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of Bunched Implications

Julian Michael Lewis Bean

Abstract

In this thesis we present ribbon proofs, a proof system for Pym and O’Hearn’s Logic of Bunched
Implications (BI ). We describe two key motivations for the system. Firstly, the existing proof
theory forBI is sequentialized in the style of Gentzen’s LJ; there is no existing proof system
which works on the level of individual formulae like Gentzen’s NJ. Secondly, we believe that
proofs inBI ’s existing proof systems do not do justice to the strong semantic notions of spatiality
and resource which are such exciting motiviations for the study of the logic itself.

We present ribbon proofs first informally as a graphical system. We then go on to formalize
the system precisely, the main result of the thesis being theproof of its soundness and complete-
ness relative to existing notions of proof forBI . We discuss some properties of our formalization
and its relation toBI ’s model theory, and make formal a few geometric intuitions arising from
the system. We present an extension of the system used to prove some real-world results from
a paper in program logic, and finally a skeletal implementation of the system in ML which was
instrumental in the development of the formalization.

Submitted for the degree of Doctor of Philosophy
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Chapter 1

Introduction

In this thesis we introduce a novel form of proof for the Logicof Bunched Implications (BI )[32].

The structure of these proofs extends the notion of box proofs (or ‘Fitch proofs’[10]), but to deal

with BI ’s substructural nature an additional notion of ‘ribbon’ isused. This technique could

be applied in other substructural logics, although we will not attempt that in the present work.

Ribbon proofs give us the closest thing available to an analogue of Gentzen’s NJ which operates

on the level of single formulae.

The Logic of Bunched Implications (BI ) was introduced by Pym and O’Hearn in [30, 31]

as a logic which is proof-theoretically natural, but also has applications to the study of resource

usage. The most complete reference for it is Pym’s monograph[32]. It has two conjuctions and

correspondingly two implications, one pair being intuitionistic and the other being substructural.

It has two proof systems, one with natural deduction style introduction and elimination rules

for each connective, and one with left and right rules for each connective, but both of these are

presented as inference systems for sequents. It has a sound and complete model theory in terms

of partially ordered partial commutative monoids[14]. It has a cut elimination theorem, and a

type calculus extending theλ -calculus. However, it has no proof system which can be presented,

in the style on Gentzen’s NJ, on the level of propositions.

When looking at Gentzen’s LJ, which is an inference system for sequents, it is common to

consider that a underlying a sequentΓ ` P there is some objectΦ : Γ ` P such thatΦ is the actual

proof. Commonly these proof objectsΦ are considered to be NJ proofs. The proof theory in [32]

does not present any candidate object to represent suchΦ.
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BI is presented in [32] and elsewhere as a logic for reasoning about resource. With its

two conjunctions it can contrast the notion thatA andB share resources (A∧B) and the notion

that they have disjoint resources (A∗B). We are particularly interested in the work of Ishtiaq,

O’Hearn, Reynolds, Yang and others ([24, 29, 40]) in which the resources concerned are com-

putational, such as memory cells; this provides a powerful practical motivation for studying the

logic. However the two inference systems in [32] do not directly reflect these semantic intuitions

aboutBI , and proofs using them do not follow the lines that semantic intuitions suggest.

The core of this thesis is a proof system — ribbon proofs — forBI which does work at

the level of propositions. It generalizes box proofs (as in Fitch[10]), which are essentially one-

dimensional, into two dimensions. The horizontal structure of the proof is used to model the

resource-sensitive part of the logic. We will develop this system informally as an attractive

graphical notation, and we will claim that it reflects the spatial intuitions fostered by the model

theory and applications ofBI . It also provides a possible candidate to objectify proofsΦ : Γ ` P.

We go on to give a complete formalization for the system, which we will use to prove in

detail that this system is a full (sound and complete) proof system forBI . We prove this relative

to Pym’s system LBI[32]; however the depth of the proof indicates that ribbon proofs are in fact

slightly more than merely a re-presentation of LBI proofs. We discuss formal properties like

normalization and substitution, although they are not the focus of our work.

We will see that the structure of ribbon proofs intimately involves partial commutative monoids,

and we will investigate the extent to which we can use this to build models ofBI from proofs.

Finally we investigate to what extent the graphical or geometrical nature of ribbon proofs is a

notational trick, and we attempt to give some real geometricmeaning to them with a redefinition

of them explicitly embedded in the planeR2, in which setting we can restate some simple proof-

theoretic results geometrically.

As an application of ribbon proofs, we take up some ideas froma paper by Yang[40] which

works in the program logics of O’Hearn et al.[29], an extension of a particular model ofBI .

Yang’s paper is a proof of correctness for the Schorr-Waite graph-marking algorithm, working in

this model. His proof is worked entirely within the semanticsystem, and relies on some lemmas

which Yang asserts can be easily shown to hold in all models. We present a slightly informal

extension of ribbon proofs in which we can in principle provethese lemmas syntactically, and

we demonstrate two sizeable ribbon proofs for two of those lemmas.
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1.1 Proof Systems

The definining characteristic of a formal (that is, syntactic) proof system is that it should be

possible by a mere syntactic analysis to classify a candidate proof as being valid, that is, if a

proof of a formula (or sequent) exists, the formula is a theorem of the logic under consideration.

However, for practical use of proof systems, we often want tosearch for a secondary property:

we want a formal proof system in which proofs as nearly as possible mirror the informal proofs

we are accustomed to reading in mathematical works.

Syntactic proof systems for formal logics fall into some broad categories. Perhaps the sim-

plest in presentation are the Hilbert-style systems[21]. AHilbert system consists of a number

of logical formulae accepted to be fundamentally true (axioms) and a number of rules allowing

deductions of new formulae from old. Hilbert systems tend tobe characterized by very small

numbers of rules; for example intuitionistic propositional logic can be presented withmodus

ponensas the only rule of inference. A proof in a Hilbert system is generally presented as a

sequence of formulae with each being either a (substitutioninstance of an) axiom, or being de-

duced from some earlier formulae by a rule of inference. Hilbert systems are frequently hard to

use in practice, and they rarely resemble in any way the common informal methods of proof.

An alternative approach which reduces the emphasis on largesets of known theorems to use

as axioms is to instead focus on the connectives of the logic.For each connective # we consider

the two questions ‘What does it mean to proveA#B?’, and ‘What can we deduce fromA#B?’. In

this way we characterize for each connective introduction and elimination rules. This approach

yields natural deduction systems, which are most commonly presented as tree-shaped proofs.

They normally have no axioms, and instead produce proofs based on certain hypotheses.

The definitive example of a natural deduction system is Gentzen’s NJ[16], a natural deduction

system for intuitionistic logic. The most important, and most difficult to handle, connective of NJ

is the implication→. The elimination rule causes no problem;modus ponensis well understood.

The introduction rule, however, introduces the delicate concept of discharging a hypothesis. To

proveA→B we attempt to proveB with an additional, but temporary, hypothesisA. OnceB has

been proven, the temporary hypothesisA is discharged, we concludeA→B, and we may not use

A elsewhere in the proof. The formalization of this is difficult: there may be multiple occurences

of A as a hypothesis, discharged in some cases but not others.

The central role of hypotheses and their discharge leads oneto considersequentswhich con-
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cisely indicate which hypotheses have been used to prove a given formula. A sequentA0,A1, . . . ,An`

B means thatB has been proved from the hypothesesAi . It is possible to present the rules of nat-

ural deduction in sequent form. However, considering the structure of sequents themselves there

is another natural system; one with ‘left’ and ‘right’ rulesfor each connective, such as Gentzen’s

LJ. This approach has the merit that, reading a proof upwards, only one rule – Cut – introduces

formulae that are not subformulae of some part of the original sequent. Gentzen’s Haupsatz[16]

says that Cut can be eliminated without affecting the strength of the system. This means that

any formulae occuring anywhere in a proof without Cut must besubformulae of some part of the

conclusion, which gives strong intuitions about the complexity of proof-search and indeed sug-

gests algorithms for proof search in some cases. The sequential system brings to the foreground

the ‘structural rules’, which are implicit in natural deduction. Weakening and contraction allow

hypotheses to be used more than once or not at all; exchange makes the order of hypotheses

irrelevant. Finally the rule of ‘cut’ witnesses the way natural deduction proofs can be composed

to form larger proofs.

Given that, as Gentzen showed, LJ and NJ both describe the same logic, there is a second way

of interpreting proof rules in LJ. If a sequent holds in LJ, there must be a proof of that sequent in

NJ. The LJ rules can now be read as stating the existence of recipes for creating new NJ proofs

from old.

For BI , Pym describes two proof systemsNBI andLBI , named by analogy with NJ and LJ.

However, the nature of the logic and the more complex handling of hypotheses into bunches mean

that both these systems are necessarily presented in sequential form. It is hard to imagine a direct

analogue of NJ forBI , since the very nature of NJ is to internalize weakening and contraction,

which in BI we need to control more carefully. The system of ribbon proofs which we present

here is a natural deduction system working on the level of propositions rather than sequents, like

NJ, and it uses the notion of ribbon to represent the bunch structures and control the structural

rules.

1.2 Substructural Logics

Substructural logics[36] are those logics which restrict or remove entirely some of the structural

rules; that is, weakening, contraction, exchange and cut.

Behind much of the research into these logics lie philosophical objections to these rules. The
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rule of weakening permits the proof of the theoremQ→(P→P), but in what sense doesQ really

imply P→P? The truth or otherwise ofQ seems irrelevant to the truth ofP→P. In this tradition

lies the family of ‘relevant’[2] logics. It is in the domain of relevant logic that the notion of

bunches, so central toBI , arose — as in Dunn[9], to whom credit is also given for the useof

commas and semicolons as distinct separators, as in [1], anddeveloped by Read[34] and Slaney.

In that context the problem was to formulate a relevant logicin which the distribution law (of∧

and∨) was valid, since its standard proof uses weakening in an essential fashion.

Another class of logics which fail to admit the rule of weakening are the non-monotonic

logics (see for example [12]). In non-monotonic logics, propositions can be proved ‘defeasibly’

— that is, provisionally true subject to possibly being later discarded. Such logics are are often

discussed in the field of artificial intelligence, where complex computer programs attempt to

make inferences based on incomplete or imperfect information.

In AI a particular problem is the ‘frame problem’[20, 35]. The frame problem is generally

illustrated with a computer program attempting to reason about the changing state of the world, as

in the pervasive notion of a hypothetical robot arm moving blocks around. Picture a situation with

three blocks available for the arm to manipulate, red, greenand blue, and suppose that the red

block currently sits on top of the blue block. A formalization of this system into a first-order logic

(along the lines of the situation calculus[35]) might include predicatesAbove(r,b),Below(b, r)

which hold in this situation, whilst the predicateAbove(r,g) does not hold. The problem occurs

when attempting to encode the effect of actions. Consider anaction which moves the red block

onto the green block. We can see that it will make some predicates hold (e.g.Above(r,g)) and

it will make some other predicates hold no longer (e.g.Above(r,b)). But how does it affect the

valuation ofAbove(g,b)?

The typical feature of such systems is that a very large classof facts remain unaltered by any

given action; in any sufficiently expressive system, an infinite class. It becomes very difficult

to formulate the system so that standard first-order reasoning can be used to make all the valid

deductions. One approach to his problem is to use (defeasible) axiom schemes which assume

that actions do not change state, except where this is contradicted by the action’s own axioms,

using some non-monotonic logic. Such approaches are highlyproblematic; problems include

non-local properties such as Fodor’s fridgeon[11] property, which holds on any arbitrary object

just in that case that Fodor’s fridge is on; then a local change (the unplugging of Fodor’s fridge)



1.3. Logics for resources13

changes the state of every object in the universe.

We will discuss below how a different kind of substructural logic (based onBI ) can solve

some instances of the frame problem.

The rule of contraction, on the other hand, concerns multiple instances of identical formulae,

as in the theoremX,X ` X. Logics which restrict this rule require, under some circumstances,

that all premisses be ‘used up’; Girard’s Linear Logic[17, 19, 18] lies in this camp. Linear Logic

outlaws both weakening and contraction, giving rise to a system in which each premiss must be

used exactly once – at least, in a minimal subset of the logic.The logic in fact contains modal-

ities which allow indirect access to the structural rules under very limited conditions. Denying

both weakening and contraction has elegant implications inthe categorical model of the logic.

Intuitionistic logic is well known to have a categorical model[28] in which premiss combination

(equivalently,∧) is interpreted as a cartesian product. In fact, the existence of the projection

mapsA1×A2→Ai embodies the validity of weakening, and that of the diagonalmapA→A×A

embodies contraction, and we obtain a model of the⊗,( fragment of Linear Logic simply by

using general monoidal categories.

Restricting exchange leads to the consideration of logics where the order of premisses mat-

ters. Such logics have been proposed to model notions of language, as in the work of Lambek[27].

BI fits into this picture as a logic which permits the rules of weakening and contraction only

under some circumstances. It is instructive to decomposeBI into two sublogics, the>,∧,→,⊥-

fragment, and theI ,∗,−∗ fragment. The>,∧,→,⊥-fragment ofBI is isomorphic to intuitionistic

logic, while theI ,∗,−∗ fragment is isomorphic to ‘multiplicative intuitionisticlinear logic’ (i.e.

the I ,⊗,(-fragment of linear logic). This decomposition is natural in the important sense that

the whole logicBI is the fibring (in the sense of Gabbay[13]) of these two logics. Each then

brings with it its own notion of a premiss combination; we use‘;’ for the intuitionistic and ‘,’ for

the linear. The premisses inBI sequents are bunches using these two punctuation marks; andBI

permits the rules of weakening and contraction for ‘;’ but not for ‘ ,’.

1.3 Logics for resources

One of the intriguing ideas when Girard first described linear logic was that it could be given

a semantics in terms of resources which are finite, and which are consumed by their use. This

generally illustrated with the notion of money; a system might contain the axiomseuro ( choc
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(‘with a Euro I can buy a chocolate’) andeuro ( lemonade (‘with a Euro I can buy a lemonade’).

Then within linear logic you can deduce(euro⊗ euro) ( (choc⊗ lemonade) but noteuro (

(choc⊗ lemonade) or (euro⊗ euro) ( choc.

The semantics ofBI , on the other hand, is better understood in terms of the notions of sharing

and independence[33]. The propositionP∗Q should be understood to denote that there is some

way of dividing all those resources available into two piles, such thatP holds of one pile and

Q of the other; in contrast,P∧Q should be understood as indicating thatP holds withall the

resources available andQ also holds with all the resources available. In otherwords,in P∗Q, P

andQ are independent in the sense of sharing no resources, whilstin P∧Q, P andQ share all

their resources1. Similarly we have the sharing interpretation ofP→Q, ‘given thatP holds of

(all) these resources, so doesQ’, and P−∗Q, ‘given some (new) resources of whichP holds,Q

holds of our current resources combined with the new resources’.

It is intriguing to note that Cardelli and Gordon in their work[8] on ambient logics inde-

pendently developed a semantic system which combined additive and multiplicative connectives

equivalent to∧ and ∗ where the resource concerned is related to location. Further work by

Cardelli, Gardner, and Ghelli[7] uses a closely related system to reason about graphs.

A particularly interesting notion of resource returns us tothe frame problem. There is an

instance of (a restricted form) of the frame problem in computer programs which reason about

pointers. Consider a Hoare-style[22] logic in which we maintain assertions describing the state

of a computer system. Suppose that one of our assertions denotes ‘y points to the beginning of a

linked list’. Now, if we change the contents of the memory at addressx, will this alter the validity

of the assertion? More generally, can we describe which assertions will be affected by changing

the memory at addressx? Reynolds[37] tackles this problem by the notion of ‘separation’, and

Ishtiaq and O’Hearn[24, 29] pose a rule for Hoare triples called ‘Frame Introduction’:

{P}C{Q}
Frame Introduction

{P∗R}C{Q∗R}

with some side conditions which do not concern us here. The essential content of this rule

is based on the idea that the triple{P}C{Q} guarantees that the programC will only access

memory locations described (or guaranteed to exist) byP. Under this interpretation it is sound to

postulate an arbitrary additional set of memory locations,described inR, and conclude that any

1Possibly all. We can construct sensible systems in which ‘all’ is interpreted strictly, thatP must use
all resources, as well as systems in whichP simply uses at most all resources
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assertion true of these locations before the execution ofC remains true after the execution ofC.

Our application of ribbon proofs in Chapter 7 works in this setting.

1.4 Overview of the thesis

In Chapter 2, we introduce the system of box proofs, a presentation of natural deduction of which

ribbon proofs form an extension. We give a formalization of box proofs in the same spirit as our

later formalization of ribbon proofs, and make precise the relationship between box proofs and

NJ in terms of translations between them. We discuss the problems inherent in expression of

normalization in the box proof setting.

In Chapter 3, we introduce the logicBI , with informal motivation and then a formal presen-

tation of its grammar, its proof theory, its model theory, and statements of the main theorems

about it.

In Chapter 4, we describe the system of ribbon proofs with examples, and then give a formal-

ization of the system. We prove that the system is equivalentin proof-theoretic strength to the

conventional proof systems forBI .

In Chapter 5, we discuss some properties of ribbon proofs, including how they represent

substitution, how they relate to normalization, and how they relate to the partial monoid models

of BI .

In Chapter 6 we discuss the extent to which the apparently geometric nature of displayed rib-

bon proofs can be formalized, by giving a formal geometric model for them inR2, and informally

‘proving’ some simple proof-theoretic results geometrically.

In Chapter 7 we give some examples of a slight extension of ribbon proofs used to prove

some lemmas from a published paper in a system derived from BI, handling informally some

issues about substitution and quantification.

In Chapter 8 we give a brief overview of a partial implementation of the formalization of

ribbon proofs, the source code of which is reproduced in the appendix.
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Chapter 2

Box Proofs

In this chapter we describe a system of ‘box proofs’; a presentation of natural deduction whose

roots lie as far back as natural deduction itself. We outlineour particular choice of notation,

and contrast the system to the more common proof notions for natural deduction. We then de-

scribe the precise relationships between the proof forms, and use these relationships to discuss

normalization in the context of box proofs.

The mappings developed between box proofs and natural deduction proofs in this chapter

will in later chapters be developed into mappings between ribbon proofs and the conventional

proof theory of BI.

2.1 Introduction

Box proofs are a presentation of natural deduction widely used for teaching intuitionistic logics

and proofs[4, 6, 38, 3, 23]. Natural deduction, as most logicians use the term, was formalized

by Gentzen, who called the system NJ[16]. The system distinguished itself from earlier systems

with use of introduction and elimination rules for each connective, as opposed to a having just a

small number of rules coupled with a set of axioms, as was the norm for Hilbert-style systems.

In the same paper, Gentzen also formalized LJ, a system whichused the novel notion of

sequents to manage formulæ, with left and right rules for each connective.

NJ and LJ, like any inference system which contains binary rules, generate tree-shaped

proofs. Box proofs, which are a close relative of NJ and shareits rules, are a linearization of this

tree structure. It can be argued that they more closely mirror the common form of informal math-
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ematical proof, which consists of a sequence of sentences ina natural language such as English,

each derivable from some of the earlier sentences. Gentzen was certainly aware that his system

could be represented this way, and he had various reasons forhis choice of a tree-shaped presen-

tation. Fitch’s proofs ([10], also used extensively by Thomason[39]) and Jaskowski’s ‘method of

suppositions’[25] are both very close to our style of proof.

A A→B∧C
→-elim

B∧C
∧-elim

B A
∧-intro

B∧A

A A→B∧C
→-elim

B∧C
∧-elim

C
∧-intro

B∧A∧C

1. A hypothesis

2. A→B∧C hypothesis

3. B∧C →-elim 1,2

4. B ∧-elim 3

5. B∧A ∧-intro 4,1

6. C ∧-elim 3

7. B∧A∧C ∧-intro 5,6

Figure 2.1: NJ and Box proofs contrasted

Compare the two presentations of the proof in Fig 2.1. Both are proofs (the same proof, in

an important sense) ofA,A→B∧C ` B∧A∧C. Note that the NJ proof mentions the hypothesis

A three times, whilst the box proof mentions it only once. Furthermore, the NJ proof proves

the formulaB∧C twice, using exactly the same proof both times, whilst the box proof proves it

only once. The dependency information given by the line numbers in the justifications shows us

how the box proof can be ‘unpacked’ into the corresponding tree proof, where this information

is represented geometrically, at the cost of repeating twice the proof ofB∧C.

