by imposing the
correct rank, it is possible to carry out an approach similar to those siiscuin the previous
sections for other factorization problems.

The main issue to be solved is the computation of the transformation matie¢ upgrades
the structure and motion to metric space. In addition, the simultaneous estimatiotiarf ared
deformable shape is often ambiguous. Given a particular motion there mayibas/non-rigid
shapes that fit the measurements. Special care needs to be takemgetertype of information
provided to the system to allow disambiguation.

Deformable shapes are the central interest of this work, thus we will aedice next sections
to describing the non-rigid factorization methods in the literature beforeeptieg our own

contributions.
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First basis Second basis Third basis

Figure 2.6: Three basis shapes obtained from the 3-D reconstructenhurhan face taking on
different facial expressions. The first basis generally represbatsean structure of the object,
in this particular case a neutral expression. The second and third bagisssshows a surprise
and exaggerated grin expression and they are obtained by summing theasis (the mean

component) with the second and third (i$ = S1+ S, andSz = S + Sz respectively).

2.4.1 The deformable model

Bregler, Hertzmann and Biermann were the first to propose an exterfsiomasi and Kanade’s
factorization algorithm to deal with the case of non-rigid deformable 3-Dcaira [19]. Here,
a model is needed to express the deformations of the 3-D shape in a comgyadthe chosen
representation is a simple linear model where the 3-D shape of any spemifigurations
is approximated by a linear combination of a setDbbasis shapeSy (see figure 2.6) which

represent the principal modes of deformation of the object:
D
S= dz lgS¢ S,8qe 0P 1yel (2.33)
=1

where each basis shapgis a 3x P matrix which contains the 3-D locationsBbject points for
that particular mode of deformation. A perfectly rigid object would coraegpto the situation
whereD = 1.

Similarly to Tomasi and Kanade, Bregler et al. also assumed a scaled aphagprojection
model for the camera. In this case, the coordinates of the 2-D image posdsved at each

framei are related to the coordinates of the 3-D points according to the followingtiequ

Wi = { Wiz ... Wp ] =R (dillidsd> +Ti (2.34)
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where
li1 Tri2 [ri3
R=| (2.35)
lia Ttis Tig
is the 2x 3 matrix containing the first two rows of a rotation matrix apdthe configuration
weight for basigl at framei. When the image coordinates are registered to the object’s centroid,

equation (2.34) can be rewritten in matrix form as follows:

S1 S1
wi:[thi |iDRi] :[Mil MiD} : | =MS (2.36)
Sp Sp

If theseP points can be tracked throughout an image sequence, the point trackserstacked

into the F x P measurement matrix and we may write:

12R1 ... lipRg S1 M1 ... Mip S1
W= : : = : ;| =M8 (2.37)
leiRe ... |epRr Sp Mr1 ... Mpp Sp
SinceM is a ZF x 3D matrix ands is a D x P matrix, the rank ofv when no noise is present
must ber < 3D. Note that, in relation to rigid factorization, in the non-rigid case the rank is
incremented by three with every new mode of deformation. The goal ofrfaation algorithms
is to exploit this rank constraint to recover the 3-D pose and shape {§lzsiges and deformation
coefficients) of the object from the correspondence points storéd in
In order to obtain a solution fat ands, it is possible to perform a truncated SVD to rank
3D similarly to the rigid case. However, the result of the factorizatio @ not unique; any
invertible D x 3D matrix Q and its inverse can be inserted into the decomposition leading to
the alternative factorization = (fQ)(Q—18). The problem is to find a transformation mattx
that imposes the replicated block structure on the motion métsixown in equation (2.37) and
that removes the affine ambiguity upgrading the reconstruction to a metrid/dhereas in the
rigid case the problem of computing the transformation mégrie upgrade the reconstruction
to a metric one can be solved linearly (see section 2.2); in the non-rigid icapesing the
appropriate repetitive structure and forcing the metric constraint to the mtébnx ¥ results in
a non-linear problem.
Various methods have been proposed so far in the literature [19, 161%9117] and they

will be discussed in the following sections. It is important to note that while thekidtructure
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of the motion matrix is not required if we only wish to determine image point motion, it is

crucial for the recovery of metric 3-D shape and motion which is the mainafaair work.

2.4.2 Bregler et al.’s method

Bregler et al. [19] introduced the non-rigid factorization framework andgested a solution for
the computation of the matrig. The main problem addressed in their work is the separation of
the configuration weightky from the rotation matriceR;. The solution proposed is calledib-
block factorizatiorand it consider§ sub-blocks derived from a row-wise partitionguch that

the equation of each sub-blo®kis given by:

M = |:|ilRi ... lipRj :| (2.38)

The entries of each sub-block are then rearranged as a rank-Ipootierct of 2 vectors giving a

D x 6 matrixM; which can be expressed as:

liar li1
M= i =] fie fiz T3 T4 Tis Tie (2.39)
lipr lip
wherer; = [ril,..,rie]T are the coefficients of the rotation matéix Thus, Bregler et al.'s ap-
proach extracts configuration weights and rotation components by penfgF SVDs truncated
to rank 1 and then stacking each component inté &3 matrixR.

Since the individual elementg for k= 1...6 obtained from the decomposition do not form
orthonormal matrices, a further orthogonalization is required to upgraglentidel to a metric
one. This can be done simply by applying the metric constraints to the nRagrixi computing
the correcting transformatio, 3 as in section 2.2.1. Finally, it is possible to compute the full

3D x 3D transformatiom as:

_Qo .
0Q ... 0

Q= .Q _ (2.40)
| 00 .. é_

a block-diagonal matrix that upgrades the structure to metric.



2.4. Deformable factorization methods: a review8

Discussion
The method presents a significant weakness; the rank-1 SVD useddazad] in equation
(2.39) is a coarse numerical approximation when the measurements atedfiy noise. Thus,
the second and further singular values retain a considerable contritiatitve solution. Ad-
ditionally, the true transformation matrix is usually dense in the off-diagonal values and so
the block diagonal approximatiof can only be a solution for a sub-group of all the possible
transformations. Only very simple deformations may be solved using this agipro
Furthermore, the solution fa; andlig is computed exclusively from the motion matiiix
obtained directly after performing the initial ranlid3BVD on the measurement matrix. This first
decomposition redistributes the structure and motion components randomlyebéhanadS as
pointed out by Brand [16]. However, Bregler et al.'s method assunasaththe components re-
ferring to configuration weights and camera parameters are fully contaiied his assumption
does not hold in principle and a transformation able to reorder the comfsosteould be carried
out before thesub-block factorization
Solutions to this problem are proposed in [141] by using an iterative optimizatid in [16]
by using a flexible factorization approach. The following sections descthibse approaches in

more detail.

2.4.3 Torresani et al.'s approach

Torresani et al. [141] define an optimization method to correct the inategblution proposed
by Bregler et al. described in the previous section. After obtaining aroappate solution with

sub-block factorizationtheir approach optimises the following non-linear cost function:

D
X; = Wi —R; dz ligSd (2.412)
=1

with i =1...F andd = 1...D. This optimization is performed by alternatively minimizing
three different least-square problems in the three classes of modehgtara: R;, lig andSy.
While each class of parameters is estimated, the other two are assumed to renséamc This
procedure is also known as Alternating Least Squares (ALS) [15¥]tdras the advantage that
it may converge to a solution without the complexity of using a full non-linearagch.

Torresani et al. report that an appropriate initialisation can be obtaisiad an initial guess
of the camera matrice® which they compute by applying Tomasi and Kanade’s rigid factor-

ization over the non-rigid measurementsiinDifferently, the configuration weightg are ini-
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tialised randomly and this permits to obtain the first estimai®afith the ALS approach. Note
that, to obtain more robustness, the rotation components of the orthographéra model are
parameterized using the Rodriguez formula instead of considering edloh 6felements iR;.
A regularization of the shape matrix is also used during the iterative optimizatige £ prevent
ill-conditioned values on the shape when there is not enough out of péateon.

While this method does preserve the replicated block structure dfitinerix it minimizes an
algebraic cost function rather than a geometrically meaningful criteriora fsther drawback,
occasionally the algorithm presents a slow convergence to the solutiamlgpvhe zig-zagging
behavior of the minimization in the different parameter spaces (for a geaeadysis of the

behavior of ALS methods in the SfM domain please refer to [20]).

2.4.4 Brand'’s orthonormal decomposition and flexible factorization

Brand proposed an alternative algorithm calfxkible factorizatior{18], where a solution for
Q is achieved without computing the second series of rank-1 SVDs. The thetbovers the
camera matrices and configuration weights using an alternative technitipe @dhonormal
decomposition

The strategy is to minimize the deformations (encoded irlthel basis shapes storeds$h
with respect to the mean basis compor@ntomputed from the three most significant singular
values. The reason for forcing this constraint is based on the olieerthat most of the motion

of the object can be explained by the rigid component.

Flexible factorization

Concisely, the algorithm consists of an initialisation step where an approxiraasfdrmatiorg
is computed estimating the matrix in a band around the diagonal values. Tiuaeapmproposed
by Brand [16] corrects each column-triple independently applying the niggttic constraint to

each(2F x 3) My vertical block in# as shown here:

Since each 2 3 My sub-block is a scaled rotation (truncated to dimension 2 for weak pergpecti
projection) a 3x 3 matrix Qg (with d = 1...D) can be computed to correct each vertical block

Mg by imposing orthogonality and equal norm constraints to the rows of @gackachiiiy block
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contributes one orthogonality and one equal norm constraint to solteda@iements ig.
Each vertical block is then corrected in the following waljg  M4Qq). The overall ® x 3D

correction matrixq will therefore be a block diagonal matrix with the following structure:

9. 0 ... o |
0 .0

Q=] e . (2.42)
0 0 ... |

Unlike the method proposed by Bregler et al. [19] (where the metric constvas imposed only
on the rigid component, so thag = Q for eachd = 1...D) this provides a different corrective
transform for each column-triple df. The 3-D structure matrix is then corrected appropriately
using the inverse transformatiog:— Q5.

Brand included a final minimization scheme in lixible factorizatioralgorithm [16]: the
deformations ir§ should be as small as possible relative to the mean shape. The idea here is tha
most of the image point motion should be explained by the rigid component. Thimilarsto
the shape regularization used by other authors [141, 2].

This final stage re-estimates the transformation marstarting from the correctel = MQ

by minimizing the following cost function:

tr { (fiq — )T (g — )} +tr{§TQTZQ§)} (2.43)
wherez is a matrix such that:
S2
5 = : (2.44)
Sp

Thus, a global solution is achieved by taking into account both the motion-&nst@icture ma-
trices and strengthening the mean motion component with respect to the diedmsr@ntained

in the (D — 1) basis shapes.

Orthonormal decomposition

The final step in the non-rigid factorization algorithm deals with the factorimaiiche motion
matrix i into the 2x 3 rotation matrice®; and the deformation weightg. Brand proposed an
alternative method to factorize each 2 row sub-block of the motion rrﬁxtﬁaliT ® R (Where®
indicates the tensor product ai{d= [li; . .. lip] is aD-vector containing the configuration weights

for each frame).
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Following equation (2.39), each motion matrix sub-bldgk(see [18] for details) is rear-
ranged such thdi, — 1\71iT. The motion matrixt’ of size 6x D is then post-multiplied by the

D x 1 unity vectorc= [1 ... 1]T thus obtaining:
.7
a=kri=1c (2.45)

wherek = lj1 + 12+ ... + lip (the sum of all the deformation weights for that particular frajne
A matrix A; of size 2x 3 is built by re-arranging the coefficients of the column veetorThe

analytic form of4; is:

kri; krio  Kr;
Ai _ i1 2 i3 (2.46)
krig kris  Krig

SinceR; is an orthonormal matrix, the equatimﬂRiT = \/m is satisfied, leading t(RiT =
\/E/Ai- This allows one to find a linear least-squares fit for the rotation magrix

In order to estimate the configuration weights the sub-block mtrix rearranged as equa-
tion (2.39) obtainind?, — M;. The configuration weights for each frarmare then derived ex-

ploiting the orthonormality oR; since:
M = : =2 (2.47)

Discussion

The method proposed by Brand consists on estimating the off-diagonalrekef® using a
least-squares approach to minimize the Frobenius norm of equation (2E&3entially, this
further step has the effect of forcing a strong prior over the strengtine deformations of
the inspected object. By absorbing most of the contribution of the motion intor8iebéisis
(also called the mean component or mean basis), Brand observed thatsfoathations can
be irremediably lost. This is also supported by further tests presented iwarkirwhich show
that the prior introduced in thBexible factorizatiormay be too restrictive to be applicable in
specific scenarios with varying degrees of non-rigidity. We should atlessthe fact that the
cost function is strictly an algebraic error without any consideration ofggx@metrical model

describing the 3-D structure and temporal deformations.
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2.45 Xiao et al.'s closed form solution

The main problem with the previous approaches stems from the fact tlostbwfon and motion
are ambiguous. Given a specific configuration of points on the image pldieeent 3-D non-
rigid shapes and camera motions can be found that fit the measurementszeltnis ambiguity
prior knowledge about the shape and motion could be used to constraivlutiers

Recently, this approach was adopted by Xiao et al. [159] by introducingdhcept obasis
constraints a set of linear constraints which, when used in addition to the rotation edamtstr

uniquely determine a closed-form solution to the non-rigid factorizationlprob

The basis constraints
In the rigid casel) = 1), it is possible to solve for the transformatiQiby linearly imposing the
metric constraint on the rotation matrices (see section 2.2.1). However in filnenddle case,
imposing only the constraints derived from the orthographic projection hredders a solution
space that contains a set of invalid or degenerate solutions. In ordemtw/e this ambiguity,
Xiao et al. introduced a new set of constraints based on prior informatientbe data and they
proved that the added linear equations can solve uniquely.for

Xiao et al.'s assumption is that a setfframes exists in which the basis shapes are inde-
pendent such that the shape in that frame can be exactly describedriglea3sD basis. This
assumption forces a particular structure in the motion matrikor convenience, the measure-
ment matrix is arranged such that thdrames corresponding to the independent bases are in the

first 2D rows ofW:

[ R 0 o |
0 Ro 0
S1
W= 0 0 Rp : | =MS (2.48)
lo+11Ro+1) lD+1)2RD+1) --- lD+1DR(D+1) Sb
lF1RF IF2RF IFDRF

thus, the top B x 3D block of the motion matriX is a block-diagonal matrix containing tiie
camera matrices for the independent basis shapes. Xiao et al.’s algohtains a closed-form

solution by enforcing this particular structureMan (2.48).
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The closed form solution

In more detail, the new set of linear equations is used to dollimear problems over the sub-

matricesq obtaining a column-wise partition of the mattisuch that

QZ[Ql ‘ ‘ QD} (2.49)
where eaclyg withi = 1...D is a D x 3 matrix. In order to solve for the full transformatian
the basis constraints are appliédimes for each sub-transformatiqg. Then, the problem is to
find the set of linear equations that force the exact structure of the motitiixrime(2.48).

In the following, we will show how to build the linear system for a generic colttripie
Mgy. Having obtained an initial solutioin= MS (see section 2.1.3) with a rankb3lecomposition,
Xiao et al. build a set of linear equations that verifies the following conditions

My = MQq. (2.50)

For instance, if we consider the second transformagigmwe would find the solution that trans-

formsi such that:

Ro

figy =M, = ' (2.51)
0

l(D4+1)2R(D+1)

IF2Re

By exclusively using the metric constréints, it is not p(_)ssible to determinegtnequations
to solve uniquely foQq. This is the crucial problem of the previous methods. Xiao et al. intro-
duced their basis constraints defining a new setFfl— 1) equations which, when combined
with the equations given by the metric constraints are enough to solve the $ystem. The
constraints are quadratic over the unknowns stordy jinence, Xiao et al. introduce ®3x 3D
symmetric matrixBq such thatyq = Qng. The basis constraints are determined such that the
structure in equation (2.48) is satisfied for the configuration weights. Thiisevtrue if the

following equations are satisfied:

i =1, i=1...D
(2.52)
lig=0, i,d=1...D,i #d
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These basis constraints lead to a new setF(f3l— 1) equations as described in [159]. Notice
that a further step is required to extract the corresponding three-cdhamsformation matrixq
from each symmetric matrigq. Xiao et al. suggest computing the solution via SVD; siBge
is, in a noiseless case, a rank-3 constrained matrix. However whenisgisesent the solution

is numerically approximated to the closest solution in the sense of the Frolvamius

Discussion

Solving for the transformation matrix by dividing the problem irdolinear systems permits
finding a closed form solution that upgrades the factorization to the d¢atrecture. A drawback

of this approach lies in the independency of the solution; each column-Hjgke upgraded
separately, since the block structureMag not forced in the solution of the systems of equations.
As aresult, after fixing a reference bagid,— 1) orthogonal transformations need to be computed
to align each of the bases using Procrustes analysis [127].

These further computations are very critical, since incorrect solutionddidead to a mis-
alignment of the bases and a violation of the repetitive structure of the motioixmauldi-
tionally, the alignment procedure proposed by Xiao et al. attains an eshution only when
identical and isotropic Gaussian noise with zero mean affects the meastsgsesan analysis
on Procrustes methods in [40]). Such a condition rarely occurs ingceabsios, and in fact might
occur only in synthetic tests for which the algorithm can obtain exact réwati®ns.

Another criticism has been made regarding the sensitivity of the method t@lyreelected
independent bases as reported in [17]. Often it is not trivial to find glesiset of independent
bases in a real sequence of a deforming object. Even though the methoobtaay a unique

solution, this solution changes with the selection of a different set of bases

2.4.6 Brand's direct method

Recently, Brand [17] proposed a variation of Xiao et al.'s approaéB] based on the deviation
of the computed solution from the orthogonality constraints and on weagangions on the
independent basis shapes.

The approach focuses initially on the estimation of the first three-columnforamstion Q1
which corrects the rankE3 approximatedi obtainingMQ; = M;. This step has the dual effect
of estimating the overall motion componermsand the first set of configuration weights

with i = 1...F for the mean basis shape. However, differently from Xiao et al.'s mettied
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computation ofy; is not given by a least-squares estimation: a quasi-Newton method is applied
to a non-linear cost function constructed to impose the orthogonality contstia . In this

way, the rank-3 approximation as described in section 2.4.5 is avoided et@dtisformation is
estimated given the actuaDQarameters of;.

A second stage forces the repetitive structurt by linearly computing the full transforma-
tion Q that imposes the pre-estimated rotati@nso eachD triplet in the motion matrix. In the
case of no noise, this two-step procedure provides exact results withetic data. However,
the author reports more erratic behavior in the performance of the algowtinenever the data
is corrupted by noise, since local minima may appear during the quasi-Nestomation.

In order to counteract this effect, Brand proposes different stegdgased on finding multi-
ple solutions foQ; and combining them to obtain a better correction for the rotation matrices. A
solution is to introduce weaker basis constraints by assuming that thereasst®fD frames
for which theD-vectors of configuration weights are orthogonal to each other. In ohegasl, if
we collect in a singl® x D matrix the configuration weights for tH&frames in which the bases

are independent, we obtain orthogonal matrix:

| o (2.53)

In the case of Xiao et al's approach [159], the basis constraints fleeamatrixL. to be an identity
matrix such thaf = I.

No justification is provided that supports the use of these constraints lyuihar the wrong
selection of the independent basis proposed by Xiao et al. in equatid?) (2duld perform
notably worste than the wrongly selected orthogonal condition proposBcemd. Alternatively,
another suggestion is to start the minimization from a different initialisation of aihenpeters to

obtain multiple estimates @f;.

Discussion

Two main positive contributions are present in the direct method. Firstly, éctlir estimates
the parameters of the transformation maffixwith a quasi-Newton minimization scheme and,
thus, it avoids the rank-3 numerical approximation in Xiao et al's method indke of noise.
Secondly, it enforces the repetitive structureMofvithout solvingD separate basis alignments.

On the other hand, a weakness is present whenever noise affecstéghelthe matriceg; are
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not reliably estimated after forcing the first transformatimnover the numerically computed
M. Multiple solutions have to be found by imposing weaker priors over the tsteiof the
configuration weights and by initializing the quasi-Newton minimization from diff¢points.
Nevertheless, the solution proposed by Brand performs better thanahieys algorithms and
it shows reliable results in real experiments, where as Xiao et al.'s medlilsdd select reliable

independent basis shapes.

