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1 Introduction

The appropriate use of logic to reason about action has been a persistent theme
in AI. In this work, we use tools from category-theoretic semantics to analyse
one of the most significant AI approaches, that of Reiter. His work is described
as a whole in [9], and in detail in a series of papers by him and his school.

There are several reasons for embarking on work such as this. One of these
reasons is merely analytical: there is significant logical structure to be found in
Reiter’s theory, but this logical structure is somewhat hidden by the details of
the logical machinery that he uses. His theory revolves around axiomatising a
key group of concepts: situation, fluent, and action. These concepts are axioma-
tised as individuals and relations, like any others, in a first-order universe. No
special logical structure is given to them, but this does not reflect the important
role that they play in his conceptual analysis: much of the interest in Reiter’s
system is to be found in these concepts, the relations between them, and in
the high-level idioms which feature them. We could think of these concepts as
“design patterns” in his reasoning, and, when these design patterns are made
explicit, they lead to a remarkably elegant logical system. This distinction be-
tween high and low level logics is a common one. We might make an analogy
with modal logic: this, too, is a high level language which can, admittedly, be
compiled into first order logic. However, the possibility of this compilation does
not make modal logic superfluous: rather, modal logic is still useful in that,
firstly, it describes tractable and useful fragments of first order logic, and, sec-
ondly, it may – for example, when reasoning about transition systems – enforce
an appropriate abstraction.

Secondly, we can, using our approach, prove things that Reiter could not
prove. In particular, we have a proof theory with cut elimination, which allows
us to resolve the questions that Reiter raises in [9, §9.1.3]: see our Section 4.1.

Thirdly, we can use our analysis to make clear the design decisions which
Reiter has implicitly made. The system of this paper is very closely modelled
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on Reiter’s: we do, though, extend his system, on mathematical grounds, by
adding a notion of equality between actions (see Section 4.2). Surprisingly,
this notion turns out to be closely related to arguments due to Davidson about
equality between actions: so this notion of equality seems to be well-motivated
both mathematically and philosophically.

We can also define two other systems, based on the same sort of intuition as
Reiter’s system. One of these alternatives is intuitionistic in character, while the
other is modelled on classical bidirectional modal logic (as in [10]). The contrasts
between these systems are instructive: Reiter’s system and our intuitionistic
system can both represent more or less the same phenomena, but they do it in
different ways. And our full modal system can be regarded as a nondeterministic
extension of Reiter. We will present these other two systems, without proofs,
in an appendix.

Fourthly, our system overcomes a problem which affects many of the circum-
scription based treatments of the frame problem, namely that they are fatally
sensitive to the language that they are formulated in: logically equivalent lan-
guages can yield different results on circumscription [14]. Our category-theoretic
formulation gives a “coordinate-free” framework, within which suitable action
descriptions can be evaluated without any artificial biases given by particular
choices of a logical language.

Finally, one should note that the logical systems themselves are quite in-
teresting: they have strong affinities to the deep inference modal systems of
[12, 13, 3, 4] and to the modal display calculus of [7].

2 Technical Programme

In this section we describe some of Reiter’s key ideas, and use them to lead into
our fibrational theory, which is described in the following sections.

The fundamental problem for Reiter is what is called regression: that is,

given a transition s
α %%

t between situations s and t, and given a proposition
P at t – what Reiter would describe as a fluent – the regression problem is to
find a proposition P ′ at s which which will be true iff P is true at t.

One might think that another notion would be more fundamental: after all,
the traditional AI scenario is that one knows about the present and wants to
predict the future. This concept is known as progression: that is, given an

action s
α %%

t , and given a theory Ξs describing the state s, find the theory Ξt
describing t. Reiter does, in fact, define this notion: however, his insight was
that regression is technically simpler to work with, and that progression can be
defined in terms of it.

In this work, rather than define regression and progression as idioms in the
situation calculus, we take them as primitive, and define a high-level logic with
them as propositional operators. The regression operator, α∗Q, is read as the
weakest precondition of α with postcondition Q: that is, the weakest proposi-
tion which, being true before α is run, guarantees afterwards the truth of Q.
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Progression, qαP , is read correspondingly as the strongest postcondition. Re-
iter, in fact, defines regression on propositions and progression on theories, but
it is simpler technically to define both regression and progression on proposi-
tions: we prove the equivalence of our definition of progression with Reiter’s in
Section 4.1.

Category-theoretically, this goes as follows. Reiter’s situations correspond
(roughly speaking) to the objects of a base category, his fluents are objects of
a category fibred over that base, and actions correspond to morphisms in the
base: weakest preconditions, or Reiter’s “regression”, are the pullbacks (or rein-
dexing functors) given by the fibration, whereas the strongest postconditions,
i.e. Reiter’s “progression”, are left adjoint to the pullbacks.

Since the system is classical, we also have a right adjoint, given by de Mor-
gan duality; in summary we have a hyperdoctrine [8]. The resulting system is
similar, in some ways, to dynamic logic. However, the existence of both ad-
joints is significant, and gives rise to a very clean proof theory which enjoys cut
elimination. We also have a sound and complete semantics.

So, given s
α %%

t , α∗ takes propositions at t to propositions at s: Reiter
[9, p 65] constructs α∗ in such a way that (supposing that the relevant action
preconditions are satisfied) it commutes with ¬ and ∧: it thus also commutes
with ∨, and preserves > and ⊥. We will work in a classical framework, as does
Reiter, so α∗ can be regarded as a homomorphism between boolean algebras:
roughly speaking, then, we will have a category fibred in boolean algebras over
a transition system.

Well-known results of Jónsson and Tarski [6, 1] will then imply that, if the
Boolean algebras are atomic, the operators α∗ are relational : any operator, such
as the α∗, which preserves > and commutes with ∧, can be expressed as

(α∗ψ)(σ : S) = ∀τ : T .σRτ → ψ(τ), (1)

for some suitable relation R between S and T . Furthermore, if α∗ commutes
with ∨, then R must be a partial function from S to T , and if, in addition,
α∗ preserves ⊥, that function must be total. So, our operators α∗ correspond
to total functions between the sets of atoms of the boolean algebras concerned.
Since these atoms are maximal consistent sets of propositions, they can be
regarded as possible worlds.

We have talked about the actions: we should now consider the nature of the
types s and t. Reiter’s own formalism has the following properties:

1. actions are deterministic (he does define a probabilistic calculus [9, p. 335]
to handle nondeterminism, but we will not discuss that);

2. what he calls “situations” are actually sequences of actions: [9, pp. 49f.]
but

3. we are assumed not to have perfect knowledge of the initial (or subsequent)
situations. Furthermore,
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4. actions have preconditions, and are performable when and only when the
preconditions are satisfied [9, p. 20].

