
Deformable 3-D Modelling from Uncalibrated Video Sequences
Del Bue, Alessio

 

 

 

 

 

 

 

For additional information about this publication click this link.

http://qmro.qmul.ac.uk/jspui/handle/123456789/5058

 

 

 

Information about this research object was correct at the time of download; we occasionally

make corrections to records, please therefore check the published record when citing. For

more information contact scholarlycommunications@qmul.ac.uk

http://qmro.qmul.ac.uk/jspui/handle/123456789/5058


22

Deformable 3-D Modelling from Uncalibrated 
Video Sequences

ISSN 1470-5559

RR-06-11 August 2006 Department of Computer Science

Alessio Del Bue





1

Deformable 3-D Modelling from Uncalibrated

Video Sequences

Alessio Del Bue

Submitted for the degree of Doctor of Philosophy

Queen Mary, University of London

2006



2
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Video Sequences

Alessio Del Bue

Abstract

The rigidity of a scene observed by a camera is often the fundamental assumption used to infer
3-D information automatically from the images taken by that camera. However, avideo sequence
of a natural scene often contains objects that modify their topology (for instance, a smiling face or
a beating heart) thus violating the rigidity assumption necessary to reconstruct the 3-D structure
of the object. In this thesis, we address the challenging problem of recovering the 3-D model of a
deforming object and the motion of the camera observing it purely from image sequences, when
nothing is known in advance about the observed object, the internal parameters of the camera or
its motion.

Previous solutions to thisnon-rigid structure from motionproblem have either provided ap-
proximate solutions using linear approaches to a problem that is intrinsically non-linear or re-
quired strong assumptions about the nature of the 3-D deformations. In thisthesis, we propose a
non-linear framework based on bundle adjustment to estimate model and camera parameters. We
then upgrade the proposed framework to deal with the case of a stereo camera setup. We show
that when the deforming object is not performing a significant overall rigidmotion a monocular
approach leads to poor reconstructions, and only by fusing the information from both cameras
can the correct 3-D shape be extracted.

However, the problem of 3-D reconstruction of deformable objects is still fundamentally
ambiguous: given a specific camera motion, different non-rigid shapes can be found that fit the
observed 2-D image data. In order to reduce this effect, we introduce shape priors based on the
observation that often not all the points on a deforming object are moving non-rigidly but some
tend to lie on rigid parts of the structure. First, we propose motion segmentation algorithms
to divide the scene automatically into the rigid and non-rigid point sets. Secondly, we use this
information to provide priors on the degree of deformability of each point. Crucially all the above
methods only work under the assumption of orthographic viewing conditions.Perhaps the most
valuable contribution of this thesis is to provide a new algorithm to obtain metric reconstructions
of deformable objects observed by a perspective camera.
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Queen Mary, University of London
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Chapter 1

Introduction: Deformable Structure from Motion

One of the central interests of the Computer Vision community in recent years has been the

inference of 3-D information about the world directly from image sequences taken from a moving

video camera, when the specific details of the camera and its motion are all not known in advance.

Such free-form inference can only succeed if certain assumptions aremade, the standard one

being that the scene observed by the camera is rigid: its geometry is static and the only motion is

that of the camera. However, deformations which vary the structure of a shape are, on the other

hand, constantly appearing. The human body itself is a remarkable example;muscles and bones

stretch and tend the skin of the face to perform an incredible variety of expressions. Even at the

organic level shapes are far from being rigid: hearts beat and lungs are continuously inflating and

deflating. In this thesis we explore the challenging case of scenes that arenot completely rigid,

but which have certain degrees of flexibility or deformation.

The problem of 3-D inference from image sequences, generically known as structure from

motion, was originally considered in the context of mobile robots, which carrycameras when

navigating in cluttered environments and use the data received to build maps oftheir surroundings

and improve their movement estimates. However, the algorithms developed haveactually found

more immediate demand in areas such as multimedia, the entertainment industry, and medicine.

To address the problem of 3-D reconstruction from video sequences of non-rigid scenes, we will

relax the previous assumption of a static world and instead aim to recover notonly the essential

shape of objects but also information about their deformation.

The approach used in this thesis will extend recent work in non-rigid factorization [19, 16,



1.1. Structure from motion: the rigid case14

141], which has demonstrated that it is possible under certain viewing conditions to infer the

principal modes of deformation of an object alongside its 3-D shape within a structure from

motion estimation framework. The models recovered by these algorithms, can subsequently be

used as compact representations of the objects suitable for use in tracking, animation or other

analysis. There have been other computer vision systems able to build similar morphable 3-D

models of non-rigid objects. However, most of them rely on having additional information — for

instance depth estimates available from 3-D scanning devices [151] — or have been refined to

represent the specific object under observation: for example physically-based human face models

[41]. Crucially, factorization methods work purely from video in an unconstrained case: a single

camera viewing an arbitrary 3-D surface which is moving and articulating. Although there are

no constraints as to the type of objects that may be modelled, this thesis has focussed mainly on

the domain of human motion analysis — in particular 3-D reconstruction of facial motion.

1.1 Structure from motion: the rigid case

A camera is a projective device, which converts incoming rays of light into image positions

depending only on the direction of the rays when they strike the lens: no information is gained

directly about the depth of the objects viewed. To recover depth information, it is essential to

make use of multiple images of an object from different viewpoints: if there is only one camera,

it must move relative to the object. If the motion of the camera were known (for example if it

were attached to a precisely-driven robot arm) then calculating depth would be a simple matter

of triangulation. In most interesting scenarios, however, this is not the case: the camera motion

itself is also uncertain. It was shown by [94] that in fact with certain assumptions it is possible

to simultaneously estimate both the motion of a camera and the geometry of the scene itviews.

Structure from motion has since been defined as this problem of combined inference of the 3-D

motion of a camera and the geometry of the scene it views solely from a sequence of images.

The underlying assumption which has allowed solutions to structure from motionto be

achieved is that of scene rigidity: if objects are known not to change or deform, their shapes

are invariant entities of which estimates can be gradually refined. In typicalmethods, large num-

bers of well-localised features of high image salience — usuallycornerpoints — are detected in

each image of a video sequence. Postulating that each is associated with a repeatably identifiable

3-D entity in the environment, the features are then matched between each pairof consecutive (or
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close) video frames. The assumption of rigidity in the scene [150] translatesinto mathematical

constraints on the parameters describing camera motion, and many feature matches provide suf-

ficient constraint equations such that solutions for both the motion and the locations of the 3-D

features may be obtained.

There has been a great deal of work in rigid structure from motion in the last two decades. Of

particular importance to its wide application has been the development of techniques which work

even when the camera is uncalibrated: the specifics of its focal length and other internal parame-

ters are not known in advance. These self-calibration algorithms, following on from the seminal

work of Faugeras et al. [44], provide the flexibility of being applicable even in cases where little

is known about the details of image capture. Solutions to the problem of self-calibration have

been given in the case where camera motion is general — it exercises all ofits degrees of free-

dom [60, 146] and also to more specific scenarios: where the camera is known only to rotate on

the spot [63, 3], only to translate without rotation [105], or even where the camera has a zoom

lens [119, 71], all of which call for slightly different algorithms which takeaccount of this extra

prior knowledge.

In a certain relatively common scenario — that when the range of depths of scene objects is

much smaller than their distance from the camera — a linear approximation to camerageometry

known as an affine projection is valid, and in this case a direct linear method for estimating

camera motion and scene geometry over long image sequences can be used.Tomasi and Kanade’s

factorisation algorithm [138], developed in the early 90’s, has been oneof the most influential

works in structure from motion. The algorithm takes a set of image coordinates of a number of

features which can be matched in each image of a sequence of arbitrary length, and performs a

direct singular value decomposition (SVD) to recover its affine shape andmotion components,

taking advantage of the bilinear form of the shape and motion parameters. The 2-D matches

observed in an image sequence are stacked in an observation matrix which can be shown to have

rank 3. It was consideration of such issues of rank which led to the realisation that not only

rigid motion, but also a certain class of deformations could be dealt with within thefactorisation

framework, as will be discussed later.
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1.2 Classification of non-rigid shapes

Biological shapes through their inherent nature are non-rigid. Soft tissues like the skin and

muscles vary their shape under stress and pressure. This effect is clearly obvious when one

examines the rich and complex set of expressions that can be exhibited by ahuman face simply

by actuating different groups of muscles. These combinations of complex muscular actions have

been studied and modelled with particular care, not only from a physiological point of view but

also with the aim of creating realistic computer generated animations from which impressive

results are available nowadays, as shown in figure 1.1.

Figure 1.1: A computer animated character performing different facial expressions.

Similarly, non-rigidity and deformation are common properties of biological structures both

at the cellular and organic levels. Cells may constantly vary their morphologicalstructure under

the effect of physical and chemical interactions. Figure 1.2 shows an example of the temporal

evolution of a murine chondrocyte cell. On the other hand, organs may reveal interesting facts

about their function with careful analysis of the the deformations that appear in their motion. For

instance, anomalies in the heart may be detected by inspecting the repetitive pulse of the cardiac

muscles.

Figure 1.2: A live cell moving and deforming. The sample is taken from an immortilised strain

of murine chondrocytes. The purpose of the experiment is to obtain live images of the varying

cytoskeleton of the cell [89].Courtesy of Dr J. Campbell and Dr M. Knight.
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Given the wide range of possible degrees of non-rigidity present in nature, an effort to clas-

sify the type of motion of an object is necessary to understand which model may be applied

to efficiently describe the shape variations. A first attempt was presented by Huang [75] and

resulted in three generic classes of non-rigid motion:

• Articulated motion appears when an object is made up of a series of connected piecewise

rigidly moving parts. A clear example is the collection of articulations of a human body

connected by several joints with different degrees of freedom.

• Fluid motion is represented by structures which can freely vary their shape, such a flame,

water flow or clouds. They involve strong topological changes in their structure such that

they appear not to have any relevant continuity in their deformations.

• Elastic motion is distinguished from fluid motion by a continuity in the deformations that

appear in the motion. The shapes presented in figure 1.1 and figure 1.2 show classic exam-

ples of elastic motion.

This classification has been further refined by Goldgof et al. [50] and Kambhamettu et al.

[81] by introducing specific measures for the non-rigidity of the object. Inthe scope of this work,

we focus particularly on elastic motion that will be referred to more generally asdeformable

motion throughout this thesis.

Given a deformable motion, our aim is to estimate the underlying 3-D structure ofthe in-

spected object using a structure from motion approach to the analysis of theimage data. Thus,

we seek a description of the visual motion in terms of a deformable 3-D model and the global

rigid transformations that affect the shape. Given the complexity of the problem, deformable

3-D models have been studied extensively over the last two decades for the purposes of detect-

ing, tracking and analysing the non-rigid motion appearing in an image. Before introducing the

3-D deformable model used in this thesis, we proceed first with a general description of different

non-rigid models that have been proposed within the Computer Vision community.

1.3 Deformable shape models

As previously stated, a deformable object is a shape which varies its topology with continuity.

Accordingly, a deformable model of an object is one which has parametersdescribing not just

its shape but also the possible ways that the shape can change. Considera graphical model of a
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human skeleton to be used in animation: by setting the values of a list of parameters correspond-

ing to the angles at each of its joints, it can be put into different configurations. In computer

vision, there has been a large amount of work involving deformable models of objects, but with

certain restrictions. In many cases the models used have been defined by hand (perhaps bene-

fiting from some automatic refinement) or using sensing systems other than monocular vision,

such as 3-D scanning devices [151], structured light, markers, calibrated stereo [49] or multiview

reconstruction [115]. Often the models are specialised to represent specific types of objects. As

an example, elaborate 3-D face models have been constructed to obtain reliable face tracking

systems [32, 72, 116, 125] and, for instance, in the domain of medical imageanalysis, complex

models of the left ventricle of the heart have been applied to diagnose heart conditions [4, 48].

In an attempt to classify deformable shape models, the literature generally identifies three

main categories according to the mathematical description used to represent the deforming struc-

ture:

• Parametric deformable models. The non-rigid object shape is modelled by a set of pa-

rameters which explicitly vary the structure of a contour/surface. Parametric models are

generally constructed a priori to suit the specific type of deforming shape(i.e. human

faces, hearts, cells, etc).

• Implicit deformable models. A specific deformation is represented as a function that is

directly estimated from the image data. This function is defined as a level-set ofa higher

dimensional scalar function whose levels can adapt to a larger range of deformations.

• Generative models. The model is extracted using statistical techniques froma large collec-

tion (data-set) of examples showing all the possible changes in topology of the object. The

model is therefore a compact description of the given data-set.

These models have been successfully applied to different domains of imageanalysis, detec-

tion, tracking and recognition of deformable shapes. In the following sections we present detailed

descriptions and relevant examples of each class.

1.3.1 Parametric deformable models

Kass et al. [86] were the first to introduce 2-D parametric deformable models succesfully in

an image analysis domain. The problem addressed was to estimate the shape ofa deformable
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(a) (b)

Figure 1.3: An example of asnakecontour (in black) with control points (in blue) which define

its shape. Asnakeis moved to match the image contour of the object (in grey) using external

forces (red arrows) which attract the model to image edges as shown in (a). Internal forces assure

the smoothness of the contour whose position is iteratively estimated until convergence (b).

object using a parameterized planar contour calledsnake. The parameters of the model are

estimated such that the snake fits the deforming image contour accurately. In order to compute

the parameters, the algorithm gradually iterates to fit thesnaketo the deformable shape under

the influence of external image forces (for instance, image edges) and internal forces given by

smoothness constraints of the model as shown in figure 1.3. A 2-D contour iseasily generalizable

to deal with 3-D images, leading to the definition by Cohen [22] of aballoon. Further research

improved the performance ofsnakecurves introducing robustness to the measured image data

[136] and specific priors over the modelled objects [123, 165], resultingin a very successful

approach for medical applications.

Another class of parametric models which has received considerable attention in the past

is the family of shapes calledsuperquadrics [114, 56, 103, 45, 15, 104]. Initially introduced

in computer graphics by Barr [7],superquadricsare essentially derived from the parametric

Figure 1.4: An example of differentsuperquadricsellipsoids used to model deforming shapes in

images. The different shapes are obtained by varying the parameters ofthe mathematical model.
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Figure 1.5: A simple level-set parameterisation of a circle contour using a cone as the scalar

function. Circles of different radius (right) can be obtained by intersecting a cone (left) with

planes (the levels) at different heights.

forms of quadric surfaces (see figure 1.4 for an example), and are used to fit a deformable object

globally. However, they are not very accurate in describing natural shapes since the quadric

surfaces may result in too coarse an approximation of the real shape.

1.3.2 Implicit deformable models

A crucial drawback of parametric deformable models is their difficulty to adapt to unexpected

changes in the modes of variation in the given image data. The contour of asnakemodel has to be

constructed accurately to be able to cope with all possible deformations of anobject. However, in

some cases, complete knowledge of all the possible shape variations is not available in advance.

For instance in the medical domain, diseases like a tumor may change the structure of organs

and cells unexpectedly. If the parameterized model does not account for these deformations, the

result of the fitting procedure will be inaccurate.

A formulation of deformable models without an explicit parametrization of the shape was

introduced by Osher and Sethian [111] using front propagation. In thisapproach, the deforming

shape (or contour) is considered as a particular level-set of a scalar function. Thus each level

corresponds to a particular deforming surface/contour which has to be fitted to the image data

(see figure 1.5 for an example). Since the level-set approach does notrely on a fixed set of

parameters but on a family of curves, the representation power of an implicitdeformable model

is higher than that of a parametric one.
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However, the computations necessary to estimate the level-set are costly anduser interaction,

if required, is problematic to implement since there are no evident parameters toselect for driving

the convergence. Nevertheless, implicit deformable models have been successfully applied in

stereo vision [43], detection and tracking [112] and computer graphics [167].

1.3.3 Generative models

Generative or statistical models are obtained from a large set of observations of the deformations

appearing in the inspected object. For instance, 2-D deformable models of faces have been gen-

erated from large training sets of images of different people with a range of expressions. These

models, determined for example via principal component analysis (PCA) [27] take advantage

of the fact that a head-on view of a face is reasonably approximated as alinear combination of

the learned basis components. Such linear models have since been extended to cope with the

non-linearities introduced by significant variations of face orientations and self-occlusion [52]

and with local deformation [23] . However, they still suffer from requiring large amounts of

specialised training data and can fail to encode non-linear deformations appearing from very

different views. Other learned 2-D deformable models have included modelsof the outline or

contour of moving human figures [11, 124, 9].

Specifically tuned to facial analysis, Vetter and Blanz [13, 12] have introduced elaborate

techniques to create photorealistic 3-D morphable models. The shape and texture face model

is derived using hundreds of 3-D laser scans of subjects of different age, sex and ethnic origin.

After a preprocessing stage which cleans and aligns the mesh and texture information, the model

is extracted from the collection of data using PCA producing a statistical description of the data-

set in terms of linear basis shapes which represent the principal modes of variation of the model.

The 3-D shape and texture model can then be applied to fit a new subject using a single image as

input, as shown in figure 1.6.

Similarly, active shape models(ASM) [91, 25, 28, 90, 31] parameterize the 2-D shape vari-

ations of a deforming object. Each object is represented using a set of feature points which

usually corresponds to key points on the object (such as the corners ofthe mouth or the eyebrows

in the case of facial analysis). The shape is then described as a set of 2-D basis shapes which

are fitted to obtain the principal modes of deformation of the large set of training image data (see

figure 1.7 for an example). An advantage of such models is that they are obtained directly from

images (there is no need for expensive instrumentation such as laser scanner). However, 2-D
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(a) (b) (c)

Figure 1.6: The figure shows how 3-D morphable models can be used to recover the 3-D structure

and texture of faces in images. The image data (a) is fitted using the linear basisdescription for

the 3-D shape and 2-D texture in the model. The result (b) is the extracted 2-D texture from the

image plus a 3-D mesh of the face which are combined to obtain the final 3-D fit of the face (c).

Courtesy of E. Mũnoz, Dr J. M. Buenaposada and Dr L. Baumela.

(a) (b)

Figure 1.7: An example of active shape models (ASM) (b) used to model the 2-D shape variations

of the left ventricle of the heart in an echocardiogram (a). The left ventricle is located at the top

right of figure (a). The ASM model consists of a set of 2-D basis shapes whose linear combination

describes the deforming shape. Figure (b) presents the first two basesand their variations with

respect to the mean shape of the ventricle.Courtesy of Dr T. Cootes.
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models have difficulties in coping with strong pose variations which reduces the applicability

of the approach. The shape of the non-rigid object appearing in a new image can then be fitted

by computing the weights assigned to each basis which result in the best approximation of the

object contour. Of more recent introduction,active appearance models(AAM) [24, 100] are a

generalisation of active shape models which also incorporate the texture ofthe deforming shape

to obtain a statistical description of the object’s 2-D shape and appearance.

The advantage of statistical models compared to parametric ones is that they are derived

solely from real observations and thus encapsulate the deformations thatappear in the non-rigid

object. Often an a priori model of a surface such as asuperquadrichas less representation power

since it is not able to accurately describe a real world object. As a drawback, large data-sets from

which to extract a comprehensive statistical model are not easy to collect.

1.4 A linear model for 3-D deformable shapes

As we have stated in the previous section, it is possible to generate accuratestatistical models

from either 2-D or 3-D large collections of data. The approach followed inthis thesis is of similar

nature but differs in a fundamental aspect: given a set of 2-D image measurements extracted from

an uncalibrated video sequence, we seek to obtain a full 3-D deformable model of the scene.

Thus, the problem is not only restricted to the statistical inference of the 3-Dnon-rigid model

from 2-D data but also to the estimation of the camera matrices which project the non-rigid object

onto the image plane.

The shape at each time instance is formulated as a linear combination of a set of basis shapes

which describe the principal modes of deformation of the 3-D structure. The model parameters,

which we will refer to as configuration weights, are given by a set of scalars that provide the

appropriate weight for each basis. In a geometric form, the 3-D shape is represented as a cloud

of points lying over the deforming surface. Mathematically, the 3-D shape is represented as a

matrix S which contains the 3-D coordinates for each point of the object. The deforming shape

S at a certain frame is given by the linear combination of the basis shapesSd weighted by the

configuration weightsld such that:

S =
D

∑
d=1

ldSd S,Sd ∈ℜ3×P ld ∈ℜ (1.1)

whereD is the number of basis shapes andP the number of points in the model.



1.5. A factorization approach to 3-D deformable modelling24

Each basis shape describes a particular mode of deformation of the object.For instance,

in the face modelling domain, the basis shapes may represent specific facialexpressions like

surprise or a grin as presented in figure 1.8. Models created as a combination of a set of bases

have been previously used in many applications ranging from facial analysis [26, 151], tracking

[109, 49] and biomedical domains [79].

First Basis Second Basis Third Basis

Figure 1.8: An example of the linear pointwise model used in this thesis. The model is composed

of a set of 3-D basis shapes which are defined by a collection of 3-D point coordinates. A

deformation is represented as a linear weighted combination of the set of bases. The first basis

usually represents a mean 3-D description of the shape (in green). The second and third bases

are showed in the figure as a 3-D displacement (blue lines) from the mean component. The

resulting structure given the displacement for each basis (red points) usually refers to dominant

facial expressions (for instance, surprise and grin).

1.5 A factorization approach to 3-D deformable modelling

In this thesis we are interested in models which represent the full 3-D geometry of a deformable

object, but in particular in acquiring these models automatically and only from images rather

than having to use prior information or specialised sensors — a model free 3-D approach. The

nature of this problem leads us back to the original structure from motion question: what can

be determined about the motion of a camera and the 3-D non-rigid shape of thescene when no

information about the camera or the structure is available?

Recent results have started to open up this research direction [19, 141,16] proving that 2-D

point tracks in an image sequence are sufficient to recover 3-D non-rigid shape and motion under

the same affine viewing conditions in which Tomasi and Kanade’s algorithm proved successful in

the rigid case. This novel non-rigid factorization approach assumes thatthe 3-D non-rigid shape
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can be represented by the linear model described in the previous section.Their insight was that

since this representation is linear, it fits naturally into the factorisation framework. Once more the

underlying geometric constraints are expressed as a rank constraint which is used to factorise the

measurement matrix into two lower dimensional matrices that encode the motion and the shape

of the object using singular value decomposition:W = M S.

However, in common with all factorization methods, the result is not unique andthere

exists a full rank transformation matrixQ that gives the following alternative reconstruction:

W = MQ Q−1S = M̃S̃. The fundamental problem is to find the transformationQ that imposes the

correct structure on the camera matrices encoded inM and removes the ambiguity upgrading the

reconstruction to a metric one. Whereas in the rigid case the problem of computing the transfor-

mation matrixQ to upgrade the reconstruction from affine to metric can be solved linearly [138],

in the non-rigid case it results in a non-linear problem.

1.6 Motivations for this thesis

Existing non-rigid factorization methods are very promising and do indeed produce models from

scratch that can be useful for tracking or animation in many domains, but there are various lim-

itations which have led to interesting avenues of research in this thesis and have motivated our

work. The improvements we have proposed to some of the outstanding problemsconstitute the

main contribution of the work presented here. The three main issues which wehave addressed

in this thesis are: the non-linearity of the non-rigid structure from motion problem, its inherent

ambiguous nature and the extension of the method to deal with perspective imaging conditions.

Firstly, previous solutions to the non-rigid structure from motion problem have either pro-

vided approximate solutions using linear approaches [19, 141, 16] to a problem that is intrin-

sically non-linear or required strong assumptions [17, 159, 161] aboutthe nature of the 3-D

deformations. Thenon-linearity of the problem stems from the fact that the parameters mod-

elling the camera motion and the 3-D deformations are strongly coupled. Moreover, in order to

obtain a valid solution, orthogonality constraints have to be forced on the rotational component

of the motion, thus introducing a further degree of non-linearity. In this thesis, we propose a non-

linear framework based on bundle adjustment to estimate model and camera parameters. The

advantage of this method is that it provides a maximum likelihood estimate in the presence of

Gaussian noise, and prior knowledge on any of the model parameters caneasily be incorporated
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into the cost function in the form of penalty terms. The proposed frameworkis then upgraded to

deal with the case of a stereo camera setup. We show that when the deforming object is not per-

forming a significant overall rigid motion, a monocular approach leads to poor reconstructions,

and only by fusing the information from both cameras can the correct 3-D shape be extracted.

Secondly, non-rigid structure from motion continues to be aninherently ambiguousproblem

since the contribution to the image motion caused by the deformations and rigid motionare

often difficult to disambiguate. Given a specific configuration of points on the image plane,

different 3-D non-rigid shapes and camera motions can be found that fitthe measurements. To

solve this ambiguity prior knowledge on the shape and motion should be used to constrain the

solution. Recently, Xiao et al. [159] proved that the orthogonality constraints were insufficient

to disambiguate rigid motion and deformations. They identified a new set of constraints on

the shape bases which, when used in addition to the rotation constraints, provide a closed form

solution to the problem of non-rigid structure from motion. However, their solution requires that

there beD frames (whereD is the total number of basis shapes) in which the shapes are known

to be independent.

In this thesis we propose an alternative approach based on the observation that often not all

the points on a moving and deforming surface – such as a human face – are undergoing non-rigid

motion. Frequently some of the points are on rigid parts of the structure – for instance the nose –

while others lie on deformable areas. Intuitively, if a segmentation of points intorigidly moving

and deforming ones is available, the rigid points can be used to estimate the overall rigid motion

and to constrain the underlying mean shape by estimating the local deformationsexclusively with

the parameters associated to the non-rigid component of the 3-D model.

Finally, all the methods cited previously rely on affine imaging conditions in whichthe ob-

jects viewed are relatively flat and distant from the camera — they cannot cope with theprojec-

tive distortions which become significant when the scene is closer (and focal lengths areshorter),

as may often be the case with PC-mounted “webcam” devices viewing users’ faces. Xiao and

Kanade [161] were the first to develop a two step factorization algorithm for reconstruction of

3-D deformable shapes under the full perspective camera model. In this thesis we present an

alternative approach to non-rigid shape and motion recovery under the full perspective camera

model. Once more, the solution is based on the assumption that the scene contains a mixture

of rigid and non-rigid points. First rigid and non-rigid motion segmentation is performed on the
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image data to separate both types of motion under perspective imaging conditions. To obtain

the metric upgrade information we perform self-calibration on the rigid set ofpoints which pro-

vides estimates for the camera intrinsic parameters, the overall rigid motion and the mean shape.

We then formalise the problem of non-rigid shape estimation as a constrained non-linear mini-

mization using the estimates given by the self-calibration algorithm as the starting point for the

minimization and providing priors on the degree of rigidity of each of the points.

1.7 Contributions of this Thesis

In the following section we describe the main contributions of this thesis, in accordance with the

motivations exposed in the previous section:

• We propose a framework for non-linear estimation of the geometric parameters of the

deformable model based on an adaptation of bundle adjustment techniques [38, 37] to the

non-rigid scenario. The non-linear optimization method is able to refine the motionand

shape estimates by minimizing image reprojection error, imposing the correct structure on

the motion components by choosing an appropriate parameterisation.

• The non-linear framework can easily be modified to include views taken fromdifferent

cameras. We have extended existing non-rigid factorization algorithms to the stereo camera

case and presented an algorithm to decompose the measurement matrix into the motion of

the left and right cameras and the 3-D shape [34, 33]. The added constraints in the stereo

camera case are that both cameras are viewing the same structure and that the relative

orientation between both cameras is fixed. Our focus is on the recovery offlexible 3-D

shape rather than on the correspondence problem.

• We have proposed two methods for automatic rigid and non-rigid motion segmentation in

the case of orthographic [35] and perspective [36] viewing conditions. In the affine case,

our method follows asequential backward selection strategyby initially considering all

the trajectories in the measurement matrix and iteratively deleting the points that exhibit

the most non-rigid motion. As the stop criterion for the classification task, the rank of the

measurement matrix of the remaining points is computed, which will become 3 when only

the rigid trajectories are left.