2.5 Closure

A factorization approach to structure from motion computation exhibits corateeadvantages
over alternative methods. In this chapter we have shown that differetibrmand structure
models may be fitted to a set of trajectories obtained from measurements averggnsequence.
As a consequence of the global constraints given by the models, the imisgérajectories live
in a certain sub-space defined numerically by the rank of the measuremieixt ina

From this observation, every method presented here finds an initial sotatibemotionand
3-D structureby truncating unnecessary components fiomith SVD, and then by correcting
the solution with a transformation matrix that imposes explicit geometric constraints given
the specific model. This approach is successful in many cases with somptiers in the
deformable case.

The main issue is in the ambiguous formulation of the problem. For a deformadybe,sh
deformation and motion are strongly coupled elements. Not only in a mathemaitisa &since,
for instanceR; andl;y appear multiplying each other inside the motion matiut, as shown
by Xiao et al. [159], a solution computed only by forcing constraints overcdimera motion
may be degenerate and not unique. Moreover, numerical approxim§ti@nss, 159] often do
not provide good estimates for the geometric parameters of the deformabé. mod

Thus, a solution that respects the mathematical structure of the factorizaioeviiork and
the geometric constraints of the camera projecting the scene is desirahlehla way, the prob-
lem should be formulated by expressing the produdt ahds as a set of non-linear equations.
In this case, the full interaction of the model parameters is explicit and tlaeneders of the de-
formable model may be estimated using non-linear optimization techniques, as wilptained

in the next chapter.
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Chapter 3

A non-linear approach to non-rigid factorization

The non-rigid factorization algorithms described in the previous chaptirdiom a series of
drawbacks. Most of them (Bregler et al. [19] and Brand [16]) dbraspect the replicated block
structure of the motion matri¥ expressed in (2.37). It is important to notice that the replicated
structure does not affect the estimation of the motion of image points, whichsrizdse factor-
ization algorithms very well suited to non-rigid tracking [141, 16]. The ranokstraint imposes
that the trajectories of image points lie in B 8limensional sub-space, whebeis the number
of basis shapes, and that any new trajectory may be generated as acbndzination of the
columns of the motion matri¥. If a point is only tracked in a small sub-set of images in the
sequence, this constraint allows to predict its trajectory in the entire seguigns permitting to
incorporate new tracks. This property is strictly based on the numeribaggace in which the
trajectories resides and not on the geometrical model estimated from thereraasatimatrix.
However, if the main goal is to recover the camera matrices and the 3-Digidrstructure
then preserving the replicated block structure of the motion mHtaier factorization becomes
crucial. If this is not achieved, it results in an incorrect estimation of the matioich in turn
affects the estimate of the 3-D structure. In the experimental section of dyiestwe will show
results which prove that the 3-D reconstructions and the motion recousied previous non-
rigid factorization methods [16, 19] are not completely satisfactory. Itiqudar, the estimation

of the 3-D pose is unstable and this affects the quality of the deformable.shap
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3.1 Factorization as a non-linear estimation problem

Most of the algorithms presented so far, rely on the minimization of algebraitfooctions
using linear schemes (with the exception of [17]). However, the coerect function to be min-
imized should be geometrically meaningful and, by construction, strictly n@adinrherefore,
existing methods only provide an approximation of the true solution so whee affiscts the
measurements their performance is compromised.

Xiao et al.'s work [159] provides an exact closed-form solution. ldeer, it requires infor-
mation about the independency of the basis shapes that model the objatw’'s aialeformation,
and the solution is affected by their incorrect estimation. Additionally, as ribbgeBrand [17],
the selection of the independent bases is trivial with well-behaved synthetariments but it
becomes increasingly error prone with real images of deforming objects.

In order to overcome the problems encountered by previous methodspwvéntroduce a
non-linear optimization stage [38, 35] to refine the motion and shape estimat#sminimizes
the image reprojection error and imposes the correct structure onto the mmtar by choosing

an appropriate parameterisation of the model parameters.

3.1.1 The non-rigid cost function

The goal is to estimate the motion parametgrshe 3-D basis shape and the deformation
weightslig such that the distance between the measured image pgjrasd the reprojection of
the estimated 3-D points is minimised. However, the coordinat@sare extracted by a mea-
surement process and, therefore, they are affected by noise ardayain degree of uncertainty
nij. The measured coordinateg can be expressed in terms of the exact measuremgrssch
that:

Wij = Xijj + Nijj (3.1)

The projection equation for a 3-D poiftn image frame is given by:

D
Xij = M;Sj ZRidz liaSaj (3.2)
=]
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wherex;j are the image coordinates of the point &@ydis the I x 1 parameterisation of the

shape basis for a deformable pojrguch that:

Sij

S = %j (3.3)

| Soi ]
with the 3-vectoiSyj defining thed basis component for point
Following equation (3.1), the uncertainty over the measurements is obtaimadhe residual
given byn;j; = wjj —Xjj. This residual is generally referred to as the reprojection error of the
image coordinates in the literature and it expresses the difference betesiemage coordinates
given the estimated model parameters and the measured data. Hence, sibiegosecast the
problem of estimating the non-rigid structure and motion parameters by minimizimgthe of
the reprojection error of all the points in all the frames such that:
_FP ) _FP ,
i %H nij || = min ; | wij —Xij || (3.4)
Note that the error is a sum &P quadratic cost functions. Assuming the noise can be mod-
elled with a Gaussian distribution, the minimization of equation (3.4) provides aaxémum
Likelihood (ML) estimate of the parameters.
The definition of this non-rigid cost function could rise two major criticisms. Fihst,num-
ber of parameters can increase dramatically with the number of frames cmgpbs scene
and the complexity of the modelled object. This may render the minimization of equati®n (
computationally unfeasible given the size of the parameter space. Sé¢oemigh non-linearity
of the cost function is likely to produce multiple minima which would result in a diffican-
vergence to the global minimum of the function. The solution proposed isoameafation of

bundle-adjustment techniques for deformable structure from motion whichescribe in the

following sections.

3.2 A bundle-adjustment approach to deformable modelling

The non-linear optimization of the cost function in (3.4) is achieved usingenlerg-Marquardt
[106] iterative minimization scheme modified to take advantage of the spardedtiacture of

the matrices involved. This method is generically termed bundle-adjustment irothguter
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vision [147] and photogrammetry [5] communities and it is a standard proeexiiccessfully
applied to numerous 3-D reconstruction tasks [67]. Our main contributiomiB@n analysis of
its applicability to the non-rigid modelling framework.

In the next section, we will review the concepts involved in bundle-adjustiherenberg-
Marquardt minimization and sparse computation) and reformulate the fattonZeamework

as a non-linear, large-scale minimization problem.

3.2.1 Levenberg-Marquardt minimization

Levenberg-Marquardt methods [92, 99, 106] use a mixture of GHesgon and gradient de-
scent minimization schemes switching from the first to the second when the estiredsian
of the cost function is close to being singular. An algorithm with mixed behsawisually ob-
tains a higher rate of success in finding the correct minimum than otheraggs. Other similar
second-order or quasi-Newton algorithms may be used to minimize the cosibfunHowever,
Levenberg-Marquardt technigues have been studied and testedighbran many Computer
Vision applications [67] and they have been found to deliver satisfacésyits. Examples are
mostly given for classical inference problems in Computer Vision such redafuental matrix
computation [8], camera calibration [118] and 3-D sparse reconstru&ijnHowever second-
order methods have been successfully applied to less conventional fgiegmeblems such as
model-based face reconstruction [47], mosaicing [102] and recotistmuaf curves [10].

Most of the computational burden of iterative second-order methodpisgented by the
Gauss-Newton descent step, each iteration of which requires the talisudéthe inverse of the
Hessian of the cost functio@. Specifically to the deformable factorization ca€egan be ex-
pressed in terms of thé-vector® containing the model parameters such Bat (O3, ...,0O,
Ogr1,...,0O8F, 651,...,@5p)T, where0j;, Gy andOs; represent respectively the parameters for
the configuration weights, orthographic cameras and 3-D basis shapeacdh view and each

point. Hence, the cost functidd can be written as a sum of squared residuals:
F,P
cE) =Y IIn? (3.5)
N

where the residual for each frame and each point can be expresse# & x 1 vectorn such
thatn = [n];...nkp]T. At each iteratiort of the algorithm, an updat&' is computed in order
to descend to the minimum of the cost function such that the new set of paranseg@/en by

o1 = @' + Al. By dropping the iteration indeifor notation clarity, it is necessary to express
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the generic incremerds in the model parameters as a second order Taylor expansion assuming

local linearities in the cost function such that:
1
C(O+A)~C(O)+g'A+ éATHA (3.6)

whereg = J"n is the N x 1 gradient vector and is the N x N Hessian matrix that can be
approximated a#l = J'J (Gauss-Newton approximation of the Hessian matrix; see [147] for
details) withJ = g—g representing theR2P x N Jacobian matrix in the model parameters. In order
to find the incremenh, the minimum of the quadratic functien=g" A+ %ATHA is computed by
imposingg—g =0. Thus, the expression of the Gauss-Newton descent step canllyesfipaessed

as:

HA = —g (3.7)

Levenberg-Marquardt algorithms differ from a pure Gauss-Newtothatksince they apply

adampingterm to equation (3.7) obtaining:
(H+AI)A=—g (3.8)

The added term1I has a twofold effect in the minimization. Firstly, by modifying the parameter
A, it is possible to control the behavior of the algorithm that can switch betdiestrorder (for
high values ofA) and second order (low) iterations. SecondiI makes the solution of (3.8)

numerically stable by forcing that+ AT is a full-rank matrix and thus properly invertible.

3.2.2 Sparse structure of the Jacobian

Solving for the normal equations in equation (3.7) is a problem of compléXiy?) and this step
has to be repeated at each iteration. In order to render the computatsiinidess the number of
parameters increases, it is possible to exploit the sparse structure attigang.

Motion components (configuration weights and camera parameters) alkatedr between
different views and, similarly, structure components are unrelated betdifferent point trajec-
tories. As a result, the Jacobian matrix contains a large number of entriedhicin the partial
derivatives are zero, as we show in the graphical representationsfiitgure in figure 3.1.

It is possible to solve for the incrementin (3.7) efficiently by calculating the inverse of
H using the sparse structure of Standard approaches for sparse computation are described in
[147] and [67]. Notice that, again, this property is valid for any rigid and-nigid factorization

model, since the sparseness relation is given by the independency beheéen parameters
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Figure 3.1: Sparse structure of the Jacobian matrix. We show an exam@efriomes and 6
points P1, P2, P3, P4, P5,P6). The zero-entries of the matrix are displayed as white blogks.
@2 and©,3 represent the configuration weights respectively for frame 1, 2 a@k3.0r2 and
Ors are the vectors of the camera components for each fram®an®s, O, Og, Oss, O

encode the basis shapes for each deformable point.

(for each frame) and 3-D structure (for each point) in the multi-view coattion and thus

independent of the chosen model.

3.2.3 Proposed implementation

The cost function of a deformable object presents more degreeseafoine than in the rigid
case, which could lead to the existence of multiple local minima for the motion, rdafmm
and structure components. It is possible to reduce the chance of fallingpgabminima by
carefully designing the algorithm with respect to the following aspects: initiisamodel

parameterisation and the use of priors.

Parameterisation

The camera matrice® are parameterised using unit quaternions [74] giving a total »fF4
rotation parameters, wheFeis the total number of frames. Quaternions ensure that there are no
strong singularities and that the orthonormality of the rotation matrices is pegbéy merely
enforcing the normality of the 4-vector. This would not be the case with tHerEungle or

the rotation matrix parameterisations, where orthonormality of the rotations iscoarplex to
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preserve. The quaternion normalization is directly enforced in the costiin by dividing the
guaternion with its norm. Indeed, in an initial implementation the 3-D pose wasmgeteased
using the 6 entries of the rotation matrides however the use of quaternions led to improved
convergence and to much better results for the rotation parameters andDthesz.

The method proposed by Bar-ltzhack [6] in an attitude control contexdas to obtain the
guaternions from the set of rotation matridgs The algorithm has the main advantage to yield
the closest quaternion representation if the constraints of matrix orthofityriaa@ not exactly
satisfied. This eventuality usually appears during the initialisation of the neaflmptimization
scheme after the first computation of the corrective transf@sna for the rigid component of
the motion. Schematically, the method first define the ma&tgiven the singular elemen{sm}

belonging to a generic 8 3 rotation matrixg:

l11—Tr22—1r33 ro1+riz r31+ri3 ro3+1rs2

1 ro1+ri2 o2 —Tr11—133 l32+1r23 rsz—ris

r31+ris r32+1ro3 l33—roo—"ria lfo—ro1
f23—r32 31 —ris l12—"ro21 r11+ro2+1rss i

The algorithm then follows with the following three steps:
1. Compute the eigenvaluesg&f
2. Find the largest eigenvalgax.
3. Extract the eigenvector &fwhich correspond tdmax

The given eigenvector is the closest quaternion to the mairir the case of an exact orthonor-
mal matrix we would obtaii nax= 1.
Finally, the structure is parameterised with {8ex D) x P coordinates of th&; shape bases

and theD x F deformation weight$g.

Initialisation

A further critical factor is the choice of an initialisation for the parameters efrttodel. It is
crucial, for bundle adjustment techniques to work, that the initial estimate be tiahe global
minimum to increase the speed of convergence and reduce the chareiagfrapped in local

minima, particularly when the cost function has a large number of paramestergtas case.
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A similar initialisation to the one used by Torresani et al. in their tri-linear optimization
scheme [141] is chosen. The idea is to initialize the camera matrices with the matiespmnd-
ing to the rigid component, which is likely to encode the most significant parteofribtion.

A different initialisation which gives a reasonable starting point is to usedtimates given
by Brand’s algorithm for both motion and structure [16]. Occasionallyydwer, we have ob-
served problems with the convergence given this initialisation and generb#y whe motion
associated to the rigid component is used as the initial estimate the minimizations¢hehe

minimum of the cost function in fewer iterations.

Regularization prior

Occasionally, the non-linear optimization leads to a solution correspondintptalaminimum.
In particular, at times the 3-D points tend to lie on a plane. To overcome this sitpatior on
the 3-D shape has been added to the cost function. The prior statesetiolptin of the points
on the object’s surface cannot change significantly from one frame toektesince the images
are closely spaced in time. This is implemented by adding a penaltyGetimt penalizes for

strong variations between the shape at fraivasdi + 1 given by:

D D
Cs(0) = ; liaSd —dz l(i+1)aSa |1° (3.10)
=1 =1

In this way the relief present in the 3-D data is preserved. Similar regulanizeerms have also

been reported in [2, 141].

3.3 Previous work in non-rigid BA

Aaneges and Kahl, also proposed a bundle adjustment solution for thegmbrsecenario [2].
However, their approach differs in some fundamental aspects. Firstly, itfitial estimate of
the non-rigid shape was obtained by estimating the mean and variance obtldata-obtained
directly from image measurements. The approach assumes that the caraarakibsated, and
although the authors state that their algorithm would work in the uncalibrassdtbay do not
give experimental evidence. In contrast, we consider a scenarid basencalibrated data from
a generic video sequence. The second main difference is in the parisateiarof the problem.
In [2] the camera rotations are parameterised by the six elements of the rotattdr. We are
using quaternions instead which, as will be shown in the experimental seletams to better

behaved results for the motion estimates.
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In terms of their experimental evaluation, Aanses and Kahl do not proviémalysis of the
recovered parameters, only some qualitative results of the 3-D recaistrutn contrast, our
gquantitative experimental analysis shows that we are able to decouple motiateformation

parameters (see next section for a detailed description).

3.4 Experimental results

In this section we show results of our non-linear optimization approach wiithstic and
real image sequences. The quality of the 3-D reconstructions are balthatad quantitatively
with respect to ground truth values and qualitatively over two sequenites\subject perform-

ing different facial expressions.

3.4.1 Synthetic data

Xiao et al. [159] showed in recent experiments that previous methodsforrdable factoriza-
tion [19, 16, 141] may fail even for simple deforming objects. Using similatisstic data sets,
the forthcoming tests will shed some light on the efficiency of the proposedinear optimiza-
tion procedure for 3-D reconstruction. The experiments are constibgtgenerating a random
set ofD basis shapes whose linear combination creates varying deformable&@sBsstontained
in a cube of 5« 50 x 50 units (see figure 3.4.1). The set of configuration weigtsre obtained
by fitting polynomials to randomly generated values. This was necessaryaio sinoother de-
formations rather than erratic and unrealistic changes in the 3-D strudtaeel frame. Notice
that the configuration weights and, thus, the temporal evolution of therdafmms are as generic
as possible. For instance, there is no assumption of independency afsisesbapes as required
by the method of Xiao et al. [159] (see section 2.4.5 for a description)lIfitiee generated 3-D
shapes are projected onto the image plane (of size6480) by means of random orthographic
camera;. The experimental setup is completed by fixing the number of poins+c40 and
frames toF = 30.

Two set of tests are presented. First, the number of basis shapes e sizch that
d = 2...5 to verify the algorithm’s performance with increasingly complex deformatiofss
second test is then performed to obtain an evaluation of the quality of thestegction in case

of varying strength of the deformations but fixing the number of basiseshegD = 3. This
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Figure 3.2: Some frames of the cube sequence used for testing the algofitlenaeformable

points are sampled inside a cube of 5050 x 50 (wire-frames are added to show the solid

contour).

measurement is directly calculated between the ratio of the norm of the rigidorents of the

3-D metric shapes and the norm of the 3-D deformable structures (gefojextion) such that

ratio = ”ﬁg‘:;fi‘j‘ﬁ”. In order to validate the performance 25 trials were performed for eettlps
and for different Gaussian noise conditions with variaoce 0.5, 1, 15, 2.

The results are obtained with a MATLAB implementation of non-rigid bundle &ajest
using the built-in functiort sgnonl i n for non-linear minimization. The software is designed in
a such way that the sparse structure of the Jacobian is automatically conpyutettulating
the derivatives of the cost function with different number of basis e&8p Initialisation of
the model parameters is as described in the previous section. The stoj evasrfixed for the
tolerance over the increment in the model parameters (fixed &) 1The minimisation usually

converges in a time ranging between 10-30 seconds (on a AMD-AthloniXpwter clocked at

3800 MHz) for the set of synthetic data considered in the experiments.
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Figure 3.3: Relative 3-D error (%), r.m.s. rotation error (deg) and 2prajection error for
the synthetic experiments for different basis shapes2...5 and increasing levels of Gaussian

noise. The ratio of non-rigidity is fixed to 40% for all the trials.

Figure 3.3 shows three plots representing the 3-D reconstruction egpoessed in percent-

age relative to the scene size (which it is defined as the maximum a&f yrendz coordinates),
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Figure 3.4: Relative 3-D error (%), r.m.s. rotation error (deg) and Zprajection error box-
plots for the synthetic experiments for different basis shape<...5 and Gaussian noise fixed

ato = 1.5. The ratio of non-rigidity is fixed to 40% for all the trials.

the absolute rotation error expressed in degrees for varying numibersif shapes and the root
mean squared (r.m.s.) 2-D image reprojection error expressed in pixedspldts of this figure
show the mean values corresponding to 25 random trials applied to eatbfl@aussian noise.
As expected, higher complexity in the degrees of deformation (given bntheasing number of
basis) results in worse performance of the algorithm. Note that the incgglasigls of Gaussian
noise do not affect the estimate of the 3-D structure and rotations strongly.

In order to evaluate more accurately the results, a box-plot in figure 3wisstie statistical
properties of the errors for the experiment with Gaussian noise level éike = 1.5. The plot
consists of four blue boxes (one for each number of basis) which lamemupper lines define
the 25th and 75th percentiles of the sample. The red line in the middle of the boxsaripe
median. The black lines extending above and below the box show the rétiye rest of the
samples. The outliers are shown as red plus signs and they represehbtearpin the algorithm
convergence to the minimum. Usually this refers to the minimisation being trapped @ala lo
minima.

Figure 3.5 shows results of experiments for increasing degrees ofigidity of the 3-D
structure. Notice that, higher levels of deformity in the shape negativebgtafiie estimation
of the model parameters. An important observation for both experiments fsltbeing: the
recovered values for the 3-D reconstruction and rotation errors tl@anverge to the global
minimum in the case of no noise (when perfect data is available).