Our initial thought is that the types – i.e. the objects of our base category –
would be something like the states of a transition system, or what Reiter calls
situations. However, the combination of 3 and 4 means that states, or situations,
are not fine-grained enough to serve as the objects of a category, since, in the
absence of perfect knowledge, we cannot tell whether a given transition can
originate from a given state or not. So, in order to accommodate preconditions,
the objects of the base should be combinations of a state and a proposition: the
proposition would give preconditions for the actions which originate from that
object. Category-theoretically, this corresponds to adding subset types to the
original base category [5, p. 280].

We should, at this point, clarify an irritating linguistic confusion. Reiter uses
what he calls action preconditions, and by this he means enabling preconditions,
that is, propositions which must be true at a state for a particular action to
be performable at that state. However, what he calls regression is what the
programming language semantics community refer to as weakest preconditions:
these are truth preconditions, that is, propositions which must be true at a state
for a particular proposition to be true after the performance of a particular
action. From here on, we will use the word “precondition” solely in Reiter’s
sense, and will describe the weakest preconditions operator as the regression
operator.

3 The System

3.1 Syntax

3.1.1 Fibre Products in the Base

An unusual feature of this system is that we will need, for the sequent calculus,
fibre products of types in the base (for example, the rules qαL and ΠαR cannot
be formulated without it). These do not exist, in general, for transition systems,
but can be added to our category of types, given fairly modest conditions.

Fibre products can be defined in terms of n-ary Cartesian products and
equalisers. Cartesian projects are harmless: they amount to arguing with n-
tuples of states instead of single states. Now we already have subset types, so
that all we need for equalisers is propositions, in the fibres, which express equal-
ity between morphisms [5, p. 282]. So, we can assume that our base category
has fibre products. We will give, later, a concrete syntax which starts from a
transition system and constructs a base category with fibre products: for the
moment, though, it is shorter and clearer simply to write the fibre products.

3.1.2 The Algebra of Contexts

We will need the following definitions and results to define the cut rule, and to
prove cut elimination, in the Reiter system.
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Definition 1. A marked context Γ[], is generated by the rules

Γ[] : t := [: t]
| Γ[] : t,Γ : t | Γ : t,Γ[] : t

| {Γ[] : u}β (β : t→ u)

where Γ stands for a Reiter context as defined in Table 1. The category MRC of
marked contexts has, for objects, the objects of the base category, for morphisms,
marked contexts, for composition the substitution operation

(Γ[: t] : s) ◦ (Γ′[: u] : t) = Γ[Γ′[: u]] : t

and for identities the marked contexts [: s] : s for each object s.

Definition 2. Nesting, ν, is a functor from MRCop → C defined on morphisms
as follows:

ν([: t]) = Idt
ν(Γ,Γ′[],Γ′′) = ν(Γ′[])

ν({Γ[]}α) = ν(Γ[]) ◦ α

We define the following normal form for both contexts and marked contexts:

Definition 3. A context Γ : s is in split normal form iff it is of the form

Γ1, . . . ,Γk, (2)

with Γi = {Pi}αi:s→ti , i = 1, . . . , k. For a marked context, we require that
exactly one of the Γi – namely, the one with the hole in it – should be of the
form {[: ti]}αi .

Lemma 1. Every context Γ is equivalent to one in split normal form, and
similarly for marked contexts.

Proof. Use the equivalence rules repeatedly.

Lemma 2. Split normal forms are unique, up to equality of the αi and reorder-
ing of the Γi.

Proof. The multiset of formulae and their nestings are invariants of the equiva-
lence class of a context: and, given these, we can recover the split normal form,
up to equality of the αi and reordering of the Γi.

Now we have

Proposition 1. ν : MRCop → C is fibred in monoids over C.

Proof. Let the Cartesian morphisms of MRCop be those of the form {[: t]}α:s→t.
To show that these satisfy the Cartesian property, we must show that every
marked context Γ[], with nesting α : s → t, is equivalent to one of the form
Γ′[{[]}α, for a context Γ′[] with nesting Ids, and that, up to equivalence, such a
Γ′[] is unique. Split normal form establishes this.
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The following is a standard property of categories fibred over a base with
pullbacks.

Lemma 3. If C has pullbacks, then, for a marked context Γ[: t] : u, and any
α : s → t, there is a unique pullback context (s ×t Γ)[: s] : s ×t u with the
property that

{Γ[: t] : u}α×tu ≈ (s×t Γ)[{[: t]}α : s]

Proof. We apply the universal property of the Cartesian lifting {[: t]}α : s of α
to the morphism {Γ[: t] : u}α×tu.

The following is a useful corollary:

Lemma 4. If C has pullbacks, then, for a marked context Γ[: t] : u and α : s→ t,
we have

s×t Γ[ε] ≈ {Γ[ε]}α×tu.

Proof. We use the universal property of pullback contexts, together with the
equivalence

{ε : t}α ≈ ε : s.

Note that, here as elsewhere, expressions of the form s ×t Γ[Γ′], with Γ′

an ordinary context, are unambiguous: since pullback is an operation that is
only defined on marked contexts, the substitution must be performed after the
pullback.

3.1.3 The Calculus

We can, after these preliminaries, present the calculus: it is given in Table 4.
The types will be objects of the base category: correspondingly, we assume
that the morphisms in the base category satisfy the category-theoretic rules of
Table 3. We have two context-forming operators: the usual comma, which is,
semantically, ∧ on the left and ∨ on the right, and the operator {·}α (for base
morphisms α), which is, semantically, α∗. The rules in Table 2 guarantee func-
toriality of the context-forming operators, as well as the usual equivalences for
the comma: the last rule in Table 2 expresses the fact that {·}α commutes with
the comma, which follows from the fact that α∗ is a boolean algebra morphism.

The sentential operators, besides the usual boolean ones, are the regression
operator α∗ and its left adjoint, the strongest postconditions qα operator, which
we have already discussed: in the Reiter calculus, however, α∗ is de Morgan self-
dual (i.e. α∗ ∼= ¬α∗¬, and so we also have, by de Morgan duality, a right adjoint
Πα to α∗.

