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1 Background

1.1 The McCain-Turner Theory and its Modal Formula-
tion

We recall the theory of [9]; this is a system of predicate modal logic in which
we can represent McCain and Turner’s “causal reasoning” [6]. In this system,
what McCain and Turner describe as a “causal law”, and write φ→ ψ, will be
represented as a modal axiom

φ ` @ψ (1)

Given a set, D, of such causal laws, the system in Table 1 gives a sequent
calculus which is sound for these modal axioms. McCain and Turner described
their semantics as follows:
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Table 1: Sequent Calculus Rules

Ax
A ` A

L ⊥
⊥`

Γ ` ∆
LW

Γ, A ` ∆

Γ ` ∆
RW

Γ ` A,∆
Γ, A,A ` ∆

LC
Γ, A ` ∆

Γ ` A,A,∆
RC

Γ ` A,∆
Γ, A,B ` ∆

∧L
Γ, A ∧B ` ∆

Γ ` A,∆ Γ ` B,∆
∧R

Γ ` A ∧B,∆
Γ, A ` ∆ Γ, B ` ∆

∨L
Γ, A ∨B ` ∆

Γ ` A,B∆
∨R

Γ ` A ∨B,∆
Γ ` A,∆ Γ, B ` ∆

→ L
Γ, A→ B ` ∆

Γ, A ` B,∆
→ R

Γ ` A→ B,∆
Γ, A[x/t] ` ∆

∀L
Γ,∀xA ` ∆

Γ ` A[x/y],∆
∀Ra

Γ ` ∀xA,∆
Γ, A[x/y] ` ∆

∃Lb

Γ,∃xA ` ∆

Γ ` A[x/t],∆
∃R

Γ ` ∃xA,∆
Γ ` P1 ∧ . . . ∧ Pn,∆ Q1, . . . , Qn ` X

@Rc

Γ ` @X,∆
{Γ, Pi1 , . . . , Pik

` A,∆, Qi1 , . . . , Qik
` X}i=1,...,n @Ld

@Γ,@X ` @A,♦∆
Γ ` Xm,∆ Γ′, Xn ` ∆′

multicute
Γ,Γ′ ` ∆,∆′

ay not free in Γ or ∆, and either y = x or y not free in A
by not free in Γ or ∆, and either y = x or y not free in A
cwhere, for all i, Pi . Qi
dwhere, for each i, we have Pi1 . Qi1 , . . . Pik

. Qik
, and where the {Pij } and {Qij }, for

i = 1, . . . n, are the only such sets of P s and Qs that there are.
ewhere Xn stands for n occurrences of X; m, n > 0
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1. Suppose that we are given a set of causal laws: call it T, formulated in
some language L. Let M be a model of L. Define

TM def= {ψ| for some φ ∈ L, φ . ψ and M � φ} (2)

2. Now we say that M is causally explained (according to T) if it is the only
model of TM .

3. Finally, we say that φ ∈ L is a consequence of a causal theory T if φ is
true in every T-causally explained model of S.

We can express this in our system as follows:

Proposition 1. Given a set T of causal laws, consider the corresponding modal
system defined by the rules in Table 1. Then M is an explained model iff, for
any proposition P ,

M ` (@P → P ) ∧ (P → @P )

where M is the theory of the model M .

Proof. A straightforward application of the cut elimination result of [9]; we first
prove that, if M is a model of L,

(TM ) = {X|M ` @X}

where (·) represents deductive closure.
We can then show that M is an explained model if, when regarded as a

world in the canonical Kripke model of the modal logic, it is accessible to itself
and to no other worlds; we can also show that the world of the canonical Kripke
model are precisely the models of the non-modal language; but this – together
with standard correspondence theory results [8] – gives us the proposition.

Corollary 2. Given a set T of explanations, consider the corresponding modal
system defined by the rules in Table 1. Then, if A is a non-modal proposi-
tion, A is causally explained according to T iff there are non-modal propositions
P1, . . . , Pk, Q1, . . . , Ql such that, in the modal system,

P1 → @P1, . . . , Pk → @Pk,@Q1 → Q1, . . . ,@Ql → Ql ` A.