The box-plots in figure 3.6 reveal a higher rate of outlier errors showinge difficulties in
finding the global minima in the case of increasing deformations. In thess tasalgorithm

showed a tendency to converge to the minimum too slowly or to converge to lestaogion.
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Figure 3.5: Relative 3-D error (%), r.m.s. rotation error (deg) and 2{¥ajection error for the
synthetic experiments for different ratio of deformation (10%, 40%, 8000%) and increasing

levels of Gaussian noise.
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Figure 3.6: Relative 3-D error (%), r.m.s. rotation error (deg) and Zfragjection error box-
plots for the synthetic experiments for different ratio of deformation (18986, 80%, 100%)

and fixed Gaussian noise & 1.5).

This effect is a consequence of the intrinsic ambiguity of the solutions in eafadeformable
structure from motion as discussed in Xiao et al. work's [159]. In otdesolve this problem,

we will introduce our solution based on rigidity priors later in chapter 5.

3.4.2 Experiments with real images and manually tracked data

In this section we compare the results obtained with our bundle-adjustmesd B&3 recon-
struction algorithm with those obtained using Brand’s non-rigid factorizatm@thod [16]. A
direct comparison with Xiao et al.'s approach is not meaningful sinceid/aat find it possible
to extract a set of independent basis shapes that lead to a reas@ualnistruction (a problem
already reported in [17] for real data). A real video test sequehow's the face of a subject
performing an almost rigid motion for the first 200 frames, moving his heachdpdawn. The
subject then changed facial expression with his head facing frorithéonext 309 frames (see

figure 3.7). The point features which appear in figure 3.7 were manuallyadahroughout the
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Frame 1 Frame 67 Frame 115 Frame 182 Frame 204 Frame 224

Frame 275 Frame 300 Frame 345 Frame 358 Frame 467 Frame 504

Figure 3.7: Key frames of the sequence used in the experiments in secti2nv@th manually
tracked points superimposed. The subject performed an almost rigid motidghe first 200

frames moving the head up and down and then changed facial exprésdioa next 309 frames.

sequence. The number of basis shapes is fixed heuristically-tdb, a compromise between
the complexity of the model and the number of captured deformations. Theutatiom time
required for the algorithm to convergence is consistently higher (8 minpm®amately) given
the number of frames, points and deformations which increases the nuinparameters to
estimate.

The results of the 3-D reconstructidrf®r some key frames in the sequence obtained using
Brand'’s factorization method are shown in figure 3.8. The front viewthef3-D reconstruc-
tion show that the recovered 3-D shape does not reproduce the éxpigssions accurately.
Besides, depth estimation is not precise, which is evident by inspection tdghaews of the
reconstruction. Notice the asymmetry of the left and right sides of the face.

In figure 3.9 we show the reconstructed 3-D shape recovered aftériag the bundle ad-
justment refinement step. The facial expressions in the 3-D plots reggdtie original ones
reliably: notice for example the motion of the eyebrows in the frowning exwagframe 467)
or the opening of the mouth in surprise (frame 358). Finally, the top views $hat the overall
relief appears to be well preserved, as is the symmetry of the face.

The evolution of the weightty of the deformation modes can be traced throughout the

sequence. In figure 3.10 we show the value of the weight associated withean component

Lvideo available at http:/www.bmva.ac.uk/thesishive/2006/DelBuel/index.html
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Figure 3.8: Front, side and top views of the 3-D reconstructions obtanoed the non-rigid
factorization algorithm without bundle adjustment for some of the key framéseirsequence.

No ground truth is available in this experiment.
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Figure 3.9: Front, side and top views of the 3-D reconstructions obtaiftedapplying non-

linear optimization. No ground truth is available in this experiment.



3.4. Experimental results71

QQM “
20" & 20t
= =
& 180 g & 18F
o o
2 161 2 16}
a o
O 14 O 14f
x [
12 12F
10 T

0 50 100 150 200 300 350 400 450 500 o 50 100 150 200 250 300 350 400 450 500
FRAMES

250
FRAMES

NON-RIGID WEIGHTS
NON-RIGID WEIGHTS

0 50 100 150 200 250 300 350 400 450 500 o 50 100 150 200 300 350 400 450 500
FRAMES

[ —+—Apha_| |
180 —6— Beta
—=— Gamma

ROTATION
ANGLES
ROTATION
ANGLES

0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 300 350 400 450 500

250
FRAMES FRAMES

(A) Results from Brand’s factorization (B) Results after bundle adjustmen

Figure 3.10: Values obtained for the rigid component (top), deformatidghtse (middle) and
rotation angles (bottom) using Brand’s approach (A) and bundle adjustBjfor the sequence

in figure 3.7.

(top)d = 1 and of those associated with the 4 remaining deformation modes (middle)tsResu
given for both Brand'’s flexible factorization (left) and for the bundiguatment scheme (right).
Notice how Brand's flexible factorization has a tendency to suppresk defarmations — the
weights associated with the deformation modes for frames with small deformatwasa small
value. This results in the recovered 3-D shape not reproducing tfe éxpressions accurately.
The weights associated with the deformation modes have higher values inrttikedajusted
solution. Interestingly, around frame 360 the first non-rigid mode of miedtion experiences a
large peak, which corresponds to the opening of the mouth in surprigeoasisn figure 3.7.
This indicates some tendency in the configuration weights to reflect thelyindefiacial expres-
sions. Although this peak is present also in Brand’s solution, it is possilbbderve by visual
inspection that the corresponding 3-D reconstruction in figure 3.8 isergtaccurate.

The results obtained for the motion parameters are shown in the bottom drigire 3.10.
The rotation angles around the X, Y and Z axes (up to an overall rotatiemeaovered for each
of the 509 frames in the sequence. In particular, the tilt angle varied smabtiolyghout the

first 200 frames capturing the up and down tilt of the head of about 56edegn total while
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the rotation angles around the other 2 axes did not vary significantly thoaighe sequence.
Notice that both solutions capture this motion correctly. However, the resutiééned with the
bundle-adjusted solution (right) qualitatively presents less variations i{a pathe scene where
the subject is not rigidly moving. Using Brand’s algorithm (left), it is posstbl@otice sudden
variations of the motion which cannot be observed by visual inspection imthge sequence.
This indicates that the estimation of the orthographic camera matrices in Braatti®d may be

affected by the deformations appearing in the scene.
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Figure 3.11: Values used for the initialisation of the non-linear minimization algoritirhe
value obtained for the rigid component (left) and rotation angles (righttangputed with the

motion corresponding to the rigid component.

The non-linear refinement step is initialised using the values of the firstgroafion weight
and the rotation angles associated with the mean component as shown irBfigurélote that
the deformable bases and configuration weights are initialized to very smddmavalues. This
initialisation was first used by Torresani et al. [141] in their tri-linear optim@astage and it
provided reasonable results. It can be observed from the plot thaigidecomponent of the
motion is a good description of the object’s rotation, and in fact the bundiestagent step does
not optimize these parameters much further and focuses on the refinefribatdeformation

parameters.

3.4.3 Experiments with real images and automatically tracked data

In this section, the behavior of the method is tested with image measurements dbiatioe
matically with a point tracking algorithm [37]. The scope of this test is to showeéasibility of
a complete unsupervised system for 3-D deformable reconstruction gtidin an uncalibrated
video sequence showed in figure 3.12. A ranklet-based tracker gh2@jally designed to cope
with deforming structures automatically generates the tracks that are inpuhtoon-linear

optimization scheme. The system has to cope with a complex 960 frame sequeriteh the
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Frame 1 Frame 250 Frame 335 Frame 420 Frame 541 Frame 710 Frame 960

Figure 3.12: Key frames in the sequence used to test the reconstructzof-0f deformable
shape with automatic tracking of feature points. The subject performed simaalia rigid and
non-rigid motion. Automatically tracked points are superimposed. A set ofrairees outlines

the face structure.

subject is undergoing 3-D motion and performing different facial esgions.

A total of 91 points were initialized automatically according to a saliency crite@8i [The
tracker was able to follow a good number of feature points reliably throuigtihee sequence,
even in relatively poorly textured areas such as the subject’'s cheekbdmroughout the 960
frame sequence, only 8 points out of the initial 91 were lost. Howevertaisc@umber of points
initialized on homogeneous texture turned out to be unreliable, and theyndyidéect the 3-D
shape estimation in those areas.

Figure 3.13 shows the front, top and side views of the 3-D reconstructisix &ey frames
with different expressions. The number of basis shapes is fixBd=@ since this value can gen-
erate a model which capture most of the deformations appearing in the \eédaerse. Higher
values forD would obtain more accurate models but at the cost of a higher computational time
required to minimize the cost function. The initialisation of the non-linear optimizagiahen-
tical to the one described in section 3.2.3. The overall depth is generatBctonotice the point
belonging to the neck relative to the position of the face, and the nose pomiingjom the
face plane. Face symmetry is generally well preserved, as it is possibtgite from the top
views of the reconstruction. Some outliers are obvious in frame 710 in tHe@yaegion and
generally on the neck area where the tracker performs poorly; sathréepoints are wrongly
reconstructed by our non-rigid model.

Finally, the reconstructed motion and deformation parameters are displayigdria 3.14.
The estimated angles follow the rotation of the subject’s head reasonablyalits limited be-
tween 10 and-15 degrees for the "beta” angle, while "alpha” and "gamma” show tiny tians.

The rigid weight is nearly constant for the whole sequence in accordaititéhe subject’s head
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Figure 3.13: Front, side and top views of the 3-D reconstructions obtdipegtie combined

system for some of the key frames in the sequence.
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being at the same distance from the camera. The non-rigid configuratiohta/@igesent more
erratic behavior; the two spikes around frame 280 and 670 correspspdatively to a grin and

an angry facial expression.

3.5 Summary

Non-linear optimization is applied to obtain a reliable solution for 3-D deformadaenstruction
from uncalibrated video sequences. The key features of the appooasist on enforcing the
repetitive pattern of the motion matrikwhile at the same time explicitly considering a proper
parameterisation for the orthographic cameras using quaternions. Featieas put to render the
approach tractable: Levenberg-Marquardt minimization safely desdemérds the minimum
of the defined cost function and sparse computation efficiently solvesafir iteration.

In contrast, the previous linear methods obtained approximate solutionsghgctieg the
non-linear structure of the framework. The direct consequence isipling of motion and de-
formation components as we have observed in the results using Brandadfig). Xiao etal.'s
[159] approach avoids the ambiguities but needs to make assumptiongtabimaependency of
the 3-D basis shapes.

However, it is shown in the synthetic tests that our non-linear optimizatioroappmot al-
ways converges to the global minimum of the cost function. This effect @aeguence of the
intrinsic ambiguity of the solutions: local minima are likely to be present if additiorfalma-
tion about the 3-D structure of the deforming object is not introduced asously discussed
by Xiao et al. in [159]. In order to solve this problem, we will introduce oolusion based on
rigidity priors later in chapter 5.

The framework presented here can be easily extended to deal wittediftgpes of non-rigid
objects (for instance, articulated structures) and of camera models hgiohahe cost function
C accordingly. Additionally, prior information and/or regularization terms magasily inserted
in the minimization by adding quadratic penalty terms in the same way as those irgdoiiuc
equation (3.10) to ensure the temporal smoothness of the 3-D reconstauckitese terms may
help descend towards the global minimum of the cost function and, if applietlys can force
specific priors on the motior and 3-D structure componergs

The expression of the problem as a sum of cost functions for each ipuagiaw;; allows us

to deal with missing entries in the measurement matrience, if a point becomes occluded
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at a certain frame (a likely event in a practical scenario), it is still possibpetiorm non-linear
optimization by not including the cost function related to the lost entry in the minimizatio
Although robust estimation is not an issue of this work, point trajectorietddoave un-
certainty information associated with their covariance matrjxderived from the image point
tracking algorithm. In this case, it would be possible to define optimal estimatte gfa-
rameters given the uncertainties by minimizing the Mahalanobis distance of dldeadjc terms
zf’jp || nij Héij. The covariance values can be easily included in the estimation and may lead to a
more robust inference.
In the following chapter, the non-rigid factorization framework will be exted to deal with
the information extracted from multiple cameras; a necessary solution whensihected de-

formable object undergoes minimal rigid motion.
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Chapter 4

Stereo Non-Rigid Factorization

The factorization framework is a flexible tool for modelling data from poirjettories extracted
from uncalibrated video sequences. In the case of deformable olaecéspect of relevant in-
terest is the applicability of the previously described algorithms to the case thieobject is
viewed by multiple cameras. More specifically, we have formulated the profaieanstereo rig,
where the two cameras remain fixed relative to each other throughout therseq In this case
the measurement matrix requires not only the temporal tracks of points in tlaatefight image
sequences but also the stereo correspondences between leftlarichdge pairs. We have de-
veloped a new method to factorize the measurement matrix into the left and righbmuatrices
and the 3-D non-rigid shape. Note that this method requires both camerasstmthronized.
However, if this were not the case, it could be elegantly solved inside aifeation framework
using the solution proposed by Tresadern and Reid [142] for the synication of stereo video

sequences in an uncalibrated scenario.

4.1 Stereo, motion and structure

Using a calibrated stereo pair is a common and practical solution to obtain redidbleecon-
structions (see figure 4.1). In its simpler formulation, once the stereo ridisatad, the depth
of points in the image is estimated by applying triangulation [148]. In order tdrobtxurate
depth estimates, the cameras are usually separated from each other hificasigbaseline thus
creating widely spaced observations of the same object. The disadvantiég configuration

though, is that having a wide baseline makes the matching of features bgtaiezof view a
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rel

Figure 4.1: A classic stereo setup. The 3-D poinis projected into the left and right images
with coordinatesvt andwR. The camera cente3, andOg are displaced in 3-D with a baseline

d and relatively rotated with a 8 3 rotation matriXR e

more challenging problem.

On the other hand, the task of computing temporal tracks from the single aa®guences
is relatively easier since the images are closely spaced in time. As a dragvdisigdrities may
be insufficient to obtain a reliable depth estimation and, as a result, longesrsaes are needed
to infer the 3-D structure. Particularly, in the case of non-rigid strucauraifficient overall rigid
motion is necessary to allow the algorithms to correctly estimate the reconstruatiemgters.

Hence, a question of relevant interest is the feasibility of an approatleffidently fuses
the positive aspects of both methods. The problem of recovering 3-Etsteuusing a stereo-rig
moving in time or a stereo rig looking at a moving object has been defined fdgtdease as the
stereo-motiorproblem [154, 39, 131, 97] (see figure 4.1). Ho and Chung [73] fimsnulated
this problem within the factorization scenario. Following a similar direction, weothice a
multi-camera motion model that is able to deal with a time-varying shape and to findaa lin
solution that is subsequently optimized with the non-linear procedure pgessenthe previous

chapter.
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\ R,

Figure 4.2: A stereo motion setup. A point is moving in space and its position ifs3sBown
for each time instance a§;, X, andXs. The three points are then projected into the respective
image frames obtaining the image coordinatés w5 andwj for the left camera and/}, wi
andw} for the right one. The dotted lines connecting the points represent thér&jdtory
in time of the point in the left and right images. Since the position of the camera®d; the
relative orientatiork,e and camera displacemesitoetween the camera centés andOR are

considered constants in time.
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4.2 The stereo camera case

The main contribution presented here is to extend the non-rigid factorizatitmodseto the
case of a stereo rig, where the two cameras remain fixed relative to eaahtimibughout the
sequence. However, the same framework could be used in the case wioBeocameras. Torre-
sani et. al. [141] first introduced the factorization problem for the multipl@era case but they

did not provide an algorithm or any experimental results.

4.2.1 The stereo motion model

When two cameras are viewing the same scene, the measurementiwatiisontain the image
measurements from the left and right cameras resulting Fra B matrix whereF is the number
of frames and® the number of points. Assuming that not only the single-frame tracks but also

the stereo correspondences are known we may write the measurementwhaetrix
W= (4.2)

where for each framethe stereo correspondences are:
Wi"—[w}-l Wilb} WiR—{wﬁ wﬁ,} (4.2)

Note that, since we assume that the cameras are synchronized, at eactefimine left and
right cameras are observing the same 3-D structure and this results inditiersal constraint
that the structure matrig and the deformation coefficierl{g are shared by left and right camera.
The measurement matrikcan be factored into a motion matixand a structure matrig which

take the following form:

|11R|i . |1DRIi
L L S1
lE1R ... |epR;
W= : "1 (4.3)
|11R.§Q . |1DR§
Sp
||:1R|F§ . ||:DR|F§

whereR- andrR are the rotation components for the left and right cameras. Once moreuee h
eliminated the translation for both cameras by registering image points to theidanteach

frame.
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Note that the assumption that the deformation coefficients are the same foit dredleight
sequences relies on the fact that the weak perspective sdalifagy must be the same for both
cameras. This assumption is generally true in a symmetric stereo setup fvaaZ,4 are
usually the same for both cameras.

Itis also possible to express the stereo motion mathy including explicitly the assumption
that a fixed stereo rig is being used. In this case the rotation pair for thandftight cameras
can be expressed in terms of the matrix that encodes their relative orientaaimix R, such

that: RR = R,qR-. The motion matrix in equation (4.3) can be consequently expressed as:

|11R& ... |1DR&
||:1RI|E .. IFDR%
M= (4.4)
IlereIRI;[ e I1DR-reIR||E
IFereIRIﬁ IFDI:"'-reIRqE

4.2.2 Non-rigid stereo factorization

Once more the rank of the measurement matnig at most ® sinceM is a 4 x 3D matrix and

Sis a P x P matrix, whereP is the number of points. Assuming that the single frame tracks and
the stereo correspondences are all known, the measurement thatey be factorized into the
product of a motion matri# and a shape matrig by truncating the SVD of to rank D (see

section 2.4.1):

Computing the transformation matrix

The result of the factorization is not unique sir{&g)(Q—8) would give an equivalent factoriza-
tion. We proceed to apply the metric constraint in a similar way as was desddbtuk single
camera case in section 2.4.4, correcting edeh 4 vertical block init independently. Note that
in this case we have used five constraints per frame: 2 orthogonality aimtstfone from each
camera) and 3 equal norm constraints (computed from rows122i, 2i + 2F — 1, 2i + 2F of

the motion matrix wherei is a generic frame). Each vertical block will then be corrected as:
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Mg < MyQq. The overall transformatioq is a block diagonal matrix such that:

[ Qg 0 ... O ]
0 Q ... O
Q= L . (4.6)
0 0 ... Qo

The shape matrix will be corrected with the inverse of the block-diagonasfibamation:S «
Q1.
Factorization of the motion matrii
In the stereo case we factorize eack @D sub-block of the motion matrix (which contains left
and right measurements for each franiato its truncated X 3 rotation matrice®" andrR and
the deformation weightky using orthonormal decomposition. The structure of the sub-blocks
can be expressed as:

ME oL Mg RF

. (4.7)
MR ... MR RR RR

The approach used to estimate the rotation components for the left and sigieras is
similar to the algorithm described in section 2.4.4. Since now we have 4 rowsgoee, we

arrange the motion sub-blocks such that:

. (4.8)
rR rR rR

wherert = [r...r§]" is a column vector which contains the coefficients of the left rotation

matrix R- and similarly forrR. Post-multiplying the rearranged mattixby the 2D unity vector
c=[1...1T gives a column vectaa;:

aj = Mic (4.9)

which may be rearranged into ax43 matrix A; with analytic form:

krh  krl, kr
kri, krk  krig A (4.10)
kiR kR ki AR

R R R
kry  kris Kkrig

A
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wherek = l;; + ...+ lip. SinceRt andRrR are orthonormal matrices, the following equation is

satisfied:

R. O Al o AAT O
- - - (4.11)
0 RR 0 AL 0  ARAL

4x6 6x4 4x4
Therefore, a linear least-squares fit can be obtained for the rotatiorces®y andRg and the
weightslig can be subsequently estimated in a similar way as shown in section 2.4.4. Finally a
minimization scheme similar to the one used by Brand [16] irfleigble factorizatioralgorithm
is applied here (see section 2.4.4).

So far we have presented an extension of non-rigid factorization methatie case of a
stereo camera pair. In particular our algorithm follows the approach land{16]. While
this new method improves the quality of the 3-D reconstructions with respecbse tising a
monocular sequence, it still performs a partial upgrade ofitbéonand3-D structurematrices
sinceq is computed initially as a block diagonal matrix and then corrected with Brdledible
factorization

In the next section we will describe a non-linear optimization scheme whiatkersrthe

appropriate structure to the motion matrix, allowing to properly disambiguate batthie motion

and shape parameters.