The rules qαL, ΠαR, and the cut rule use the pullback operations on marked
contexts which we have defined in Section 3.1.2.
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propositions P : t (P an atom, t ∈ Ob(C))

> : t ⊥: t

P : t Q : t

P ∧Q : t

P : t

¬P : t

P : t α : s→ t

α∗P : s
P : s α : s→ t

qαP : t

P : s α : s→ t

ΠαP : t

contexts Γ : t := P : t | Γ : t,Γ : t
| {Γ : u}α (α : t→ u)

entailments
Γ : t ∆ : t

Γ ` ∆

Table 1: Types and Syntax
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Γ ≈ Γ

Γ ≈ Γ′ Γ′ ≈ Γ′′

Γ ≈ Γ′′

Γ ≈ Γ′ Γ1 ≈ Γ′1
Γ,Γ1 ≈ Γ′,Γ′1

Γ, ε ≈ Γ

Γ,Γ′ ≈ Γ′,Γ
Γ : t ≈ Γ′′ : t α : s→ t

{Γ}α ≈ {Γ′}α

α = β

{Γ}α ≈ {Γ}β {Γ}α◦β ≈ {{Γ}β}α

{Γ}Id ≈ Γ {Γ}α:s→t, {Γ′}α:s→t ≈ {Γ,Γ′}α:s→t

{ε}α ≈ ε

Table 2: Equivalence of Contexts

Id ◦ α = α α = α ◦ Id

(α ◦ β) ◦ γ = α ◦ (β ◦ γ)
α = β

γ ◦ α = γ ◦ β

α = β

α ◦ γ = β ◦ γ

Table 3: Rules for Category Theory

9



Γ ` ∆ Γ ≈ Γ′ ∆ ≈ ∆′

≈
Γ′ ` ∆′

Axiom
Γ[P ] ` ∆[P ]

Γ : t ` ∆ : t
{}α

{Γ}α:s→t ` {∆}α:s→t

Γ[] ` ∆
LW

Γ[Γ′] ` ∆

Γ ` ∆[]
RW

Γ ` ∆[∆′]

Γ[P, P ] ` ∆
LC

Γ[P ] ` ∆

Γ ` ∆[P, P ]
RC

Γ ` ∆[P ]

⊥ L
Γ[⊥] ` ∆

>R
Γ ` ∆[>]

Γ[P1] ` Q Γ[P2] ` Q
∨L

Γ[P1 ∨ P2] ` Q

Γ ` ∆[Q1, Q2]
∨R

Γ ` ∆[Q1 ∨Q2]

Γ[P1, P2] ` ∆
∧L

Γ[P1 ∧ P2] ` ∆

Γ ` ∆[Q1] Γ ` ∆[Q2]
∧R

Γ ` ∆[Q1 ∧Q2]

Γ[] ` ∆[P ]
¬L

Γ[¬P ] ` ∆[]

Γ, {Q}α:s→t ` ∆
¬R

Γ ` {¬Q}α:s→t, ∆

Γ[{P}α] ` ∆
α∗L

Γ[α∗P ] ` ∆

Γ ` ∆[{Q}α]
α∗R

Γ ` ∆[α∗Q]

(s×t Γ)[P ] ` {∆}α×tu

qαL
Γ[(qαP ) : t] : u ` ∆ : u

Γ ` ∆[Q]
qαR

Γ ` ∆[{qαQ}α]

Γ[P ] ` ∆
ΠαL

Γ[{ΠαP}α] ` ∆

{Γ}α×tu ` (s×t ∆)[Q]
ΠαR

Γ : u ` ∆[(ΠαQ) : t] : u

Γ : s ` ∆[P : t] : s Γ′[P : t] : u,` ∆′ : u
cut

{Γ}s×tβ , (s×t Γ′)[] ` (∆×t u)[], {∆′}α×tu

side conditions:

Axiom,¬L,¬R ν(Γ[]) = ν(∆[])

qαL,qαR, α : s→ t
ΠαLΠαR

cut ν(∆[]) = α : s→ t
ν(Γ′[]) = β : u→ t

Table 4: The Reiter Sequent Calculus
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3.2 Semantics

The semantics of this logic should be as follows:

Definition 4. Let C be a category with fibre products. A Reiter category over
C is a category E fibred by Boolean algebras over C: the reindexing functors
α∗ should be Boolean algebra homomorphisms, and should have both left and
right adjoints, qα and Πα, and the adjoints should satisfy the following Beck-
Chevalley conditions [5, p. 97]:

α∗qβP a` qs×β(α×t u)∗P
α∗ΠβP a` Πs×β(α×t u)∗P

for morphisms α : s→ t, β : u→ t in the base and for P : u.

By applying Stone duality, we can derive the dual notion:

Definition 5. The Stone space model of a Reiter category is given by the
covariant functor from C to the category of Stone spaces and continuous maps
given by applying the Stone space functor to the indexed category version of
the Reiter category.

Definition 6. An assignment is an choice, for every t ∈ Ob(C) and every atomic
P ∈ L, of an element JP Kt ∈ Ob(Et).

Given an assignment, we can define, for each P : t, its semantic value JP Kt by
induction on its syntactic complexity: the sentential operators are interpreted
in the usual way, α∗ is interpreted as the reindexing functor (also written α∗),
qα is interpreted as the left adjoint, and Πα the right adjoint, to reindexing.

We also define JΓKt for contexts: here we have to make a distinction between
left and right contexts, since the comma is interpreted differently on the left
and on the right.

Definition 7. The semantic value of a left context is given by the clauses

• JΓKt = JP Kt if Γ = P

• JΓ,Γ′Kt = JΓKt ∧ JΓ′Kt

• J{Γ : u}αKt = α∗(JΓKu) (for α : t→ u).

The semantic value of a right context is given by the clauses

• J∆Kt = JP Kt if ∆ = P

• J∆,∆′Kt = J∆Kt ∨ J∆′Kt

• J{∆ : u}βKt = β∗(J∆Ku) (for β : t→ u).

And, finally, a definition of semantic entailment:
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Definition 8.

Γ : t  ∆ : t

iff

JΓKt ≤ J∆Kt

for every assignment.

3.3 Soundness

First a pair of lemmas:

Lemma 5 (Semantic Monotonicity). If (Γ[∆ : u]) : t is a left or right context,
and if J∆Ku ≤ J∆′Ku for some ∆′ : u, then JΓ[∆]Kt ≤ JΓ[∆′]Kt.

Proof. The obvious induction, using the functoriality of α∗.

Lemma 6 (Distributivity of Contexts). If Γ[P ∨ Q] : t is a left context, then
JΓ[P ∨ Q]Kt = JΓ[P ]Kt ∨ JΓ[Q]Kt; if Γ[P ∧ Q] : t is a right context, then JΓ[P ∧
Q]Kt = JΓ[P ]Kt ∧ JΓ[Q]Kt.