Proof. An easy application of compactness.

1.2 The Meaning of the System

This system is quite generic (as is McCain and Turner’s formulation): it is well-
defined for any collection of “causal laws” at all. However, McCain and Turner
also define, associated to each instance of the frame problem, a particular set
of “causal laws”: the goal of this paper is to investigate other sets of laws, and
to see what other aspects of the frame problem – or, indeed, of other problems
in AI – can be captured thereby.

Once we do this, we begin to realise that this system is not limited solely to
causal reasoning: that it is quite a general logic of explanation. A law, such as
(1), can be regarded as an explanation pattern: an explanation pattern in which
ψ will be the explanandum and ψ the explanans. Now with McCain and Turner’s
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laws, ψ was a a fluent, and φ was either the action and action precondition
which led to that fluent, or it stated that the fluent arose by persistence from
the previous instant; laws like these, then, describe causal explanations, and
they can thus rightly be regarded as causal.

But in general, there is no need to restrict ourselves to explanations merely
of that sort; indeed, Lifschitz hinted as much in [5]. Now explanations can be
viewed as answers to questions (and specifically to why-questions) [7]; there are,
however, other questions that we could well think of asking, and, consequently,
there are other sorts of explanation that we could usefully apply this logic to.
Specifically, one of the most interesting applications will be to the question, not
of what caused a particular fluent, but of what that fluent gave rise to: the
question of what happened next, rather than the question of what went before.

1.2.1 Terminology

There is, unfortunately, the question of terminology and notation to consider.
Terminology of “causal laws” and “causal theory” is, by now, quite well en-
trenched (and I have also been quite careful to use it in quotation marks, so as
not to prejudice the issue). In order to keep as close as possible to established
terminology, I will tend to use terms like ‘explanatory law’ and ‘explanatory
theory’, or often just neutrally ‘law’. When I am feeling non-traditional I may
also refer to a law as an explanation.

So much for terminology. We will also need a metatheoretical notation for
laws (distinct from their representation in the theory as modal entailments such
as (1)): I shall use

φ . ψ. (3)

This is, it is true, different from McCain and Turner’s notation (that is, · ⇒ ·):
however, ⇒ seems to have too many entailment-like connotations to be entirely
convincing as a notation for explanation.

2 Some Laws

2.1 The Standard Formulation

Suppose that we have fluents f , actions a, and possibly domain constraints C,
all formulated in our usual language L. McCain and Turner’s laws are of this
form:

1. f0 ⇒ @f0 and ¬f0 ⇒ @¬f0, for any fluent f at time 0;

2. at ⇒ @at and ¬at ⇒ @¬at, for any action a at any time t;

3. ft−1 ∧ ft ⇒ @ft and ¬ft−1 ∧¬ft ⇒ @¬ft, for any fluent f and any time t;

4. ft−1 ∧ at−1 ⇒ @gt, for any time t, where f is the precondition and g is
the postcondition of action a.

5. ¬P ⇒⊥, for any domain constraint P .
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Now interesting uses of these laws will be right rules of the form

Γ ` ft−1 ∧ ft,∆
@R

Γ ` @ft,∆

or of the form
Γ ` ft−1 ∧ at−1,∆

@R
Γ ` @ft,∆

or, of course, the corresponding left rules: and, in any of these cases, application
of the sequent calculus rules works backwards in time, from t to t − 1. Thus,
both proof search, and the resulting proofs, will look like temporal regression
from a goal: this is, of course, a well established tradition in planning, and it is
reassuring to see that the standard form of these theories leads to it.