4.2.3 Stereo non-linear optimization

An analogous approach as described in section 3.2 is used to refine tha amalistereo compo-
nents estimated from the linear method. Similarly to the monocular case, the rtjomojerror

for the stereo rig is defined by rearranging equation (4.4) giving:

oy = | T ZaheS (4.12)
X5 —RrelRtY g lidSaj

Optimization of the deformable parameters is performed through the minimizatiore afottt
functionC(©) such that:

_ _ FP ,

R,elﬁ?iﬂsdjc(e) = g i ; I nij || (4.13)
is the minimization of the sum df P quadratic cost functions for the left and right cameras.
The initial estimate for the constant relative orientatqn between the left and right cameras

is estimated from the camera matri®sandRg (see section 4.2.2) using a least squares estima-

tion. Unit quaternions were used again as the parameterisation and thgam#tity constraint
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was enforced by fixing the 4-vector norm to unity such that the solutiooesigaconstrained to
lie on a hypersphere of dimension 4.

If the internal and external calibration of the stereo rig were known imade after a process
of calibration or self-calibration, an alternative initialisation could be compbiedecovering
the 3-D structure and performing Principal Component Analysis (PCAbhendata to obtain
an initial estimate for the basis shapes and the coefficients. Howeveroigeovas to use an

initialisation that does not require a pre-calibration of the cameras.

4.3 Experimental results

This section shows the performance of the proposed stereo-motion afgsrikirstly, synthetic
stereo sequences are generated under different Gaussian rbidefammation conditions to as-
sess the validity of the method. A further synthetic test using a computerigr@i®) generated
face model will show the behavior of the configuration weights and motion oaegs when the
object in the stereo sequence is static (only deforming). We then carspmé real experiments
where the object underwent only a small amount of rigid motion (apart fremdeformations)
and we will show the improvement of the method by comparing the output of th@entar
factorization and the stereo algorithms. Non-linear optimization will follow the agetgblinear

solutions.

4.3.1 Experiments with a synthetic non-rigid cube

A similar setup as the one used in the monocular case (see section 3.4.1) ie deatbnstrate
the behavior of the method in the stereo case. A set of deformable pointsl@ndy sampled in-
side a cube of 5& 50 x 50 units. A minimal overall rigid motion is introduced to avoid possible
ambiguities arising from a completely static object. The 3-D structure compueathtframe is
then projected with 2 orthographic cameras displaced by a baseline oft2@uod relatively ro-
tated by 30 degrees about traxis. Finally, different levels of Gaussian noige=£ 0.5,1,1.5,2)

are added to the measurements obtained by the stereo pair. Notice that phis setistructed in
such way that the overall rigid motion is not enough to reconstruct theesegs using monocu-
lar factorization followed by bundle adjustment. We performed a test andoteéned a relative
3-D reconstruction error of 50% resulting in a meaningless reconstruction.

The results show the plots for the relative 3-D error, rotation error apdojection error
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Figure 4.3: Relative 3-D error (%), r.m.s. rotation error (deg) and 2{ajection error for the
synthetic experiments with a stereo pair for different basis shape. . .5 and increasing levels
of Gaussian noise. The ratio of non-rigidity is fixed to 40% for all the trialslaRve orientation

between the cameras is fixed to 30 degrees with a baseline of 20 pixel units.
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Figure 4.4: Relative 3-D error (%), r.m.s. rotation error (in degreed)2Dd reprojection error
for the synthetic experiments for different ratios of deformation (10986480%, 100%) and

increasing levels of Gaussian noise.

tested over 25 trials with a 3-D shape deforming with different numbers si§lstapes (figure

4.3) and different degrees of non-rigidity (see figure 4.4) definewtis = ”ﬁg‘:i';f‘ﬁ”. Notice in
this case a higher reconstruction error of the relative 3-D structure amdgo the monocular

case with higher degrees of deformation.

4.3.2 Synthetic experiments with a CG generated face

In this section we have generated a sequence using a synthetic faceomgidelly developed by
Parke et. al. [113]. This is a 3-D model which encodes 18 different lesist the face. Animat-
ing the face model to generate facial expressions is achieved by actaatthg different facial
muscles. In particular we have used a sequence where the head datfootpany rigid motion,
only deformations a situation where, clearly, monocular algorithms would faibtopute the

correct 3-D shape and motion. The sequence was 125 frames longaddet deforms between
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GROUND TRUTH STEREO BA

Figure 4.5: Front, side and top views of the 3-D synthetic face for framerde first column
shows the shape ground truth while the following two columns present theegdhstructions
for the linear and bundle adjustment algorithms. Deformations are presémlyrimathe mouth

region. Notice that the face does not perform rigid motion for the wholaecg.

frames 1 and 50, remains static and rigid until frame 100 and deforms oatelmween frames
100 and 125.

Once the model was generated we projected synthetically 160 points evstnilguied on
the face, onto a pair of stereo cameras. The geometry of the cameraschkiabat both optical
axes were lying on the XZ plane and each pointing inwards by 15 dedgreesefore the relative
orientation of the cameras about the Y axis was 30 degrees and 0 abouatiteZ axes. The
camera model used to project the points was a projective model howeveigthing conditions
were such that the relief of the scene was small compared to the overtil dep

We show in the following figures the comparisons between three key frahtles synthetic
sequence providing the 3-D ground truth and the 3-D reconstructiorieddinear and bundle
adjustment algorithms. Figure 4.5 presents a deformation localised in the mgigth &t frame
20. A first visual inspection shows that the result obtained by the burdjisstment have a
qualitative advantage over the stereo linear algorithm. Even if the geneeal si@pe is close
to the ground truth, only the optimised solution with bundle adjustment can maojedny the
deformations. Frame 70 (see Figure 4.6) shows the synthetic face (i) with no defor-
mations appearing. The static pose of the shape permits to compare the BDabemstructed

by the algorithms. Compared to the ground truth, the shape obtained by the akgogithm



4.3. Experimental results87

GROUND TRUTH STEREO BA

Figure 4.6: Front, side and top views of the 3-D synthetic face for frameTh@ first column
shows the shape ground truth while the following two columns present theegdhstructions

for the linear and bundle adjustment algorithms. The shape is completely statis firathe.

GROUND TRUTH STEREO BA

Figure 4.7: Front, side and top views of the 3-D synthetic face for frande TBe first column
shows the shape ground truth while the following two columns present theegdhstructions

for the linear and bundle adjustment algorithms. Deformations are localize@ iméluth and

cheek regions.
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shows a good frontal reconstruction but it presents a worst estimatithe o€lief (see side and
top views). The non-linear solution obtains a depth estimate qualitatively dims$ke ground

truth. Finally figure 4.6 presents the reconstruction obtained for framenti&fe the synthetic
face shows consistent deformations in the cheeks and mouth area. fdweagorithm obtains
a reasonable mean 3-D shape but it fails in capturing the deformationarappan the ground

truth.

Figure 4.8 shows the results for the estimated rotation angles and configuregights be-
fore and after the non-linear optimization step. The results after bundlstatiat describe fairly
accurately the geometry of the cameras and the deformation of the facarticufar, the stereo
setup was such that there was no rigid motion of the face (only deformatii@ndptical axes of
the left and right cameras lay on the XZ plane and the relative rotation ofiinemas about the
Y axis was constant and equal to 30deg. In this case we have grodhd/atues for the rela-
tive orientation of the cameras since the sequence was generated sgfithdtiotice how the
values obtained for the rotation angles before bundle adjustment — lefibitesome problems
around frames 10 and 115, when the deformations are occurring. thgdsundle adjustment
step the the relative rotation about the Y axis is estimated with a final resultdegRrésulting in
a 3deg error given the ground truth. The relative orientations abot #rel Z axes are correctly
estimated to 0deg — notice that the graphs for the left and right anglesmegrsposed.

Once more, the estimated values for the deformation weights after bundlénaeijiihave
larger values than before the optimization. This explains the fact that thel rsodeeeds to
explain the non-rigid deformations accurately. Interestingly, the coefficieemain constant

between frames 50 and 110, when no deformations were occurring.

4.3.3 Experiments with real data

Comparison with the monocular solution

In this section we compare the performance of our stereo factorizationithlgo- before the

non-linear optimization — with Brand’s single camera non-rigid factorization awketkve present
some experimental results obtained with real image sequences taken witloagyaichronized

Fire-i digital cameras with 4,65mm built in lenses. The stereo setup was satcthéhbaseline
was 20cm and the relative orientation of the cameras was around 30degsefjuences of a
human face undergoing rigid motion and flexible deformations were use@&MhEE sequence

(82 frames), where the deformation was due to the subject smiling and th&E® (115
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Figure 4.8: Values obtained for the rigid component (top), deformationM®igmiddle) and

rotation angles (bottom) before (A) and after bundle adjustment (B) fasyththetic sequence.

c) SMILE sequence: right view

d) EYEBROW sequence: right view

Figure 4.9: Three images from the left (a) and right (c) views of the SBequence and left

(b) and right (d) views of the EYEBROW sequence.
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frames) sequence where the subject was raising and lowering theoesgelifigure 4.9 shows 3
frames chosen from the sequences taken with the left and right cameras.

In order to simplify the temporal and stereo matching the subject had somermplaeed
on relevant points of the face such as along the eyebrows, the chinahipshA simple colour
model of the markers using HSV components provided the representatdntaigrack each
marker throughout the left and right sequences respectively. Thepsteatching was initialized

by hand in the first image pair and then the temporal tracks were used tdeuiheastereo

matches.

\ v ‘
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\ \ f
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< < <

a) Left camera b) Right camera c) Stereo

Figure 4.10: SMILE sequence: Front, side and top views (above, middtegm) of the 3-D

model for the a) left camera, b) right camera and c) stereo setup fob.

Figure 4.10 shows front, side and top views of the 3-D reconstructiotsinaal for the
SMILE sequence. First we applied the single camera factorization algodigheioped by Brand
—described in section 2.4.4 — to the left and right monocular sequencabeWapplied the pro-
posed stereo algorithm to the stereo sequence. In all cases the nunttmkefl points was
P = 31 and the chosen number of basis shapes was heuristically fixee-t6.

Figure 4.9c shows how the stereo reconstruction provides improvelisceShe reconstruc-
tions obtained using singularly the information from the left and right seceeihave worse

depth estimates that can be noticed especially in the side and top views. ®hstrected face
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a) Left camera b) Right camera c) Stereo

Figure 4.11: EYEBROW sequence: Front, side and top views (abovelanktittom) of the 3-D

model for the a) left camera, b) right camera and c) stereo setup ssxpfemD = 5.

is strongly asymmetric especially in the mouth region and the points on the foreahneaal-
most belonging to a plane. Differently, after merging the data from bothesexps in the stereo
algorithm, we obtained a symmetric shape and a satisfactory curvature ofétead.

Figure 4.12(A) shows the front, side and top views of the 3-D recortstngobtained for
frames 16, 58 and 81 of the SMILE sequence. While the 3-D shape rappeae well recon-
structed, the deformations are not entirely well modelled. Note how the smilae 58 is not
well captured. This was caused by the final regularization step prdgmsB8rand described in
section 4.2.2. We found that while this regularization step is essential to oltaihagtimates
for the rotation parameters it fails to capture the full deformations in the modws i$ due to
the fact that the assumption is that the deformations should be small relative teeim shape
so that most of the image motion is explained by the rigid component which resultgdora
description of the deformations. However, we will see in the following sedtian the bundle
adjustment step resolves the ambiguity between motion and shape paramétsue@eeds in
modelling the non-rigid deformations.

Figure 4.11 shows the 3-D reconstructions obtained for the EYEBROWeseg. Once

more, the single camera factorization algorithm was applied to the left andsegjiences and
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Figure 4.12: Front, side and top views of the reconstructed face forNieESsequence using
the stereo algorithm (left) and after bundle adjustment (right). Reconistngcare shown for

frames 16, 56 and 81 of the sequence.

the stereo algorithm was then applied to the stereo sequence. In this seqoer8-D model
obtained using stereo factorization is significantly better than the ones abtaitiethe left and
right sequences. In fact, the left and right reconstructions havwe p@or quality, particularly
the depth estimates. The points belonging to the nose, mouth and chin are dknast(pee
side view) while the ones on the forehead have a particularly wrong deithage (see top
view). Note that there was less rigid motion in this sequence and therefomenijle camera
factorization algorithm is not capable of recovering correct 3-D infaromawhereas the stereo

algorithm provides a good deformable model.

Results after non-linear optimization
In this section we show the results obtained after the final non-linear optinmzztép.

Figure 4.12 shows the front, side and top views of the 3-D reconstructiefieseband after
the bundle adjustment step for three frames of the SMILE seqderidee initial estimate is
shown on the left and the results after bundle adjustment are shown aghheéxhile the initial

estimate recovers the correct 3-D shape, the deformations on the fao®tawell modelled.

LVideo available at http://www.bmva.ac.uk/thesichive/2006/DelBuel/index.html



4.3. Experimental results93

WEIGHT VALUE

60 70 82 0 10 20 30

40 5 40 50
FRAMES FRAMES

WEIGHT VALUES
WEIGHT VALUES
Lo

. . . . . . . .
60 70 82 "o 10 20 30 50 60 70 82

ROTATION ANGLES
ROTATION ANGLES

0 40 50 60 70 82 0 10 20 30 40 50 60 70 82
FRAMES FRAMES

0 10 20

(A) STEREO ALGORITHM (B) BUNDLE ADJUSTMENT

Figure 4.13: Values obtained for the rigid component (top), deformatidghtse (middle) and

rotation angles (bottom) before (A) and after bundle adjustment (B) faBMKB_E sequence

However, bundle adjustment succeeds to capture the flexible structotee how the upper lip
is curved first and then straightened.

Figure 4.13 shows the results obtained for the estimated motion parametemsdigdm@ation
weights using the initial stereo factorization method and the improved resultbaftdle adjust-
ment. The bottom graphs show the rotation angles about the X, Y and Zeomsered for each
frame of the sequence for the left and right cameras (up to an ovetaliaw). The recovered
angles for the left and right camera after bundle adjustment reflectwelhthe geometry of the
stereo camera setup. This was such that both optical axes lay approxiomthly XZ plane —
therefore there was no relative rotation between the cameras about the X axes — and the
relative rotation about the Y axis was about 15deg. Note that these \aeie®t ground truth
and only approximate as they were not measured accurately. Also nothdhatation matrices
for the right camera are calculatedR{S= R,e|R- whereR,¢ is the estimated relative orientation.
Figure 4.13(B) shows how the estimates of the rotations about the X andsZ(iaxkelue and
green) for the left and right views are close to being zero. The relatiation between left and

right cameras about the Y axis (in red) is closer to 15deg after bundlstatiut than before.
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Figure 4.13 also shows the evolution throughout the sequence of the wdltie configura-
tion weights associated with the mean component (top) and the 4 modes of didar(maddie).
The values appear to be larger after bundle adjustment confirming thabthknear optimiza-
tion step has achieved to model the deformations of the face. It is also timgresnote how
the first mode of deformation experiences a big change starting arcame #0 until frame 75.

This coincides with the moment where the subject started and finished the spridsgion.

4.4 Summary

A stereo-motion approach has been presented with the aim to reconstri&Ditshape of a
deformable object using image sequences extracted from a sterecAgaa. result, the non-
rigid factorization framework has been accordingly updated to accommtuatonstraint that
trajectories in the left and right camera refer to the same 3-D object.

By construction, the method fuses naturally the advantages of motion anadl apgm®aches.
A global solution for the time varying motion and 3-D structure is obtained froenithage
tracks without any prior calibration of the stereo pairs. Widely separat@cd views allow
a more reliable estimation of motion and deformation parameters even in the atfengid
motion of the object.

Additionally, non-linear optimization, as presented in the previous chaptperfermed to
obtain the correct replicated structureMn Results show a relevant improvement in the motion
and structure estimates and thus the optimization stage is strongly recommendsdihoao
correct solution.

The main assumptions of our method are that the cameras must be synathi@mizetereo
matches be available. Synchronization can be enforced using the me#ssthiad in [142] but
nowadays it is common to obtain synchronized video from stereo cametassoSnatching

could be tackled by extending current techniques [73, 110] to deal wdthah-rigid case.
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Chapter 5

Deformable modelling under affine viewing

conditions using shape priors

Deformable 3-D shape recovery is an inherently ambiguous problemn@igeecific rigid mo-
tion, different non-rigid shapes could be found that fit the measureméntolve this ambiguity
prior knowledge about the shape and motion should be used to constraioltien. We base
our approach [35] on the observation that often not all the points on @angand deforming
surface — such as a human face — are undergoing non-rigid motion. Sdahemoints are fre-
quently on rigid parts of the structure — for instance the nose — while otheos ldeformable
areas. First we develop a segmentation algorithm to separate rigid amigitbmotion. Once
this segmentation is available, the rigid points can be used to estimate the ovatafiotgpn and
to constrain the underlying mean shape. We propose two reconstructarittaigs and show that
improved 3-D deformable models can be obtained from priors on the shyapsirg synthetic

and real data.

5.1 Motivation

A main issue of factorization approaches for deformable structure stemmstfre fact that de-
formation and motion are ambiguous. Intuitively, imagine a deforming object likkemt of
paper floating in the air or a tree bending by the blowing wind; the conceptsotbn and de-
formation are not clearly defined if a notion of global motion is not specifidak deformations

that appear in a non-rigid object can be defined as the deviation of tipe $ttan the global
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motion. This observation is supported by recent studies on the notion jpé slverage by Yezzi
and Soatto [164] where the authors precisely separate motion and daé@rmmamponents for
robust matching, registering and tracking of deformable objects. Imgrmsults are obtained
by explicitly defining the mean component of the object first and then calcgldgformations
in an active contours domain.

Our approach is slightly different, we realize that the rigid component oftthetsire carries
useful information about the overall non-rigid shape. Our main assum®itirat some of the
points are frequently on rigid parts of the structure while others lie on deible areas. For
the set of rigid points, multi-frame rigidity constraints hold [150] and thesebeaappropriately
enforced in reconstruction algorithms to obtain reliable camera motion estimatethe@ther
hand, if a rigid 3-D structure is correctly identified, the rigid points can lelue constrain the
underlying mean shape. The deformations can then be estimated as Idagibdevirom this
mean shape in a further refinement step.

The approach introduced in this chapter requires an initial informationiar gver which of
the point trajectories stored in the measurement mataxe rigid and which non-rigid. Notice
that, similar priors were required to obtain an exact solution for the casé@epandently moving
(section 2.3.1) and articulated objects (section 2.3.2), where trajectotiegybe to the different
parts of the object have to be identified to obtain a proper reconstructlurs, e first need to
introduce methods and techniques to perform a reliable segmentation oftyagéatories into
rigid and non-rigid components.

Once the points have been segmented into the rigid and non-rigid sets werrdw® over-
all rigid motion from the rigid set and we formalise the problem of non-rigidpghestimation
as a constrained minimization adding priors on the degree of deformabilitychf @@int. We
perform experiments on synthetic and real data which validate the appasacshow that the
addition of priors on the rigidity of some of the points improves the motion estimatethar8-D

reconstruction.

5.2 Motion segmentation from image trajectories: previousvork for rigid scenes

The assumption that a scene observed by a camera contains a single jagidisften not
realistic. For instance, when both the camera and the observed objecteireg, the motion of

the background (usually degenerate since most often it can be apptediama planar object)
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and the one of the inspected object represent two distinguishable viseml Similarly, often
there will be more than one independently moving object in the scene (fonaesta traffic scene
containing different vehicles). In these cases it is crucial to be ablegtmeseat the trajectories
belonging to the respective object so that exact reconstructions azrtdieed.

A first approach to segmentinig purely rotating objects was given by Boult and Brown [14]
using bi-partite graphs to cluster the image trajectories. Starting from areaffeestimate of the
rank robust to noise, the method performs a rank-constrained SVD onghsurement matrix
givingW =UzV' and assigning points to motion clusters by selecting the most significant columns
of V. The process is repeated iteratively until disets of rank-3 measurements are successfully
detected. Motion dependencies and degeneracies are not explicitly ndastetteese could affect
the convergence of the method.

Costeira and Kanade [30] first proposed the use oflaoe interaction matrig, defined as
G = Vv whereV is the matrix of right singular vectors. In the presence of independent nsotio
and noiseless data the following condition for the magrixolds:

1 if trajectoriesmandn correspond to the same motion
Gmn == (51)

0 otherwise

wherem=1...P andn=1...P with P being the number of trajectories. Hence, each element
Gmn specifies whether a pair of trajectories belongs to the same motion or not.veligwethe
presence of noise the conditions in equation (5.1) will not be satisfiedlgxd@cproof of the
properties ofa is given by Kanatani [85] using the properties of independent motiorspabes.