Proof. This follows from the distributivity of ∨ (or ∧) over the comma on the left
(or right), together with the fact that α∗ is a Boolean algebra homomorphism.

Proposition 2. The rules for the equivalence of contexts in Table 2 are sound
with respect to : that is, if Γ : t ≈ Γ′ : t, then JΓKt = JΓ′Kt (and so, in
particular, if Γ : t ≈ Γ′ : t and ∆ : t ≈ ∆′ : t, we have Γ  ∆ iff Γ′  ∆′).

Proof. This follows from the functoriality of α∗, the fact that α∗ is a Boolean
algebra homomorphism, and the definitions of the semantic value of contexts.

Proposition 3. The rules LW, RW, LC, RC, ∨R and ∧L are sound for .

Proof. Standard, using semantic monotonicity as necessary.

Proposition 4. The rules ∨L and ∧R are sound for .

Proof. This follows from Lemma 6.

Proposition 5. The rules ¬L and ¬R are sound for .

Proof. This follows from the fact that α∗, being a Boolean algebra homomor-
phism, commutes with ¬, together with standard Boolean algebra.

Proposition 6. The rules α∗L and α∗R are sound for .

Proof. By definition, Jα∗P Ks = α∗JP Kt = J{P}αKs, and the result follows.
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Proposition 7. The rules ΠαL and qαR are sound for .

Proof. Consider qαR: by semantic monotonicity, it suffices to prove that, for
any P : s and for α : s→ t,

JP Ks ≤ J{qαP}αKs
= α∗JqαP Kt
= α∗qαJP Ks,

but this is simply the unit of the adjunction qα a α∗.
The proof for ΠαL is dual.

For the next proposition, we will need a generalised Beck-Chevalley condi-
tion:

Lemma 7. Let α : s → t. For a marked left context Γ[: t] : u we have
JΓ[qαP ]Ku = qs×tαJs×t Γ[P ]Ks×tu, and, for a marked right context Γ[: t] : u we
have JΓ[ΠαP ]Ku = Πs×tαJs×t Γ[P ]Ks×tu.

Proof. Induction on the syntactic complexity of Γ[].

Proposition 8. The rules qαL and ΠαR are sound for .

Proof. Consider qαL. Suppose the premise:

Js×t Γ[P ]Ks×tu ≤ J{∆}α×stKs×tu

= (α×s t)∗J∆Ku

so, since qα×st a α×s t∗,

qα×stJs×t Γ[P ]Ks×tu ≤ J∆Ku

and so, by Lemma 7,

JΓ[qαP ]Ku ≤ J∆Ku.

The proof for ΠαR is dual.

Finally

Proposition 9. The cut rule is sound for .

Proof. This follows from standard Boolean algebra, together with the fact that
the operators (α×t u)∗, etc., commute with the logical operators.

So, putting all these results together, we have

Theorem 1.  is sound for our sequent calculus.
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3.4 Completeness

Theorem 2. The semantics is complete: that is, if, for a given base category
C, and for an object t of C,

JΓKt ≤ J∆Kt

for two contexts Γ : t and ∆ : t, then

Γ ` ∆.

This theorem will be proved by constructing a term, or generic, model, which
we define as follows.

Definition 9. Let C be a category with fibre products. The term model, EC ,
over C is given by the following data:

Objects these are given by pairs P : s, where s is an object of C and P is a
proposition of type s

Morphisms a morphism between P : s and Q : t is given by a proof

P ` {Q}α

for some morphism α : s→ t of C. Two such morphisms are equal iff their source
and target are the same, and the corresponding morphisms of C are equal.

Composition suppose we have two morphisms corresponding to proofs

Π···
P : s ` {Q : t}α

and
Π′
···

Q : t ` {R : u}β

Their composition is given by the proof

Π···
P : s ` {Q : t}α

Π′
···

Q : t ` {R : u}β
{}α

{Q : t}α ` {{R : u}β}α
≈

{Q : t}α ` {R : u}α◦β
cut

P : s ` {R : u}α◦β

Identity morphisms these are given by the proofs

Axiom
P : t ` P : t

≈
P : t ` {P : t}Id
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The display functor this is the map p which sends a typed proposition P : t
to the object t, and a proof of P : s ` {Q : t}α to the morphism α : s→ t.

Liftings we lift base morphisms as follows. Let α : s → t be a morphism in
the base, and let P : t be an object of the fibre Et over t: let the lifting of α be
the following proof:

Axiom
{P : t}α ` {P : t}α

α∗L
(α∗P : t) : s ` {P : t}α

In the indexed category viewpoint, this corresponds to using α∗ as substitu-
tion functors.

Adjoints Left and right adjoints to the substitution functors α∗ are given by
qα and Πα.

We now prove

Proposition 10. EC is a Reiter category.

Proof. It is clear than EC is a category (equality of morphisms is so strong that
laws like associativity are immediate). It is likewise clear that our “display func-
tor”, p, is actually a functor. We have to check that the liftings are Cartesian:
so, consider composable morphisms α : s→ t and β : t→ u in the base, together
with a proof Π of P : s ` {R : u}β◦α lying over α ◦ β. We need to produce a
proof of P : s ` {(α∗R) : t}α (commutativity of the resulting diagram is trivial).
But this is immediate:

Π···
P : s ` {R : u}β◦α

≈
P : s ` {{R : u}β}α

β∗R
P : s ` {(β∗R) : t}α

This establishes the functoriality of the α∗. Consequently, EC is fibred over C:
the fibres are Boolean algebras, because the inference rules are a superset of the
normal classical inference rules.

We need to show that qα and Πα are left and right adjoint functors to
the α∗. Functoriality is easy. For example, the following construction, which
produces a proof of ΠαP ` ΠαQ from a proof of P ` Q, establishes functoriality
for Πα:

Π···
P : s ` Q : s

ΠαL
{(ΠαP ) : t}α ` Q : s

ΠαR
(ΠαP ) : t ` (ΠαQ) : t

15



Given functoriality, we only need to establish the unit and counit for each ad-
junction. The unit for qα a α∗ is proven like this:

Axiom
P : s ` P : s

qαR
P : s ` {qαP : s}α

α∗R
P : s ` α∗qα(P : s)

and the counit like this:

Axiom
{Q : t}α ` {Q : t}α

α∗L
α∗(Q : t) ` {Q : t}α

qαL
qαα∗(Q : t) ` Q : t

The proof of the adjunction for Πα is dual.
Finally, we must verify the Beck-Chevalley conditions: for qα, we prove

these as follows. Suppose that α : s → t, β : u → t, and that P : u. Then we
have