The feature of box proofs which gives them their name is the treatment of assumptions,

or discharged hypotheses. NJ requires, in some of its rules, the use of a hypothesis which is

later discharged. The canonical example is→-intro. Box proofs use rectangular nested boxes

to indicate the scopes of these discharged hypotheses which, in the context of box proofs, are

called assumptions. Examine the box proof in Figure 2.2. Theconclusion in the final line is

to be proved using the rule→-intro. The standard treatment of this is to add to the proof as a

hypothesis the antecedent of the→ — in this case,A∧(B∧C); but to ‘mark’ this hypothesis

as being discharged by the→-intro use. This marking is the most technically inelegant (and
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1. A∧(B∨C) assumption

2. A ∧-elim 1

3. B∨C ∧-elim 1

4. B assumption

5. A∧B ∧-intro 2,4

6. (A∧B)∨(A∧C) ∨-intro 5

7. C assumption

8. A∧C ∧-intro 2,7

9. (A∧B)∨(A∧C) ∨-intro 8

10. (A∧B)∨(A∧C) ∨-elim 3,4-6,7-9

11. A∧(B∨C)→(A∧B)∨(A∧C) →-intro

Figure 2.2: A box proof using nested boxes

[A∧(B∨C)]
∧-elim

B∨C

[A∧(B∨C)]
∧-elim

A [B]
∧-intro

A∧B
∨-intro

(A∧B)∨(A∧C)

[A∧(B∨C)]
∧-elim

A [C]
∧-intro

A∧C
∨-intro

(A∧B)∨(A∧C)
∨-elim

(A∧B)∨(A∧C)
→-intro

A∧(B∨C)→(A∧B)∨(A∧C)

Figure 2.3: The proof of Figure 2.2 in NJ form
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often obscurely presented) part of the NJ system. It was perhaps never truly handled properly

until term-labelling systems. In a box proof, we draw a box and keep the hypothesis in the

box. The box is then a representation of the scope of the particular discharged hypotheses to

which it relates. In Figure 2.3, we show one presentation of the same proof in NJ; we have

marked discharged hypotheses with brackets. Note that there is no visible link between point

of discharge and the hypotheses (some authors suggest a numbering scheme for this); in this

particular example there is no great ambiguity but in a proofof A→A→A∧A, some additional

notation is necessary to indicate whichA is used when.

The boxes make the Deduction Theorem appealingly obvious; the proof ofΓ ` P→Q can be

‘derived’ graphically from the proof ofΓ,P ` Q simply by drawing a box around the main part

of the proof and adding the→-intro step. Box proofs, being a form of natural deduction, don’t

have a Cut rule. However, the admissibility of the Cut rule insequent calculus is witnessed by a

simple vertical composition of proofs: given proofs ofΓ ` P andP` Q you can form a proof of

Γ ` Q by adjoining the proofs vertically (overlapping on theP).

The box proof system pays a price for the notational convenience it offers: it is not easy to

formulate a notion of normal proof. However, from the provability perspective, they are equiva-

lent to natural deduction:

Proposition 1 (Relative soundness and completeness for box proofs). Box proofs give rise to

precisely the same of theorems as natural deduction.

We give one possible proof of this proposition below. We alsoobserve that both NJ and box

proofs admit a simple-minded truth-valued semantics. The appearance of a formulaP in a proof

denotes ‘P is true, and we have proved it from the true formulæ above it’.Or, in the presence of

discharged hypotheses/assumptions, ‘P is true assumingA,B,C, . . . , and we have proved it from

the true formulæ above it’, whereA,B,C, . . . are any assumptions applicable atP.

2.2 Formally relating box proofs to NJ

We give formal mappings between box proofs and natural deduction, and use them to prove that

box proofs do indeed represent the same system (prove exactly the same set of theorems).

Firstly we need a formal notion of box proof. We work with an auxiliary notion — a ‘box

structure’ — of which box proofs will form a special case.

Definition 1. Define the following:
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• A box structureconsists of a singlebox, which we will refer to as theoutermostbox of the

structure;

• A box is sequence oflinesandboxes;

• A line is a pair 〈 f , j〉 of a formulaand ajustification;

• A formula is a formula of intuitionistic logic; in this thesis we are only concerned with the

propositional fragment;

• A justificationis either the name of natural deduction rule (such as→-intro) or one of the

special justificationsassumptionor from line, along with somereferences;

• Thereferencesindicate which lines and boxes were used as premisses for therule.

We assume some sensible line- and box-numbering system for the references. The number of

referencesis the number of premisses the natural deduction rule takes;the special justification

from line is unary, andassumptionis nullary. Note that→-intro, for example, is a unary rule, its

single premiss being a box (the subproof).

Box proofs will be represented by box structures obeying certain well-formedness conditions.

Definition 2. Thescopeof a line l in a box b in a box structures contains all lines in b after l,

and all lines in boxes within b which themselves occur after l, and recursively all lines within

boxes within those boxes. Conversely, a line is said to bevisible from those lines in its scope.

Definition 3. A line in a box structure iswell-justified if it is the conclusion of the natural

deduction rule named as its justification, with premisses given by the formulæ in the lines referred

to by the references, and the references are visible from theline. Where a premiss in the natural

deduction rule is a subproof (as in the case of→-intro), the corresponding reference will refer to

a box which contains as its only assumption the discharged hypothesis, and as its final line the

conclusion of the subproof. Afrom line is well-justified if it contains precisely the formula in the

line referred to by the reference.Assumptionsare well-justified if they occur in a group at the

beginning of a box (that is to say, preceded by no non-assumption line).

Definition 4. A box in a box structure iswell-placedif it is used as a premiss by exactly one line.
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The definitions above are intended to ensure that the proof has indeed been correctly derived

by the rules of natural deduction. They also prevent spurious boxes; this is not vital but harmless.

Now we can define a box proof:

Definition 5. A box proof is a box structure in which every line is well-justified, and every box

except the outermost is well-placed.

There are a few points to note respecting the correspondencebetween this formalization

and our informal notation for box proofs. We never actually draw the outer box, and we call

the assumptions in this outer box hypotheses. The referencing scheme we use in our figures is

linear numbering and ignores the nested box structure; the formalization would suggest a nested

numbering scheme (and indeed some authors use such). All that matters for the theory is that

some unique identifier be attached to each line and box.

Finally, we note the convention that the final line of a box proof is its conclusion:

Definition 6. A box proof is said to be the proof of the sequentΓ ` P, whereΓ is the list of

assumptions in the outermost box (the ‘hypotheses’), and P is the formula in the final line.

Now we wish to formalize the sense in which these proofs are indeed natural deduction

proofs. We exhibit maps between box proofs and natural deduction proofs.

Definition 7. Let the set of all box proofs beBP. Let the set of all NJ proofs be denotedNJ.

Definition 8. We define a mapψ : BP −→ NJ. Fix a proof p∈ BP. We firstly define an auxiliary

mapψ̂p which assigns to each line of p, and each box of p, a proof inNJ. We work by induction

over the lines and boxes in the proof.

For a line l = 〈P, j〉 in a proof, we assign a proof̂ψp(l) ∈ NJ as follows:

• If j is assumption, then the proofψ̂p(l) is the axiom proof of P using hypothesis P;

• If j is from line referencing l′, then the proofψ̂p(l) = ψ̂p(l ′), already defined by induction;

• If j is a rule of natural deduction referencing premisses{xi}, then the proofψ̂p(l) is con-

structed by taking the proofs{ψ̂p(xi)}, already defined by induction, and combining them

using the rule j. That this indeed makes a wellformed NJ proofis guaranteed by the notion

of well-justified lines. If xi is a line, then the premiss xi is attached to the natural deduction

rule using the proofψ̂p(xI ). If xi is a box, then we attach the proof formed fromψ̂p(xi) by

discharging all instances of its assumption to the natural deduction rule.
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For a box b, we assign proofs to all lines and boxes inside it, and then set̂ψp(b) = ψ̂p(l), the

proof of its final line.

Now we defineψ(p) = ψ̂p(l) where l is the last line of the proof.

We remark that the construction ofψ will ignore lines which are not used in the deduction of

the conclusion.

Proposition 2 (Relative Soundness). Given a box proof p ofΓ ` P, there is a correct natural

deduction proof ofΓ ` P.

Proof. By induction over the number of lines in the proofp, ψ(p) is such a correct natural

deduction proof ofΓ ` P.

We call this proposition the ‘relative soundness’ of box proofs: box proofs are sound relative

to natural deduction in the sense that, given a box proof of a theorem, we can construct a natural

deduction proof of that theorem. Since we wish to show that box proofs are exactly the same

strength as natural deduction, we now need to show a relativecompleteness result.

Definition 9. We define a map̄ψ : NJ−→BP, by induction on the structure ofNJ proofs. We view

theNJ rules as the constructors for an inductive notion of proof, taking the sequent view in which

each rule constructs a proof of a sequent that is its conclusion from (proofs of) sequents that are

its premisses. For each of the rules we will show how to construct aBP proof of the conclusion,

usingBP proofs of the premisses. Note that theBP proof of a premiss will necessarily have the

active formula in the premiss itself occurring as the final line.

• For the trivial NJ proof of the axiom P̀ P, we use the one-lineBP proof with hypotheses

P.

• We treat the following rules together:∧-intro, ∧-elim, ∨-intro, →-elim. We begin with

theBP proof(s) of the premiss(es). In the case that there are two premisses, we place one

proof after the other, but we move the hypotheses of the second proof to be just after the

hypotheses of the first; and we coalesce identical hypotheses. Naturally references are

renumbered as appropriate. Now the conclusion is added on a new line, and it follows

from theBP rules with the same name as theNJ rule used, from the formulæ occuring in

the last lines of the premiss proof(s).
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• The rule→-intro has as its premiss a subproof. That subproof may contain two kinds of

hypotheses: discharged, and non-discharged. We place the all of the subproof except the

non-discharged hypotheses in a box, with the non-discharged hypotheses outside the box.

∨-elim is treated analogously.

Now, from this definition we obtain relative completeness:

Proposition 3. Given aNJ proof ofΓ ` P, we can construct a box proof ofΓ ` P.

Proof. ForNJ proof p, by structural induction over the rules used inp, ψ̄(p) is a box proof, and

it certainly has conclusionP. Note that, following the construction above, each hypothesis in p

certainly generates a hypothesis in̄ψ(p), and these are the only hypotheses. Therefore,ψ̄(p) is

a proof ofΓ ` P.

The translationsψ andψ̄ are not inverse; there is no bijection between box proofs andnatural

deduction proofs. There is a one-sided inverse:ψ ◦ψ̄ is an identity onNJ. The other composition

ψ̄ ◦ψ is therefore idempotent onBP, so it identifies particular subset of box proofs which are in

bijection with natural deduction proofs.

With these maps in mind, we are in a position to consider what normalization means for box

proofs.

2.3 Normalization for Box Proofs

We will consider four reductions onNJ: theβ andη rules for∧ and→. Let us consider in detail

β for ∧ first of all.

·
·
· pA

A

·
·
· pB

B
∧-intro

A∧B
∧-elim

A

−→
·
·
·

pA

A

Figure 2.4:β -reduction for∧ in NJ

The β -reduction for∧ is shown in Figure 2.4.pA and pB stand for the proofs ofA andB

respectively. Note how the reduction eliminates not only the formulaB, but also its entire proof

pB.

In the equivalent box-proof situation, with a∧-elim rule operating on a premiss which was

itself proved by∧-intro, there can be serious consequences of the removal of the formula B. In a
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1. A hypothesis

2. B hypothesis

3. A∧B ∧-intro 1,2

4. B ∧-elim 3

5. A∨C ∨-intro 1

Figure 2.5:β -reduction issues in box proofs

box proof, a single formula can be used as the premiss of a rulemore than once; this means that

if B was used as a premiss for some other rule, removing it will destroy the proof. Furthermore,

any of the formulæ in the proofpB might have been used as a premiss for some rule not itself

part of pB, and thereforepB can’t just be removed. For example, consider Figure 2.5, which is a

particular case. Simply removing the formulaA from line 1 would invalidate the proof as it was

used not only as a premiss for the∧-intro in line 3 but also the∨-intro in line 5.

There are some proofs in whichB and the contents ofpB are not used in this way. In partic-

ular, all proofs lying in the image of̄ψ have this property; however, those are not the only such.

We can clearly ‘β -reduce’ a box proof by applying the composition̄ψ ◦β ◦ψ ; but in general this

will not be a ‘local’ change to the proof.

·
·
· pA∧B

A∧B
∧-elim

A

·
·
· pA∧B

A∧B
∧-elim

B
∧-intro

A∧B

−→
·
·
·

pA∧B

A∧B

(a) η-reduction for∧

[A]
·
·
· pB

B
→-intro

A→B

·
·
·

pA

A
→-elim

B

−→

·
·
· pA

A
·
·
· pB

B

(b) β -reduction for→

·
·
· pA→B

A→B [A]
∧-elim

B
→-intro

A→B

−→
·
·
·

pA→B

A→B

(c) η-reduction for→

Figure 2.6: Reductions inNJ
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The remaining reductions are shown in Figure 2.6. The same issues apply with all of them;

when formulæ or entire proofs are excised by a reduction, thecorresponding operation on box

proofs might fail to produce a valid proof.

So, what can we say about normalization for box proofs? I suggest the following:

Definition 10. A BP proof p is normal if it is of the formψ̄(q) for some normal proof q∈ NJ.

The normal form of a proof p∈ BP is the proofψ̄(q), where q is the normal form ofψ(p).

This is feasible because of the way in which we have defined ourtranslation fromNJ to BP,

and gives us unique normal forms, at least. An alternative approach would be to definep to be

normal if ψ(p) is normal; this would giveψ̄ ◦ψ-equivalence classes instead of unique normal

forms.
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Chapter 3

The Logic of Bunched Implications(BI)

In this chapter, we describe briefly the Logic of Bunched Implications. We introduce it with some

suggestions on how the logic can be thought of at an informal,intuitive level. We then describe

the logic formally, with a grammar, a proof theory, and a formal semantics.

3.1 Introduction

3.1.1 Splitting conjunction

The Logic of Bunched Implications,BI [32], is a logic in which two different senses of the word

’and’ coexist on equal footing. Compare the following two statements:

• Spurs is a great teamandenjoyable to watch;

• In this season’s squad, Spurs had a world-class goalkeeperandan excellent striker.

The first example is characteristic of the kind of conjunction well modelled by traditional formal

approaches such as classical and intuitionistic logic. Thesecond example, however, carries a

slightly different sense. It strongly implies, at least, that the goalkeeper and the striker concerned

aredistinct individuals — they cannot be the same person. This sense would be lost in a standard

translation into intuitionistic logic where ‘and’ is simply interpreted by∧, as in

(∃x.PlaysFor(Spurs,x)∧WorldClassGoalkeeper(x))∧

(∃yPlaysFor(Spurs,y)∧ExcellentStriker(y))
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The sense of conjunction we describe, which is equally natural if slightly less common in

English, we shall term (following [29],. . . ) aspatial conjunction. This is trueover hereand

that is trueover there. We use the standard symbol∧ for the non-spatial conjunction (because it

behaves exactly like the standard conjunction), and for thespatial conjunction we use the symbol

∗. It has considerable importance in careful reasoning aboutresources: Spurs may just possibly

have a player who can play very well in both of the positions mentioned, but he certainly cannot

play both positions at the same time. This occurence; of resources which can play more than one

role but only one at a time is endemic in the study of resource sensitive systems.

We will formalize this idea with a Kripke-style possible worlds semantics, as used for intu-

itionistic logic and some modal logics. We define a forcing relation on worldsw. The standard

definition for the∧ connective isw |= P∧Q iff w |= P andw |= Q. For w |= P∗Q, we want to

capture the notion that some part ofw is sufficient to forceP, and the remaining part will force

Q. We add to the set of possible worlds a combining (monoidal) operation·, and then we say

w |= P∗Q if and only if w is of the formu·v whereu |= P andv |= Q.

3.1.2 Splitting Implication

The second novel feature ofBI is the presence of twoimplicationson an equal basis. Just as to

∧ there corresponds the implication→, to ∗ there corresponds an implication, written−∗. The

implications are defined by followingadjointness: The sequentA ` B→C holds if and only if

A∧B`C holds, and similarlyA` B−∗C holds if and only ifA∗B`C holds.

In terms of the intuition given above for∗ and∧, → is the ordinary logical implication, as

in, ‘If the weather is good tomorrow, we should win the match’. The symbol−∗ (pronounced

‘magic wand’) talks of the (hypothetical) introduction of something new, as in ‘If we could sign

a good defender, we would do much better’.

3.1.3 Restricting the structural rules

BI captures the difference between these two senses of conjunction by controlling two of the

so-calledstructural rules in its proof theory. Recall that intuitionistic logic1 has the rules of

Weakening and Contraction. Weakening says that, if we proved P from hypothesesA0,A1, . . . ,

then there is also a proof fromB,A0,A1, . . . ; more precisely, it says that there is a canonical such

1In fact, the comments in this section about conjunction and implication are equally applicable to
classical logic, since we are not concerned here with the behaviour of negation. We continue to refer to
intuitionistic logic since that will be the variant we focuson for most of the thesis
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proof, namely the one in which (this occurence of)B is not used. Contraction says that given a

proof ofP from A0,A0,A1, . . . , there is a proof fromA0,A1, . . . .

Logics which omit or control these rules have been widely studied, most famously in Girard’s

Linear Logic[17], which contains a conjunctive connective⊗ which is multiplicative. Indeed,

like BI , Linear Logic contains two conjunctions, one additive and one multiplicative.BI ’s inno-

vation, then, is the equal footing on which it places the two conjunctions. Throughout this thesis

we follow Pym in referring to∗,−∗ as multiplicative and∧,→ as additive. These terms more

precisely refer to the presentation of the proof rules (as inlinear logic) and we abuse terminology

slightly to continue using them to distinguish between the connectives although our proof system

actually chooses to present both connectives multiplicatively. A more exact terminology might

be “intensional” and “extensional”, and the two strongest parallels do not lie with linear logic but

rather with other bunch logics carrying two families of connectives.

Intuitionistic proof theory can be presented in the form of sequents[16], where the informal

interpretation ofA1,A2, . . . ,An `C is that from the hypothesesAi, we can prove the conclusion

C. The comma used to separate the hypothesesAi has the sense ofand: from A1 andA2 and

. . . we can proveC. Indeed, the sequentA1,A2, . . . ,An ` C is valid if and only if the sequent

A1∧A2∧ . . .∧An`C is valid. In Girard’s Linear Logic, on the other hand, the commas used in the

similar sequents represent the linear conjunction⊗, in the sense that the sequentA1,A2, . . . ,An `

C is equivalent to the sequentA1 ⊗A2 ⊗ ·· · ⊗An ` C. This feature in which the logic has a

‘conjunction theorem’ which says that the ‘,’ in a sequent is represented by a connective is not

uniform across substructural logics. There is a detailed classification of this wider family in

Restall[36], who would say that⊗ was afusionfor ‘ ,’.

In BI both conjunctions can be internalized into the hypotheses,as it contains two distinct

punctuation marks: the comma, and the semicolon. The phrases constructed out of these, such as

(A,B);(A,C);(B,(A;C;D),A) are known asbunches, and their structure can be nested arbitrarily

deeply. The structural rules are then permitted for ‘;’ which corresponds to∧, and not for ‘,’

which corresponds to∗. This generalization is the key to giving elegant introduction rules for→

and−∗.

3.2 Formal Definitions

We now formally define the logicBI .
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Definition 11. Theformulæof BI are formally defined by this grammar

formula := atomic

| >

| I

| formula∗ formula

| formula∧ formula

| formula→ formula

| formula−∗ formula

We adopt the convention that atomic formulæ are denoted by the letters A,B,C, . . . whilst general

formulæ are P,Q,R, . . . . Acknowledging that both∧ and∗ are commutative and associative, we

usually omit unnecessary brackets, thus deliberately confusing certain equivalent formulæ.

Note that> is the unit for∧ andI is the unit for∗.

Definition 12. A prebunchof BI formulæ is defined by the following grammar:

prebunch := formula

| ∅a

| ∅m

| prebunch,prebunch

| prebunch;prebunch

A bunchis a member of the class formed from prebunches by reducing modulo the smallest

equivalence relation which respects commutativity and (separate) associativity of ‘;’ and ‘,’,

the unit laws for∅a w.r.t ‘;’ and ∅m w.r.t ‘,’, and the substitution property that if∆ ≡ ∆′ then

Γ(∆) ≡ Γ(∆′) (i.e., the least congruence containing the commutativity,associativity, and unit

laws). We will generally denote bunches by uppercase greek lettersΓ,∆, . . . .

We will later need to use bunches over other entities, not just formulæ, defined analogously.

3.2.1 Proof Theory

We summarise the Proof Theory from Pym [32]. We show the calculus LBI in Fig. 3.1, and

the natural deduction calculus NBI in Fig. 3.2. Note the exact symmetry between the additive

and multiplicative connectives: the rules forI ,∗,−∗ arepreciselythe same form as the rules for

>,∧,→, with the substitution of ‘,’ for ‘;’; of course the more familiar LJ rules for>,∧,→ are

all derivable from those given using the structural rules.