2.2 Time Forwards

It would, then, also be interesting to investigate a system which would give the
opposite temporal direction to proof search: that is, in which we would start at
time 0, and extend trajectories into the future. So we would consider laws of
the form

1. f0 ⇒ @f0 and ¬f0 ⇒ @¬f0, for any fluent f at time 0;

2. at ⇒ @at and ¬at ⇒ @¬at, for any action a at any time t;

3. ft−1 ∧ ft ⇒ @ft−1 and ¬ft−1 ∧ ¬ft ⇒ @¬ft−1, for any fluent f and any
time t;

4. gt ∧ at−1 ⇒ @ft−1, for any time t, where f is the precondition and g is
the postcondition of action a.

5. ¬P ⇒⊥, for any domain constraint P .

These are, of course, much the same as the previous set: the only rules which
differ are the temporally directed ones, which simply exchange the temporal
direction. And, technically, these work as expected: proof search amounts to
extending trajectories from time 0 towards the future, and we can appropriately
formulate problems of temporal progression using rules of this form.

2.2.1 The Meaning of These Rules

The merely technical adequacy of these rules is, perhaps, no surprise: we are
taking a calculus and reversing the direction of time in order to get the desired
effect. But what does it mean?

As I indicated earlier, the causal reading of this system may not always be the
most appropriate one. A more general reading would be to regard it as, simply,
a logic of explanation: McCain and Turner’s explanations would be causal, but
these time-reversed laws would not have a causal reading. Even though we had
reversed time, the direction of causality would still be the same: the past would
still influence the future, and not the other way round. However, we could
regard these laws as describing the logic of a different explanatory task: rather
than asking for answers to questions like “what gave rise to this situation?”, we
would be looking for answers to the question “what came after this situation?”.
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Indeed, the idea of questions and answers is quite appropriate here. Ac-
cording to Hintikka [3, 2], a question can be regarded as denoting its set of
possible answers (out of which an appropriate answer selects one). Here we
have two rules for @, left rules and right rules; when we apply a left rule to the
necessitation of a given fluent, we get the set of possible answers to the appro-
priate question (“what went before?” or “what next?”), as appropriate. When
we apply a right rule, we have to select an answer from the set of appropriate
ones. The duality of left rules and right rules, then, corresponds to a duality of
questions and answers.

3 Automata

We have a further modification to make to the form of the rules. We have been
looking at temporally indexed, fluent-based, formalisms: the fundamental object
of investigation is a temporally indexed sequence of conjunctions of fluents and
actions. However, there are alternative approaches to the problem of state
change: in particular, we have the theory of automata [1]. There is no reason
why we should not also apply a formalism of this sort to the theory of automata:
it has no inherent notion of fluents (and an automaton in itself has no notion
of temporal indexing), and we can try to use our calculus to handle the theory
of automata in its own terms.

We will start with a simple definition of automata:

Definition 1. An automaton will be a finite set Σ of states, a finite set A of
actions, an initial state σ̃ ∈ Σ, and, for each σ ∈ Σ,

1. a set Aσ ⊆ A, which represents the actions possible at σ, and

2. a map ρσ : Aσ → Σ, representing the next state.

Note that these automata are finite, and the actions are deterministic. Notice
also that the same action can occur in more than one state: this is basic for the
theory of automata. For the sake of simplicity, we do not mention termination:
this, together with nondeterminism, could easily be accommodated, if necessary.

Suppose we have such an automaton: let us consider the following explana-
tory laws. The language – which will describe the set of execution traces of the
automaton, rather than the automaton itself – will have propositions indexed
by times: the propositions will be

1. at, for a ∈ A, t ∈ N, representing the occurrence of action a at time t;

2. σt, for σ ∈ Σ, t ∈ N, representing the state σ at time t.

We also allow ourself (by abuse of notation) to write, for σ a state and a an
action, (ρσt(at))t+1; this will mean the t+1-subscripted proposition correspond-
ing to whatever state it is that is the result of action a acting in state σ. It
is definitely not the application of a higher-order function in the language: the
constructs here are explicitly metatheoretical.

The laws will be

1. σ0 . σ0 for any σ,

2. σt+1 . σt for any σ and any t,
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3. at . at and ¬at . ¬at, for any a and any t, and

4. σt ∧ at ∧ (ρσt(at))t+1 . σt, for any σ, any a ∈ Aσ, and any t.