In the case where perspective distortions affect the measurements, ourapproach is based on
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the fact that rigid points will satisfy the epipolar geometry while the non-rigid points will

give a high residual in the estimation of the fundamental matrix between pairs ofviews.

We use a RANSAC algorithm to estimate the fundamental matrices and to segment the

scene into rigid and non-rigid points. Additionally, we exploit a measure of thedegree

of deformability of a point to infer a prior distribution of the probability of a trajectory

being rigid or non-rigid given that measure. These distributions are then used as priors

to perform guided sampling over the set of trajectories and lower the numberof random

samples needed to be drawn from the data.

• The advantage of performing a prior segmentation of the image points into rigid and non-

rigid trajectories is that this information can be used to constrain the solution of the shape

and motion recovery. Firstly, the rigid points can be used to obtain an accurate initial esti-

mate of the overall rigid rotations, translations and mean shape. Secondly, the knowledge

that some points on the object do not deform can be used to impose priors onthe non-rigid

shape. Our prior expectation is that the points detected as being rigid have azero non-rigid

component and can therefore be modelled entirely by the first basis shape. We define lin-

ear and non-linear methods to impose these priors [35] and we show that it ispossible to

obtain exact reconstructions with noiseless data and improved reconstructions and a higher

rate of convergence with real data.

• Finally, this thesis presents a novel approach for the 3-D Euclidean reconstruction of de-

formable objects observed by a full perspective camera [36, 93]. Given an automatic seg-

mentation of the scene into rigid and non-rigid point sets, using the algorithm mentioned

above, the set of rigid points is used to estimate the internal camera calibration parameters

and the overall rigid motion. The problem of non-rigid shape estimation is then formalised

as a constrained non-linear minimization adding priors on the degree of deformability of

each point.

The contributions here exposed are presented in the thesis as follows. Chapter 2 is a literature

review of the factorization framework for structure from motion recoveryand its application to

the case of rigid and non-rigid structure recovery under different viewing conditions. Chapter

3 describes our framework for non-linear estimation of the deformable model and camera pa-

rameters. The framework can easily deal with the case of two or more cameras as presented in
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chapter 4. Chapter 5 describes the use of shape priors for deformablemodelling in the case of

affine viewing conditions. First we propose an automatic rigid/non-rigid motionsegmentation

algorithm. The results of the segmentation are then used to derive priors on the degree of de-

formability of each point in the 3-D object. Such priors are used to drive theinference of the

parameters of the deformable model. In chapter 6 we propose a new solutionto the problem

of metric structure recovery from perspective images. A new rigid/non-rigid motion segmenta-

tion algorithm is derived which can deal with projective distortions. The structure and motion

recovery is then formulated as a two step process where the metric upgradetransformation is

computed first using the rigid points and the deformable structure is then estimated using a non-

linear optimization approach. Chapter 7 ends this dissertation presenting aspects of the proposed

methods which may lead to future improvements and further avenues of research in the domain

of deformable modelling.
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Chapter 2

Factorization methods for Structure from Motion

The geometry between two views taken either by a moving camera or by two different cameras

is nowadays a well understood concept. The fundamental matrix is the mathematical tool that

relates image coordinates between a pair of views [94, 95]. Similarly, three views are related by

the trifocal tensor [130, 156, 61], which allows to transfer a point in the first and second view

into the third view and, similarly, with lines. The constraints arising from four views of the same

scene are encapsulated by the quadrifocal tensor [144].

These multi-view tensors are used as a first step to obtain an initial projectivereconstruction

of the 3-D shape of an object. However, while these inter-image relations are able to describe

the constraints between views of the same scene, they are not always of practical use. A wide-

baseline between views is necessary for the estimate of the multi-view tensors tobe accurate. On

the other hand, matching image points from very different views is a complex task that can easily

lead to outliers in the data used for estimation.

Matching image features becomes relatively simple when the images are taken from closely

spaced views. However, the overall small baseline affects the depth estimation of the structure

negatively. In order to avoid critical configurations of views, the only possible solution is to have

a large number of views for which the overall baseline is wide enough to allowan accurate 3-D

reconstruction.

The described tradeoff is crucial for the 3-D reconstruction of generic objects observed from

a video sequence. If we restrict the problem to the case of a single camera, the multiple views

are given by a temporal sequence of images taken by a moving camera or bya fixed camera and
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a moving object or by a combination of both. As a result, the distinguishable visual cue is the

motion of the projected 3-D object in the sequence of images. In this case, exclusively using

the information of two, three or four views may give poor results as previously noted. Thus, a

solution which uses the whole information of the entire sequence is always preferable.

2.1 A factorization approach to Structure from Motion

In the early 90’s Tomasi and Kanade [139] found an elegant and simple solution to this problem

by analyzing the image measurements observed from different views usinga weak perspective

camera model. Since the motion of each point is globally described by a precisegeometric

model, the position of their projection on the image plane is constrained. As a result, if all the

measurements (i.e. the image coordinates of all the points in all the views) are collected in a

single matrix, the point trajectories will reside in a certain sub-space. The dimension of the sub-

space in which the image data resides is a direct consequence of two factors: the type of camera

that projects the scene (for instance, affine or perspective) and the nature of the inspected object

(for instance, rigid or non-rigid).

The crucial advantage of this technique is in the fact that it provides an initial linear and

global solution to the problem simply by factorizing the image measurements into the relative

motion and 3-D structure using the aforementioned sub-space property ofthese measurements.

This solution by factorization is given by the whole information of the measurements and solved

using linear methods.

Given the success and flexibility of Tomasi and Kanade’s bilinear formulation of the shape

and motion components, we now describe the factorization approach and its application to dif-

ferent models of camera projection and types of object structure. Finally,we focus on existing

non-rigid factorization approaches and point to some unsolved issues.

2.1.1 The factorization framework: motion and 3-D structure

The rigid factorization method introduced by Tomasi and Kanade [139] is simple but powerful.

It provides a description of the 3-D structure of a rigid object in terms of a set of feature points

extracted from salient image features (for instance, image corners). After tracking the points

throughout all the images composing the temporal sequence, a set of trajectories is available (see

figure 2.1 for an example). These trajectories are constrained globally ateach frame by the rigid
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Figure 2.1: The figure shows how point trajectories are extracted from avideo sequence. First

row: four frames of the movieL’Arriv ée d’un trainà la Ciotat (1895, directed by Lumière

brothers). Second row: the image points (in red) are extracted in the firstframe and successively

tracked in the following frames. Third row: the measured image data is shown on the image

plane. Each point is defined by two image coordinates. The collection of the points at each frame

composes a trajectory in time which describes the motion of the rigid point.

transformation which the shape is undergoing. Rigid factorization techniques directly factorize or

decompose the complete collection of image trajectories into the bilinear componentsof motion

and3-D structure. The role of themotioncomponents is to project the3-D structureon the image

plane for each frame using a particular camera model.

In order to describe the framework in detail, we need to introduce the formalised mathe-

matical description of the trajectories that will subsequently be factorized. Once a trajectory is

extracted, the location of a pointj in a certain framei can be defined as a non-homogeneous

2-vectorwi j = (ui j vi j )
T or as a homogeneous 3-vectorw̄i j = (ui j vi j 1)T whereui j andvi j are

the horizontal and vertical image coordinates respectively.

A compact representation of these elements can be expressed collecting allthe non-homogeneous
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coordinates in a single matrix, called themeasurement matrixW, such that:

W =













w11 . . . w1P

...
.. .

...

wF1 wFP













(2.1)

W is a 2F ×P matrix whereF is the number of image frames andP the number of trajectories

extracted. Ideally, the measurement matrix should contain perfect information about the object

being tracked. However, in practice the measurements are corrupted by noise and outliers given

by mismatched points. Additionally, some elements ofW may not be available for some points in

particular frames due to occlusions. Nevertheless, we continue the factorization problem assum-

ing there are no missing entries inW.

It is possible to decomposeW into the product of two matrices as:

W = M S (2.2)

whereM andS are respectively themotionand3-D structurecomponents of the measurement

matrix. The matricesM andS can be further decomposed such that:

M =



















M1

M2

...

MF



















S =

[

S1 S2 · · · SP

]

(2.3)

whereMi with i = 1. . .F is the camera matrix that projects the 3-D metric shape onto image frame

i. The size and structure ofMi generally depends on the type of camera that projects the scene.

The componentS j with j = 1. . .P defines the 3-D structure for each pointj and its size depends

on the shape properties (for instance, whether it is rigid or non-rigid). The framework is such

that the productwi j = MiS j defines the projection of the pointj onto the image framei.

2.1.2 The rank of the measurement matrix

An interesting property of the measurement matrix is that it is rank-deficient and resides in a

lower dimensional space. In fact the dimension is given by the size of the motion and structure

matricesM andS. This property was first used by Tomasi and Kanade [138] who first observed

and exploited the rank deficiency of measurement matrices storing image trajectories extracted

from a body undergoing a rigid transformation. Also known as therank constraint of a matrix,
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Figure 2.2: The measurement matrixW is decomposed into the product of themotionmatrix M

and the3-D structurematrix S. The matrixM contains the parameters of the model that vary

frame-wise (i.e. object motion and camera parameters) whileS contains the parameterisation of

the 3-D structure for each point. The sizes ofM andS depend respectively on the camera model

and the 3-D point parameterisation.

this property may be exploited by using common techniques for matrix factorization (see section

2.1.3) to reduce the dimensionality of the matrixW and factorize it into the product ofM andS.

Further studies of the factorization framework have shown that trajectories belonging to dif-

ferent deforming objects show similar rank constraints. Different rankswould be obtained de-

pending on the model used for the camera models observing the scene [145, 132], considering

different rigid objects moving independently [29], dealing with non-rigid objects [19] or articu-

lated structures [143, 163, 107]. Moreover the rank constraint has been applied successfully in

the work presented by Irani [77] to obtain an estimate of multi-frame optical flow for different

camera models and types of motion.

2.1.3 Singular Value Decomposition (SVD) and factorization

The rank-constraint can be efficiently used to obtain a decomposition ofW in terms of motion

and structure. SVD is a rank revealing matrix decomposition algorithm that factorises a generic

H×L matrixW into a product of 3 matrices:

WH×L = UH×L ΣL×L V
T
L×L (2.4)

whereΣ is a diagonal matrix whose entries are the singular values ofW, U is anH×L orthogonal

matrix such thatUUT = IH×H andV is a square and orthogonal matrix such thatVTV = VVT =

IL×L. The number of singular values different from zero reveals the actualrank of the data
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stored in the measurement matrix, and they are ordered from largest to smallest according to

their magnitude.

If the L columns ofW are linearly dependent, each column can be obtained as a linear combi-

nation of a subgroup ofr columns withr 6 min{H,L}. The valuer is also called the rank of a

matrix and this property is directly related to the singular values inΣ such that:

dii = 0 ∀ i > r (2.5)

wheredii are the diagonal entries ofΣ andi = 1. . .L. As a consequence of the zero-entries inΣ,

equation (2.4) can be rewritten as:

WH×L = UH×r Σr×r V
T
L×r (2.6)

Here,U andV are orthogonal matrices defining respectively therangeandnull spaceof W. By

using the SVD, obtaining the closest rank-r matrix in terms of the Frobenius norm to the original

matrix is guaranteed, if the noise contaminatingW is isotropic and Gaussian [51].

2.2 Rigid factorization

A object moving rigidly enforces a rank constraint over the measurements extracted from the

image sequence capturing the motion of the object. The given rank dependson the camera

model used to project the 3-D structure in the image plane. The following sections show how

factorization methods can extract 3-D structure from sequences viewedwith orthographic and

perspective cameras.

2.2.1 Rigid Structure under orthographic projection

The first use of the rank constraints to solve multi-view problems was introduced by Tomasi

and Kanade [138] to deal with the case of rigid objects under orthographic camera projection.

In this scenario, the measurement matrix consists of trajectories extracted from a single object

undergoing rigid rotations and translations as showed in figure 2.1. For a single framei, the

measurements can be represented in matrix form such that:

Wi =

[

wi1 . . . wiP

]

(2.7)
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It is possible to obtain the measurement matrixW by stacking theWi for all F frames:

W =



















W1

W2

...

WF



















(2.8)

A single point j belonging to a 3-D object in a generic framei can be projected using an

orthographic camera such that:

wi j =







r i1 r i2 r i3

r i4 r i5 r i6



















Xj

Yj

Z j













+







tui

tvi






= RiX j + t i (2.9)

whereRi contains the first two rows of a rotation matrix,X j is a 3-vector containing the metric

coordinates of the 3-D point, andt i is a vector representing the translation component. Every

point belonging to the rigid structure shares the same rotation and translation.Thus, the previous

expression is valid for every point in the generic framei:

Wi =

[

wi1 . . . wiP

]

=







r i1 r i2 r i3

r i4 r i5 r i6



















X1 X2 · · · XP

Y1 Y2 · · · YP

Z1 Z2 · · · ZP













+Ti (2.10)

whereTi is a 2×P matrix with the replicated translation vectort i for each point. It is possible to

rewrite the expression in a compact matrix form as:

Wi = RiS+Ti (2.11)

Stacking the rows ofWi for every frame we obtain the complete measurement matrix:

W =



















W1

W2

...

WF



















=



















R1

R2

...

RF































X1 X2 · · · XP

Y1 Y2 · · · YP

Z1 Z2 · · · ZP













+



















T1

T2

...

TF



















= MS+T (2.12)

whereW is the 2F×P measurement matrix,M is the 2F×3 collection ofF rotation matrices,S is

the 3×P structure matrix containing the 3-D coordinates of all the world points andT is a 2F×P

matrix with the translation for each frame.

It is easy to eliminate the translation component by determining the centroid of the image

points for every frame and subtracting it from the image coordinates. In thiscase, the components



2.2. Rigid factorization 37

M andS are matrices of at most rank 3, thus Tomasi and Kanade’s algorithm obtainsan initial

decomposition by performing a truncated SVD withr = 3 such that:

W2F×P = U2F×3 Σ3×3 V
T
P×3 (2.13)

It is then possible to rearrange the 3 products to obtain an initial affine estimation of the motion

and structure components such that:

M̃ = U
√
Σ and S̃ =

√
ΣV

T (2.14)

One important aspect that should be emphasized is that rank revealing numerical techniques,

such as SVD, do not provide the solution to the 3-D reconstruction problem[85]. The reason

is that the rank-3 decomposition is not unique, but up to a generic affine transformation. Any

non-singular 3×3 full rank matrixQ and its inverse may be inserted in the decomposition giving

an equivalent result:

W = (M̃Q)(Q−1
S̃) = M̃(QQ−1)S̃ = M S (2.15)

The matrix product leads to the same measurement matrix, but the structure ofM and S has

clearly changed. This ambiguity may easily be eliminated by enforcing orthonormality of the

rotation matrices comprising̃M (i.e., imposing the metric constraint) and, thus, upgrading the

decomposition from affine to metric.

Computing the transformationQ

A generic orthographic camera matrix at framei can be expressed in vector form as:

Ri =







rT
i1

rT
i2






(2.16)

Taking into account everyi = 1. . .F , it is possible to write the following over-constrained system

of equations:

rT
i1QQ

Tr i1 = 1

rT
i2QQ

Tr i2 = 1

rT
i1QQ

Tr i2 = 0

(2.17)

which expresses the orthonormality of the rows ofRi . The equations are quadratic in the un-

knowns which are the elements ofQ. In order to solve the system linearly, Tomasi and Kanade

define the 3×3 symmetric matrixB = QQT, solve the system for the 6 unknowns inB and then
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(a) (b)

Figure 2.3: (a) An orthographic camera projects the 3-D points lying on the object surface onto

image planeℑ. Orthographic projection assumes the object being far from the image planesuch

that the projecting rays are all parallel to the optical axis and perpendicular to the image planeℑ.

(b) A full perspective camera projects the 3-D points with rays passing through the optical center

C of the camera. The coordinates projected onto the image plane have different image positions

depending on the depth of the pointsand the internal parameters of the camera (such as the focal

length f ).

extractQ using Cholesky decomposition. Finally, the correct matrix structure for the factoriza-

tion of rigid shapes is obtained by applying the transformation to the affine solution computed

via SVD:

M = M̃Q and S = Q
−1
S̃ (2.18)

which ensures thatM containsF rotation matrices as shown in equation (2.12).

The orthographic camera is typically a good approximation when the object’s depth is small

in comparison to the distance from the camera. In this case depth recovery isdifficult and may

be sensitive to noise, so an orthographic model is more reliable. Nevertheless, the method has

been extended to more general affine camera models, such as the weak perspective [82] and

paraperspective [117].

2.2.2 Perspective factorization

If we now assume a perspective projection model for the camera (see figure 2.3 for a comparison

with the orthographic case), a 3-D homogeneous pointX̄ j will be projected onto image framei

according to the equation:

w̄i j =
1

λi j
PiX̄ j (2.19)
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wherew̄i j and X̄ i j are both expressed in homogeneous coordinates (i.e.w̄i j = [ui j vi j 1]T and

X̄ j = [Xj Yj Z j 1]T), Pi is the 3×4 projection matrix andλi j is the projective depth for that point.

Scaling the image coordinates of all the points in all the views by their corresponding projective

depth gives a 3F×P measurement matrix:

W̄ =













λ11w̄11 . . . λ1Pw̄1P

...
...

λF1w̄F1 . . . λFPw̄FP













=













P1

...

PF













S = MS (2.20)

whereW̄ is the rescaled measurement matrix,S = [X̄1 . . . X̄P] is a 4×P shape matrix which con-

tains the homogeneous coordinates of theP 3-D points andM contains the perspective cameras

for each frame. In the case of rigid structure,M andS are at most rank 4. Therefore, the rank of

the scaled measurement matrixW̄ is constrained to ber ≤ 4.

If the true projective depthsλi j were known it would be possible to factorize the measurement

matrix into two rank-4 matrices,̃M andS̃ using SVD. Similarly to the orthographic case, the result

of the factorization would not be unique since any invertible 4×4 matrixQ and its inverse can

be inserted in the decomposition, leading to the alternative camera and shape matrices M̃Q and

Q−1S̃. Therefore, without assuming any additional constraints on the cameras or on the scene the

reconstruction can be calculated up to an overall projective transformation. In general, the true

projective depthsλi j are unknown so the essence of projective factorization methods is to deal

with the estimation of projective depthsλi j in order to obtain a measurement matrix which could

be decomposed into camera motion and shape in 3-D projective space using the rank constraint

described above. Variants of the projective factorization method have been proposed so far for

the case of scenes with rigid objects.

The first work to extend Tomasi and Kanade’s algorithm to the perspective camera case was

by Sturm and Triggs [132] who proposed a non-iterative factorization method for uncalibrated

cameras. The method solves for the projective depths by calculating the fundamental matrices

and epipoles between pairs of views. The overall accuracy of the algorithm depends greatly on

the estimation of the epipolar geometry, as large errors in the fundamental matrixwould affect

the measurement matrix and result in errors in the shape and motion. On the other hand, Han and

Kanade [57] perform a projective reconstruction using a bilinear factorization algorithm without

calculating the fundamental matrices. Heyden’s method [68] uses a different iterative approach.

It relies on using sub-space constraints to perform projective structure from motion. Ueshiba and



2.3. Non-rigid factorization 40

Figure 2.4: Three independent objects are represented in an image by a cluster of feature points.

The motion of each object is defined on the image plane by the 2-D coordinatesof its centroid

(t1, t2 andt3) and the rotation matrices (R1, R2 andR3) which project it onto the image plane.

Tomita [149] presented a method by which the projective depths are iteratively estimated so that

the measurement matrix is made close to rank 4. The authors also derived metricconstraints

for a perspective camera model to upgrade the structure to Euclidean when the internal camera

parameters are known. Recently, Tang and Hung [137] proposed an iterative algorithm for pro-

jective reconstruction based on minimizing an approximation of the 2-D reprojection errors using

weighted least-squares. The iterative nature of these algorithms leads themto be prone to falling

into local minima. Additionally, slow convergence rates are also reported, especially in the case

of image noise affecting the trajectories.

2.3 Non-rigid factorization

The dimensionality of the sub-space in which the image trajectories lie does not only depend

on the camera model that projects the 3-D structure. The rank may also varydepending on the

specific structure of the scene; for instance the object may change its shape or the scene could be

composed of different objects moving independently.

2.3.1 Multi-body factorization

Given multiple independently moving objects in a scene, it is possible to reformulatethe factor-

ization framework to model the 3-D structure and motion components of each object separately.

In this case, the measurement matrix contains trajectories belonging to different objects (see fig-
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ure 2.4). This scenario was extensively studied in the work of Costeira and Kanade [29]. Briefly,

N independent objects are present in a scene and, as a result, each element is modelled by a

specific 3-D structureS(n) of size 4×Pn wheren = 1. . .N and∑N
n=1Pn = P. Each independent

shape can be arranged in a single structure using a block matrixS such that:

S =



















S(1) 0 . . . 0

0 S(2) . . . 0
...

...
...

...

0 0 . . . S(N)



















(2.21)

Notice that in this case, the 3-D coordinates are homogeneous and consequently S is of size

4N×P, yielding the following structure for each generic independent shapen:

S(n) =



















X(n)
1 X(n)

2 · · · X(n)
P

Y(n)
1 Y(n)

2 · · · Y(n)
P

Z(n)
1 Z(n)

2 · · · Z(n)
P

1 1 · · · 1



















(2.22)

Note that in this case the coordinates cannot be registered to a common centroid since there are

multiple objects and the overall centroid will not be preserved by orthographic projection. Thus,

the 2×4 motion componentM(n)
i for each shape contains the rotation and translation parameters

for framei:

M
(n)
i =







r(n)
i1 r(n)

i2 r(n)
i3 t(n)

ui

r(n)
i4 r(n)

i5 r(n)
i6 t(n)

vi






(2.23)

The overall motion matrixM can now be written as:

M =



















M
(1)
1 M

(2)
1 . . . M

(N)
1

M
(1)
2 M

(2)
2 . . . M

(N)
2

...
...

.. .
...

M
(1)
F M

(2)
F . . . M

(N)
F



















(2.24)

This formulation implies that each trajectory has already been assigned to the correct object. By

grouping together structure, motion and measurement matrices we obtain:

[

W(1) W(2) . . . W(N)

]

=



















M
(1)
1 M

(2)
1 . . . M

(N)
1

M
(1)
2 M

(2)
2 . . . M

(N)
2

...
...

. ..
...

M
(1)
F M

(2)
F . . . M

(N)
F





































S(1) 0 . . . 0

0 S(2) . . . 0
...

...
.. .

...

0 0 . . . S(N)



















(2.25)
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where:

W =

[

W(1) W(2) . . . W(N)

]

(2.26)

is the 2F×P measurement matrix obtained by putting together the trajectories belonging to the

N independent objects.

Provided an initial grouping of the trajectories is given, it is possible to find atransformation

Q that forces the particular structure ofM andS for the multi-body factorization scenario. In

this case, the rank ofW is constrained to be 4N since the measurements are a product of full

rank matrices such thatW = M2F×4N S4N×P. The task of correctly segmenting different objects

by observing their 2-D motion is not trivial [166], and this problem, essential for a correct 3-D

reconstruction, has triggered an active stream of research on motion segmentation. A complete

investigation of these issues is postponed until chapter 5 (section 5.2).

2.3.2 Articulated factorization

The dimensionality of the sub-space in which image trajectories reside increases by a quantity

proportional to the number of independently moving objects present in the scene. However, if

the objects share a dependency such as a joint or a common rotational axis (see figure 2.5) the

rank varies with the interdependency between the 3-D shapes.

When two independent objects are considered, the resulting rank of the measurement matrix

is r = 8 . However, if for instance the shapes have a joint between them, the sub-space repre-

senting the trajectories will decrease by 1 or 2 dimensions depending on the properties of the

joint. This means that the sub-spaces of the two shapes intersect and the rank of W will reduce

respectively tor = 7 or r = 6. Therefore, if the trajectories of the first object are stored inW(1)

and for the second inW(2), and no degeneracies are present, it follows that:

rank(W(1)) = 4 and rank(W(2)) = 4 (2.27)

However, by merging the data together into a single measurement matrix, the following rank

property holds:

rank

([

W(1) W(2)

])

≤ 8 (2.28)

showing that a relation between the two shapes is present. Recent work onarticulated factoriza-

tion describes two types of joints: the universal joint and the hinge joint [143, 163].

When two objects are linked by auniversal joint(see figure 2.5) the distance between the

two centers of mass is constant (for instance, the head and the torso of a human body) but they
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Figure 2.5: An articulated object composed of two shapes connected by auniversal joint(rep-

resented by a circle). Shape(1) and shape(2) are projected onto the image plane and they are

composed of a set of feature points whose centroids are indicated respectively by the 2-D-vectors

t(1) andt(2). Each object has independent rotational componentsR(1) andR(2), while the 3-vectors

d(1) andd(2) specify the translation between the centroid of each shape and theuniversal joint.

have independent rotation components. At each frame the shapes connected by a joint satisfy the

following relation:

t(1) +R
(1)d(1) = t(2) +R

(2)d(2) (2.29)

wheret(1) andt(2) are the 2-D image centroids of the two objects,R(1) andR(2) the 2×3 ortho-

graphic camera matrices andd(1) andd(2) the 3-D displacement vectors of each shape from the

central joint. The constraint expressed in equation (2.29) is the reason for the reduced dimension-

ality of the joint sub-spaces. It is possible to refer the articulated motion to a common reference

frame centered on the centroid of the first object thus simplifying the shape matrix S such that:

S =













S(1) d(1)

0 S(2)−d(2)

1 1













(2.30)

whereS is a full rank-7 matrix. The motion for a framei has to be arranged accordingly to satisfy

equation (2.29) as:

Mi =

[

R
(1)
i R

(2)
i t(1)

i

]

(2.31)
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Finally, we can write the full expression for the image coordinates of two objects linked by a

universal jointfor the framei as:

Wi =

[

W
(1)
i W

(2)
i

]

=

[

R
(1)
i R

(2)
i t(1)

i

]













S(1) d(1)

0 S(2)−d(2)

1 1













(2.32)

The image coordinates for every frame can then be stacked to form the general structure of the

factorization framework and, once more, the problem is to fit the multi-view datato the model

expressed in equation (2.32).

In order to find the reduced sub-space for the measurements inW, a truncated SVD is used

to compute the initial solution for̃M andS̃. In the case of auniversal joint, the task is to find the

correct transformationQ7×7 that determines the exact factorization in accordance with equation

(2.32). Similarly to the rigid and multi-body case, this problem can be neatly solved with a linear

system. Further details can be found in [143], alongside a description of additional joint models.

2.4 Deformable factorization methods: a review

In the case of deformable objects, a single object varies its 3-D structure with respect to a set

of deformation modes. The specific number of modes used to define the shape has the effect of

forcing a specific rank-constraint over the image trajectories stored inW. Thus, by imposing the

correct rank, it is possible to carry out an approach similar to those discussed in the previous

sections for other factorization problems.

The main issue to be solved is the computation of the transformation matrixQ that upgrades

the structure and motion to metric space. In addition, the simultaneous estimation of motion and

deformable shape is often ambiguous. Given a particular motion there may be various non-rigid

shapes that fit the measurements. Special care needs to be taken regarding the type of information

provided to the system to allow disambiguation.

Deformable shapes are the central interest of this work, thus we will dedicate the next sections

to describing the non-rigid factorization methods in the literature before presenting our own

contributions.
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First basis Second basis Third basis

Figure 2.6: Three basis shapes obtained from the 3-D reconstruction ofa human face taking on

different facial expressions. The first basis generally representsthe mean structure of the object,

in this particular case a neutral expression. The second and third basis shapes shows a surprise

and exaggerated grin expression and they are obtained by summing the first basis (the mean

component) with the second and third (i.e.,S̃2 = S1 +S2 andS̃3 = S1 +S3 respectively).