We now state the important theorems about the proof theory.
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Axiom
P` P

Γ ` P ∆(P) ` R
Cut

∆(Γ) ` R

Γ(∆) ` P
W

Γ(∆;Ξ) ` P

Γ(∆;∆) ` P
C

Γ(∆) ` P

Γ ` P
∆ ≡ Γ

∆ ` P

Γ(∅m) ` P
IL

Γ(I) ` P
IR

∅m ` I

Γ(∅a) ` P
>L

Γ(>) ` P
>R

∅a ` >

⊥L
⊥ ` P

Γ ` P ∆(Ξ,Q) ` R
−∗L

∆(Ξ,Γ,P−∗Q) ` R

Γ,P` Q
−∗R

Γ ` P−∗Q

Γ(P,Q) ` R
∗L

Γ(P∗Q) ` R

Γ ` P ∆ ` Q
∗R

Γ,∆ ` P∗Q

Γ ` P ∆(Ξ;Q) ` R
→L

∆(Ξ;Γ;P→Q) ` R

Γ;P` Q
→R

Γ ` P→Q

Γ(P;Q) ` R
∧L

Γ(P∧Q) ` R

Γ ` P ∆ ` Q
∧R

Γ;∆ ` P∧Q

Γ(P) ` R Γ(Q) ` R
∨L

Γ(P∨Q) ` R

Γ ` Pi
∨R (i = 1 or 2)

Γ ` P1∨P2

Figure 3.1: LBI: A sequent calculus for BI
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Axiom
P` P

Γ ` P ∆(P) ` R
Cut

∆(Γ) ` R

Γ(∆) ` P
W

Γ(∆;Ξ) ` P

Γ(∆;∆) ` P
C

Γ(∆) ` P

Γ ` P
∆ ≡ Γ

∆ ` P

∆(∅m) ` P Γ ` I
IE

∆(Γ) ` P
II

∅m ` I

∆(∅a) ` P Γ ` >
>E

∆(Γ) ` P
>I

∅a ` >

⊥L
⊥ ` P

Γ ` P−∗Q ∆ ` P
−∗E

∆,Γ ` Q

Γ,P` Q
−∗ I

Γ ` P−∗Q

∆ ` P∗Q Γ(P,Q) ` R
∗E

Γ(∆) ` R

Γ ` P ∆ ` Q
∗I

Γ,∆ ` P∗Q

Γ ` P→Q ∆ ` P
→E

∆;Γ ` Q

Γ;P` Q
→ I

Γ ` P→Q

∆ ` P∧Q Γ(P;Q) ` R
∧E

Γ(∆) ` R

Γ ` P ∆ ` Q
∧ I

Γ;∆ ` P∧Q

Γ ` P∨Q ∆(P) ` R ∆(Q) ` R
∨E

∆(Γ) ` R

Γ ` Pi
∨ I (i=1 or 2)

Γ ` P1∨P2

Figure 3.2: NBI: a ‘natural deduction’ sequent calculus forBI
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Theorem 1 (NBI/LBI equivalence). NBI and LBI are equivalent theories; a sequentΓ ` P is

derivable in one if and only if it is derivable in the other.

Theorem 2 (Cut admissibility and elimination). Cut is an admissible rule in both calculi; how-

ever, to any proof of a sequentΓ ` P in either calculus using Cut, there corresponds a proof

without Cut.

Just as for intuitionistic logic, with Gentzen’s famousHaupsatz[16], the Cut-elimination re-

sults corresponds to the existence of a normal form for proofs; in [32] this is presented in terms

of theαλ -calculus, theBI analogue to theλ -calculus.

Theorem 3 (Deduction Theorem). Γ,P ` Q if and only ifΓ ` P−∗Q. Furthermore,Γ;P` Q if

and only ifΓ ` P→Q.

Examples

We give some simple proofs inBI .

Example 1. Two proofs of A∗ (A−∗B) ` B. In LBI:

A` A B` B
−∗L

A,A−∗B` B
∗L

A∗ (A−∗B) ` B

andNBI:

A∗ (A−∗B) ` A∗ (A−∗B)

A−∗B` A−∗B A` A
−∗E

A,A−∗B` B
∗E

A∗ (A−∗B) ` B

Example 2. A proof of A−∗(B∧C) ` A−∗C:

A` A

C `C
W

B;C `C
∧L

B∧C `C
−∗E

A,A−∗(B∧C) `C
−∗R

A−∗(B∧C) ` A−∗C

Example 3. A proof of A∗ (B∧C) ` (A∗B)∧(A∗C):

A` A

B` B
W

B;C ` B
∧L

B∧C ` B
∗R

A,(B∧C) ` A∗B

A` A

C `C
W

B;C `C
∧L

B∧C `C
∗R

A,(B∧C) ` A∗C
∧R

A,(B∧C) ` (A∗B)∧(A∗C)
L

A∗ (B∧C) ` (A∗B)∧(A∗C)
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Note that the converse to this example does not hold.

Example 4.

A` A
∨R

A` A∨B C `C
∗R

A,C ` (A∨B)∗C
∗L

(A∗C) ` (A∨B)∗C

B` B
∨R

B` A∨B C `C
∗R

B,C ` (A∨B)∗C
∗L

(B∗C) ` (A∨B)∗C
∨L

(A∗C)∨(B∗C) ` (A∨B)∗C

The converse to this example does hold, however.

3.2.2 Model Theory

We present two related models forBI .

Definition 13. By apartially ordered commutative monoid(M,e, ·,v), we mean that the commu-

tative monoid(M,e, ·) is equipped with a partial orderv satisfying thebifunctoriality condition:

mv m′
,nv n′ =⇒ m·nv m′ ·n′

We can make a partially ordered commutative monoid into a model for BI by defining a

forcing relation |= between elements of the monoid — worlds — and BI propositions. For

atomic propositionsA,B,C, . . . , we fix any particular relation which satisfiesmonotonicity:

n |= A,mv n =⇒ m |= B

Now we extend the forcing relation to all BI propositions by structural induction over for-

mulæ:

• m |= > always;

• m |= ⊥ never;

• m |= P∧Q iff m |= P andm |= Q;

• m |= P∨Q iff m |= P or m |= Q;

• m |= P→Q iff for all worlds nv m, if n |= P thenn |= Q;

• m |= I iff mv e;

• m |= P∗Q iff there are worldsn, p such thatmv n· p andn |= P andp |= Q;
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• m |= P−∗Q iff for all n such thatn |= P, m·n |= Q

The intuitive models we discussed in the introductory section were almost of this type; the

forcing semantics are of course the Kripke semantics for intuitionistic logic[26] extended with

extra rules forI ,∗,−∗; furthermore these rules and only these rules exploit the monoid structure.

We define the obvious notion of semantic entailment with respect to these models;P |= Q iff

for all modelsm, if m |= P thenm |= Q. This notion turns out to be sound for LBI and NBI:

Theorem 4 (Soundness for partially ordered monoids). If P ` Q in LBI (and thus NBI), then

P |= Q in the partially ordered monoid semantics.

Unfortunately, this system is not complete. The interactions between the multiplicative con-

nectives and the counit⊥ prevent completeness; an example is explained in some detail in [32].

We can get a limited completeness result if we exclude⊥ from our logic:

Theorem 5(A limited completeness result). If P |= Q in the partially ordered monoid semantics,

and P,Q are formulæ of the⊥-free fragment of BI, then P̀ Q is provable in LBI.

In [32], Pym gives a series of increasingly abstract models for BI, including two models

which yield completeness results, one based on topologicalsheaves and one on Grothendieck

sheaves. However, the more recent work of Galmiche, Méry and Pym in[15] gave rise to an

apparently small modification to the above model which nonetheless is complete for BI:

Definition 14. A partially ordered partial commutative monoid, or PCM, (M, ·,e,v) is a gen-

eralization of a partially ordered monoid where the monoidal operation· need only be partially

defined. The appropriate associativity conditions are thatif (a·b) ·c is defined, then b·c must be

defined, and(a ·b) · c = a · (b · c), and the symmetric condition. e.a = a is always defined. The

compatibility condition should correspondingly now be read as applying when both compositions

are defined.

Later we will need the notion offull submonoidfor a PCM. M⊆ M′ is a full submonoid if it

is a submonoid, and for all a,b∈ M, if a.b is defined in M′ then it is defined in M. We will abuse

this definition by extending it to injections j: M ↪→ M′ where M6⊆ M′.

We use exactly the same definition of a forcing relation|= as before, and remarkably the

partiality of the monoid is enough to make it now sound and complete[15]:
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Theorem 6(Soundness and Completeness for the PCM model). A sequent P̀ Q is derivable in

LBI if and only if the semantic entailment P|= Q holds in the PCM semantics.

One way of understanding the completeness problem is that the original monoid model fails

to deal satisfactorily with inconsistency. For example, consider the formulaP∧(P−∗⊥). This

formula is not a contradiction (unlikeP∗P−∗⊥, which is), i.e.P∧(P−∗⊥) 6` ⊥. However, in

the monoidal semantics, ifu |= P∧(P−∗⊥) thenu |= P andu |= (P−∗⊥), so by completeness

we should haveu·u |= ⊥; but no world forces⊥.

The partial monoid semantics gives a solution to this problem: there is no problem ifu·u is

not defined.

There is an alternative view of the partial monoid semantics, which is to consider it a total

monoid, with all undefined compositions composing to some distinguished worldx. This world

has the property that it, and it alone, is an inconsistent world, sox |=⊥; this approach is precisely

equivalent to the previous one, in the same way that the category of partial functions is equivalent

to the a subcategory of the category of functions on pointed sets using the pointed elements to

represent undefined.

Example 5. Since the semantics is complete, we can use it to exhibit counterexamples to non-

theorems. Consider the non-theorem A∗B∧A∗C ` A∗ (B∧C). A counterexample to this is as

follows:

• M = {e,a}

• e·e= e, e·a = a, a·a ↑

• e |= A,C, a |= A,B

1. a= e·a, e|= A, a |= B, so a|= A∗B

2. a= e·a, e|= C, a |= A, so a|= A∗C

3. From (1) and (2), a|= (A∗B)∧(A∗C)

4. But, neither a|= B∧C nor e|= B∧C, so a6|= A∗ (B∧C) (as a· e is the only possible

representation of a as a binary sum).

The completeness proof in [15] is a constructive one, and it yields considerably more than a

basic completeness result. In particular:
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Theorem 7(Decidability). There is a decision procedure for Propositional BI.

Theorem 8(Finite Model Property). Any non-theorem has a finite countermodel.
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Chapter 4

Ribbon Proofs

In this chapter we describe ribbon proofs, a novel proof system for the logicBI . The system is an

extension of box proofs toBI , coinciding with box proofs on the intuitionistic fragment. We first

introduce the system relatively informally as a tool for making proofs, emphasising the links with

the semantics of the logic. Then we formalize the system, building up some necessary algebraic

concepts first.

Once ribbon proofs are described as a formal system, we can make explicit mappings between

them and theBI proof systemLBI , and use these mappings to prove that the system is correct —

that is, it generates the same set of theorems asLBI .

4.1 Introduction

Consider the following theorem ofBI :

(A∧B)∗C ` (A∗C)∧(B∗C)

It is a natural theorem to think about when exploring the logic; although∧ and∗ do not

distribute over each other, they do distribute ‘one-way’. The LBI and NBI proofs of this theorem,

shown in Fig. 4.1 are straightforward, certainly, but they are surprisingly large, and somehow

unintuitive.

On the other hand, it’s easy to see thesemanticproof of the theorem, in terms of the model

theory given above. If a worldw forces the formula(A∧B) ∗C, then there are worldsu,v s.t.
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A` A
W

A;B` A A∧B` A∧B
∧E

A∧B` A C `C
∗I

(A∧B),C ` A∗C (A∧B)∗C` (A∧B)∗C
∗E

(A∧B)∗C ` A∗C

B` B
W

A;B` B A∧B` A∧B
∧E

A∧B` B C `C
∗I

(A∧B),C ` B∗C (A∧B)∗C ` (A∧B)∗C
∗E

(A∧B)∗C ` B∗C
∧ I

(A∧B)∗C ` (A∗C)∧(B∗C)

A` A
W

A;B` A
∧L

A∧B` A C `C
∗R

(A∧B),C ` A∗C
∗L

(A∧B)∗C ` A∗C

B` B
W

A;B` B
∧L

A∧B` B C `C
∗R

(A∧B),C ` B∗C
∗L

(A∧B)∗C ` B∗C
∧R

(A∧B)∗C` (A∗C)∧(B∗C)

Figure 4.1: LBI/NBI proofs of(A∧B)∗C` (A∗C)∧(B∗C)
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wv u·v, u |= A∧B andv |= C. But then of courseu |= A, and sow |= A∗C; similarly w |= B∗C.

The idea of the ribbon proof is to make the formal proof of thistheorem as intuitively direct

as the semantic proof. The ribbon proof is shown in Fig. 4.2.

1. (A∧B)∗C hypothesis

2. A∧B C ∗-elim 1

3. A ∧-elim2

4. B ∧-elim2

5. A∗C ∗-intro 3,2

6. B∗C ∗-intro 4,2

7. (A∗C)∧(B∗C) ∧-intro 4,2

Figure 4.2: A ribbon proof

The heavily lined boxes, which we call ribbons, correspond to worlds of the semantics. The

first line is a formula in a single ribbon, and the second line contains two ribbons – we will say

that the ribbon has divided into two. Then in the fifth line, the two ribbons combine again, which

takes the proof back to the original ribbon; we will say thatA∗C holds in the same ribbon as

(A∧B)∗C.

This is the key to the intuitive reading of ribbon proofs. In abox proof, the informal reading

of a formula is ‘this formula holds, given the hypotheses’, and for formulæ inside boxes ‘hy-

potheses’ must be considered to include the temporary assumptions of the box. This loosely cor-

responds to a truth-value reading of classical or intuitionistic logic. Any similar truth-theoretical

reading of BI needs to consider not only whether a formula holds, butwhereit holds, and this is

provided by the ribbons.

Ribbon proofs form an extension of box proofs, so all the box proof rules are used in the

familiar way. Premisses and conclusion for the box proof rules must all be selected from the

same ribbon. When boxes are used, they stretch the entire width of the proof1, and are drawn as

1This is not an essential feature of the system, but a design decision which we will stick to in this
paper, as the formalism we present incorporates it
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1. A∗ (B−∗C)

2. B assumption

3. A B−∗C ∗-elim

4. C −∗-elim

5. A∗C ∗-intro

6. B−∗(A∗C) −∗-intro

Figure 4.3:−∗ introduction and elimination

1. C−∗B C∗D E

2. C D ∗-elim

3. D∗E ∗-intro

4. B −∗-elim

5. B∗D∗E ∗-intro

Figure 4.4: Associativity of ribbons

a lighter line to distinguish them from ribbons.

Ribbon proofs add to box proofs introduction and elimination rules for the connectives

I ,∗,−∗. Figure 4.2 demonstrates both the ribbon proof rules for∗. ∗-elim is a two conclusion

rule: it splits a ribbon into two, concluding each conjunct in a new ribbons.∗-intro is graphically

symmetrical to∗-elim and combines two ribbons into one. The system we are developing is in

fact a multiple-conclusion logic, but quite different fromthe multiple-conclusion logic used to

study natural deduction. In this logic the multiple conclusions are to be understoodconjunctively

(in the sense of∗) rather than disjunctively. As will be pursued in more detail in later chapters,

the diagrams enforce a discipline of ‘book-keeping’ to ensure than the multiple conlusions are

used together correctly.

In Figures 4.3–4.6, we give several further examples of ribbon proofs. Figure 4.3 shows the

rules for−∗. The elimination rule parallels→ as expected, but rather than taking two premisses
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1. B−∗(A∧C)∗D∗B assumption

2. B−∗(A∧C)∗D B ∗-elim

3. B−∗(A∧C) D B ∗-elim

4. B−∗(A∧C) B D twist

5. A∧C D −∗-elim

6. A D ∧-elim

7. D A twist

8. D∗A ∗-intro

9. (B−∗(A∧C)∗D∗B)→(D∗A) →-intro

Figure 4.5: The ‘twist’ pseudo-rule

1. A assumption

2. A−∗B assumption

3. B −∗-elim

4. (A−∗B)−∗B −∗-intro

5. A→((A−∗B)−∗B) →-intro

Figure 4.6:→ and−∗ used together



4.2. Ribbon Monoids 42

from the same ribbon, it takes two premisses from different ribbons like∗-intro. The introduction

rule uses a box like→-intro, but the assumption is created in a fresh ribbon.

Figure 4.4 demonstrates how the notation for ribbons makes associativity of∗ automatic.

Figure 4.5 demonstrates a pseudo-rule ‘twist’, which permits horizontal permutation of ribbons;

this makes the system respect commutativity for∗ (it is perhaps better to think of this as commu-

tativity for the bunch-combining comma). Figure 4.6 is an example of combining the two ‘kinds’

of boxes (→ and−∗) in a single proof.

4.2 Ribbon Monoids

We define a particular class of partial commutative monoids,which we will call Ribbon Monoids.

This class characterises the monoids formed by the ribbons in ribbon proofs, and will be used in

our formalization of ribbon proofs in the next section.

Definition 15. The power set of a finite set X can be made into a PCM, defining, for a,b ⊆ X

a+b = a∪b if a and b are disjoint, undefined if they intersect. Furthermore, such PCMs have a

distinguished ‘top’ element, being the whole set. We will abuse notation and call this the PCM

P(X).

Note also that a non-empty subset of a power set can similarlybe considered as a PCM, as

long as it closed under disjoint union and complement. (A non-empty set contains an elementa,

so it contains its complementac and thena+ac = the entire setX, andXc = ∅ so it contains the

identity.) Henceforth, we will always be working with thesemonoids which have distinguished

top elements. As a point of notation, we will denote the identity of such a monoidM aseM , and

the top element as>M.

Definition 16. Define1 to be the PCM P({0}), the powerset of some singleton set. Define2 to

be P({0,1}), the powerset of a doubleton viewed as a PCM.

Now we define two composition operations on these monoids. Given two PCMsM andN

with distinguished top elements:

Definition 17. Define the vertical composition, M◦N, as follows. It has as carrier set the

quotient of M∪N under the equivalences eM = eN, >M = >N. The addition within each monoid

is preserved, and for a∈ M and b∈ N, a+ b is undefined unless one or the other of a and
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b is the identity. The definition as a quotient of M∪N gives rise to canonical injective maps

ιM : M −→ M ◦N andιN : N −→ M ◦N.

Definition 18. Define the horizontal composition, M•N as follows. It has carrier set M×N,

and we consider M and N to be contained in M•N by the injectionsιM : m 7→ 〈m,eN〉 and

ιN : n 7→ 〈eM ,n〉. We define〈a,b〉+ 〈a′,b′〉 = 〈a+a′,b+b′〉 if both sums are defined in M and N

respectively, noting that this definition preserves addition within the copies of M and N given by

the injections. The top element of M•N is the sum of the two top elements of M and N, that is

TM•N = 〈>M,eN〉+ 〈eM ,>N〉 = 〈>M,>N〉, and the identity is〈eM ,eN〉.

We will occasionally refer toM andN asfactorsof M •N.

Example 6. The PCM2 defined above is1•1.

Example 7. 1is an identity for◦.

In the exposition that follows, we shall see that all ribbon proofs have an underlying ribbon

monoid. The vertical composition operation◦ is the operation on these monoid which corre-

sponds to a vertical composition of ribbon proofs, and the horizontal composition• similarly

corresponds to a horizontal composition of proofs. There isa third operation, related to Cut

(substitution):

Definition 19. Given two monoids M and N, we can define Mextended byN ata∈M as follows.

We partition M into three sets: A= {b∈M : a+b↓}, B= {b∈M : a+b↑,b= a+c for some c},

C = {b∈ M : a+b ↑,b 6= a+c for any c}. Now we make a monoid on C∪ (A×N).

We define addition as follows. For c,c′ ∈C, addition is as in M.〈b,n〉+ 〈b′,n′〉 is defined as

〈b+b′,n+n′〉, defined if and only if the sums in M and N are defined. Finally c+ 〈b,n〉 is only

defined for n= eN, in which case it is defined as b+c if that sum is defined in M.

This can be seen as an extension ofM by the injectionsb 7→ b for b ∈ C, b 7→ 〈b,eN〉 for

b∈ A anda+c 7→ 〈c,>N〉 for b = a+c∈ B. There is also an injection fromN by n 7→ 〈eM,n〉,

Informally, the operation is ‘refining’ the monoid by addingmore elements ata, identifying

a with >N. Each such new element (which has the form〈eM ,n〉 in our construction) can be

combined with every element which could be combined witha (i.e. the elements ofA), giving

rise to the new elements of the form〈b,n〉.

Note thatM ◦N is M extended byN at the top element, (or1 extended byM and thenN at

the top element) andM •N is 2 extended byM andN at the two non-top, non-identity elements.
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Definition 20. We define the class ofribbon monoidsto be the smallest class containing1 and

closed under◦, • and extension.

Proposition 4 (Representation for ribbon monoids). Every ribbon monoidis isomorphic to a

PCM arising as the subset of a power set.

Proof. 1 has already been defined as a powerset. It suffices to show thatfor powerset monoids

M ⊂ P(X) andN ⊂ P(Y), M ◦N, M •N andM extended byN at a are isomorphic to powerset

monoids.

For M ◦N, we need a powerset to embedN andM. Our representations ofm∈ M andn∈ N

must not be disjoint for non-identitym andn, sincem+n ↑ ∈ M ◦N. We useP(X×Y). Each

elementm∈ M, which is really a setm⊂ X goes tom×Y ⊂ X×Y; similarly n∈ N 7→ X×n⊂

X×Y. Then certainlym+n ↑ as required since(m×Y)∩ (X ×n) = m×n which is∅ iff either

mor n is ∅. The new top element>M◦N is X×Y.

For M •N, we useP(X∪Y). M andN are included via the natural injections, and elements

〈m,n〉 are given bym∪n.

For M extended byN at a, we recall thata is a seta⊂ X and use the powersetP((X \a)∪

(a×Y)). The injection forM is given bym 7→ (m\a)∪ ((m∩a)×Y), and the injection forN is

n 7→ a×n.

Example 8. Consider the set M of all even-sized subsets of X= {1,2,3,4,5,6}. This is a PCM,

but it is not a ribbon monoid.

We also note that our ribbon monoids have a natural partial order, which is defined as follows:

Definition 21. For r,s elements of a ribbon monoid M, we define r≤ s if and only if there is some

t such that s= r + t.

That this is indeed a partial order follows from the representation theorem; on powerset

monoids≤ is ⊆.