Finally, the domain constraints will be:

1. actions exclude each other (i.e. for two distinct actions a and a′, and for
any t,

at → ¬a′t and a′t → ¬at

2. states exclude each other, and

3. actions can only occur in an appropriate state: that is, if a is an action,

at →
∨

at∈Aσ

σt

We have, then, the following:

Proposition 3. Let M be a model of this theory such that, for some state σ,
M � σ0. M is causally explained iff it makes true exactly one sequence of state
propositions, starting with the initial state: σ̃0, σ1, . . ., such that, for each i,
either σi = σi+1, or there is an action ai with M � at and such that a, when
executed in σi, yields σi+1.

First a lemma:

Lemma 4. Under the above assumptions, if σ is a state and t a time, then
M ` @σt iff either

1. M � σt ∧ σt+1, or

2. M � σt ∧ at ∧ σ′t+1

where at, acting in σt, yields σ′t+1.

Proof. The left and right rules imply that

@σt
∼= σt ∧

σt+1 ∨
∨

at∈Aσt

at ∧ (ρσt(at))t+1


The domain constraints imply that at most one of the disjuncts on the right
hand side can be true in a model: this gives the result.

Proof of Proposition 3. The only if direction is easy: we proceed by induction
on t. We start with the σ0, which is given by the assumption. Given that
M � σt, we know that, since M is explained, M � @σt; the lemma gives us a
suitable σt+1 and, if necessary, an action at t.

For the if direction, note that, if we have such a sequence of propositions
and actions, their truth, together with the domain constraints, determines the
truth value of every other atom. It is easy to see that actions are equivalent to
their own necessitations; the lemma shows that a fluent is true in our model iff
its necessitation is.

We thus have a McCain-Turner theory for which the explained models cor-
respond to execution traces of our automaton.
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3.1 Automata and Fluents

We have, then, a logical theory of automata: the theory of automata has closely
linked advantages and disadvantages. The advantages are that it provides a
synoptic view of the behaviour of a system: we have a set of states, which are
not inherently temporally indexed, together with transitions between them, and
we can recover from this all of the possible temporal behaviours of the system.

However, these advantages are closely coupled to the disadvantages: it rep-
resents very much a God’s eye view of the system. It is temporally synoptic
(that is, specifying it involves knowing all of the possible states of the system),
and the states themselves are unstructured: they are simply nodes of a graph,
without internal structure, and we have to characterise what a state is by talk-
ing about what transitions are possible from it. We need, beyond the notion
of an automaton as given here, some notion of what one can observe about a
state; we could call this an observable, but one could also call it an output.

Remark 1. The idea that states themselves are inscrutable has a quite precise
technical formulation in the theory of automata: equality between states is never
defined, and we consider states (and, correspondingly, automata) as equivalent
if they are bisimilar (that is, if their input-output behaviours are identical); see
[4].

So, here is a definition of such an automaton:

Definition 2. An automaton with fluent observables is an automaton, as above,
together with a set of fluent symbols F , and, for all states σ, a map

evalσ : F → {>,⊥}.

We could accomodate this notion in our logic by treating the eval relation as
entailment: we add axioms to the system so that, for all t, all σ, and all fluents
f ∈ F ,

σt ` ft iff evalσ(f) = >.

Although this would be a useful first step, it falls victim to the frame problem: it
involves explicitly assigning truth values to each fluent in each situation. What
we want is to be able to assign preconditions and postconditions to each action,
to assign a complete evaluation to the initial state, and to work out the values
of fluents at subsequent states by a combination of the effects of actions with
inertia: this is somewhat reminiscent of Foo and Zhang [10], who do much the
same thing but start with dynamic logic rather than the theory of automata.