2.4.1 The deformable model

Bregler, Hertzmann and Biermann were the first to propose an extension of Tomasi and Kanade’s

factorization algorithm to deal with the case of non-rigid deformable 3-D structure [19]. Here,

a model is needed to express the deformations of the 3-D shape in a compactway. The chosen

representation is a simple linear model where the 3-D shape of any specific configurationS

is approximated by a linear combination of a set ofD basis shapesSd (see figure 2.6) which

represent the principal modes of deformation of the object:

S =
D

∑
d=1

ldSd S,Sd ∈ℜ3×P ld ∈ℜ (2.33)

where each basis shapeSd is a 3×Pmatrix which contains the 3-D locations ofPobject points for

that particular mode of deformation. A perfectly rigid object would correspond to the situation

whereD = 1.

Similarly to Tomasi and Kanade, Bregler et al. also assumed a scaled orthographic projection

model for the camera. In this case, the coordinates of the 2-D image points observed at each

framei are related to the coordinates of the 3-D points according to the following equation:

Wi =

[

wi1 . . . wiP

]

= Ri

(

D

∑
d=1

l idSd

)

+Ti (2.34)
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where

Ri =







r i1 r i2 r i3

r i4 r i5 r i6






(2.35)

is the 2× 3 matrix containing the first two rows of a rotation matrix andl id the configuration

weight for basisd at framei. When the image coordinates are registered to the object’s centroid,

equation (2.34) can be rewritten in matrix form as follows:

Wi=

[

l i1Ri . . . l iDRi

]













S1

...

SD













=

[

Mi1 . . . MiD

]













S1

...

SD













=MiS (2.36)

If theseP points can be tracked throughout an image sequence, the point tracks maybe stacked

into the 2F×P measurement matrixW and we may write:

W =













l11R1 . . . l1DR1

...
...

lF1RF . . . lFDRF

























S1

...

SD













=













M11 . . . M1D

...
...

MF1 . . . MFD

























S1

...

SD













= MS (2.37)

SinceM is a 2F ×3D matrix andS is a 3D×P matrix, the rank ofW when no noise is present

must ber ≤ 3D. Note that, in relation to rigid factorization, in the non-rigid case the rank is

incremented by three with every new mode of deformation. The goal of factorization algorithms

is to exploit this rank constraint to recover the 3-D pose and shape (basis-shapes and deformation

coefficients) of the object from the correspondence points stored inW.

In order to obtain a solution forM andS, it is possible to perform a truncated SVD to rank

3D similarly to the rigid case. However, the result of the factorization ofW is not unique; any

invertible 3D× 3D matrix Q and its inverse can be inserted into the decomposition leading to

the alternative factorizationW = (~MQ)(Q−1~S). The problem is to find a transformation matrixQ

that imposes the replicated block structure on the motion matrix~M shown in equation (2.37) and

that removes the affine ambiguity upgrading the reconstruction to a metric one.Whereas in the

rigid case the problem of computing the transformation matrixQ to upgrade the reconstruction

to a metric one can be solved linearly (see section 2.2); in the non-rigid case,imposing the

appropriate repetitive structure and forcing the metric constraint to the motionmatrix~M results in

a non-linear problem.

Various methods have been proposed so far in the literature [19, 16, 141, 159, 17] and they

will be discussed in the following sections. It is important to note that while the block structure
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of the motion matrixM is not required if we only wish to determine image point motion, it is

crucial for the recovery of metric 3-D shape and motion which is the main goalof our work.

2.4.2 Bregler et al.’s method

Bregler et al. [19] introduced the non-rigid factorization framework andsuggested a solution for

the computation of the matrixQ. The main problem addressed in their work is the separation of

the configuration weightsl id from the rotation matricesRi . The solution proposed is calledsub-

block factorizationand it considersF sub-blocks derived from a row-wise partition ofM such that

the equation of each sub-blockMi is given by:

Mi =

[

l i1Ri . . . l iDRi

]

(2.38)

The entries of each sub-block are then rearranged as a rank-1 outerproduct of 2 vectors giving a

D×6 matrix M̌i which can be expressed as:

M̌i =













l i1rT
i

...

l iDrT
i













=













l i1
...

l iD













[

r i1 r i2 r i3 r i4 r i5 r i6

]

(2.39)

wherer i = [r i1, .., r i6]
T are the coefficients of the rotation matrixRi . Thus, Bregler et al.’s ap-

proach extracts configuration weights and rotation components by performingF SVDs truncated

to rank 1 and then stacking each component into a 2F×3 matrix R̄.

Since the individual elementsr ik for k = 1. . .6 obtained from the decomposition do not form

orthonormal matrices, a further orthogonalization is required to upgrade the model to a metric

one. This can be done simply by applying the metric constraints to the matrixR̄ and computing

the correcting transformatioňQ3×3 as in section 2.2.1. Finally, it is possible to compute the full

3D×3D transformationQ as:

Q =



















Q̌ 0 . . . 0

0 Q̌ . . . 0

...
. . .

...

0 0 . . . Q̌



















(2.40)

a block-diagonal matrix that upgrades the structure to metric.
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Discussion

The method presents a significant weakness; the rank-1 SVD used to factorize Mi in equation

(2.39) is a coarse numerical approximation when the measurements are affected by noise. Thus,

the second and further singular values retain a considerable contributionto the solution. Ad-

ditionally, the true transformation matrixQ is usually dense in the off-diagonal values and so

the block diagonal approximatioňQ can only be a solution for a sub-group of all the possible

transformations. Only very simple deformations may be solved using this approach.

Furthermore, the solution forRi and l id is computed exclusively from the motion matrix~M

obtained directly after performing the initial rank-3D SVD on the measurement matrix. This first

decomposition redistributes the structure and motion components randomly between~M and~S as

pointed out by Brand [16]. However, Bregler et al.’s method assumes that all the components re-

ferring to configuration weights and camera parameters are fully containedin ~M. This assumption

does not hold in principle and a transformation able to reorder the components should be carried

out before thesub-block factorization.

Solutions to this problem are proposed in [141] by using an iterative optimization and in [16]

by using a flexible factorization approach. The following sections describe these approaches in

more detail.

2.4.3 Torresani et al.’s approach

Torresani et al. [141] define an optimization method to correct the inaccurate solution proposed

by Bregler et al. described in the previous section. After obtaining an approximate solution with

sub-block factorization, their approach optimises the following non-linear cost function:

χi = Wi−Ri

D

∑
d=1

l idSd (2.41)

with i = 1. . .F and d = 1. . .D. This optimization is performed by alternatively minimizing

three different least-square problems in the three classes of model parameters:Ri , l id andSd.

While each class of parameters is estimated, the other two are assumed to remain constant. This

procedure is also known as Alternating Least Squares (ALS) [157] and it has the advantage that

it may converge to a solution without the complexity of using a full non-linear approach.

Torresani et al. report that an appropriate initialisation can be obtained using an initial guess

of the camera matricesRi which they compute by applying Tomasi and Kanade’s rigid factor-

ization over the non-rigid measurements inW. Differently, the configuration weightsl id are ini-
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tialised randomly and this permits to obtain the first estimate ofSd with the ALS approach. Note

that, to obtain more robustness, the rotation components of the orthographic camera model are

parameterized using the Rodriguez formula instead of considering each ofthe 6 elements inRi .

A regularization of the shape matrix is also used during the iterative optimization stage to prevent

ill-conditioned values on the shape when there is not enough out of plane rotation.

While this method does preserve the replicated block structure of theM matrix it minimizes an

algebraic cost function rather than a geometrically meaningful criterion. Asa further drawback,

occasionally the algorithm presents a slow convergence to the solution given by the zig-zagging

behavior of the minimization in the different parameter spaces (for a general analysis of the

behavior of ALS methods in the SfM domain please refer to [20]).

2.4.4 Brand’s orthonormal decomposition and flexible factorization

Brand proposed an alternative algorithm calledflexible factorization[18], where a solution for

Q is achieved without computing the second series of rank-1 SVDs. The method recovers the

camera matrices and configuration weights using an alternative technique called orthonormal

decomposition.

The strategy is to minimize the deformations (encoded in theD−1 basis shapes stored inS)

with respect to the mean basis componentS1 computed from the three most significant singular

values. The reason for forcing this constraint is based on the observation that most of the motion

of the object can be explained by the rigid component.

Flexible factorization

Concisely, the algorithm consists of an initialisation step where an approximate transformationQ

is computed estimating the matrix in a band around the diagonal values. The approach proposed

by Brand [16] corrects each column-triple independently applying the rigidmetric constraint to

each(2F×3) ~Md vertical block in~M as shown here:

~M =

[

~M1 . . . ~MD

]

=













~M11 . . . ~M1D

...
...

~MF1 . . . ~MFD













Since each 2×3 ~Mid sub-block is a scaled rotation (truncated to dimension 2 for weak perspective

projection) a 3×3 matrixQd (with d = 1. . .D) can be computed to correct each vertical block

~Md by imposing orthogonality and equal norm constraints to the rows of each~Mid . Each~Mid block
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contributes one orthogonality and one equal norm constraint to solve forthe elements inQd.

Each vertical block is then corrected in the following way: (M̂d← ~MdQd). The overall 3D×3D

correction matrixQ will therefore be a block diagonal matrix with the following structure:

Q =



















Q1 0 . . . 0

0 Q2 . . . 0

...
. . .

...

0 0 . . . QD



















(2.42)

Unlike the method proposed by Bregler et al. [19] (where the metric constraint was imposed only

on the rigid component, so thatQd = Q̌ for eachd = 1. . .D) this provides a different corrective

transform for each column-triple of~M. The 3-D structure matrix is then corrected appropriately

using the inverse transformation:S← Q−1~S.

Brand included a final minimization scheme in hisflexible factorizationalgorithm [16]: the

deformations in~S should be as small as possible relative to the mean shape. The idea here is that

most of the image point motion should be explained by the rigid component. This is similar to

the shape regularization used by other authors [141, 2].

This final stage re-estimates the transformation matrixQ starting from the corrected̂M = ~MQ

by minimizing the following cost function:

tr
{

(M̂Q− M̃)T(M̂Q− M̃)
}

+ tr
{

S̃
T
Q

T
ZQS̃)

}

(2.43)

whereZ is a matrix such that:

ZS =













S2

...

SD













(2.44)

Thus, a global solution is achieved by taking into account both the motion and 3-D structure ma-

trices and strengthening the mean motion component with respect to the deformations contained

in the(D−1) basis shapes.

Orthonormal decomposition

The final step in the non-rigid factorization algorithm deals with the factorization of the motion

matrix ~M into the 2×3 rotation matricesRi and the deformation weightsl id. Brand proposed an

alternative method to factorize each 2 row sub-block of the motion matrix~Mi = lTi ⊗Ri (where⊗

indicates the tensor product andlTi = [l i1 . . . l iD ] is aD-vector containing the configuration weights

for each framei).
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Following equation (2.39), each motion matrix sub-block~Mi (see [18] for details) is rear-

ranged such that~Mi → M̌
T
i . The motion matrix̌MT

i of size 6×D is then post-multiplied by the

D×1 unity vectorc = [ 1 . . . 1 ]T thus obtaining:

ai = kr i = M̌
T
i c (2.45)

wherek = l i1 + l i2 + . . .+ l iD (the sum of all the deformation weights for that particular framei).

A matrix Ai of size 2×3 is built by re-arranging the coefficients of the column vectorai . The

analytic form ofAi is:

Ai =







kri1 kri2 kri3

kri4 kri5 kri6






(2.46)

SinceRi is an orthonormal matrix, the equationAiR
T
i =

√

AiA
T
i is satisfied, leading toRT

i =
√

AiA
T
i /Ai . This allows one to find a linear least-squares fit for the rotation matrixRi .

In order to estimate the configuration weights the sub-block matrix~Mi is rearranged as equa-

tion (2.39) obtaining~Mi → M̌i . The configuration weights for each framei are then derived ex-

ploiting the orthonormality ofRi since:

M̌irT
i =













l i1r irT
i

...

l iDr irT
i













= 2













l i1
...

l iD













(2.47)

Discussion

The method proposed by Brand consists on estimating the off-diagonal elements of Q using a

least-squares approach to minimize the Frobenius norm of equation (2.43).Essentially, this

further step has the effect of forcing a strong prior over the strength of the deformations of

the inspected object. By absorbing most of the contribution of the motion into the first basis

(also called the mean component or mean basis), Brand observed that smalldeformations can

be irremediably lost. This is also supported by further tests presented in ourwork which show

that the prior introduced in theflexible factorizationmay be too restrictive to be applicable in

specific scenarios with varying degrees of non-rigidity. We should also stress the fact that the

cost function is strictly an algebraic error without any consideration of thegeometrical model

describing the 3-D structure and temporal deformations.
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2.4.5 Xiao et al.’s closed form solution

The main problem with the previous approaches stems from the fact that deformation and motion

are ambiguous. Given a specific configuration of points on the image plane, different 3-D non-

rigid shapes and camera motions can be found that fit the measurements. To solve this ambiguity

prior knowledge about the shape and motion could be used to constrain the solution.

Recently, this approach was adopted by Xiao et al. [159] by introducing the concept ofbasis

constraints, a set of linear constraints which, when used in addition to the rotation constraints,

uniquely determine a closed-form solution to the non-rigid factorization problem.

The basis constraints

In the rigid case (D = 1), it is possible to solve for the transformationQ by linearly imposing the

metric constraint on the rotation matrices (see section 2.2.1). However in the deformable case,

imposing only the constraints derived from the orthographic projection model renders a solution

space that contains a set of invalid or degenerate solutions. In order to remove this ambiguity,

Xiao et al. introduced a new set of constraints based on prior information over the data and they

proved that the added linear equations can solve uniquely forQ.

Xiao et al.’s assumption is that a set ofD frames exists in which the basis shapes are inde-

pendent such that the shape in that frame can be exactly described by a single 3-D basis. This

assumption forces a particular structure in the motion matrixM. For convenience, the measure-

ment matrix is arranged such that theD frames corresponding to the independent bases are in the

first 2D rows ofW:

W =







































R1 0 . . . 0

0 R2 . . . 0
...

...
...

0 0 . . . RD

l(D+1)1R(D+1) l(D+1)2R(D+1) . . . l(D+1)DR(D+1)

...
...

lF1RF lF2RF . . . lFDRF



















































S1

...

SD













= MS (2.48)

thus, the top 2D×3D block of the motion matrixM is a block-diagonal matrix containing theD

camera matrices for the independent basis shapes. Xiao et al.’s algorithmobtains a closed-form

solution by enforcing this particular structure toM in (2.48).
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The closed form solution

In more detail, the new set of linear equations is used to solveD linear problems over the sub-

matricesQd obtaining a column-wise partition of the matrixQ such that

Q =

[

Q1 . . . QD

]

(2.49)

where eachQd with i = 1. . .D is a 3D×3 matrix. In order to solve for the full transformationQ,

the basis constraints are appliedD times for each sub-transformationQd. Then, the problem is to

find the set of linear equations that force the exact structure of the motion matrix in (2.48).

In the following, we will show how to build the linear system for a generic column-triple

Md. Having obtained an initial solutionW= ~M~S (see section 2.1.3) with a rank 3D decomposition,

Xiao et al. build a set of linear equations that verifies the following conditions:

Md = ~MQd. (2.50)

For instance, if we consider the second transformationQ2, we would find the solution that trans-

forms~M such that:

~MQ2 = M2 =















































0

R2

0

...

0

l(D+1)2R(D+1)

...

lF2RF















































(2.51)

By exclusively using the metric constraints, it is not possible to determine enough equations

to solve uniquely forQd. This is the crucial problem of the previous methods. Xiao et al. intro-

duced their basis constraints defining a new set of 4F(D−1) equations which, when combined

with the equations given by the metric constraints are enough to solve the linearsystem. The

constraints are quadratic over the unknowns stored inQd, hence, Xiao et al. introduce a 3D×3D

symmetric matrixBd such thatBd = QdQ
T
d . The basis constraints are determined such that the

structure in equation (2.48) is satisfied for the configuration weights. This will be true if the

following equations are satisfied:

l ii = 1, i = 1. . .D

l id = 0, i,d = 1. . .D, i 6= d
(2.52)
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These basis constraints lead to a new set of 4F(D−1) equations as described in [159]. Notice

that a further step is required to extract the corresponding three-columntransformation matrixQd

from each symmetric matrixBd. Xiao et al. suggest computing the solution via SVD; sinceBd

is, in a noiseless case, a rank-3 constrained matrix. However when noiseis present the solution

is numerically approximated to the closest solution in the sense of the Frobeniusnorm.

Discussion

Solving for the transformation matrix by dividing the problem intoD linear systems permits

finding a closed form solution that upgrades the factorization to the correct structure. A drawback

of this approach lies in the independency of the solution; each column-tripleMi is upgraded

separately, since the block structure ofM is not forced in the solution of the systems of equations.

As a result, after fixing a reference basis,(D−1) orthogonal transformations need to be computed

to align each of the bases using Procrustes analysis [127].

These further computations are very critical, since incorrect solutions would lead to a mis-

alignment of the bases and a violation of the repetitive structure of the motion matrix. Addi-

tionally, the alignment procedure proposed by Xiao et al. attains an exact solution only when

identical and isotropic Gaussian noise with zero mean affects the measurements (see an analysis

on Procrustes methods in [40]). Such a condition rarely occurs in real scenarios, and in fact might

occur only in synthetic tests for which the algorithm can obtain exact reconstructions.

Another criticism has been made regarding the sensitivity of the method to wrongly selected

independent bases as reported in [17]. Often it is not trivial to find a single set of independent

bases in a real sequence of a deforming object. Even though the method mayobtain a unique

solution, this solution changes with the selection of a different set of bases.

2.4.6 Brand’s direct method

Recently, Brand [17] proposed a variation of Xiao et al.’s approach [159] based on the deviation

of the computed solution from the orthogonality constraints and on weaker assumptions on the

independent basis shapes.

The approach focuses initially on the estimation of the first three-column transformationQ1

which corrects the rank-3D approximated~M obtaining~MQ1 = M1. This step has the dual effect

of estimating the overall motion componentsRi and the first set of configuration weightsl i1

with i = 1. . .F for the mean basis shape. However, differently from Xiao et al.’s method, the
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computation ofQ1 is not given by a least-squares estimation: a quasi-Newton method is applied

to a non-linear cost function constructed to impose the orthogonality constraints in ~M. In this

way, the rank-3 approximation as described in section 2.4.5 is avoided and the transformation is

estimated given the actual 9D parameters ofQ1.

A second stage forces the repetitive structure ofM by linearly computing the full transforma-

tion Q that imposes the pre-estimated rotationsRi to eachD triplet in the motion matrix. In the

case of no noise, this two-step procedure provides exact results with synthetic data. However,

the author reports more erratic behavior in the performance of the algorithmwhenever the data

is corrupted by noise, since local minima may appear during the quasi-Newtonestimation.

In order to counteract this effect, Brand proposes different strategies based on finding multi-

ple solutions forQ1 and combining them to obtain a better correction for the rotation matrices. A

solution is to introduce weaker basis constraints by assuming that there existsa set ofD frames

for which theD-vectors of configuration weights are orthogonal to each other. In moredetail, if

we collect in a singleD×D matrix the configuration weights for theD frames in which the bases

are independent, we obtain orthogonal matrix:

~L =













l11 · · · l1D

...
. . .

...

lD1 · · · lDD













(2.53)

In the case of Xiao et al’s approach [159], the basis constraints forcethe matrix~L to be an identity

matrix such that~L = I.

No justification is provided that supports the use of these constraints but only that the wrong

selection of the independent basis proposed by Xiao et al. in equation (2.52) would perform

notably worste than the wrongly selected orthogonal condition proposed by Brand. Alternatively,

another suggestion is to start the minimization from a different initialisation of the parameters to

obtain multiple estimates ofQ1.

Discussion

Two main positive contributions are present in the direct method. Firstly, it directly estimates

the parameters of the transformation matrixQ1 with a quasi-Newton minimization scheme and,

thus, it avoids the rank-3 numerical approximation in Xiao et al’s method in the case of noise.

Secondly, it enforces the repetitive structure ofM without solvingD separate basis alignments.

On the other hand, a weakness is present whenever noise affects the data. The matricesRi are
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not reliably estimated after forcing the first transformationQ1 over the numerically computed

~M. Multiple solutions have to be found by imposing weaker priors over the structure of the

configuration weights and by initializing the quasi-Newton minimization from different points.

Nevertheless, the solution proposed by Brand performs better than the previous algorithms and

it shows reliable results in real experiments, where as Xiao et al.’s method fails to select reliable

independent basis shapes.

2.5 Closure

A factorization approach to structure from motion computation exhibits considerable advantages

over alternative methods. In this chapter we have shown that different motion and structure

models may be fitted to a set of trajectories obtained from measurements over animage sequence.

As a consequence of the global constraints given by the models, the image point trajectories live

in a certain sub-space defined numerically by the rank of the measurement matrix W.

From this observation, every method presented here finds an initial solutionto themotionand

3-D structureby truncating unnecessary components fromW with SVD, and then by correcting

the solution with a transformation matrixQ that imposes explicit geometric constraints given

the specific model. This approach is successful in many cases with some exceptions in the

deformable case.

The main issue is in the ambiguous formulation of the problem. For a deformable shape,

deformation and motion are strongly coupled elements. Not only in a mathematical sense (since,

for instance,Ri andl id appear multiplying each other inside the motion matrixM) but, as shown

by Xiao et al. [159], a solution computed only by forcing constraints over the camera motion

may be degenerate and not unique. Moreover, numerical approximations[19, 18, 159] often do

not provide good estimates for the geometric parameters of the deformable model.

Thus, a solution that respects the mathematical structure of the factorization framework and

the geometric constraints of the camera projecting the scene is desirable. In such a way, the prob-

lem should be formulated by expressing the product ofM andS as a set of non-linear equations.

In this case, the full interaction of the model parameters is explicit and the parameters of the de-

formable model may be estimated using non-linear optimization techniques, as will be explained

in the next chapter.
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Chapter 3

A non-linear approach to non-rigid factorization

The non-rigid factorization algorithms described in the previous chapter suffer from a series of

drawbacks. Most of them (Bregler et al. [19] and Brand [16]) do not respect the replicated block

structure of the motion matrixM expressed in (2.37). It is important to notice that the replicated

structure does not affect the estimation of the motion of image points, which makes these factor-

ization algorithms very well suited to non-rigid tracking [141, 16]. The rankconstraint imposes

that the trajectories of image points lie in a 3D dimensional sub-space, whereD is the number

of basis shapes, and that any new trajectory may be generated as a linearcombination of the

columns of the motion matrixM. If a point is only tracked in a small sub-set of images in the

sequence, this constraint allows to predict its trajectory in the entire sequence, thus permitting to

incorporate new tracks. This property is strictly based on the numerical sub-space in which the

trajectories resides and not on the geometrical model estimated from the measurement matrix.

However, if the main goal is to recover the camera matrices and the 3-D non-rigid structure

then preserving the replicated block structure of the motion matrixM after factorization becomes

crucial. If this is not achieved, it results in an incorrect estimation of the motionwhich in turn

affects the estimate of the 3-D structure. In the experimental section of this chapter we will show

results which prove that the 3-D reconstructions and the motion recoveredusing previous non-

rigid factorization methods [16, 19] are not completely satisfactory. In particular, the estimation

of the 3-D pose is unstable and this affects the quality of the deformable shape.
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3.1 Factorization as a non-linear estimation problem

Most of the algorithms presented so far, rely on the minimization of algebraic cost functions

using linear schemes (with the exception of [17]). However, the correcterror function to be min-

imized should be geometrically meaningful and, by construction, strictly non-linear. Therefore,

existing methods only provide an approximation of the true solution so when noise affects the

measurements their performance is compromised.

Xiao et al.’s work [159] provides an exact closed-form solution. However, it requires infor-

mation about the independency of the basis shapes that model the object’s modes of deformation,

and the solution is affected by their incorrect estimation. Additionally, as noticed by Brand [17],

the selection of the independent bases is trivial with well-behaved syntheticexperiments but it

becomes increasingly error prone with real images of deforming objects.

In order to overcome the problems encountered by previous methods, we now introduce a

non-linear optimization stage [38, 35] to refine the motion and shape estimates which minimizes

the image reprojection error and imposes the correct structure onto the motionmatrix by choosing

an appropriate parameterisation of the model parameters.

3.1.1 The non-rigid cost function

The goal is to estimate the motion parametersRi , the 3-D basis shapesSd and the deformation

weightsl id such that the distance between the measured image pointswi j and the reprojection of

the estimated 3-D points is minimised. However, the coordinates inW are extracted by a mea-

surement process and, therefore, they are affected by noise or by acertain degree of uncertainty

ni j . The measured coordinateswi j can be expressed in terms of the exact measurementsxi j such

that:

wi j = xi j +ni j (3.1)

The projection equation for a 3-D pointj in image framei is given by:

xi j = MiSj = Ri

D

∑
d=1

l idSd j (3.2)
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wherexi j are the image coordinates of the point andSj is the 3D× 1 parameterisation of the

shape basis for a deformable pointj such that:

Sj =



















S1 j

S2 j

...

SD j



















(3.3)

with the 3-vectorSd j defining thed basis component for pointj.

Following equation (3.1), the uncertainty over the measurements is obtained from the residual

given byni j = wi j − xi j . This residual is generally referred to as the reprojection error of the

image coordinates in the literature and it expresses the difference betweenthe image coordinates

given the estimated model parameters and the measured data. Hence, it is possible to recast the

problem of estimating the non-rigid structure and motion parameters by minimizing thenorm of

the reprojection error of all the points in all the frames such that:

min
Ri l id Sj

F,P

∑
i, j

‖ ni j ‖2= min
Ri l id Sj

F,P

∑
i, j

‖ wi j −xi j ‖2 (3.4)

Note that the error is a sum ofFP quadratic cost functions. Assuming the noise can be mod-

elled with a Gaussian distribution, the minimization of equation (3.4) provides a trueMaximum

Likelihood (ML) estimate of the parameters.

The definition of this non-rigid cost function could rise two major criticisms. First,the num-

ber of parameters can increase dramatically with the number of frames composing the scene

and the complexity of the modelled object. This may render the minimization of equation (3.4)

computationally unfeasible given the size of the parameter space. Second,the high non-linearity

of the cost function is likely to produce multiple minima which would result in a difficult con-

vergence to the global minimum of the function. The solution proposed is a reformulation of

bundle-adjustment techniques for deformable structure from motion which we describe in the

following sections.

3.2 A bundle-adjustment approach to deformable modelling

The non-linear optimization of the cost function in (3.4) is achieved using a Levenberg-Marquardt

[106] iterative minimization scheme modified to take advantage of the sparse block structure of

the matrices involved. This method is generically termed bundle-adjustment in the computer
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vision [147] and photogrammetry [5] communities and it is a standard procedure successfully

applied to numerous 3-D reconstruction tasks [67]. Our main contribution here is an analysis of

its applicability to the non-rigid modelling framework.

In the next section, we will review the concepts involved in bundle-adjustment (Levenberg-

Marquardt minimization and sparse computation) and reformulate the factorization framework

as a non-linear, large-scale minimization problem.

3.2.1 Levenberg-Marquardt minimization

Levenberg-Marquardt methods [92, 99, 106] use a mixture of Gauss-Newton and gradient de-

scent minimization schemes switching from the first to the second when the estimated Hessian

of the cost function is close to being singular. An algorithm with mixed behaviors usually ob-

tains a higher rate of success in finding the correct minimum than other approaches. Other similar

second-order or quasi-Newton algorithms may be used to minimize the cost function. However,

Levenberg-Marquardt techniques have been studied and tested thoroughly in many Computer

Vision applications [67] and they have been found to deliver satisfactoryresults. Examples are

mostly given for classical inference problems in Computer Vision such as fundamental matrix

computation [8], camera calibration [118] and 3-D sparse reconstruction[55]. However second-

order methods have been successfully applied to less conventional geometric problems such as

model-based face reconstruction [47], mosaicing [102] and reconstruction of curves [10].