Axiom
{P}α×tu ` {P}α×tu

(α×t u)∗R
{P}α×tu ` (α×t u)∗P

q(s×tβ)R{P}α×tu ` {q(s×tβ)(α×t u)∗P}s×tβ

qβL
{qβP}α ` q(s×tβ)(α×t u)∗P

α∗L
α∗qβP ` q(s×tβ)(α×t u)∗P

and
Axiom

{P}α×tu ` {P}α×tu

(α×t u)∗L
(α×t u)∗P ` {P}α×tu

qβR
(α×t u)∗P ` {{qβP}β}α×tu

≈
(α×t u)∗P ` {qβP}(α×tu)◦β

≈
(α×t u)∗P ` {qβP}(s×tβ)◦α

≈
(α×t u)∗P ` {{qβP}α}s×tβ

α∗R
(α×t u)∗P ` {α∗qβP}s×tβ

q(s×tβ)Lq(s×tβ)(α×t u)∗P ` α∗qβP

(where we have expanded the definitions of the pullback contexts in β∗L and
s×t β∗L).

The proofs of the Beck-Chevalley conditions for Πα are dual. This concludes
the proof that EC is a Reiter category.
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Definition 10. Let Γ be a left context: let the propositionalisation of Γ, Γ, be
defined by

P = P

Γ′,Γ′′ = Γ′ ∧ Γ′′

{Γ}α = α∗Γ

If ∆ is a left context, the propositionalisation of ∆, ∆, is defined dually.

Lemma 8. For any Γ and ∆,

Γ ` ∆

iff

Γ ` ∆

Proof. The obvious induction.

Proof of Theorem 2. Suppose that Γ : t  ∆ : t. Define an interpretation of the
language in EC by sending P : t to P : t as an object of Et. We establish, by
induction, that, with respect to this interpretation, JΓKt = Γ, and J∆Kt = ∆.
Since Γ : t  ∆ : t, we must have JΓKt ≤ J∆Kt, and, consequently, Γ ≤ ∆: by
the definition of EC , this means that Γ ` ∆. By the lemma, we have Γ ` ∆.

3.5 Cut Elimination

We can prove cut elimination for this calculus, making the usual induction over
cut rank and cut depth. We first need a definition of the rank of a formula:

Definition 11. Let A be a formula in the classical language. We define the
rank of A, |A|, by the clauses

|P | = 1 for P atomic
|¬P | = |P |+ 1
|α∗P | = |P |+ 1
|qαP | = |P |+ 1
|ΠαP | = |P |+ 1
|P ∧Q| = 1 + max(|P |, |Q|)
|P ∨Q| = 1 + max(|P |, |Q|)
|P → Q| = 1 + max(|P |, |Q|)

There are, as usual, three cases to consider in the cut elimination process:
where either of the premises is an axiom, ⊥ L, or >R, where the cutformula is
non-principal in either of the premises, and were the cutformula is principal in
both of the premises.
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3.5.1 The Base Cases

The base cases are ⊥ L, >R, and Axiom. The case of ⊥ L looks like this:

Γ[⊥] : s ` ∆[P : t] : s Γ′[P : t] : u,` ∆′ : u
cut

{Γ[⊥]}s×tβ , (α×t Γ′)[] ` (∆×t β)[], {∆′}α×tu

and we replace it with

⊥ L
{Γ[⊥]}s×tβ , (α×t Γ′)[] ` (∆×t β)[], {∆′}α×tu

The other base cases are similar.

3.5.2 Moving the Cut Upwards

Most of the cases where we move a cut upwards are handled in exactly the same
way as in classical logic, and are omitted: however, we do have to take care
when the rule that we cut against changes the typing of the entailment. The
cases to consider are as follows.

{}α Here the cut application looks like

Π···
Γ ` ∆[P ]

{}α
{Γ}α ` {∆[P ]}α

Π′
···

Γ′[P ] ` ∆′

cut
{Γ}α×uγ , ((β ◦ α)×t Γ′)[ε] ` (α×t (∆×u γ))[ε], {∆′}(β◦α)×tu

where we have P : u, Γ,∆ : t, Γ′,∆′ : v, α : s → t, ν(∆[]) = β : u → t,
and ν(Γ′[]) = γ : v → t. Diagrammatically, the situation looks like this.

s×u v
s×uγ

||xxxxxxxxx
(β◦α)×uv

��

α×uv %%KKKKKKKKK

α×uγ

��

s

α
""EE

EE
EE

EE
E t×u v

β×uv %%KKKKKKKKKK

t×uγzzttttttttt

Γ,∆ : t

β %%JJJJJJJJJ Γ′,∆′ : v

γ
yyssssssssss

P : u
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We replace the above application of cut with

Π···
Γ ` ∆[P ]

Π′
···

Γ′[P ] ` ∆′

cut
{Γ}t×uγ , (β ×u Γ′)[ε] ` (∆×u γ)[ε], {∆′}β×uv

{}α×uv

{{Γ}t×uγ , (β ×u Γ′)[ε]}α×uv ` {(∆×u γ)[ε], {∆′}β×uv}α×uv

≈
{{Γ}t×uγ}α×uv, {(β ×u Γ′)[ε]}α×uv ` {(α×t (∆×u γ))[ε]}α×uv, {{∆′}β×uv}α×uv

≈,Lemma 3
{Γ}α×uγ , (α×t β ×u Γ′)[{ε}α] ` α×t (∆×u γ)[{ε}α], {∆′}(β◦α)×uv

≈
{Γ}α×uγ , ((β ◦ α)×t Γ′)[ε] ` (α×t (∆×u γ))[ε], {∆′}(β◦α)×tu

Result Cut rank unchanged: cut depth reduced by 1.