A procedure that optimizes the energy of the entries isfused by Costeira and Kanade [29] to
cluster theN sets of trajectories such that the matiis block diagonal (see figure 5.1). Neither
a priori knowledge of the number of shapes nor an estimate of the ranguged. A known
drawback [76] of this method is that noise and outliers affecting the measunts modify the
conditions in equation (5.1). In this case, the approach is likely to obtain-agtiial solution.
Motion dependencies [166] are also a known weakness of the apyfot explicitly modelled.

In order to improve the performance under noise conditions, Ichimurgdit®osed a dis-
criminant criterion that drives the clustering by choosing the trajectories tivéhmost useful
information for grouping. The approach relies on an initial computation ofktape interaction
matrix. This may lead to inaccurate application of the discriminant criterion if the estingated

unreliable. However, the overall performance of the algorithm is supetimpared to Costeira
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N; +N, N, N,

(@) (b)

Figure 5.1: Example ofhape interaction matrixc obtained from two Nl = 2) rigid objects

with P =5 andP, = 3. A dark square represents a pair of trajectories belonging to the same
motion. Figure (a) represents a spagsihat is given before ordering of the trajectories into the
two clusters of independent motions. Figure (b) shavadter computing the permutation which
arranges the measurement matrix such that[w;|w,] with W; andw, containing the trajectories

for the first and second object respectively.

and Kanade’s approach.

Wu et al. [158] initially compute an approximated over-segmentation of the nuofilrede-
pendent motions using Ichimura’s method. The method then computes adattaste measure
for the points belonging to each object based on the orthogonality prapeftibe sub-spaces
of the independent shapes and it reduces the over segmented motionsdordoe number of
sets. As a result, the metric proposed is robust to the noise distribution secettiogonality
condition between sub-spaces still holds with corrupted data.

Kanatani [83] drops the concept of tkhape interaction matriin favor of directly fitting
the trajectories taken from the independent objects to the related subisspdodel selection
[84] is used to infer the number of independent motions and outlier rejec@8] strengthens
the approach in the case of outlying image trajectories. The estimation ofedifferotions is
performed in a framework similar to the Expectation-Maximization (EM) algoritimeh, #hus, it
is prone to local solutions. The method, however, is inserted in a soundisthfimmework with
particular robustness to noise. A further improvement introduced byyaugad Kanatani [135]

permits to deal with degeneracies given 2-D planar motions in the sceneppkoazh using
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the EM algorithm is also presented in the work of Gruber and Weiss [54feviaetorization
is formulated as a factor analysis problem [53] with the interesting possibilityroing known
priors over the motion and structure components of the objects.

Of broader applicability, the approach of Vidal and Hartley [152] may diladwith motion
degeneracies and missing entries in the measurement matrix using a combined wigtlgen-
eralized principal component analysis (GPCA) [153] and Powerfaetiion [66]. Briefly, an
initial rank-5 decomposition off is performed via Powerfactorization that allows to deal with
missing data. This initial decomposition preserves the structure of the motiolersiwshile
reducing the dimensionality of the problem. Motion sub-spaces are then fiilec \B-degree
polynomial over the decomposed set of trajectories using least-squ@iP€sA). Spectral clus-
tering [155] is finally applied over a similarity matrix constructed over the diff¢iation of the
5-degrees polynomial. Validation over synthetic experiments is not presbatehe algorithm
can deal successfully with degenerate and independent motion for reeesu matrices with
up to 30% of missing entries. Notice that a known drawback is that the GPCAodwetteed a
number trajectories that grows exponentially with the number of motions.

Specifically designed for articulated structures (see section 2.3.2), tineaagh of Yan and
Pollefeys [162] separates dependent motions connected by joints.nidhiod (with some simi-
larities to the algorithm we propose in section 6.4.1) employs RANdom SAmplec@sus [46]
(RANSAC) to assign the trajectories to each articulated part. Given themamdture of the
algorithm, a sampling prior is assigned to increase the chance of selectisgpmrage trajec-
tories that are most likely to belong to the same group. The sampling prior is ¢echpith
a distance measure obtained from #t@pe interaction matripf the articulated object. Given
the known sensitivity of thehape interaction matrito image noise, this approach could lead to

inaccuracies in the computation of the prior.

5.3 Rigid and non-rigid motion segmentation

We now consider the problem of segmenting the rigid and non-rigid motioningéesleforming
shape which contains a sub-set of rigid points. In this case, the image trageciomposing the
measurement matrix are given by two contributions: the overall rotation and translation which
the object is globally undergoing and the local deformations of eachigahgoint. Both sets

of rigid and non-rigid points share the same rigid transformation and coeséy this renders
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the straight application of the algorithms for independent motion segmentatiserged in the
last section less effective.

For instance, if we consider Kanatani's sub-space technique [83h&tion segmentation,
the aim would be to assign every rigid trajectory to a sub-space of dimensiod e non-rigid
trajectories to a sub-space of dimensidh However, the rigid points could be understood as
non-rigid points with only one basis shape, and therefore the sub-fpaite non-rigid points
would completely include the one for the rigid points. Thus, the method wouldttealdssify
every trajectory as being non-rigid. To the best of our knowledge tisene other work able to

separate rigid and non-rigid trajectories belonging to a single object.

5.3.1 Our approach

Our approach instead consists in the application of a sub-set selectiondhetitbe non-rigid
component of the point trajectories encoded in the measurement ma8xb-set selection is a
techniqgue commonly used in feature selection problems where a grougurefeés extracted to
obtain a robust solution to a particular estimation problem [80].

Under the factorization framework, features are represented by thejeipaint trajectories
stored inW. Our goal is to find the set of features whose motion can be modelled exaetiygd
motion. In this case we formulate the segmentation problem as finding a subusgéciories

Wrigia Within the measurement matrix such that the following condition is satisfied:
rank(Wrigiq ) = 3. (5.2)

The segmentation algorithm followsaquential backward selection strat¢g§§] by initially
considering all the trajectories in the measurement matrix and iteratively delatimdpy one
those which are contributing most to the rank of the matrix, i.e., the points thadiettie most
non-rigid motion. As the stop criterion for the classification task, we computeattie of the
measurement matrix of the remaining points which will become 3 when only the rigéttories
are left.

Obviously the rank of the rigid points will not be exactly equal to 3 in the presef noise
as it can be observed in figure 5.2. Instead, we have used an automatidrtettetermine the
deformability index of a set of trajectories described in the work of Roy@hry [126]. This
method estimates the value Df— the number of basis shapes needed to describe the non-rigid

motion — automatically in a non-iterative way.
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Figure 5.2: The plots show the values of the singular values ordered aemigisg order and
extracted from different measurement matrices containing rigid pointstaffeoy noise. The
rigid points are extracted from a face (left) and a deforming box (right)cofpletely rigid

object has a rank-3 measurement matrix (i.e. the fourth singular valueas$ teqzero). Denoise
techniques are necessary to remove the noise component so that H3ec@mdition can be used

to detect measurements belonging to a rigid object.

5.3.2 Estimation of the degree of deformability

The approach is based on a reinterpretation of the deformable factonipatiblem in a stochas-
tic framework. In this way, provided a statistic description of the noise @tirig the image
measurements, it is possible to compute a whitened measurement matrix fromthenicue
of the rank and, thus, the number of basis shapes can be extracted.

In more detail, the image coordinates for a fraimaee first arranged into aF2vector such
thaty; = [Ui1,...,Up,Vi1,... ,ViP]T. Now the projection of the deformable points onto the image

plane may be expressed as:

S1 O

Sp O
yiT:miTsz IilRi(l) IiDRi(l) IilRi(Z) IiDRi(Z) (5.3)

0 S1

0 Sp

with s containing the re-arranged6x 2P structure matrix.Ri(l) and Ri(z) denote respectively

the first and second row of the orthographic camera matratranged in the R-vectorm;. The

noise componem; is considered additive and obtained from a zero-mean random proivess
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§T =mls+n.

As a further step, the method computes tRe<2P correlation matrix for each image trajec-
tory such that:

Cy = 1 iyiyiT =s' (1 immf) s +Cn (5.4)
F £ F £

wherecCy, is the covariance of the noise affecting the measurements. An exact estintateso
required which can be inferred from the measurement process that®tita image coordinates
stored inW (for instance such information can be obtained from a point tracking ithgoisuch
as the Kanade-Lucas-Tomasi (KLT) tracker [128]).

In the case of no noise, the correlation matixhas a rank equal todd However, the
additive contribution of,, increases the overall rank by an unknown value. The problem is to
find a transformation which can remove the contribution of the noise. Irr todend a solution,

the noise covariance is firstly diagonalised using SVD:
Ch=UsU' (5.5)

where the matri hasL non-zero diagonal elements with> 6D. It is possible to compute the

rank reduced factors fdr, such that:

~ 5 ~T
Ch = UopxL ZixL UgpyL (5.6)

The noise can then be transformed into an independent and identically utistri@lD) process

~— -1
by pre-multiplying equation (5.3) with the factéﬂz%) giving:
~n1y 1 o1y -1
g7 = (U2%> mis+ (UZ%) ni = m's+f; (5.7)

Therefore, the correlation for the transformed coordintes given by:

F F
Cy = 1 g9l =sT 1 mim | s+1 (5.8)
F 2, F 2,

wherel is aL x L identity matrix. After applying SVD oigy, it can be observed that the number
of basis shapeb can be obtained simply by counting the number of singular values over 1 and

dividing the result by 6:
number of singular values 1
b= 6

This method provides a fixed threshold for comparing the singular valudseahatrix to

(5.9)

determine the deformability indel. For the case of a 3-D rigid body the deformability index
is equal to 1 while in the case of a non-rigid body the indeR is 1, therefore this provides a

good selection criterion to separate both sets of trajectories in the presemuise.
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5.3.3 The complete segmentation algorithm
Our approach uses the deformability index measure described in theysesgotion as a stop-
ping criteria to detect when the set of points gives an index 1, meaning that the remaining

points are rigid. The complete algorithm is detailed below:

e Initialize Wrigig =W

e Determine the initial deformability indeR for Wiigig

1. Computenyigig ~ UzvT with SVD and truncate to rankiB
2. Defines = sV/2yT

3. Extract the non-rigid component of the shape magy_1).p = [ S ... S }
where eaclfsj is a 3D — 1) x 1 vector which contains the 3-D coordinates of jHg

3-D point associated to tH2 — 1 non-rigid bases such that:

Sij
S >
Sj = .J and éj =
o
| Soj |
4. Determine the maximum vector nor®: = max{|| S|, ... ,|Sp ||}

5. Remove the selected trajectdryrom Wgig and determine the new deformabiljty

indexD.

6. If D = 1 stop the iteration.

7. Else, gotostep 1.

Algorithm 1.

We have obtained successful rigid and non-rigid motion segmentationsntimetig sequences
using this algorithm. The results will be discussed in the experimental sectiote tNat the
method converges to the right solution only if there is a unique set of rigidtainch that
D = 1. In the case where different groups of features satisfy the randtitton (for instance, in

the case of multiple or articulated objects) the algorithm could converge to thegveet.
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5.4 The proposed shape prior

Once we have segmented the scene into rigid and non-rigid points, we edneumformation
on the rigidity of the points to constrain the shape estimation. First we definetis¢raints that
arise based on the observation that a generic shape is composed bywithimtigferent degrees
of deformation. Kim and Hong [87] defined tdegree of non-rigidityf a point as its degree of
deviation from the average shape to classify points into three classes:nigidrigid and non-
rigid (for a more detailed description refer to section 6.4.1). Based on thisurethey proposed
a method to estimate average shape using the degree of non-rigidity to weigidritribution
of each point in an iterative certainty re-weighted factorization schemeorirast, we use the
knowledge that some points of the scene are rigid to construct specific iorstraints which

will in turn eliminate the inherent ambiguities present in non-rigid shape estimation.

5.4.1 Rigidity constraint

Definition (rigid point). If the motion of a point j is completely rigid for the entire sequence,
the structure referring to the point can be expressed entirely by the &ss$ D= 1) called the
rigid basis

It follows from this definition that a completely rigid poiptis entirely parameterized by:
S| = (5.10)

whereS;, is a 3-vector which contains 3-D coordinates of the rigid componen®asd 3D — 1)
vector of zeros. Following the segmentation of the scene into rigid andigmhpoints, it is
possible to re-order the measurement matrix by defining the permutation mauich that:

[11R1 ... Il1pR1
Srigid Snonrigid

WP = [ Wrigid ‘ Wnonrigid ] = : : . (5.11)
lFiRe ... IrDRF
wheresyigig is a 3x r matrix containing the 3-D coordinates of theigid points, Snonrigid iS @
3D x (P —r) matrix containing the 3-D coordinates of tBebasis shapes for th@> —r) de-
formable points and is a 3D — 1) x r matrix of zeros.
Notice that it is now possible to apply Tomasi and Kanade’s rigid factorizatiothe mea-

surement matrix containing the image trajectories of the rigid paifig and decompose it into
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the motion and rigid structure components as:

Ry
Wigd = | | Srigid (5.12)
Rr
obtaining an initial solution for the orthographic camera matrices for eaahefiend for the 3-D

rigid component of the structure.

5.5 Non-rigid shape and motion estimation using shape prig

In this section we solve for the non-rigid shape and motion given the 2-D iriragks and
incorporating the above constraint on the automatically segmented rigid p@nisapproach
is to minimize image reprojection error subject to the rigidity of the non-deformaoigtp. The

cost function being minimised is:

D
X=3 lwij—xij [*= Y | wij — (R 2 lasa) I? (5.13)
] [N] =1

wherew;; are the measured image points afdthe estimated image points. We propose two
alternative solutions to this constrained minimization: a linear alternate leasescaproach
which incorporates the rigidity constraints using Generalised Singular \&dgemposition and

a fully non-linear minimization scheme using priors on the rigid shape paraneeaximum

A Posteriori estimation.

5.5.1 Linear equality-constrained least squares

First we propose an alternating least squares scheme to minimize the ccisbriutescribed
in equation (5.13). The algorithm alternates between solving for the bagieshand for the
configuration weightdijy. Note that the algorithm does not solve for the overall rigid motion
encoded in the rotation matric@ssince these are calculated before hand by running the rigid
factorization algorithm of Tomasi and Kanade on the segmented rigid poinescdnfiguration

weights are initialised to random values. The scheme can be summarisedwas:follo

1. Giveng; andljq equation (2.36) can be used to estimatmearly subject to the constraint
ép = 0 for p € Q with Q being the set of points considered to be rigid throughout the

sequence.

2. Giveng, ands solve for alllig using linear least-squares.
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3. lterate the above two steps until convergence.

Rearranging equation (5.11) the problem of solving¥@ubject to the rigidity constraint can be

expressed as an unconstrained least squares system of the form:

2
A b

min X— (5.14)
AC Ad
whereA encodes the linear equatioigsthe linear constraints arwandd are the known observa-
tions. It can be shown [51] that far— o the final solution lies on the surface defineddxy=d

and thus we obtain a linear equality-constrained least squares (LS#gpro
min || Ax—b || (5.15)

subject to:

cx=d (5.16)

In our specific casex alternatively represents the parameters for the 3-D basis shapes )step 1
or the configuration weights (step 2),is the matrix of linear equations given the previously
estimated rigid motion componentsthe known observations i.e., the rearranged measurement
matrix entries. The matrig encodes the linear constraints that enforce the non-rigid component
of the basis shap& being equal to zero.

A method to solve the above LSE problem is to directly factorize AadhdC using Gener-

alized Singular Value Decomposition (GSVD) (see [58] for details).

5.5.2 Bundle adjustment using priors

An alternative approach to minimize the deformable cost function in equati@8)(E given by
non-linear optimization. One of the main advantages of performing a prionesegtion of rigid
and non-rigid motion is firstly that the rigid motion (estimates of the rotation matA&sn

be pre-computed by performing rigid factorization on the rigid points. Thisiges a reliable
initial estimate for the rotation parameters which, coupled with the priors on thel®ape, help
solve the ambiguities.

The camera parameteksat each framéare then used to infer the mean basis component of
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the deformable points such that:

+
R1

Sirs1) - Swp | = Wnonrigid (5.17)
Rr
whereSy ;4 is the 3-vector which contains the coordinates of the rigid basis for thenfirst
rigid point (note that there ar@® —r) non-rigid points). Finally, the deformable components of
the structure (configuration weights and 3-D basis) are initialised to smatasmhm values as

already shown in section 3.4.2.

5.5.3 Forcing the prior

Our prior expectation is that a poifptdetected as being rigid will have a zero non-rigid compo-

nent and can therefore be modelled entirely by the first basis shape:

Sij Sij
s=| "= (5.18)
S 0
B T
whereSj = [ SL- SE,- } . Therefore our expected prior value of the coordinates of the

non-rigid baseéj is zero in this case. For every rigid point in the scene we model the distribution
of 5 as a Gaussian with a small variance and solve the problem as a Maximum Aidtoste
estimation (MAP).

An alternative solution would have been to explicitly parameterise the pointswitiiythe
rigid component by completely removing in the minimisation the non-rigid b§§e|3|owever,
we expect that the algorithm providing the motion segmentation may be inaccurdtés case
a hard decision given by the complete elimination of the non-rigid bases pea@ the rigid
points can negatively affect the estimation process since, in the caseong \priors, we are
trying to infer the wrong model. Differently, a prior enforced as a penaltyntean account of

inaccuracies in the priors computation as we have shown in section 6.5.3.

5.6 Results

We show results for the proposed segmentation algorithm and the deforgBbdéhape estima-
tion with both linear and non-linear approaches. Synthetic experimentsested especially to

test the performance of the algorithms with different ratios of rigid/non-rgpthts. The real
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(a) (b) (€) (d) (e)
Figure 5.3: Synthetic sequence. Example of ground truth of the 3-D shidipe rigid points
(vertices of the cube) and (a) 8, (b) 16, (c) 32, (d) 64 and (e) B28rigid points.

experiments focus on face modelling: a set of trajectories is extracteddrenject perform-
ing different facial expressions and then subsequently reconsiructie the non-linear method

using priors.

5.6.1 Synthetic data

The synthetic 3-D data consisted of a set of random points sampled insideatsize 50«
50x 50 units. Five sequences were generated with 8, 16, 32, 64 and a2&wpoints sampled
inside the cube. Each sequence also included 8 rigid points (the vertites@fbe). Figure 5.3
shows the 3-D data used in each of the five sequences with the rigid poirgd jgirfor display
purposes. Our aim is to show the performance of our approach uiftredt degrees of non-
rigidity. The deformations for the non-rigid points were generated usindam basis shapes
as well as random deformation weights. Two basis shapes were useleafit basis shape
had the assigned configuration weight equal to 1. The data was therdratatdranslated over
25 frames and projected onto the images using an orthographic camera amod€laussian
noise was added to the image coordinates. The overall rotation aboukianyas 90 degrees
at most and the ratio of the norm of the non-rigid and rigid points of the 3-Dimstapes

. S L .
ratio = w was fixed to 40%.

Rigid and non-rigid motion segmentation

Figure 5.4 shows results of the motion segmentation algorithm on a sequenge wigid and
32 non-rigid points. The Gaussian noise level for this particular expetimasnset to be = 1.5

pixels. The algorithm iteratively classifies points according to the curi@oevwfD as shown in
Algorithm 1. The—y axis of the graph shows the current value of the deformation ilerd
the —x axis represents the number of iterations. The first 32 iterations removdgidipoints as

the deformability inde)D of the remaining set of points is consistently close to 2. When tfe 33
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2.5

Deformability Index
P
(%))

0 4 8 12 16 20 24 28 32 36 40

Iteration number

Figure 5.4: Deformability index for the automatic segmentation experiment. Tdphghows
its sudden decrease upon iteration number 33 which corresponds tdetigoseof the first rigid

point.

iteration is reached, a rigid point is selected and one can observe ansdigiein the value of
D to 1.5 which then tends to 1. This is the cut-off point and the 8 remaining pointsoarectly
classified as being rigid.

In order to test the algorithm exhaustively, we performed 1000 trialsdohe&onfiguration
when we varied the ratio of rigid/non-rigid points and used 5 differentlle/€&aussian noise
(02=0, 05, 1, 15, 2 pixels). Results showing the number of misclassified points are disptayed
table 5.1. The values refer to the mean number of misclassified points whBn=tHestopping
condition becomes true. Notice that the algorithm achieves very low misclassificdates (a
maximum of 1 rigid point misclassified as non-rigid) until the trial with 64 non-rigiihts and
8 rigid points. For this ratio of rigid/non-rigid points we found the algorithm tbffar levels of
noise of 15 pixels and above (indicated with a cross in the table) since the given tifuleshs

terminating the iterations prematurely.