Most of the computational burden of iterative second-order methods is represented by the

Gauss-Newton descent step, each iteration of which requires the calculation of the inverse of the

Hessian of the cost functionC. Specifically to the deformable factorization case,C can be ex-

pressed in terms of theN-vectorΘ containing the model parameters such thatΘ = (Θl1, . . . ,ΘlF ,

ΘR1, . . . ,ΘRF , ΘS1, . . . ,ΘSP)T , whereΘli , ΘRi andΘSj represent respectively the parameters for

the configuration weights, orthographic cameras and 3-D basis shapes for each view and each

point. Hence, the cost functionC can be written as a sum of squared residuals:

C(Θ) =
F,P

∑
i, j

‖ ni j ‖2 (3.5)

where the residual for each frame and each point can be expressed as a 2FP×1 vectorn such

that n = [nT
11. . .nT

FP]T . At each iterationt of the algorithm, an update∆t is computed in order

to descend to the minimum of the cost function such that the new set of parameters is given by

Θt+1 = Θt + ∆t . By dropping the iteration indext for notation clarity, it is necessary to express
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the generic increment∆ in the model parameters as a second order Taylor expansion assuming

local linearities in the cost function such that:

C(Θ+∆)≈ C(Θ)+gT∆+
1
2

∆T
H∆ (3.6)

whereg = JTn is the N× 1 gradient vector andH is the N×N Hessian matrix that can be

approximated asH = JTJ (Gauss-Newton approximation of the Hessian matrix; see [147] for

details) withJ= ∂n
∂Θ representing the 2FP×N Jacobian matrix in the model parameters. In order

to find the increment∆, the minimum of the quadratic functione= gT∆+ 1
2∆TH∆ is computed by

imposing∂e
∂∆ = 0. Thus, the expression of the Gauss-Newton descent step can be finally expressed

as:

H∆ =−g (3.7)

Levenberg-Marquardt algorithms differ from a pure Gauss-Newton method since they apply

adampingterm to equation (3.7) obtaining:

(H+λI)∆ =−g (3.8)

The added termλI has a twofold effect in the minimization. Firstly, by modifying the parameter

λ, it is possible to control the behavior of the algorithm that can switch betweenfirst order (for

high values ofλ) and second order (lowλ) iterations. Secondly,λI makes the solution of (3.8)

numerically stable by forcing thatH+λI is a full-rank matrix and thus properly invertible.

3.2.2 Sparse structure of the Jacobian

Solving for the normal equations in equation (3.7) is a problem of complexityO(N3) and this step

has to be repeated at each iteration. In order to render the computation feasible as the number of

parameters increases, it is possible to exploit the sparse structure of the JacobianJ.

Motion components (configuration weights and camera parameters) are unrelated between

different views and, similarly, structure components are unrelated between different point trajec-

tories. As a result, the Jacobian matrix contains a large number of entries forwhich the partial

derivatives are zero, as we show in the graphical representation of itsstructure in figure 3.1.

It is possible to solve for the increment∆ in (3.7) efficiently by calculating the inverse of

H using the sparse structure ofJ. Standard approaches for sparse computation are described in

[147] and [67]. Notice that, again, this property is valid for any rigid and non-rigid factorization

model, since the sparseness relation is given by the independency between motion parameters
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Figure 3.1: Sparse structure of the Jacobian matrix. We show an example for 3 frames and 6

points (P1,P2,P3,P4,P5,P6). The zero-entries of the matrix are displayed as white blocks.Θl1,

Θl2 andΘl3 represent the configuration weights respectively for frame 1, 2 and 3.ΘR1, ΘR2 and

ΘR3 are the vectors of the camera components for each frame andΘS1, ΘS2, ΘS3, ΘS4, ΘS5, ΘS6

encode the basis shapes for each deformable point.

(for each frame) and 3-D structure (for each point) in the multi-view cost function and thus

independent of the chosen model.

3.2.3 Proposed implementation

The cost function of a deformable object presents more degrees of freedom than in the rigid

case, which could lead to the existence of multiple local minima for the motion, deformation

and structure components. It is possible to reduce the chance of falling intolocal minima by

carefully designing the algorithm with respect to the following aspects: initialisation, model

parameterisation and the use of priors.

Parameterisation

The camera matricesRi are parameterised using unit quaternions [74] giving a total of 4×F

rotation parameters, whereF is the total number of frames. Quaternions ensure that there are no

strong singularities and that the orthonormality of the rotation matrices is preserved by merely

enforcing the normality of the 4-vector. This would not be the case with the Euler angle or

the rotation matrix parameterisations, where orthonormality of the rotations is morecomplex to
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preserve. The quaternion normalization is directly enforced in the cost function by dividing the

quaternion with its norm. Indeed, in an initial implementation the 3-D pose was parameterised

using the 6 entries of the rotation matricesR f , however the use of quaternions led to improved

convergence and to much better results for the rotation parameters and the 3-D pose.

The method proposed by Bar-Itzhack [6] in an attitude control context is used to obtain the

quaternions from the set of rotation matricesRi . The algorithm has the main advantage to yield

the closest quaternion representation if the constraints of matrix orthonormality are not exactly

satisfied. This eventuality usually appears during the initialisation of the non-linear optimization

scheme after the first computation of the corrective transformQ3×3 for the rigid component of

the motion. Schematically, the method first define the matrixB given the singular elements{rmn}

belonging to a generic 3×3 rotation matrixR:

B =
1
3



















r11− r22− r33 r21+ r12 r31+ r13 r23+ r32

r21+ r12 r22− r11− r33 r32+ r23 r31− r13

r31+ r13 r32+ r23 r33− r22− r11 r12− r21

r23− r32 r31− r13 r12− r21 r11+ r22+ r33



















(3.9)

The algorithm then follows with the following three steps:

1. Compute the eigenvalues ofB.

2. Find the largest eigenvalueλmax.

3. Extract the eigenvector ofB which correspond toλmax.

The given eigenvector is the closest quaternion to the matrixR. In the case of an exact orthonor-

mal matrix we would obtainλmax= 1.

Finally, the structure is parameterised with the(3×D)×P coordinates of theSd shape bases

and theD×F deformation weightsl id.

Initialisation

A further critical factor is the choice of an initialisation for the parameters of the model. It is

crucial, for bundle adjustment techniques to work, that the initial estimate be close to the global

minimum to increase the speed of convergence and reduce the chance of being trapped in local

minima, particularly when the cost function has a large number of parameters as in this case.
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A similar initialisation to the one used by Torresani et al. in their tri-linear optimization

scheme [141] is chosen. The idea is to initialize the camera matrices with the motion correspond-

ing to the rigid component, which is likely to encode the most significant part of the motion.

A different initialisation which gives a reasonable starting point is to use the estimates given

by Brand’s algorithm for both motion and structure [16]. Occasionally, however, we have ob-

served problems with the convergence given this initialisation and generally when the motion

associated to the rigid component is used as the initial estimate the minimization reaches the

minimum of the cost function in fewer iterations.

Regularization prior

Occasionally, the non-linear optimization leads to a solution corresponding to alocal minimum.

In particular, at times the 3-D points tend to lie on a plane. To overcome this situation, a prior on

the 3-D shape has been added to the cost function. The prior states that the depth of the points

on the object’s surface cannot change significantly from one frame to thenext since the images

are closely spaced in time. This is implemented by adding a penalty termCs that penalizes for

strong variations between the shape at framesi andi +1 given by:

Cs(Θ) =‖
D

∑
d=1

l idSd−
D

∑
d=1

l(i+1)dSd ‖2 (3.10)

In this way the relief present in the 3-D data is preserved. Similar regularization terms have also

been reported in [2, 141].

3.3 Previous work in non-rigid BA

Aanæs and Kahl, also proposed a bundle adjustment solution for the non-rigid scenario [2].

However, their approach differs in some fundamental aspects. Firstly, their initial estimate of

the non-rigid shape was obtained by estimating the mean and variance of the 3-D data obtained

directly from image measurements. The approach assumes that the cameras are calibrated, and

although the authors state that their algorithm would work in the uncalibrated case they do not

give experimental evidence. In contrast, we consider a scenario based on uncalibrated data from

a generic video sequence. The second main difference is in the parameterisation of the problem.

In [2] the camera rotations are parameterised by the six elements of the rotationmatrix. We are

using quaternions instead which, as will be shown in the experimental section, leads to better

behaved results for the motion estimates.
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In terms of their experimental evaluation, Aanæs and Kahl do not provide an analysis of the

recovered parameters, only some qualitative results of the 3-D reconstruction. In contrast, our

quantitative experimental analysis shows that we are able to decouple motion and deformation

parameters (see next section for a detailed description).

3.4 Experimental results

In this section we show results of our non-linear optimization approach with synthetic and

real image sequences. The quality of the 3-D reconstructions are both evaluated quantitatively

with respect to ground truth values and qualitatively over two sequences with a subject perform-

ing different facial expressions.

3.4.1 Synthetic data

Xiao et al. [159] showed in recent experiments that previous methods for deformable factoriza-

tion [19, 16, 141] may fail even for simple deforming objects. Using similar synthetic data sets,

the forthcoming tests will shed some light on the efficiency of the proposed non-linear optimiza-

tion procedure for 3-D reconstruction. The experiments are constructed by generating a random

set ofD basis shapes whose linear combination creates varying deformable 3-D shapes contained

in a cube of 50×50×50 units (see figure 3.4.1). The set of configuration weightsl id are obtained

by fitting polynomials to randomly generated values. This was necessary to obtain smoother de-

formations rather than erratic and unrealistic changes in the 3-D structure at each frame. Notice

that the configuration weights and, thus, the temporal evolution of the deformations are as generic

as possible. For instance, there is no assumption of independency of the basis shapes as required

by the method of Xiao et al. [159] (see section 2.4.5 for a description). Finally, the generated 3-D

shapes are projected onto the image plane (of size 640× 480) by means of random orthographic

camerasRi . The experimental setup is completed by fixing the number of points toP = 40 and

frames toF = 30.

Two set of tests are presented. First, the number of basis shapes was varied such that

d = 2. . .5 to verify the algorithm’s performance with increasingly complex deformations. A

second test is then performed to obtain an evaluation of the quality of the reconstruction in case

of varying strength of the deformations but fixing the number of basis shapes toD = 3. This
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Figure 3.2: Some frames of the cube sequence used for testing the algorithm.The deformable

points are sampled inside a cube of 50× 50 × 50 (wire-frames are added to show the solid

contour).

measurement is directly calculated between the ratio of the norm of the rigid components of the

3-D metric shapes and the norm of the 3-D deformable structures (beforeprojection) such that

ratio =
‖Snonrigid‖
‖Srigid‖ . In order to validate the performance 25 trials were performed for each setup

and for different Gaussian noise conditions with varianceσ = 0.5, 1, 1.5, 2.

The results are obtained with a MATLAB implementation of non-rigid bundle adjustment

using the built-in functionlsqnonlin for non-linear minimization. The software is designed in

a such way that the sparse structure of the Jacobian is automatically computedby calculating

the derivatives of the cost function with different number of basis shapesD. Initialisation of

the model parameters is as described in the previous section. The stop criteria was fixed for the

tolerance over the increment in the model parameters (fixed at 10−6). The minimisation usually

converges in a time ranging between 10–30 seconds (on a AMD–Athlon X2 computer clocked at

3800 MHz) for the set of synthetic data considered in the experiments.
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Figure 3.3: Relative 3-D error (%), r.m.s. rotation error (deg) and 2-D reprojection error for

the synthetic experiments for different basis shapesd = 2. . .5 and increasing levels of Gaussian

noise. The ratio of non-rigidity is fixed to 40% for all the trials.

Figure 3.3 shows three plots representing the 3-D reconstruction error expressed in percent-

age relative to the scene size (which it is defined as the maximum of thex, y andz coordinates),
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Figure 3.4: Relative 3-D error (%), r.m.s. rotation error (deg) and 2-D reprojection error box-

plots for the synthetic experiments for different basis shapesd = 2. . .5 and Gaussian noise fixed

at σ = 1.5. The ratio of non-rigidity is fixed to 40% for all the trials.

the absolute rotation error expressed in degrees for varying number ofbasis shapes and the root

mean squared (r.m.s.) 2-D image reprojection error expressed in pixels. The plots of this figure

show the mean values corresponding to 25 random trials applied to each level of Gaussian noise.

As expected, higher complexity in the degrees of deformation (given by theincreasing number of

basis) results in worse performance of the algorithm. Note that the increasing levels of Gaussian

noise do not affect the estimate of the 3-D structure and rotations strongly.

In order to evaluate more accurately the results, a box-plot in figure 3.4 shows the statistical

properties of the errors for the experiment with Gaussian noise level fixed atσ = 1.5. The plot

consists of four blue boxes (one for each number of basis) which lowerand upper lines define

the 25th and 75th percentiles of the sample. The red line in the middle of the box is thesample

median. The black lines extending above and below the box show the range of the rest of the

samples. The outliers are shown as red plus signs and they represent a problem in the algorithm

convergence to the minimum. Usually this refers to the minimisation being trapped in a local

minima.

Figure 3.5 shows results of experiments for increasing degrees of non-rigidity of the 3-D

structure. Notice that, higher levels of deformity in the shape negatively affect the estimation

of the model parameters. An important observation for both experiments is thefollowing: the

recovered values for the 3-D reconstruction and rotation errors do not converge to the global

minimum in the case of no noise (when perfect data is available).

The box-plots in figure 3.6 reveal a higher rate of outlier errors showingmore difficulties in

finding the global minima in the case of increasing deformations. In these cases the algorithm

showed a tendency to converge to the minimum too slowly or to converge to a local solution.
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Figure 3.5: Relative 3-D error (%), r.m.s. rotation error (deg) and 2-D reprojection error for the

synthetic experiments for different ratio of deformation (10%, 40%, 80%,100%) and increasing

levels of Gaussian noise.
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Figure 3.6: Relative 3-D error (%), r.m.s. rotation error (deg) and 2-D reprojection error box-

plots for the synthetic experiments for different ratio of deformation (10%,40%, 80%, 100%)

and fixed Gaussian noise (σ = 1.5).

This effect is a consequence of the intrinsic ambiguity of the solutions in the case of deformable

structure from motion as discussed in Xiao et al. work’s [159]. In orderto solve this problem,

we will introduce our solution based on rigidity priors later in chapter 5.

3.4.2 Experiments with real images and manually tracked data

In this section we compare the results obtained with our bundle-adjustment based 3-D recon-

struction algorithm with those obtained using Brand’s non-rigid factorizationmethod [16]. A

direct comparison with Xiao et al.’s approach is not meaningful since we did not find it possible

to extract a set of independent basis shapes that lead to a reasonable reconstruction (a problem

already reported in [17] for real data). A real video test sequence shows the face of a subject

performing an almost rigid motion for the first 200 frames, moving his head up and down. The

subject then changed facial expression with his head facing front forthe next 309 frames (see

figure 3.7). The point features which appear in figure 3.7 were manually marked throughout the
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Frame 1 Frame 67 Frame 115 Frame 182 Frame 204 Frame 224

Frame 275 Frame 300 Frame 345 Frame 358 Frame 467 Frame 504

Figure 3.7: Key frames of the sequence used in the experiments in section 3.4.2, with manually

tracked points superimposed. The subject performed an almost rigid motion for the first 200

frames moving the head up and down and then changed facial expressionfor the next 309 frames.

sequence. The number of basis shapes is fixed heuristically toD = 5, a compromise between

the complexity of the model and the number of captured deformations. The computation time

required for the algorithm to convergence is consistently higher (8 minutes approximately) given

the number of frames, points and deformations which increases the number of parameters to

estimate.

The results of the 3-D reconstructions1 for some key frames in the sequence obtained using

Brand’s factorization method are shown in figure 3.8. The front views ofthe 3-D reconstruc-

tion show that the recovered 3-D shape does not reproduce the facialexpressions accurately.

Besides, depth estimation is not precise, which is evident by inspection of thetop views of the

reconstruction. Notice the asymmetry of the left and right sides of the face.

In figure 3.9 we show the reconstructed 3-D shape recovered after applying the bundle ad-

justment refinement step. The facial expressions in the 3-D plots reproduce the original ones

reliably: notice for example the motion of the eyebrows in the frowning expression (frame 467)

or the opening of the mouth in surprise (frame 358). Finally, the top views show that the overall

relief appears to be well preserved, as is the symmetry of the face.

The evolution of the weightsl id of the deformation modes can be traced throughout the

sequence. In figure 3.10 we show the value of the weight associated with the mean component

1Video available at http:/www.bmva.ac.uk/thesisarchive/2006/DelBue1/index.html
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Frame 1 Frame 67 Frame 275 Frame 300 Frame 358 Frame 467

Figure 3.8: Front, side and top views of the 3-D reconstructions obtained from the non-rigid

factorization algorithm without bundle adjustment for some of the key frames inthe sequence.

No ground truth is available in this experiment.

Frame 1 Frame 67 Frame 275 Frame 300 Frame 358 Frame 467

Figure 3.9: Front, side and top views of the 3-D reconstructions obtained after applying non-

linear optimization. No ground truth is available in this experiment.
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(A) Results from Brand’s factorization (B) Results after bundle adjustment

Figure 3.10: Values obtained for the rigid component (top), deformation weights (middle) and

rotation angles (bottom) using Brand’s approach (A) and bundle adjustment (B) for the sequence

in figure 3.7.

(top)d = 1 and of those associated with the 4 remaining deformation modes (middle). Results are

given for both Brand’s flexible factorization (left) and for the bundle adjustment scheme (right).

Notice how Brand’s flexible factorization has a tendency to suppress weak deformations – the

weights associated with the deformation modes for frames with small deformationshave a small

value. This results in the recovered 3-D shape not reproducing the facial expressions accurately.

The weights associated with the deformation modes have higher values in the bundle-adjusted

solution. Interestingly, around frame 360 the first non-rigid mode of deformation experiences a

large peak, which corresponds to the opening of the mouth in surprise as shown in figure 3.7.

This indicates some tendency in the configuration weights to reflect the underlying facial expres-

sions. Although this peak is present also in Brand’s solution, it is possible toobserve by visual

inspection that the corresponding 3-D reconstruction in figure 3.8 is not very accurate.

The results obtained for the motion parameters are shown in the bottom graph of figure 3.10.

The rotation angles around the X, Y and Z axes (up to an overall rotation) are recovered for each

of the 509 frames in the sequence. In particular, the tilt angle varied smoothlythroughout the

first 200 frames capturing the up and down tilt of the head of about 50 degrees in total while
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the rotation angles around the other 2 axes did not vary significantly throughout the sequence.

Notice that both solutions capture this motion correctly. However, the results obtained with the

bundle-adjusted solution (right) qualitatively presents less variations in parts of the scene where

the subject is not rigidly moving. Using Brand’s algorithm (left), it is possibleto notice sudden

variations of the motion which cannot be observed by visual inspection in theimage sequence.

This indicates that the estimation of the orthographic camera matrices in Brand’smethod may be

affected by the deformations appearing in the scene.
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Figure 3.11: Values used for the initialisation of the non-linear minimization algorithm. The

value obtained for the rigid component (left) and rotation angles (right) arecomputed with the

motion corresponding to the rigid component.

The non-linear refinement step is initialised using the values of the first configuration weight

and the rotation angles associated with the mean component as shown in figure3.11. Note that

the deformable bases and configuration weights are initialized to very small random values. This

initialisation was first used by Torresani et al. [141] in their tri-linear optimization stage and it

provided reasonable results. It can be observed from the plot that therigid component of the

motion is a good description of the object’s rotation, and in fact the bundle-adjustment step does

not optimize these parameters much further and focuses on the refinement of the deformation

parameters.

3.4.3 Experiments with real images and automatically tracked data

In this section, the behavior of the method is tested with image measurements obtained auto-

matically with a point tracking algorithm [37]. The scope of this test is to show thefeasibility of

a complete unsupervised system for 3-D deformable reconstruction starting from an uncalibrated

video sequence showed in figure 3.12. A ranklet-based tracker [129]specially designed to cope

with deforming structures automatically generates the tracks that are input intothe non-linear

optimization scheme. The system has to cope with a complex 960 frame sequencein which the
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Frame 1 Frame 250 Frame 335 Frame 420 Frame 541 Frame 710 Frame 960

Figure 3.12: Key frames in the sequence used to test the reconstruction ofa 3-D deformable

shape with automatic tracking of feature points. The subject performed simultaneous rigid and

non-rigid motion. Automatically tracked points are superimposed. A set of wireframes outlines

the face structure.

subject is undergoing 3-D motion and performing different facial expressions.

A total of 91 points were initialized automatically according to a saliency criterion [38]. The

tracker was able to follow a good number of feature points reliably throughout the sequence,

even in relatively poorly textured areas such as the subject’s cheekbones. Throughout the 960

frame sequence, only 8 points out of the initial 91 were lost. However, a certain number of points

initialized on homogeneous texture turned out to be unreliable, and they evidently affect the 3-D

shape estimation in those areas.

Figure 3.13 shows the front, top and side views of the 3-D reconstruction ofsix key frames

with different expressions. The number of basis shapes is fixed toD = 8 since this value can gen-

erate a model which capture most of the deformations appearing in the video sequence. Higher

values forD would obtain more accurate models but at the cost of a higher computational time

required to minimize the cost function. The initialisation of the non-linear optimizationis iden-

tical to the one described in section 3.2.3. The overall depth is generally correct: notice the point

belonging to the neck relative to the position of the face, and the nose pointingout from the

face plane. Face symmetry is generally well preserved, as it is possible to notice from the top

views of the reconstruction. Some outliers are obvious in frame 710 in the eyebrow region and

generally on the neck area where the tracker performs poorly; such feature points are wrongly

reconstructed by our non-rigid model.

Finally, the reconstructed motion and deformation parameters are displayed infigure 3.14.

The estimated angles follow the rotation of the subject’s head reasonably, withvalues limited be-

tween 10 and−15 degrees for the ”beta” angle, while ”alpha” and ”gamma” show tiny variations.

The rigid weight is nearly constant for the whole sequence in accordancewith the subject’s head
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Frame 1 Frame 250 Frame 335 Frame 541 Frame 710 Frame 960

Figure 3.13: Front, side and top views of the 3-D reconstructions obtainedby the combined

system for some of the key frames in the sequence.
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Figure 3.14: Evolution of the rigid weight(D = 1), the first five non-rigid weights(D = 2, . . . ,6)

and the rotation angles (in degrees) throughout the sequence of figure3.12.
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being at the same distance from the camera. The non-rigid configuration weights present more

erratic behavior; the two spikes around frame 280 and 670 correspond respectively to a grin and

an angry facial expression.

3.5 Summary

Non-linear optimization is applied to obtain a reliable solution for 3-D deformable reconstruction

from uncalibrated video sequences. The key features of the approach consist on enforcing the

repetitive pattern of the motion matrixM while at the same time explicitly considering a proper

parameterisation for the orthographic cameras using quaternions. Further care is put to render the

approach tractable: Levenberg-Marquardt minimization safely descends towards the minimum

of the defined cost function and sparse computation efficiently solves foreach iteration.

In contrast, the previous linear methods obtained approximate solutions by neglecting the

non-linear structure of the framework. The direct consequence is a coupling of motion and de-

formation components as we have observed in the results using Brand’s method [16]. Xiao et al.’s

[159] approach avoids the ambiguities but needs to make assumptions aboutthe independency of

the 3-D basis shapes.

However, it is shown in the synthetic tests that our non-linear optimization approach not al-

ways converges to the global minimum of the cost function. This effect is a consequence of the

intrinsic ambiguity of the solutions: local minima are likely to be present if additionalinforma-

tion about the 3-D structure of the deforming object is not introduced as previously discussed

by Xiao et al. in [159]. In order to solve this problem, we will introduce our solution based on

rigidity priors later in chapter 5.

The framework presented here can be easily extended to deal with different types of non-rigid

objects (for instance, articulated structures) and of camera models by changing the cost function

C accordingly. Additionally, prior information and/or regularization terms may beeasily inserted

in the minimization by adding quadratic penalty terms in the same way as those introduced in

equation (3.10) to ensure the temporal smoothness of the 3-D reconstructions. These terms may

help descend towards the global minimum of the cost function and, if applied strictly, can force

specific priors on the motionM and 3-D structure componentsS.

The expression of the problem as a sum of cost functions for each imagepoint wi j allows us

to deal with missing entries in the measurement matrixW. Hence, if a point becomes occluded
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at a certain frame (a likely event in a practical scenario), it is still possible toperform non-linear

optimization by not including the cost function related to the lost entry in the minimization.

Although robust estimation is not an issue of this work, point trajectories could have un-

certainty information associated with their covariance matrixCi j derived from the image point

tracking algorithm. In this case, it would be possible to define optimal estimates ofthe pa-

rameters given the uncertainties by minimizing the Mahalanobis distance of the quadratic terms

∑F,P
i, j ‖ ni j ‖2Ci j

. The covariance values can be easily included in the estimation and may lead to a

more robust inference.

In the following chapter, the non-rigid factorization framework will be extended to deal with

the information extracted from multiple cameras; a necessary solution when theinspected de-

formable object undergoes minimal rigid motion.
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Chapter 4

Stereo Non-Rigid Factorization

The factorization framework is a flexible tool for modelling data from point trajectories extracted

from uncalibrated video sequences. In the case of deformable objects,an aspect of relevant in-

terest is the applicability of the previously described algorithms to the case when the object is

viewed by multiple cameras. More specifically, we have formulated the problemfor a stereo rig,

where the two cameras remain fixed relative to each other throughout the sequence. In this case

the measurement matrix requires not only the temporal tracks of points in the leftand right image

sequences but also the stereo correspondences between left and right image pairs. We have de-

veloped a new method to factorize the measurement matrix into the left and right motion matrices

and the 3-D non-rigid shape. Note that this method requires both cameras to be synchronized.

However, if this were not the case, it could be elegantly solved inside a factorization framework

using the solution proposed by Tresadern and Reid [142] for the synchronization of stereo video

sequences in an uncalibrated scenario.

4.1 Stereo, motion and structure

Using a calibrated stereo pair is a common and practical solution to obtain reliable3-D recon-

structions (see figure 4.1). In its simpler formulation, once the stereo rig is calibrated, the depth

of points in the image is estimated by applying triangulation [148]. In order to obtain accurate

depth estimates, the cameras are usually separated from each other by a significant baseline thus

creating widely spaced observations of the same object. The disadvantageof this configuration

though, is that having a wide baseline makes the matching of features betweenpairs of view a
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Figure 4.1: A classic stereo setup. The 3-D pointX is projected into the left and right images

with coordinateswL andwR. The camera centersOL andOR are displaced in 3-D with a baseline

d and relatively rotated with a 3×3 rotation matrixRrel

more challenging problem.

On the other hand, the task of computing temporal tracks from the single camera sequences

is relatively easier since the images are closely spaced in time. As a drawback, disparities may

be insufficient to obtain a reliable depth estimation and, as a result, longer sequences are needed

to infer the 3-D structure. Particularly, in the case of non-rigid structure,a sufficient overall rigid

motion is necessary to allow the algorithms to correctly estimate the reconstruction parameters.