α∗L, α∗R, qαR, ΠαL These rules change the nesting of the contexts, but only
around the principal formula: since we are considering rule applications
in which the cutformula is not principal, this does not affect the cuts that
we are considering, and so the cuts can be dealt with in the same way as
with classical logic.

qαL The cut application looks like this:

Π···
Γ ` ∆[Q : v] : w

Π′
···

s×t Γ′[P ][Q] ` {∆′}α×tu

qαL
Γ′[(qαP ) : t][Q : v] ` ∆′ : u

cut
{Γ}γ×vw, {Γ′[qαP ][ε]}u×vδ ` {∆[ε]}γ×vw, {∆′}u×vδ

where the category theory, and typing, looks like this:

(s×t u)×u (u×v w)
(s×tu)×vδ

uukkkkkkkkkkkkkk
α×t(u×vw)

((QQQQQQQQQQQQQ

s×t Γ′ : s×t u

xxppppppppppp

α×tu ))SSSSSSSSSSSSSS
u×v w

u×vδvvmmmmmmmmmmmmm

γ×vw %%KKKKKKKKKK

P : s

α
&&NNNNNNNNNNN Γ′,∆′ : u

βuukkkkkkkkkkkkkkk

γ
((QQQQQQQQQQQQQ

Γ,∆ : w

δyyssssssssss

qαP : t Q : v
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We replace the above cut with the following:

Π···
Γ ` ∆[Q]

Π′
···

s×t Γ′[P : s][Q : v] ` {∆′}α×tu

cut
{Γ}(γ×vw)◦(α×t(u×vw)), {s×t Γ′[P : s][ε : v]}(s×tu)×vδ `

{∆[ε]}(γ×vw)◦((α×t(u×tw)), {{∆′}α×tu}(s×tu)×vδ

Now, by the naturality of the pullback operation,

{s×t Γ′[P : s][ε : v]}(s×tu)×vδ ≈ s×t
(
{Γ′[P ][ε]}u×vδ

)
;

Furthermore, we can work on the last expression on the right, using the
context equivalence rule {{·}φ}ψ ≈ {·}ψ◦φ and the fact that

(α×t u) ◦ ((s×t u)×v δ = (u×v s) ◦ (α×t (u×v w)) :

so, we can continue the proof as follows:

{Γ}(γ×vw)◦(α×t(u×vw), s×t {Γ′[P ][ε]}u×vδ `
{∆[ε]}(γ×vw)◦((α×t(u×tw)), {∆′}(u×vs)◦(α×t(u×vw))

≈
{{Γ}γ×vw}α×t(u×vw), s×t {Γ′[P ][ε]}u×vδ `

{{∆}γ×vw}α×t(u×vw), {{∆′}u×vδ}α×t(u×vw)

qαL
{Γ}γ×vw, {Γ′[qαP ][ε]}u×vδ ` {∆[ε]}γ×vw, {∆′}u×vδ

result Cut depth reduced by one, cut rank unchanged.

ΠαL Dual to the above.

3.5.3 Principal against Principal

The final case is where the cutformula is principal in both sides. The classi-
cal connectives give few surprises: we will, then, only consider the functorial
connectives.

α∗ The cut here will look like

Π···
Γ ` ∆[{P}α]

α∗R
Γ ` ∆[α∗P ]

Π′
···

Γ′[{P}α] ` ∆′

α∗L
Γ′[α∗P ] ` ∆′

cut
{Γ}β×sv, {Γ′[ε]}u×sγ ` {∆[ε]}δ×sv, {∆′}u×sγ
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where the category theory, and typing, looks like

u×s v
u×sγ

����
��

��
��

��
��

��
�� β×sv

##GGGGGGGGGGGGGGGGGGG
κ // u×t v

iiiiiiiiiiiiiiiiiii

u×t(α◦γ)
ttiiiiiiiiiiiiiiiiii

(α◦β)×tv

����
��

��
��

��
��

��
�

Γ′,∆′ : u
β

&&LLLLLLLLLL

α◦β

��;
;;

;;
;;

;;
;;

;;
;;

;;
Γ,∆ : v

γ

vvlllllllllllll

α◦γ

||yyyyyyyyyyyyyyyyyyyy

α∗P : s

α

��
P : t

Here κ is the canonical morphism u ×s v → u ×t v. Note that, because
cut is applicable, the two occurrences of α∗P must be typed with the
same object, and determinacy means that there can only be one α-typed
morphism from that object: consequently, the two occurrences of P must
be typed with the same object.

We replace the cut with

Π···
Γ ` ∆[{P}α]

Π′
···

Γ′[{P}α] ` ∆′

cut
{Γ}(β◦α)×tv, {Γ′[ε]}u×t(γ◦α) ` {∆[ε]}(β◦α)×tv, {∆′}u×t(γ◦α)

{}κ
{{Γ}(β◦α)×tv, {Γ′[ε]}u×t(γ◦α)}κ `

{{∆[ε]}(β◦α)×tv, {∆′}u×t(γ◦α)}κ
≈

{Γ}β×sv, {Γ′[ε]}u×sγ `
{∆[ε]}β×sv, {∆′}u×sγ

Here the final application of ≈ comes from the equalities

(u×t (α ◦ γ)) ◦ κ = u×s γ

and

((α ◦ β)×t) ◦ κ = β ×s v.

Result Cut rank reduced by one, cut depth reduced by one.
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qα The cut looks like

Π···
Γ ` ∆[P ]

qαR
Γ ` ∆[{qαP}α]

Π′
···

s×t Γ′[P ] ` {∆′}α×tv

Γ′[qαP ] ` ∆′

cut
{Γ}u×tγ , {Γ′[ε]}(α◦β)×tv ` {∆[ε]}u×tγ , {∆′}(α◦β)×tv

The category theory looks like

u×s (s×t v)

u×s(s×tγ)

||xxxxxxxxxxxxxxxx

β×s(s×tv)

))RRRRRRRRRRRRRRRRRRRRRRRRRR
u×t v

β×sv

""FFFFFFFFFFFFFFFF

u×tγ

uulllllllllllllllllllllllllll

(α◦β)×tv

��3
33

33
33

33
33

33
33

33
33

33
33

33
33

ηoo

Γ,∆ : u

β

""FFFFFFFFFFFFFFFF

α◦β

��3
33

33
33

33
33

33
33

33
33

33
33

33
33

s×t Γ′ : s×t v

s×tγ

uullllllllllllllllllllllllllll

α×tv

��
P : s

α

��

Γ′,∆′ : v

γ

uulllllllllllllllllllllllllll

qαP : t

Here η is the map 〈π1, 〈β ◦ π1, π2〉〉.
We replace the cut with the following:

Γ ` ∆[P ] s×t Γ′[P ] ` {∆′}α×tv

cut
{Γ}u×s(s×tγ), {s×t Γ′[ε]}β×s(s×tv) ` {∆[ε]}u×s(s×tγ), {{∆′}α×tv}β×s(s×tv)

By the naturality of pullback contexts, together with Lemma 4, we have

{s×t Γ′[ε]}β×s(s×tv) ≈ u×t Γ′[ε] ≈ {Γ′[ε]}(α◦β)×tv,

so we can continue the proof as follows:

{Γ}u×s(s×tγ),{Γ′[ε]}(α◦β)×tv

`{∆[ε]}u×s(s×tγ), {∆′}(α◦β)×tv

{}η
{{Γ}u×s(s×tγ), {Γ′[ε]}(α◦β)×tv}η

` {{∆[]}u×s(s×tγ), {∆′}(α◦β)×tv}η
≈

{Γ}u×tγ ,{Γ′[ε]}(α◦β)×tv

` {∆[ε]}u×tγ , {∆′}(α◦β)×tv
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Result Cut rank decreased by one: cut depth decreased by one.