4.3 Formalising Ribbon Proofs

We present a formalization of ribbon proofs. The formalization will extend the formalization of

box proofs in Chapter 2. Again, we work with a notion of an unfinished proof; in this case it

will be a ribbon structure, extending the notion of box structure. In ribbon proofs, the individual
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formulæ are not just arranged in lines, but also in ribbons. These ribbons will be formalized

by ribbon monoids as presented in Section 4.2; we will refer to the elements of ribbon monoids

simply as ribbons.

Definition 22. We define the following:

• A ribbon structureis a distinguishedbox;

• A box is a ribbon monoid, and a sequence oflinesandboxes. The monoid of each internal

box is a full submonoid of the ribbon monoid of the enclosing box.

• A line is a set of triples〈r, f , j〉 where

– r is a ribbon,

– f is a either a formula of (propositional) BI or the special non-formula ‘nothing’,

– j is a justification;

• A ribbon is an element of the monoid;

• A justification is one of the special justifications ‘hypothesis’, ‘assumption’, or ‘nothing’,

or the name of a ribbon proof rule, together with references to its premisses.

This notion corresponds with our informal depiction of ribbon proofs. A line is formalization

of a line on a page containing some formulæ. The triples are separated from each other by the

thick lines which represent ribbons. We draw thef component of the triples in the ribbons,

and we display thej component to the right of the proof; which works because the particular

ribbon structures we are interested in — ribbon proofs themselves — contain at most one distinct

non-nothing justification per line.

The most significant contribution of the notation is the way it indicates how one line relates

to the next: the thick lines connect triples with the same ribbon componentr; the r-component

of the triples, and the structure of the ribbon monoid as a whole, are implicit in the way we join

ribbons from one line to the next. The pseudo-ruletwist allows us to represent graphically the

situation when a ribbon we have chosen to draw on one side of the page appears in another line on

the other side of the page. The informal notation also establishes some of the additive structure

of the ribbon monoid: when we draw two ribbonss andt, say, in one line spanning exactly the

same horizontal space as one ribbonr in the next, we are denoting the monoid equalityr = s+ t.
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1. (A∗B)−∗C hypothesis

2. B assumption

3. A assumption

4. A B twist

5. A∗B ∗-intro

6. C −∗-elim

7. A−∗C −∗-intro

8. B−∗(A−∗C) −∗-intro

Figure 4.7: A proof using−∗ andtwist

Example 9. As an example, consider the ribbon proof in Fig. 4.7:

• the outermost box (the proof itself) has the two-element monoid {e,a} (i.e. P({0})),

• the first line contains the triple〈a,(A∗B)−∗C,hypothesis〉,

• the second line begins a box, which has the four element monoid {e,a,b,a+b},

• the first line of this box is{〈a,nothing,nothing〉 ,〈b,B,assumption〉},

• next there is a further box, with larger monoid{e,a,b,a+b,c,a+c,b+c,a+b+c},

• the first line of this innermost box is{〈a,nothing,nothing〉 ,〈b,nothing,nothing〉 ,〈c,A,assumption〉},

• the twist gives rise to the same line again (as our formalism works withsets of triples, not

sequences),

• the next line of this box is{〈a,nothing,nothing〉 ,〈b+c,A∗B,∗-intro〉},

• the final line is{〈a+b+c,C,−∗-elim〉},

• returning to the intermediate box we have the line{〈a+b,A−∗C,−∗-intro〉},
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• and then finallly in the outermost box again the line{〈a,B−∗(A−∗C),−∗-intro〉}.

4.3.1 Proper Ribbon Structures

We are not interested in all ribbon structures, but rather ones obeying certain well-formedness

conditions. We start with the notion of a ribbon structurecorresponding to a prebunch:

Definition 23. The ribbon structurecorresponding to a prebunchΓ, written RSΓ is defined as

follows by induction over the structure of prebunches. We will write the monoid ofRSΓ as MΓ,

and the identity and greatest elements in that monoid as eΓ and1Γ.

• The ribbon structureRSP corresponding to a formula P has a single line, with a single

triple 〈1,P,hypothesis〉, and MP is 1.

• RS∅a, corresponding to the ‘additive empty prebunch’ contains no lines, and M∅a is 1.

• RS∅m, corresponding to the ‘multiplicative empty prebunch’ isRSI .

• RSΓ;∆ has the ribbon monoid MΓ;∆ = MΓ ◦M∆. We form the lines and boxes ofRSΓ;∆ by

taking the linesRSΓ followed by all the lines of RS∆, translating all the ribbon-components

of the triples using the injections associated with◦ (ιMΓ andιM∆ ).

• MΓ,∆ = MΓ •M∆. RSΓ,∆ has all the lines ofRSΓ ‘alongside’ the lines ofRS∆. Where there

are enough lines, this means taking the (automatically disjoint) union of the sets of triples

in each line (translating the ribbons using the injections). Where one structure has fewer

lines (w.l.o.g.,RSΓ), it can be padded with lines of the form{〈1Γ,nothing,nothing〉}.

Note that this definition must be over prebunches;Γ ≡ ∆ does not forceRSΓ = RS∆.

Ribbon structures corresponding to bunches allow us to begin our proofs; they tell us how

to write down the hypotheses of our proofs. To continue our formalization of proofs we extend

these structures by accounting for the rules of ribbon proofs.

We define a set of ribbon structure transformations: rules for generating new ribbon structures

from old. The transformations correspond to the application, or partial application, of ribbon

proof rules. Most of the transformations havepremisses, just like the corresponding logical

rules. Most of them introduce a new line into a ribbon structure — theconclusionof the rule.

The conclusion lines are alwaysbased onsome previous line, meaning that the set of ribbons

used is computed from the set of ribbons in that line.
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Those rules which use boxes —→-intro, −∗-intro and∨-elim — are split into partial appli-

cations; one which introduces the box(es), and one which uses it(them).

Definition 24. A premissfor a ribbon structure transformation is a triple〈r, f , j〉 which occurs

somewhere in the ribbon structure.

Thescopeof a premiss contains all triples〈s,g,k〉 which occur later in the same box, or

within boxes which themselves occur later in this box, such that s≥ r. Conversely a premiss is

visible from another triple precisely if that triple is within its scope.

Definition 25. There are in all eighteen transformations, which we will call ∧-intro, ∧-elim,

∨-intro,→-elim,>-intro,⊥-elim,∗-intro,−∗-elim,∗-elim, I-intro, I-elim,Box→-intro, Use→-intro,

Box−∗-intro, Use−∗-intro, Box∨-elim,Use∨-elim and from line.

1. ∧-intro,∧-elim,∨-intro, →-elim,>-intro, from line

These transformations involve adding a single line to a structure. This line must be based

on an existing line in the structure; that means it must have exactly the same set of ribbons

in its triples. The new line will have only one non-nothing formula in it, called thecon-

clusion, in ribbon r say. There will be from zero to twopremisses, also in ribbon r. The

premiss lines, and the line the conclusion is based on, must both be either in the same box

as the conclusion or in some enclosing box. The triples in these lines are related as shown

in the following table:

Rule Conclusion Premisses

∧-intro 〈r,P∧Q,∧-intro〉 〈r,P, j〉 and〈r,Q, j ′〉

∧-elim 〈r,P,∧-elim〉 〈r,P∧Q, j〉 or 〈r,Q∧P, j〉

∨-intro 〈r,P∨Q,∨-intro〉 〈r,P, j〉 or 〈r,Q, j ′〉

→-elim 〈r,Q,→-elim〉 〈r,P→Q, j〉 and〈r,P, j ′〉

from line 〈r,P, from line〉 〈r,P, j〉

>-intro 〈r,>,>-intro〉 none

2. ∗-intro, −∗-elim, I-elim

These rules produce a new line with one fewer ribbons than theline it is based on. Some

pair r,s of ribbons is replaced with the single ribbon r+s, containing the conclusion of the

rule. The premiss triples may or may not come from the same line: one contains a formula
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in the ribbon r and the other contains a formula in the ribbon s. (I-elim is not so much a

rule in its own right, but a form of∗-intro recognising the identity between P and P∗ I. It

was included into the system out of a desire for symmetry; similar remarks apply to I-intro

and∗-elim). The forms of the premisses and conclusion are:

Rule Conclusion Premisses

∗-intro 〈r +s,P∗Q,∗-intro〉 〈r,P, j〉 and〈s,Q, j ′〉

−∗-elim 〈r +s,Q,−∗-elim〉 〈r,P−∗Q, j〉 and〈s,P, j ′〉

I-elim 〈r +s,P,∗-intro〉 〈r,P, j〉 and〈s, I , j ′〉

3. ∗-elim, I-intro

The∗-elim and I-intro transformations modify the monoid of the ribbon structure. In each

case some ribbon r is chosen, and then the monoid is modified byadjoining two fresh

elements s and t such that s+ t = r.

The monoid{e,s, t,s+ t} is the monoid2. We alter the ribbon monoid byextending it by

2 at r. We adjust all the existing lines by replacing the ribbons with those corresponding

under the natural injection into the extended monoid. Note that the ribbon structure this

produces will not mention ribbons s and t anywhere.

These rules have two conclusions, in a line based on some linewhich contained the ribbon

r, with r replaced by the two new ribbons s and t. The line will take the form shown in this

table:

Rule Conclusions Premisses

∗-elim 〈s,P,∗-elim〉 and〈t,Q,∗-elim〉 〈s+ t,P∗Q, j〉

I-intro 〈s,P, I-intro〉 and〈t, I , I-intro〉 〈s+ t,P, j〉

4. Box→-intro introduces a new box into a ribbon structure. This boxgoes into an existing

box, and inherits the monoid of that box (i.e. the injection between the monoids is an

isomorphism). The new box contains a single line, based on some previous line, containing

a single non-nothing triple, 〈P, r,assumption〉. The box is said to be focussed on ribbon r

with assumption P.

5. Use→-intro uses an existing box (created byBox→-intro) to add a line to the structure.

The box should contain only a single assumption P, in a ribbonr, say. The new line,
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which is to be placed immediately after the box, should be based on the last line of the box,

which should contain a formula Q in the same ribbon r. The new line contains its only

non-nothingtriple 〈r,P→Q,→-intro〉.

6. Box−∗-intro also adds a new box to a ribbon structure. However, in this case the monoid

is different. It is the monoid of the enclosing box, with a newelement r freely adjoined —

i.e. the new monoid is M•1, where r is the top element of the1 factor.

The only line in the new box is based on some previous line, andcontains all the ribbons

in that line (with nothing in them) plus additionally the triple 〈r,P,assumption〉.

7. Use−∗-intro uses box created byBox−∗-intro — that is, the box must have a monoid of the

form M•1, where M is the monoid of the enclosing box, usingιM from the definition of

• as the injection, and it must contain a single assumption of the form〈r,P,assumption〉,

where r is the ribbon corresponding to the1 factor. A new line is created after the last line

of the box, based on it. The last line of the box must contain a triple 〈s+ r,Q, j〉. The new

line has the ribbon s+ r replaced by s, with the triple〈s,P−∗Q,−∗-intro〉.

8. Box∨-elim, unlike the otherBox transformations, has a premiss. This takes the form

〈r,A∨B, j〉, and the transformation creates two single-line boxes, both of which must

be based on the same line containing r, one containing〈r,A,assumption〉 and the other

〈r,B,assumption〉.

9. Use∨-elim can be used when both boxes have arrived at the same conclusion〈s,C, j〉 (note

that s need not be r) in their last lines. The conclusion is〈s,C,∨-elim〉.

Definition 26. A proper ribbon structureis a member of the smallest class that contains all

ribbon structures which correspond to bunches, and is closed under this set of ribbon structure

transformations.

Given such a proper ribbon structure, we want to be able to retrieve the bunch that it was

‘based’ on. That this is possible is a form of coherence theorem for the above inductive definition.

Unfortunately, we can’t derive a unique bunch up to≡. We need a stronger relation which we

will call ≈.

Definition 27. The relation≈ on BI bunches is the smallest such which includes≡ and satisfies

∆(∅m) ≈ ∆(I).
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Note that sinceI ` P if and only if ∅m ` P, ≈ preserves consequents.

Lemma 1. Given two bunchesΓ and∆, if RS∆ = RSΓ thenΓ ≈ ∆.

Given this lemma, we will refer to a structure as being based on Γ, remembering thatΓ will

only be defined up to≈. These proper ribbon structures formalize the notion of a ribbon proof

under construction. A complete ribbon proof is simply such astructure which is ‘finished’:

Definition 28. A ribbon proofis a proper ribbon structure in which every box except the outer-

most has beenusedby the appropriate rule, and whose last line contains only a single ribbon,

containing a formula P. It is said to be a proofof Γ ` P, whereΓ is the bunch that the structure

is based on (up to≈).

4.3.2 Soundness and Completeness

We show that ribbon proofs are a sound and complete system by proving their equivalence to

LBI, which is known to be sound and complete. We will outline in some detail the proofs of

relative soundness, that every theorem provable with ribbon proofs is LBI provable, and relative

completeness, that every theorem provable in LBI has a ribbon proof. Since both proofs proceed

by cases for each ribbon proof rule, we give only the base cases and a representative selection of

the rule cases.

We need some auxiliary concepts.

Definition 29. A ribbon bunchis a bunch based on ribbons (elements of the ribbon monoid of a

box of a proof) instead of propositions. Given a particular ribbon monoid M, let the set of ribbon

bunches over M be denotedRB(M). We define a partial interpretation function[−] : RB(M) ⇀ M

into ribbons as follows:

• [r] = r for a ribbon r,

• [R;S] = [R] = [S] if they are indeed equal, undefined if they are not equal,

• [R,S] = [R]+ [S] if that addition is defined in M, undefined if not.

Definition 30. Thevisible hypothesesfrom a particular triple〈r,P, j〉 at a particular line of a

proof are thosevisible triples 〈s,Q,k〉 such that one of the following holds:

• k is assumption or hypothesis, or



4.3. Formalising Ribbon Proofs52

• k is∗-elim or I-intro and the corresponding triple〈s′,R,∗-elim〉 satisfies s′ 6≤ r.

What we are trying to do is, for each formulaP in the proof, work out which hypotheses it

could have been proved from. The delicate part is the inclusion of the∗-elim conclusions: these

formulæ are neither assumptions nor hypotheses in the normal sense, but nonetheless they are

the only way of formulating a local hypothesis notion like this.

1. A−∗C A∗B hypothesis

2. A B ∗-elim

3. C −∗-elim

4. C∗B ∗-intro

Figure 4.8: Example of visible hypotheses

For example, consider the proof in Figure 4.8. It has two hypothesesA−∗C andA∗B, struc-

tured as the bunchA−∗C,A∗B. Now consider the formulaC in line 3: how is it justified? It is

not the case thatA−∗C,A∗B`C. However, using this definition of visible hypothesis,A∗B is

not visible fromC, since thes≤ r condition is violated. However, the∗-elim conclusionA is a

visible hypothesis, and the theorem which justifiesC is A−∗C,A`C.

Continuing this example, in the final line of the proof according to the definitionA andB are

not visible hypotheses: only one of such a pair is ever a hypothesis; once both are visible they

are no longer hypotheses in this sense, being superseded byA∗B – or rather, its hypotheses, and

the final line is justified by the theoremA−∗C,A∗B`C∗B. Indeed we will say that Figure 4.8

is a proof of A−∗C,A∗B `C∗B. This account is slightly complicated by boxes, but only in an

inessential way.

This complex notion of visible hypothesis then is designed to reduce to the notion of hypoth-

esis at the end of a proof, where just a single ribbon of full width remains.

We construct inductively the hypotheses visible at each point in a proof. We start with a

related notion: the ribbon bunch at every ribbon. This represents those ribbons which potentially

contain hypotheses visible from that point.

Definition 31. For every non-identity ribbon r in a box b of a proper ribbon structure RS we

construct a ribbon bunchRRS(r,b). For the outermost box we will write simplyRRS(r). We

define it by induction over the construction of proper ribbonstructures.
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Let RSΓ be the ribbon structure corresponding to the prebunchΓ. Let the ribbon monoid of

RSΓ be MΓ. We defineRRSΓ(r):

• Γ = P, a single formula. Then the monoid MΓ has a single non-identity element, r say, and

RRSΓ(r) = r;

• Γ = ∆1;∆2. Then MΓ = M∆1 ◦M∆2. For any ribbon r∈ M∆i other than the top element1∆i

we setRRSΓ(r) =RRS∆i
(r) identifying elements under the standard injection. . For the top

element,RRSΓ(>Γ) = RRS∆1
(>∆1);RRS∆2

(>∆2), identifying elements as before;

• Γ = ∆1,∆2. Then MΓ = M∆1 •M∆2. For every ribbon r∈ M∆i we setRRSΓ(r) = RRS∆i
(r)

identifying elements under the standard injection.

For the new elements r+ s (r ∈ M∆1, s∈ M∆2), we setRRSΓ(r + s) = RRS∆1
(r),RRS∆2

(s)

under the identification.

For ribbon structures produced by use of the transformations:

• Most of the rules —∧-intro, ∧-elim, ∨-intro, →-elim, ⊥-elim, ∗-intro, −∗-elim, I-elim,

Use−∗-intro, Box→-intro, Use→-intro, Box∨-elim, Use∨-elim and from line — do not

alter the monoid of the ribbon structure. These transformations leave all theR(r) un-

changed. The boxes created by the additiveBox rules inherit the monoid of the outer box,

and they inherit all the ribbon bunches too;

• ∗-elim and I-intro add two fresh elements to the monoid; call them r1 and r2. We set

R(r i) = r i . The modification of the monoid also generates new elements ri + t for certain

t, and we setR(r i + t) = R(r i),R(t);

• Box−∗-intro creates a box, c say, inside a box b; the monoid inside the box is based on

the monoid outside the box. For ribbons which existed in b,R(r,c) = R(r,b) — i.e. the

ribbons are identified by the injection of ribbon monoids. The box introduces a new ribbon

s, and we setR(s,c) = s. For each old element r there is the element r+ s, and we set

R(r +s,c) = R(r,c),R(s,c) (= R(r,b),s).

Lemma 2. For every triple〈r,P, j〉 in a ribbon proof,R(r) has the following properties:

1. [R(r)] = r ,
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2. R(r) contains all ribbons which contain hypotheses visible fromthe triple,

Proof. Both 1 and 2 are proved by induction over the construction of proper ribbon structures.

Note thatR(r) is defined even for ribbonsr which never ‘occur’ in the proof: there may be no

triples mentioning them.

1. We will prove part 1 for allr, not justr occuring in triples, this slightly stronger statement

helps the induction go through.

For the ribbon structure corresponding to a bunchΓ:

• Γ = P a single formula, there is one ribbonr, R(r) = r, and[r] = r,

• Γ = ∆1;∆2

If r is not the top ribbon, thenRRSΓ(r) = RRS∆i
(r), and[RRS∆i

(r)] = r by induction,

so [RRSΓ(r)] = r because the canonical injections are homomorphisms.

If r is the top ribbon (>Γ = >∆1 = >∆2 under the injections), then

[RRSΓ(>Γ)] = [RRS∆1
(>∆1);RRS∆2

(>∆2)] = >Γ

since, by induction,[RRS∆i
(>∆i )] = >∆i , and>Γ = >∆1 = >∆2 under the injection.

• Γ = ∆1,∆2

For r ∈ M∆i , [RRS∆i
(r)] = r by induction, and[RRSΓ(r)] = r because the injections

are homomorphic.

For r = s1 +s2, si ∈ M∆i ,

[RRSΓ(r)] = [RRS∆1
(s1),RRS∆2

(s2)] = [RRS∆1
(s1)]+ [RRS∆2

(s2)] = s1 +s2 = r

using once again the ribbon homomorphisms.

For a ribbon structure generated by a transformation, we note, just as in Definition 31, that

most of the transformations leave the monoid and theR(r) untouched, so there is nothing

to prove. The ones that don’t are∗-elim, I -intro andBox−∗-intro.

∗-elim, I -intro add two new elements to the monoid. There is an injection fromthe old

monoid to the new, induced by the definition of extension. If aribbon r was present in the

original monoid then[R(r)] = r by the fact that these injections are homomorphic. Ifr
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is one of the two new elements introduced by the extension then R(r) = r and[R(r)] = r

trivially. If r = s+ t is the sum of a new element and an original element, then we have

[R(r)] = [R(s),R(t)] = [R(s)]+ [R(t)] = s+ t = r

Box−∗-intro generates a new monoid for the its new box which is formed by adjoining a

new element to the original monoid using•, and once again there is an injection into the

new monoid. For pre-existingr we have again[R(r)] = r by the homomorphism. For the

new element we have simplyR(r) = r. For elements of the formr = s+ t, again:

[R(r)] = [R(s),R(t)] = [R(s)]+ [R(t)] = s+ t = r

This completes the proof of part 1.

2. Recall that part of the definition of ‘visible’ entails that, for 〈s,Q, j ′〉 to be visible from

〈r,P, j〉, s≤ r.

For the ribbon structureRSΓ corresponding to a prebunchΓ:

• Γ = P a single formula, there is one ribbonr, and the result is automatic,

• Γ = ∆1;∆2, soMΓ = M∆1 ◦M∆2

For r not a top ribbon, the◦ operation adds no new ribbons≤ r, soRRS∆i
(r) suffices.

For r the top ribbon, therearenew ribbons≤ r which might contain visible hypothe-

ses. But these hypotheses are either in∆1 or ∆2, and by induction, the ribbons they

occur in are represented inRRS∆i
. Therefore they are included inRSΓ by construc-

tion.