Definition 3. An automaton with fluent observables and inertia is an automa-
ton, together with a set of fluents, together with

1. an evaluation function for the initial state, evalσ̃ : F → {>,⊥}

2. for each action a, a conjunction pre(a) of fluents and negations of fluents,
which are its preconditions

3. for each action a, a conjunction post(a) of fluents and negations of fluents,
its postconditions.
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Given such an automaton, we can evaluate observables in all of its accessi-
ble states by starting with the initial state, and then assigning truth values to
subsequent states by first assigning the fluents in the postconditions of the rele-
vant action, and then assigning the other fluents by inertia. We must, however,
stipulate that this process is consistent:

Definition 4. The coherence condition, for automata with fluent observables
and inertia, stipulates that, if a state is reachable from the initial state by
two different sequences of actions, then the assignments corresponding to each
sequence of actions should be the same.

Remark 2. This is a sensible condition to put on these automata. Recall from
Remark 1 that states do not have a good notion of identity: rather, two states
are equivalent if their input-output behaviour is identical (in technical terms,
if they are bisimilar). Now if an automaton fails the coherence condition, this
means that allegedly identical states have different observable behaviours: that
is, the results of the observations that we can make on them (by evaluating
fluents) depend on the causal history by which we approach the states, rather
than the states themselves. Such a failure of coherence can always be cured by
constructing a new set of states, with several states in the new set correspond-
ing to a single state in the old set: and the automaton constructed with the
expanded set of states will have the same observable input-output behaviour as
the old one. What matters will be the same.

So now, given an automaton with fluent observables and inertia, how do we
adapt our theory so that it will deliver, not states, but fluents? As suggested
above, we would like to do this by entailment: that is, we would like to set up
entailments between states and fluents, so that a state entailed a fluent iff that
that fluent was true in that state. We can do this by an explanatory theory of
the following form: here (since the values of fluents are determined solely by
states) we have fluents indexed by states. Intuitively, fσ is true in a model iff f
is true in state σ.

1. fσ̃ . fσ̃ if evalσ̃f = >,

2. ¬fσ̃ . ¬fσ̃ if evalσ̃ =⊥

3. fρσ(a) . fρσ(a) for any state σ and any action a ∈ Aσ whenever posta ` f ,

4. ¬fρσ(a) . ¬fρσ(a) for any state σ and any action a ∈ Aσ, whenever
posta ` ¬f ,

5. fσ ∧ fρσ(a) . fρσ(a) for any state σ and any action a ∈ Aσ,

6. ¬fσ ∧ ¬fρσ(a) . ¬fρσ(a) for any state σ and any action a ∈ Aσ.

Now these actions assign the correct truth values to fluents in situations:

Proposition 5. Consider the language whose atoms are fluents indexed by sit-
uations, and use the above explanatory theory to axiomatise the modality: then
any explained model assigns the correct truth values to the accessible states.

Proof. This is exactly similar to the proof of the correctness for normal McCain-
Turner theories – that is, we can do it by a descending induction – except that
the induction is over the graph of accessible states of the model, rather than
over the time line.
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So we now have two separate explanatory theories: one is a forward chaining
theory, and describes the evolution of the automaton, whereas the other is a
backward chaining theory and assigns truth values to fluents in states. How
do we link the two together? That is, how do we find a theory which delivers
sequences of temporally indexed fluents? The answer is straightforward: we
need a further set of explanations, namely explanations which explain the value
of ft by referring to the state at t and the value of f in σ. We need, that is,

1. fσ ∧ σt . ft

2. ¬fσ ∧ σt . ¬ft

With these additional explanations, everything works as expected.

4 Conclusions: Further Work

We have shown that McCain-Turner style causal theories are considerably more
adaptable than has been realised: we can use them for non-causal explanations,
both forwards and backwards chaining, and we can also – as the last example
makes clear – combine several different styles of explanation in the same theory.

However, there are still gaps to be filled. One of the most conspicuous is this:
we have to handle time by an index set external to the language. We do not,
that is, have time as a variable in the language, and we cannot, in the language,
quantify over it. A proper treatment of quantification, however, would exceed
the bounds of this paper.
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