Πα Dual to the above.

So, finally, we have

Theorem 3. The Reiter system satisfies cut elimination.

Proof. We make an induction on cut rank, with an inner induction on cut depth.
Consider an uppermost cut in a proof Π: by induction, we can decrease the depth
of the cut first, until we have either a cut against an axiom or a cut where both
formulae are principal: in that case, we can decrease the cut rank. We can
thus eliminate all of the topmost cuts, and so, by induction, we eliminate all
cuts.

4 Applications

4.1 The Definition of Progression

Reiter has, in [9, §9.1], a discussion of the correct definition of the progression
operator: he leaves some issues open, and we can resolve them.

His official definition of progression, in [9, §9.1.1], is formulated in terms of
theories, rather than propositions, and model-theoretically rather than proof-
theoretically. However, if we formulate it propositionally, and cash out the
model theory using our term model, we have the following

Definition 12 (Reiter’s Definition of Progression). Given α : s → t, and a
proposition P : s, a proposition Q : t is a progression of P iff, for any β : t→ u,
and any R : u, we have

P ` {R}β◦α iff Q ` {R}β

Proposition 11. Reiter’s progression agrees with our qα.

Proof.

P ` {R}β◦α iff P ` {β∗P}α

iff P ` α∗(β∗P )
iff qαP ` β∗P
iff qαP ` {P}β

so qαP is a progression of P , according to Reiter’s definition.

Reiter then says:

“Why not simply let the progression be, by definition, the set FSa of
sentences uniform in Sa entailed by [the initial theory]? . . . currently,
the problem remains open. [9, §9.1.3]
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In our terms, this would amount to the following: that, provided we had arbi-
trary conjunctions, we would have

qαP ∼=
∧

P`{Q:t}α

Q (3)

But this holds in our system:

Proposition 12. Whenever the required conjunctions exist, (3) holds.

Proof. This follows trivially from the adjunction qα ` α∗.

4.2 Concrete Syntax

We have claimed, in Section 3.1.1, that, given subobjects and equality between
morphisms, we can construct fibre products in the base. We need to make this
claim more precise by exhibiting a concrete syntax for the system we obtain.
The constructions here are purely category-theoretic: however, it is an aid to
intuition if we think of the corresponding Stone space model.

Suppose that we have a base category with Cartesian products (written s× t
for objects s and t) and subset types (which we write {t|P}, for P a proposition
over t): then, using [5, pp. 190ff], we can construct a proposition α =t β, with
type s. In terms of Stone spaces, α =t β will be true, at a point x of s, iff
α(x) = β(x) in the Stone space over t (we are here simply identifying α and β
with the corresponding continuous maps of Stone spaces). Since we have subset
types, we can now construct an equaliser {s|α =t β} of α and β [5, p. 282]: it
is a subobject of s. Finally, if we have morphisms α : s → t and β : u → t, we
can construct a fibred product

s×t u = {s× t|α ◦ p1 =t β ◦ p2},

where p1 : s× t→ s and p2 : s×t → t are the canonical projections.
Note that the notions of equality that we have here are, in the usual jargon,

internal : they only measure what the morphisms α and β do to the propositions
in the fibres, and, if there are not enough propositions in the fibres, they are
not guaranteed to yield the “true”, external equality between morphisms in
the base. Internal equality will, in general, be coarser grained than external
equality.

Given, then, this internal equality, we can rewrite our sequent calculus to
make use of it. We will write the equalities in a separate area to the left of each
sequent: in general, then, our sequents will accumulate a set of such equality
stipulations, which we will write Θ.

The rules in which fibre products are actually used are cut, qαL and ΠαR.
Cut will look like this:

Θ|Γ : s ` ∆[P : t] : s Θ′|Γ′[P : t] : u,` ∆′ : u
cut

Θ,Θ′, α =t β|Γ : s× u,Γ′[ε] : s× u ` ∆[ε] : s× u,∆′ : s× u

and the other two rules will be similar but more complex.
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4.2.1 Discussion

This version of the calculus strictly extends what Reiter does: the equality pred-
icates with which we construct fibre products are (when the Cartesian products
are expanded) two-place primitive predicates where each argument place is oc-
cupied by a different situation. Reiter’s primitive fluents, on the other hand,
can have only one situation argument place. It seems, however, to be a mathe-
matically well-motivated extension.

It is also philosophically well-motivated. Davidson [2, p. 109] has an exten-
sive series of examples of common-sense reasoning which are, basically, equa-
tional: the notion of equality between actions here pays a crucial role. It is quite
gratifying to find that these equality predicates, introduced into our system for
the purposes of cut elimination, should turn out to express notions which have,
on quite other grounds, played a crucial role in the philosophy of action.

A Appendix: Alternative Systems

So far we have been adhering to Reiter’s assumptions: that the logic is classical
and that the transition system is deterministic. We here give two other systems,
which each negate one of these assumptions: an intuitionistic, deterministic sys-
tem, and a classical, nondeterministic system. We present the systems without
proofs, for the sake of comparison with Reiter’s system. In both cases the crucial
choice is the semantics of the context forming operators: Reiter’s system had an
operator {·}α with the semantics of regression. Determinacy, and an involutory
negation, then made this operator de Morgan self dual. Our alternative systems
do not have an operator with those properties, so the context forming operators
are less constrained.

A.1 The Intuitionistic System

Here we need contexts on the left, and single propositions on the right. An
appropriate context forming operator turns out to be {·}α, with the semantics
of qα: we still have qα ` α∗, and the system is given by the rules in Table 6,
with the rules for the equivalence of contexts given in Table 5.

Note that, because qα only commutes with colimits, we do not have any
equivalences of the form {Γ,Γ′}α ≈ {Γ}α , {Γ′}α or of the form {ε}α ≈ ε: we
do have the join rule, but it is not an equivalence and must be represented
explicitly in the system.

Semantics for this system are categories fibred in complete Heyting algebras
over a transition system: we do not need fibre products in the base. We can
prove soundness, completeness, and cut elimination.