• Γ = ∆1,∆2

For any ribbonr which lies ‘within’ ∆1 or ∆2, there can be no new hypotheses visible

from r. For a ribbon which is the sumr1+ r2 of ribbons from∆1 and∆2 respectively,

the the construction ensures thats≤ r must be≤ r1 or ≤ r2. Any s≤ r1 wiill be

within ∆1, and hence be included there, and correspondingly withr2.

For a ribbon structure produced by transformations, we onlyhave to consider the rules

∗-elim, I -intro, andBox−∗-intro, since the others do not modify the ribbon monoid. These

three transformations introduce new elements into the monoid which might (indeed, which
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definitely do) contain hypotheses. For each such new elements we only need to consider

ribbonsr ≥ s. Suchr are newly created elements of the forms+ t, and by definition the

ribbon bunches there includesas required.

We note that these bunches will in fact contain each ribbon atmost once, but since we will

not need to use this fact we will not prove it.

Definition 32. The corresponding sequentto a formula P in ribbon r of a ribbon proof is a

sequentΓ ` P, whereΓ is a bunch (of BI formulæ) constructed from the ribbon bunchR(r) of

Lemma 2 by replacing each ribbon s with a bunchΓs. Γs is an additive bunch (i.e. semicolon-

separated) containing each hypothesis in s visible from P inr. If there are none, thenΓs = ∅a.

The notion of corresponding sequent, althought slightly delicately defined, is just a formal-

ization of the question ‘What have we proved at this point?’.

However, the bunches in the sequents may not be exactly the most natural; they may differ

by a class of bunches which have no power for provability.

Definition 33. A generalized empty bunchis a bunch built up from copies of the additive empty

bunch∅a using ‘,’ and ‘;’. Formally,

genempty = ∅a | genempty,genempty | genempty;genempty

We will use∅x,∅y to stand for generalized empty bunches.

Lemma 3. Generalized empty bunches have no provability power: if∅x ` P and∅x is a gener-

alized empty bunch then∅a ` P. In fact, if ∆(∅x) ` P and∅x is a generalized empty bunch then

∆(∅a) ` P

Proof. Let Q be the formula obtained from∅x by replacing each∅a with >, each comma with∗

and each semicolon with∧.

If ∆(∅x) ` P, then by repeated application of∗L, ∧L and>L, we have∆(Q) ` P. It suffices

to prove that∅a ` Q for then the result follows by Cut.

∆(∅x) ` P
·
·
· ∗L,∧L,>L

∆(Q) ` P

·
·
·

∅a ` Q
Cut

∆(∅a) ` Q
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Q is a formula constructed entirely from>,∗,∧. We prove that∅a ` Q by induction on

structure ofQ.

• The base case∅a ` > is>R;

• If Q = Q1∧Q2 then by induction∅a ` Qi (i = 1,2), and:

∅a ` Q1 ∅a ` Q2
∧R

∅a;∅a ` Q1∧Q2
≡

∅a ` Q1∧Q2

• If Q = Q1∗Q2 then by induction∅a ` Qi (i = 1,2), and:

∅a ` Q1
W

∅a;∅m ` Q1
≡

∅m ` Q1 ∅a ` Q2
∗R

∅m,∅a ` Q1∗Q2
≡

∅a ` Q1∗Q2

Given this lemma, we will add a derived proof rule ‘GenEmpty’:

∆(∅x) ` P
GenEmpty

∆(∅a) ` P

As a particular case, we will slightly abuse notation by absorbing uses of≡ into the rule, as in:

∆;∅x ` P
GenEmpty

∆ ` P

Proposition 5. In a ribbon proof ofΓ ` P the corresponding sequent to the conclusion P as it

occurs in the final line of the proof isΓ ` P.

Proof. Note that only hypotheses from the inital bunch can still be visible atP (all boxes must

have closed, and both conclusions of any∗-elim will be visible).

We will prove relative soundness by showing, for every proofrule, that the corresponding

sequent at the conclusion can be deduced from the corresponding sequents at the premisses of

the rule, and the structure of the proof. To do this, we need tobe able to characterise to an extent

the syntactic form of these sequents.

Definition 34. Given a bunchΓ, consider the set ofweakeningsof Γ. That is, the set containing

Γ and closed under the transformation∆(Ξ) 7→ ∆(Ξ;Ξ′). We will use the notation W(Γ) to stand
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for any member of this set. Note that, by repeated application of the rule of weakening, ifΓ ` P

then W(Γ) ` P.

Similarly, given a ribbon bunchR, we define the set ofweakeningsof R, where any sub-

bunchS can be replaced byS;S ′ as long as[S ′] = [S]; i.e., as long as the new bunch still obeys

the conditions of Lemma 2. We will use the notation W(R) for any weakening ofR.

Definition 35. Fixing a particular ribbon proof, given a ribbon bunchR over some ribbon

monoid in the proof, we define a bunchR∗ which is the result of iteratively replacing withinR

every subbunch of the form s1,s2, where s1 and s2 are a pair of ribbons introduced by a use of

the∗-elim or I-intro rules, with the ribbon bunchR(s1 +s2).

We will use the notation W∗(R) for this procedure having been applied to some weakening

ofR.

Definition 36. For a fixed ribbon proof, given a bunchΓ, we consider the set of containing all

weakenings ofΓ and further closed under the operation of replacing subbunches of the form S,T

with Ξ whereΞ ` S∗T is a corresponding sequent in the proof. We will use the notation W∗(Γ)

to refer to a generic member of this set.

Observe that when constructing a corresponding sequent, ifthe ribbon bunch has the form

W∗(R) then the sequent will be of the formW∗(Γ) `P, whereΓ would be the result of construct-

ing a corresponding sequent fromR.

Lemma 4. The following hold of corresponding sequents in a ribbon proof:

1. If P, Q occur in that order in the same ribbon r in a proof, with P visible from Q, then the

corresponding sequents will have the formΓ;∅x ` P, Γ;∆ ` Q.

2. If P is a formula in ribbon r, Q in s and R in r+ s, with P and Q visible from R, then the

corresponding sequents take the formΓ;∅x ` P, ∆;∅y ` Q and W∗(Γ,∆) ` R.

Proof. Again we proceed by induction over the construction of ribbon structures, starting with

those corresponding to a bunchΓ.

1. By induction over the construction of ribbon structures.For ribbon structures correspond-

ing to bunches, this is by induction of the structure of bunches:

• For∅a, there are no formulæ in the structure.
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• For ∅m, and for a single formulaP, there is only one formula in the proof soP = Q

and both sequents are the same.

• For a bunch of the formΓ,∆, there are no ribbons in common between theΓ and∆

portions of the structure, so both formulæ must occur together in one or the other,

and the result holds by induction on those simpler structures.

• For a bunch of the formΓ;∆, if the ribbon r is not the top ribbon, then it either

lies entirely within the portion of the structure corresponding to Γ, or the portion

corresponding to∆, and we are done by induction.

It remains to consider the case that the ribbonr is the top ribbon. Each ofP andQ

lies either withinΓ or ∆. The two formulæ, being in the same ribbon, share the same

ribbon bunchR(r). The corresponding sequents are constructed in each case from

this bunch.

If both P andQ lie entirely withinΓ then, by induction, they have bunches of the form

Γ′;∅y `P, andΓ′;∆′ `Q when viewed as formulæ inRSΓ. Now viewed inRS∆;Γ each

corresponding bunch has been augmented to, say,Ξ1;Γ′;∅y ` P, andΞ2;Γ′;∆′ ` Q,

but Ξ1 = Ξ2 since no hypothesis in∆ is visible from Γ — in fact, theΞi will be

generalized empty bunches — so the bunches have the requiredform.

The case whenP andQ lie entirely within ∆ is almost identical, except that all hy-

potheses inΓ will be visible fromP andQ alike, and thus theΞi will now each contain

all hypotheses inΓ and once againΞ1 = Ξ2 and the bunches have the required form.

The remaining case is thatP lies in ∆ andQ in Γ. Now ∆ is actually of the form

∆0;P;∆1, andΓ = Γ0;Q;Γ1, so that the whole bunch is∆0;P;∆1;Γ0;Q;Γ1. Now the

corresponding sequent forP is of the form∆0;P;∅x ` P, and forQ is of the form

∆0;P;∆1;Γ0;Q;∅y ` Q, and these are as required.

For ribbon structures produced by transformations, most ofthe transformations do not

introduce new hypotheses and hence do not change corresponding sequents. However they

do introduce new formulæ and hence introduce new corresponding sequents. Each new

formula has in its corresponding sequent the same antecedent as a pre-existing formula in

the same ribbon in the previous line, and we are done by induction.

The rulesBox→-intro, Box∨-intro and Box−∗-intro do introduce new hypotheses and
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need separate treatment. In each case the condition thatP be visible fromQ requires that

Q must be the new hypothesis. In the case of the additive connectives, the corresponding

sequent atQ is then of the formΓ;Q` Q whereΓ is the antecedent of any previous formu-

lae in that ribbon at that point in the proof, which is the required form by induction. In the

case ofBox−∗-intro, bothP andQ must be the new hypothesis, since no other formula is

visible from it, and both corresponding sequents are simplyP` P.

2. We first prove that we will always haveR(r +s) = W∗(R(r),R(s)).

For ribbon structures corresponding to bunches, this is proved by induction over the con-

struction of bunches: in the base case there are no such (non-trival) sums of ribbons.

Construction using ‘;’ yields no new sums, but can modify theribbon bunch of the top

ribbon to include a weakening.

Construction using ‘,’ by definition producesR(r +s) = R(r),R(s) for all new sums and

leaves old sums untouched.

For ribbon structures produced by transformations, the rules —∧-intro, ∧-elim, ∨-intro,

→-elim,⊥-elim, ∗-intro,−∗-elim, I -elim, Use−∗-intro, Box→-intro, Use→-intro, Box∨-elim,

Use∨-elim andfrom linedo not alter the monoid and produce no new sums.

∗-elim andI -intro add a pair of new elements, and several new sums to consider. Lets1,s2

be the new elements, and note thatR(si) = si . For sums of the formr + si with r a pre-

existing element, the definition setsR(r +si) = R(r),si and the result holds. For sums of

the form(r +si)+ r ′ with r, r ′ pre-existing, we have:

R(r +si + r ′) = R(r + r ′ +si)

This is the case we just dealt with, so

= R(r + r ′),si

Now, r + r ′ was a ribbon which existed before this rule use, and its ribbon bunch is un-

changed. There we invoke induction and:

= W∗(R(r),R(r ′)),si = W∗(R(r),si ,R(r ′))

as required.
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The final kind of sum is one of the form(r +s1)+ (r ′ +s2):

R(r +s1 + r ′ +s2) = R(r + r ′ +s1 +s2)

But r + r ′ ands1 +s2 are both preexisting ribbons, their ribbon bunches have notchanged,

and using the inductive hypothesis once on this sum, and thenonce again on the sumr + r ′

we have:

= W∗(R(r + r ′),R(s1 +s2)) = W∗(R(r),R(r ′),R(s1 +s2))

Now using the definition ofW∗ we can replace a copy ofR(s1 +s2) with s1,s2

= W∗(R(r),R(r ′),s1,s2)

We already remarked thatR(r +s1) = R(r),s1 so

= W∗(R(r +s1),R(r ′ +s2))

Box−∗-intro is a slightly simpler case. The monoid inside the new box has one additional

element,s, say. We need to consider new sumsr + s and(r + s)+ t, which are precisely

the same as two of the cases for∗-elim.

This completes the proof thatR(r +s) is of the formW∗(R(r),R(s)).

Therefore we conclude that given corresponding sequents for P andQ of the form∆;∅x `P

and ∆;∅y ` Q, (being based on the ribbon bunchesR(r) andR(s)), the corresponding

sequent forR will be of the formW∗(Γ,∆), as required.

Now we are in a position to move on to our main results.

Theorem 9 (Relative Soundness). If there is a ribbon proof of a sequentΓ ` P, then it is a

theorem of LBI.

Proof. We prove the stronger statement that in a given ribbon proof,every corresponding sequent

is a theorem of LBI.

We fix a particular ribbon proofΓ ` P, and we work through the proof line by line, proving

for each triple that the corresponding sequent is an LBI-theorem. By induction, we assume that

all corresponding sequents for triples in previous lines are LBI-theorems. Our proof goes into

boxes as they occur in the proof.
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The base step concerns hypotheses. The corresponding sequent to a hypothesis is a (general-

ized) axiom sequentΓ;P` P.

There is an inductive step for each of the ribbon proof rules.We will prove here a representa-

tive selection. For each case, we show in Fig. 4.9 a general ribbon proof using the rule, annotated

with the corresponding sequents at the important points, and show the LBI proof that the sequent

corresponding to the conclusion follows from the other sequents.

The proof is quite formulaic, and we display the key ideas in atable. For each rule, we

indicate the form of the corresponding sequent(s) for the premiss triple(s), the form of the cor-

responding sequents for the conclusion triple, and the LBI rules needed to make the proof. For

most of the cases, an illustration of the ribbon proofs, together with the required LBI proofs, are

shown in Figs. 4.9– 4.10. In each case the fact that the corresponding sequents do indeed take

the form shown is a consequence of the various parts of Lemma 4. The strange entry for∗-elim

merits a comment. The ‘rule’ corresponding to∗-elim is of course∗L, but the nature of the sys-

tem is that the∗L rules are applied not when∗-elim is applied, but later in the proof, when the

ribbons are eventually recombined. In fact, the uses of∗L are all concealed within the technical

notion ofW∗ defined above.

Rule Premisses Conclusion LBI rules

∧-intro Γ0;∅x ` P, Γ0;Γ1;∅y ` Q Γ0;Γ1;Γ2 ` P∧Q ∧R, structurals

∧-elim Γ0;∅x ` P1∧P2 Γ0;Γ1 ` Pi ∧L, Cut, structurals

∨-intro Γ0;∅x ` P Γ0;Γ1 ` P∨Q ∨R, structurals

∨-elim Γ0;∅x ` P∨Q, Γ0;Γ1;P` R, Γ0;Γ1;Q` R Γ0;Γ1 ` R ∨L, structurals

→-intro Γ0;P` R Γ0 ` P→R →R

→-elim Γ0;∅x ` P→Q,Γ0;Γ1;∅y ` P Γ0;Γ1;Γ2 ` Q →L, Cut, structurals

∗-intro Γ0 ` P,Γ1 ` Q W∗(Γ0,Γ1) ` P∗Q ∗R, weakening

∗-elim Γ0 ` P∗Q P` P,Q` Q axioms

−∗-intro Γ0,P` Q Γ0 ` P−∗Q −∗R

−∗-elim Γ0 ` P, Γ1 ` P−∗Q W∗(Γ0,Γ1) ` Q −∗L, weakening

I -intro Γ0 ` P P` P, ∅m ` I axioms,IR

I -elim Γ0 ` P, Γ1 ` I W∗(Γ0,Γ1) ` P IL, Cut
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1. P Γ0;∅x ` P

...

n. Q Γ0;Γ1;∅y ` Q

...

m. P∧Q Γ0;Γ1;Γ2 ` P∧Q

Γ0;∅x ` P
GenEmpty

Γ0 ` P

Γ0;Γ1;∅y ` Q
GenEmpty

Γ0;Γ1 ` Q
∧R

Γ0;Γ0;Γ1 ` P∧Q
C

Γ0;Γ1 ` P∧Q
W

Γ0;Γ1;Γ2 ` P∧Q

∧-intro

1. P∧Q Γ0;∅x ` P∧Q

...

n. P Γ0;Γ1 ` P

Γ0;∅x ` P∧Q
GenEmpty

Γ0 ` P∧Q

P` P
W

P;Q` P
∧L

P∧Q` P
Cut

Γ0 ` P
W

Γ0;Γ1 ` P

∧-elim

1. P Γ0;∅x ` P

...

n. P∨Q Γ0;Γ1 ` P∨Q

Γ0;∅x ` P
GenEmpty

Γ0 ` P
∨R

Γ0 ` P∨Q
W

Γ0;Γ1 ` P∨Q

∨-intro

1. P∨Q Γ0;∅x ` P∨Q

2. P

...

n. R Γ0;Γ1;P` R

n+1. Q

...

m. R Γ0;Γ1;Q` R

m+1. R Γ0;Γ1 ` R

Γ0;Γ1;P` R Γ0;Γ1;Q` R
∨L

Γ0;Γ1;P∨Q` R

Γ0;∅x ` P∨Q
GenEmpty

Γ0 ` P∨Q
Cut

Γ0;Γ1;Γ0 ` R
C

Γ0;Γ1 ` R

∨-elim

Figure 4.9: Some cases of relative soundness
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1. P P−∗Q Γ0 ` P Γ1 ` P−∗Q

...
...

n.

n+1. Q ((Γ0;Γ2),(Γ1;Γ3));Γ4 ` Q

Γ0 ` P
W

Γ0;Γ2 ` P Q` Q
−∗L

(Γ0;Γ2),P−∗Q` Q

Γ1 ` P−∗Q
W

Γ1;Γ3 ` P−∗Q
Cut

((Γ0;Γ2),(Γ1;Γ3)) ` Q
W

((Γ0;Γ2),(Γ1;Γ3));Γ4 ` Q

−∗-elim - simplest case

1. . . . S0 ∗T0 S1∗T1 . . . Σ0 ` S0∗T0 Σ1 ` S1∗T1

2. S0 T0 S0 ` S0 T0 ` T0

3. S1 T1 S1 ` S1 T1 ` T1

4.

5. P P−∗Q Γ0,S0,S1 ` P Γ1,T0,T1 ` P−∗Q

6. Q Γ0,Σ0,Σ1,Γ1 ` Q

Γ0,S0,S1 ` P Q` Q

Γ0,S0,S1,P−∗Q` Q Γ1,T0,T1 ` P−∗Q
Cut (and≡)

Γ0,S0,T0,S1,T1,Γ1 ` Q
∗L

Γ0,S0,T0,S1 ∗T1,Γ1 ` Q
∗L

Γ0,S0 ∗T0,S1∗T1,Γ1 ` Q Σ0 ` S0∗T0
Cut

Γ0,Σ0,S1∗T1,Γ1 ` Q Σ1 ` S1∗T1
Cut

Γ0,Σ0,Σ1,Γ1 ` Q

−∗-elim - with 2 pairs of∗-elim formulæ involved

1. P Q Γ0 ` P Γ1 ` Q

...
...

n.

n+1. P∗Q ((Γ0;Γ2),(Γ1;Γ3));Γ4 ` P∗Q

Γ0 ` P
W

Γ0;Γ2 ` P

Γ1 ` Q
W

Γ1;Γ3 ` Q
∗R

((Γ0;Γ2),(Γ1;Γ3)) ` P∗Q
W

((Γ0;Γ2),(Γ1;Γ3));Γ4 ` P∗Q

∗-intro

Figure 4.10: Some more cases of relative soundness
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Theorem 10(Relative Completeness). For every theoremΓ ` P of LBI, there is a ribbon proof

with a single ribbon containing the formula P as its last line, such that the sequent at P isΓ ` P.

Sketch.We prove this by induction over the rules used in the LBI proofof Γ ` P, showing that

there is a ribbon proof of every sequent occuring in the proof.

The base case is again the axiom sequentP ` P. The ribbon proof of that is two lines,

containing the formulaP once as a hypothesis, and once as the conclusion of thefrom linerule.

There is an induction step for each of the LBI rules. Again, weprove here only a few cases.

Every case is a straightforward transformation on proofs. Each case discussed is illustrated in

Figs. 4.11– 4.13.

• ∧L : By induction, we have a ribbon proofΓ;A;B ` P. We transform it by adding a

hypothesisA∧B above the hypothesesA andB. Then we change the justifications ofA

andB from hypothesisto ∧-elim, with the premiss the newly added hypothesis, and leave

the rest of the proof the same.

• ∗R : By induction we have ribbon proofs ofΓ0 `P andΓ1 `Q, and we place them side-by-

side and add a final∗-intro step. The formal definition of placing side-by-side is analagous

to the notion used to construct the ribbon structure corresponding to a bunch(∆,Γ).

• ∗L : We have by induction a ribbon proof ofΓ,A,B`P. We write this proof such thatA and

B occur as horizontally adjacent hypotheses (may require useof twist), and we transform

it by placing immediately aboveA andB the new hypothesisA∗B. We then alterA andB

to no longer be hypotheses, but instead derived fromA∗B by ∗-elim, and leave the rest of

the proof intact.

• −∗R : By induction we have a ribbon proof ofΓ,P`Q. We construct a proof ofΓ ` P−∗Q

using−∗-intro as the final step, and inserting the given proof inside the boxproduced by

the−∗-intro rule.

• ≡ : Suppose we have a ribbon proof ofΓ`Pand we wish to convert it into a ribbon proof of

∆`Pwhere∆≡Γ. Consider the different aspects of≡. A commutation around a ‘;’ simply

changes the order of some hypotheses without altering theirribbons, and won’t affect the

proof. A commutation around a ‘,’ will make no different at all, since our formalization is

in fact commutative for ‘,’ (because we deal with sets of triples not sequences). Addition
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or removal of∅a is totally invisible to ribbon proofs. The most problematicis the unit laws

for ∅m, since∅m is represented in ribbon proofs byI . However the original structure can

be restored in each case by applications ofI -intro andI -elim.