3-D reconstruction

We have tested three reconstruction algorithms: the linear GSVD methodiebaidstment
without priors (MLE) and bundle-adjustment incorporating priors on g gructure (MAP).

Figure 5.5 shows the relative 3-D reconstruction error, absolute rotatiam and 2-D image
reprojection error using each of the 3 algorithms, for varying ratios adtign-rigid scene points
and different levels of image noise. It becomes clear that GSVD and M#yfedform MLE thus

showing the improved performance when prior information on the shapeagio@ted. In fact
the GSVD and MAP error curves appear superimposed which showshhatonverge to the

same solution, with the main observable difference being the higher speedwargence for the
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Noise

Rigid
Non-rigid || 0 | 0.5 1 15 2

8/8 0 0.325| 0.356 | 0.313

8/16 0.902 | 0.933| 0.989 | 0.993

0
0

8/32 || 0 0 055710999 | 1
0

8/64 0981 | 0976| X X

Table 5.1: Mean number of misclassified rigid points on 1000 trials for therempets with 8
rigid points and varying number of non-rigid points {8, 32,64). A cross indicates a failure of

the algorithm to classify the rigid set of points.

-5~ 8 points GSVD -©- 8 points MLE  -©- 8 points MAP
—%—16 points GSVD  -- 16 points MLE  -X- 16 points MAP
—5-32 points GSVD  -13- 32 points MLE  -EJ- 32 points MAP
-A-64 points GSVD  -A- 64 points MLE  -Ax 64 points MAP
—$—128 points GSVD - - 128 points MLE -¢- 128 points MAP
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Figure 5.5: Relative 3-D error (%), r.m.s. rotation error (in degreed)ab reprojection error (in

pixels) for the synthetic experiments for different ratios of rigid/non-rigaints and increasing

levels of Gaussian noise.
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Figure 5.6: Relative 3-D error (%), r.m.s. rotation error (deg) and 2{¥ajection error for the
synthetic experiments for different numbers of basis shapes and $imgelavels of Gaussian

noise.

MAP approach. Note that the MLE approach is not able to compute a t8ri@ceconstruction
even for the noiseless case showing that the added priors are fun@d&toeavoid local minima
given by ambiguous configurations of motion and deformation parameters.

The number of basis shapes was then variee 3, 4 and 5) to test the performance of the
algorithm with respect to this parameter. Figure 5.6 shows the 2-D imagejeepon error,
relative 3-D reconstruction error and absolute rotation error obtained @8WD, MLE and
MAP. As expected, the error increases with the number of basis shaped 8 algorithms.
Once more GSVD and MAP have almost identical performance and proeitier besults than

MLE.

5.6.2 More realistic data
In this experimerit we use real 3-D data of a human face undergoing rigid motion — mainly
rotation — while performing different facial expressions. The 3-D da#as waptured using a
VICON motion capture system by tracking the subject wearing 37 markeredace. Figure 5.7
(a) shows four key-frames showing the range of deformations of sapressions in the tested
sequence.

The 3-D points were then projected synthetically onto an image sequendeag&i€s long
using an orthographic camera model and Gaussian noise of valard@5 pixels was added

to the image coordinates. In this case the segmentation of points into rigid amibitbeets

Lvideo available at http://www.bmva.ac.uk/thesigshive/2006/DelBuel/index.html
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(@) (b)

Figure 5.7: (a) The four frames show a few facial expressions paddrby the subject. A VI-
CON motion capture system extracts the 3-D locations from the markers attiactie subject’s
face (b) Face points used in the real experiment. Points connected witlfrarines show the

selected rigid points located on the nose, temples and side of the face.

was done manually. Figure 5.7 (b) shows a frontal view of the face wtheré4 rigid points —
situated on the nose, temples and the side of the face — are connected wiffamies.

Figure 5.8 shows the ground truth and reconstructed shape from $idietand top views
using the bundle adjustment algorithm incorporating rigidity priors on thedeiorming points.
The deformations are very well captured by the model even for the framekich the facial

expressions are more exaggerated.

5.7 Closure

The proposed formulation with shape priors relies on the presence ofoé geints on the de-
forming surface that are only undergoing rigid motion. The priors may Instcocted by simply
selecting manually the rigid points lying on the object or by automatically findingdiegpwith

the motion segmentation algorithm provided in section 5.3. Given a reliableasepeof rigid

and non-rigid motion, our approach follows with an initial estimation of the rigihgonents of
the 3-D structure and camera motion exclusively from the rigid trajectoriegpblying Tomasi
and Kanade factorization [139]. Notice that at this stage, robust algwgitbr rigid factorization

such as [1, 78] may be also applied to deliver more accurate reconstisictio
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Frame 1 Frame 167 Frame 273 Frame 310
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Figure 5.8: Front, side and top views of the ground truth and reconstidiate with priors.

Reconstructions are shown for frames 1, 167, 273 and 310.
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We then propose to use the extracted rigid component as a strong ségpestimating
the remaining 3-D deformable structure by designing two different algorittinstly, the non-
rigid parameters are estimated using an alternating equality constraineddeastsestimation
over the configuration weights and non-rigid 3-D structure componenite Weping fixed the
orthographic camera parameters previously estimated with the rigid factorizatio

Secondly, we include the prior information in the non-linear optimization framleysoe-
sented in chapter 3. The problem is reformulated as the minimization of a na@m-tinst func-
tion and, thus, it requires an initialisation close to the global minimum for the rigichan-rigid
parameters of the model. This is reasonably provided by the estimation of iti@aigameters
given from the detected rigid points as shown in our experimental sectiois. also evident
that the introduction of the priors as penalty terms in the cost function givesuag results
compared to MLE estimation.

The whole approach relies on the extraction of rigid motion from the image togjes stored
in W. To support the detection of these points, we have introduced a specitioanfor the
segmentation of rigid/non-rigid motion based on the rank constraint prop@tiggid shapes.
We employ a procedure introduced in [126] that can efficiently estimate thdeuof basis
shapes of the deforming object in the presence of noise.

Provided an accurate estimation of the noise covariance, the algorithormerivell with
different ratios of rigid/non-rigid points and different levels of noisteefing the measurements.
In real cases, its efficiency can be affected whenever the noise staditinot correctly provided
or whenever the assumption that there is a sub-set of points that istherigid does not hold.

Finally, notice that in our synthetic experiments we have shown that the agpwath priors
converges to the global minimum and thus to the exact 3-D structure andaaméon in the
case of no noise. Exact results are also obtained by Xiao et al. [1B®#] pgors based on the
independency of the basis shapes. A clear advantage of their appsoide proposed closed-
form solution that is guaranteed to achieve a unique solution. On the othéy thee method is
quite sensitive to the selection of the independent bases (see sectiomPaddistussion) and no
study under different levels of noise is given. The advantage ofautien consists on the use
of priors extracted from rigid points lying over a deformable surfaceidRignoving points are
intuitively easier to detect, even with manual initialisation, than a set of indembdsis shapes.

In the next chapter we show that the information provided by the rigid poindsdeformable



5.7. Closure 115

object can be crucial in the case of projective distortions affecting thedmegpsurements.
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Chapter 6

Deformable metric reconstruction from perspective

cameras using priors

So far, all the algorithms we have presented for deformable factorizdtioluding our non-
linear optimization (MLE and MAP) methods, assume the case of images acguded weak
perspective viewing conditions. An extension to more general cameralsnedequired when
the inspected shape presents perspective distortion effects. This iaghevben images are
acquired at closer distances or with a camera with a wide field of view. Givdaeformable
object and a perspective camera, disambiguating the non-rigidity contrilsugiod the camera
distortions is fundamental for obtaining a correct reconstruction.

In this chapter we present a novel approach [36, 93] to the reco¥engtric 3-D deformable
models from perspective images. The solution proposed is based orstirwation that often not
all the points on a deformable surface are undergoing non-rigid motionnas ebthem might
lie on rigid parts of the structure. First we use an automatic segmentation aigddtidentify
the set of rigid points which in turn is used to estimate the internal camera calibpstitameters
and the overall rigid motion. We then formalise the problem of non-rigid slesgienation as a
constrained non-linear minimization adding priors on the degree of defaityah each point.
We perform experiments on synthetic and real data which show firstly that, when using a
minimal set of rigid points, it is possible to obtain reliable metric information andyrsalg, that
the shape priors help to disambiguate the contribution to image motion causedobyalidn

and perspective distortion.
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6.1 Rigid metric reconstruction from perspective cameras

Affine and orthographic cameras are only an approximation of the reaingeconditions af-
fecting the projection of a rigid body onto the image plane. These models aeealjg effective
when the relief of the object is small compared to the distance from the camere.cOn the
other hand, when these assumptions weaken, the use of a perspactemanodel is necessary
to obtain a correct 3-D reconstruction of the object. However, the intibalu of a perspective
camera model requires the knowledge of the internal and external pam@roéthe camera that
can be estimated directly from the measured image data using self-calibraticodsietlie will

show in the following section solutions for this problem in the case of rigidly npeinjects.

6.1.1 The perspective camera model

In the most restrictive of affine camera model, the orthographic model, tjegbion of 3-D
points is a direct mapping of the 3-D shape coordinates onto the image pladedes only up
to an overall rotation, translation and scale. A more faithful model of reagjingaconditions is
given by the perspective camera model (see figure 6.1). Image poings/an as the projection

of the 3-D structure through a perspective cantfesa, defined mathematically as:
Pi =K; [Ri | ti] (6.1)

where the 3« 3 rotation matrixg; and the translation vectar represent the Euclidean transfor-
mation between the camera and the world coordinate system respectivedyiard3x 3 upper

triangular matrix which contains the intrinsic camera parameters:

fx s W
1

where fy and fy represent the focal length divided by the pixel width and height reisedg
(ux, ) represents the principal point asds a factor which is zero in the absence of skew. The
intrinsic camera parameters may vary (for instance in the case of a zoonmregajeor remain
fixed at each frame.

A point )Z,- =X Y] Zj 1] in homogeneous 3-D coordinates is projected with a perspective
camerep; into the image framésuch that the following relation holds:

i Pi)zj' (6.3)
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Figure 6.1: Comparison between an orthographic camera (a) and &gpirsmpne (b). The 3-D
points X1 and X, are projected on the image plabeto give the image coordinates andw;
respectively. Orthographic projection (a) assumes the object beifigpfarthe image plane such
that the projecting rays are all parallel to the optical axis and perpendicuthe image plane
0. As a result, points having the sarfiey) coordinates but different depthare projected at
the same image location. In the perspective case (b), the projected imadmatesw; andw

have different image position depending on the depths;adndXs.

with wij = [uj vij 1]T = [wﬁ 1] representing the 2-D homogeneous image coordinate; atite
projective depth of poinj at framei. However, given the 2-D image pointg; extracted from an
object moving rigidly in a perspective image sequence, the value of theat@mojective depths
Aij is unknown. In order to obtain a correct solution for the projective cas®rand projective
points)? j, the extracted measurements need to be properly corrected by the pjeetghts
Aij .

However, solving for the projective camera matriéggand projective structur® j is of lim-
ited use. The preserved geometrical properties obtained by estimatingjettpre reconstruc-
tion are restricted to the incidence of lines and the cross ratio between pemts\\hat we
seek is to obtain a metric 3-D structure from the perspective trajectori@sghan initial solution
from the projective camera matricesand projective structurX j- Itis possible to upgrade the
estimated projective parameters to metric through a self-calibration protdss camera that

solves for the unknown elementsKn R; andt; in equation (6.1).
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6.1.2 Self-calibration

Self-calibration is the simultaneous estimation of 3-D structure and camera matiely from
image sequences when no information is available about the internal calibcitibe cam-
era, the scene or the specific location of the camera as it moves. Commonlgdsiéth self-
calibration can be distinguished in two classes: stratified [122, 121, 5%%498, 42] and
direct [44, 101, 60, 146, 70, 65, 120, 3] approaches. The @inakdifference between the
two groups is that stratified approaches work in stages by upgradingiseajly the structure to
affine and finally to metric. Differently, direct approaches obtain in ong tte full calibration

of the camera which upgrades the reconstruction to metric.

Stratified approaches
A stratified method begin by seeking a solution for the perspective camerg@s@rand 3-D
structureX j- The procedure then upgrades the geometry in two steps: first frospeeive
to affine and secondly from affine to Euclidean. To upgrade the réemti®n we rely on the
estimation of invariant geometric entities in each of the geometric spaces (@ffifieclidean).
Obtaining an affine reconstruction requires the location of the location giléree at infinity —
the invariant entity for the affine space. Once an affine reconstructmsigsned, solving for the
absolute conic — the invariant for the Euclidean space — upgrades threstagction to Euclidean.
The main advantage of a stratified approach is that the solution from affmettic spaces
is linear after the determination of the plane at infinity (for instance, using thieaderoposed
in [60]). However, the computation of the plane at infinity may require to datex specific
properties of the scene such as the vanishing points of parallel lineshémwoute is using the
modulus constraint [122] to compute the coordinates of plane at infinitytliréthe method,
however, requires solving a set of quartic equations and this may réredalgorithm unpractical

given the large number of possible solutions.

Direct approaches

Direct methods, on the other hand, solve for the metric structure of thes shisgtly from the
initial estimation of the projective matricés and the projective 3-D coordinateéj without
going through an affine upgrade of the geometry. The work of Fasgeral. [44] was the
first to analyse this problem, showing that self-calibration was feasibla fmamera moving
through an unknown scene with constant but unknown intrinsics. Theoahetktimates the

camera calibration form pairwise fundamental matrices by introducing thpgérequations to
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solve for the unknown parameters.

Of more practical use, the method presented by Pollefeys et al. [119]sattowlirectly
impose constraints on the intrinsic camera parameters given an explicit garsaton of the
camera calibration matriX (see section 6.4.2 for a detailed description). Different approaches
showed later that direct self-calibration is possible also in the case of mpeumifis scenarios:
where the camera is known only to rotate on the spot [63, 3], only to trangititeut rotation
[105] or even when the camera has a zoom lens [119, 71].

Finally, note that for both approaches there remains an unsolved ambigyatylyy an over-
all rotation and translation between camera and world coordinates in the &artlgpace. It is
not possible to remove this ambiguity unless prior information about the locatithe @amera

is available.

6.2 Projective rigid factorization

In order to perform self-calibration and reconstruct a rigid shape @ toverall similarity trans-
formation (rotation, translation and scale), an initial estimation of the projeniaicesp; is
needed. In a multi-view scenario, we have already discussed the ageaitesolving the prob-
lem using factorization technigues in the case of a rigid object moving freelyigwed with an
orthographic camera (see section 2.2). Similarly, a factorization solutiorsiipe for the per-
spective case using an extension of Tomasi and Kanade’s apprivaahagset of images taken
under perspective viewing conditions. This will provide an initial estimatiothef projective
matricesp; and the structur& j up to an overall projective transformation that in turn can be
upgraded to metric by any of the self-calibration methods presented in thieysesection.
Sturm and Triggs [132] firstly introduced projective factorization explgitthe rank con-
straint of the measurement matrix after the estimation of the weightéissuming the values of

the projective depths are known and given equation (6.3), it is possibldta w
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whereV is the F x P matrix containing the rescaled measurements,a F x 4 matrix ands
a 4x P matrix. Thus, after re-weighting the image coordinaigs the correctedi is a rank-4

matrix. This property is used to perform SVD truncated to the fourth singalare to obtain a
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solution for the projective motion and structure. Similarly to the affine cases@g®mn 2.2), the
matricesM ands are only estimated up to axd4 projective transformation matri@ such that

W = MQQ 1S = MS. The problem of estimating the true perspective depth is fundamental to obtain
a correct decomposition and, as already presented in section 2.2.2, igarithens have been
developed in the last decade. Solving the problem in the case of non-bgadt® poses new

challenges and the next section is dedicated to the mathematical definition obienp.

6.3 Deformable metric 3-D reconstruction from perspectivamages

Given a non-rigid shape, its 3-D structure changes from frame to fraimeeek; = p?il . ..)Zip] is

a (4 x P) matrix representing the shape at franie homogeneous coordinates. The deformation
of a shape can often be explained as a linear combination of a $&thakis shapesy with
d=1...D. Inthe projective case the 3-D vectors are expressed in homogec@angsnates and

so the shape may be written [161] as:

Y a-1liaSd

lT

Xi e O%P gqeD®P (6.5)

wheresy are the 3x P basis shapes$gy are the corresponding deformation coefficients afsla
P-vector of ones. The projection of the shape at any frammo the image is then governed by
the projection equation:
D
_ _ "1 lidSq
Wi =PiXj =P 2=l (6.6)
1T

In matrix form this can be re-written for all frames as:

_ : : S1
W1 |11P(11'3) - |1DP(11'3) P(14)
W= = (6.7)
_ : : Sp
We ||:1P|(:1'3) e ||:DP,(:1'3) P|<:4)
lT
(1:3) . L 4) .
whereP; ™ are the first three columns of the projection matﬁbf(, is the fourth column and

is aP-vector of ones.
Clearly, the rank of the measurement matrix is at m@t3L for the projective case [161].
Once more, if the projective deptig were known the measurement matrix could be rescaled

and decomposed into projective motion and shape matrices using factorization
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6.3.1 Previous work

In their most recent work Xiao and Kanade [161] proposed a new methestimate the projec-
tive depths using thel3+ 1 sub-space constraint and then upgrade the projective reconstructio
to a metric one using an extension of their affine closed form solution to tlspeeive camera
case. However, their method still relies on the assumption that thelBeftames in which the
basis shapes are known to be independent.

Xiao and Kanade’s method is a two step approach with similarities to an algoritssamed
by Han and Kanade for the rigid case [57]. First, the projective weihtare estimated using
the sub-space constraints arising from {BB + 1) rank-constrainednotionand 3-D structure
matrices. Similarly to the work of Han and Kanade [57] and Mahamud and rHgl the
procedure is carried out by performing an alternating minimization tvands respectively.
Additionally, the weights\;; are constrained to avoid degenerate solutions (for instance, some of
theAjj can be equal to zero).

The second step is essentially an extension to the non-rigid case of the npetipos$ed
by Han and Kanade [57] to recover rigid structure from uncalibrateds/iith a direct self-
calibration approach. However, to avoid degenerate solutions givestefoemations, a new set
of equations is introduced forcing the constraint that there exists a $2tidependent basis
shapes as previously introduced by Xiao et al. [159] in the orthogragaisie.

The aim is to estimate the overdBD + 1) x (3D + 1) transformation matrixq which up-
grades the structure to metric and to preserve the repetitive structure ofdtien matrixM.
Similar to the orthographic case, the basis constraints are introduced touswdyesly for each
D column-triple ofQ. Procrustes analysis is then used to align the structure of the motion matrix
M to respect the repetitive structure of the factorization framework andwove the scaling and

translation ambiguities.

6.4 Our approach

Once more, our approach is based on the assumption that some of the peintica The
method requires three steps. First the image points are segmented into thendgidrarigid
sets. The rigid points are then used to perform self-calibration and teeetioe overall rigid
motion and the camera calibration parameters as well as the metric rigid shagiéy, Eie non-

rigid bases and the deformation coefficients are estimated using a nondimadle adjustment
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approach initialised using the estimates given by the rigid points. The bunjdistraént step
can be seen as a refinement step with priors on the degree of deformaftitieypoints with the

aim to avoid ambiguous configurations of motion, perspective distortion efwdrdation.

6.4.1 Step 1: Segmentation of rigid and non-rigid motion under perspeive viewing

In the case of affine cameras the rank of a measurement matrix contairehgfaigid points is
constrained to be at most 3. This numerical condition of the measurement matag used to
obtain a reliable segmentation of rigid and non-rigid points using the featlgetisa strategy
as presented in section 5.3. However (see equation (6.4)), when theadardescribed by the
perspective model, the rank of the measurement matrix increases to #lgutdvat the measure-
ment matrix has been rescaled with the correct estimates of the projectitresdgp When the
points in the measurement matrix are non-rigid the overall ran®is 3 in the projective camera
case wherd® is the number of basis shapes. Unfortunately, the rank constraint thensed
directly to segment rigid and non-rigid points, since the rigid points couldysviee explained
as non-rigid points with zero configuration weights for the non-rigid basipes. Additionally,
the segmentation method presented in the previous chapter may misclassifyiggigs being
non-rigid since the perspective distortion could be mistaken as a deformation

Instead, our new approach is based on the fact that rigid points will satisfgpipolar
geometry while the non-rigid points will give a high residual in the estimation ofithdamental
matrix between pairs of views. We use a RANSAC algorithm [46] to estimate tidafuental
matrices from pairwise frames in the sequence and to segment the scengithamd non-rigid
points. Therefore, in this case we consider the dominant motion to be the ngicmd the
non-rigid points to be the outliers.