The operator α∗, having a left adjoint, commutes with ∧ and >, but not
necessarily ∨ or ⊥. Consider a proposition P : s such that, for α : s→ t,

P ` α∗ ⊥;
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Γ ≈ Γ

Γ ≈ Γ′ Γ′ ≈ Γ′′

Γ ≈ Γ′′

Γ ≈ Γ′ Γ1 ≈ Γ′1
Γ,Γ1 ≈ Γ′,Γ′1

Γ, ε ≈ Γ

Γ,Γ′ ≈ Γ′,Γ
Γ : s ≈ Γ′ : s α : s→ t

{Γ}α ≈ {Γ′}α
α = β

{Γ}α ≈ {Γ}β {Γ}β◦α ≈ {{Γ}α}β

{Γ}Id ≈ Γ

Table 5: Equivalence of Intuitionistic Contexts

if such a proposition were true at s, then performing α at s would result in
a contradiction. So, α∗⊥ gives a non-executability condition for α: it is a
proposition such that, if true, α cannot be executed. There are no corresponding
positive guarantees for the executability of α: the proposition ¬α∗(⊥) only gives
something like the unprovability of the non-executability of α.

A.2 The Classical Nondeterministic System

Reiter’s system had a chain of adjunctions qα ` α∗ ` Πα: the existence of
the right adjoint entails that the regression operator commutes with ∨ and
⊥, which, in turn, means that our transition system is deterministic. If we
retain the classical logic, but drop determinacy, we end up with two regression
operators, which we can write @α and ♦α: there are two adjoint operators, @α
and ♦α. We have ♦α ` @α and ♦α ` @α, so the operators can be seen as adjoint
modalities as in Ryan and Schobbens [10].

The context forming operators are {·}α and {·}α, with the semantics of @α
and @α, respectively; equivalence of contexts is given by the same rules as for
the intuitionistic system, enlarged with corresponding rules for {·}α.

The system itself is given in Table 7: it is a one-sided system with propo-
sitions in negation normal form. It has strong affinities to the deep inference
modal systems of [12, 13, 3, 4].

We should not also that the is a display logic, analogous to the systems of
[7]: we have

Lemma 9. For any marked context ∆[: s] : t, there is a marked context ∆[: t] : s
and sequences ϑ and ϑ of applications of adj and ≈ such that, for any contexts
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Γ ` Q Γ ≈ Γ′
≈

Γ′ ` Q

Γ[{Γ′}α, {Γ
′′}α] ` P

join
Γ[{Γ′,Γ′′}α] ` P

Axiom
Γ, P ` P

⊥ L
Γ[⊥] ` Q

Γ[ε] ` Q
LW

Γ[Γ′] ` Q

Γ `
RW

Γ ` Q

Γ[P, P ] ` Q
LC

Γ[P ] ` Q

Γ[P1] ` Q Γ[P2] ` Q
∨L

Γ[P1 ∨ P2] ` Q

Γ ` Qi
∨Ri

Γ ` Q1 ∨Q2

Γ[P1, P2] ` Q
∧L

Γ[P1 ∧ P2] ` Q

Γ ` Q1 Γ ` Q2
∧R

Γ ` Q1 ∧Q2

Γ′, P → Q ` P : s Γ[Γ′, Q : s] ` R
→ L

Γ[Γ′, P → Q : s] ` R

Γ, P ` Q
→ R

Γ ` P → Q

Γ[P : t] ` Q α : s→ t
α∗L

Γ[{α∗P}α] ` Q
{Γ}α ` Q

α∗R
Γ ` α∗Q

Γ[{P}α] ` Q
qαL

Γ[qαP ] ` Q

Γ ` Q
qαR

{Γ}α ` qαQ

Γ ` P : s Γ′[P : s] ` Q
cut

Γ′[Γ] ` Q

Table 6: The Intuitionistic Sequent Calculus
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axiom
` ∆[P,¬P ]

` ∆ ∆ ≈ ∆′

≈
` ∆′

` ∆[{∆′}α:s→t , {∆
′′}α:s→t] joinα` ∆[{∆′,∆′′}α:s→t]

` ∆[{∆′}α:s→t, {∆′′}α:s→t]
joinα

` ∆[{∆′,∆′′}α:s→t]

` {∆}α ,∆
′

adjα
` ∆, {∆′}α

` {∆}α,∆′

adjα` ∆, {∆′}α
` ∆[P, P ]

C
` ∆[P ]

` ∆[ε]
W

` ∆[∆′]

>
` ∆[>]

` ∆[P1] ` ∆[P2]
∧

` ∆[P1 ∧ P2]

` ∆[P1, P2]
∨

` ∆[P1 ∨ P2]

` ∆[{P}α]
@α

` ∆[@αP ]

` ∆[{P}α]
@α

` ∆[@αP ]

` ∆[P ]
♦α

` ∆[{♦αP}α]

` ∆[P ]
♦α

` ∆[{♦αP}α]

` P,∆ ` ¬P,∆′

cut
` ∆,∆′

Table 7: The Nondeterministic Classical Sequent Calculus
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∆′ : t and ∆′′ : s, we have

` ∆[∆′],∆′′

··· ϑ
` ∆′,∆[∆′′]

and
` ∆′,∆[∆′′]

··· ϑ
` ∆[∆′],∆′′

Proof. We define ∆ as follows:

ε[] = ε[]

∆1,∆2[],∆3 = ∆2[∆3, [],∆1]

{∆[]}α =
{
∆[]

}
α

{∆[]}α = {∆[]}α

We then prove the required properties by induction: the base case is trivial, and
the inductive cases are proved as follows: first comma,

` (∆1,∆2[∆′],∆3),∆′′

================== ≈
` ∆2[∆′],∆3,∆′′,∆1··· inductive step

` ∆′,∆[∆3,∆′′,∆1]
====================== definition of ·
` ∆′, (∆1,∆2[∆′′],∆3)

then {·}α
` {∆[∆′]}α,∆′′

============ adj
` ∆[∆′] {∆′′}α··· inductive step

` ∆′,∆[{∆′′}α]
=================== definition of ·

` ∆′, ({∆[∆′′]}α)

({·}α is, of course, exactly similar). This gives us the rule applications ϑ: to
produce ϑ′, note that the rules in ϑ are all either instances of ≈ or of adj, and
are thus invertible.

Because of this display property, the cut rule – although it is only stated for
cutformulae at top level – is, in fact, strong enough to yield the results that we
want (in particular, we have a categorical semantics of the usual sort).

Note that, if we specialise the base category to have a single object, and
morphisms the iterates of a single α, we get a proof theory for K: similarly,
we can obtain K4 by specialising to a single object and a morphism α with
α ◦ α = α. We thus have a proof theory for various modal logics in the style of
Simpson [11].
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