So, ribbon proofs really do form a proof system for BI. Ribbonproofs incorporate ribbon

monoids in a way which appears to be modelling a fragment of BI. Noting this fact, it is tempting

to make the following conjecture:

Conjecture 1. BI is complete not only for PCMs, but for the smaller class of ribbon monoids.

This however does not hold. For example, consider is the non-theorem(A,B); I ` (A∧ I) ∗

(B∧ I). The counterexample to this non-theorem must contain non-identity worldsa, b such that

a+b = e. This is not possible in ribbon monoids.
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Γ(A;B) ` P
∧L

Γ(A∧B) ` P

1. Γ hypotheses

2. A hypothesis

3. B hypothesis

4. P

1. Γ hypotheses

2. A∧B hypothesis

3. A ∧-elim

4. B ∧-elim

5. P

Γ ` P ∆ ` Q
∧R

Γ;∆ ` P∧Q

1. Γ hypotheses

...

n. P

1. ∆ hypotheses

...

n. Q

1. Γ hypotheses

2. ∆ hypotheses

...

n. P

...

m. Q

m+1. P∧Q ∧-intro

Γ(P) ` R Γ(Q) ` R
∨L

Γ(P∨Q) ` R

1. Γ hypotheses

2. P hypothesis

3. R

1. Γ hypotheses

2. Q hypothesis

3. R

1. Γ hypotheses

2. P∨Q hypothesis

3. P assumption

4. R

5. Q assumption

6. R

7. R ∨-elim

Figure 4.11: Some cases of relative completeness
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Γ ` P
∨R

Γ ` P∨Q

1. Γ hypotheses

...

n. P

1. Γ hypotheses

...

n. P

n+1. P∨Q ∨-intro

Γ ` P ∆(Ξ;Q) ` R
→L

∆(Ξ;Γ;P→Q) ` R

1. Γ hypotheses

...

n. P

1. ∆ hypotheses

2. Ξ hypotheses

3. Q hypothesis

4. R

1. ∆ hypotheses

2. Ξ hypotheses

3. Γ hypotheses

4. P→Q hypothesis

5. P

6. Q →-elim

7. R

Γ,P` Q
→R

Γ ` P→Q

1. Γ hypotheses

2. P hypothesis

...

n. Q

1. Γ hypotheses

2. P assumption

...

n. Q

n+1. P→Q →-intro

Figure 4.12: Some cases of relative completeness
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Γ(A,B) ` P
∗L

Γ(A∗B) ` P

1. Γ hypotheses

2. A B hypotheses

3. P

1. Γ hypotheses

2. A∗B hypothesis

3. A B ∗-elim

4. P

Γ0 ` P Γ1 ` Q
∗R

Γ0,Γ1 ` P∗Q

1. Γ0 Γ1

...
...

n. P Q

n+1. P∗Q ∗-intro

Γ ` P ∆(Ξ,Q) ` R
−∗L

∆(Ξ,Γ,P−∗Q) ` R

1. Γ hypotheses

...

n. P

1. ∆ hypotheses

2. Ξ Q hypotheses

3. R

1. ∆ hypotheses

2. Ξ Γ P−∗Q hypotheses

3. P

4. Q −∗-elim

5. R

Γ,P` Q
−∗R

Γ ` P−∗Q

1. Γ P hypotheses

...
...

n.

n+1. Q

1. Γ hypotheses

2. P assumption

...
...

n.

n+1. Q

n+2. P−∗Q −∗-intro

Figure 4.13: Some cases of relative completeness
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Chapter 5

Ribbon Proof Theory

In Chapter 2 we discussed translations between box proofs and natural deduction, as well as

between box proofs and the sequent calculus. This gave us a setting in which we were able to

discuss normalization and box proofs.

In the same spirit, we want to consider normalization for Ribbon Proofs. Recall that there is a

normalization theorem forNBI via theαλ -calculus, and equivalently a cut-elimination theorem

for LBI .

Since there is no direct analogue ofNJ for BI , the translations we can consider are between

ribbon proofs andNBI or LBI . Our soundness and completeness results essentially construct

such translations.

5.1 Substitution

One of the properties we expect from a formal proof system is some kind of substitution property;

if we can prove something using a hypothesisP, and we have another proof ofP from hypothesis

Q, we expect to able to combine these two proofs to form a proof of the original conclusion using

Q instead ofP as hypothesis.

We use a notationΓ(P) to denote a bunch which contains zero or more occurences of a

formulaP, and thenΓ(∆) to denote a similar bunch with those occurences replaced by abunch

∆.

Theorem 11(Substitution). Given a ribbon proofRP1 of Γ(P) ` Q, and a ribbon proofRP2 of
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∆ ` P, we can produce a ribbon proofRP3 of Γ(∆) ` Q

Proof. (Sketch) Firstly we combine the monoidsM1 andM2 of the two proofs. For each hypoth-

esisP in RP1, which occurs in a ribbonr, say, we incorporate a copy of the entire monoidM2.

I.e, M3 is M1 extended byM2 at everyr ∈ M1 s.t. r contains a copy of the hypothesisP.

Now we actually insert copies of the proofRP2 at each hypothesisP. We delete eachP, and

below the line it occurred in, we insert a copy ofRP2 line by line: Each line is based on the line

of RP1 thatP occurred in, with ther-triple replaced by the set of all the triples in this line ofRP2,

with the ribbons translated using the injection from the definition of extentsion.

It remains to show that this is indeed a ribbon proof, by showing that it can be constructed

starting with the structure corresponding toΓ(∆) and applying the inductive construction ofRP1

and a number of copies of the construction ofRP2, a straightforward but rather longwinded

verification we omit here.

5.2 Normalization

In [32] the normalization theory ofBI is discussed via theαλ calculus. Theβ andη rules in

particular for∗ and−∗ can illustrated diagrammatically for ribbon proofs, see Fig. 5.1.

However, developing this observation into a full normalization theory for ribbon proofs turns

out to be less elegant. The problem lies within the box proofsfragment of ribbon proofs. In

Section 2.3 we explained the problems inherent in presenting normalization in for box proofs,

which all stem from the fact that a formula in a box proof (justas in a ribbon proof) may be

used as a premiss for more than one rule use. The simple illustrations of Fig. 5.1 are local: they

suggest that premisses will necessarily occur just before conclusions with no intervening lines.

This would be a possible arrangement only if each line was used as a premiss exactly once,

which is not in general the case. Any of the formulæ which should be eliminated by a reduction

might be used elsewhere in the proof as a premiss for another rule. For the purely multiplicative

fragment these problems may not arise:

Conjecture 2. In the I,∗,−∗ fragment ofBI, it is possible to require that each line is used as a

premiss by exactly one other line, and therefore all normalizations can be localised.

However, if the goal is simply to establish that ribbon proofs have some form of strong

normalization property it suffices to use the translations between ribbon proofs and LBI proofs
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1. A B

2. A∗B

3. A B

=⇒ 1. A B

β -reduction for ∗

1. A∗B

2. A B

3. A∗B

=⇒ 1. A∗B

η-reduction for ∗

1. A

2. A

...
...

...

n.

n+1. B

n+2. A−∗B A

n+3. B

=⇒

1. A

...
...

n.

n+1. B

β -reduction for −∗

1. A−∗B

2. A

3. B

4. A−∗B

=⇒ 1. A−∗B

η-reduction for −∗

Figure 5.1: Ribbon Proof reductions
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established in the relative soundness and completeness results proved in Chapter 4. We can

define an equivalence class on ribbon proofs such that two proofs are equivalent if they translate

to the same LBI proof. We can then talk about normalization interms of the normalizations

(cut-eliminations) of the underlying LBI proofs. Since it is proved in [32] that theαλ -calculus

is strongly normalising, we have a unique normal form which we can lift back to ribbons.

Note that the lifting map (which is derived from the relativecompleteness result, Theo-

rem. 10) always produces ribbon proofs which are ‘tree-shaped’ in the sense that they don’t

use formulæ twice. These are of course precisely the proofs on which reductions can safely be

applied, mirroring the structure of the reductions in LBI.

5.3 A Spatial ‘Term Model’

As we have seen, part of the formalism of a ribbon proof is a ribbon monoid – and these ribbon

monoids are commutative partial monoids. Now partially ordered commutative partial monoids

form a model of BI. The leads us to wonder if the ribbon monoid within a particular ribbon proof

is, in any sense, a model.

We will discuss this idea very precisely in the restricted framework of the∧,∗-fragment of

BI, where we can very simply derive a strong result amountingto a ‘term model’ of this fragment,

which is classical in nature.

We will then continue more generally to discuss the effects the other connectives have on this

picture.

5.3.1 Models from∧,∗-proofs

Consider a ribbon proof within the∧, ∗ fragment of BI. Now weclosethe proof in the appropriate

sense: we apply the rules∧-elim and∗-elim to each applicable formula until there is no such

formula which has not been used:

Definition 37. A ribbon proof is said to be∧,∗-closed if:

• It lies entirely within the∧,∗ fragment ofBI;

• Every formula of the form P∗Q has been used as the premiss of a∗-elim rule;

• Every formula of the form P∧Q has been used as the premiss of two∧-elim rules, one to

derive P and the other to derive Q.
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It is possible to close any proof simply by iteratively applying the rules. This process is

terminating since the number of rule applications is bounded by the number of subformulæ in

the proof.

The resulting proof remains a proof of the original theorem,albeit with various apparently

unnecessary rule uses. However, it can also yield a model of the theorem: by a model of a

theoremΓ ` P, we mean a witnessing modelM such that>M |= Γ and>M |= P.

There are two ways of extracting this model. Most abstractly, we extract the model as the

ribbon monoid of the proof.

Definition 38. Given a∧,∗-closed ribbon proof, define a model ofBI. The monoid M is the

ribbon monoid of the outermost box. We set the forcing relation for atoms to be

r |= A⇐⇒ 〈r,A, j〉 occurs in the outermost box of the proof

Note that this is a Boolean model: there is no partial order.

Proposition 6. For every triple〈r,P, j〉 in the outermost box of the proof, we have r|= P.

Proof. By induction over the length of the formulaP. The base case of atomic formula is Defi-

nition 38.

• P = Q∗R

As the proof is∧,∗-closed,∗-elim will have been applied toP. This rule creates triples

〈s,Q,∗-elim〉 ,〈t,R,∗-elim〉 such thatr = s+ t. By induction s |= Q and t |= R; by the

forcing rule for∗, r |= Q∗R.

• P = Q∧R

∧-elim will have been applied toP twice, creating triples〈r,Q,∧-elim〉 ,〈r,R,∧-elim〉. By

the forcing rule for∧, r |= Q∧R.

Proposition 7. The model constructed is a witnessing model:>M |= P and>M |= Γ.

Proof. • >M |= P: Immediate from the above proposition, since there must be some triple

〈>M,P, j〉 occuring in the proof.
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• >M |= Γ

By this we really mean that>M |= Q, whereQ is theBI proposition formed by textually

substituting∗ for , and∧ for ; in Γ. In this proof will will routinely use the notation|= Γ

for |= Q. The monoidM is in fact defined asMΓ, in the notation of Definition 23.

The construction of ribbon structures allows us to pick out an unique element of the monoid

for every sub-bunch∆ of Γ; this is the top element of the monoidM∆ invoked during the

inductive construction. We will use the notation>∆ for this element; this is a slight abuse

since we really refer to a particularoccurenceof ∆ as a sub-bunch. We then prove the

stronger result that for every such sub-bunch∆ this element>∆ |= ∆, and we proceed by

induction over the length of∆.

– ∆ = P

Then the ribbon>∆ will actually include the formulaP as a hypothesis, and therefore

>∆ |= P.

– ∆ = ∆1;∆2

By induction>∆i |= ∆i. However,>∆1 = >∆2 = >∆, so>∆ |= ∆i and by the forcing

clause for∧, >∆ |= ∆1∧∆2, i.e.>∆ |= ∆.

– Γ = ∆1,∆2

By induction>∆i |= ∆i. Since>∆1 +>∆2 = >∆, we have>∆ |= ∆1 ∗∆2, and we are

done.

More concretely, we can produce a geometrical model based onthe actual representation of

the proof on paper, by ‘squashing’ the proof vertically and taking the model to be, for each ribbon

r, an open interval of the real line. Then the monoid operation‘ ·’ is almost the union of sets:

in fact, we take the interior of the closure of the union. To make the model work, we need to

be careful that nor 6= s map to exactly the same set. These ideas are taken further in the next

chapter.

The geometrical model is, of course, the same monoid as the first, so the same model in an

algebraic sense; it provides a concrete representation of it.
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5.3.2 Proofs with I

In the classical model theory (that is, a PCM without a partial order), the unitI is only forced at

the identity element of the monoid. So if the proof contains the triple〈r, I , j〉, the procedure above

fails to produce a model:r |= I is not permitted. Intuitively, by provingI , we have established

that r was in fact, the identity ribbon. Formally, we would like to take some quotient of the

monoid such thatr = e. Unfortunately, since the monoid is a partial monoid, this quotient is not

a straightforward affair.

5.3.3 General proofs

To generalize the above ideas, we could consider the following idea for the forcing relation of a

model:

r |= P if and only if there exists some proof extending the given proof, in the sense

of applying some finite number of proof rules, in which a triple 〈r,P, j〉 occurs.

Note that this is indeed a generalization of the∧,∗ model given above. However in the

general case it fails to be a model in the same sense. For example:

• The are problems, mentioned above, withI . The problem is to find, within a partial

monoid, the leastcongruencewhich maps a particular set of elements to the identity. With

total monoids this is easy; with partial monoids it is more involved. The other problems

described below mean it is not worth spending time on here.

• The are more serious problems with−∗. Consider the trivial (one line) proof ofQ` Q. It

generates a monoid with a single non-identity element,r say. Now the forcing clause for

−∗ in this case is

r |= P−∗Q⇐⇒∀ssuch thats· r is defineds· r |= Q

Since there areno sumss· r defined, the universal is vacuously satified, andr |= P−∗Q.

However, there is certainly no way of provingP−∗Q in the ribbonr, so the analogue of

Proposition 6 cannot be proved.
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Chapter 6

Geometry

Our formalism of ribbon proofs is essentially set-theoretic in form, and it fails to really draw out

the geometric intuition present in the informal depiction of ribbon proofs. In this chapter, we will

refer to this informal notation as ‘ribbon pictures’. We will give some interpretations of ribbon

proofs in spaces based onR2, in a fashion which is intended to formalize ribbon pictures.

We will work throughout inR2 with a chosen coordinate system. We will consider the first

R factor to be horizontal (‘thex direction’), and the second vertical (‘they direction’). We will

consistently use the term ‘rectangle’ to denote an orthogonal rectangle, aligned with these axes.

We will work with half-open sets:

Definition 39. A set I⊂ R, is a half-open intervalif it is of the form[a,b). A set r⊂ R2 is a

half-open rectangleif it is of the form[a,b)× [c,d). More generally a set r⊂ R (resp. R2)is a

half-openset if it is the union of a finite number of half-open intervals(resp. rectangles).

We define an operation which can make sets of half-open sets into partial commutative

monoids.

Definition 40. Given two half-open sets r,s,

r ·s=















r ∪s if r and s disjoint

undefined otherwise

Now we define a notion of a ‘geometric’ ribbon proof for the fragment of ribbon proofs with-

out boxes. We will show how to interpret ribbon proofs in thisgeometric setting, and demonstrate

that various proof-theoretically natural notions are interpreted as geometrically natural notions.



78

Definition 41. A geometric ribbon structureis a set of disjoint half-open sets O inR2 together

with a finite set L of labels〈p,P, j〉 such that

• All the open sets o∈ O are of the form U× [a,b) for U a finite union of half-open intervals;

•
⋃

o∈O
o is a half-open rectangle.

• Each label〈p,P, j〉 is a point p contained in some o∈ O, together with aBI proposition P

and a justification j just as in a ribbon proof.

Each such geometric ribbon structure has an underlying ribbon structure.

Definition 42. The underlying ribbon structure to a geometric ribbon structure is defined as

follows. It has as ribbon monoid the set of horizontal projections of O under the operation ‘·’.

For each distinct y-coordinate yi inhabited by the points p in the labels, we define a line.

For each label〈p,P, j〉 such that py = yi , we include the triple〈r,P, j〉 where r is the horizontal

projection of the set o to which p belongs. In the event that the ·-sum of all the r is not the top

element of the monoid, a triple〈r ′,nothing,nothing〉 is added with r′ as necessary to complete

the line.

Conversely, we can construct a geometric ribbon structure from any ribbon structure.

Proposition 8. We can construct a geometric ribbon structure from any box-free ribbon struc-

ture.

In ribbon pictures, the horizontal dimension controls the algebra of the ribbons (that is, the

ribbon monoid). In order to translate our ribbon proofs intothis geometric model, we need

to embed the ribbon monoid into an interval. The key result inproving this proposition is the

embedding of an arbitrary ribbon monoid into[0,1) ⊂ R, such that the monoid operation is

realised by the ‘·’ of Definition 40.

Proposition 9. Every ribbon monoid is isomorphic to a ribbon monoid of half-open subsets of

[0,1) under·.

Proof. Consider the ribbon monoid via its representation in the subset algebra of some finite

setX. Suppose|X| = n, and number the elements ofX asx0, . . . ,xn−1. Then define a function

I : X→P(R) as

I(xi) =

[

i
n
,
i +1

n

)
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Now extendI to a functionP(X)→P(R), defining forY ⊂ X

I(Y) =
⋃

{I(xi) : xi ∈Y}

Finally defineI(∅) = ∅.

It is easy to check that, with· defined as in Definition 40,I is a monoid isomorphism.

We will assume that some such interpretation has been fixed for every ribbon monoid we deal

with, and we will continue to use the notationI(r) for the half-open subset of[0,1) corresponding

to a ribbonr. We continue to use[0,1) for definiteness, but the interval chosen is arbitrary.

The vertical dimension in our ribbon pictures stands for ‘progress’ in the construction of the

proof: proving new propositions from old. To convert our ribbon proofs into geometric ribbon

proofs, we arbitrarily assign some vertical space to each line of the proof: Theith line of the

proof is embedded in the interval[i −1, i).

Definition 43. Define a map L: R→P(N) (‘occurs-in lines’) as

L(r) = {i : There is some triple〈r,P, j〉 in line i}

Definition 44. Define an interpretation of ribbons[[−]] : R→R2:

[[r]] =
⋃

i∈L(r)

I(r)× [i, i −1)

Now we come to the proof of Proposition 8.

Proof. Let

O = {[[r]] : r a ribbon in the ribbon monoid}

For each triple〈r,P, j〉 in the proof add a label〈p,P, j〉 wherep =
〈

x, i + 1
2

〉

such thatx ∈ I(r)

andi is the ‘line-number’ of the line in which〈r,P, j〉 occurs.

Now we formulate from the notion of geometric ribbon structure a notion of geometric ribbon

proof:

Definition 45. Ageometric ribbon proofis a geometric ribbon structure whose underlying ribbon

structure is a proper ribbon structure.

We note that our definitions relating ribbon structures and geometric ribbon structures are

related in the way we would expect:
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Proposition 10. Composing the construction of a geometric ribbon structuregiven by Proposi-

tion 8 with the notion of underlying ribbon structure in Definition 42 recovers a ribbon structure

equivalent to the original.

What have we gained by moving to geometric proofs? We have related the informal diagrams

which we have been using to notate proofs to some formal geometric ideas, giving substance to

the suggestion that the proofs contain real spatial content. This approach to the proof system

is highly suggestive of possibly geometrical applicationsof BI and related logics to reasoning

about area or volume.

Various natural proof constructions become very simple geometrically. Most strikingly,

putting two proofs alongside one another is literally the obvious geometrical concept – a scale

and a translation. Of course, the resultant object is a slight generalization of a proof, since it

has two conclusions, but it isn’t hard to see what it means. Toformalize that observation, we

need to explain how to apply an affine map to our geometric proof objects. In particular, we are

interested in non-degenerate — that is, invertible — affine maps.

Definition 46. We define the effect of applying an non-degenerate affine map to a geometric proof

as follows:

• We apply the map to each element of O;

• We apply the map to each point p of every label.

We aren’t particularly interested in rotating or shearing our proofs, so we restrict:

Definition 47. A rectangular map is a non-degenerate scaling followed by a translation.

Now, we take two proofs, one in rectangle[l1, r1)× [t1,b1) and the other in rectangle[l2, r2)×

[t2,b2). We can now make precise the notion of putting the two proofs ’side-by-side’. There is

a unique rectangular mapφ under which the second proof can be scaled and translated into the

rectangle[r1, r1 +1)× [t1,b1): i.e. we put the second proof ‘immediately to the right of’ the first

proof.

Now, the object formed by taking the simple set theoretic union of these two proofs’Os and

labels is another geometric proof. Note that geometric proofs, unlike ribbon proofs, do not have

a requirement to have a unique conclusion. Such a requirement does not seem natural in the light

of geometric transformations like this.
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Also, cut has an appealingly simple interpretation. Given a(geometric interpretation of)

a ribbon proof of∆(P) ` Q and one ofΓ ` P, we want to use a rectangular map to map the

entire proofΓ ` P into each of the ‘rectangles’ containingP as a hypothesis. Of course, the set

containingP need not be a half-open rectangle at all, in general it will bea finite union of half-

open rectangles all having the same vertical (y) dimensions. Therefore rather than a rectangular

map we have to use a piecewise continuous map, the sum of a finite number of rectangular maps,

to map into each of the components of the finite union.