However, a well known drawback of random sampling and consenshsitpies is the com-
putational cost required to obtain a valid set of points when the percentamgliers is high,
due to the large number of samples needed to be drawn from the datatudiatety, this is the
most likely scenario in non-rigid structure from motion where we normally deéti a small
proportion of completely rigid points. Here we exploit a measure of the @egfrdeformability
of a point to infer a prior distribution of the probability of a trajectory beingdigr non-rigid
given that measure. These distributions are then used as priors tonpegdicded sampling over
the set of trajectories in a similar approach to the one proposed by TaddffMurray [140] for

the stereo matching problem.
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Degree of non-rigidity
Kim and Hong [87] introduced the notion of Degree of Non-rigidiDo(N) of a point viewed by
an orthographic camera as an effective measure of the deviation of ithiefjoon the average
shape. If the average 3-D shape of a time varying slape[Xi1 ... Xp] (in non-homogeneous
coordinates) is given b§ = [Xl . .Xp} the Degree of Non-rigidity for poinj is defined as:

F

DoN; = .Zl(x” = Xj)(Xij =X)T (6.8)

The 2-D projectiorc; of the DoN will be thus given by:
c v v \ToT F T
Ci = 3 RaXiy = X)Xy =X ) TR = 5 (wy =) (wy — ) (6.9)
i= i=

wherew;; are the image coordinates of pojrin framei andX; are the coordinates of its projected
mean shape. While thBoN cannot be computed without an estimation of the mean 3-D shape
(and this implies finding a 3-D deformable reconstruction), the value of ite@ion can be
estimated directly from image measurements.

An approximate estimate of the projected 2-D mean shapesn be given simply by the
rank-3 approximation of the measurement matroomputed using singular value decomposition
and given bySV D;(W) = MB. The projected deviation from the mean for all the points would then
be defined by{w;; —X;} = w—MB. Kim and Hong computed a more sophisticated estimate of the
average shape, but for simplicity we have used the above descriptioh héscshown to give a
reasonable measure of the degree of deformability.

Notice that the previous definitions all assume affine viewing conditions.ederyvour tra-
jectories resides in a projective space so we need to re-define the me&sn-rigidity. First,
the original measurement matrix must be re-scaled by the estimated projeeiietsh;;. We
calculate the projective weights; using sub-space constraints [70] and express the rescaled
measurement matrix as= {\;; [Wﬁ 1]7}. Then, we estimate the mean shape as the rank-4 ap-
proximation of the rescaled measurement matrix computed using singular \edamgosition
and given bySVDy(W) = MS. The projected deviation from the mean would then be defined as

i
before by{w;; —X;} = W — MS and the projection of thBoN can finally be computed as:
c ~ ~ T
Cj :_Zl(""”' —Xj)(wij —Xj) (6.10)
i=

in the form of a 2< 2 covariance matrix. Instead of using the full informatiorcefwe approxi-

mate the scorsas the sum of the diagonal valuesdgf
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Figure 6.2: Conditional densities for the score given: (a) that a poinigid p(sjr) or (b)
non-rigid p(sr) approximated from the normalised frequency histograms for differerthsyic
and real sequences with different degrees of perspective distod&formation and ratio of

rigid/non-rigid points.

Computation of the prior
Tordoff and Murray [140] showed that guided sampling based on ladye extracted from the
images can greatly improve the performance of a random sampling methagtiadpin the
presence of noise or of a high number of outliers. In these cases sladRAAISAC becomes
computationally prohibitive given the large number of random samples thatbawsawn from
the data. Here we use the 2-D projection of ffeN defined in the previous section to provide the
scoresfor each point trajectory which will be used to build a prior distribution of tbhaditional
probability of each point in the object being rigid or non-rigid given thisreco

We have inferred the conditional probability density functions for the essaiven that a
point is rigid p(sjr) (see figure 6.2(a)) or non-rigig(s|r) (see figure 6.2(b)) by computing the
normalised frequency histograms over many experimental trials with syntinetieal sequences
with different perspective distortions, degrees of deformation andsrafidgid/non-rigid points.
We have then approximated the histograms by fitting appropriate analyticaidngs. To derive
the prior conditional density function of a point being rigid given the nigidity scorep(r|s)

we use Bayes theorem:
p(sir)p(r) p(slr)
p(s) - p(sir) + p(slr) (6.11)

Figure 6.3 shows an example of a prior obtained from our experiments. tNatealthough

p(rls) =

the computation of the score is specific to each method the derivation of thegpram the
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Figure 6.3: Estimated prior given by the estimated densji{gg) and p(s|r).

distribution of the score is general.

Guided RANSAC

We use guided RANSAC to estimate the fundamental matrices between pairasefcative
views for all theF frames composing the sequence. This process will be used to provide a se
mentation of the image trajectories into rigid and non-rigid ones since the nigrtndgectories

will not satisfy the epipolar geometry and will therefore give a high redigduthe computation

of the pairwise fundamental matrices. In order to speed up the proceassenthe prior derived

in the previous section to draw the point samples: points with the highest coradifimbability

of being rigid will be chosen more frequently. The RANSAC with priors @dare is outlined

as follows:

1. Compute the scorefor each trajectory in.
2. Sampleb trajectories given the priop(r) and the scors.

3. For each sample estimgfe — 1) fundamental matrices from each pair of consecutive

frames.

4. Calculate the distance of the points from the- 1 instantiated models and find the

trajectories that are within a threshdld

5. Repeal times and determine the largest consensus given a set of trajectories
Algorithm 2.

The method employed to estimate the fundamental matrix is the standard 8-point algo

rithm [62] giving b = 8. The distance thresholdwhich decides whether a point is an inlier
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or an outlier (rigid or non-rigid in this case) was set empirically tat be4.12. It was fixed by
taking into account the sum of the residuals given by the estimation of Fethfnental matrices
using normalised coordinates. Notice that we do not consider outliers imthematching from
frame to frame. We show results which asses the performance of the gsidgiing RANSAC
algorithm applied to the segmentation of rigid and non-rigid points in the expetanssection.
To notice that a common problem of RANSAC methods is their weakness to eldsiatliers,
that in our case corresponds to strong deformations affecting a reélpagrof the image mea-
surements. Additionally, we assume that the image points are extracted fiogierson-rigid
body. The algorithm would fail in the presence of articulated structuresirfstance, the torso
and the hands of a person) which show clustered rigid motions.

Once the scene has been segmented into the rigid and non-rigid point seEiBywete metric
non-rigid shape in two further steps. First we use the rigid points to estimatathera intrinsic
parameters — which provide the necessary information to upgrade théustrte metric — and
the overall rotations and translations. Secondly, we formulate the estimatioatdt non-rigid

shape as a global non-linear minimization with shape priors over the rigid toaes:

6.4.2 Step 2: Computing the metric upgrade

In order to obtain a metric upgrade, we first extract a projective reaartgn from the measure-
ment matrix given the rigid set of points using Heyden'’s [68] sub-spad¢kade The upgrade to
metric space is then obtained using Pollefeys et al.’s approach for dideatalibration which
provides estimates for the camera intrinsic parameters, the overall rigid mottitha rigid

shape.

Perspective reconstruction

Given the segmentation of the trajectories into rigid and non-rigid, we may rmae:w

W= [ Wrigid ‘ Wnonrigid ] (6.12)
Whereﬁrigid andﬁnomigid are respectively theRBx r and F x (P—r) matrices containing the
rigid and P —r) deformable image points. Following the projective approach outlined in gectio

6.1.1, we initially extract the projective 3-D shape and motion using the satesmethod of
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Heyden [68] obtaining:

P
Wrigid — | { X1+ Xy } = Mrigid Srigid (6.13)

Pr
with Mrigid and érigid containing respectively the projective matridgswith i = 1...F and the
homogeneous coordinates for the rigid 3-D poDﬁ;SNith j =1...r. Note that the method com-
putes the projective weights; and decompose%igid into the rigid motion and shape matrices.
Once more, the decompaosition h_b,igid is up to an unknown 4 4 projective transformatioq
such thatirigia = Mrigia @ @ *Srigia. We solve uniquely fog and then upgrading the rigid structure

to metric by performing self-calibration over the projective matrices storéﬁdﬂ.

From perspective to metric: self-calibration

In our specific case, we have used the well-known self-calibration mettogpebsed by Pollefeys
et al. [120]. The main advantage of this direct method is that it allows to impiffseeetht con-
straints on each of the camera intrinsic parameters (focal length, pripopaland aspect ratio)
since the camera calibration matrix is parameterized explicitly in terms of them. Hahbk o
parameters may be considered to be known, unknown but constantepetiasvs or unknown
and varying.

The projection matriXp; for framei is a rank 3 matrix which may be decomposedas-
Ki[Ri | ti], where the rotatiorR; and the translation; represent the Euclidean transformation
between the camera and the world coordinate systemgaiscan upper triangular as already
shown in equation (6.2).

The basic idea of this method (for a detailed description see [118]) cooriperameterizing
thedual image absolute coni" in such a way that it enforces the constraints on the calibration

parameters using the equation:
W =Kk OPQPl =rPiqQ"P/ (6.14)

wherek; encodes the intrinsic parameters of the camprare the projective camera matrices
andQ* is theabsolute quadridor which a minimum parameterisation of 8 parameters is used.
Note that constraints on the intrinsic camera paramétgeese translated to constraints on the

absolute quadric. As suggested by Pollefeys et al. the solution of théeepraian be obtained
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through non-linear least squares minimizing:

E 2

minizl

where initial estimates are obtained by means of a linear method.

KiK' PiQ*P|

— 6.15
AR (6.15)

F

After performing self-calibration, it is possible to obtajwhich allows to upgrade the cam-

era matrice®; and structure to metric space. ﬁ@,id may be expressed as:

Kl[letl] s, 5,
. . 1 ]
1 ... 1
K [Re|te]
The matrixSyigig given by the collection of the 3-vectors such tBagig = [S11...Sir] is the 3xr

rigid basis of the deformable 3-D structure.

6.4.3 Step 3: Non-linear optimization

Following the approach presented in chapter 3, we solve for the nonstigigle and motion given
the 2-D image reprojection error. The cost function being minimised is the geordistance
between the measured image points and the estimated reprojectedqpsifits || wij — Xij %=
Sij Il wij —Pi)Zij |> wherep; is the projection matrix in the Euclidean framand )Zij is the
4-vector that encodes the homogeneous metric 3-D coordinates of jpioifitamei. In order
to ensure good numerical conditioning we work with normalised image codediga described
in [67].

We parameterize the projection matrices in terms of the calibration mattjceke rigid
rotation matricek; using quaternions and the translation vectprs The coordinates of the
non-rigid points)?ij are parameterized in terms of the basis shaggsand the deformation

coefficientdig. We may now write the non-linear minimization scheme as:
2

. S 1liaSyj
PRI Rl L B (6.17)

wherell is a function such that:

a
a
Nl p|=1] ¢ (6.18)
b
c
C

We then impose the priors on the rigid points (zero value for the non-rigid oaemt) as we

explained for the orthographic case in section 5.5.2. If the motion of a pardcompletely rigid



6.4. Our approach 130

for the entire sequence, the structure referring to that point can bessqd entirely by the first
basis ( = 1) called the rigid basis. From this it follows that for a rigid pot =0 VvV d>1
whereS; = [S];,...,Sp; 1.

Note thatS; is a D + 1 vector which encodes tH2 basis shapes for poirjtand Sy is a
3-vector which contains 3-D coordinates of basis shéer point j. Notice that this forces
3(D —1) zeros in each column of the shape matrix corresponding to a rigid point. \te wr
these expectations as priors on the coordinates of the basis vBgf@nsd solve the problem as
a Maximum A Posteriori (MAP) estimation.

Note that the final expression for theotionand3-D structurematrices is as follow:

[11K1R1 ... |1pKiR1 Kitg

=|
I

{ STrigid ‘ §nonrigid ] (6-19)
IEiKERE ... |pDKFRE  Kptg
where the(3D + 1) x r rigid component of the 3-D structur@igid is given in homogeneous
coordinates by:
Srigid
Srigid = 0 (6.20)
1T
with 0 being a 3D — 1) x r matrix of zeros and ar-vector of ones. Thé3D + 1) x (P—r) matrix
§nomigid contains the deformable bases for the non-rigid points in homogeneoubraies such

that:

— Snonrigid
Snonrigid = (6.21)
lT

wherelis a(P —r)-vector of ones.
Initialisation

Non-linear optimization requires an initialisation of the parameters to minimize. Thecmetr
rigid component of the shape and structure given by self-calibratioreid tesobtain a reliable
initialisation of the intrinsic and extrinsic parameters for the camera and the metrituse for

the rigid points. Now it is possible to estimate the first b&sifor the deformable model given
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the projection matriceB; = K;[R;|ti] using the expression:

+
Py
Sir1y oo S1p

1 o1

\'Vnonrigid (6.22)

Pr

The coordinates of the rest of the basis shapes which encode-tHienon-rigid component3y
withd = 2,...,D are initialised to small random values [141, 38]. The configuration weights a
sociated with the mean shabgare initialised to 1 while the rest of the weiglsare initialised

to small values.

6.5 Experimental results

This experimental section validates the methods for rigid/non-rigid segmengatbB-D metric
reconstruction with synthetic and real experiments. The synthetic testseaigndd in such
a way as to verify the performance of the method in case of different rafiogid/non-rigid
points and with two different setups of perspective distortions. Additiontily quality of the
3-D reconstruction is tested with cameras with constant and varying intrinsics

Finally, three experiments present the performances of the approacé case of real de-
forming objects. Two tests use image measurements obtained from a Vicomsykteh pro-
vides as well the ground truth for comparing the 3-D reconstructions. ré@tmaining test is

performed over less accurate measurements extracted by an image pubiet (FLT).

6.5.1 Synthetic data

The 3-D data consists of a set of random points sampled inside a cubeeafGx 100 x
100 units. Several sequences were generated using different ehtragid/non-rigid points.
In particular, we used a fixed set of 10 rigid points while using 10 and 58rigid points.
The deformations for the non-rigid points were generated using randeis bhapes as well as
random deformation weights. The first basis shape had the largesttvegjgal to 1. We also
created different sequences varying the number of basis sHape8 @ndD = 5) for both ratios
of rigid/non-rigid points. Finally, in order to evaluate different levels ofgpective distortion we
used 2 different camera setups in which we varied the distance of the tibfee camera and the
focal length (Setup 1: z=250, f=900; Setup 2: z=200, f=600). Hiedata was then projected

onto 50 images applying random rotations and translations over all the @aessian noise of
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Noise

Experiments 0 05 1 15 5

Expl: D=5, 10/10, setup 1) 0.28 | 0.48 | 0.55| 0.72 | 0.77

Exp2: D=5, 10/50, setup 1) 0.31 | 0.38 | 0.46 | 0.55 | 0.72

Exp3: D=3, 10/10, setup 1} 0.95| 1.36 | 1.53 | 1.60 | 1.54

Exp4: D =3, 10/50, setup 1) 2.19 | 2.38 | 2.33 | 278 | 2.51

Exp5: D=5, 10/10, setup 2 0.95| 1.36 | 1.53 | 1.6 | 1.54

Exp6: D =5, 10/50, setup 2 0.3 | 0.34 | 0.39 | 0.51 | 0.58

Exp7: D =3, 10/10, setup 2| 0.65 | 0.94 | 1.27 | 1.42 | 1.45

Exp8: D = 3, 10/50, setup 2| 2.09 | 2.37 | 2.28 | 2.31 | 2.27

Table 6.1: Mean misclassification error for different levels of Gausstserwith variances =

0.5, 1, 15, 2 pixels. The eight experimental setups use different number ot l{Bse 3,5),
ratios of rigid/non-rigid points (1010, 10/50) and camera parameters (Setup 1: z=250, f=900;
Setup 2: z=200, f=600). The mean error is computed over 100 testadbrsetup and level of

noise.

increasing levels of variance was added to the image coordinates.

6.5.2 Motion segmentation results

The experimental setup described beforehand was first used to ohtaidieation of the per-
formance of our segmentation approach presented in section 6.4.1. Rhstlyampling prior
p(r) was generated from a larger set of synthetic and real data. Sectesdy/using the guided
RANSAC approach were performed over the synthetic experimentsidedabove. Eight dif-
ferent experimental setups were tested with varying number of rigid/fgich{points (10'10,
10/50), basis shape®(= 3,5) and camera parameters (Setup 1, Setup 2).

The RANSAC procedure was tested over 100 trials for each setup aeddh level of noise.
The number of samples randomly chosen over the prior distribution wastbhx2800. At each
new trial the motion components (rotation and translation) of the objects atemdy generated
obtaining a 50 frames long sequence. The results in table 6.1 show the rair-dfjid points
being classified as rigid for the different setups. Better performaneesiatained for higher

ratios of rigid/non-rigid points and for more complex deformations (i.e., mosésbshapes).
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Noise

Parameter

meanf 0O 1049|098 | 134 | 254

std. dev.f | 0.02 | 0.66 | 1.42 | 1.46 | 2.62

max. f 0.09 | 343 | 856 | 597 | 1002

meanp, | 001|072 | 1.19| 161 | 214

meanp, | 0.01 | 0.77 | 1.18 | 1.63 | 2.26

Table 6.2: Mean, standard deviation and maximum relative error (%) fofotted length, and
absolute mean error for the principal poird,( py) for the different levels of Gaussian noise.

Results obtained when the intrinsic parameters were constant.

Experiments 4 and 8 obtain the worse results achieving a mean misclassifieadonf more
than 2 points.

Notice also a better algorithmic behavior in the case of stronger perspddieetion com-
pared to weaker ones since the effects of perspective distortionsedoighnétions are less am-

biguous in such cases.

6.5.3 3-D reconstruction results with constant intrinsics

For the first set of experiments we assumed that all the camera paranfetatdength, aspect
ratio, principal point and skew (equal to 0) remained constant oveetipgence. We then applied
our 3-D reconstruction algorithm to all the experimental setups descriffedeb The results are
summarized on the first row of figure 6.4 where we show the 3-D metric steaiion error
expressed in percentage relative to the scene size, the absolute ratatiaxpressed in degrees
and the r.m.s. 2-D image reprojection error expressed in pixels. The plots fiigtire show the
mean values of 5 random trials applied to each level of Gaussian noise.

Our proposed algorithm appears to perform well in the presence of imaige. The 3-D
reconstruction error is low even for large perspective distortions ané flarge proportion of
non-rigid versus rigid points. The 2-D error is also small and it appeaog tof the same order
as the image noise. Figure 6.4 also illustrates that the rotations are correictigtes. Reliable
estimates for the internal camera parameters (focal length and principél @e obtained even
in the presence of noise and they are summarized in table 6.2.

As expected, less accurate results were obtained in the presence afsqiiie non-rigid
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Figure 6.4: 3-D error, rotation error and 2-D error curves. First:roesults obtained when the
focal length ) was constant. Second row: results obtained for the 4 experiments witimgar

intrinsics (see text for description).

points) in the original set of rigid points as shown in figure 6.5. This is due é¢ofabt that
outliers introduce errors in the initial estimates obtained by the projective ragtbfization
and self-calibration. However, after applying bundle adjustment thdtsasyproved, providing

acceptable motion and structure estimates.
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Figure 6.5: 3-D error, rotation error and 2-D error plots in the preseari¢wo non-rigid points in
the set of rigid points. Setup 2 is used in two experiments with varying numbggidfon-rigid

points. Results show the effect of outliers compared to the case with tdatec

6.5.4 3-D reconstruction results with varying intrinsics

We then performed a set of experiments in which some of the internal parsmétbe camera
were varyied throughout the sequence. We designed 4 differestiegnts using camera setup
2 (Z =200, f =600), a ratio of 10 rigid to 50 non-rigid points and 5 basis shapes. Foer=xp
ment 1 the focal length of the camera varied linearly throughout the seguwenile the rest of

the internal parameters remain constant. In the optimization algorithm we corbitthe focal
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length unknown and allowed it to vary during the minimization while the principahtpeas
considered to be unknown but fixed throughout the sequence andpbetaatio and skew were
considered knownr(= 1 ands= 0). Experiment 2 had the same experimental setup but during
the optimization process we allowed both the focal length and the principal poiary in the
minimization. In Experiment 3 the focal length and the principal point both gatieoughout

the sequence. In the minimization we considered the focal length unknahallawed it to vary

but the principal point was assumed to be fixed but unknown. Finally ireExent 4 we used
the same setup as in Experiment 3 but allowed both the focal length and tlegalipoint to
vary in the minimization.