Hence, a question of relevant interest is the feasibility of an approach that efficiently fuses

the positive aspects of both methods. The problem of recovering 3-D structure using a stereo-rig

moving in time or a stereo rig looking at a moving object has been defined for therigid case as the

stereo-motionproblem [154, 39, 131, 97] (see figure 4.1). Ho and Chung [73] first formulated

this problem within the factorization scenario. Following a similar direction, we introduce a

multi-camera motion model that is able to deal with a time-varying shape and to find a linear

solution that is subsequently optimized with the non-linear procedure presented in the previous

chapter.
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Figure 4.2: A stereo motion setup. A point is moving in space and its position in 3-Dis shown

for each time instance asX1, X2 andX3. The three points are then projected into the respective

image frames obtaining the image coordinateswL
1, wL

2 andwL
3 for the left camera andwR

1 , wR
2

andwR
3 for the right one. The dotted lines connecting the points represent the 2-Dtrajectory

in time of the point in the left and right images. Since the position of the cameras is fixed, the

relative orientationRrel and camera displacementd between the camera centersOL andOR are

considered constants in time.
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4.2 The stereo camera case

The main contribution presented here is to extend the non-rigid factorization methods to the

case of a stereo rig, where the two cameras remain fixed relative to each other throughout the

sequence. However, the same framework could be used in the case of 3 or more cameras. Torre-

sani et. al. [141] first introduced the factorization problem for the multiple camera case but they

did not provide an algorithm or any experimental results.

4.2.1 The stereo motion model

When two cameras are viewing the same scene, the measurement matrixW will contain the image

measurements from the left and right cameras resulting in a 4F×P matrix whereF is the number

of frames andP the number of points. Assuming that not only the single-frame tracks but also

the stereo correspondences are known we may write the measurement matrixW as:

W=







WL

WR






(4.1)

where for each framei the stereo correspondences are:

W
L
i =

[

wL
i1 . . . wL

iP

]

W
R
i =

[

wR
i1 . . . wR

iP

]

(4.2)

Note that, since we assume that the cameras are synchronized, at each time step i the left and

right cameras are observing the same 3-D structure and this results in the additional constraint

that the structure matrixS and the deformation coefficientsl id are shared by left and right camera.

The measurement matrixW can be factored into a motion matrixM and a structure matrixS which

take the following form:

W=












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
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



S1

...

SD













(4.3)

whereRL andRR are the rotation components for the left and right cameras. Once more, we have

eliminated the translation for both cameras by registering image points to the centroid in each

frame.
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Note that the assumption that the deformation coefficients are the same for the left and right

sequences relies on the fact that the weak perspective scalingf/Zavg must be the same for both

cameras. This assumption is generally true in a symmetric stereo setup wheref andZavg are

usually the same for both cameras.

It is also possible to express the stereo motion matrixM by including explicitly the assumption

that a fixed stereo rig is being used. In this case the rotation pair for the leftand right cameras

can be expressed in terms of the matrix that encodes their relative orientationmatrix Rrel such

that:RR = RrelR
L. The motion matrixM in equation (4.3) can be consequently expressed as:

M=

































l11R
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L
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...
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lF1R
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L
F
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L
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L
F
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L
F

































(4.4)

4.2.2 Non-rigid stereo factorization

Once more the rank of the measurement matrixW is at most 3D sinceM is a 4F×3D matrix and

S is a 3D×P matrix, whereP is the number of points. Assuming that the single frame tracks and

the stereo correspondences are all known, the measurement matrixW may be factorized into the

product of a motion matrixM and a shape matrixS by truncating the SVD ofW to rank 3D (see

section 2.4.1):

W=







WL

WR






=~M~S=







~ML

~MR







~S (4.5)

Computing the transformation matrixQ

The result of the factorization is not unique since(~MQ)(Q−1~S) would give an equivalent factoriza-

tion. We proceed to apply the metric constraint in a similar way as was describedfor the single

camera case in section 2.4.4, correcting each 4F×3 vertical block in~M independently. Note that

in this case we have used five constraints per frame: 2 orthogonality constraints (one from each

camera) and 3 equal norm constraints (computed from rows 2i−1, 2i, 2i + 2F −1, 2i + 2F of

the motion matrix~M wherei is a generic frame). Each vertical block will then be corrected as:
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M̂d← ~MdQd. The overall transformationQ is a block diagonal matrix such that:

Q =



















Q1 0 . . . 0

0 Q2 . . . 0

...
...

. . .
...

0 0 . . . QD



















(4.6)

The shape matrix will be corrected with the inverse of the block-diagonal transformation:S←

Q−1~S.

Factorization of the motion matrix~M

In the stereo case we factorize each 4×3D sub-block of the motion matrix (which contains left

and right measurements for each framei) into its truncated 2×3 rotation matricesRL
i andRR

i and

the deformation weightsl id using orthonormal decomposition. The structure of the sub-blocks

can be expressed as:






ML
i1 . . . ML
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
(4.7)

The approach used to estimate the rotation components for the left and right cameras is

similar to the algorithm described in section 2.4.4. Since now we have 4 rows perframe, we

arrange the motion sub-blocks such that:

~Mi→M̌i=
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
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
(4.8)

whererL
i = [rL

i1 . . . rL
i6]

T is a column vector which contains the coefficients of the left rotation

matrixRL
i and similarly forrR

i . Post-multiplying the rearranged matrixM̌i by the 2D unity vector

c = [1. . .1]T gives a column vectorai :

ai = M̌ic (4.9)

which may be rearranged into a 4×3 matrixAi with analytic form:

Ai =
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wherek = l i1 + . . .+ l iD . SinceRL andRR are orthonormal matrices, the following equation is

satisfied:






RL 0

0 RR







4×6
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AT
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√


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

ALA
T
L 0

0 ARA
T
R







4×4

(4.11)

Therefore, a linear least-squares fit can be obtained for the rotation matricesRL andRR and the

weightsl id can be subsequently estimated in a similar way as shown in section 2.4.4. Finally a

minimization scheme similar to the one used by Brand [16] in hisflexible factorizationalgorithm

is applied here (see section 2.4.4).

So far we have presented an extension of non-rigid factorization methodsto the case of a

stereo camera pair. In particular our algorithm follows the approach by Brand [16]. While

this new method improves the quality of the 3-D reconstructions with respect to those using a

monocular sequence, it still performs a partial upgrade of themotionand3-D structurematrices

sinceQ is computed initially as a block diagonal matrix and then corrected with Brand’sflexible

factorization.

In the next section we will describe a non-linear optimization scheme which renders the

appropriate structure to the motion matrix, allowing to properly disambiguate between the motion

and shape parameters.

4.2.3 Stereo non-linear optimization

An analogous approach as described in section 3.2 is used to refine the motion and stereo compo-

nents estimated from the linear method. Similarly to the monocular case, the reprojection error

for the stereo rig is defined by rearranging equation (4.4) giving:

ni j =







xL
i j −RL

i ∑d l idSd j

xR
i j −RrelR

L
i ∑d l idSd j






(4.12)

Optimization of the deformable parameters is performed through the minimization of the cost

functionC(Θ) such that:

min
Rrel R

L
i l id Sd j

C(Θ) = min
Rrel R

L
i l id Sd j

F,P

∑
i, j

‖ ni j ‖2 (4.13)

is the minimization of the sum ofFP quadratic cost functions for the left and right cameras.

The initial estimate for the constant relative orientationRrel between the left and right cameras

is estimated from the camera matricesRL andRR (see section 4.2.2) using a least squares estima-

tion. Unit quaternions were used again as the parameterisation and the orthogonality constraint
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was enforced by fixing the 4-vector norm to unity such that the solution space is constrained to

lie on a hypersphere of dimension 4.

If the internal and external calibration of the stereo rig were known in advance after a process

of calibration or self-calibration, an alternative initialisation could be computedby recovering

the 3-D structure and performing Principal Component Analysis (PCA) onthe data to obtain

an initial estimate for the basis shapes and the coefficients. However, our choice was to use an

initialisation that does not require a pre-calibration of the cameras.

4.3 Experimental results

This section shows the performance of the proposed stereo-motion algorithms. Firstly, synthetic

stereo sequences are generated under different Gaussian noise and deformation conditions to as-

sess the validity of the method. A further synthetic test using a computer graphic (CG) generated

face model will show the behavior of the configuration weights and motion components when the

object in the stereo sequence is static (only deforming). We then carry outsome real experiments

where the object underwent only a small amount of rigid motion (apart fromthe deformations)

and we will show the improvement of the method by comparing the output of the monocular

factorization and the stereo algorithms. Non-linear optimization will follow the computed linear

solutions.

4.3.1 Experiments with a synthetic non-rigid cube

A similar setup as the one used in the monocular case (see section 3.4.1) is usedto demonstrate

the behavior of the method in the stereo case. A set of deformable points is randomly sampled in-

side a cube of 50×50×50 units. A minimal overall rigid motion is introduced to avoid possible

ambiguities arising from a completely static object. The 3-D structure computed ateach frame is

then projected with 2 orthographic cameras displaced by a baseline of 20 units and relatively ro-

tated by 30 degrees about they-axis. Finally, different levels of Gaussian noise (σ = 0.5,1,1.5,2)

are added to the measurements obtained by the stereo pair. Notice that the setup is constructed in

such way that the overall rigid motion is not enough to reconstruct the sequences using monocu-

lar factorization followed by bundle adjustment. We performed a test and we obtained a relative

3-D reconstruction error of 50% resulting in a meaningless reconstruction.

The results show the plots for the relative 3-D error, rotation error and reprojection error
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Figure 4.3: Relative 3-D error (%), r.m.s. rotation error (deg) and 2-D reprojection error for the

synthetic experiments with a stereo pair for different basis shapesd = 2. . .5 and increasing levels

of Gaussian noise. The ratio of non-rigidity is fixed to 40% for all the trials. Relative orientation

between the cameras is fixed to 30 degrees with a baseline of 20 pixel units.
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Figure 4.4: Relative 3-D error (%), r.m.s. rotation error (in degrees) and 2-D reprojection error

for the synthetic experiments for different ratios of deformation (10%, 40%, 80%, 100%) and

increasing levels of Gaussian noise.

tested over 25 trials with a 3-D shape deforming with different numbers of basis shapes (figure

4.3) and different degrees of non-rigidity (see figure 4.4) defined asratio =
‖Snonrigid‖
‖Srigid‖ . Notice in

this case a higher reconstruction error of the relative 3-D structure compared to the monocular

case with higher degrees of deformation.

4.3.2 Synthetic experiments with a CG generated face

In this section we have generated a sequence using a synthetic face modeloriginally developed by

Parke et. al. [113]. This is a 3-D model which encodes 18 different muscles of the face. Animat-

ing the face model to generate facial expressions is achieved by actuatingon the different facial

muscles. In particular we have used a sequence where the head did not perform any rigid motion,

only deformations a situation where, clearly, monocular algorithms would fail tocompute the

correct 3-D shape and motion. The sequence was 125 frames long. Themodel deforms between
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GROUND TRUTH STEREO BA

Figure 4.5: Front, side and top views of the 3-D synthetic face for frame 20. The first column

shows the shape ground truth while the following two columns present the 3-Dreconstructions

for the linear and bundle adjustment algorithms. Deformations are present mainly in the mouth

region. Notice that the face does not perform rigid motion for the whole sequence.

frames 1 and 50, remains static and rigid until frame 100 and deforms once again between frames

100 and 125.

Once the model was generated we projected synthetically 160 points evenly distributed on

the face, onto a pair of stereo cameras. The geometry of the cameras was such that both optical

axes were lying on the XZ plane and each pointing inwards by 15 degrees.Therefore the relative

orientation of the cameras about the Y axis was 30 degrees and 0 about theX and Z axes. The

camera model used to project the points was a projective model however, the viewing conditions

were such that the relief of the scene was small compared to the overall depth.

We show in the following figures the comparisons between three key frames of the synthetic

sequence providing the 3-D ground truth and the 3-D reconstructions for the linear and bundle

adjustment algorithms. Figure 4.5 presents a deformation localised in the mouth region at frame

20. A first visual inspection shows that the result obtained by the bundle adjustment have a

qualitative advantage over the stereo linear algorithm. Even if the general mean shape is close

to the ground truth, only the optimised solution with bundle adjustment can model properly the

deformations. Frame 70 (see Figure 4.6) shows the synthetic face (ground truth) with no defor-

mations appearing. The static pose of the shape permits to compare the 3-D depth reconstructed

by the algorithms. Compared to the ground truth, the shape obtained by the stereo algorithm
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GROUND TRUTH STEREO BA

Figure 4.6: Front, side and top views of the 3-D synthetic face for frame 70. The first column

shows the shape ground truth while the following two columns present the 3-Dreconstructions

for the linear and bundle adjustment algorithms. The shape is completely static in this frame.

GROUND TRUTH STEREO BA

Figure 4.7: Front, side and top views of the 3-D synthetic face for frame 125. The first column

shows the shape ground truth while the following two columns present the 3-Dreconstructions

for the linear and bundle adjustment algorithms. Deformations are localized in the mouth and

cheek regions.
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shows a good frontal reconstruction but it presents a worst estimation ofthe relief (see side and

top views). The non-linear solution obtains a depth estimate qualitatively closerto the ground

truth. Finally figure 4.6 presents the reconstruction obtained for frame 125where the synthetic

face shows consistent deformations in the cheeks and mouth area. The stereo algorithm obtains

a reasonable mean 3-D shape but it fails in capturing the deformations appearing in the ground

truth.

Figure 4.8 shows the results for the estimated rotation angles and configuration weights be-

fore and after the non-linear optimization step. The results after bundle adjustment describe fairly

accurately the geometry of the cameras and the deformation of the face. In particular, the stereo

setup was such that there was no rigid motion of the face (only deformation),the optical axes of

the left and right cameras lay on the XZ plane and the relative rotation of the cameras about the

Y axis was constant and equal to 30deg. In this case we have ground truth values for the rela-

tive orientation of the cameras since the sequence was generated synthetically. Notice how the

values obtained for the rotation angles before bundle adjustment – left – exhibit some problems

around frames 10 and 115, when the deformations are occurring. Afterthe bundle adjustment

step the the relative rotation about the Y axis is estimated with a final result of 27deg resulting in

a 3deg error given the ground truth. The relative orientations about theX and Z axes are correctly

estimated to 0deg – notice that the graphs for the left and right angles are superimposed.

Once more, the estimated values for the deformation weights after bundle adjustment have

larger values than before the optimization. This explains the fact that the model succeeds to

explain the non-rigid deformations accurately. Interestingly, the coefficients remain constant

between frames 50 and 110, when no deformations were occurring.

4.3.3 Experiments with real data

Comparison with the monocular solution

In this section we compare the performance of our stereo factorization algorithm – before the

non-linear optimization – with Brand’s single camera non-rigid factorization method. We present

some experimental results obtained with real image sequences taken with a pairof synchronized

Fire-i digital cameras with 4,65mm built in lenses. The stereo setup was such that the baseline

was 20cm and the relative orientation of the cameras was around 30deg. Two sequences of a

human face undergoing rigid motion and flexible deformations were used: theSMILE sequence

(82 frames), where the deformation was due to the subject smiling and the EYEBROW (115
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Figure 4.8: Values obtained for the rigid component (top), deformation weights (middle) and

rotation angles (bottom) before (A) and after bundle adjustment (B) for thesynthetic sequence.

a) SMILE sequence: left view b) EYEBROW sequence: left view

c) SMILE sequence: right view d) EYEBROW sequence: right view

Figure 4.9: Three images from the left (a) and right (c) views of the SMILE sequence and left

(b) and right (d) views of the EYEBROW sequence.
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frames) sequence where the subject was raising and lowering the eyebrows. Figure 4.9 shows 3

frames chosen from the sequences taken with the left and right cameras.

In order to simplify the temporal and stereo matching the subject had some markers placed

on relevant points of the face such as along the eyebrows, the chin and the lips. A simple colour

model of the markers using HSV components provided the representation used to track each

marker throughout the left and right sequences respectively. The stereo matching was initialized

by hand in the first image pair and then the temporal tracks were used to update the stereo

matches.

a) Left camera b) Right camera c) Stereo

Figure 4.10: SMILE sequence: Front, side and top views (above, middle,bottom) of the 3-D

model for the a) left camera, b) right camera and c) stereo setup forD = 5.

Figure 4.10 shows front, side and top views of the 3-D reconstructions obtained for the

SMILE sequence. First we applied the single camera factorization algorithmdeveloped by Brand

– described in section 2.4.4 – to the left and right monocular sequences. Wethen applied the pro-

posed stereo algorithm to the stereo sequence. In all cases the number oftracked points was

P = 31 and the chosen number of basis shapes was heuristically fixed toD = 5.

Figure 4.9c shows how the stereo reconstruction provides improved results. The reconstruc-

tions obtained using singularly the information from the left and right sequences have worse

depth estimates that can be noticed especially in the side and top views. The reconstructed face
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a) Left camera b) Right camera c) Stereo

Figure 4.11: EYEBROW sequence: Front, side and top views (above, middle, bottom) of the 3-D

model for the a) left camera, b) right camera and c) stereo setup sequences forD = 5.

is strongly asymmetric especially in the mouth region and the points on the forehead are al-

most belonging to a plane. Differently, after merging the data from both sequences in the stereo

algorithm, we obtained a symmetric shape and a satisfactory curvature of the forehead.

Figure 4.12(A) shows the front, side and top views of the 3-D reconstructions obtained for

frames 16, 58 and 81 of the SMILE sequence. While the 3-D shape appears to be well recon-

structed, the deformations are not entirely well modelled. Note how the smile on frame 58 is not

well captured. This was caused by the final regularization step proposed by Brand described in

section 4.2.2. We found that while this regularization step is essential to obtain good estimates

for the rotation parameters it fails to capture the full deformations in the model. This is due to

the fact that the assumption is that the deformations should be small relative to the mean shape

so that most of the image motion is explained by the rigid component which results in apoor

description of the deformations. However, we will see in the following sectionthat the bundle

adjustment step resolves the ambiguity between motion and shape parameters and succeeds in

modelling the non-rigid deformations.

Figure 4.11 shows the 3-D reconstructions obtained for the EYEBROW sequence. Once

more, the single camera factorization algorithm was applied to the left and rightsequences and
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Frame 16 Frame 58 Frame 81 Frame 16 Frame 58 Frame 81

Front

Side

Top

(A) STEREO ALGORITHM (B) BUNDLE ADJUSTMENT

Figure 4.12: Front, side and top views of the reconstructed face for the SMILE sequence using

the stereo algorithm (left) and after bundle adjustment (right). Reconstructions are shown for

frames 16, 56 and 81 of the sequence.

the stereo algorithm was then applied to the stereo sequence. In this sequence the 3-D model

obtained using stereo factorization is significantly better than the ones obtained with the left and

right sequences. In fact, the left and right reconstructions have very poor quality, particularly

the depth estimates. The points belonging to the nose, mouth and chin are almost planar (see

side view) while the ones on the forehead have a particularly wrong depth estimate (see top

view). Note that there was less rigid motion in this sequence and therefore thesingle camera

factorization algorithm is not capable of recovering correct 3-D information whereas the stereo

algorithm provides a good deformable model.

Results after non-linear optimization

In this section we show the results obtained after the final non-linear optimization step.

Figure 4.12 shows the front, side and top views of the 3-D reconstructions before and after

the bundle adjustment step for three frames of the SMILE sequence1. The initial estimate is

shown on the left and the results after bundle adjustment are shown on the right. While the initial

estimate recovers the correct 3-D shape, the deformations on the face are not well modelled.

1Video available at http://www.bmva.ac.uk/thesisarchive/2006/DelBue1/index.html



4.3. Experimental results93

0 10 20 30 40 50 60 70 82
20

22

24

26

28

30

FRAMES

W
E

I
G

H
T

V
A

L
U

E

0 10 20 30 40 50 60 70 82
20

22

24

26

28

30

FRAMES

W
E

I
G

H
T

V
A

L
U

E

0 10 20 30 40 50 60 70 82
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

FRAMES

W
E

I
G

H
T

V
A

L
U

E
S

1st Mode
2nd Mode
3rd Mode
4th Mode

0 10 20 30 40 50 60 70 82
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

FRAMES

W
E

I
G

H
T

V
A

L
U

E
S

1st Mode
2nd Mode
3rd Mode
4th Mode

0 10 20 30 40 50 60 70 82

0  

45

70 

90

FRAMES

R
O

T
A

T
I
O

N
A

N
G

L
E

S

Left 1
Left 2
Left 3
Right 1
Right 2
Right 3

0 10 20 30 40 50 60 70 82

0  

45

70

90

FRAMES

R
O

T
A

T
I
O

N
A

N
G

L
E

S

Left 1
Left 2
Left 3
Right 1
Right 2
Right 3

(A) STEREO ALGORITHM (B) BUNDLE ADJUSTMENT

Figure 4.13: Values obtained for the rigid component (top), deformation weights (middle) and

rotation angles (bottom) before (A) and after bundle adjustment (B) for theSMILE sequence

However, bundle adjustment succeeds to capture the flexible structure – notice how the upper lip

is curved first and then straightened.

Figure 4.13 shows the results obtained for the estimated motion parameters and configuration

weights using the initial stereo factorization method and the improved results after bundle adjust-

ment. The bottom graphs show the rotation angles about the X, Y and Z axes recovered for each

frame of the sequence for the left and right cameras (up to an overall rotation). The recovered

angles for the left and right camera after bundle adjustment reflect verywell the geometry of the

stereo camera setup. This was such that both optical axes lay approximatelyon the XZ plane –

therefore there was no relative rotation between the cameras about the X and Z axes – and the

relative rotation about the Y axis was about 15deg. Note that these valuesare not ground truth

and only approximate as they were not measured accurately. Also note thatthe rotation matrices

for the right camera are calculated asRR = RrelR
L whereRrel is the estimated relative orientation.

Figure 4.13(B) shows how the estimates of the rotations about the X and Z axes (in blue and

green) for the left and right views are close to being zero. The relativerotation between left and

right cameras about the Y axis (in red) is closer to 15deg after bundle adjustment than before.
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Figure 4.13 also shows the evolution throughout the sequence of the values of the configura-

tion weights associated with the mean component (top) and the 4 modes of deformation (middle).

The values appear to be larger after bundle adjustment confirming that the non-linear optimiza-

tion step has achieved to model the deformations of the face. It is also interesting to note how

the first mode of deformation experiences a big change starting around frame 40 until frame 75.

This coincides with the moment where the subject started and finished the smile expression.

4.4 Summary

A stereo-motion approach has been presented with the aim to reconstruct the3-D shape of a

deformable object using image sequences extracted from a stereo-pair.As a result, the non-

rigid factorization framework has been accordingly updated to accommodatethe constraint that

trajectories in the left and right camera refer to the same 3-D object.

By construction, the method fuses naturally the advantages of motion and stereo approaches.

A global solution for the time varying motion and 3-D structure is obtained from the image

tracks without any prior calibration of the stereo pairs. Widely separated stereo views allow

a more reliable estimation of motion and deformation parameters even in the absence of rigid

motion of the object.

Additionally, non-linear optimization, as presented in the previous chapter, isperformed to

obtain the correct replicated structure inM. Results show a relevant improvement in the motion

and structure estimates and thus the optimization stage is strongly recommended to obtain a

correct solution.

The main assumptions of our method are that the cameras must be synchronized and stereo

matches be available. Synchronization can be enforced using the method presented in [142] but

nowadays it is common to obtain synchronized video from stereo cameras. Stereo matching

could be tackled by extending current techniques [73, 110] to deal with the non-rigid case.
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Chapter 5

Deformable modelling under affine viewing

conditions using shape priors

Deformable 3-D shape recovery is an inherently ambiguous problem. Given a specific rigid mo-

tion, different non-rigid shapes could be found that fit the measurements. To solve this ambiguity

prior knowledge about the shape and motion should be used to constrain thesolution. We base

our approach [35] on the observation that often not all the points on a moving and deforming

surface – such as a human face – are undergoing non-rigid motion. Some of the points are fre-

quently on rigid parts of the structure – for instance the nose – while others lieon deformable

areas. First we develop a segmentation algorithm to separate rigid and non-rigid motion. Once

this segmentation is available, the rigid points can be used to estimate the overall rigid motion and

to constrain the underlying mean shape. We propose two reconstruction algorithms and show that

improved 3-D deformable models can be obtained from priors on the shape by using synthetic

and real data.

5.1 Motivation

A main issue of factorization approaches for deformable structure stems from the fact that de-

formation and motion are ambiguous. Intuitively, imagine a deforming object like asheet of

paper floating in the air or a tree bending by the blowing wind; the concepts ofmotion and de-

formation are not clearly defined if a notion of global motion is not specified.The deformations

that appear in a non-rigid object can be defined as the deviation of the shape from the global
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motion. This observation is supported by recent studies on the notion of shape average by Yezzi

and Soatto [164] where the authors precisely separate motion and deformation components for

robust matching, registering and tracking of deformable objects. Improved results are obtained

by explicitly defining the mean component of the object first and then calculating deformations

in an active contours domain.

Our approach is slightly different, we realize that the rigid component of the structure carries

useful information about the overall non-rigid shape. Our main assumptionis that some of the

points are frequently on rigid parts of the structure while others lie on deformable areas. For

the set of rigid points, multi-frame rigidity constraints hold [150] and these canbe appropriately

enforced in reconstruction algorithms to obtain reliable camera motion estimates. On the other

hand, if a rigid 3-D structure is correctly identified, the rigid points can be used to constrain the

underlying mean shape. The deformations can then be estimated as local deviations from this

mean shape in a further refinement step.

The approach introduced in this chapter requires an initial information or prior over which of

the point trajectories stored in the measurement matrixW are rigid and which non-rigid. Notice

that, similar priors were required to obtain an exact solution for the case of independently moving

(section 2.3.1) and articulated objects (section 2.3.2), where trajectories belonging to the different

parts of the object have to be identified to obtain a proper reconstruction. Thus, we first need to

introduce methods and techniques to perform a reliable segmentation of pointtrajectories into

rigid and non-rigid components.

Once the points have been segmented into the rigid and non-rigid sets we recover the over-

all rigid motion from the rigid set and we formalise the problem of non-rigid shape estimation

as a constrained minimization adding priors on the degree of deformability of each point. We

perform experiments on synthetic and real data which validate the approach and show that the

addition of priors on the rigidity of some of the points improves the motion estimates and the 3-D

reconstruction.

5.2 Motion segmentation from image trajectories: previouswork for rigid scenes

The assumption that a scene observed by a camera contains a single rigid object is often not

realistic. For instance, when both the camera and the observed object aremoving, the motion of

the background (usually degenerate since most often it can be approximated as a planar object)
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and the one of the inspected object represent two distinguishable visual cues. Similarly, often

there will be more than one independently moving object in the scene (for instance, a traffic scene

containing different vehicles). In these cases it is crucial to be able to segment the trajectories

belonging to the respective object so that exact reconstructions can beobtained.

A first approach to segmentingN purely rotating objects was given by Boult and Brown [14]

using bi-partite graphs to cluster the image trajectories. Starting from an efficient estimate of the

rank robust to noise, the method performs a rank-constrained SVD on themeasurement matrixW

givingW= UΣVT and assigning points to motion clusters by selecting the most significant columns

of VT . The process is repeated iteratively until theN sets of rank-3 measurements are successfully

detected. Motion dependencies and degeneracies are not explicitly modelled so these could affect

the convergence of the method.

Costeira and Kanade [30] first proposed the use of theshape interaction matrixG, defined as

G = VVT whereV is the matrix of right singular vectors. In the presence of independent motions

and noiseless data the following condition for the matrixG holds:

Gmn =















1 if trajectoriesm andn correspond to the same motion

0 otherwise

(5.1)

wherem= 1. . .P andn = 1. . .P with P being the number of trajectories. Hence, each element

Gmn specifies whether a pair of trajectories belongs to the same motion or not. However, in the

presence of noise the conditions in equation (5.1) will not be satisfied exactly. A proof of the

properties ofG is given by Kanatani [85] using the properties of independent motion sub-spaces.