Note that this geometric approach is not quite that depictedin our informal diagrams. The

approach here allows ribbons to be disconnected unions of half-open rectangles; our diagrams

go to considerable lengths to make ribbons connected, and this is the real force of the twist

pseudo-rule.

To generalize this technique to boxes we use a third dimension. We will only sketch this

generalization here but its formal interpretation should be clear. This third dimension doesn’t

need to be continuous, so we may as well work inR×R×N. Since each box is a subproof, and a

subproof may in general be based on a different monoid, we mapthe subproof ontoR×R×{1}.

If a particular box is being mapped intoR×R×{n}, and it has subproofs, then those proofs are

interpreted inR×R×{n+1}.

In the outer box there is nothing at all during they-coordinate interval occupied by the inner

box.

As an example of the construction, we can now give a geometricproof of the Deduction

Theorems:

Theorem 12(Deduction Theorems).

1. Γ;P` Q if and only ifΓ ` P→Q

2. Γ,P` Q if and only ifΓ ` P−∗Q

Proof.

1. Take a geometric proof ofΓ;P ` Q. Translate all the proof except the hypothesesΓ (but

including the hypothesisP) by +1 in thez direction. RelabelP as being an assumption.

Add a new ‘line’ to the end of the proof concludingP→Q.

Conversely, take a geometric proof ofΓ ` P→Q, add a new hypothesisP and use→-elim

to concludeQ.
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2. Take the geometric proof ofΓ,P` Q and translate all the proof except the hypothesesΓ by

+1 in thez direction. Totally remove the vertical strip previously occupied byP from the

lower part of the proof, drawing the remainder together if necessary. RelabelP as being an

assumption and add a new conclusionP−∗Q at the end of the proof.
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Chapter 7

Pointer Logic

In this chapter we consider a particular application ofBI . Yang’s paper[40] gives a proof of

correctness of the Schorr-Waite graph marking algorithm — atechnique for doing a depth-first

traversal in constant space: without requiring either an explicit stack, or the use of the host

programming language’s call stack. This is a practical algorithm, which could form the basis

of the mark phase of a garbage collector, and it uses pointer manipulation ‘tricks’ which have

rendered it opaque to traditional approachs to program proof. There is an earlier formal attempt

by Bornat in [5], who recognised the key ideas of separation underlying succesful proof, but this

is significantly improved on by Yang’s method, which works inthe system described by Ishtiaq

and O’Hearn in [24] which is in turn based onBI .

Yang’s proof, however, is reasoned semantically and in particular it relies upon the truth of

some ‘semantic implications’ given in the appendix of [40].In this chapter we will set out a

system based on ribbon proofs, containing some additional proof rules relevant to this domain,

and use it to give nearly formal proofs of some of Yang’s semantic implications. The proofs are

only nearly formal because we have a slightly informal approach to variables and subsitution for

the purpose of this chapter.

We describe a simple version of Ishtiaq and O’Hearns’s heap cell model. Each world in the

model is a finite set of heap cells, where a heap cell is an address and a value. For simplicity, let

addresses and values be natural numbers; then a heap is a partial functionN→N. We will work

exclusively with finite heaps; that is partial functions of finite domain. This model is a partial

commutative monoid defining ‘·’ as union of partial functions where the domain is disjoint;where
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1. actualc assumption

...

n. P(c)

n+1. ∀xP(x) ∀-intro

1. ∃xP(x)

2. actualc assumption

3. P(c) assumption

...

n. Q

n+1. Q ∃-elim

1. actualc

2. ∀xP(x)

3. P(c) ∀-elim

1. actualc

2. P(c)

3. ∃xP(x) ∃-intro

Figure 7.1: Boxproof rules for∀,∃

the domains are not disjoint the composition is undefined.

The basic predicate of the system, apart from equality, is the ‘points to’ relation,x 7→a. This

denotes ‘the current heap contains exactly one cell, address x, with valuea’. From that we define

a predicate which denotes ‘the current heap contains the cell with addressx, having valuea’:

Definition 48. x↪→a≡ x 7→a∗>

7.1 Proof rules for metavariable quantification

The logical notation used in [29, 40] uses variables and quantifies over them. In this thesis we

have considered only propositionalBI . In [32], Pym develops a full theory of predicateBI , in

which variables are bunched into contexts. The use of variables in [29] is much simpler than this;

it deals only with global metavariables.

The global nature of these variables means that ifx = y is proved in any ribbon, in is globally

true, and the fact can be used in any ribbon. We adopt therefore a special rulecopywhich allows

us to copy such ‘global facts’ between ribbons freely (but respecting the box discipline).

We adopt a formalization for quantifiers which the author wasintroduced to whilst assisting

on a logic course taught by Bornat, using formulae of the form‘actualc’ to denote ‘some object
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1. A assumption

...

n. ⊥

n+1. ¬A reductio ad absurdum

Figure 7.2: Box proof notation forreductio ad absurdum

c exists’. A very similar formal treatment can be found in [3].Our rules are shown in Figure 7.1.

7.2 Reductio ad absurdum

We are forced to adopt a rather unattractive form of the rulereductio ad absurdum. A common

schema for this rule in box proofs contexts is shown in Figure7.2. Separation logic has a classical

semantics, so we need to adopt some form of this rule. However, there is a strange interaction

between ribbons and contradiction. It makes good semantic sense to permit the rule to begin with

an assumption in any ribbon, deduce a contradiction in an arbitrary (possibly different) ribbon,

and conclude the negation of the assumption in the initial ribbon; for, once a situation is shown

to be contradictory somewhere, then the whole situation is contradictory. However, this rule is

unpleasantly non-local in application.

7.3 Proof rules to validate certain semantic lemmas

We add proof rules to our system to make certain fundamental semantic facts provable.

7.3.1 Heaps with only one cell

When there is only one cell in the heap, all7→ formulæ must be referring to the same cell.

Lemma 5. x 7→a∧y 7→b |= x = y∧a = b

This lemma can be made provable by including the proof rule

Γ ` x 7→a ∆ ` y 7→b

Γ;∆ ` x = y∧a = b

but that is not the most general. Sincex 7→a tells us there is only one cell in the heap, givenx 7→a,

we can conclude fromy 7→b∗P not only that thex andy cells are the same, but also thatP must

hold of an empty heap.
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Rule 1. Onecell
Γ ` x 7→a ∆ ` y 7→b∗P

Γ;∆ ` x = y∧a = b∧(x 7→a∗ (P∧emp))

7.3.2 Matching cells

When two↪→ formulæ refer to the same address, they must refer to the samecell:

Lemma 6. x↪→a∧x↪→b |= a = b

We need a rule which allows us to conclude that two heap cells are the same:

Rule 2. Location
Γ ` x 7→a∗P ∆ ` x 7→b∗Q

Γ;∆ ` (x 7→a∧x 7→b)∗ (P∧Q)

7.3.3 Case analysis

Given a↪→ formula in additive conjuction with a spatial conjunction as in(x↪→a)∧(B∗C), there

are precisely two possibilities for the location of thex cell. The formulaB∗C says that the

heap divides into two, and thex cell must be in one half, or the other. So we must have either

(x↪→a∧B)∗C or (B∗ (x↪→a∧C). We can write this as a proof rule:

Rule 3. ↪→ cases
Γ ` x↪→a ∆ ` B∗C

Γ;∆ `
(

(x↪→a∧B)∗C
)

∨
(

B∗ (x↪→a∧C)
)

There is similar situation with7→. If x 7→a∧(B∗C) holds, then either thex cell holds in the

heap whereB holds — in which case, that heap is one cell, and the heap whereC holds is empty

— or vice versa:

Rule 4. 7→ cases

Γ ` x 7→a ∆ ` B∗C

Γ;∆ `
(

(x 7→a∧B)∗ (C∧emp)
)

∨
(

(B∧emp)∗ (x 7→a∧C)
)

7.3.4 Empty heaps

Heaps are either empty, or they have at least one cell. If a heap contains exactly one cell, then it

satisfies

Cell ≡ (∃x,a)(x 7→a)

and if it contains at least one cell, it satisfiesCell∗>.

We encapsulate this with two reversible rules.
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Rule 5. Emptyheap
¬emp
======
Cell∗>

emp
========
¬(Cell∗>)

It is straightforward to check that these rules are all soundfor our system.

Theorem 13(Soundness). These rules are sound for the system of partial functions inN→N

described above.

7.4 Some proofs

7.4.1 Making pointer logic count

The following problem was posed by Reynolds and Yang. We can specify ‘the heap contains

at least two cells’ asCell ∗Cell ∗>, and we can specify ‘the heap contains at least three cells’

similarly asCell∗Cell∗Cell∗>.

We would hope to be able to prove that if we have at least two cells, but not at least three

cells, then we have exactly two:

Cell∗Cell∗>;¬(Cell∗Cell∗Cell∗>) ` Cell∗Cell

And we can prove exactly that using theHeapemptyrule, as shown in Figure 7.3.

7.4.2 All cells contain ones

The following example is the essential content of Rule B.1.1of [40]. Suppose we define the

predicateAllOnes to mean that every heap cell contains a one:

AllOnes ≡ (∀x)(x↪→?)→(x↪→1)

Then the following should certainly hold:

AllOnes∗ (y 7→1) ` AllOnes

The notationx↪→? is a convenient short-hand for(∃z)(x↪→z) which avoids having to ‘waste’

a name for the variable. We show a proof of this lemma in Figure7.4.

7.4.3 Valid pointers

Now another example motivated by Yang’s paper, this time based on B.1.5. Suppose thatVP(x)

is a predicate meaning thatx is a valid pointer: we define it asVP(x) ≡ x = nil∨x ↪→?. Note
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1. Cell∗Cell∗> premiss

2. ¬(Cell∗Cell∗Cell∗>) premiss

3. Cell∗Cell > ∗-elim 1

4. ¬emp assumption

5. Cell∗> Heapempty

6. Cell∗Cell∗Cell∗> ∗-intro

7. ⊥ ⊥-intro 2,6

8. Cell∗Cell emp reductio ad absurdum4-7

9. Cell∗Cell emp-elim

Figure 7.3: Making pointer logic count

that null pointers are considered valid: invalid pointers are those which point outside the current

heap.

Now we wish to provex↪→a;VP(y) ` x 7→a∗ (x 7→ a′−∗VP(y)), which says something like

‘if x points toa andy is valid, theny would still be valid in the similar heap wherex pointed

instead toa′’. The proof is shown in Figure 7.5.
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1. AllOnes∗ (y 7→1) premiss

2.
(

(∀x)(x↪→?→x↪→1)
)

∗ (y 7→1) definition ofAllOnes 1

3. actualc assumption

4. c↪→? assumption

5.

(

(

(∀x)(x↪→?→x↪→1)∧c↪→?
)

∗ (y 7→1)
)

∨
(

(

(∀x)(x↪→?→x↪→1)
)

∗ (y 7→1∧c↪→?)
)

↪→ cases 2,4

6.
(

(∀x)(x↪→?→x↪→1)∧c↪→?
)

∗ (y 7→1) assumption

7. (∀x)(x↪→?→x↪→1)∧c↪→? y 7→1 ∗-elim 6

8. (∀x)(x↪→?→x↪→1) ∧-elim 7

9. c↪→? ∧-elim 7

10. c↪→?→c↪→1 ∀-elim 8,3

11. c↪→1 →-elim 9,10

12. c 7→1∗> definition of ↪→ 11

13. c 7→1∗> >-intro. . . 12

14. c↪→1 definition of ↪→ 13

15.
(

(∀x)(x↪→?→x↪→1)
)

∗ (y 7→1∧c↪→?) assumption

16. (∀x)(x↪→?→x↪→1) y 7→1∧c↪→? ∗-elim 15

17. y 7→1 ∧-elim 16

18. c↪→? ∧-elim 16

19. y = c∧a = 1 Onecell 17,18

20. c 7→1 substitution 17

21. > c 7→1 >-intro

22. c↪→1 ∗-intro and defn of↪→ 21

23. c↪→1 ∨-elim 5,6-14,15-22

24. c↪→?→c↪→1 →-intro 4-23

25. (∀x)(x↪→?→x↪→1) ∀-intro 3-24

26. AllOnes definition ofAllOnes

Figure 7.4: All cells contain ones
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1. x↪→a premiss

2. VP(y) premiss

3. y = nil∨y↪→? definition ofVP

4. y = nil assumption

5. x 7→a > defn of ↪→,∗-elim

6. x 7→a′ assumption

7. y = nil copy

8. y = y∨y↪→? ∨-intro

9. x 7→a′−∗(y = y∨y↪→?) −∗-intro

10. x 7→a∗ (x 7→a′−∗(y = nil∨y↪→?)) ∗-intro

11. x 7→a∗ (x 7→a′−∗VP(y)) definition ofVP

12. y↪→? assumption

13. ((y↪→?∧x 7→a)∗>)∨(x 7→a∗y↪→?) ↪→ cases (1,13)

14. (y↪→?∧x 7→a)∗> assumption

15. (y↪→?∧x 7→a) > ∗-elim

16. y↪→? ∧-elim

17. x 7→a ∧-elim

18. y = x Onecell

19. x 7→a′ assumption

20. x↪→a′ ∗-intro, defn of↪→

21. x↪→? ∃-intro

22. y = nil∨x↪→? ∨-intro

23. x 7→a′−∗(y = nil∨x↪→?) −∗-intro

24. x 7→a∗ (x 7→a′−∗(y = nil∨x↪→?)) ∗-intro

25. x 7→a∗ (x 7→a′−∗(y = nil∨y↪→?)) substitution

26. x 7→a∗ (x 7→a′−∗VP(y)) defn ofVP

27. (x 7→a∗y↪→?) assumption

28. x 7→a y↪→? ∗-elim

29. x 7→a′ assumption

30. y↪→? ↪→ weakening

31. y = nil∨y↪→? ∨-intro

32. x 7→a′−∗(y = nil∨y↪→?) −∗-intro

33. x 7→a′−∗VP(y) defn ofVP

34. x 7→a∗ (x 7→a′−∗VP(y)) ∗-intro

35. x 7→a∗ (x 7→a′−∗VP(y)) ∨-elim(15-27,28-35)

36. x 7→a∗ (x 7→a′−∗VP(y)) ∨-elim (4-12,13-36)

Figure 7.5: Valid Pointers
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Chapter 8

Implementation

One of the problems which has faced almost every attempt to describe a proof system in a gen-

uinely formal fashion has been a tendency to gloss over a few apparently harmless features which

seem obvious, but in actual fact require some delicacy to make precise. One example in the for-

malization of natural deduction for intuitionistic logic is the notion of discharged hypothesis, and

the problems of linking the point of discharge with the discharged formulae; one in the formula-

tion of Gentzen-style sequent calculi is the question of themultiplicative or additive presentation

of proof rules.

This was certainly a problem which we encountered (and we aregrateful to the referees of the

MFPS paper which preceded this thesis for pointing out some substantial areas of vagueness).

One tool which we adopted to help resolve some of these problems was the development of

an implementation of the formalization in ML. Encoding the the formalization into ML’s type

system raised (and suggested the solution to) several issues.

The implementation was never developed to the point of beingan independently useful pro-

gram, and lessons having been learnt from it, it is now somewhat out of step with the formaliza-

tion as it is described in Chapter 4.

In the appendix, we give the listing of the program (in the OCaml dialect of ML). It consists

of a simple recursive descent parser for parsing formulae and bunches, and the types for the basic

concepts of ribbon proofs. The important types are:

• formula for formulæ inBI . Actually, the type represents general binary expressions,
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• bunch for bunches of formulæ,

• oneribbonline to encode the notion of triple, encoding ribbon and formula but omit-

ting justification. The structures therefore lack the notion of consequence tying the lines

of the proof together, and represent ribbon structures rather than ribbon proofs,

• line to encode the notion of a set of triples; but we use an ML list, not a set, for program-

matic reasons. This creates some equivalent proofs but we are not attempting to use any

underlying ML notion of equality,

• boxpart , either abox or a line where

• box is a list ofboxpart s, and

• ribbonproof is just abox ,

In fact, aribbonproof is a closer approximation to the notion of ribbon structure than

that of ribbon proof. The intention was that a family of high-level constructors would model the

notion of ribbon proof. The implementation listed does in fact contain the necessary notion of

ribbon structure corresponding to a bunch; the other requirement is a constructor for each of the

ribbon transformations of Definition 25.

The implementation fails to model the ribbon monoid within each box. The typesplits

was an ultimately unsuccessful attempt to model a slightly simpler structure that at one stage

we hoped was sufficient, by modelling only the branching structure of bunches. This was in

an attempt to avoid incorporating a general theorem-proverin the theory of partial commutative

monoids. Ultimately this led to the definition in Section 4.2of a ribbon monoid. Given the

fact, proved in that section, that all ribbon monoids can be represented in powerset monoids,

there is a natural way of representing these monoids computationally. However it is not without

problems since the size of the set required can in principle be exponential in the size of the bunch

of hypotheses.

The following functions merit a brief explanation:

• bunchtoproof implements the notions of ribbon structure corresponding to a bunch,

• nIntro , and the commented-outstarIntroduction are the beginnings of an imple-

mentation of the ribbon structure transformations corresponding to ribbon proof rules,
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• calc widths and related functions perform the task of formatting a text-only represen-

tation of ribbon proofs for use with interactive sessions.

As an exercise with very limited goals, the implementation was a success — it enabled us

to pin down precisely our formalization. However, given more time we would very much like

to extend it to a full toolkit for manipulating and displaying ribbonproofs, especially to explore

their compositional and geometrical nature.
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Appendix A

Implementation: ML source code

(∗ some bas i c u t i l i t y f u n c t i o n s∗ )

l e t explode s =
l e t rec explode_aux s n m =

i f n=m then [] else (s.[n])::(explode_aux s (n+1) m)
in

explode_aux s 0 (String.length s);;

l e t rec implode clist =
match clist with

[] -> ""
| c :: tail -> (String.make 1 c) ˆ implode tail

;;

l e t rec takewhile pred list =
match list with

[] -> []
| hd :: tl ->

i f (pred hd) then hd :: takewhile pred tl
else []

;;

l e t rec dropwhile pred list =
match list with

[] -> []
| hd :: tl ->

i f (pred hd) then dropwhile pred tl
else list

;;

l e t rec nchars c n = i f n=0 then "" else (cˆ(nchars c (n-1)));;
l e t nspaces=nchars " ";;



99

l e t min a b = i f a < b then a else b;;
l e t max a b = i f a > b then a else b;;

(∗ an i n t e r f a c e t o a s s o c i a t i v e a r r ay s which I p r e f e r t o t he ocaml
s t anda r d one ∗ )

(∗ Check i f a key occurs∗ )
l e t member_assoc k a =

List.mem_assoc k a
;;

(∗ Se t a key , removing o ld v a l ue i f p o s s i b l e∗ )
l e t set_assoc (k,v) a =

(k,v) :: (List.remove_assoc k a)
;;

(∗ Lookup a key : throws Notfound ∗ )
l e t get_assoc k a =

List.assoc k a
;;

(∗ Lookup a key w i th a d e f a u l t v a l ue f o r use i f i t does no t occur∗ )
l e t get_assoc_def d k a =

try List.assoc k a
with Not_found -> d

;;

(∗ Apply a f u n c t i o n t o t he v a l ue a t a key : throws Notfound ∗ )
l e t alter_assoc k f a =

l e t v = get_assoc k a
in l e t vv = f v
in set_assoc (k,vv) a

;;

(∗ Merge a l i s t o f as s oc s i n t o a s i n g l e assoc , app l y i ng t he
f u n c t i o n ’ choose ’ t o choose which o f a c o n f l i c t i n g pa i r
t o use ∗ )

l e t rec assoc_merge choose a b =
match b with

[] -> a
| (k,v) :: t ->

i f not (member_assoc k a) then
assoc_merge choose ((k,v)::a) t

else
assoc_merge choose (set_assoc (k,choose k v (get_assoc k a) ) a)

;;
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(∗ u t i l i t y f u n c t i o n s f o r t o k e n i s i n g ( f i r s t phase o f pa r s i ng )∗ )

module Tokeniser = struct
type token = T2_ID of string | T2_Op of string

type charclass = IDLetter | OpChar | Other

module OrderedChar = struct type t=char l e t compare=compare end
module CharSet = Set.Make(OrderedChar)

l e t rec make_charset = function
[] -> CharSet.empty

| x::xs -> CharSet.add x (make_charset xs)

l e t letterset = make_charset (explode (
"abcdefghijklmnopqrstuvwxyz"ˆ
"ABCDEFGHIJKLMNOPQRSTUVWXYZ_"))

and opset = make_charset (explode " * -&><|")

l e t classof c =
i f CharSet.mem c letterset then IDLetter
else i f CharSet.mem c opset then OpChar
else Other

l e t isClass cls c = ((classof c) = cls)

l e t rec tokenise s = tokenise_clist (explode s)
and tokenise_clist clist =

match clist with
[] -> []

| c :: tl ->
match classof c with

IDLetter ->
T2_ID (implode (takewhile (isClass IDLetter) clist)) ::
tokenise_clist (dropwhile (isClass IDLetter) clist)

| OpChar ->
T2_Op (implode (takewhile (isClass OpChar) clist)) ::
tokenise_clist (dropwhile (isClass OpChar) clist)

| Other ->
T2_Op (implode [c]) :: tokenise_clist tl

end;;

(∗ u t i l i t y f u n c t i o n s f o r pa r s i ng ∗ )

module Parse = struct

(∗ T o o l k i t f o r b u i l d i n g p a r s e r s ∗ )

(∗ Each p r oduc t i on i n your grammar shou ld be a f u n c t i o n
o f t y pe ’ s > ’ a ∗ ’ s , where ’ s r e p r e s e n t s t he pa r s e r s t a t e
and ’ a i s t he a b s t r a c t t y pe c o r r e s pond i ng t o t he p r oduc t i on
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For example , ’ s might w e l l be t ok e n l i s t , f o r some
a p p r o p r i a t e d e f i n i t i o n o f t ok e n . Th is i s t he commonest
case . C e r t a i n o t he r pa r s i ng c o n s t r u c t i o n s might want
a d d i t i o n s t a t e ( a s t a c k o f e n c l o s i n g p r oduc t i ons , maybe ) .