The results for all 4 experiments are illustrated on the second row of fgydreThe results
obtained for the internal camera parameters are summarised in table 6.3. &tdtg the noisy
cases in which the real principal point was varying better estimates wé@et assuming the
principal point constant during the minimization.

Finally, we performed another experiment in order to show that inclusiggriofs is fun-
damental to avoid local minima and to improve the reconstruction results. We thesame
set of experiments in which only the real focal length was varying anecasatio and principal
point were assumed constant during the minimization. Results with and withiogtprsors are
illustrated on figure 6.6.

As expected, better results are obtained when priors are used. Thixaaearly seen in
the case of no noise where the use of priors allows to improve the comgerde the global
minimum. Notice that the minimizations with and without priors were initialized with the same
values thus showing that the inclusion of the additional penalty terms insré@seeliability of

the reconstruction and the convergence of the algorithm.

6.5.5 Real experiments

In these experiments we tested our method using real 3-D data of a hunesanidof a scene
with deforming and rigidly moving objects. We present three experiments; ifirdfiewo we

test our method compared using ground truth given by accurate measuseoiained from a
VICON motion capture system. The final test shows the 3-D reconstruarits with mea-

surements automatically generated by a point tracking algorithm (KLT).



6.5. Experimental results 136

Noise
Parameter
0 0.5 1 15 2
meanf 0 056 | 1.68 | 1.69 | 3.90
std. dev.f 0 018 | 1.26 | 094 | 1.99
Expl max. f 0 0.83 | 349 | 322 | 7.16
meanpy 0 059 | 148 | 1.29 | 6.03
meanpy 0 091 | 243 | 250 | 3.46

meanf 001| 293 | 514 | 1028 | 10.97

std. dev.f | 0.01 | 0.79 | 292 | 6.96 | 433

Exp2 max. f 0.02 | 391 | 836 | 2012 | 1492

meanp, | 0.09 | 1117 | 1801 | 26.68 | 27.50

meanp, | 0.08 | 6.66 | 14.80 | 2293 | 2891

meanf 069 | 1.04 | 1.16 | 3.10 | 292
std. dev.f | 0.27 | 050 | 0.38 | 258 | 1.15
Exp3 max. f 1.04| 175 | 1.81 | 596 | 4.47

meanp, | 297 | 296 | 301 | 3.77 | 3.97

meanp, | 349 | 334 | 347 | 588 | 3.79

meanf 0.05| 211 | 493 | 1040 | 10.38

std. dev.f | 0.04 | 1.05 | 351 | 292 | 466

Exp4 max. f 0.09| 3.60 | 880 | 1427 | 1417

meanpy 0.10| 595 | 1271 | 1601 | 16.31

meanp, | 0.07 | 3.49 | 10.61 | 1434 | 1554

Table 6.3: Mean, standard deviation and maximum relative error (%) ofate fength and

absolute mean error (pixels) of the principal poipg,(py) for different levels of Gaussian noise.
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Figure 6.6: Obtained results with and without using shape priors. 3-D, eotation error and
2-D error curves for the set of experiments obtained with camera setGbasis shapes and
10/10, 10/50 rigid/non-rigid points. Focal length was varying while aspect ratio airttipal

point were constant.

Human face

In the first real experiment, 37 trajectories are generated from a huacarttat is undergoing
rigid motion while performing different facial expressions. The 3-D poietonstructed by the
motion capture system are then projected synthetically onto an image seddefiaenes long

using a perspective camera model. The size of the face model was1i9®x 102 units and the
camera setup was such that the subject was at a distance of 300 unithé&@amera and the
focal length was 600 pixels so the perspective effects are significant.

In this case the segmentation of points into rigid and non-rigid sets was domaiyally
selecting 14 points situated on the nose, temples and the side of the face.pbies are high-
lighted on the frontal view of the first frame of figure 6.7. This figure shéwesground truth
(squares) and reconstructed shape (crosses) from front, gside@miews. The 2-D reprojection
error was 067 pixels, the absolute 3-D error waf2 units and the focal length was 593 pix-
els. The results are satisfactory even considering that the selectedaigtd were not perfectly
rigid during all the sequence. Note that the deformations are very welliabby the model

even for the frames in which the facial expressions are more exagderate

Pillow scene

The scene consisted of a set of 12 rigid points (9 on two boxes and Zamlair) and a set of
20 deformable points situated on a pillow which was deforming during the segugsee first

row of figure 6.8). The 3-D points were then projected synthetically onionage sequence 75
frames long using a perspective camera model. Gaussian noise pixels was added to the

image coordinates. The size of the scene was 82 x 53 units and the camera setup such that
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Figure 6.7: Front, side and top views of the reconstructed face. Rigotisns are shown for
frames 1, 31 and 74. Cross marks are used to indicate the reconstruttiensguare marks

refer to the ground truth. Highlighted marks on the frontal view of frame icete rigid points.

the scene was at a distance of 150 units from the camera and the fodl Vesg) 900 pixels
and constant during the sequence. Figure 6.8 shows the ground tutivés) and reconstructed
shape (crosses) from two different viewpoints. The 2-D reprojecioor was 095 pixels, the
absolute 3-D error was.34 units and the absolute rotation error wat12degrees. The focal
length was estimated to be 899 pixels. The same experiment was repeatedying the real
focal length from 700 to 1000 during the sequence. In this case theepidjection error was
0.96 pixels, the absolute 3-D error was$® units and the rotation errotZ7 degrees while the

mean focal length error was B# pixels (see table 6.4).

Cushion scene: automatically tracked data

In this experiment we show qualitative results with measurements obtainecfikdi tracket.
Some key frames of the sequence are presented in figure 6.9 (a) shbeiobject rigidly ro-
tating (frames 1 and 160) and three deformations (frames 340, 410 &)d #Be 560 frame
long video sequence is captured with a Fire-i digital camera wi@bdm built in lenses. The
tracking algorithm is able to obtain 256 trajectories located on the rigid (60 poietsthe box)

and non-rigid (196 points over the cushion) surfaces of the sceretrajectories are then sub-

Lhttp://www.ces.clemson.edustb/kIt/
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Figure 6.8: Real 3-D data. First row shows examples of the analysee.s&s=cond and third
rows show two views of the reconstructed scene. Cross marks indicadasteuction while

square marks refer to ground truth.

) Error
Experiment
2-D (r.m.s.)| 3-D (%) | Rotation (r.m.s.)| f error
f =900,d =150 0.95 pixel 134 2.11 degree 1 pixel
f =700—1000,d =150 | 0.96 pixel 1.65 2.77 degree | 34.84 pixel

Table 6.4: Estimated errors for the pillow sequence. Two setups with caritanexperiment)
and varying (second experiment) intrinsics are tested and results avediior the 2-D repro-

jection, 3-D reconstruction, rotation and focal length errors.
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sampled in time to obtain an overall sequence of 112 frames giving a measimrateix W
of size 224x 256. Ground truth reference is not available in this scene, thus we shigvite
results for the 3-D reconstruction after performing self-calibration uiegigid points and non-
linear optimization to correctly model the shape deformations. The camerainfigameters
were considered constant for each frame and the aspect ratio andagke fixed to 1 and O
respectively. The presented results are obtained after 40 iterations nbthlinear optimization
algorithm with a number of basis shapes sdbte: 5.

Figure 6.9 shows front, side and top views of the 3-D reconstrucitorsthe deforming
object. Frames 1 and 160 show only rigid displacements of the object anththB8<D structure
is correctly not deforming for the two frames. The last three frames shewtukhion bending
and the box structure remaining rigid. Note in the top views of figure 6.9 (dptkeerved

orthogonality of the two reconstructed planes belonging to the box.

6.6 Closure

The proposed approach for the estimation of Euclidean non-rigid shayea sequence of un-
calibrated images takes advantage of an initial segmentation of the sceneiptintgid and
non-rigid from which self-calibration can be used to extract the metric rigjigcgire and the
internal camera parameters. Then, a non-linear optimization stage glodatg smd refines the
estimates for the deformable components of the inspected object.

Motion segmentation of rigid and non-rigid points under perspective vieaonglitions is re-
quired to define the priors for the specific object. The approach predenbased on a RANSAC
technique whose convergence is aided using sampling priors over théstersgt of trajectories
in W. The discriminant for separating the two classes of motion is given by thestency of a set
of trajectories with the epipolar geometry obtained by estimating fundamental exb@tween
pairs of view.

The construction of shape rigidity priors has a twofold effect. Firstly, ediirgdhe internal
camera parameters allows to upgrade the structure from projective to npetce.sSecondly, as a
computational aspect, the introduction of the priors in the non-linear optimizstions relevant
increments in the convergence ratio to the global minimum. Xiao and Kanadetitlaitg [161] —

based on prior knowledge about the independency of the shape-bpsdserms well in the case

2Video available at http://www.bmva.ac.uk/thesishive/2006/DelBuel/index.html
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_—

(a) (b) (€) (d)
Figure 6.9: Five key frames of the sequence with automatically tracked alafiaafnes 1, 160,
340, 410 and 490. The first column (a) shows the tracked points (blts} ying over the
rigid and non-rigid parts of the scene. Note the perspective distorti@ctaff the rigid box.
The remaining columns shows front (b), side (c) and top (d) views oftiskion and box 3-D

reconstructions.
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of no noise but has a slow convergence ratio when Gaussian noisptsaire image coordinates.
Our non-linear minimization, on the other hand, converges fast (usuaiythes 30 iterations)
regardless of the level of Gaussian noise in our synthetic experiments.

Xiao and Kanade’s algorithm — based on prior knowledge about the émdigmcy of the
shape bases — performs well in the case of no noise but has a slowgemse ratio when noise
corrupts the image coordinates.

The experiments on synthetic and real data have shown firstly that eveamuweing a mini-
mal set of rigid points and when varying the intrinsic camera parameters isislpe to obtain
reliable metric information and secondly that the shape priors are fundanmergeoid local
minima given by ambiguous configurations of motion, perspective distortidrdaformation.
Notice that the method can successfully recover from situations in whicl @dets are mis-
classified as rigid even when the deformations are strong. The segmerstaijgnobtains rea-
sonable results for the configuration of basis, cameras and points theteelyer we noticed a
higher misclassification ratio with weak perspective effects and highgopiion of non-rigid
points. A further observation is that points that are semi-rigid (being rigigt for a part of
the sequence), may appear undetected since they conform with the epipataetry only for a

subset of frames.
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Chapter 7

Conclusions

This thesis has dealt with different aspects of the problem of modellingrdafde shapes from
uncalibrated video sequences. We have reviewed and discussed thasnpthposed so far
in the literature and described their strengths and weaknesses. In th&iriglleections we
summarise our proposed solutions to some of the shortcomings of currerddaethd point out

directions for future research and improvements to our framework.

7.1 Non-linear optimization for non-rigid structure from m otion

Three dimensional reconstruction of deformable shapes is intrinsicallp-dimear problem due
to the fact that the parameters modelling the camera motion and the 3-D deforsragairongly
coupled. The linear solutions proposed in the literature, which impose antiadity constraints
on the camera matrices, fail to provide accurate reconstructions. Recéathyet. al. [159, 160]
proved that the orthonormality constraints on the camera rotations areffioiesu to solve the
ambiguities and they proposed a new set of constraints on the shape Bhe@swork proves
that when both sets of constraints are imposed, a closed-form solution prahlem of non-
rigid structure from motion exists. However, their approach requiresghelt basis shape in the
deformable model be observed independently in at least one view. Thisiodigas been proved
to break down with noisy data or when the number of basis shapes is metpestimated.

In this thesis we have proposed an alternative approach using a nan-ipémization
scheme which preserves the correct geometric structure of the motion astlstr matrices

by minimizing a non-linear cost function which expresses the image reprajeetior in the
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model parameters. This minimization presents two main challenges. Firstly it isdeadg in
essence since the number of parameters to estimate increases with the niwvidves and with
the number of basis shapes. In this sense, a careful choice of thegiarization of the problem
has proven to improve the results. Secondly the high non-linearity of théuwuadion introduces
possible local minima which may prevent the algorithm from converging to tiespdution. In
order to render the minimization tractable, we have reformulated bundletadjnstechniques,
which take advantage of the sparseness of the jacobian matrix, to deal evithgl of deforming

objects.

7.2 Stereo non-rigid factorization

Given the same non-linear estimation framework, we have shown that itsgpo extend the
method to include measurements from different cameras, to extract reli@ble@onstructions,
and to compute the relative orientation of the cameras in an uncalibratediscéndhis thesis
we have concentrated on the stereo camera case. The use of two oram@eas is necessary
when the object is only deforming since structure from motion methods requsignificant
component of rigid motion to obtain accurate depth estimates. Our experimemnisisit the
reconstructions obtained with monocular views are of poor quality. Asagdeincluding dif-

ferent camera views solves for the model parameters.

7.3 Non-rigid 3-D modelling using shape priors

A non-rigid object can be thought of as an underlying rigid body urmiegyglobal rotations
and translations while suffering some local non-rigid deformations. Fordéason, non-rigid
3-D shape recovery is an inherently ambiguous problem. Given a spagifienotion, different
non-rigid shapes can be found that fit the measurement. To solve this dtyhigupropose to
exploit prior knowledge on the 3-D structure such as the rigidity of someeobbserved points.
We have focused on the observation that often not all the points on a mamthgleforming
surface are undergoing non-rigid motion. Some of the points are fréguam rigid parts of
the structure while others lie on deformable areas. Intuitively, if a segmemiatavailable, the
rigid points can be used to estimate the overall rigid motion and to constrain tiedyind mean
shape by estimating the local deformations exclusively with the parametersassl to the non-

rigid component of the 3-D model. We have showed that improved estimatesecachieved
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when these priors are used. However, an algorithm able to perforrmatitosegmentation of

rigid and non-rigid motion is required for our approach to be viable.

7.4 Motion segmentation of rigid/non-rigid points

Rigid and non-rigid motion segmentation is not a trivial task since rigid pointsabaays be
understood as non-rigid points which can be described by a single lbegis.s However, we
have shown that it is possible to separate rigid points in both the orthograptiithe full per-
spective case by exploiting the constraints arising from the rigidity of thetsire. In the case of
orthographic cameras, we have introduced a segmentation method basddature selection
strategy. Trajectories which are highly non-rigid are selected firsteamoved from the measure-
ment matrix untilw reaches the rank-3 condition that corresponds to the remaining trajectorie
moving as a rigid body.

In order to segment points in the projective case, we used a differgmépy to disambiguate
rigid and non-rigid trajectories: rigid trajectories give small residuals wissd to estimate fun-
damental matrices between pairs of views. We have introduced a RANSAG@adwtiich ran-
domly selects sets of trajectories until the best candidate is found. To aidrtiptisg procedure,
we have proposed to assign a sampling prior given a measure of defbitynafta point which

increases the likelihood to select rigid trajectories.

7.5 Metric 3-D reconstruction of non-rigid shape from perspective images

In the case of perspective viewing conditions, once the scene haségernted into rigid and
non-rigid point sets, the rigid trajectories can be used to obtain an estimate ofaan rigid
shape, the overall rigid motion and the camera calibration parameters (whishta upgrade
the structure to Euclidean space). This supporting rigid structure and neatiobe used as the
initial estimate for a non-linear estimation framework of the overall non-rigidcstire where
the non-rigid basis shapes and configuration weights are estimated asdde#bns from the
mean rigid shape. The fact that image motion is a consequence of threemtitfentributions:
perspective distortions, rigid motion and local deformations is a sourcessilple ambiguities
between the parameters of the model. However, we show that these ambigaijid® avoided
by incorporating priors on the degree of deformability of each point in themization process.

In particular, our expectation is that the rigid points will be fully describedhsy first basis
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shape. These priors can be incorporated within a maximum a posteriori gatiframework.

7.6 Future work

One of the fundamental observations we have used in this thesis is thedfaitidtoften reason-
able to assume that not all the points on the surface of a non-rigid obgedegorming: while
some of the points might be undergoing pure rigid motion others might deforne aathe time.
This constraint has proved very valuable both to provide priors on theedef deformability of
each point and to allow the computation of the metric upgrade transformation taskeeof per-
spective viewing conditions. However, the assumption that a point is cortypiigie throughout
a long image sequence can become too restrictive. A class of trajectorleve@ot dealt with
in this thesis is the class of points which have a semi-rigid behavior. Semi-rigitsEre points
that are rigid for some frames of the sequence but that occasionallyndefith respect to the
mean shape. These points could also provide valuable priors to be usé&sh&pe estimation
while relaxing our assumptions. Notice, however, that the automatic segmandigiarithms
described above would have to be modified to cope with the detection of pahtsatve a mixed
behaviour.

A further interesting aspect is the extension of our framework to deal viffitreint types of
non-rigid objects. In this thesis, we have restricted ourselves to the tassimgle deforming
object but often, in a generic and unknown video sequence, images tnaek belong to a struc-
ture with higher complexity. For instance, in the case of the human body, teedabviously
deformable but trajectories could also be extracted from the torso, amiggsmwhich are con-
nected as articulated shapes. Image trajectories lying on different refmtnding and articulated
parts would have to be associated to the correct model describing thelé@pendency of each
body. The problem of associating (i.e. segmenting) the entri@scofrectly to the appropriate
object part would be extremely challenging, especially if the only informati@ilable are the
image tracks taken from an uncalibrated sequence without any useedigfiors.

Of more direct practical use, a future avenue of research is the @xteofsthe framework
to deal with missing entries in the measurement matridt is a rather optimistic assumption
to believe it is possible to identify the coordinates of all the feature points in allvibws,
particularly when dealing with long sequences. Besides, this poses tieagion the types of

object motion permitted: there cannot be so much rotation for instance thatafdheefeatures
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go out of view. Note that this is not a problem for the non-linear minimizatioméaork since
if an entryw;; in W is missing, the quadratic term referring #g; is not included in the cost
function. However, the non-linear methods require initialisation which wéoparusing one of
the linear approaches for which the complete measurement matrix is reg@ddionally, our

proposed motion segmentation algorithms require no missing entrieés Anpossible solution
would be to adapt methods already designed for the rigid case to deal vigtimadle structure

such as the sub-spaces technique of Sugaya and Kanatani [134].

Figure 7.1: Tracking faces with deformable models. The methods preserited thesis can be

used to generate a 3-D deformable model which can then be used effictetndgk in real-time

a face performing various expressions [108purtesy of E. Miioz

7.7 Applications

From the applications point of view, we plan to exploit the generated geomatidels in several
computer vision systems. Our deformable models obtained automatically fromcafibwated
image sequence have already been shown to obtain promising resulissftrafeking [109, 108]
(seefigure 7.1 for an example). A new avenue to explore is their applidatinadical images. In
this case the use of priors may help to model and register deformable bidlsigégees given the
rigidity of some parts of the structure. For instance, in the case of diagofdséart conditions it
would be possible to detect possible anomalies in the motion of the organ bytsavarccurate
deformable model of a heart.

A real-time tracking algorithm which uses deformable models could be usenécedravatar
as demonstrated by Buenaposada et al. [21] and as shown in figurtnZt2s case, the face
was modelled as a set of 2-D planar patches. If the tracking algorithmucaessfully describe
the deformations appearing in the object, this in turn can be used directly toterarsgnthetic
object or 3-D avatar without requiring strong post processing effortdhe user. Moreover, the

introduction of 3-D basis shapes to this scenario will ease the task of aninshtipgs with large
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Figure 7.2: A system [21] for real time face tracking (upper row) antm@atic animation of
a synthetic 3-D face (lower row). The tracking system is based on a @dhdr) statistical
description of the image appearance. The extracted parameters thétel&se deformations in

the image are used to pilot the animation of the 3-D f&murtesy of Dr J. M. Buenaposada

pose variations particularly when they suffer strong deformations.

Finally, our proposed techniques for rigid and non-rigid motion segmentatiaid be ap-
plied to cases in which the deviation of a set of object points from the ovagaliconfiguration
is indicative of a harmful situation. For instance in the medical domain, thetgrofia tumor

could be detected when some of the points on the surface begin to behae-agid.
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