A procedure that optimizes the energy of the entries ofG is used by Costeira and Kanade [29] to

cluster theN sets of trajectories such that the matrixG is block diagonal (see figure 5.1). Neither

a priori knowledge of the number of shapes nor an estimate of the rank is required. A known

drawback [76] of this method is that noise and outliers affecting the measurements modify the

conditions in equation (5.1). In this case, the approach is likely to obtain a sub-optimal solution.

Motion dependencies [166] are also a known weakness of the approach if not explicitly modelled.

In order to improve the performance under noise conditions, Ichimura [76] proposed a dis-

criminant criterion that drives the clustering by choosing the trajectories withthe most useful

information for grouping. The approach relies on an initial computation of theshape interaction

matrix. This may lead to inaccurate application of the discriminant criterion if the estimatedG is

unreliable. However, the overall performance of the algorithm is superior compared to Costeira
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(a) (b)

Figure 5.1: Example ofshape interaction matrixG obtained from two (N = 2) rigid objects

with P1 = 5 andP2 = 3. A dark square represents a pair of trajectories belonging to the same

motion. Figure (a) represents a sparseG that is given before ordering of the trajectories into the

two clusters of independent motions. Figure (b) showsG after computing the permutation which

arranges the measurement matrix such thatW = [W1|W2] with W1 andW2 containing the trajectories

for the first and second object respectively.

and Kanade’s approach.

Wu et al. [158] initially compute an approximated over-segmentation of the number of inde-

pendent motions using Ichimura’s method. The method then computes a robustdistance measure

for the points belonging to each object based on the orthogonality properties of the sub-spaces

of the independent shapes and it reduces the over segmented motions to thecorrect number of

sets. As a result, the metric proposed is robust to the noise distribution since the orthogonality

condition between sub-spaces still holds with corrupted data.

Kanatani [83] drops the concept of theshape interaction matrixin favor of directly fitting

the trajectories taken from the independent objects to the related sub-spaces. Model selection

[84] is used to infer the number of independent motions and outlier rejection [133] strengthens

the approach in the case of outlying image trajectories. The estimation of different motions is

performed in a framework similar to the Expectation-Maximization (EM) algorithm and, thus, it

is prone to local solutions. The method, however, is inserted in a sound statistical framework with

particular robustness to noise. A further improvement introduced by Sugaya and Kanatani [135]

permits to deal with degeneracies given 2-D planar motions in the scene. An approach using
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the EM algorithm is also presented in the work of Gruber and Weiss [54] where factorization

is formulated as a factor analysis problem [53] with the interesting possibility offorcing known

priors over the motion and structure components of the objects.

Of broader applicability, the approach of Vidal and Hartley [152] may fit data with motion

degeneracies and missing entries in the measurement matrix using a combined method with gen-

eralized principal component analysis (GPCA) [153] and Powerfactorization [66]. Briefly, an

initial rank-5 decomposition ofW is performed via Powerfactorization that allows to deal with

missing data. This initial decomposition preserves the structure of the motion clusters while

reducing the dimensionality of the problem. Motion sub-spaces are then fitted with a 5-degree

polynomial over the decomposed set of trajectories using least-squares (GPCA). Spectral clus-

tering [155] is finally applied over a similarity matrix constructed over the differentiation of the

5-degrees polynomial. Validation over synthetic experiments is not presented but the algorithm

can deal successfully with degenerate and independent motion for measurement matrices with

up to 30% of missing entries. Notice that a known drawback is that the GPCA methods need a

number trajectories that grows exponentially with the number of motions.

Specifically designed for articulated structures (see section 2.3.2), the approach of Yan and

Pollefeys [162] separates dependent motions connected by joints. Theirmethod (with some simi-

larities to the algorithm we propose in section 6.4.1) employs RANdom SAmple Consensus [46]

(RANSAC) to assign the trajectories to each articulated part. Given the random nature of the

algorithm, a sampling prior is assigned to increase the chance of selecting pairs of image trajec-

tories that are most likely to belong to the same group. The sampling prior is computed with

a distance measure obtained from theshape interaction matrixof the articulated object. Given

the known sensitivity of theshape interaction matrixto image noise, this approach could lead to

inaccuracies in the computation of the prior.

5.3 Rigid and non-rigid motion segmentation

We now consider the problem of segmenting the rigid and non-rigid motion of a single deforming

shape which contains a sub-set of rigid points. In this case, the image trajectories composing the

measurement matrixW are given by two contributions: the overall rotation and translation which

the object is globally undergoing and the local deformations of each non-rigid point. Both sets

of rigid and non-rigid points share the same rigid transformation and consequently this renders
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the straight application of the algorithms for independent motion segmentation presented in the

last section less effective.

For instance, if we consider Kanatani’s sub-space technique [83] formotion segmentation,

the aim would be to assign every rigid trajectory to a sub-space of dimension 3and the non-rigid

trajectories to a sub-space of dimension 3D. However, the rigid points could be understood as

non-rigid points with only one basis shape, and therefore the sub-spacefor the non-rigid points

would completely include the one for the rigid points. Thus, the method would tendto classify

every trajectory as being non-rigid. To the best of our knowledge thereis no other work able to

separate rigid and non-rigid trajectories belonging to a single object.

5.3.1 Our approach

Our approach instead consists in the application of a sub-set selection method on the non-rigid

component of the point trajectories encoded in the measurement matrixW. Sub-set selection is a

technique commonly used in feature selection problems where a group of features is extracted to

obtain a robust solution to a particular estimation problem [80].

Under the factorization framework, features are represented by their image point trajectories

stored inW. Our goal is to find the set of features whose motion can be modelled exactly as a rigid

motion. In this case we formulate the segmentation problem as finding a sub-set of trajectories

Wrigid within the measurement matrix such that the following condition is satisfied:

rank(Wrigid ) = 3. (5.2)

The segmentation algorithm follows asequential backward selection strategy[88] by initially

considering all the trajectories in the measurement matrix and iteratively deletingone by one

those which are contributing most to the rank of the matrix, i.e., the points that exhibit the most

non-rigid motion. As the stop criterion for the classification task, we compute therank of the

measurement matrix of the remaining points which will become 3 when only the rigid trajectories

are left.

Obviously the rank of the rigid points will not be exactly equal to 3 in the presence of noise

as it can be observed in figure 5.2. Instead, we have used an automatic method to determine the

deformability index of a set of trajectories described in the work of Roy Chowdhury [126]. This

method estimates the value ofD – the number of basis shapes needed to describe the non-rigid

motion – automatically in a non-iterative way.
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Figure 5.2: The plots show the values of the singular values ordered in descending order and

extracted from different measurement matrices containing rigid points affected by noise. The

rigid points are extracted from a face (left) and a deforming box (right). Acompletely rigid

object has a rank-3 measurement matrix (i.e. the fourth singular value is equal to zero). Denoise

techniques are necessary to remove the noise component so that the rank-3 condition can be used

to detect measurements belonging to a rigid object.

5.3.2 Estimation of the degree of deformability

The approach is based on a reinterpretation of the deformable factorization problem in a stochas-

tic framework. In this way, provided a statistic description of the noise corrupting the image

measurements, it is possible to compute a whitened measurement matrix from whichthe value

of the rank and, thus, the number of basis shapes can be extracted.

In more detail, the image coordinates for a framei are first arranged into a 2P-vector such

thatyi = [ui1, . . . ,uiP,vi1, . . . ,viP]T . Now the projection of the deformable points onto the image

plane may be expressed as:

yT
i = mT

i s =

[

l i1R
(1)
i . . . l iDR

(1)
i l i1R

(2)
i . . . l iDR

(2)
i

]

































S1 0

...
...

SD 0

0 S1

...
...

0 SD

































(5.3)

with s containing the re-arranged 6D× 2P structure matrix.R(1)
i andR(2)

i denote respectively

the first and second row of the orthographic camera matrixRi arranged in the 2P-vectormi . The

noise componentni is considered additive and obtained from a zero-mean random processgiving
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ỹT
i = mT

i s+ni .

As a further step, the method computes the 2P×2P correlation matrix for each image trajec-

tory such that:

Cỹ =
1
F

F

∑
i=1

yiyT
i = s

T

(

1
F

F

∑
i=1

mimT
i

)

s+Cn (5.4)

whereCn is the covariance of the noise affecting the measurements. An exact estimate of Cn is

required which can be inferred from the measurement process that obtains the image coordinates

stored inW (for instance such information can be obtained from a point tracking algorithm such

as the Kanade-Lucas-Tomasi (KLT) tracker [128]).

In the case of no noise, the correlation matrixCỹ has a rank equal to 6D. However, the

additive contribution ofCn increases the overall rank by an unknown value. The problem is to

find a transformation which can remove the contribution of the noise. In order to find a solution,

the noise covariance is firstly diagonalised using SVD:

Cn = UΣU
T (5.5)

where the matrixΣ hasL non-zero diagonal elements withL > 6D. It is possible to compute the

rank reduced factors forCn such that:

Cn = Ũ2P×L Σ̃L×L Ũ
T
2P×L (5.6)

The noise can then be transformed into an independent and identically distributed (IID) process

by pre-multiplying equation (5.3) with the factor
(

ŨΣ̃
1
2

)−1
giving:

ŷT
i =

(

ŨΣ̃
1
2

)−1
mT

i s+
(

ŨΣ̃
1
2

)−1
ni = m̂T

i s+ n̂i (5.7)

Therefore, the correlation for the transformed coordinatesŷi is given by:

Cŷ =
1
F

F

∑
i=1

ŷi ŷT
i = s

T

(

1
F

F

∑
i=1

m̂im̂T
i

)

s+I (5.8)

whereI is aL×L identity matrix. After applying SVD onCŷ, it can be observed that the number

of basis shapesD can be obtained simply by counting the number of singular values over 1 and

dividing the result by 6:

D =
number of singular values> 1

6
(5.9)

This method provides a fixed threshold for comparing the singular values ofthe matrix to

determine the deformability indexD. For the case of a 3-D rigid body the deformability indexD

is equal to 1 while in the case of a non-rigid body the index isD > 1, therefore this provides a

good selection criterion to separate both sets of trajectories in the presenceof noise.
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5.3.3 The complete segmentation algorithm

Our approach uses the deformability index measure described in the previous section as a stop-

ping criteria to detect when the set of points gives an indexD = 1, meaning that the remaining

points are rigid. The complete algorithm is detailed below:

• Initialize Wrigid = W

• Determine the initial deformability indexD for Wrigid

1. ComputeWrigid ≃ UΣVT with SVD and truncate to rank 3D.

2. DefineS = Σ1/2VT

3. Extract the non-rigid component of the shape matrix~S3(D−1)×P =

[

S̃1 . . . S̃P

]

where each̃Sj is a 3(D−1)×1 vector which contains the 3-D coordinates of thej th

3-D point associated to theD−1 non-rigid bases such that:

Sj =



















S1 j

S2 j

...

SD j



















and S̃j =













S2 j

...

SD j













4. Determine the maximum vector norm:S̃t = max{‖ S̃1‖, . . . ,‖S̃P‖}.

5. Remove the selected trajectoryt from Wrigid and determine the new deformability

indexD.

6. If D = 1 stop the iteration.

7. Else, go to step 1.

Algorithm 1.

We have obtained successful rigid and non-rigid motion segmentations on synthetic sequences

using this algorithm. The results will be discussed in the experimental section. Note that the

method converges to the right solution only if there is a unique set of rigid points such that

D = 1. In the case where different groups of features satisfy the rank condition (for instance, in

the case of multiple or articulated objects) the algorithm could converge to the wrong set.
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5.4 The proposed shape prior

Once we have segmented the scene into rigid and non-rigid points, we can use the information

on the rigidity of the points to constrain the shape estimation. First we define the constraints that

arise based on the observation that a generic shape is composed by pointswith different degrees

of deformation. Kim and Hong [87] defined thedegree of non-rigidityof a point as its degree of

deviation from the average shape to classify points into three classes: rigid, near-rigid and non-

rigid (for a more detailed description refer to section 6.4.1). Based on this measure they proposed

a method to estimate average shape using the degree of non-rigidity to weight the contribution

of each point in an iterative certainty re-weighted factorization scheme. Incontrast, we use the

knowledge that some points of the scene are rigid to construct specific linear constraints which

will in turn eliminate the inherent ambiguities present in non-rigid shape estimation.

5.4.1 Rigidity constraint

Definition (rigid point). If the motion of a point j is completely rigid for the entire sequence,

the structure referring to the point can be expressed entirely by the first basis (D= 1) called the

rigid basis.

It follows from this definition that a completely rigid pointp is entirely parameterized by:

Sj =







Sj1

0






(5.10)

whereSj1 is a 3-vector which contains 3-D coordinates of the rigid component and0 is a 3(D−1)

vector of zeros. Following the segmentation of the scene into rigid and non-rigid points, it is

possible to re-order the measurement matrix by defining the permutation matrixP such that:

WP =

[

Wrigid Wnonrigid

]

=













l11R1 . . . l1DR1

...
...

lF1RF . . . lFDRF



















Srigid Snonrigid

0






(5.11)

whereSrigid is a 3× r matrix containing the 3-D coordinates of ther rigid points,Snonrigid is a

3D× (P− r) matrix containing the 3-D coordinates of theD basis shapes for the(P− r) de-

formable points and0 is a 3(D−1)× r matrix of zeros.

Notice that it is now possible to apply Tomasi and Kanade’s rigid factorizationon the mea-

surement matrix containing the image trajectories of the rigid pointsWrigid and decompose it into
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the motion and rigid structure components as:

Wrigid =













R1

...

RF













Srigid (5.12)

obtaining an initial solution for the orthographic camera matrices for each frame and for the 3-D

rigid component of the structure.

5.5 Non-rigid shape and motion estimation using shape priors

In this section we solve for the non-rigid shape and motion given the 2-D imagetracks and

incorporating the above constraint on the automatically segmented rigid points.Our approach

is to minimize image reprojection error subject to the rigidity of the non-deforming points. The

cost function being minimised is:

χ = ∑
i, j

‖ wi j −xi j ‖2= ∑
i, j

‖ wi j − (Ri

D

∑
d=1

l idSd) ‖2 (5.13)

wherewi j are the measured image points andxi j the estimated image points. We propose two

alternative solutions to this constrained minimization: a linear alternate least squares approach

which incorporates the rigidity constraints using Generalised Singular ValueDecomposition and

a fully non-linear minimization scheme using priors on the rigid shape parametersin a Maximum

A Posteriori estimation.

5.5.1 Linear equality-constrained least squares

First we propose an alternating least squares scheme to minimize the cost function described

in equation (5.13). The algorithm alternates between solving for the basis shapesS and for the

configuration weightsl id. Note that the algorithm does not solve for the overall rigid motion

encoded in the rotation matricesR since these are calculated before hand by running the rigid

factorization algorithm of Tomasi and Kanade on the segmented rigid points. The configuration

weights are initialised to random values. The scheme can be summarised as follows:

1. GivenRi andl id equation (2.36) can be used to estimateS linearly subject to the constraint

S̃p = 0 for p ∈ Ω with Ω being the set ofr points considered to be rigid throughout the

sequence.

2. GivenRi andS solve for alll id using linear least-squares.
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3. Iterate the above two steps until convergence.

Rearranging equation (5.11) the problem of solving forS subject to the rigidity constraint can be

expressed as an unconstrained least squares system of the form:

min

∣

∣

∣

∣

∣

∣
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∣

∣

∣

∣

∣

∣

∣
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x−
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∣
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∣
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∣
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∣

∣

∣

∣

∣

2

(5.14)

whereA encodes the linear equations,C the linear constraints andb andd are the known observa-

tions. It can be shown [51] that forλ→∞ the final solution lies on the surface defined byCx = d

and thus we obtain a linear equality-constrained least squares (LSE) problem:

min ‖ Ax−b ‖2 (5.15)

subject to:

Cx = d (5.16)

In our specific case,x alternatively represents the parameters for the 3-D basis shapes (step 1)

or the configuration weights (step 2),A is the matrix of linear equations given the previously

estimated rigid motion components,b the known observations i.e., the rearranged measurement

matrix entries. The matrixC encodes the linear constraints that enforce the non-rigid component

of the basis shapes̃Sj being equal to zero.

A method to solve the above LSE problem is to directly factorize bothA andC using Gener-

alized Singular Value Decomposition (GSVD) (see [58] for details).

5.5.2 Bundle adjustment using priors

An alternative approach to minimize the deformable cost function in equation (5.13) is given by

non-linear optimization. One of the main advantages of performing a prior segmentation of rigid

and non-rigid motion is firstly that the rigid motion (estimates of the rotation matricesR) can

be pre-computed by performing rigid factorization on the rigid points. This provides a reliable

initial estimate for the rotation parameters which, coupled with the priors on the 3-D shape, help

solve the ambiguities.

The camera parametersRi at each framei are then used to infer the mean basis component of
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the deformable points such that:

[

S1(r+1) . . . S1P

]

=








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

R1

...

RF
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







+

Wnonrigid (5.17)

whereS1(r+1) is the 3-vector which contains the coordinates of the rigid basis for the firstnon-

rigid point (note that there are(P− r) non-rigid points). Finally, the deformable components of

the structure (configuration weights and 3-D basis) are initialised to small andrandom values as

already shown in section 3.4.2.

5.5.3 Forcing the prior

Our prior expectation is that a pointj detected as being rigid will have a zero non-rigid compo-

nent and can therefore be modelled entirely by the first basis shape:

Sj =







S1 j

S̃j






=







S1 j

0






(5.18)

whereS̃j =

[

ST
2 j · · · ST

D j

]T

. Therefore our expected prior value of the coordinates of the

non-rigid bases̃Sj is zero in this case. For every rigid point in the scene we model the distribution

of S̃j as a Gaussian with a small variance and solve the problem as a Maximum A Posteriori

estimation (MAP).

An alternative solution would have been to explicitly parameterise the points onlywith the

rigid component by completely removing in the minimisation the non-rigid basesS̃j . However,

we expect that the algorithm providing the motion segmentation may be inaccurate. In this case

a hard decision given by the complete elimination of the non-rigid bases parameters for the rigid

points can negatively affect the estimation process since, in the case of wrong priors, we are

trying to infer the wrong model. Differently, a prior enforced as a penalty term can account of

inaccuracies in the priors computation as we have shown in section 6.5.3.

5.6 Results

We show results for the proposed segmentation algorithm and the deformable3-D shape estima-

tion with both linear and non-linear approaches. Synthetic experiments are created especially to

test the performance of the algorithms with different ratios of rigid/non-rigidpoints. The real
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(a) (b) (c) (d) (e)

Figure 5.3: Synthetic sequence. Example of ground truth of the 3-D shapewith 8 rigid points

(vertices of the cube) and (a) 8, (b) 16, (c) 32, (d) 64 and (e) 128 non-rigid points.

experiments focus on face modelling: a set of trajectories is extracted froma subject perform-

ing different facial expressions and then subsequently reconstructed with the non-linear method

using priors.

5.6.1 Synthetic data

The synthetic 3-D data consisted of a set of random points sampled inside a cube of size 50×

50×50 units. Five sequences were generated with 8, 16, 32, 64 and 128 non-rigid points sampled

inside the cube. Each sequence also included 8 rigid points (the vertices ofthe cube). Figure 5.3

shows the 3-D data used in each of the five sequences with the rigid points joined up for display

purposes. Our aim is to show the performance of our approach under different degrees of non-

rigidity. The deformations for the non-rigid points were generated using random basis shapes

as well as random deformation weights. Two basis shapes were used andthe first basis shape

had the assigned configuration weight equal to 1. The data was then rotated and translated over

25 frames and projected onto the images using an orthographic camera modeland Gaussian

noise was added to the image coordinates. The overall rotation about any axis was 90 degrees

at most and the ratio of the norm of the non-rigid and rigid points of the 3-D metric shapes

ratio =
‖Snonrigid‖
‖Srigid‖ was fixed to 40%.

Rigid and non-rigid motion segmentation

Figure 5.4 shows results of the motion segmentation algorithm on a sequence using 8 rigid and

32 non-rigid points. The Gaussian noise level for this particular experiment was set to beσ = 1.5

pixels. The algorithm iteratively classifies points according to the current value ofD as shown in

Algorithm 1. The−y axis of the graph shows the current value of the deformation indexD and

the−x axis represents the number of iterations. The first 32 iterations remove non-rigid points as

the deformability indexD of the remaining set of points is consistently close to 2. When the 33rd
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Figure 5.4: Deformability index for the automatic segmentation experiment. The graph shows

its sudden decrease upon iteration number 33 which corresponds to the selection of the first rigid

point.

iteration is reached, a rigid point is selected and one can observe a sudden drop in the value of

D to 1.5 which then tends to 1. This is the cut-off point and the 8 remaining points are correctly

classified as being rigid.

In order to test the algorithm exhaustively, we performed 1000 trials for each configuration

when we varied the ratio of rigid/non-rigid points and used 5 different level of Gaussian noise

(σ2 = 0, 0.5, 1, 1.5, 2 pixels). Results showing the number of misclassified points are displayedin

table 5.1. The values refer to the mean number of misclassified points when theD = 1 stopping

condition becomes true. Notice that the algorithm achieves very low misclassification rates (a

maximum of 1 rigid point misclassified as non-rigid) until the trial with 64 non-rigidpoints and

8 rigid points. For this ratio of rigid/non-rigid points we found the algorithm to fail for levels of

noise of 1.5 pixels and above (indicated with a cross in the table) since the given threshold was

terminating the iterations prematurely.

3-D reconstruction

We have tested three reconstruction algorithms: the linear GSVD method, bundle adjustment

without priors (MLE) and bundle-adjustment incorporating priors on the 3-D structure (MAP).

Figure 5.5 shows the relative 3-D reconstruction error, absolute rotationerror and 2-D image

reprojection error using each of the 3 algorithms, for varying ratios of rigid/non-rigid scene points

and different levels of image noise. It becomes clear that GSVD and MAP outperform MLE thus

showing the improved performance when prior information on the shape is incorporated. In fact

the GSVD and MAP error curves appear superimposed which shows thatthey converge to the

same solution, with the main observable difference being the higher speed ofconvergence for the
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Noise
Rigid

Non-rigid 0 0.5 1 1.5 2

8/8 0 0 0.325 0.356 0.313

8/16 0 0.902 0.933 0.989 0.993

8/32 0 0 0.557 0.999 1

8/64 0 0.981 0.976 X X

Table 5.1: Mean number of misclassified rigid points on 1000 trials for the experiments with 8

rigid points and varying number of non-rigid points (8,16,32,64). A cross indicates a failure of

the algorithm to classify the rigid set of points.
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Figure 5.5: Relative 3-D error (%), r.m.s. rotation error (in degrees) and 2-D reprojection error (in

pixels) for the synthetic experiments for different ratios of rigid/non-rigidpoints and increasing

levels of Gaussian noise.
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Figure 5.6: Relative 3-D error (%), r.m.s. rotation error (deg) and 2-D reprojection error for the

synthetic experiments for different numbers of basis shapes and increasing levels of Gaussian

noise.

MAP approach. Note that the MLE approach is not able to compute a correct 3-D reconstruction

even for the noiseless case showing that the added priors are fundamental to avoid local minima

given by ambiguous configurations of motion and deformation parameters.

The number of basis shapes was then varied (d = 3, 4 and 5) to test the performance of the

algorithm with respect to this parameter. Figure 5.6 shows the 2-D image reprojection error,

relative 3-D reconstruction error and absolute rotation error obtained withGSVD, MLE and

MAP. As expected, the error increases with the number of basis shapes for all 3 algorithms.

Once more GSVD and MAP have almost identical performance and provide better results than

MLE.

5.6.2 More realistic data

In this experiment1 we use real 3-D data of a human face undergoing rigid motion – mainly

rotation – while performing different facial expressions. The 3-D data was captured using a

VICON motion capture system by tracking the subject wearing 37 markers onthe face. Figure 5.7

(a) shows four key-frames showing the range of deformations of some expressions in the tested

sequence.

The 3-D points were then projected synthetically onto an image sequence 310frames long

using an orthographic camera model and Gaussian noise of varianceσ = 0.5 pixels was added

to the image coordinates. In this case the segmentation of points into rigid and non-rigid sets

1Video available at http://www.bmva.ac.uk/thesisarchive/2006/DelBue1/index.html



5.7. Closure 112

(a) (b)

Figure 5.7: (a) The four frames show a few facial expressions performed by the subject. A VI-

CON motion capture system extracts the 3-D locations from the markers attached to the subject’s

face (b) Face points used in the real experiment. Points connected with wire-frames show the

selected rigid points located on the nose, temples and side of the face.

was done manually. Figure 5.7 (b) shows a frontal view of the face wherethe 14 rigid points –

situated on the nose, temples and the side of the face – are connected with wire-frames.

Figure 5.8 shows the ground truth and reconstructed shape from front,side and top views

using the bundle adjustment algorithm incorporating rigidity priors on the non-deforming points.

The deformations are very well captured by the model even for the framesin which the facial

expressions are more exaggerated.

5.7 Closure

The proposed formulation with shape priors relies on the presence of a set of points on the de-

forming surface that are only undergoing rigid motion. The priors may be constructed by simply

selecting manually the rigid points lying on the object or by automatically finding the points with

the motion segmentation algorithm provided in section 5.3. Given a reliable separation of rigid

and non-rigid motion, our approach follows with an initial estimation of the rigid components of

the 3-D structure and camera motion exclusively from the rigid trajectories byapplying Tomasi

and Kanade factorization [139]. Notice that at this stage, robust algorithms for rigid factorization

such as [1, 78] may be also applied to deliver more accurate reconstructions.
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Frame 1 Frame 167 Frame 273 Frame 310

Ground truth

BA with priors

Ground truth

BA with priors

Ground truth

BA with priors

Figure 5.8: Front, side and top views of the ground truth and reconstructed face with priors.

Reconstructions are shown for frames 1, 167, 273 and 310.
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We then propose to use the extracted rigid component as a strong supportfor estimating

the remaining 3-D deformable structure by designing two different algorithms. Firstly, the non-

rigid parameters are estimated using an alternating equality constrained least-squares estimation

over the configuration weights and non-rigid 3-D structure components while keeping fixed the

orthographic camera parameters previously estimated with the rigid factorization.

Secondly, we include the prior information in the non-linear optimization framework pre-

sented in chapter 3. The problem is reformulated as the minimization of a non-linear cost func-

tion and, thus, it requires an initialisation close to the global minimum for the rigid and non-rigid

parameters of the model. This is reasonably provided by the estimation of the rigid parameters

given from the detected rigid points as shown in our experimental section. It is also evident

that the introduction of the priors as penalty terms in the cost function gives improved results

compared to MLE estimation.

The whole approach relies on the extraction of rigid motion from the image trajectories stored

in W. To support the detection of these points, we have introduced a specific method for the

segmentation of rigid/non-rigid motion based on the rank constraint properties of rigid shapes.

We employ a procedure introduced in [126] that can efficiently estimate the number of basis

shapes of the deforming object in the presence of noise.

Provided an accurate estimation of the noise covariance, the algorithm performs well with

different ratios of rigid/non-rigid points and different levels of noise affecting the measurements.

In real cases, its efficiency can be affected whenever the noise statistics are not correctly provided

or whenever the assumption that there is a sub-set of points that is perfectly rigid does not hold.

Finally, notice that in our synthetic experiments we have shown that the approach with priors

converges to the global minimum and thus to the exact 3-D structure and camera motion in the

case of no noise. Exact results are also obtained by Xiao et al. [159] using priors based on the

independency of the basis shapes. A clear advantage of their approach is the proposed closed-

form solution that is guaranteed to achieve a unique solution. On the other hand, the method is

quite sensitive to the selection of the independent bases (see section 2.4.5 for a discussion) and no

study under different levels of noise is given. The advantage of our solution consists on the use

of priors extracted from rigid points lying over a deformable surface. Rigidly moving points are

intuitively easier to detect, even with manual initialisation, than a set of independent basis shapes.