You shou ld w r i t e t he f u n c t i o n so i t examines t he c u r r e n t
s t a t e , d e c i d e s i f t he p r oduc t i o n ’ matches ’ or i s ’ v a l i d ’
here . I f i t i s v a l i d , i t shou ld c a l c u l a t e t he new s t a t e
a f t e r matching , and r e t u r n t he pa i r ( r e s u l t , new
s t a t e ) . I f i t i s i n v a l i d , i t shou ld thrown t he
P a r s e F a i l u r e e x c e p t i o n .

For t ok e n l i s t s , t he new s t a t e w i l l t y p i c a l l y be t he t a i l
o f t he l i s t a f t e r a c e r t a i n number o f i t e m s have been
removed from t he head .

The module d e f i n e s some u s e f u l comb ina to rs t o b u i l d
complex p r o d u c t i o n s from s i m p l e ones .

Based on , f o r example , Paulson ’ s book .
∗ )

exception ParseFailure

(∗ sequenc ing : P Q
Matches P , f o l l o w e d by Q
Has r e s u l t t y pe (P∗Q)

∗ )

l e t (--) a b toks1 =
l e t (aa,toks2) = a toks1 in

l e t (bb,toks3) = b toks2 in
((aa,bb),toks3)

(∗ a l t e r n a t i v e s , P | | Q
Matches e i t h e r P , or i f t h a t f a i l s , then Q.
P and Q must have t he same r e s u l t t y pe .
Note asymmetry : P has p r i o r i t y .

∗ )

l e t (|||) a b toks1 =
try a toks1
with ParseFailure -> b toks1

(∗ post p r oc e s s : P>> f
Matches j u s t l i k e P , bu t maps t he r e s u l t t h rough f .

∗ )
l e t (>>) a f toks1 =

l e t (aa,toks2) = a toks1 in (f(aa),toks2)
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(∗ g e n e r i c i n f i x ope r a t o r pa r s e r .
Matches a sequence prod ( op prod )∗ i n regexp n o t a t i o n
and r e t u r n s a l i s t o f t he t h i n g s t h a t prod r e t u r n s .
However , t he l i s t i s r e t u r n as a pa i r ( head , t a i l ) ,
t o guaran tee non e m p t i ne s s .
( whatever op r e t u r n s i s thrown away )

∗ )

l e t rec i n f i x op prod t = begin
(prod -- op -- ( i n f i x op prod ||| (prod >> fun x -> x,[])))

>> fun ((x,_),(xx,xxs)) -> (x,(xx::xxs))
end t

(∗ U s e f u l f i l t e r s f o r d e a l i n g w i th t he non empty l i s t s r e t u r n e d
by i n f i x . ( Non empty av o i ds e x p l i c i t u n i t ) .
∗ )

l e t rec right_assoc f (x,xs) =
match xs with [] -> x

| xx::xxs -> f x (right_assoc f (xx,xxs))

l e t rec left_assoc f (x,xs) =
match xs with [] -> x

| xx::xxs -> (left_assoc f ((f x xx),xxs))
end;;

(∗ The Types ! ∗ )
(∗ Types f o r r i bbon p r o o f s∗ )

type formula =
Atom of string

| Binary of formula * string * formula
| Empty
| Dots;;

type bunch =
Formula of formula

| Comma of bunch * bunch
| Semicolon of bunch * bunch

;;

type oneribbonline = {r: int; f: formula;};;
type line = oneribbonline list;;

type boxpart = Line of line | Box of box
and box = boxpart list;;

type splits =
Unsplit of int
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| Split of int * (splits list list)
;;

type ribbonproof = {b: box};;

type proofpointer = int list;;

type rporerror = RP of ribbonproof * splits
| RuleError;;

exception BunchStructureError;;

(∗ F unc t i ons o p e r a t i n g on p r o o f p o i n t e r s∗ )
l e t rec pplowest p1 p2 =

match p1,p2 with
([],_) -> p2

| (_,[]) -> p1
| (p1h :: p1t, p2h :: p2t) ->

i f (p1h > p2h) then p1
else i f (p1h < p2h) then p2
else

(p1h :: pplowest p1t p2t)
;;

(∗ F unc t i ons o p e r a t i n g on r i b b o n p r o o f s and boxes∗ )

l e t rec getboxpartbox p b =
match p with

[] -> Box b
| hd :: tl ->

match List.nth b hd with
Box b2 -> getboxpartbox tl b2

| Line l -> Line l (∗ e r r o r i f no t f i n i s h e d ? ∗ )

;;

l e t getboxpart p rp =
getboxpartbox p rp.b;;

l e t rec getformulafromline r l =
match l with hd::tl ->

i f hd.r=r then hd.f
else getformulafromline r tl

;;

l e t getformula r p rp =
match getboxpart p rp with

Line l -> getformulafromline r l
;;

l e t rec lineContainsRibbon r l = match l with
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[] -> false
| hd::tl -> i f (hd.r=r) then true else lineContainsRibbon r tl

;;

(∗ F unc t i ons f o r b u i l d i n g r ibbon p r o o f s∗ )

l e t rec sidejoin p q =
match p,q with

[],[] -> []
| p,[] -> p
| [],q -> q
| (Line phl)::pt,(Line qhl)::qt ->

(Line (phl@qhl))::(sidejoin_aux pt qt phl qhl)
and sidejoin_aux p q pdef qdef =

l e t empty_line l = List.map ( fun {r=r;f=_} -> {r=r;f=Empty}) l
in match p,q with

[],[] -> []
| p,[] -> List.map ( fun (Line l) -> Line (l@(empty_line qdef))) p
| [],q -> List.map ( fun (Line l) -> Line ((empty_line pdef)@l)) q
| (Line phl)::pt,(Line qhl)::qt ->

(Line (phl@qhl))::(sidejoin_aux pt qt phl qhl)
;;

l e t rec bunchtoproof bch =
bunchtoproof_aux bch 1 2

and bunchtoproof_aux bch n m =
match bch with

Formula f -> ([Line [{r=n;f=f}]],Unsplit n,m)
| Semicolon (a,b) ->

l e t (p1,w1,m1) = bunchtoproof_aux a n m
in l e t (p2,w2,m2) = bunchtoproof_aux b n m1
in (p1@p2,

(match (w1,w2) with
(Unsplit n,Unsplit m) (∗ when n=m ? ∗ ) -> Unsplit n

| (Unsplit n,Split (m,l)) -> Split (n,([Unsplit n])::l)
| (Split (n,l),Unsplit m) -> Split (n,l@[[Unsplit m]])
| (Split (n,l1),Split (m,l2)) -> Split (n,l1@l2)
),
m2)

| Comma (a,b) ->
l e t (p1,w1,m1) = bunchtoproof_aux a m (m+1)
in l e t (p2,w2,m2) = bunchtoproof_aux b m1 (m1+1)
in (sidejoin p1 p2,

(match (w1,w2) with
(Unsplit m1,Unsplit m2) -> Split (n,[[w1;w2]])

(∗ p a t t e r n s below match l i s t s w i th 1 e l t on ly∗ )
| (Unsplit m1,Split (m2,[l])) -> Split (n,[w1::l])
| (Split (m1,[l]),Unsplit m2) -> Split (n,[l@[w2]])

(∗ d e f a u l t case ∗ )
| (_,_) -> Split (n,[[w1;w2]])),
m2)
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;;

(∗ T o o l k i t o f a s s e r t i o n s t o b u i l d p r oo f r u l e s∗ )

(∗ Proof rp c o n t a i n s r ibbon r a t l i n e p∗ )
l e t assertContainsRibbon r p rp =

l e t Line l = getboxpart p rp in lineContainsRibbon r l
;;

l e t assertDots p rp=true;;
l e t assertRibbonSum r1 r2 r3 rp=true;;

l e t assertActualFormula r p rp=
match getformula r p rp with

Empty -> false
| Dots -> false
| Atom _ -> true
| Binary _ -> true;;

l e t rec insert_at p b mapper=
match b with bphd :: bptl ->

match p with hd :: tl ->
i f (hd=1) then

match bphd with
Line l -> (Line (mapper l)::b)

| Box bb -> ((Box (insert_at tl bb mapper))::bptl)
else

bphd :: (insert_at ((hd-1)::tl) bptl mapper)
;;

l e t rec insert_after p b mapper=
match b with bphd :: bptl ->

match p with hd :: tl ->
i f (hd=0) then

match bphd with
Line l -> (bphd :: Line (mapper l) :: bptl)

| Box bb -> ((Box (insert_after tl bb mapper))::bptl)
else

bphd :: (insert_after ((hd-1)::tl) bptl mapper)
;;

l e t rec replacedots r f l =
match l with

[] -> []
| hd::tl ->

( i f (hd.r = r) then
({r=r;f=f})

else
({r=hd.r;f=Empty}))
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::(replacedots r f tl)
;;

(∗ Ribbon p r oo f r u l e s , implemented as t r a n s f o r m e r s from
p a r t i a l p r oo f t o p a r t i a l p r oo f ∗ )

(∗ l e t a n d I n t r o d u c t i o n r p1 p2 p3 rp =∗ )
(∗ i f ∗ )
(∗ (∗ Check p1 , p2 and p3 a l l c o n t a i n r ibbon r∗ ) ∗ )
(∗ as s e r t C on t a i n s R i b b o n r p1 rp &∗ )
(∗ as s e r t C on t a i n s R i b b o n r p2 rp &∗ )
(∗ as s e r t C on t a i n s R i b b o n r p3 rp &∗ )
(∗ (∗ Check p1 , p2 a c c e s s i b l e from p3∗ ) ∗ )
(∗ (∗ Check p3 i s a Dots l i n e∗ ) ∗ )
(∗ a s s e r t D o t s p3 rp &∗ )
(∗ as s e r t A c t ua l F o r m u l a r p1 rp &∗ )
(∗ as s e r t A c t ua l F o r m u l a r p2 rp∗ )
(∗ t hen l e t a=ge t f o r m u l a r p1 rp and b=ge t f o r m u l a r p2 rp i n∗ )
(∗ RP {b=( i n s e r t a t p3 rp . b ( r e p l a c e d o t s r ( B inary ( a , ” n ” , b ) ) ) )} ∗ )
(∗ e l s e∗ )
(∗ RuleE r ro r∗ )
(∗ ; ; ∗ )

(∗ l e t s t a r I n t r o d u c t i o n r1 p1 r2 p2 r3 p3 rp =∗ )
(∗ i f ∗ )
(∗ as s e r t C on t a i n s R i b b o n r1 p1 rp &∗ )
(∗ as s e r t C on t a i n s R i b b o n r2 p2 rp &∗ )
(∗ as s e r t C on t a i n s R i b b o n r3 p3 rp &∗ )

(∗ asser tR ibbonSum r1 r2 r3 rp &∗ )

(∗ a s s e r t D o t s p3 rp &∗ )
(∗ as s e r t A c t ua l F o r m u l a r1 p1 rp &∗ )
(∗ as s e r t A c t ua l F o r m u l a r2 p2 rp∗ )
(∗ t hen l e t a=ge t f o r m u l a r1 p1 rp and b=ge t f o r m u l a r2 p2 rp i n∗ )
(∗ RP{b=( i n s e r t a t p3 rp . b ( r e p l a c e d o t s r3 ( B inary ( a , ”∗ ” , b ) ) ) ) } ∗ )
(∗ e l s e∗ )
(∗ RuleE r ro r∗ )
(∗ ; ; ∗ )

l e t nIntro r p1 p2 (rp,s) =
i f

(∗ Check p1 and p2 c o n t a i n r ibbon r∗ )
assertContainsRibbon r p1 rp &
assertContainsRibbon r p2 rp &

(∗ Check p1 , p2 a c c e s s i b l e from p3∗ )
(∗ Check p1 , p2 both have a c t u a l fo rmu lae∗ )
assertActualFormula r p1 rp &
assertActualFormula r p2 rp

then l e t a=getformula r p1 rp and b=getformula r p2 rp in



107

RP ({b=(insert_after (pplowest p1 p2)
rp.b (replacedots r (Binary(a,"n",b))))} , s)

else
RuleError

;;

(∗ Pars ing f u n c t i o n s t o b u i l d bunches and fo rmu lae from
t e x t u a l r e p r e s e n t a t i o n s o f them∗ )

open Parse;;

(∗ l i t e r a l s t r i n g match f o r o p e r a t o r s ∗ )
l e t op s = function

Tokeniser.T2_Op t :: tail -> i f (s=t) then (s,tail) else raise ParseFailure
| _ -> ra ise ParseFailure

;;

(∗ any s t r i n g match f o r i d e n t i f i e r s ∗ )
l e t id = function

Tokeniser.T2_ID t :: tail -> (t,tail)
| _ -> ra ise ParseFailure

;;

(∗ F i r s t , we d e f i n e t he pa r s e r f o r fo rmu lae∗ )

(∗ Two u t i l i t y maps t o b u i l d B inary te rms∗ )
l e t left_assoc_connective op =
left_assoc ( fun x y -> Binary(x, op,y))

;;
l e t right_assoc_connective op =
right_assoc ( fun x y -> Binary(x, op,y))

;;

(∗ The fo rmu la produc t ion , and i t s s u b p r o d u c t i o n s∗ )

l e t rec formula t = begin
(op_exp" * " >> left_assoc_connective " * ")

||| (op_exp"&" >> left_assoc_connective "&")
||| (op_exp"->" >> right_assoc_connective "->")
||| (op_exp"- * " >> right_assoc_connective "- * ")
||| atomic_form
end t

and op_exp opn t = ( i n f i x ( op opn) atomic_form) t

and atomic_form t = begin
(id >> ( fun x -> Atom x))

|||(( op"(" -- formula -- op")" ) >> ( fun ((_,f),_) -> f))
end t
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;;

(∗ Now bunches , ve ry s i m i l a r∗ )

l e t rec bunch t = (add_bunch ||| mult_bunch ||| atomic_bunch) t

and add_bunch t = begin
( i n f i x ( op";") atomic_bunch) >> (left_assoc ( fun a b -> Semicolon(a,b)))

end t
and mult_bunch t = begin

( i n f i x ( op",") atomic_bunch) >> (left_assoc ( fun a b -> Comma(a,b)))
end t
and atomic_bunch t = begin

(formula >> ( fun f -> Formula f))
||| (( op"(" -- bunch -- op ")") >> ( fun ((_,b),_) -> b))
end t
;;

(∗ u s e f u l wrapper f u n c t i o n s∗ )

l e t parse_formula s = match formula (Tokeniser.tokenise s) with
(f,[]) -> f

| _ -> ra ise ParseFailure;;

l e t parse_bunch s = match bunch (Tokeniser.tokenise s) with
(b,[]) -> b

| _ -> ra ise ParseFailure;;

l e t proof_bunch s = bunchtoproof (parse_bunch s);;

(∗ p r e t t y p r i n t r o u t i n e s t o c o n v e r t p r o o f s and fo rmu lae
t o ASCII r e p r e s e n t a t i o n s∗ )

l e t rec formulalength f = match f with
Atom s -> String.length s

| Binary (a,o,b) -> (formulalength a)+(String.length o)+( formulalength b)+2
| Empty -> 0
| Dots -> 3

;;

l e t rec formula_to_string f =
match f with

Atom a -> a
| Binary (a,o,b) ->

"(" ˆ
(formula_to_string a) ˆ o ˆ (formula_to_string b)
ˆ ")"

| Empty -> ""
| Dots -> "..."

;;
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l e t rec printpointer p =
match p with

[] -> ()
| hd :: h2 :: tl -> print_int hd; print_string "."; printpoint er (h2::tl)
| hd :: tl -> print_int hd; printpointer tl;;

l e t rec calc_ribbon_widths b =
calc_rw_simple b []

and calc_rw_simple b w =
match b with

[] -> w
| hd :: tl -> match hd with

Line l -> calc_rw_simple tl (calc_rws_oneline l w)
| Box bx -> calc_rw_simple tl (calc_rw_simple bx w)

and calc_rws_oneline l w =
match l with

[] -> w
| {r=rib;f=form} :: tl ->

l e t w2 =
i f (member_assoc rib w) then

alter_assoc rib
( fun n -> max n ((formulalength form)+4))
w

else
(rib , (formulalength form)+4) :: w

in calc_rws_oneline tl w2
;;

l e t rec calc_widths b s =
l e t rw = calc_ribbon_widths b
in l e t rw2 = calc_widths_p1_aux s rw
in calc_widths_p2_aux s rw2

(∗ pass one makes sure each s upe r r i bbon i s as b ig as
i t s w i d e s t d i v i s i o n i n t o s ub r i bbons∗ )

and calc_widths_p1_aux s rw =
match s with

Unsplit n -> [(n,get_assoc n rw)]
| Split (n,l) ->

l e t n_wid = get_assoc_def 0 n rw in
l e t (listwidths,maxwidth) = calc_widths_p1_dolist l rw in

set_assoc (n, max n_wid maxwidth) listwidths
and calc_widths_p1_dolist l rw =

match l with
[] -> ([],0)

| l :: tl ->
l e t (lw,mw) = calc_widths_p1_dolist tl rw
in l e t (rw_l) = (List.map ( fun x -> calc_widths_p1_aux x rw) l)
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in l e t (n_l) = (List.map split_get_num l)
in l e t w =

max (List.fold_left (+) 0
(List.map2 ( fun x y -> (List.assoc x y))

n_l rw_l))
mw

in
((List.fold_left

(assoc_merge ( fun a b c -> max b c))
[] (lw::rw_l)),

w)
(∗ pass two pads ou t s ub r i bbons which aren ’ t as wide as

t h e i r s upe r r i bbon ∗ )
and calc_widths_p2_aux s rw =

match s with
Unsplit n -> rw

| Split (n,l) ->
l e t totalwidth = get_assoc n rw
in

(∗ i t e r a t i v e l y app ly c a l c w i d t h s p 2 p a d l i s t t o rw over
each e lement o f l us i ng f o l dl e f t ∗ )

List.fold_left
( fun rw l -> calc_widths_p2_padlist s l rw totalwidth)
rw l

and calc_widths_p2_padlist s l rw totalwidth =
match l with

[] -> rw
| h :: t ->

l e t w = calc_widths_p2_getlistwidth l rw (∗ wid th o f r i b s now ∗ )
in l e t n = List.length l (∗ number o f r i b s ac r os s t h i s s p l i t∗ )
in l e t space = totalwidth - w (∗ amount t o o f pad t o add∗ )
in l e t r = split_get_num h (∗ number o f f i r s t r i bbon ∗ )
in l e t thispad = (space/n) (∗ pad f i r s t by t h i s much∗ )
in l e t rw2 = (∗ change w id th o f l e f t m o s t r i bbon∗ )

alter_assoc r ( fun x -> x + thispad) rw
in l e t rw3 = calc_widths_p2_aux h rw2 (∗ r e c u r s e on h ∗ )
in (∗ r e c u r s e on t ∗ )

calc_widths_p2_padlist s t rw3 (totalwidth-(get_assoc r r w3))
and calc_widths_p2_getlistwidth l rw =

match l with
[] -> 0

| h :: t ->
(get_assoc (split_get_num h) rw) +

calc_widths_p2_getlistwidth t rw
and split_get_num spl =

match spl with
Unsplit n -> n

| Split (n,_) -> n
;;
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l e t rec newproof_string b s =
l e t rw = calc_widths b s in nps_aux b rw

and nps_aux b rw = match b with
[] -> ""

| Line l :: tl -> (nps_oneline l rw ) ˆ "\n" ˆ (nps_aux tl rw)
and nps_oneline l rw = match l with

[] -> ""
| {r=ribnum;f=form} :: tl ->

l e t wid = List.assoc ribnum rw
in l e t lpad = (wid - formulalength form - 2)/2
in l e t rpad = (wid - formulalength form - 2) - lpad
in "[" ˆ (nspaces lpad) ˆ

(formula_to_string form) ˆ
(nspaces rpad) ˆ "]" ˆ
nps_oneline tl rw

;;

l e t init_proof s t =
l e t (box,splits,num) = proof_bunch s in

print_string
(newproof_string

(box @
[Line [{r=(split_get_num splits);f=Dots}];

Line [{r=split_get_num splits;f=parse_formula t}]])
splits
)

;;

l e t print_bunchproof str =
l e t (b,s,_) = proof_bunch str in print_string (newproof_string b s);;

l e t pprint (r,s) = print_string (newproof_string r.b s);;

l e t ppbunch str = l e t (b,s,_) = proof_bunch str in ({b=b},s);;

l e t pprpoe = function
RP (r,s) -> pprint (r,s)

| RuleError -> print_string "RuleError"
;;