In the next chapter we show that the information provided by the rigid points of a deformable
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object can be crucial in the case of projective distortions affecting the image measurements.
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Chapter 6

Deformable metric reconstruction from perspective

cameras using priors

So far, all the algorithms we have presented for deformable factorization,including our non-

linear optimization (MLE and MAP) methods, assume the case of images acquiredunder weak

perspective viewing conditions. An extension to more general camera models is required when

the inspected shape presents perspective distortion effects. This is the case when images are

acquired at closer distances or with a camera with a wide field of view. Givena deformable

object and a perspective camera, disambiguating the non-rigidity contributions and the camera

distortions is fundamental for obtaining a correct reconstruction.

In this chapter we present a novel approach [36, 93] to the recoveryof metric 3-D deformable

models from perspective images. The solution proposed is based on the observation that often not

all the points on a deformable surface are undergoing non-rigid motion as some of them might

lie on rigid parts of the structure. First we use an automatic segmentation algorithm to identify

the set of rigid points which in turn is used to estimate the internal camera calibration parameters

and the overall rigid motion. We then formalise the problem of non-rigid shapeestimation as a

constrained non-linear minimization adding priors on the degree of deformability of each point.

We perform experiments on synthetic and real data which show firstly that, even when using a

minimal set of rigid points, it is possible to obtain reliable metric information and, secondly, that

the shape priors help to disambiguate the contribution to image motion caused by deformation

and perspective distortion.



6.1. Rigid metric reconstruction from perspective cameras117

6.1 Rigid metric reconstruction from perspective cameras

Affine and orthographic cameras are only an approximation of the real viewing conditions af-

fecting the projection of a rigid body onto the image plane. These models are generally effective

when the relief of the object is small compared to the distance from the camera centre. On the

other hand, when these assumptions weaken, the use of a perspective camera model is necessary

to obtain a correct 3-D reconstruction of the object. However, the introduction of a perspective

camera model requires the knowledge of the internal and external parameters of the camera that

can be estimated directly from the measured image data using self-calibration methods. We will

show in the following section solutions for this problem in the case of rigidly moving objects.

6.1.1 The perspective camera model

In the most restrictive of affine camera model, the orthographic model, the projection of 3-D

points is a direct mapping of the 3-D shape coordinates onto the image plane coordinates only up

to an overall rotation, translation and scale. A more faithful model of real imaging conditions is

given by the perspective camera model (see figure 6.1). Image points are given as the projection

of the 3-D structure through a perspective cameraP3×4 defined mathematically as:

Pi = Ki [Ri | t i ] (6.1)

where the 3×3 rotation matrixRi and the translation vectort i represent the Euclidean transfor-

mation between the camera and the world coordinate system respectively andKi is a 3×3 upper

triangular matrix which contains the intrinsic camera parameters:

K =













fx s ux

fy vy

1













(6.2)

where fx and fy represent the focal length divided by the pixel width and height respectively,

(ux,vy) represents the principal point ands is a factor which is zero in the absence of skew. The

intrinsic camera parameters may vary (for instance in the case of a zooming camera) or remain

fixed at each frame.

A point X̄ j = [Xj Yj Z j 1]T in homogeneous 3-D coordinates is projected with a perspective

cameraPi into the image framei such that the following relation holds:

w̄i j =
1

λi j
PiX̄ j (6.3)
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(a) (b)

Figure 6.1: Comparison between an orthographic camera (a) and a perspective one (b). The 3-D

pointsX1 andX2 are projected on the image planeℑ to give the image coordinatesw1 andw2

respectively. Orthographic projection (a) assumes the object being farfrom the image plane such

that the projecting rays are all parallel to the optical axis and perpendicular to the image plane

ℑ. As a result, points having the same(x,y) coordinates but different depthz are projected at

the same image location. In the perspective case (b), the projected image coordinatesw1 andw2

have different image position depending on the depths ofX1 andX2.

with w̄i j = [ui j vi j 1]T = [wT
i j 1]T representing the 2-D homogeneous image coordinates andλi j the

projective depth of pointj at framei. However, given the 2-D image pointswi j extracted from an

object moving rigidly in a perspective image sequence, the value of the correct projective depths

λi j is unknown. In order to obtain a correct solution for the projective camerasPi and projective

pointsX̄ j , the extracted measurements need to be properly corrected by the projective weights

λi j .

However, solving for the projective camera matricesPi and projective structurēX j is of lim-

ited use. The preserved geometrical properties obtained by estimating of projective reconstruc-

tion are restricted to the incidence of lines and the cross ratio between points [67]. What we

seek is to obtain a metric 3-D structure from the perspective trajectories having an initial solution

from the projective camera matricesPi and projective structurēX j . It is possible to upgrade the

estimated projective parameters to metric through a self-calibration process of the camera that

solves for the unknown elements inKi , Ri andt i in equation (6.1).
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6.1.2 Self-calibration

Self-calibration is the simultaneous estimation of 3-D structure and camera motion purely from

image sequences when no information is available about the internal calibration of the cam-

era, the scene or the specific location of the camera as it moves. Commonly, methods for self-

calibration can be distinguished in two classes: stratified [122, 121, 59, 64, 69, 98, 42] and

direct [44, 101, 60, 146, 70, 65, 120, 3] approaches. The conceptual difference between the

two groups is that stratified approaches work in stages by upgrading sequentially the structure to

affine and finally to metric. Differently, direct approaches obtain in one step the full calibration

of the camera which upgrades the reconstruction to metric.

Stratified approaches

A stratified method begin by seeking a solution for the perspective camera matricesPi and 3-D

structureX̄ j . The procedure then upgrades the geometry in two steps: first from perspective

to affine and secondly from affine to Euclidean. To upgrade the reconstruction we rely on the

estimation of invariant geometric entities in each of the geometric spaces (affineor Euclidean).

Obtaining an affine reconstruction requires the location of the location of theplane at infinity –

the invariant entity for the affine space. Once an affine reconstruction isobtained, solving for the

absolute conic – the invariant for the Euclidean space – upgrades the reconstruction to Euclidean.

The main advantage of a stratified approach is that the solution from affine tometric spaces

is linear after the determination of the plane at infinity (for instance, using the method proposed

in [60]). However, the computation of the plane at infinity may require to determine specific

properties of the scene such as the vanishing points of parallel lines. Another route is using the

modulus constraint [122] to compute the coordinates of plane at infinity directly. The method,

however, requires solving a set of quartic equations and this may renderthe algorithm unpractical

given the large number of possible solutions.

Direct approaches

Direct methods, on the other hand, solve for the metric structure of the shape directly from the

initial estimation of the projective matricesPi and the projective 3-D coordinates̄X j without

going through an affine upgrade of the geometry. The work of Faugeras et al. [44] was the

first to analyse this problem, showing that self-calibration was feasible fora camera moving

through an unknown scene with constant but unknown intrinsics. The method estimates the

camera calibration form pairwise fundamental matrices by introducing the Kruppa equations to
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solve for the unknown parameters.

Of more practical use, the method presented by Pollefeys et al. [119] allows to directly

impose constraints on the intrinsic camera parameters given an explicit parameterisation of the

camera calibration matrixK (see section 6.4.2 for a detailed description). Different approaches

showed later that direct self-calibration is possible also in the case of more specific scenarios:

where the camera is known only to rotate on the spot [63, 3], only to translatewithout rotation

[105] or even when the camera has a zoom lens [119, 71].

Finally, note that for both approaches there remains an unsolved ambiguity given by an over-

all rotation and translation between camera and world coordinates in the Euclidean space. It is

not possible to remove this ambiguity unless prior information about the location of the camera

is available.

6.2 Projective rigid factorization

In order to perform self-calibration and reconstruct a rigid shape up toan overall similarity trans-

formation (rotation, translation and scale), an initial estimation of the projectivematricesPi is

needed. In a multi-view scenario, we have already discussed the advantages of solving the prob-

lem using factorization techniques in the case of a rigid object moving freely and viewed with an

orthographic camera (see section 2.2). Similarly, a factorization solution is possible for the per-

spective case using an extension of Tomasi and Kanade’s approach given a set of images taken

under perspective viewing conditions. This will provide an initial estimation ofthe projective

matricesPi and the structurēX j up to an overall projective transformation that in turn can be

upgraded to metric by any of the self-calibration methods presented in the previous section.

Sturm and Triggs [132] firstly introduced projective factorization exploiting the rank con-

straint of the measurement matrix after the estimation of the weightsλi j . Assuming the values of

the projective depths are known and given equation (6.3), it is possible to write:

W̄ =













λ11w̄11 . . . λ1Pw̄1P

...
...

λF1w̄F1 . . . λFPw̄FP













=













P1

...

PF













[

X̄1 · · · X̄P

]

= MS (6.4)

whereW̄ is the 3F×P matrix containing the rescaled measurements,M is a 3F×4 matrix andS

a 4×P matrix. Thus, after re-weighting the image coordinatesw̄i j , the corrected̄W is a rank-4

matrix. This property is used to perform SVD truncated to the fourth singularvalue to obtain a
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solution for the projective motion and structure. Similarly to the affine case (seesection 2.2), the

matricesM andS are only estimated up to a 4×4 projective transformation matrixQ such that

W̄= M̃QQ−1S̃= MS. The problem of estimating the true perspective depth is fundamental to obtain

a correct decomposition and, as already presented in section 2.2.2, many algorithms have been

developed in the last decade. Solving the problem in the case of non-rigid objects poses new

challenges and the next section is dedicated to the mathematical definition of the problem.

6.3 Deformable metric 3-D reconstruction from perspectiveimages

Given a non-rigid shape, its 3-D structure changes from frame to frame whereX̄i = [X̄ i1 . . . X̄ iP] is

a (4×P) matrix representing the shape at framei in homogeneous coordinates. The deformation

of a shape can often be explained as a linear combination of a set ofD basis shapesSd with

d = 1. . .D. In the projective case the 3-D vectors are expressed in homogeneouscoordinates and

so the shape may be written [161] as:

X̄i =







∑D
d=1 l idSd

1T






X̄i ∈ℜ4×P

Sd ∈ℜ3×P (6.5)

whereSd are the 3×P basis shapes,l id are the corresponding deformation coefficients and1 is a

P-vector of ones. The projection of the shape at any framei onto the image is then governed by

the projection equation:

W̄i = Pi X̄i = Pi







∑D
d=1 l idSd

1T






(6.6)

In matrix form this can be re-written for all frames as:

W̄ =













W̄1

...

W̄F










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=


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

l11P
(1:3)
1 . . . l1DP

(1:3)
1 P(4)

1
...
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lF1P
(1:3)
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F
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
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

(6.7)

whereP(1:3)
i are the first three columns of the projection matrix,P(4)

i is the fourth column and1

is aP-vector of ones.

Clearly, the rank of the measurement matrix is at most 3D+1 for the projective case [161].

Once more, if the projective depthsλi j were known the measurement matrix could be rescaled

and decomposed into projective motion and shape matrices using factorization.



6.4. Our approach 122

6.3.1 Previous work

In their most recent work Xiao and Kanade [161] proposed a new methodto estimate the projec-

tive depths using the 3D+1 sub-space constraint and then upgrade the projective reconstruction

to a metric one using an extension of their affine closed form solution to the perspective camera

case. However, their method still relies on the assumption that there beD frames in which the

basis shapes are known to be independent.

Xiao and Kanade’s method is a two step approach with similarities to an algorithm presented

by Han and Kanade for the rigid case [57]. First, the projective weightsλi j are estimated using

the sub-space constraints arising from the(3D + 1) rank-constrainedmotionand3-D structure

matrices. Similarly to the work of Han and Kanade [57] and Mahamud and Hebert [96] the

procedure is carried out by performing an alternating minimization overM andS respectively.

Additionally, the weightsλi j are constrained to avoid degenerate solutions (for instance, some of

theλi j can be equal to zero).

The second step is essentially an extension to the non-rigid case of the methodproposed

by Han and Kanade [57] to recover rigid structure from uncalibrated views with a direct self-

calibration approach. However, to avoid degenerate solutions given thedeformations, a new set

of equations is introduced forcing the constraint that there exists a set ofD independent basis

shapes as previously introduced by Xiao et al. [159] in the orthographiccase.

The aim is to estimate the overall(3D + 1)× (3D + 1) transformation matrixQ which up-

grades the structure to metric and to preserve the repetitive structure of themotion matrixM.

Similar to the orthographic case, the basis constraints are introduced to solveuniquely for each

D column-triple ofQ. Procrustes analysis is then used to align the structure of the motion matrix

M to respect the repetitive structure of the factorization framework and to remove the scaling and

translation ambiguities.

6.4 Our approach

Once more, our approach is based on the assumption that some of the points are rigid. The

method requires three steps. First the image points are segmented into the rigid and non-rigid

sets. The rigid points are then used to perform self-calibration and to recover the overall rigid

motion and the camera calibration parameters as well as the metric rigid shape. Finally, the non-

rigid bases and the deformation coefficients are estimated using a non-linearbundle adjustment
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approach initialised using the estimates given by the rigid points. The bundle adjustment step

can be seen as a refinement step with priors on the degree of deformability of the points with the

aim to avoid ambiguous configurations of motion, perspective distortion and deformation.

6.4.1 Step 1: Segmentation of rigid and non-rigid motion under perspective viewing

In the case of affine cameras the rank of a measurement matrix containing a set of rigid points is

constrained to be at most 3. This numerical condition of the measurement matrixW was used to

obtain a reliable segmentation of rigid and non-rigid points using the feature selection strategy

as presented in section 5.3. However (see equation (6.4)), when the camera is described by the

perspective model, the rank of the measurement matrix increases to 4, provided that the measure-

ment matrix has been rescaled with the correct estimates of the projective depthsλi j . When the

points in the measurement matrix are non-rigid the overall rank is 3D+1 in the projective camera

case whereD is the number of basis shapes. Unfortunately, the rank constraint cannot be used

directly to segment rigid and non-rigid points, since the rigid points could always be explained

as non-rigid points with zero configuration weights for the non-rigid basis shapes. Additionally,

the segmentation method presented in the previous chapter may misclassify rigid points as being

non-rigid since the perspective distortion could be mistaken as a deformation.

Instead, our new approach is based on the fact that rigid points will satisfythe epipolar

geometry while the non-rigid points will give a high residual in the estimation of thefundamental

matrix between pairs of views. We use a RANSAC algorithm [46] to estimate the fundamental

matrices from pairwise frames in the sequence and to segment the scene into rigid and non-rigid

points. Therefore, in this case we consider the dominant motion to be the rigid one and the

non-rigid points to be the outliers.

However, a well known drawback of random sampling and consensus techniques is the com-

putational cost required to obtain a valid set of points when the percentageof outliers is high,

due to the large number of samples needed to be drawn from the data. Unfortunately, this is the

most likely scenario in non-rigid structure from motion where we normally dealwith a small

proportion of completely rigid points. Here we exploit a measure of the degree of deformability

of a point to infer a prior distribution of the probability of a trajectory being rigid or non-rigid

given that measure. These distributions are then used as priors to perform guided sampling over

the set of trajectories in a similar approach to the one proposed by Tordoffand Murray [140] for

the stereo matching problem.
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Degree of non-rigidity

Kim and Hong [87] introduced the notion of Degree of Non-rigidity (DoN) of a point viewed by

an orthographic camera as an effective measure of the deviation of the point from the average

shape. If the average 3-D shape of a time varying shapeXi = [X i1 . . .X iP] (in non-homogeneous

coordinates) is given by̌X = [X̌1 . . . X̌P] the Degree of Non-rigidity for pointj is defined as:

DoNj =
F

∑
i=1

(X i j − X̌ j)(X i j − X̌ j)
T (6.8)

The 2-D projectionC j of theDoN will be thus given by:

C j =
F

∑
i=1

Ri(X i j − X̌ j)(X i j − X̌ j)
T
R

T
i =

F

∑
i=1

(wi j − x̌ j)(wi j − x̌ j)
T (6.9)

wherewi j are the image coordinates of pointj in framei andx̌ j are the coordinates of its projected

mean shape. While theDoN cannot be computed without an estimation of the mean 3-D shape

(and this implies finding a 3-D deformable reconstruction), the value of its projection can be

estimated directly from image measurements.

An approximate estimate of the projected 2-D mean shapesx̌ j can be given simply by the

rank-3 approximation of the measurement matrixW computed using singular value decomposition

and given bySVD3(W) = M̌B̌. The projected deviation from the mean for all the points would then

be defined by{wi j − x̌ j}= W− M̌B̌. Kim and Hong computed a more sophisticated estimate of the

average shape, but for simplicity we have used the above description which has shown to give a

reasonable measure of the degree of deformability.

Notice that the previous definitions all assume affine viewing conditions. However, our tra-

jectories resides in a projective space so we need to re-define the measure of non-rigidity. First,

the original measurement matrix must be re-scaled by the estimated projective weightsλi j . We

calculate the projective weightsλi j using sub-space constraints [70] and express the rescaled

measurement matrix as̄W = {λi j [wT
i j 1]T}. Then, we estimate the mean shape as the rank-4 ap-

proximation of the rescaled measurement matrix computed using singular value decomposition

and given bySVD4(W̄) = M̌Š. The projected deviation from the mean would then be defined as

before by{w̄i j − x̌ j}= W̄− M̌Š and the projection of theDoN can finally be computed as:

C j =
F

∑
i=1

(w̄i j − x̌ j)(w̄i j − x̌ j)
T . (6.10)

in the form of a 2×2 covariance matrix. Instead of using the full information ofC j , we approxi-

mate the scoresas the sum of the diagonal values ofC j .
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(a) (b)

Figure 6.2: Conditional densities for the score given: (a) that a point is rigid p(s|r) or (b)

non-rigid p(s|r̄) approximated from the normalised frequency histograms for different synthetic

and real sequences with different degrees of perspective distortion, deformation and ratio of

rigid/non-rigid points.

Computation of the prior

Tordoff and Murray [140] showed that guided sampling based on knowledge extracted from the

images can greatly improve the performance of a random sampling method, especially in the

presence of noise or of a high number of outliers. In these cases standard RANSAC becomes

computationally prohibitive given the large number of random samples that must be drawn from

the data. Here we use the 2-D projection of theDoN defined in the previous section to provide the

scores for each point trajectory which will be used to build a prior distribution of the conditional

probability of each point in the object being rigid or non-rigid given this score.

We have inferred the conditional probability density functions for the score s given that a

point is rigid p(s|r) (see figure 6.2(a)) or non-rigidp(s|r̄) (see figure 6.2(b)) by computing the

normalised frequency histograms over many experimental trials with synthetic and real sequences

with different perspective distortions, degrees of deformation and ratios of rigid/non-rigid points.

We have then approximated the histograms by fitting appropriate analytical functions. To derive

the prior conditional density function of a point being rigid given the non-rigidity scorep(r|s)

we use Bayes theorem:

p(r|s) =
p(s|r)p(r)

p(s)
∝

p(s|r)
p(s|r)+ p(s|r̄) (6.11)

Figure 6.3 shows an example of a prior obtained from our experiments. Notethat although

the computation of the score is specific to each method the derivation of the prior given the
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Figure 6.3: Estimated prior given by the estimated densitiesp(s|r) andp(s|r̄).

distribution of the score is general.

Guided RANSAC

We use guided RANSAC to estimate the fundamental matrices between pairs of consecutive

views for all theF frames composing the sequence. This process will be used to provide a seg-

mentation of the image trajectories into rigid and non-rigid ones since the non-rigid trajectories

will not satisfy the epipolar geometry and will therefore give a high residual in the computation

of the pairwise fundamental matrices. In order to speed up the process, we use the prior derived

in the previous section to draw the point samples: points with the highest conditional probability

of being rigid will be chosen more frequently. The RANSAC with priors procedure is outlined

as follows:

1. Compute the scores for each trajectory in̄W.

2. Sampleb trajectories given the priorp(r) and the scores.

3. For each sample estimate(F−1) fundamental matrices from each pair of consecutive

frames.

4. Calculate the distance of the points from theF −1 instantiated models and find the

trajectories that are within a thresholdt.

5. RepeatN times and determine the largest consensus given a set of trajectories.

Algorithm 2.

The method employed to estimate the fundamental matrix is the standard 8-point algo-

rithm [62] giving b = 8. The distance thresholdt which decides whether a point is an inlier
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or an outlier (rigid or non-rigid in this case) was set empirically to bet = 4.12. It was fixed by

taking into account the sum of the residuals given by the estimation of F-1 fundamental matrices

using normalised coordinates. Notice that we do not consider outliers in the point matching from

frame to frame. We show results which asses the performance of the guidedsampling RANSAC

algorithm applied to the segmentation of rigid and non-rigid points in the experimental section.

To notice that a common problem of RANSAC methods is their weakness to clustered outliers,

that in our case corresponds to strong deformations affecting a relevant part of the image mea-

surements. Additionally, we assume that the image points are extracted from a single non-rigid

body. The algorithm would fail in the presence of articulated structures (for instance, the torso

and the hands of a person) which show clustered rigid motions.

Once the scene has been segmented into the rigid and non-rigid point sets wecompute metric

non-rigid shape in two further steps. First we use the rigid points to estimate thecamera intrinsic

parameters – which provide the necessary information to upgrade the structure to metric – and

the overall rotations and translations. Secondly, we formulate the estimation ofmetric non-rigid

shape as a global non-linear minimization with shape priors over the rigid trajectories.

6.4.2 Step 2: Computing the metric upgrade

In order to obtain a metric upgrade, we first extract a projective reconstruction from the measure-

ment matrix given the rigid set of points using Heyden’s [68] sub-space method. The upgrade to

metric space is then obtained using Pollefeys et al.’s approach for directself-calibration which

provides estimates for the camera intrinsic parameters, the overall rigid motion and the rigid

shape.

Perspective reconstruction

Given the segmentation of the trajectories into rigid and non-rigid, we may now write:

W̄ =

[

W̄rigid W̄nonrigid

]

(6.12)

whereW̄rigid andW̄nonrigid are respectively the 3F × r and 3F × (P− r) matrices containing ther

rigid and (P− r) deformable image points. Following the projective approach outlined in section

6.1.1, we initially extract the projective 3-D shape and motion using the sub-space method of
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Heyden [68] obtaining:

W̄rigid −→













P1

...

PF













[

X̄1 · · · X̄r

]

= M̃rigid S̃rigid (6.13)

with M̃rigid and S̃rigid containing respectively the projective matricesPi with i = 1. . .F and the

homogeneous coordinates for the rigid 3-D pointsX̄ j with j = 1. . . r. Note that the method com-

putes the projective weightsλi j and decomposes̄Wrigid into the rigid motion and shape matrices.

Once more, the decomposition ofW̄rigid is up to an unknown 4×4 projective transformationQ

such that̄Wrigid = M̃rigidQ Q
−1S̃rigid . We solve uniquely forQ and then upgrading the rigid structure

to metric by performing self-calibration over the projective matrices stored inM̃rigid .

From perspective to metric: self-calibration

In our specific case, we have used the well-known self-calibration methodproposed by Pollefeys

et al. [120]. The main advantage of this direct method is that it allows to impose different con-

straints on each of the camera intrinsic parameters (focal length, principalpoint and aspect ratio)

since the camera calibration matrix is parameterized explicitly in terms of them. Each of the

parameters may be considered to be known, unknown but constant between views or unknown

and varying.

The projection matrixPi for frame i is a rank 3 matrix which may be decomposed asPi =

Ki [Ri | t i ], where the rotationRi and the translationt i represent the Euclidean transformation

between the camera and the world coordinate systems andKi is an upper triangular as already

shown in equation (6.2).

The basic idea of this method (for a detailed description see [118]) consistson parameterizing

thedual image absolute conicω∗i in such a way that it enforces the constraints on the calibration

parameters using the equation:

ω∗i = KiK
T
i ∝ PiΩ∗PT

i = PiQQ
T
P

T
i (6.14)

whereKi encodes the intrinsic parameters of the camera,Pi are the projective camera matrices

andΩ∗ is theabsolute quadricfor which a minimum parameterisation of 8 parameters is used.

Note that constraints on the intrinsic camera parametersKi are translated to constraints on the

absolute quadric. As suggested by Pollefeys et al. the solution of the problem can be obtained
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through non-linear least squares minimizing:

min
F

∑
i=1

∣

∣

∣

∣

∣

∣

∣

∣

KiK
T
i

‖ KiK
T
i ‖
− PiΩ∗PT

i

‖ PiΩ∗PT
i ‖

∣

∣

∣

∣

∣

∣

∣

∣

2

F

(6.15)

where initial estimates are obtained by means of a linear method.

After performing self-calibration, it is possible to obtainQ which allows to upgrade the cam-

era matricesPi and structure to metric space. SoW̄rigid may be expressed as:

W̄rigid =













K1[R1|t1]

...

KF [RF |tF ]



















S11 · · · S1r

1 · · · 1






(6.16)

The matrixSrigid given by the collection of the 3-vectors such thatSrigid = [S11. . .S1r ] is the 3× r

rigid basis of the deformable 3-D structure.

6.4.3 Step 3: Non-linear optimization

Following the approach presented in chapter 3, we solve for the non-rigidshape and motion given

the 2-D image reprojection error. The cost function being minimised is the geometric distance

between the measured image points and the estimated reprojected pointsχ = ∑i, j ‖ w̄i j − x̄i j ‖2=

∑i, j ‖ w̄i j − PiX̄ i j ‖2 wherePi is the projection matrix in the Euclidean framei and X̄ i j is the

4-vector that encodes the homogeneous metric 3-D coordinates of pointj in frame i. In order

to ensure good numerical conditioning we work with normalised image coordinates as described

in [67].

We parameterize the projection matrices in terms of the calibration matricesKi , the rigid

rotation matricesRi using quaternions and the translation vectorst i . The coordinates of the

non-rigid pointsX̄ i j are parameterized in terms of the basis shapesSd j and the deformation

coefficientsl id. We may now write the non-linear minimization scheme as:

arg min
Ki Ri t i Sd j l id

∑
i, j

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

wi j −Π






Ki [Ri |t i ]







∑D
d=1 l idSd j

1













∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

(6.17)

whereΠ is a function such that:

Π













a

b

c













=







a
c

b
c






(6.18)

We then impose the priors on the rigid points (zero value for the non-rigid component) as we

explained for the orthographic case in section 5.5.2. If the motion of a pointj is completely rigid
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for the entire sequence, the structure referring to that point can be expressed entirely by the first

basis (d = 1) called the rigid basis. From this it follows that for a rigid pointSd j = 0 ∀ d > 1

whereSj = [ST
1 j , . . . ,S

T
D j 1]T .

Note thatSj is a 3D + 1 vector which encodes theD basis shapes for pointj andSd j is a

3-vector which contains 3-D coordinates of basis shaped for point j. Notice that this forces

3(D− 1) zeros in each column of the shape matrix corresponding to a rigid point. We write

these expectations as priors on the coordinates of the basis vectorsSd j and solve the problem as

a Maximum A Posteriori (MAP) estimation.

Note that the final expression for themotionand3-D structurematrices is as follow:

W̄ =













l11K1R1 . . . l1DK1R1 K1t1

...
...

lF1KFRF . . . lFDKFRF KF tF













[

S̄rigid S̄nonrigid

]

(6.19)

where the(3D + 1)× r rigid component of the 3-D structurēSrigid is given in homogeneous

coordinates by:

S̄rigid =













Srigid

0

1T













(6.20)

with 0 being a 3(D−1)×r matrix of zeros and1 ar-vector of ones. The(3D+1)×(P−r) matrix

S̄nonrigid contains the deformable bases for the non-rigid points in homogeneous coordinates such

that:

S̄nonrigid =







Snonrigid

1T






(6.21)

where1 is a(P− r)-vector of ones.

Initialisation

Non-linear optimization requires an initialisation of the parameters to minimize. The metric

rigid component of the shape and structure given by self-calibration is used to obtain a reliable

initialisation of the intrinsic and extrinsic parameters for the camera and the metric structure for

the rigid points. Now it is possible to estimate the first basisS1 for the deformable modelS given
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the projection matricesPi = Ki [Ri |t i ] using the expression:







S1(r+1) . . . S1P

1 . . . 1






=













P1

...

PF













+

W̄nonrigid (6.22)

The coordinates of the rest of the basis shapes which encode theD−1 non-rigid componentsSd

with d = 2, . . . ,D are initialised to small random values [141, 38]. The configuration weights as-

sociated with the mean shapel i1 are initialised to 1 while the rest of the weightsl id are initialised

to small values.

6.5 Experimental results

This experimental section validates the methods for rigid/non-rigid segmentationand 3-D metric

reconstruction with synthetic and real experiments. The synthetic tests are designed in such

a way as to verify the performance of the method in case of different ratiosof rigid/non-rigid

points and with two different setups of perspective distortions. Additionally, the quality of the

3-D reconstruction is tested with cameras with constant and varying intrinsics.

Finally, three experiments present the performances of the approach in the case of real de-

forming objects. Two tests use image measurements obtained from a Vicon system which pro-

vides as well the ground truth for comparing the 3-D reconstructions. Theremaining test is

performed over less accurate measurements extracted by an image point tracker (KLT).

6.5.1 Synthetic data

The 3-D data consists of a set of random points sampled inside a cube of size 100× 100×

100 units. Several sequences were generated using different ratiosof rigid/non-rigid points.

In particular, we used a fixed set of 10 rigid points while using 10 and 50 non-rigid points.

The deformations for the non-rigid points were generated using random basis shapes as well as

random deformation weights. The first basis shape had the largest weight equal to 1. We also

created different sequences varying the number of basis shapes (D = 3 andD = 5) for both ratios

of rigid/non-rigid points. Finally, in order to evaluate different levels of perspective distortion we

used 2 different camera setups in which we varied the distance of the object to the camera and the

focal length (Setup 1: z=250, f=900; Setup 2: z=200, f=600). The 3-D data was then projected

onto 50 images applying random rotations and translations over all the axes.Gaussian noise of
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Noise
Experiments

0 0.5 1 1.5 2

Exp1: D = 5, 10/10, setup 1 0.28 0.48 0.55 0.72 0.77

Exp2: D = 5, 10/50, setup 1 0.31 0.38 0.46 0.55 0.72

Exp3: D = 3, 10/10, setup 1 0.95 1.36 1.53 1.60 1.54

Exp4: D = 3, 10/50, setup 1 2.19 2.38 2.33 2.78 2.51

Exp5: D = 5, 10/10, setup 2 0.95 1.36 1.53 1.6 1.54

Exp6: D = 5, 10/50, setup 2 0.3 0.34 0.39 0.51 0.58

Exp7: D = 3, 10/10, setup 2 0.65 0.94 1.27 1.42 1.45

Exp8: D = 3, 10/50, setup 2 2.09 2.37 2.28 2.31 2.27

Table 6.1: Mean misclassification error for different levels of Gaussian noise with varianceσ =

0.5, 1, 1.5, 2 pixels. The eight experimental setups use different number of bases (D = 3,5),

ratios of rigid/non-rigid points (10/10, 10/50) and camera parameters (Setup 1: z=250, f=900;

Setup 2: z=200, f=600). The mean error is computed over 100 tests for each setup and level of

noise.

increasing levels of variance was added to the image coordinates.

6.5.2 Motion segmentation results

The experimental setup described beforehand was first used to obtain an indication of the per-

formance of our segmentation approach presented in section 6.4.1. Firstly,the sampling prior

p(r) was generated from a larger set of synthetic and real data. Secondly,tests using the guided

RANSAC approach were performed over the synthetic experiments described above. Eight dif-

ferent experimental setups were tested with varying number of rigid/non-rigid points (10/10,

10/50), basis shapes (D = 3,5) and camera parameters (Setup 1, Setup 2).

The RANSAC procedure was tested over 100 trials for each setup and for each level of noise.

The number of samples randomly chosen over the prior distribution was fixedto 2500. At each

new trial the motion components (rotation and translation) of the objects are randomly generated

obtaining a 50 frames long sequence. The results in table 6.1 show the rate ofnon-rigid points

being classified as rigid for the different setups. Better performances are obtained for higher

ratios of rigid/non-rigid points and for more complex deformations (i.e., more basis shapes).
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Noise
Parameter

0 0.5 1 1.5 2

meanf 0 0.49 0.98 1.34 2.54

std. dev.f 0.02 0.66 1.42 1.46 2.62

max. f 0.09 3.43 8.56 5.97 10.02

meanpu 0.01 0.72 1.19 1.61 2.14

meanpv 0.01 0.77 1.18 1.63 2.26

Table 6.2: Mean, standard deviation and maximum relative error (%) for thefocal length, and

absolute mean error for the principal point (pu, pv) for the different levels of Gaussian noise.

Results obtained when the intrinsic parameters were constant.

Experiments 4 and 8 obtain the worse results achieving a mean misclassification rate of more

than 2 points.

Notice also a better algorithmic behavior in the case of stronger perspectivedistortion com-

pared to weaker ones since the effects of perspective distortions and deformations are less am-

biguous in such cases.

6.5.3 3-D reconstruction results with constant intrinsics

For the first set of experiments we assumed that all the camera parameters:focal length, aspect

ratio, principal point and skew (equal to 0) remained constant over the sequence. We then applied

our 3-D reconstruction algorithm to all the experimental setups described before. The results are

summarized on the first row of figure 6.4 where we show the 3-D metric reconstruction error

expressed in percentage relative to the scene size, the absolute rotation error expressed in degrees

and the r.m.s. 2-D image reprojection error expressed in pixels. The plots in this figure show the

mean values of 5 random trials applied to each level of Gaussian noise.

Our proposed algorithm appears to perform well in the presence of imagenoise. The 3-D

reconstruction error is low even for large perspective distortions and for a large proportion of

non-rigid versus rigid points. The 2-D error is also small and it appears tobe of the same order

as the image noise. Figure 6.4 also illustrates that the rotations are correctly estimated. Reliable

estimates for the internal camera parameters (focal length and principal point) are obtained even

in the presence of noise and they are summarized in table 6.2.

As expected, less accurate results were obtained in the presence of outliers (i.e. non-rigid
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Figure 6.4: 3-D error, rotation error and 2-D error curves. First row: results obtained when the

focal length (f ) was constant. Second row: results obtained for the 4 experiments with varying

intrinsics (see text for description).

points) in the original set of rigid points as shown in figure 6.5. This is due to the fact that

outliers introduce errors in the initial estimates obtained by the projective rigid factorization

and self-calibration. However, after applying bundle adjustment the results improved, providing

acceptable motion and structure estimates.
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Figure 6.5: 3-D error, rotation error and 2-D error plots in the presence of two non-rigid points in

the set of rigid points. Setup 2 is used in two experiments with varying number ofrigid/non-rigid

points. Results show the effect of outliers compared to the case with correct data.

6.5.4 3-D reconstruction results with varying intrinsics

We then performed a set of experiments in which some of the internal parameters of the camera

were varyied throughout the sequence. We designed 4 different experiments using camera setup

2 (Z = 200, f = 600), a ratio of 10 rigid to 50 non-rigid points and 5 basis shapes. For Experi-

ment 1 the focal length of the camera varied linearly throughout the sequence while the rest of

the internal parameters remain constant. In the optimization algorithm we considered the focal
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length unknown and allowed it to vary during the minimization while the principal point was

considered to be unknown but fixed throughout the sequence and the aspect ratio and skew were

considered known (r = 1 ands= 0). Experiment 2 had the same experimental setup but during

the optimization process we allowed both the focal length and the principal point to vary in the

minimization. In Experiment 3 the focal length and the principal point both varied throughout

the sequence. In the minimization we considered the focal length unknown and allowed it to vary

but the principal point was assumed to be fixed but unknown. Finally in Experiment 4 we used

the same setup as in Experiment 3 but allowed both the focal length and the principal point to

vary in the minimization.

The results for all 4 experiments are illustrated on the second row of figure6.4. The results

obtained for the internal camera parameters are summarised in table 6.3. Note that for the noisy

cases in which the real principal point was varying better estimates were obtained assuming the

principal point constant during the minimization.

Finally, we performed another experiment in order to show that inclusion ofpriors is fun-

damental to avoid local minima and to improve the reconstruction results. We chose the same

set of experiments in which only the real focal length was varying and aspect ratio and principal

point were assumed constant during the minimization. Results with and without using priors are

illustrated on figure 6.6.

As expected, better results are obtained when priors are used. This canbe clearly seen in

the case of no noise where the use of priors allows to improve the convergence to the global

minimum. Notice that the minimizations with and without priors were initialized with the same

values thus showing that the inclusion of the additional penalty terms increases the reliability of

the reconstruction and the convergence of the algorithm.

6.5.5 Real experiments

In these experiments we tested our method using real 3-D data of a human face and of a scene

with deforming and rigidly moving objects. We present three experiments; in thefirst two we

test our method compared using ground truth given by accurate measurements obtained from a

VICON motion capture system. The final test shows the 3-D reconstruction results with mea-

surements automatically generated by a point tracking algorithm (KLT).



6.5. Experimental results136

Parameter
Noise

0 0.5 1 1.5 2

meanf 0 0.56 1.68 1.69 3.90

std. dev.f 0 0.18 1.26 0.94 1.99

Exp1 max. f 0 0.83 3.49 3.22 7.16

meanpu 0 0.59 1.48 1.29 6.03

meanpv 0 0.91 2.43 2.50 3.46

meanf 0.01 2.93 5.14 10.28 10.97

std. dev.f 0.01 0.79 2.92 6.96 4.33

Exp2 max. f 0.02 3.91 8.36 20.12 14.92

meanpu 0.09 11.17 18.01 26.68 27.50

meanpv 0.08 6.66 14.80 22.93 28.91

meanf 0.69 1.04 1.16 3.10 2.92

std. dev.f 0.27 0.50 0.38 2.58 1.15

Exp3 max. f 1.04 1.75 1.81 5.96 4.47

meanpu 2.97 2.96 3.01 3.77 3.97

meanpv 3.49 3.34 3.47 5.88 3.79

meanf 0.05 2.11 4.93 10.40 10.38

std. dev.f 0.04 1.05 3.51 2.92 4.66

Exp4 max. f 0.09 3.60 8.80 14.27 14.17

meanpu 0.10 5.95 12.71 16.01 16.31

meanpv 0.07 3.49 10.61 14.34 15.54

Table 6.3: Mean, standard deviation and maximum relative error (%) of the focal length and

absolute mean error (pixels) of the principal point (pu, pv) for different levels of Gaussian noise.
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Figure 6.6: Obtained results with and without using shape priors. 3-D error, rotation error and

2-D error curves for the set of experiments obtained with camera setup 2,5 basis shapes and

10/10, 10/50 rigid/non-rigid points. Focal length was varying while aspect ratio and principal

point were constant.

Human face

In the first real experiment, 37 trajectories are generated from a human face that is undergoing

rigid motion while performing different facial expressions. The 3-D pointsreconstructed by the

motion capture system are then projected synthetically onto an image sequence74 frames long

using a perspective camera model. The size of the face model was 169×193×102 units and the

camera setup was such that the subject was at a distance of 300 units fromthe camera and the

focal length was 600 pixels so the perspective effects are significant.

In this case the segmentation of points into rigid and non-rigid sets was done bymanually

selecting 14 points situated on the nose, temples and the side of the face. These points are high-

lighted on the frontal view of the first frame of figure 6.7. This figure showsthe ground truth

(squares) and reconstructed shape (crosses) from front, side and top views. The 2-D reprojection

error was 0.67 pixels, the absolute 3-D error was 2.24 units and the focal length was 595.12 pix-

els. The results are satisfactory even considering that the selected rigid points were not perfectly

rigid during all the sequence. Note that the deformations are very well captured by the model

even for the frames in which the facial expressions are more exaggerated.

Pillow scene

The scene consisted of a set of 12 rigid points (9 on two boxes and 3 overa chair) and a set of

20 deformable points situated on a pillow which was deforming during the sequence (see first

row of figure 6.8). The 3-D points were then projected synthetically onto animage sequence 75

frames long using a perspective camera model. Gaussian noise of 0.5 pixels was added to the

image coordinates. The size of the scene was 61×82×53 units and the camera setup such that
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Frame 1 Frame 31 Frame 74

Figure 6.7: Front, side and top views of the reconstructed face. Reconstructions are shown for

frames 1, 31 and 74. Cross marks are used to indicate the reconstruction while square marks

refer to the ground truth. Highlighted marks on the frontal view of frame 1 indicate rigid points.

the scene was at a distance of 150 units from the camera and the focal length was 900 pixels

and constant during the sequence. Figure 6.8 shows the ground truth (squares) and reconstructed

shape (crosses) from two different viewpoints. The 2-D reprojectionerror was 0.95 pixels, the

absolute 3-D error was 1.34 units and the absolute rotation error was 2.11 degrees. The focal

length was estimated to be 899 pixels. The same experiment was repeated but varying the real

focal length from 700 to 1000 during the sequence. In this case the 2-D reprojection error was

0.96 pixels, the absolute 3-D error was 1.65 units and the rotation error 2.77 degrees while the

mean focal length error was 34.84 pixels (see table 6.4).

Cushion scene: automatically tracked data

In this experiment we show qualitative results with measurements obtained froma KLT tracker1.

Some key frames of the sequence are presented in figure 6.9 (a) showingthe object rigidly ro-

tating (frames 1 and 160) and three deformations (frames 340, 410 and 490). The 560 frame

long video sequence is captured with a Fire-i digital camera with 4,65mm built in lenses. The

tracking algorithm is able to obtain 256 trajectories located on the rigid (60 pointsover the box)

and non-rigid (196 points over the cushion) surfaces of the scene. The trajectories are then sub-

1http://www.ces.clemson.edu/∼stb/klt/
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Frame 5 Frame 30 Frame 60

Figure 6.8: Real 3-D data. First row shows examples of the analysed scene. Second and third

rows show two views of the reconstructed scene. Cross marks indicate reconstruction while

square marks refer to ground truth.

Experiment
Error

2-D (r.m.s.) 3-D (%) Rotation (r.m.s.) f error

f = 900,d = 150 0.95 pixel 1.34 2.11 degree 1 pixel

f = 700−1000,d = 150 0.96 pixel 1.65 2.77 degree 34.84 pixel

Table 6.4: Estimated errors for the pillow sequence. Two setups with constant (first experiment)

and varying (second experiment) intrinsics are tested and results are showed for the 2-D repro-

jection, 3-D reconstruction, rotation and focal length errors.
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sampled in time to obtain an overall sequence of 112 frames giving a measurement matrix W

of size 224×256. Ground truth reference is not available in this scene, thus we show only the

results for the 3-D reconstruction after performing self-calibration usingthe rigid points and non-

linear optimization to correctly model the shape deformations. The camera intrinsic parameters

were considered constant for each frame and the aspect ratio and skew were fixed to 1 and 0

respectively. The presented results are obtained after 40 iterations of the non-linear optimization

algorithm with a number of basis shapes set toD = 5.

Figure 6.9 shows front, side and top views of the 3-D reconstructions2 for the deforming

object. Frames 1 and 160 show only rigid displacements of the object and thusthe 3-D structure

is correctly not deforming for the two frames. The last three frames show the cushion bending

and the box structure remaining rigid. Note in the top views of figure 6.9 (d) thepreserved

orthogonality of the two reconstructed planes belonging to the box.

6.6 Closure

The proposed approach for the estimation of Euclidean non-rigid shape from a sequence of un-

calibrated images takes advantage of an initial segmentation of the scene pointsinto rigid and

non-rigid from which self-calibration can be used to extract the metric rigid structure and the

internal camera parameters. Then, a non-linear optimization stage globally solves and refines the

estimates for the deformable components of the inspected object.

Motion segmentation of rigid and non-rigid points under perspective viewingconditions is re-

quired to define the priors for the specific object. The approach presented is based on a RANSAC

technique whose convergence is aided using sampling priors over the complete set of trajectories

in W. The discriminant for separating the two classes of motion is given by the consistency of a set

of trajectories with the epipolar geometry obtained by estimating fundamental matrices between

pairs of view.

The construction of shape rigidity priors has a twofold effect. Firstly, estimating the internal

camera parameters allows to upgrade the structure from projective to metric space. Secondly, as a

computational aspect, the introduction of the priors in the non-linear optimizationshows relevant

increments in the convergence ratio to the global minimum. Xiao and Kanade’s algorithm [161] –

based on prior knowledge about the independency of the shape bases– performs well in the case

2Video available at http://www.bmva.ac.uk/thesisarchive/2006/DelBue1/index.html
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(a) (b) (c) (d)

Figure 6.9: Five key frames of the sequence with automatically tracked data for frames 1, 160,

340, 410 and 490. The first column (a) shows the tracked points (blue dots) lying over the

rigid and non-rigid parts of the scene. Note the perspective distortion affecting the rigid box.

The remaining columns shows front (b), side (c) and top (d) views of the cushion and box 3-D

reconstructions.
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of no noise but has a slow convergence ratio when Gaussian noise corrupts the image coordinates.

Our non-linear minimization, on the other hand, converges fast (usually less than 30 iterations)

regardless of the level of Gaussian noise in our synthetic experiments.

Xiao and Kanade’s algorithm – based on prior knowledge about the independency of the

shape bases – performs well in the case of no noise but has a slow convergence ratio when noise

corrupts the image coordinates.

The experiments on synthetic and real data have shown firstly that even when using a mini-

mal set of rigid points and when varying the intrinsic camera parameters it is possible to obtain

reliable metric information and secondly that the shape priors are fundamental to avoid local

minima given by ambiguous configurations of motion, perspective distortion and deformation.

Notice that the method can successfully recover from situations in which a few points are mis-

classified as rigid even when the deformations are strong. The segmentationstage obtains rea-

sonable results for the configuration of basis, cameras and points tested,however we noticed a

higher misclassification ratio with weak perspective effects and higher proportion of non-rigid

points. A further observation is that points that are semi-rigid (being rigid only for a part of

the sequence), may appear undetected since they conform with the epipolar geometry only for a

subset of frames.
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Chapter 7

Conclusions

This thesis has dealt with different aspects of the problem of modelling deformable shapes from

uncalibrated video sequences. We have reviewed and discussed the methods proposed so far

in the literature and described their strengths and weaknesses. In the following sections we

summarise our proposed solutions to some of the shortcomings of current methods and point out

directions for future research and improvements to our framework.

7.1 Non-linear optimization for non-rigid structure from m otion

Three dimensional reconstruction of deformable shapes is intrinsically a non-linear problem due

to the fact that the parameters modelling the camera motion and the 3-D deformations are strongly

coupled. The linear solutions proposed in the literature, which impose orthogonality constraints

on the camera matrices, fail to provide accurate reconstructions. Recently, Xiao et. al. [159, 160]

proved that the orthonormality constraints on the camera rotations are not sufficient to solve the

ambiguities and they proposed a new set of constraints on the shape bases. Their work proves

that when both sets of constraints are imposed, a closed-form solution to theproblem of non-

rigid structure from motion exists. However, their approach requires thateach basis shape in the

deformable model be observed independently in at least one view. Their method has been proved

to break down with noisy data or when the number of basis shapes is not correctly estimated.

In this thesis we have proposed an alternative approach using a non-linear optimization

scheme which preserves the correct geometric structure of the motion and structure matrices

by minimizing a non-linear cost function which expresses the image reprojection error in the
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model parameters. This minimization presents two main challenges. Firstly it is large-scale in

essence since the number of parameters to estimate increases with the number of views and with

the number of basis shapes. In this sense, a careful choice of the parameterization of the problem

has proven to improve the results. Secondly the high non-linearity of the cost function introduces

possible local minima which may prevent the algorithm from converging to the real solution. In

order to render the minimization tractable, we have reformulated bundle-adjustment techniques,

which take advantage of the sparseness of the jacobian matrix, to deal with the case of deforming

objects.

7.2 Stereo non-rigid factorization

Given the same non-linear estimation framework, we have shown that it is possible to extend the

method to include measurements from different cameras, to extract reliable 3-D reconstructions,

and to compute the relative orientation of the cameras in an uncalibrated scenario. In this thesis

we have concentrated on the stereo camera case. The use of two or more cameras is necessary

when the object is only deforming since structure from motion methods requirea significant

component of rigid motion to obtain accurate depth estimates. Our experiments show that the

reconstructions obtained with monocular views are of poor quality. As expected, including dif-

ferent camera views solves for the model parameters.

7.3 Non-rigid 3-D modelling using shape priors

A non-rigid object can be thought of as an underlying rigid body undergoing global rotations

and translations while suffering some local non-rigid deformations. For thisreason, non-rigid

3-D shape recovery is an inherently ambiguous problem. Given a specificrigid motion, different

non-rigid shapes can be found that fit the measurement. To solve this ambiguity we propose to

exploit prior knowledge on the 3-D structure such as the rigidity of some of the observed points.

We have focused on the observation that often not all the points on a movingand deforming

surface are undergoing non-rigid motion. Some of the points are frequently on rigid parts of

the structure while others lie on deformable areas. Intuitively, if a segmentation is available, the

rigid points can be used to estimate the overall rigid motion and to constrain the underlying mean

shape by estimating the local deformations exclusively with the parameters associated to the non-

rigid component of the 3-D model. We have showed that improved estimates canbe achieved
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when these priors are used. However, an algorithm able to perform automatic segmentation of

rigid and non-rigid motion is required for our approach to be viable.

7.4 Motion segmentation of rigid/non-rigid points

Rigid and non-rigid motion segmentation is not a trivial task since rigid points canalways be

understood as non-rigid points which can be described by a single basis shape. However, we

have shown that it is possible to separate rigid points in both the orthographicand the full per-

spective case by exploiting the constraints arising from the rigidity of the structure. In the case of

orthographic cameras, we have introduced a segmentation method based ona feature selection

strategy. Trajectories which are highly non-rigid are selected first and removed from the measure-

ment matrix untilW reaches the rank-3 condition that corresponds to the remaining trajectories

moving as a rigid body.

In order to segment points in the projective case, we used a different property to disambiguate

rigid and non-rigid trajectories: rigid trajectories give small residuals whenused to estimate fun-

damental matrices between pairs of views. We have introduced a RANSAC method which ran-

domly selects sets of trajectories until the best candidate is found. To aid the sampling procedure,

we have proposed to assign a sampling prior given a measure of deformability of a point which

increases the likelihood to select rigid trajectories.

7.5 Metric 3-D reconstruction of non-rigid shape from perspective images

In the case of perspective viewing conditions, once the scene has beensegmented into rigid and

non-rigid point sets, the rigid trajectories can be used to obtain an estimate of the mean rigid

shape, the overall rigid motion and the camera calibration parameters (which allow to upgrade

the structure to Euclidean space). This supporting rigid structure and motioncan be used as the

initial estimate for a non-linear estimation framework of the overall non-rigid structure where

the non-rigid basis shapes and configuration weights are estimated as localvariations from the

mean rigid shape. The fact that image motion is a consequence of three different contributions:

perspective distortions, rigid motion and local deformations is a source of possible ambiguities

between the parameters of the model. However, we show that these ambiguitiesmay be avoided

by incorporating priors on the degree of deformability of each point in the minimization process.

In particular, our expectation is that the rigid points will be fully described bythe first basis
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shape. These priors can be incorporated within a maximum a posteriori estimation framework.

7.6 Future work

One of the fundamental observations we have used in this thesis is the fact that it is often reason-

able to assume that not all the points on the surface of a non-rigid object are deforming: while

some of the points might be undergoing pure rigid motion others might deform at the same time.

This constraint has proved very valuable both to provide priors on the degree of deformability of

each point and to allow the computation of the metric upgrade transformation in thecase of per-

spective viewing conditions. However, the assumption that a point is completely rigid throughout

a long image sequence can become too restrictive. A class of trajectories wehave not dealt with

in this thesis is the class of points which have a semi-rigid behavior. Semi-rigid points are points

that are rigid for some frames of the sequence but that occasionally deform with respect to the

mean shape. These points could also provide valuable priors to be used in 3-D shape estimation

while relaxing our assumptions. Notice, however, that the automatic segmentation algorithms

described above would have to be modified to cope with the detection of points that have a mixed

behaviour.

A further interesting aspect is the extension of our framework to deal with different types of

non-rigid objects. In this thesis, we have restricted ourselves to the case of a single deforming

object but often, in a generic and unknown video sequence, image tracks may belong to a struc-

ture with higher complexity. For instance, in the case of the human body, the face is obviously

deformable but trajectories could also be extracted from the torso, arms and legs which are con-

nected as articulated shapes. Image trajectories lying on different rigid, deforming and articulated

parts would have to be associated to the correct model describing the inter-dependency of each

body. The problem of associating (i.e. segmenting) the entries ofW correctly to the appropriate

object part would be extremely challenging, especially if the only information available are the

image tracks taken from an uncalibrated sequence without any user-defined priors.

Of more direct practical use, a future avenue of research is the extension of the framework

to deal with missing entries in the measurement matrixW. It is a rather optimistic assumption

to believe it is possible to identify the coordinates of all the feature points in all the views,

particularly when dealing with long sequences. Besides, this poses restrictions on the types of

object motion permitted: there cannot be so much rotation for instance that someof the features
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go out of view. Note that this is not a problem for the non-linear minimization framework since

if an entry wi j in W is missing, the quadratic term referring towi j is not included in the cost

function. However, the non-linear methods require initialisation which we perform using one of

the linear approaches for which the complete measurement matrix is required.Additionally, our

proposed motion segmentation algorithms require no missing entries inW. A possible solution

would be to adapt methods already designed for the rigid case to deal with deformable structure

such as the sub-spaces technique of Sugaya and Kanatani [134].

Figure 7.1: Tracking faces with deformable models. The methods presentedin this thesis can be

used to generate a 3-D deformable model which can then be used efficientlyto track in real-time

a face performing various expressions [108].Courtesy of E. Mũnoz.

7.7 Applications

From the applications point of view, we plan to exploit the generated geometricmodels in several

computer vision systems. Our deformable models obtained automatically from an uncalibrated

image sequence have already been shown to obtain promising results for face tracking [109, 108]

(see figure 7.1 for an example). A new avenue to explore is their applicationto medical images. In

this case the use of priors may help to model and register deformable biological shapes given the

rigidity of some parts of the structure. For instance, in the case of diagnosisof heart conditions it

would be possible to detect possible anomalies in the motion of the organ by having an accurate

deformable model of a heart.

A real-time tracking algorithm which uses deformable models could be used to drive an avatar

as demonstrated by Buenaposada et al. [21] and as shown in figure 7.2.In this case, the face

was modelled as a set of 2-D planar patches. If the tracking algorithm can successfully describe

the deformations appearing in the object, this in turn can be used directly to animate a synthetic

object or 3-D avatar without requiring strong post processing effortsby the user. Moreover, the

introduction of 3-D basis shapes to this scenario will ease the task of animatingshapes with large
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Figure 7.2: A system [21] for real time face tracking (upper row) and automatic animation of

a synthetic 3-D face (lower row). The tracking system is based on a 2-D (planar) statistical

description of the image appearance. The extracted parameters that describe the deformations in

the image are used to pilot the animation of the 3-D face.Courtesy of Dr J. M. Buenaposada.

pose variations particularly when they suffer strong deformations.

Finally, our proposed techniques for rigid and non-rigid motion segmentationcould be ap-

plied to cases in which the deviation of a set of object points from the overallrigid configuration

is indicative of a harmful situation. For instance in the medical domain, the growth of a tumor

could be detected when some of the points on the surface begin to behave asnon-rigid.
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